
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780201835953
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780201835953
https://plusone.google.com/share?url=http://www.informit.com/title/9780201835953
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780201835953
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780201835953/Free-Sample-Chapter

Mythical Man-Month, The: Essays on
Software Engineering, Anniversary

Edition

Frederick P. Brooks

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Table of Contents
Copyright

About the Author

Preface to the 20th Anniversary Edition

Preface to the First Edition

Chapter 1. The Tar Pit

The Programming Systems Product

The Joys of the Craft

The Woes of the Craft

Chapter 2. The Mythical Man-Month

Optimism

The Man-Month

Systems Test

Gutless Estimating

Regenerative Schedule Disaster

Chapter 3. The Surgical Team

The Problem

Mills's Proposal

How It Works

Scaling Up

Chapter 4. Aristocracy, Democracy, and System Design

Conceptual Integrity

Achieving Conceptual Integrity

Aristocracy and Democracy

What Does the Implementer Do While Waiting?

Chapter 5. The Second-System Effect

Interactive Discipline for the Architect

Self-DisciplineThe Second-System Effect

Chapter 6. Passing the Word

Written Specificationsthe Manual

Formal Definitions

Direct Incorporation

Conferences and Courts

Multiple Implementations

The Telephone Log

Product Test

Chapter 7. Why Did the Tower of Babel Fail?

A Management Audit of the Babel Project

Communication in the Large Programming Project

The Project Workbook

Organization in the Large Programming Project

Chapter 8. Calling the Shot

Portman's Data

Aron's Data

Harr's Data

OS/360 Data

Corbatò's Data

Chapter 9. Ten Pounds in a Five-Pound Sack

Program Space as Cost

Size Control

Space Techniques

Representation Is the Essence of Programming

Chapter 10. The Documentary Hypothesis

Documents for a Computer Product

Documents for a University Department

Documents for a Software Project

Why Have Formal Documents?

Chapter 11. Plan to Throw One Away

Pilot Plants and Scaling Up

The Only Constancy Is Change Itself

Plan the System for Change

Plan the Organization for Change

Two Steps Forward and One Step Back

One Step Forward and One Step Back

Chapter 12. Sharp Tools

Target Machines

Vehicle Machines and Data Services

High-Level Language and Interactive Programming

Chapter 13. The Whole and the Parts

Designing the Bugs Out

Component Debugging

System Debugging

Chapter 14. Hatching a Catastrophe

Milestones or Millstones?

"The Other Piece Is Late, Anyway"

Under the Rug

Chapter 15. The Other Face

What Documentation Is Required?

The Flow-Chart Curse

Self-Documenting Programs

Chapter 16. No Silver BulletEssence and Accident in Software Engineering

Abstract

Introduction

Does It Have to Be Hard?Essential Difficulties

Past Breakthroughs Solved Accidental Difficulties

Hopes for the Silver

Promising Attacks on the Conceptual Essence

Chapter 17. "No Silver Bullet" Refined

On Werewolves and Other Legendary Terrors

There is Too a Silver BulletAND HERE IT IS!

Obscure Writing Will Be Misunderstood

Harel's Analysis

Jones's PointProductivity Follows Quality

So What Has Happened to Productivity?

Object-Oriented ProgrammingWill a Brass Bullet Do?

What About Reuse?

Learning Large VocabulariesA Predictable but Unpredicted Problem for Software
Reuse

Net on BulletsPosition Unchanged

Chapter 18. Propositions of The Mythical Man-Month: True or False?

Chapter 1. The Tar Pit

Chapter 2. The Mythical Man-Month

Chapter 3. The Surgical Team

Chapter 4. Aristocracy, Democracy, and System Design

Chapter 5. The Second-System Effect

Chapter 6. Passing the Word

Chapter 7. Why Did the Tower of Babel Fail?

Chapter 8. Calling the Shot

Chapter 9. Ten Pounds in a Five-Pound Sack

Chapter 10. The Documentary Hypothesis

Chapter 11. Plan to Throw One Away

Chapter 12. Sharp Tools

Chapter 13. The Whole and the Parts

Chapter 14. Hatching a Catastrophe

Chapter 15. The Other Face

Original Epilogue

Chapter 19. The Mythical Man-Month after 20 Years

Why Is There a Twentieth Anniversary Edition?

The Central Argument: Conceptual Integrity and the Architect

The Second-System Effect: Featuritis and Frequency-Guessing

The Triumph of the WIMP Interface

Don't Build One to Throw Away—The Waterfall Model Is Wrong!

An Incremental-Build Model Is Better—Progressive Refinement

Parnas Families

Microsoft's "Build Every Night" Approach

Incremental-Build and Rapid Prototyping

Parnas Was Right, and I Was Wrong about Information Hiding

How Mythical Is the Man-Month? Boehm's Model and Data

People Are Everything (Well, Almost Everything)

The Power of Giving Up Power

What's the Biggest New Surprise? Millions of Computers

Whole New Software Industry—Shrink-Wrapped Software

Buy and Build—Shrink-Wrapped Packages As Components

The State and Future of Software Engineering

Fifty Years of Wonder, Excitement, and Joy

Notes and References

Copyright
Cover drawing: C. R. Knight, Mural of the La Brea Tar Pits. Courtesy of the George C.
Page Museum of La Brea Discoveries, The Natural History Museum of Los Angeles
County.
The essay entitled, No Silver Bullet, is from Information Processing 1986, the
Proceedings of the IFIP Tenth World Computing Conference, edited by H.-J. Kugler,
1986, pages 1069–1076. Reprinted with the kind permission of IFIP and Elsevier Science
B.V., Amsterdam, The Netherlands.
Library of Congress Cataloging-in-Publication Data
Brooks, Frederick P., Jr. (Frederick Phillips)
 The mythical man-month : essays on software engineering /
 Frederick P. Brooks, Jr. — Anniversary ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-201-83595-9
 1. Software engineering. I. Title.
 QA76.758.B75 1995
 005.1\0xD5068—dc20 94-36653
 CIP
Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed in initial caps
or all caps.
Copyright © 1995 by Addison-Wesley Longman, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written permission of the publisher
and author.
Printed in the United States of America.
1 2 3 4 5 6 7 8 9 10—MA—98979695
ISBN: 0-201-83595-9

Dedication
Dedication of the 1975 edition
To two who especially enriched my IBM years:
Thomas J. Watson, Jr.,
whose deep concern for people still permeates his company,
and
Bob O. Evans,
whose bold leadership turned work into adventure.
Dedication of the 1995 edition
To Nancy,
God\0xD5s gift to me.

About the Author
Photo credit: ©Jerry Markatos

Frederick P. Brooks, Jr., is Kenan Professor of Computer Science at the University of
North Carolina at Chapel Hill. He is best known as the "father of the IBM System/360,"
having served as project manager for its development and later as manager of the
Operating System/360 software project during its design phase. For this work he, Bob
Evans, and Erich Bloch were awarded the National Medal of Technology in 1985.
Earlier, he was an architect of the IBM Stretch and Harvest computers.
At Chapel Hill, Dr. Brooks founded the Department of Computer Science and chaired it
from 1964 through 1984. He has served on the National Science Board and the Defense
Science Board. His current teaching and research is in computer architecture, molecular
graphics, and virtual environments.

Preface to the 20th Anniversary Edition
To my surprise and delight, The Mythical Man-Month continues to be popular after 20
years. Over 250,000 copies are in print. People often ask which of the opinions and
recommendations set forth in 1975 I still hold, and which have changed, and how.
Whereas I have from time to time addressed that question in lectures, I have long wanted
to essay it in writing.
Peter Gordon, now a Publishing Partner at Addison-Wesley, has been working with me
patiently and helpfully since 1980. He proposed that we prepare an Anniversary Edition.
We decided not to revise the original, but to reprint it untouched (except for trivial
corrections) and to augment it with more current thoughts.
Chapter 16 reprints "No Silver Bullet: Essence and Accidents of Software Engineering,"
a 1986 IFIPS paper that grew out of my experience chairing a Defense Science Board
study on military software. My coauthors of that study, and our executive secretary,
Robert L. Patrick, were invaluable in bringing me back into touch with real-world large
software projects. The paper was reprinted in 1987 in the IEEE Computer magazine,
which gave it wide circulation.
"No Silver Bullet" proved provocative. It predicted that a decade would not see any
programming technique that would by itself bring an order-of-magnitude improvement in
software productivity. The decade has a year to run; my prediction seems safe. "NSB"
has stimulated more and more spirited discussion in the literature than has The Mythical
Man-Month. Chapter 17, therefore, comments on some of the published critique and
updates the opinions set forth in 1986.
In preparing my retrospective and update of The Mythical Man-Month, I was struck by
how few of the propositions asserted in it have been critiqued, proven, or disproven by
ongoing software engineering research and experience. It proved useful to me now to
catalog those propositions in raw form, stripped of supporting arguments and data. In
hopes that these bald statements will invite arguments and facts to prove, disprove,
update, or refine those propositions, I have included this outline as Chapter 18.
Chapter 19 is the updating essay itself. The reader should be warned that the new
opinions are not nearly so well informed by experience in the trenches as the original
book was. I have been at work in a university, not industry, and on small-scale projects,
not large ones. Since 1986, I have only taught software engineering, not done research in
it at all. My research has rather been on virtual environments and their applications.
In preparing this retrospective, I have sought the current views of friends who are indeed
at work in software engineering. For a wonderful willingness to share views, to comment
thoughtfully on drafts, and to re-educate me, I am indebted to Barry Boehm, Ken Brooks,
Dick Case, James Coggins, Tom DeMarco, Jim McCarthy, David Parnas, Earl Wheeler,
and Edward Yourdon. Fay Ward has superbly handled the technical production of the
new chapters.

I thank Gordon Bell, Bruce Buchanan, Rick Hayes-Roth, my colleagues on the Defense
Science Board Task Force on Military Software, and, most especially, David Parnas for
their insights and stimulating ideas for, and Rebekah Bierly for technical production of,
the paper printed here as Chapter 16. Analyzing the software problem into the categories
of essence and accident was inspired by Nancy Greenwood Brooks, who used such
analysis in a paper on Suzuki violin pedagogy.
Addison-Wesley's house custom did not permit me to acknowledge in the preface to the
1975 edition the key roles played by their staff. Two persons' contributions should be
especially cited: Norman Stanton, then Executive Editor, and Herbert Boes, then Art
Director. Boes developed the elegant style, which one reviewer especially cited: "wide
margins, [and] imaginative use of typeface and layout." More important, he also made the
crucial recommendation that every chapter have an opening picture. (I had only the Tar
Pit and Reims Cathedral at the time.) Finding the pictures occasioned an extra year's
work for me, but I am eternally grateful for the counsel.
Soli Deo gloria—To God alone be glory.
F. P. B., Jr.
Chapel Hill, N.C.
March 1995

Preface to the First Edition
In many ways, managing a large computer programming project is like managing any
other large undertaking—in more ways than most programmers believe. But in many
other ways it is different—in more ways than most professional managers expect.
The lore of the field is accumulating. There have been several conferences, sessions at
AFIPS conferences, some books, and papers. But it is by no means yet in shape for any
systematic textbook treatment. It seems appropriate, however, to offer this little book,
reflecting essentially a personal view.
Although I originally grew up in the programming side of computer science, I was
involved chiefly in hardware architecture during the years (1956–1963) that the
autonomous control program and the high-level language compiler were developed.
When in 1964 I became manager of Operating System/360, I found a programming world
quite changed by the progress of the previous few years.
Managing OS/360 development was a very educational experience, albeit a very
frustrating one. The team, including F. M. Trapnell who succeeded me as manager, has
much to be proud of. The system contains many excellencies in design and execution,
and it has been successful in achieving widespread use. Certain ideas, most noticeably
device-independent input-output and external library management, were technical
innovations now widely copied. It is now quite reliable, reasonably efficient, and very
versatile.
The effort cannot be called wholly successful, however. Any OS/360 user is quickly
aware of how much better it should be. The flaws in design and execution pervade
especially the control program, as distinguished from the language compilers. Most of
these flaws date from the 1964–65 design period and hence must be laid to my charge.
Furthermore, the product was late, it took more memory than planned, the costs were
several times the estimate, and it did not perform very well until several releases after the
first.
After leaving IBM in 1965 to come to Chapel Hill as originally agreed when I took over
OS/360, I began to analyze the OS/360 experience to see what management and technical
lessons were to be learned. In particular, I wanted to explain the quite different
management experiences encountered in System/ 360 hardware development and OS/360
software development. This book is a belated answer to Tom Watson's probing questions
as to why programming is hard to manage.
In this quest I have profited from long conversations with R. P. Case, assistant manager
1964–65, and F. M. Trapnell, manager 1965–68. I have compared conclusions with other
managers of jumbo programming projects, including F. J. Corbato of M.I.T., John Harr
and V. Vyssotsky of Bell Telephone Laboratories, Charles Portman of International
Computers Limited, A. P. Ershov of the Computation Laboratory of the Siberian
Division, U.S.S.R. Academy of Sciences, and A. M. Pietrasanta of IBM.

My own conclusions are embodied in the essays that follow, which are intended for
professional programmers, professional managers, and especially professional managers
of programmers.
Although written as separable essays, there is a central argument contained especially in
Chapters 2–7. Briefly, I believe that large programming projects suffer management
problems different in kind from small ones, due to division of labor. I believe the critical
need to be the preservation of the conceptual integrity of the product itself. These
chapters explore both the difficulties of achieving this unity and methods for doing so.
The later chapters explore other aspects of software engineering management.
The literature in this field is not abundant, but it is widely scattered. Hence I have tried to
give references that will both illuminate particular points and guide the interested reader
to other useful works. Many friends have read the manuscript, and some have prepared
extensive helpful comments; where these seemed valuable but did not fit the flow of the
text, I have included them in the notes.
Because this is a book of essays and not a text, all the references and notes have been
banished to the end of the volume, and the reader is urged to ignore them on his first
reading.
I am deeply indebted to Miss Sara Elizabeth Moore, Mr. David Wagner, and Mrs.
Rebecca Burris for their help in preparing the manuscript, and to Professor Joseph C.
Sloane for advice on illustration.
F. P. B., Jr
Chapel Hill, N.C.
October 1974

Chapter 4. Aristocracy, Democracy, and
System Design

This great church is an incomparable work of art. There is neither aridity
nor confusion in the tenets it sets forth. . . .
It is the zenith of a style, the work of artists who had understood and
assimilated all their predecessors' successes, in complete possession of the
techniques of their times, but using them without indiscreet display nor
gratuitous feats of skill.
It was Jean d'Orbais who undoubtedly conceived the general plan of the
building, a plan which was respected, at least in its essential elements, by
his successors. This is one of the reasons for the extreme coherence and
unity of the edifice.
—REIMS CATHEDRAL GUIDEBOOK[1]

Conceptual Integrity
Most European cathedrals show differences in plan or architectural style between parts
built in different generations by different builders. The later builders were tempted to
"improve" upon the designs of the earlier ones, to reflect both changes in fashion and
differences in individual taste. So the peaceful Norman transept abuts and contradicts the
soaring Gothic nave, and the result proclaims the pridefulness of the builders as much as
the glory of God.
Against these, the architectural unity of Reims stands in glorious contrast. The joy that
stirs the beholder comes as much from the integrity of the design as from any particular
excellences. As the guidebook tells, this integrity was achieved by the self-abnegation of
eight generations of builders, each of whom sacrificed some of his ideas so that the whole
might be of pure design. The result proclaims not only the glory of God, but also His
power to salvage fallen men from their pride.
Even though they have not taken centuries to build, most programming systems reflect
conceptual disunity far worse than that of cathedrals. Usually this arises not from a serial
succession of master designers, but from the separation of design into many tasks done
by many men.
I will contend that conceptual integrity is the most important consideration in system
design. It is better to have a system omit certain anomalous features and improvements,
but to reflect one set of design ideas, than to have one that contains many good but
independent and uncoordinated ideas. In this chapter and the next two, we will examine
the consequences of this theme for programming system design:

• How is conceptual integrity to be achieved?

• Does not this argument imply an elite, or aristocracy of architects, and a
horde of plebeian implementers whose creative talents and ideas are suppressed?
• How does one keep the architects from drifting off into the blue with
unimplementable or costly specifications?
• How does one ensure that every trifling detail of an architectural
specification gets communicated to the implementer, properly understood by him,
and accurately incorporated into the product?

Achieving Conceptual Integrity
The purpose of a programming system is to make a computer easy to use. To do this, it
furnishes languages and various facilities that are in fact programs invoked and controlled
by language features. But these facilities are bought at a price: the external description of
a programming system is ten to twenty times as large as the external description of the
computer system itself. The user finds it far easier to specify any particular function, but
there are far more to choose from, and far more options and formats to remember.
Ease of use is enhanced only if the time gained in functional specification exceeds the
time lost in learning, remembering, and searching manuals. With modern programming
systems this gain does exceed the cost, but in recent years the ratio of gain to cost seems
to have fallen as more and more complex functions have been added. I am haunted by the
memory of the ease of use of the IBM 650, even without an assembler or any other
software at all.
Because ease of use is the purpose, this ratio of function to conceptual complexity is the
ultimate test of system design. Neither function alone nor simplicity alone defines a good
design.
This point is widely misunderstood. Operating System/360 is hailed by its builders as the
finest ever built, because it indisputably has the most function. Function, and not
simplicity, has always been the measure of excellence for its designers. On the other
hand, the Time-Sharing System for the PDP-10 is hailed by its builders as the finest,
because of its simplicity and the spareness of its concepts. By any measure, however, its
function is not even in the same class as that of OS/360. As soon as ease of use is held up
as the criterion, each of these is seen to be unbalanced, reaching for only half of the true
goal.
For a given level of function, however, that system is best in which one can specify
things with the most simplicity and straightforwardness. Simplicity is not enough.
Mooers's TRAC language and Algol 68 achieve simplicity as measured by the number of
distinct elementary concepts. They are not, however, straightforward. The expression of
the things one wants to do often requires involuted and unexpected combinations of the
basic facilities. It is not enough to learn the elements and rules of combination; one must
also learn the idiomatic usage, a whole lore of how the elements are combined in
practice. Simplicity and straightforwardness proceed from conceptual integrity. Every
part must reflect the same philosophies and the same balancing of desiderata. Every part
must even use the same techniques in syntax and analogous notions in semantics. Ease of
use, then, dictates unity of design, conceptual integrity.

Aristocracy and Democracy
Conceptual integrity in turn dictates that the design must proceed from one mind, or from
a very small number of agreeing resonant minds.
Schedule pressures, however, dictate that system building needs many hands. Two
techniques are available for resolving this dilemma. The first is a careful division of labor
between architecture and implementation. The second is the new way of structuring
programming implementation teams discussed in the previous chapter.
The separation of architectural effort from implementation is a very powerful way of
getting conceptual integrity on very large projects. I myself have seen it used with great
success on IBM's Stretch computer and on the System/360 computer product line. I have
seen it fail through lack of application on Operating System/360.
By the architecture of a system, I mean the complete and detailed specification of the
user interface. For a computer this is the programming manual. For a compiler it is the
language manual. For a control program it is the manuals for the language or languages
used to invoke its functions. For the entire system it is the union of the manuals the user
must consult to do his entire job.
The architect of a system, like the architect of a building, is the user's agent. It is his job
to bring professional and technical knowledge to bear in the unalloyed interest of the
user, as opposed to the interests of the salesman, the fabricator, etc.[2]
Architecture must be carefully distinguished from implementation. As Blaauw has said,
"Where architecture tells what happens, implementation tells how it is made to
happen."[3] He gives as a simple example a clock, whose architecture consists of the face,
the hands, and the winding knob. When a child has learned this architecture, he can tell
time as easily from a wristwatch as from a church tower. The implementation, however,
and its realization, describe what goes on inside the case—powering by any of many
mechanisms and accuracy control by any of many.
In System/360, for example, a single computer architecture is implemented quite
differently in each of some nine models. Conversely, a single implementation, the Model
30 data flow, memory, and microcode, serves at different times for four different
architectures: a System/360 computer, a multiplex channel with up to 224 logically
independent subchannels, a selector channel, and a 1401 computer.[4]
The same distinction is equally applicable to programming systems. There is a U.S.
standard Fortran IV. This is the architecture for many compilers. Within this architecture
many implementations are possible: text-in-core or compiler-in-core, fast-compile or
optimizing, syntax-directed or ad-hoc. Likewise any assembler language or job-control
language admits of many implementations of the assembler or scheduler.
Now we can deal with the deeply emotional question of aristocracy versus democracy.
Are not the architects a new aristocracy, an intellectual elite, set up to tell the poor dumb
implementers what to do? Has not all the creative work been sequestered for this elite,
leaving the implementers as cogs in the machine? Won't one get a better product by
getting the good ideas from all the team, following a democratic philosophy, rather than
by restricting the development of specifications to a few?

As to the last question, it is the easiest. I will certainly not contend that only the architects
will have good architectural ideas. Often the fresh concept does come from an
implementer or from a user. However, all my own experience convinces me, and I have
tried to show, that the conceptual integrity of a system determines its ease of use. Good
features and ideas that do not integrate with a system's basic concepts are best left out. If
there appear many such important but incompatible ideas, one scraps the whole system
and starts again on an integrated system with different basic concepts.
As to the aristocracy charge, the answer must be yes and no. Yes, in the sense that there
must be few architects, their product must endure longer than that of an implementer, and
the architect sits at the focus of forces which he must ultimately resolve in the user's
interest. If a system is to have conceptual integrity, someone must control the concepts.
That is an aristocracy that needs no apology.
No, because the setting of external specifications is not more creative work than the
designing of implementations. It is just different creative work. The design of an
implementation, given an architecture, requires and allows as much design creativity, as
many new ideas, and as much technical brilliance as the design of the external
specifications. Indeed, the cost-performance ratio of the product will depend most heavily
on the implementer, just as ease of use depends most heavily on the architect.
There are many examples from other arts and crafts that lead one to believe that
discipline is good for art. Indeed, an artist's aphorism asserts, "Form is liberating." The
worst buildings are those whose budget was too great for the purposes to be served.
Bach's creative output hardly seems to have been squelched by the necessity of producing
a limited-form cantata each week. I am sure that the Stretch computer would have had a
better architecture had it been more tightly constrained; the constraints imposed by the
System/360 Model 30's budget were in my opinion entirely beneficial for the Model 75's
architecture.
Similarly, I observe that the external provision of an architecture enhances, not cramps,
the creative style of an implementing group. They focus at once on the part of the
problem no one has addressed, and inventions begin to flow. In an unconstrained
implementing group, most thought and debate goes into architectural decisions, and
implementation proper gets short shrift.[5]
This effect, which I have seen many times, is confirmed by R. W. Conway, whose group
at Cornell built the PL/C compiler for the PL/I language. He says, "We finally decided to
implement the language unchanged and unimproved, for the debates about language
would have taken all our effort."[6]

What Does the Implementer Do While Waiting?
It is a very humbling experience to make a multimillion-dollar mistake, but it is also very
memorable. I vividly recall the night we decided how to organize the actual writing of
external specifications for OS/360. The manager of architecture, the manager of control
program implementation, and I were threshing out the plan, schedule, and division of
responsibilities.

The architecture manager had 10 good men. He asserted that they could write the
specifications and do it right. It would take ten months, three more than the schedule
allowed.
The control program manager had 150 men. He asserted that they could prepare the
specifications, with the architecture team coordinating; it would be well-done and
practical, and he could do it on schedule. Furthermore, if the architecture team did it, his
150 men would sit twiddling their thumbs for ten months.
To this the architecture manager responded that if I gave the control program team the
responsibility, the result would not in fact be on time, but would also be three months
late, and of much lower quality. I did, and it was. He was right on both counts. Moreover,
the lack of conceptual integrity made the system far more costly to build and change, and
I would estimate that it added a year to debugging time.
Many actors, of course, entered into that mistaken decision; but the overwhelming one
was schedule time and the appeal of putting all those 150 implementers to work. It is this
siren song whose deadly hazards I would now make visible.
When it is proposed that a small architecture team in fact write all the external
specifications for a computer or a programming system, the implementers raise three
objections:

• The specifications will be too rich in function and will not reflect practical
cost considerations.
• The architects will get all the creative fun and shut out the inventiveness
of the implementers.
• The many implementers will have to sit idly by while the specifications
come through the narrow funnel that is the architecture team.

The first of these is a real danger, and it will be treated in the next chapter. The other two
are illusions, pure and simple. As we have seen above, implementation is also a creative
activity of the first order. The opportunity to be creative and inventive in implementation
is not significantly diminished by working within a given external specification, and the
order of creativity may even be enhanced by that discipline. The total product will surely
be.
The last objection is one of timing and phasing. A quick answer is to refrain from hiring
implementers until the specifications are complete. This is what is done when a building
is constructed.
In the computer systems business, however, the pace is quicker, and one wants to
compress the schedule as much as possible. How much can specification and building be
overlapped?
As Blaauw points out, the total creative effort involves three distinct phases: architecture,
implementation, and realization. It turns out that these can in fact be begun in parallel and
proceed simultaneously.
In computer design, for example, the implementer can start as soon as he has relatively
vague assumptions about the manual, somewhat clearer ideas about the technology, and
well-defined cost and performance objectives. He can begin designing data flows, control

sequences, gross packaging concepts, and so on. He devises or adapts the tools he will
need, especially the record-keeping system, including the design automation system.
Meanwhile, at the realization level, circuits, cards, cables, frames, power supplies, and
memories must each be designed, refined, and documented. This work proceeds in
parallel with architecture and implementation.
The same thing is true in programming system design. Long before the external
specifications are complete, the implementer has plenty to do. Given some rough
approximations as to the function of the system that will be ultimately embodied in the
external specifications, he can proceed. He must have well-defined space and time
objectives. He must know the system configuration on which his product must run. Then
he can begin designing module boundaries, table structures, pass or phase breakdowns,
algorithms, and all kinds of tools. Some time, too, must be spent in communicating with
the architect.
Meanwhile, on the realization level there is much to be done also. Programming has a
technology, too. If the machine is a new one, much work must be done on subroutine
conventions, supervisory techniques, searching and sorting algorithms.[7]
Conceptual integrity does require that a system reflect a single philosophy and that the
specification as seen by the user flow from a few minds. Because of the real division of
labor into architecture, implementation, and realization, however, this does not imply that
a system so designed will take longer to build. Experience shows the opposite, that the
integral system goes together faster and takes less time to test. In effect, a widespread
horizontal division of labor has been sharply reduced by a vertical division of labor, and
the result is radically simplified communications and improved conceptual integrity.

	Table of Contents
	Copyright
	About the Author
	Preface to the 20th Anniversary Edition
	Preface to the First Edition
	Chapter 4. Aristocracy, Democracy, and System Design
	Conceptual Integrity
	Achieving Conceptual Integrity
	Aristocracy and Democracy
	What Does the Implementer Do While Waiting?

