

67

Chapter 4

Business and License Model
Symbiosis

Your

business model

 is the manner in which you charge customers for your products
or services—the way you make money. Associated with every software business
model is a license model, which is made up of the terms and conditions (or rights and
restrictions) that you grant to a user and/or customer of your software as defined by
your business model.

The symbiosis between these models is reflected in how easily we have created
shorthand terms that describe them both in the same phrase. “An annual license for 10
concurrent users with the right to receive upgrades and bug fixes” is both a business
model based on metered access to the software (by concurrent user) and a license
model that defines some of the terms and conditions of its use—the duration, the right
to use the software, and the right to receive upgrades and patches. Still, although busi-
ness and license models are symbiotically related, they are

not

 the same thing.
Many software companies practice

Model-T

 business and licensing model strate-
gies. They create very few business models (often only one!) and expect each of their
target markets to adapt to it. Moreover, they define relatively rigid licensing models,
failing to realize that within a business model market segments will pay to obtain cer-
tain kinds of rights (like the right to upgrade) or remove certain kinds of restrictions.
Rigidly defined business and licensing models may work for a new product in an
emerging market, but mature markets need flexibility to capture the maximum reve-
nue and market share from each segment. Just as we want to choose the color of our
cars, so customers want choice in how they license their software.

Instead of forcing each target market to adopt a single business or licensing
model, it is better to examine each target market to determine the combination that
will provide you with the greatest market share and revenue. Doing this well requires
that your product marketing organization understand the basics of each model and

Hohmann.book Page 67 Monday, January 13, 2003 9:11 AM

68

Business and License Model Symbiosis

how these work in a given target market. Given the plethora of possible models, this
can be a challenge.

Considering all of the work involved in creating and supporting a business model,
you may wonder why software is licensed and not sold (like a pen or a coffee mug).
Perhaps the biggest reason is control. If someone sells you the software like a physical
good, they lose control over what you can do with it. Thus, someone selling you soft-
ware can’t prevent you from modifying it, reselling it, reverse-engineering it to deter-
mine how it works and using that information to make competing products, or
copying it and loading it on multiple computers or making it available over a network.
A physical object does not suffer from these problems, which is why nearly all soft-
ware—even the software you’re using to create your next program—is distributed via
license.

As one of the key embodiments of the marketecture, the business model and its
licensing models may have a

tremendous

 impact on your tarchitecture, imposing
requirements throughout the system. More sobering is the fact that if your business
model is the way you make money, creating the right one, licensing it the right way,
and supporting it technically are essential to a truly winning solution. Missing any one
of these things, for any given target market, means you might lose it all.

This chapter explores business and license models and the effects they can have
on software architecture. I’ll review how to make certain your business models are
properly supported, discuss key license models often associated with business models,
and present a few emerging techniques for making certain you’re getting the most
from your model. When I’m finished, you’ll have the background you need to create
effective business and licensing models of your own.

Business Model Nirvana

A key objective of the marketect is to ensure that the company is profitably
rewarded for the value it provides to its customers. This often requires multi-
ple co-existing business models because customers often perceive different
kinds of value with different functions of a software system. In one application
I worked on, the main server was licensed to customers based on transaction
fees while optional modules needed for large installations were annually
licensed. This combination of business models matched how our customer
received value from the system and allowed us to sell to a larger total market.
Transaction fees have the virtue of scaling with size in that small customers,
having few transactions, pay less while larger customers, having many trans-
actions, pay more. Thus, only customers that need them license the optional
modules. Careful design of tarchitecture to support these two models was key
to creating a winning solution.

Hohmann.book Page 68 Monday, January 13, 2003 9:11 AM

Common Software Business Models

69

Common Software Business Models

The most common software-related business models make money by

• Providing unfettered

access

to or

use

of the application for a defined period of
time

• Charging a percentage of the

revenue obtained

or

costs saved

from using the
application

• Charging for a

transaction

, a defined and measurable unit of work

•

Metering

 access to or use of the application, or something the application processes

• Charging for the

hardware

 the application runs on or hardware intimately asso-
ciated with the application, and not the application itself

• Providing one or more

services

 that are intimately related to application opera-
tion and/or use

Traditional software publishers or independent software vendors (ISVs) rely heavily
on the first four models. The other models may be associated with an ISV or may be
based on an open-source licensing model. For example, you can’t

sell

 Apache, but
you can certainly base your business model on installing, configuring, and operating
Apache-based servers.

Before you read further, go back to the beginning of this list and replace the word

application

 with

feature

. Applications are collections of features, each of which can
be offered under a different business and licensing model. Thus, for example, you can
provide unfettered access to the base application for an annual license fee but charge a

Will That Be an Application, Suite, Bundle, or Feature?

Companies that offer more than one product often try to create synergies
around their various product lines. One way of doing this is to associate a set
of products as a suite or studio. To be effective, the products the suite com-
prises should work together and should address some aspect of a common
problem domain. Organizationally, it is best if there is a separate marketect in
charge of the suite, whose primary job is to work with the marketects of each
suite product to make certain the suite is a good value for customers.

A bundle is a simpler concept than a suite and is usually based on a set
of products that may have no special relationship to each other, may not inter-
operate, and may even be normally targeted at different market segments.
There may be a separate marketect in charge of a bundle. Ultimately, the
marketect must answer the questions associated with creating a suite or a
bundle, or with marketing a feature or an application.

Hohmann_ch04.fm Page 69 Thursday, November 6, 2003 3:18 PM

70

Business and License Model Symbiosis

transaction fee for invoking a special feature that produces a defined and measurable
unit of work. Defining this mix is a key responsibility of the marketect.

The more sophisticated business models are usually associated with enterprise
applications, although this is continually changing as the technology to enforce
license models matures. Metering is a good example. Many enterprise applications
meter by concurrent user. In consumer applications, you might want to meter by the
amount of time the user has been accessing your application, but this requires sophis-
ticated technologies, including a reliable way to capture usage data. As these technol-
ogies mature, you will find these business models offered wherever they increase
business!

Let’s consider each of these business models in greater detail, keeping in mind the
following points:

• A complex system may have multiple business models. The “base” system
might be transaction-fee based while additional “optional” modules might be
annually licensed. The central business model should be congruent with the
value received from the customer by the generic and expected product. The
augmented product may benefit from different licensing models.

• Business models are often coupled with one or more field-of-use license restric-
tions, which constrain where, when, and how the software can be used. Com-
mon field-of-use restrictions include single computer, a single site (called a

site
license

), or one or more geographies (which export restrictions may require).

• Field-of-use restrictions work in conjunction with the core business model to
create more total revenue for a company. Consider an annual license that is
restricted to a single computer. If the licensee wishes to use the software on
another computer, he must obtain an additional license, thereby driving more
revenue. Field-of-use restrictions are another aspect of the licensing model,
much like the “right to upgrade” or the “right to receive technical support.” For
consistency in contract language and in enforcing your licensing model, it may
help to convert a field-of-use restriction to a right (or

entitlement

)—you have
the right to use this software on a designated computer, or you have the right to
use this software on any computer in your company.

• All of the business models associate some period of time with their use. This
period is defined in the license model. Common time periods include months,
quarters, and years.

• The licensing model may also define how and when a customer must make pay-
ments as a way of extending a given business model to a new market. For exam-
ple, a service based on a monthly payment originally created for the small to
medium business (SMB) market and requiring a purchase order might have to
be augmented with the ability to accept credit cards to reach the small office/
home office (SOHO) market.

Hohmann.book Page 70 Monday, January 13, 2003 9:11 AM

Common Software Business Models

71

Time-Based Access or Usage

In this model, the licensee can use the software for a well-defined period of time, such
as when you

purchase

 an operating system. What is really happening is that the oper-
ating system publisher, or its agent, has granted you the right to use the operating sys-
tem, typically on one computer, for that time. Other rights and restrictions will be
defined in the license model, but the core business model is based on accessing or
using the software (you

pay

 to license the software so that you can

use

 it).
Common time periods for time-based access or usage include the following.

Perpetual

The licensee is granted a license to use the software in perpetuity—that is, forever.
Upgrades or updates are not usually included and instead are separately priced. Bug
fixes or patches may be included as part of the original fee, or you may be required to
pay a maintenance fee (typically ranging from 15 percent to 30 percent of the initial
license fee). Be very careful of perpetual licenses, as they often increase total support
and maintenance costs (unless you’re careful, you may have to support

every

 ver-
sion—

forever!

).
Despite the potential drawbacks of perpetual licenses, they are surprisingly com-

mon and often required in many markets. Consumer software; common productivity
tools, such as word processors or presentation software; operating systems; and many
enterprise applications are based on them. Perpetual licenses may be required if
you’re providing a system or technology that may be embedded within other systems.
Examples range from the runtime libraries provided by programming language ven-
dors (e.g., the C runtime library) to systems that may become components of hard-
ware devices or information appliances.

Annual

The software can be accessed or used for one year from the effective date of the
license. The effective date can be defined as the time the license is granted, the time
the software is installed, or the time the software is first used. Annual licenses often
include software updates or patches. They may or may not include other services,
such as technical support or consulting fees, and they are usually renewable. Renewal
may be automatic, and it may be priced differently from the original annual license.

The difference between a perpetual license with an annual maintenance fee and
an annual license is subtle but important. In the case of a perpetual license, the main-
tenance fees are added on as a way of enticing the licensee to pay for additional ser-
vices, such as bug fixes or new releases. In the case of an annual license, if the
licensee hasn’t paid and continues to use the software, it is in breach of the license.
You will ultimately have to decide how you want to enforce license terms and condi-
tions, a topic explored in greater detail later in this chapter. Annual licenses are com-
mon in enterprise-class systems.

Hohmann.book Page 71 Monday, January 13, 2003 9:11 AM

72

Business and License Model Symbiosis

Although perpetual and annual licenses are the most common predefined time
periods, there is nothing that prevents you from defining other periods (e.g., nine
months) or a collection of times when the software can be accessed (e.g., Monday
through Friday from 8 to 5). The hard part is defining one that works best for your tar-
get market and making certain you can appropriately enforce the business model and
license terms. After all, which market segment would find a nine-month period or
only accessing software Monday through Friday from 8 to 5 sensible?

Here are a few additional time-based usage models.

Rental

A rental is a time-based model in which the time allowed for use is set when the
license is granted. In reality, it is just an annual license with a different term (or an
annual license is just a rental of one year). Rentals are becoming increasingly popular
in certain industries, including software test automation and electronic design automa-
tion (EDA). As license management technology matures, I predict that rentals will
reach all market segments and that we will be able to rent just about every application
available.

The business motivations for rental are compelling. For one, a rental allows you
to reach a new market. Suppose, for example, that you rent a high-end, professional
video editing system for $50,000 for a single-user annual license. One way to reach the
home user market is to create a simpler version of this system, with fewer features.
Another way is to offer the system as a rental (say, $100 per hour). For the user who has
learned the system at work but wants to use it at home, the rental price might be a real
bargain—she already knows how to use the application, so why go with anything else?

Key issues that must be resolved with a rental model include specifying when the
rental period begins (when you purchase the license? install the software? start using
the software?); determining how the software should respond when the rental is fin-
ished (will the program stop working entirely, or will you give the user some kind of
grace period so that she can save her work?); and pricing (if you can obtain a perpet-
ual license for a graphic design package for $2,995, what is the cost for a one-hour
rental? a one-day rental?).

Subscriptions

At the other end of the spectrum is a subscription, in which customers pay a periodic
fee to access the software. A subscription is like a rental or an annual license—all that
differs is the terms and rights. For example, a rental may not include the right to
receive upgrades or patches. Most subscriptions and annual licenses do include this. A
rental and a subscription may include technical support, while in many cases you must
purchase an additional contract (which can define varying kinds or levels of support)
with an annual license. Because subscriptions are often associated with some backend
service, the license models that define them are relatively easy to enforce. Simply cut
off access to the backend service!

Hohmann_ch04.fm Page 72 Thursday, November 6, 2003 3:21 PM

Common Software Business Models

73

Pay after Use

An interesting question arises in any time-based usage model: What happens when the
user accesses the application after the approved period of time? How you answer this
question can make or break your relationship with your customer—and your bank
account. At one end of the spectrum is absolute enforcement of a business model with
no grace period: When the term is finished, the software becomes inoperable. This
very severe choice is simply inappropriate for most target markets. An emerging busi-
ness model charges the customer

after

 he has used the software by keeping track of
how long he has used it. This model places a host of complex demands on the tarchi-
tecture (see below), but it does help ensure that the company is receiving every dollar
it can from the use of its software.

An analogy is a car rental. You’re typically charged for each day you rent the car,
with strict definitions as to what constitutes a day. If you go beyond the original con-
tract, the car company continues to charge you (they have your credit card on file, and
the rate that you’ll be charged is predefined in the contract). This pay-after-use busi-
ness model will become more popular as the relationship between business models,
licensing models, and billing systems matures, and as marketects learn to use these
new capabilities to create compelling “pay-after-use” solutions.

Per-User Licenses

A special category of software that uses time-based access or usage licenses is appli-
cations designed to work on a single personal computer, workstation, or handheld
device. As a group, these licenses are often referred to as

per-user

, and often cost less
than $500. Per-user licenses work great when the publisher is licensing one copy to
one user but not so well when a publisher is trying to sell 500 or 5,000 licenses to an
enterprise.

To address this issue, most major software publishers have created

volume licens-
ing

 programs to more effectively reach enterprises (businesses, charitable organiza-
tions, academic institutions) that license more than one copy of the same software.
Volume licensing programs are not fundamentally new but, instead are sophisticated
pricing models based on an access- or usage-based business model. They offer enter-
prises a way to acquire multiple licenses of a given program, usually at a discount.
The more copies licensed, the greater the discount.

In a

transactional volume licensing

program, each product is associated with a
certain number of

points

. A high-end, expensive product may be worth five points; a
low-end, inexpensive product, one point. As an enterprise creates a purchase order
(500 licenses to this software, 230 licenses to that software) a point total is dynami-
cally computed. Applicable discounts are calculated based on the total points as spec-
ified by the transaction.

In a

contractual volume licensing

 program, the enterprise estimates the number of
licenses they will need for a projected period of time and commits to acquiring

at
least

 these licenses by the time specified in the contract. The commitment to purchase
a minimum number of licenses entitles the enterprise to a discount. Bonus discounts

Hohmann.book Page 73 Monday, January 13, 2003 9:11 AM

74

Business and License Model Symbiosis

may be allowed if additional licenses are acquired, and penalties may be assessed if
the customer does not license enough.

Both transactional and contractual licensing programs are highly regulated by the
companies that offer them. Consider them whenever you sell multiple “copies” of the
same software to one enterprise. Such licenses are more appropriate for applications
that can be used in the enterprise context (games are probably not a good choice for a
volume licensing program). You may not want to offer a personal finance program as
part of a volume licensing deal, largely because the target market will be a single user
on a single computer. That said, marketects should be aware of the benefits that a vol-
ume licensing program can provide to their customers and their product lines.

OEM

Another category in which time-based access or usage is dominant is in the OEM
(original equipment manufacturer) or royalty market. The business model is access to
the software. The pricing model is whatever makes sense (in the case of an OEM) or a
fairly defined royalty.

Transaction

Transactions are defined and measurable units of work. Business models based on
them associate a specific fee with each transaction or a block of transactions. A trans-
action can be surprisingly simple or maddeningly complex. For example, it can mean

executing

 the software. This is common in a business model known as “try and die,” in
which you can execute the software a predefined number of times—say, five—before
it becomes inoperable. I’ve worked on systems in which a transaction was distributed
among multiple servers; the business model was based on charging the customer
whose “root” server initiated the transaction.

Fees may be calculated in many different ways. I’ve worked on systems based on

flat

 fees (a fixed cost per transaction),

percentage

 fees (a percentage of some other cal-
culated or defined amount),

sliding

 fees (the cost per transaction decreases as certain
volumes are realized), or

processing

 fees, in which the work to perform the transac-
tion is measured and the customer is billed accordingly (e.g., a simple transaction that
could be computed with few resources costs less than a complex transaction that
required many resources).

There is nothing about a transaction-based model that requires all transactions to
be the same size, duration, or amount. Indeed, such differences are the foundation of
many business models, and you can use them to create different pricing structures. For
example, in the telecommunications industry a phone call is a transaction, the dura-
tion of which determines the price.

1

1. I’m intentionally simplifying this example to illustrate a point. In reality, the price of a call is de-
termined by many complex factors, including, but not limited to, tariffs and the time of day of the
phone call. The telecommunications industry is a great case study of how both the marketect and
a tarchitect must know the subtleties of the legal issues in creating the business model.

Hohmann.book Page 74 Monday, January 13, 2003 9:11 AM

Common Software Business Models

75

Transaction-based business models are found almost exclusively within enter-
prise software. Creative marketects know how to define a transaction and construct a
transaction fee that works best for their target market. It is imperative that the tarchi-
tect understand both the legal and the business-model transaction definition.

Sounds Great, But What Do I Charge?

A business model defines

how

 you will charge a customer for your products
and/or services but not

how much

. A

pricing model

 defines how much. Trans-
action fees, for example, can be just a few cents to many millions of dollars
depending on the nature of the transaction! If your business model is based on
access to the software, the associated pricing model could be a one-time pay-
ment based on the specific modules or features licensed (a “menu” approach),
or it could be a set fee based on the annual revenue of the enterprise.

Pricing a product or service is one of the hardest of the marketect’s jobs.
Charge too much and you face competition, lower revenue (too few custom-
ers can afford your product), and slow growth. Charge too little and you leave
money on the table. While a detailed discussion of pricing is beyond the
scope of this book, here are some principles that have worked well for me.

• Price should reflect value. If your customer is receiving hundreds of
thousands of dollars of quantifiable benefits from your product, you
should receive tens of thousands of dollars or more. From the perspec-
tive of your customer, price isn’t affected by what the product costs but
by what it’s worth.

• Price should reflect effort. If your application requires a total develop-
ment team of 120 people, including developers, QA, technical publica-
tions, support, product management, marketing, and sales, then you
need to charge enough to support them. From the perspective of your
employer, if you’re not going to charge enough to be profitable, your
product will be shut down. And it should be. Either it isn’t providing
enough value or the value it provides costs too much to create.

• Price should support your positioning. If you’re positioning yourself as
“premium,” your price will be high. If you’re positioning yourself as “low
cost,” your price will be low.

• Price must reflect the competitive landscape. If you’re the new entry
into an established market, a new business model or a new pricing
model may win you business. Or it may simply confuse your custom-
ers. If it does, you’re probably going to end up switching to a business
model that your customers understand. Either way, understanding the
business models of your competitors will help you make the right initial
choice and will help you quickly correct for a poor one.

Hohmann.book Page 75 Monday, January 13, 2003 9:11 AM

76

Business and License Model Symbiosis

Metering

Metering is a business model based on constraining or consuming a well-defined
resource or something that the application processes. A constraint model limits access
to the system to a specific set of predefined resources. A consumptive model creates a
“pool” of possible resources that are consumed. The consumption can be based on
concurrency, as when two or more resources simultaneously access or use the system,
or on an absolute value that is consumed as the application is used. When all of the
available resources are temporarily or permanently consumed, the software becomes
inoperable. Many successful business models blend these concepts based on the target
market. Here are some of the ways this is done.

Concurrent Resource Management

This business model is based on metering the number of resources concurrently
accessing the system, with the most common resource either a

user

 or a

session

. The
business model is usually designed to constrain the resource (“a license for up to 10
concurrent users”). Both user and session must be defined, because in many systems a
single user can have multiple sessions. The specific definition of a resource almost
always has tarchitectural implications; managing concurrent users is quite different
from managing concurrent sessions, and both are different from managing concurrent
threads or processes.

• Pricing models should not create confusion among your customers. I
realize that this can be difficult, especially when you’re creating a sys-
tem with a lot of options. Find ways to reduce the complexity of the
menu approach by offering bundles, or just plain simplify your offerings.

• Pricing models should reflect market maturity. If you’re in an emerging
market, you may need to try several different pricing models before you
choose the one that works best. Be careful with your experiments
because later customers will ask earlier customers how much they’ve
paid. Note that you can only do this if you have a method for tracking
and evaluating the model performance. This can be a tarchitectural
issue, in that you may need your software to report certain information
to back-office systems when it is installed or used.

• It is usually harder to raise prices than to lower them for the same
product. If you start too low and you need to raise prices, you may
have to find a way to split and/or modularize your offering.

• Pricing models should reflect your target market. Selling essentially the
same solution at different price points to different markets (e.g., the
student or small office version) often makes good sense.

Hohmann.book Page 76 Monday, January 13, 2003 9:11 AM

Common Software Business Models

77

Like transaction fees, concurrent resource business models have a variety of pric-
ing schemes. You may pay less for more resources, and you may pay a different
amount for a different resource. Concurrent resource models are almost exclusively
the domain of enterprise software.

Identified Resource Management

In this model, specific resources are identified to the application and are allowed to
access the system when they have been properly authenticated. The constraint is the
defined resources, the most common of which is a

named user

, that is, a specifically
identified user allowed to access the application. Identified resource business models
are often combined with concurrent (consumptive) resource business models for per-
formance or business reasons. Thus, you may create a business model based on any 10
out of 35 named users concurrently accessing the system or any 3 out of 5 plug-ins
concurrently used to extend the application.

The concept of a user as the concurrent or identified resource is so prevalent that
marketects should be alert to the ways in which they can organize their business
model around users. One common way is to classify users into groups, or types, and
separately define the functions and/or applications that each group can access.

The idea is analogous to how car manufacturers bundle optional/add-on features
in a car and sell it as a complete package (the utility model versus the sport model). As
a result, it is common in concurrent or named user business models to find defined
user types (bronze, silver, or gold,

or

 standard or professional) with specifically
defined functionality associated with each (e.g., a concurrent gold user can access
these features . . .).

The administrative burden of this approach can be overwhelming for corporate IT
departments. To ease it, try to leverage existing directory or user management infra-
structures, such as any AAA (access authentication authorization) or LDAP (Light-
weight Directory Access Protocol) servers that may be installed. These systems are
designed to assist IT in capturing and managing these data.

Consumptive Resource Management

In this model, you create a specified

amount

 of a resource and consume that amount
once when the application is invoked or continually while it is running. Unlike a con-
current model, in which consumption varies based on the specific resources simulta-
neously accessing the system, a purely consumptive model expends resources that are
not returned.

Consider time as a consumptive resource. In this approach, you define a period of
time (e.g., 100 hours or 30 days) and provide the user with a license for it. As the soft-
ware is used, it keeps track of the time, “consuming” the designated value from the
licenses. When all of the allotted time has been used the software becomes inoperable.
Key issues that must be resolved in this approach include the definition of

time

 (actual
CPU time, system-elapsed time, or other), the manner in which the software will track

Hohmann.book Page 77 Monday, January 13, 2003 9:11 AM

78

Business and License Model Symbiosis

resource consumption (locally, remotely, or distributed), and the granularity of the
time-based license (milliseconds, seconds, days, weeks, months, and so forth).

More generally, it is possible to define an abstract resource and base your busi-
ness model on metering it. Suppose you have an application for video publishing with
two killer features: the ability to automatically correct background noise and the abil-
ity to automatically correct background lighting. You could define that any time the
user invokes the background noise correction feature they are consuming one comput-
ing unit while any time they invoke the background lighting correction feature they
are consuming three computing units. You could then provide a license for 20 comput-
ing units that the user could

spend

 as she deems appropriate.
Consumptive resource models can underlie subscription-based service models—

during each billing period (e.g., monthly), for a set fee, you get a predefined number
of resources; when the resources are consumed, you can purchase more or stop using
the application, and any not consumed are either carried over to the next billing period
(possibly with a maximum limit, like vacation days at many companies) or lost for-
ever. This is similar to the access-based subscriptions, except that you are metering
and consuming a resource. The difference may be fine-grained, but it is worth explor-
ing the potential benefits of each type because you may be able to access a new mar-
ket or increase your market share in a given market with the right one. In addition,
both models make unique demands on your tarchitecture, so the tarchitect will

have

 to
know the difference.

Consumptive models have another critical requirement often overlooked—report-
ing and replenishment. It must be extremely easy for a user/administrator to predict
how much an operation will “cost”

before

she decides to spend, the rate at which

spending

 is occurring, and when the rate of spending will exceed the allotment for the
month or a resource budget is nearing depletion. Because customers will often over-
spend, it should be painless to buy more. No one will blame you if they run out of a
critical resource on Friday afternoon at 6

P

.

M

. Eastern time, just before a critical big
push weekend—especially if you warned them yesterday that it would happen. But
they will

never

,

ever

forgive you if they can’t buy more until Monday at 9

A

.

M

. Pacific
time.

Hardware

Hardware-based business models associate the amount charged for the software with
some element of hardware. In some cases the software is

free

, but is so intimately tied
to the hardware that the hardware is effectively nonfunctional without it. A more tradi-
tional approach, and one that is common in business applications, is to associate the
business model with the number of CPUs installed in the system. As with all business
models, the motivation for this “Per-CPU licensing” is money.

Say an application has been licensed to run on a single machine. If the perfor-
mance of the machine can be substantially improved simply by adding additional pro-
cessors, the licensor (software publisher) stands to lose money because the licensee

Hohmann.book Page 78 Monday, January 13, 2003 9:11 AM

Common Software Business Models

79

will just add processors without paying any additional license fees! If this same appli-
cation is licensed on a per-CPU basis, then adding more processors may improve per-
formance but the licensor will get more money for it.

Hardware based business models can be based on any aspect of the hardware that
materially affects the performance of the system and can be enforced as required to
meet business needs. Per-CPU or

per expansion card

 are the most common, but you
can also use memory, disk storage (e.g., redundantly mirrored disk drives might be
charged twice), and so forth. I wouldn’t recommend basing the model on the number
of connected keyboards, but you could if you wanted to.

Services

Service-based business models focus on making money from one or more services,
not from the software that provides access to them. My favorite example is America
Online. AOL doesn’t charge for the software; they charge a monthly subscription fee
for access to a wide range of services, including e-mail, chat, and content aggregation.

Service-based business models are often used with open source licenses. Exam-
ples here include providing assistance in the installation, configuration, and operation
of an application or technology licensed as open source or built on open-source soft-
ware, creating education programs (think O’Reilly) and custom development or inte-
gration services.

Creating a service-based business model through open source software (OSS)
licensing is a creative approach; however, as of the writing of this book there are no
provably sustainable, long-term successful open-source software service business
models. This is not an indictment of OSS! I’m aware that most of the Internet runs on
OSS, and many companies have very promising service-based business models
related to it. I’m merely acknowledging that the market is immature and so such mod-
els have yet to be proven. Therefore, any marketect approaching his or her business
through OSS should proceed with caution.

Revenue Obtained/Costs Saved

Another business model that is common in enterprise software is a percentage of rev-
enue obtained or costs saved from using the application. Suppose you’ve created a
new CRM (customer relationship management) system that can increase sales to
existing customers by an average of 15 percent. You may consider charging 10 percent
of the incremental revenue, provided that the total dollar amount is large enough to
justify your costs.

Alternatively, let’s say that you’ve created a new kind of inventory tracking and
warehouse management system targeted toward small companies ($5M to $50M in
annual revenue). Your data indicates that your software will save these companies
anywhere from $50K to $1M. A viable business model may charge 15 percent of the
savings, again provided that the total dollar amount is sufficiently large.

Hohmann.book Page 79 Monday, January 13, 2003 9:11 AM

80

Business and License Model Symbiosis

In choosing these models you have to have a rock-solid analysis that clearly iden-
tifies the additional revenues or savings. If you don’t, no degree of technical skill in
the development team will help the architecture become successful. The fundamental
problem is that the data on which these models are based are extremely subjective and
easily manipulated. You might think that your new CRM software generated $100,000
more business for Fred’s Fish Fry, but Fred thinks it’s the spiffy new marketing cam-
paign that Fred, Jr., created. Result? You’re not going to get paid the amount you think
you’ve earned.

Enterprises also appear to be more resistant to models based on cost savings. I
once tried to create such a model. Even though we had a very solid ROI, the model
didn’t work and we switched from costs savings to transaction fees. Percentage of rev-
enue obtained or costs saved are also unpopular because they make

customers

track
how much they should pay. It is usually much easier to determine how much a cus-
tomer should pay in the other business models.

Open Source Does Not Mean Free

Sleepycat Software has married a traditional time-based usage business
model with an open source certified licensing model in way that drives wide-
spread adoption while still making money. The way it works is that Sleepycat
provides its embedded database system, Berkeley DB, as an open source
license. The terms allow you to use Berkeley DB at no charge,

provided

 that
you give away the complete source code for your application under an open
source license as well. This is a great example of the viral element of open
source licensing.

Many people who use Sleepycat can do this. Proprietary software ven-
dors aren’t able to offer their software under the open source license, so
Sleepycat sells them a different license for Berkeley DB that permits them to
use it without distributing their own source code. This is where the business
model comes into play—the way that Sleepycat makes money is very similar
to standard licensing models.

Sleepycat can use this approach because the proprietary vendor must
link the database into their application and because Sleepycat owns all of the
IP associated with the code. The linking process gives Sleepycat leverage to
impose licensing constraints, and the ownership of the IP means that Sleepy-
cat can control license terms as they choose. According to Michael Olson, the
CEO of Sleepycat, the marriage is working quite well, as Sleepycat has been
a profitable company for several years, and is yet another lesson in the bene-
fits of separating your business and license models.

Hohmann.book Page 80 Monday, January 13, 2003 9:11 AM

Rights Associated with Business Models

81

Rights Associated with Business Models

Marketects choose business models to maximize the benefits to their business. Asso-
ciated with each of the business models just described is a set of rights and restric-
tions—things you

can

 do or things you

get

 and things you

cannot

 do or things you

do
not

get

. I’ve covered a few of these already, such as the right to use, the right to
upgrade, and you can only run this software on one computer.

Your business model should distinguish as many rights and restrictions as possi-
ble, because each right is a way of capturing and/or extracting value from your customer
and each restriction is a way of protecting your interests. Many business models, for
reasons of convenience, competitive advantage, or common practice, often create a

standard

 licensing model that blends a variety of rights and restrictions into a single
package. Remember, however, that separating them can create greater value.

For example, an annual license to use the software (the business model is time-
based access) commonly includes the right to use and the right to receive upgrades but
not the right to receive technical support. A subscription to a software-based services
model (such as America Online, where the business model is service or metering
depending on customer choices) may include all of these rights. This section reviews
some of the rights commonly associated with various business models.

Figure 4-1 outlines some the rights and restrictions associated with particular
business models. The columns list specific rights or restrictions; the rows are the busi-
ness models. A check means that this right is commonly allowed by the business
model. A number means that the right

may

 be allowed by the business model and will
be discussed in greater detail. I’ve added a column that addresses whether or not the
fees paid by the licensee are one time or periodic. The timing of fees can affect the
choice of model.

The table’s focus is the subset of license models most closely correlated with var-
ious business models. It does not attempt to capture every possible legal issue that can
be defined in a license: exclusivity, warranties, indemnifications, intellectual property
rights, confidentiality, or any number of other things that a savvy lawyer can think of.
Most of these are not a function of the model but of larger corporate policy that gov-
erns every license model, regardless of the business model.

1. Do associate this right with the business model if providing it will give you a
competitive advantage, reduce technical or product support costs, or create a
stronger tie between you and your customer. Don’t if your customers don’t
care about it or if doing so may cause them more bother or pain that it is worth.
For example, in the anti-virus market you have to provide upgrades and bug
fixes. In enterprise-class software, upgrades may not be as meaningful because
of the large time delays that may exist between release cycles and the often
substantial costs associated with integrating the upgrade into the current opera-
tional environment.

Hohmann_ch04.fm Page 81 Thursday, November 6, 2003 3:23 PM

82 Business and License Model Symbiosis

2. I’m usually surprised to find that transaction-based business models don’t
automatically include these rights. In these models, your goal is to drive trans-
actions. Improvements to your software, especially those that can drive trans-
actions, should always be made available to your customers.

3. Do associate these rights if the benefits of point 1 apply and your customers
find it relatively easy to apply the upgrade and/or patches. Note that in some
hardware-based business models you don’t want your customers to upgrade to
new software. Instead, you want them to purchase entirely new hardware,
which is another reason to withhold these rights.

Tarchitectural Support for the Business Model

If your total offering is based on a combination of business models, check for key
interactions between the various elements. Review these factors every time the busi-
ness model changes, because these changes may invalidate prior assumptions and/or
choices and motivate one or more changes to the tarchitecture.

FIGURE 4-1 License rights and business models

Time-based access 1 1 1 1 1 1

 Perpetual license 1T

 Annual license � � P

 Rental 1 1 1T

 Subscription 1 1 P

 Pay after use 1T

Transaction 2 2 1 1 1 1 1 1 P

Metering 1 1 1 1 1 1

 Concurrent resource � � 1T

 Identified resource � � 1T

 Consumptive resource 1 1 1T

Hardware 3 3 1 1 1 1 1 1 1T

Service � � 1 1 1 1 1 1 P

R
ig

ht
 to

 u
pg

ra
de

 (
to

 la
te

st
 v

er
si

on
)

R
ig

ht
 to

 r
ec

ei
ve

 b
ug

 fi
xe

s
an

d
pa

tc
he

s

R
ig

ht
 to

 r
et

ur
n

R
ig

ht
 to

 m
ov

e
to

 a
 d

iff
er

en
t m

ac
hi

ne

R
ig

ht
 to

 e
m

be
d

R
ig

ht
 to

 m
od

ify

R
ig

ht
 to

 r
es

el
l

S
up

po
rt

 o
pt

io
ns

 (
e.

g.
, p

ho
ne

, W
eb

, e
-m

ai
l)

P
re

de
fin

ed
 in

st
al

la
tio

n/
cu

st
om

iz
at

io
n

su
pp

or
t

O
ne

 ti
m

e
(1

T
)

or
 p

er
io

di
c

fe
e

(P
)

Business Model

Hohmann.book Page 82 Monday, January 13, 2003 9:11 AM

Tarchitectural Support for the Business Model

83

General Issues

The following sections describe the general issues that are present for every business
model.

Capturing the Necessary Data

Assess your business model to ensure that your system is capturing all of the data
required to make it

work

. Here are two primary categories of data capture:

•

Direct

:

The system captures and manages all data necessary to support the busi-
ness model. It is self-contained.

•

Indirect

: The system must be integrated with one or more other systems to cre-
ate a complete picture of the necessary data.

To illustrate, a transaction or metered business model will either capture all of the nec-
essary data or work with other systems to capture it. A service-based business model
often has to be integrated with other systems, such as payment processing or client
management systems, to capture the full set of data needed to create a viable business
model.

Reporting/Remittance Requirements

Somewhere along the line your accounting department is going to require that infor-
mation be submitted for billing purposes. Your job is a lot easier if you can define the
format, security, and audibility requirements of these reports.

Business Model Enforcement

What happens when the license to use the software is violated? Does it stop working?
Should an entry be made in a log file? Is an e-mail sent to a key person? Should a new
billing and licensing cycle be automatically initiated?

Focusing

ility

 Efforts

In an ideal world, the tarchitect’s ility efforts (reliability, stability, scalability, support-
ability, usability, and so forth) are congruent with the key objectives of the business
model. Suppose your business model is based on processing various transactions,
such as check clearing and/or processing in financial services or in health care claims
processing for large insurance carriers. In these cases, reliably and accurately comput-
ing a lot of transactions quickly is critical to your success. Performance

matters

, and

faster really is better

. Who cares if the product is a bit hard to install or upgrade as
long as it’s the fastest possible? If your tarchitect and the development organization
with building the system also care about performance, you’re doing great. If not, you
may have some problems.

Of course, performance is not the primary criterion of every business model. In a
service-based business model, great performance with lousy customer support may

Hohmann_ch04.fm Page 83 Thursday, November 6, 2003 3:25 PM

84 Business and License Model Symbiosis

not be good enough to succeed. Instead of focusing on performance, your develop-
ment team may need to focus on service elements such as ease of installation and
upgrade. A key goal in a service-based business model is to reduce and/or eliminate
phone calls to technical support, so it is best to find a tarchitect and a development
team who care about these issues. Tradeoffs are determined by how the software will
typically be used—applications used infrequently should be easy to learn, while those
part of a daily routine should be fast and easy to use.

Increased Revenues or Decreased Costs

Once you know your business model it is easy to focus tarchitectural efforts on activi-
ties that increase revenues. Don’t forget the costs your tarchitecture imposes on your
customer. Any time you can reduce those costs, you have more revenue potential. You
can reduce costs by making installation and/or upgrade easier or by improving perfor-
mance and/or backward compatibility so that your users won’t have to purchase
expensive new hardware every time they upgrade to a new version.

Copy Protection/Antipiracy Protection

All software is subject to illegal copying and distribution, although certain kinds of
software, such as that inside a video game cartridge or cell phone, are more resistant
to piracy because of the hardware dependency. Even so, hardware is not a strong
deterrent—just check out the number of places where you can find replacement soft-
ware that can boost the performance of your car! Most software, however, is trivially
copied, as proven by the many online services that provide easy access to pirated soft-
ware. Depending on the amount of money you may lose from piracy (some companies
estimate several million in losses) you should consider a copy protection scheme, as
described further below.

Verifying Business Model and License Model Parameters

Many of the business and licensing models involve setting one or more parameters.
For example, an annual license has a definite end date, a concurrent user license has a
specific number of concurrent users, possibly further divided by type, and a consump-
tive, time-based license has the amount of time available for use. Whenever you set a
value that is important to your business model, you have to understand when, how,
and where this value is set, who can change it, and how its value can be verified.
These are nontrivial matters, discussed later in this chapter under enforcing business
and licensing models (see also Chapter 16, on Security).

Time-Based Access or Usage

Time-based access or usage business models make few special demands on the tarchi-
tecture, unless you’re going to strictly enforce the business model. If this is the case,
you’re going to need a way of being able to disable the software when the time allotted
for use has expired. Many subscriptions don’t actually stop a program from working if

Hohmann.book Page 84 Monday, January 13, 2003 9:11 AM

Tarchitectural Support for the Business Model 85

you fail to remain current in your payments—you just don’t get updates (which has
the effect of converting a subscription to a perpetual license).

Transaction

Consider the following when dealing with a transaction-based business model.

Define the Transaction

The definition of a transaction, or the unit of work that is the foundation of the busi-
ness model, must be clear and unambiguous. Once you’ve defined the transaction,
make certain that the tarchitecture can support it and that it is clearly stated in the soft-
ware license. This is not easy, but it is essential. As you define the transaction, con-
sider the role that each component is playing with respect to it. In distributed
transaction systems, the manner in which an element participates in the transaction
must be defined, including which participants are the basis of the business model.

Define the Relationship between the Transaction and the Business Model

I’ve heard some people say that the first step in starting a phone company is purchas-
ing billing software. While this may not be true, the complexity of the plans offered
by cell phones for completed transactions requires sophisticated billing management
systems. More generally, it is absolutely essential that you can map the completed
transaction to the business model. In the case of the phone company, where the trans-
action is a phone call, key data include who originated the call, who received it, and
how long it took.

Keep Audit Trails

Many transaction-based business models require audit trails that can be used to prove/
disprove specific charges. This can be especially vital when attempting to reconcile dif-
ferences between participants in the transaction. You may also need to cross-reference
the transactions created by your system with those created by other systems.

Make Certain that Transactions Are Uniquely Identified

Transactions must be uniquely identified. Be wary of simple database counters, which
often won’t work in today’s distributed environments. Instead of relying on the data-
base vendor, create a truly unique identifier through a reliable algorithm. I’ve had
good luck with the built-in algorithms for creating universally unique identifiers
(UUIDs) in UNIX-based systems or the globally unique identifiers (GUIDs) available
on MS-Windows systems. Admittedly, these require a lot of space, and represent an
extraordinarily large number of unique identifiers. Chances are good you don’t need
an identifier to be quite that long, and you may be able to safely shorten your unique
identifier. Short identifiers that work well are based on alphanumeric codes, like
“XR349” or “QPCAZZ.” One advantage to these codes is that they are short enough
to be used in phone-based self service.

Hohmann.book Page 85 Monday, January 13, 2003 9:11 AM

86 Business and License Model Symbiosis

Understand Transaction State, Lifecycle, and Duration

When I’m standing in line at the checkout counter about to make some purchase, my
mind often leaps to images of mainframe computers processing hundreds of credit
card transactions per second. Of course, there are myriad other kinds of transactions,
many of which have complex states, lifecycles, and durations. Managing the duration
of the transaction can be particularly complex, especially when a transaction can live
over a system upgrade. The complete transaction lifecycle must be defined because it
impacts your back-office systems that account for transactions.

Suppose, for example, that a transaction can last as long as one year and you bill
your customer monthly. Normally, you bill for a transaction when it has completed.
However, in this case you could be waiting a long time for money, negatively impact-
ing your cash flow. If you know that 80 percent of transactions complete successfully,
you could safely bill when the transaction is started, provided that your system can
recognize a failed or aborted transaction and your back-office systems can properly
adjust and/or otherwise credit your customer’s account. Before actually doing this,
check with your accounting department to make certain that you’re not violating any
revenue recognition regulations.

Metering

Metering business models entail many interesting challenges, especially when the
metering is based on a concurrent or named user. The following sections address some
of the issues that are common to both models.

How Do You Authenticate Users?

Authentication attempts to answer the question “Are you who you say you are?”
There are many authentication approaches, from simple user names and passwords to
simple-to-use but hard-to-defeat tokens to advanced (and costly) biometric systems. If
your business model derives a lot of money from uniquely identifying users, you
should consider employing any number schemes beyond simple user names and pass-
words. More generally, you should work with other, established infrastructure tech-
nologies to authenticate users (such as LDAP). Authentication is discussed in greater
detail in Chapter 16.

How Many Users?

In a concurrent user system there is some limit to the number of users who can con-
currently access it. The manner in which you specify that number is subject to consid-
erable variation. I’ve worked on systems that span the gamut of managing this value.
On the low end, we specified the number of concurrent users as a plain text entry in an
INI file—completely insecure but entirely acceptable for our requirements. On the
high end, we specified the number of concurrent users in a signed license that was
then stored on a hardware device using advanced cryptography. To the best of our
knowledge, this approach has yet to be cracked!

Hohmann.book Page 86 Monday, January 13, 2003 9:11 AM

Enforcing Licensing Models

87

How Are You Going to Count Concurrent Users?

While you can, and often should, rely on other parts of the infrastructure to authenticate
users, you may not be able to rely on them to count users. This may be a function of your
application, or it may be obtained by integrating a license manager into your application.

Are Users Gone or Inactive?

Session management is a key issue in concurrent and named user applications. Once a
user is logged in, you can’t assume that she will explicitly log out. Something might
go wrong: Her client might crash; or she might not remember to log out. The general
solution is to associate a timeout parameter that forcibly logs the user off or drops her
session after a set period of inactivity.

Unfortunately, setting this value isn’t trivial. It must be tuned on the basis of how
your application is actually used. Consider an interactive voice system that is accessed
by a cell phone. Is a period of inactivity caused by the user pausing to consider his next
action or has the line dropped because he drove into a “dead zone”? If the user did drive
into a dead zone, how will you reestablish the session so that he doesn’t have to re-enter
a long string of menu commands? It is important that you provide plenty of configuration
parameters on these values so that your administrator can properly tune your application.

Consumptive resource management places severe restrictions on your tarchitec-
ture, primarily because you have to maintain some kind of state. If your customer has
purchased “100 hours” of total use, you need to record how long she has actually used
the application. One approach is to store these data on a centralized server, which can
work if you structure it so you can’t be spoofed and you always have a reliable net-
work connection. Another approach is to store usage locally. Be careful, however: It is
often trivially easy to reset usage data by erasing previously stored values.

Hardware

The biggest issues with hardware-based models are defining what constitutes the
hardware and how you’re going to manage it relative to the business model. What,
exactly, is a central processing unit (CPU)? In many ways the concept of a CPU is
meaningless: Many personal computers and engineering workstations now come with
at least two processing units as part of their standard equipment, and some new chip
designs have multiple processing units in a single package. Arbitrarily picking one as

central

 seems a bit silly. Still, per-CPU business models are common. To support
them, you will have to define a CPU and how it will be enforced in your system.

Enforcing Licensing Models

Once you’ve defined your business and licensing models, and ensured that your
tarchitecture can support them, you have to decide how strongly you wish to enforce

Hohmann_ch04.fm Page 87 Thursday, November 6, 2003 3:27 PM

88 Business and License Model Symbiosis

the licensing model. Typically, enforcement means disabling some or all of the appli-
cation when the license manager determines that the license has been violated. You
can avoid creating or using a license manager and rely on the honor system, create
your own licensing manager, or license one from a third-party provider.

The Honor System

The honor system is the simplest and easiest way to enforce a license model. You simply
expect your customers to honor the terms of the license, which means not changing the
license terms, illegally copying the software, changing configuration parameters to obtain
more use of the software, and so forth. You’re not giving up any rights, as you still have
legal protection under contract law if you find your customer cheating. Rather, you are
putting nothing into your application to explicitly prevent your customer from cheating.

I suspect that a large percentage of software publishers rely on the honor system.
Whether or not this is a good choice should be based on a careful analysis of several
factors, including the relationship you have or want to create with your customer, the
potential for lost revenue, and your ability to track the use of your software via the
honor system. Compare these against the cost of creating, maintaining, and support-
ing a more advanced licensing system or licensing such a system from a third party.
An additional motivation to use the honor system, especially with enterprise software
systems, is that it provides account managers with the opportunity to talk with cus-
tomers each time the license is up for renewal, and to possibly convince them to pur-
chase more software. In consumer software, where you may have tens of thousands to
tens of millions of copies, the honor system may not be a good choice. In enterprise-
class software, where you may have several dozen to a few hundred customers, it may
be a good choice, especially if you maintain a close relationship with your customers
through support or service organizations.

Home-Grown License Managers

In this approach the development team creates the infrastructure for license manage-
ment. Such a solution is not industrial strength, in that it is often relatively easily
defeated. However, it has the advantages of being low cost, lightweight, easy to imple-
ment, and completely in control of the development organization. Once you’ve made
the choice to enforce the licensing models, the economics of defeated enforcement
must be considered to determine if a home-grown solution is sufficient or a profes-
sional system is required. If your software costs $700 per license, a home-grown sys-
tem may be acceptable. If you’re software costs $70,000 per license, there is simply
too much money to lose with a home-grown license manager, and you’re better off
switching to a professional solution.

Some kind of home-grown license management is almost always required for ses-
sion-based licensing schemes, because the development organization needs complete
control over the software’s response to the system running out of the internal

Hohmann.book Page 88 Monday, January 13, 2003 9:11 AM

Enforcing Licensing Models 89

resources it needs to manage sessions. In other words, do you stop the application
(extreme, not recommended) or simply refuse the session (common, but the associ-
ated issues are application specific).

Third-Party or Professional License Managers

Professional license managers are typically organized in three main components: the
license generator, a client (or local license manager), and a server (or remote license
manager). The business model and the software being enforced will determine how
you use these components.

The License Generator

The license generator generates a valid license for consumption by the client and/or
server. Most license managers will generate digitally signed licenses based on public
key cryptography that cannot be altered and that can be used to prove that the rights
delivered to the license manager are correct. License generators are typically located
at the independent software vendor (ISV) or its agent and are integrated with other
backend infrastructure systems, such as order fulfillment, which may initiate license
generation, and accounting systems, which may use the records maintained by the
license generator for billing. Once a license is generated it can be distributed in a vari-
ety of ways, including fax, phone, e-mail, or direct connection from the server to the
license generator via the internet.

The Client

The client license manager manages the software running on an end user’s computer
or workstation. At its simplest terms, it either allows or prevents access to a given

It Doesn’t Have to Be Unbreakable

One enterprise-class system I helped create provided for a combination of
named and concurrent users: Any number of users up to the concurrent user
limit could log on at the same time, but only users explicitly identified were
allowed access. We implemented our own lightweight but extremely effective
licensing manager. The number of concurrent and named users were simply
stored in an INI file, with user IDs and passwords stored in a database.
Changing either of these entries defeated the licensing scheme, in that if you
licensed 20 concurrent users but changed this to 100, you cheated my
employer out of 80 concurrent user licenses and tens of thousands of dollars
in license fees. We didn’t expect anyone to actually cheat, and to this day I
know of no company that did. The net was that for a reasonable development
effort we were able to devise a scheme that “kept honest people honest.”

Hohmann.book Page 89 Monday, January 13, 2003 9:11 AM

90 Business and License Model Symbiosis

application or licensed feature. The client can typically be configured to operate in
one of two ways. One is as a standalone, in which it manages enforcement without
working with the server. This mode of operation is common for single-user, con-
sumer-oriented software run on one machine and works well for time-based access or
usage models.

Here is an example. You work for SuperSoft, which markets SuperDraw. You
want to distribute a 30-day trial of SuperDraw, which can be thought of as a free
rental. When SuperDraw is installed the client-side license manager is also installed to
enforce these rights along with the digitally signed trial license (e.g., the trial expires
and the software cannot be used after 30 days).

The other mode of operation requires the client license manager to work with a
server to enforce license rights. This mode is common in business-oriented software
that uses metering, such as named or concurrent users. When the application is
invoked, the client license manager checks with the server to determine if access is
allowed. Your customer must be connected to a network, and you need to consider
application behavior when your customer is not connected.

The Server

The server component interprets digitally signed licenses and provides a variety of
enforcement services to client license managers. As just described, the server compo-
nent is required (in one form or another) for the licensing models that support count-
ing or metering.

Here is an example to illustrate how a server works with a client to enforce
license rights. You’re licensing a high-end CAD system that wants to sell concurrent
user licenses at $8K per user. In this case the software can be installed on any avail-
able workstation, but each user consumes a concurrent user. The server works with the
client to keep track of each concurrent user and ensure that the license terms are prop-
erly enforced. This model may seem like a great model, but remember that you still
must handle the unconnected user. The easiest way to handle unconnected users is to
simply not support them and instead require connected use.

Although I’ve talked about enforcement, I haven’t addressed how your software
interoperates with the client and/or server components of the license management sys-
tem. Normal software, or the software that you create to fulfill your customer needs,
has no concept of enforcing a business model. Something must be done to it to pre-
pare it for license management, and the way you do this can vary a lot for home-
grown systems. Third-party license managers, on the other hand, generally employ
two approaches to integrate the software with the license manager: injection or APIs.

• Injection: Given a “normal” application, the “injection” approach analyzes the
object code and “injects” into it new code that typically obfuscates and/or
encrypts the original code and adds the client license manager to enforce the
license. In other words, injection works just like a virus, albeit a beneficial one.
Table 4-1 lists some of the advantages and disadvantages of the injection
approach.

Hohmann.book Page 90 Monday, January 13, 2003 9:11 AM

Enforcing Licensing Models 91

• API: In this approach developers write to an API (or SDK) provided by the
license manager vendor. The API provides for such things as license registra-
tion and enforcement (e.g., it has calls for “checking the validity of the license”
or “logging in a concurrent user.”) This approach is not strictly required for
concurrent licensing, but it makes implementing such schemes vastly easier.
APIs can be used with interpreted languages, but most vendors feel that using
them in this manner does not provide very strong security. More plainly, it is
relatively easy to hack the API approach in Java/C#. Table 4-2 captures the
advantages and disadvantages of API-based approaches.

While professional third-party license managers have many virtues, you need to eval-
uate them very carefully. Consider the issues in the following sections when conduct-
ing this evaluation.

Business Model Support

To the best of my knowledge, no licensing manager supports all of the business mod-
els listed earlier. For example, I don’t know of any that provide direct support for most
hardware-based business models (such as per CPU or per-expansion-card). Most work
best if you alter your business model to work well with their specific technologies.

Traditional license managers provide a fixed set of models with fill-in parameters.
An example is a time-based usage scenario, in which you simply fill in the amount of
time. More modern license managers provide a license scripting language, similar to
languages like Visual Basic, that allows you to create customized scripts for creative
licensing models.

TABLE 4-1 Advantages and Disadvantages of the Injection Approach

Advantages Disadvantages

• Requires little or no work by developers
• Can result in more secure protection,

because the injection approaches obfuscate
and/or encrypts code

• Increases size of code
• Decreases execution performance
• Can only be used with binaries; typically

not suitable for interpreted languages

TABLE 4-2 Advantages and Disadvantages of API-based Approaches

Advantages Disadvantages

• Provides maximum flexibility—you can
control exactly how the license model works

• Can be used with interpreted languages

• If not used properly can be easy to defeat
• Creates lock-in to an existing vendor
• Usually takes longer to implement a com-

plete solution
• Can lead to a false sense of security

Hohmann.book Page 91 Monday, January 13, 2003 9:11 AM

92 Business and License Model Symbiosis

Platform and Operating System Support

Make certain your license manager vendors can provide support for all required plat-
forms and operating systems. When examining their supported platforms, take the
time to explore their development roadmap, because, when a new version of an oper-
ating system is released, your development efforts are stalled until your license man-
agement vendor supports it!

Check Cracker Web Sites to Determine Solution Strength

It is easy to create a simple license manager. It is very hard to create an industrial-
strength license manager that will consistently thwart crackers, maintain the security
of your software, and ensure that you’re getting the maximum revenue from your
licensing model. If you don’t have the skill to assess the strength of the solution, hire a
consultant who does.

Check Backend Integration and Volume Capabilities

As stated earlier, the license generator is almost always integrated with backend sys-
tems. Examine your potential license manager vendor’s ability to integrate its system
within your environment. While you’re doing this, make certain they can also meet
your performance, volume, scalability, and stability requirements.

Make Certain Operational Environment Matches Yours

License managers create a whole host of operational issues. For example, customer
service representatives may have to regenerate a license, or create a temporary evalua-
tion license on the fly, or cancel a previously generated license. You’ll have to make
certain that the integrations created between your license generator and other backend
components are sufficiently scalable and reliable. Make certain that your license man-
ager vendor can meet your operational requirements. In other words, if your customer
service environment is completely Web-based, make certain your license manager
vendor can provide all required functionality via a browser.

Check Branding and User Interface Control

When the code enforcing the license detects a violation, chances are good that some
kind of error message will be displayed to the user. Assess the degree of control you
have over the content and presentation of this error message. You want to make certain
that it meets all of your usability requirements, especially internationalization. You
don’t want to discover that your vendor has twelve dialogs it might bring up in
obscure circumstances, and that you can’t change any of their contents.

Examine License Content and Format

The format and content of the license should be understandable and should match
your business requirements. Anything generated by your system, even if it is not used
by the license manager, should be digitally signed. For example, you may wish to put

Hohmann.book Page 92 Monday, January 13, 2003 9:11 AM

Market Maturity Influences on the Business Model 93

a serial number inside the license to integrate the license generator with other backend
systems. Any custom or proprietary data that you store in the license should be signed.

Examine License Distribution Capabilities

Licenses can be distributed in a variety of ways. Make certain the vendor supports the
approaches that are most important to you. Internet, e-mail, phone, and fax are the
most common license distribution options.

Market Maturity Influences on the Business Model

The maturity of your target market is one of the strongest influences on the selection
and management of a given business model. In the early phases of a given market,
business models should be chosen so that they can be quickly and easily understood,
primarily because you may not be certain of the best way to structure them. You may
find that your customers prefer an annual license to a subscription, or that they expect
discounts if they purchase in bulk. Moreover, despite the best intentions of the busi-
ness plan, innovators and early adopters may expect and/or demand special terms.

As the market matures, chances are good that your business model will become
increasingly complex in order to serve the idiosyncratic needs of different market seg-
ments. I helped one client whose growth had stalled attack a new market segment with
the same underlying system simply by defining a new business model. The original
one consisted of an annual license. The new one was pay per use. The easy part was
modifying the underlying architecture so that both models could be supported. The
hard part was creating the appropriate price points so that a given customer could
choose the best model without harming the relationships with current customers.

The enforcement of business models also matches the maturity of the target mar-
ket. In early market stages, enforcement tends to be lax. As the market matures, or in
cases where you suspect piracy, the enforcement tightens up. My experience is that
marketects and tarchitects take enforcement far too lightly. You’ve worked hard to cre-
ate your system, and software piracy is a serious problem. Create a business model
that identifies the real value provided to your customers, price it competitively, and
enforce it accordingly. Just remember that onerous enforcement will lead to dissatis-
faction among honest customers, so be careful.

Choosing a Business Model

Choosing a business model is one of the most challenging tasks faced by the marke-
tect, as it incorporates everything that has been discussed in this chapter and several
factors that are beyond the chapter scope, such as the business and licensing models
offered by competitors (which may constrain you to existing market expectations) and
corporate and/or environmental factors beyond your control (such as when another
division does poorly and you need to find a way to increase short-term revenue). To

Hohmann.book Page 93 Monday, January 13, 2003 9:11 AM

94

Business and License Model Symbiosis

help you through the potential morass of choosing a business model, consider these
questions.

•

What is the target market? What does it value?

 A crisp description of the target
market and what it values is the first step in creating an appropriate business
licensing model. If you’re not certain of what it values, consider how it wants to
use what you’re offering. Once you’ve determined what your market values,
show how your solution provides it.

•

What are your objectives relative to this target market?

 In an emerging market
you may wish to capture market share, so create simpler models. In a mature
market you may wish to protect market share, so create more complex models
to provide flexibility.

•

What is your business model?

 Pick one of the business models defined above
and customize it to meet your needs.

•

What rights do you wish to convey?

 Begin by asking your legal department for
a “standard” contract, as it will contain a variety of nonnegotiable rights and
restrictions. See what you can do about everything that is left.

•

What is the effect of this business model on your software architecture?

 Work
with the tarchitect to make certain that any business model you propose is
appropriately supported.

•

What is the pricing model?

 The business model provides the framework for
defining how you’re going to make money. The pricing model sets the amount
the customer will pay. You’ll need to consider such things as volume discounts,
sales and/or channel incentives, and so forth. Pricing choices may also affect
your software architecture, so make them carefully.

As you develop the answers to these questions, you’re likely to find that the best
way to reach a given target market will require a variety of changes to your current
business model, licensing model, and software architecture. You’ll have to rank-order
the changes in all areas of your product so that you can reach the largest target market.
The benefits will be worth it, as creating the right business and licensing model forms
the foundation of a winning solution for both you and your customers.

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Chapter Summary

■

Your business model is how you make money.

■

Business models are associated with, and to a large extent define, license
models.

Hohmann_ch04.fm Page 94 Thursday, November 6, 2003 3:29 PM

Chapter Summary 95

� Your license model is the terms and conditions you associate with the use of
your software.

� The most common software-related business models make money by

– Providing unfettered access to or use of the application for a defined period
of time

– Charging a percentage of the revenue obtained or costs saved from using
the application

– Charging for a transaction, that is, a defined and measurable unit of work

– Metering access to or use of the application, or something the application
processes

– Charging for the hardware the application runs on, not the application itself

– Providing one or more services that are intimately related to application
operation and/or use

� Business models associated with users (such as concurrent user licensing)
motivate integration with corporate systems that manage users (such as LDAP
servers).

� Make certain you understand every right associated with your business model.
Separating rights may provide more opportunities to create revenue.

� License models may be enforced by home-grown or third-party professional
license managers.

Check This

❑ Each member of the development team can define the business models cur-
rently in use or under serious consideration for the future.

❑ Our license agreements are congruent with our business model.

❑ Our license agreements define the specific set of rights provided to customers.

❑ We have chosen an appropriate mechanism for enforcing our business model.

❑ The costs of changing tarchitecture to support alternative business models are
understood and communicated to marketects.

Try This

1. What is your business model?

2. How well does your architecture support your business model? Why do you
claim this?

3. Can you demonstrate support for a new kind of business model? For example,
if your current system is sold on an annual license, can you easily add support
for some kind of concurrent license, in such a way that you can open a new
market for your software?

Hohmann.book Page 95 Monday, January 13, 2003 9:11 AM

96 Business and License Model Symbiosis

4. If you’re using a license manager, have you allocated enough time in your
project plan to properly integrate it into your application?

5. If you are using a license manager, have you examined their development
roadmap to make certain it supports your own?

6. Are your target customers likely to be innovators, early majority, majority, late
majority, or laggards? How does this characterization affect your business
model?

Hohmann.book Page 96 Monday, January 13, 2003 9:11 AM

