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It came without ribbons! It came without tags!
It came without packages, boxes or bags!

— Dr. Seuss, How the Grinch Stole
Christmas!, Random House, 1957

I first wrote about the Standard Template Library in 1995, when I
concluded the final Item of More Effective C++ with a brief STL over-
view. I should have known better. Shortly thereafter, I began receiving
mail asking when I’d write Effective STL.

I resisted the idea for several years. At first, I wasn’t familiar enough
with the STL to offer advice on it, but as time went on and my experi-
ence with it grew, this concern gave way to other reservations. There
was never any question that the library represented a breakthrough in
efficient and extensible design, but when it came to using the STL,
there were practical problems I couldn’t overlook. Porting all but the
simplest STL programs was a challenge, not only because library im-
plementations varied, but also because template support in the un-
derlying compilers ranged from good to awful. STL tutorials were hard
to come by, so learning “the STL way of programming” was difficult,
and once that hurdle was overcome, finding comprehensible and ac-
curate reference documentation was a challenge. Perhaps most
daunting, even the smallest STL usage error often led to a blizzard of
compiler diagnostics, each thousands of characters long, most refer-
ring to classes, functions, or templates not mentioned in the offending
source code, almost all incomprehensible. Though I had great admira-
tion for the STL and for the people behind it, I felt uncomfortable rec-
ommending it to practicing programmers. I wasn’t sure it was possible
to use the STL effectively.

Then I began to notice something that took me by surprise. Despite
the portability problems, despite the dismal documentation, despite
the compiler diagnostics resembling transmission line noise, many of

Preface
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xii Preface Effective STL
my consulting clients were using the STL anyway. Furthermore, they
weren’t just playing with it, they were using it in production code!
That was a revelation. I knew that the STL featured an elegant design,
but any library for which programmers are willing to endure portabil-
ity headaches, poor documentation, and incomprehensible error mes-
sages has a lot more going for it than just good design. For an
increasingly large number of professional programmers, I realized,
even a bad implementation of the STL was preferable to no implemen-
tation at all.

Furthermore, I knew that the situation regarding the STL would only
get better. Libraries and compilers would grow more conformant with
the Standard (they have), better documentation would become avail-
able (it has — consult the bibliography beginning on page 225), and
compiler diagnostics would improve (for the most part, we’re still wait-
ing, but Item 49 offers suggestions for how to cope while we wait). I
therefore decided to chip in and do my part for the STL movement.
This book is the result: 50 specific ways to improve your use of C++’s
Standard Template Library.

My original plan was to write the book in the second half of 1999, and
with that thought in mind, I put together an outline. But then I
changed course. I suspended work on the book and developed an in-
troductory training course on the STL, which I then taught several
times to groups of programmers. About a year later, I returned to the
book, significantly revising the outline based on my experiences with
the training course. In the same way that my Effective C++ has been
successful by being grounded in the problems faced by real program-
mers, it’s my hope that Effective STL similarly addresses the practical
aspects of STL programming — the aspects most important to profes-
sional developers.

I am always on the lookout for ways to improve my understanding of
C++. If you have suggestions for new guidelines for STL programming
or if you have comments on the guidelines in this book, please let me
know. In addition, it is my continuing goal to make this book as accu-
rate as possible, so for each error in this book that is reported to me —
be it technical, grammatical, typographical, or otherwise — I will, in
future printings, gladly add to the acknowledgments the name of the
first person to bring that error to my attention. Send your suggested
guidelines, your comments, and your criticisms to estl@aristeia.com. 

I maintain a list of changes to this book since its first printing, includ-
ing bug-fixes, clarifications, and technical updates. The list is avail-
able at the Effective STL Errata web site, http://www.aristeia.com/
BookErrata/estl1e-errata.html. 

http://www.aristeia.com/BookErrata/estl1e-errata.html
http://www.aristeia.com/BookErrata/estl1e-errata.html
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If you’d like to be notified when I make changes to this book, I encour-
age you to join my mailing list. I use the list to make announcements
likely to be of interest to people who follow my work on C++. For de-
tails, consult http://www.aristeia.com/MailingList/.

SCOTT DOUGLAS MEYERS STAFFORD, OREGON
http://www.aristeia.com/ APRIL 2001
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I had an enormous amount of help during the roughly two years it
took me to make some sense of the STL, create a training course on it,
and write this book. Of all my sources of assistance, two were particu-
larly important. The first is Mark Rodgers. Mark generously volun-
teered to review my training materials as I created them, and I learned
more about the STL from him than from anybody else. He also acted
as a technical reviewer for this book, again providing observations and
insights that improved virtually every Item.

The other outstanding source of information was several C++-related
Usenet newsgroups, especially comp.lang.c++.moderated (“clcm”),
comp.std.c++, and microsoft.public.vc.stl. For well over a decade, I’ve de-
pended on the participants in newsgroups like these to answer my
questions and challenge my thinking, and it’s difficult to imagine what
I’d do without them. I am deeply grateful to the Usenet community for
their help with both this book and my prior publications on C++.

My understanding of the STL was shaped by a variety of publications,
the most important of which are listed in the Bibliography. I leaned
especially heavily on Josuttis’ The C++ Standard Library [3].

This book is fundamentally a summary of insights and observations
made by others, though a few of the ideas are my own. I’ve tried to
keep track of where I learned what, but the task is hopeless, because
a typical Item contains information garnered from many sources over
a long period of time. What follows is incomplete, but it’s the best I
can do. Please note that my goal here is to summarize where I first
learned of an idea or technique, not where the idea or technique was
originally developed or who came up with it.

In Item 1, my observation that node-based containers offer better sup-
port for transactional semantics is based on section 5.11.2 of Josuttis’
The C++ Standard Library [3]. Item 2 includes an example from Mark
Rodgers on how typedefs help when allocator types are changed.

Acknowledgments
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Item 5 was motivated by Reeves’ C++ Report column, “STL
Gotchas” [17]. Item 8 sprang from Item 37 in Sutter’s Exceptional
C++ [8], and Kevlin Henney provided important details on how con-
tainers of auto_ptrs fail in practice. In Usenet postings, Matt Austern
provided examples of when allocators are useful, and I include his ex-
amples in Item 11. Item 12 is based on the discussion of thread safety
at the SGI STL web site [21]. The material in Item 13 on the perfor-
mance implications of reference counting in a multithreaded environ-
ment is drawn from Sutter’s writings on this topic [20]. The idea for
Item 15 came from Reeves’ C++ Report column, “Using Standard string
in the Real World, Part 2,” [18]. In Item 16, Mark Rodgers came up
with the technique I show for having a C API write data directly into a
vector. Item 17 includes information from Usenet postings by Siemel
Naran and Carl Barron. I stole Item 18 from Sutter’s C++ Report col-
umn, “When Is a Container Not a Container?” [12]. In Item 20, Mark
Rodgers contributed the idea of transforming a pointer into an object
via a dereferencing functor, and Scott Lewandowski came up with the
version of DereferenceLess I present. Item 21 originated in a Doug Har-
rison posting to microsoft.public.vc.stl, but the decision to restrict the
focus of that Item to equality was mine. I based Item 22 on Sutter’s
C++ Report column, “Standard Library News: sets and maps” [13];
Matt Austern helped me understand the status of the Standardization
Committee’s Library Issue #103. Item 23 was inspired by Austern’s
C++ Report article, “Why You Shouldn’t Use set — and What to Use
Instead” [15]; David Smallberg provided a neat refinement for my im-
plementation of DataCompare. My description of Dinkumware’s hashed
containers is based on Plauger’s C/C++ Users Journal column, “Hash
Tables” [16]. Mark Rodgers doesn’t agree with the overall advice of
Item 26, but an early motivation for that Item was his observation
that some container member functions accept only arguments of type
iterator. My treatment of Item 29 was motivated and informed by
Usenet discussions involving Matt Austern and James Kanze; I was
also influenced by Kreft and Langer’s C++ Report article, “A Sophisti-
cated Implementation of User-Defined Inserters and Extractors” [25].
Item 30 is due to a discussion in section 5.4.2 of Josuttis’ The C++
Standard Library [3]. In Item 31, Marco Dalla Gasperina contributed
the example use of nth_element to calculate medians, and use of that
algorithm for finding percentiles comes straight out of section 18.7.1
of Stroustrup’s The C++ Programming Language [7]. Item 32 was influ-
enced by the material in section 5.6.1 of Josuttis’ The C++ Standard
Library [3]. Item 35 originated in Austern’s C++ Report column “How
to Do Case-Insensitive String Comparison” [11], and James Kanze’s
and John Potter’s clcm postings helped me refine my understanding of
the issues involved. Stroustrup’s implementation for copy_if, which I
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show in Item 36, is from section 18.6.1 of his The C++ Programming
Language [7]. Item 39 was largely motivated by the publications of Jo-
suttis, who has written about “stateful predicates” in his The C++
Standard Library [3], in Standard Library Issue #92, and in his C++
Report article, “Predicates vs. Function Objects” [14]. In my treatment,
I use his example and recommend a solution he has proposed, though
the use of the term “pure function” is my own. Matt Austern con-
firmed my suspicion in Item 41 about the history of the terms
mem_fun and mem_fun_ref. Item 42 can be traced to a lecture I got
from Mark Rodgers when I considered violating that guideline. Mark
Rodgers is also responsible for the insight in Item 44 that non-mem-
ber searches over maps and multimaps examine both components of
each pair, while member searches examine only the first (key) compo-
nent. Item 45 contains information from various clcm contributors, in-
cluding John Potter, Marcin Kasperski, Pete Becker, Dennis Yelle, and
David Abrahams. David Smallberg alerted me to the utility of
equal_range in performing equivalence-based searches and counts
over sorted sequence containers. Andrei Alexandrescu helped me un-
derstand the conditions under which “the reference-to-reference prob-
lem” I describe in Item 50 arises, and I modeled my example of the
problem on a similar example provided by Mark Rodgers at the Boost
Web Site [22].

Credit for the material in Appendix A goes to Matt Austern, of course.
I’m grateful that he not only gave me permission to include it in this
book, he also tweaked it to make it even better than the original.

Good technical books require a thorough pre-publication vetting, and
I was fortunate to benefit from the insights of an unusually talented
group of technical reviewers. Brian Kernighan and Cliff Green offered
early comments on a partial draft, and complete versions of the manu-
script were scrutinized by Doug Harrison, Brian Kernighan, Tim
Johnson, Francis Glassborow, Andrei Alexandrescu, David Smallberg,
Aaron Campbell, Jared Manning, Herb Sutter, Stephen Dewhurst,
Matt Austern, Gillmer Derge, Aaron Moore, Thomas Becker, Victor
Von, and, of course, Mark Rodgers. Katrina Avery did the copyediting.

One of the most challenging parts of preparing a book is finding good
technical reviewers. I thank John Potter for introducing me to Jared
Manning and Aaron Campbell. 

Herb Sutter kindly agreed to act as my surrogate in compiling, run-
ning, and reporting on the behavior of some STL test programs under
a beta version of Microsoft’s Visual Studio .NET, while Leor Zolman
undertook the herculean task of testing all the code in this book. Any
errors that remain are my fault, of course, not Herb’s or Leor’s. 
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You’re already familiar with the STL. You know how to create contain-
ers, iterate over their contents, add and remove elements, and apply
common algorithms, such as find and sort. But you’re not satisfied.
You can’t shake the sensation that the STL offers more than you’re
taking advantage of. Tasks that should be simple aren’t. Operations
that should be straightforward leak resources or behave erratically.
Procedures that should be efficient demand more time or memory
than you’re willing to give them. Yes, you know how to use the STL,
but you’re not sure you’re using it effectively. 

I wrote this book for you.

In Effective STL, I explain how to combine STL components to take full
advantage of the library’s design. Such information allows you to de-
velop simple, straightforward solutions to simple, straightforward
problems, and it also helps you design elegant approaches to more
complicated problems. I describe common STL usage errors, and I
show you how to avoid them. That helps you dodge resource leaks,
code that won’t port, and behavior that is undefined. I discuss ways to
optimize your code, so you can make the STL perform like the fast,
sleek machine it is intended to be. 

The information in this book will make you a better STL programmer.
It will make you a more productive programmer. And it will make you
a happier programmer. Using the STL is fun, but using it effectively is
outrageous fun, the kind of fun where they have to drag you away
from the keyboard, because you just can’t believe the good time you’re
having. Even a cursory glance at the STL reveals that it is a won-
drously cool library, but the coolness runs broader and deeper than
you probably imagine. One of my primary goals in this book is to con-
vey to you just how amazing the library is, because in the nearly 30
years I’ve been programming, I’ve never seen anything like the STL.
You probably haven’t either.

Introduction



2 Introduction Effective STL
Defining, Using, and Extending the STL

There is no official definition of “the STL,” and different people mean
different things when they use the term. In this book, “the STL”
means the parts of C++’s Standard Library that work with iterators.
That includes the standard containers (including string), parts of the
iostream library, function objects, and algorithms. It excludes the
standard container adapters (stack, queue, and priority_queue) as well
as the containers bitset and valarray, because they lack iterator sup-
port. It doesn’t include arrays, either. True, arrays support iterators in
the form of pointers, but arrays are part of the C++ language, not the
library.

Technically, my definition of the STL excludes extensions of the stan-
dard C++ library, notably hashed containers, singly linked lists, ropes,
and a variety of nonstandard function objects. Even so, an effective
STL programmer needs to be aware of such extensions, so I mention
them where it’s appropriate. Indeed, Item 25 is devoted to an overview
of nonstandard hashed containers. They’re not in the STL now, but
something similar to them is almost certain to make it into the next
version of the standard C++ library, and there’s value in glimpsing the
future.

One of the reasons for the existence of STL extensions is that the STL
is a library designed to be extended. In this book, however, I focus on
using the STL, not on adding new components to it. You’ll find, for ex-
ample, that I have little to say about writing your own algorithms, and
I offer no guidance at all on writing new containers and iterators. I be-
lieve that it’s important to master what the STL already provides be-
fore you embark on increasing its capabilities, so that’s what I focus
on in Effective STL. When you decide to create your own STLesque
components, you’ll find advice on how to do it in books like Josuttis’
The C++ Standard Library [3] and Austern’s Generic Programming and
the STL [4]. One aspect of STL extension I do discuss in this book is
writing your own function objects. You can’t use the STL effectively
without knowing how to do that, so I’ve devoted an entire chapter to
the topic (Chapter 6).

Citations

The references to the books by Josuttis and Austern in the preceding
paragraph demonstrate how I handle bibliographic citations. In gen-
eral, I try to mention enough of a cited work to identify it for people
who are already familiar with it. If you already know about these au-
thors’ books, for example, you don’t have to turn to the Bibliography
to find out that [3] and [4] refer to books you already know. If you’re
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not familiar with a publication, of course, the Bibliography (which be-
gins on page 225) gives you a full citation.

I cite three works often enough that I generally leave off the citation
number. The first of these is the International Standard for C++ [5],
which I usually refer to as simply “the Standard.” The other two are
my earlier books on C++, Effective C++ [1] and More Effective C++ [2].

The STL and Standards

I refer to the C++ Standard frequently, because Effective STL focuses
on portable, standard-conformant C++. In theory, everything I show in
this book will work with every C++ implementation. In practice, that
isn’t true. Shortcomings in compiler and STL implementations con-
spire to prevent some valid code from compiling or from behaving the
way it’s supposed to. Where that is commonly the case, I describe the
problems, and I explain how you can work around them. 

Sometimes, the easiest workaround is to use a different STL imple-
mentation. Appendix B gives an example of when this is the case. In
fact, the more you work with the STL, the more important it becomes
to distinguish between your compilers and your library implementa-
tions. When programmers run into difficulties trying to get legitimate
code to compile, it’s customary for them to blame their compilers, but
with the STL, compilers can be fine, while STL implementations are
faulty. To emphasize the fact that you are dependent on both your
compilers and your library implementations, I refer to your STL plat-
forms. An STL platform is the combination of a particular compiler
and a particular STL implementation. In this book, if I mention a com-
piler problem, you can be sure that I mean it’s the compiler that’s the
culprit. However, if I refer to a problem with your STL platform, you
should interpret that as “maybe a compiler bug, maybe a library bug,
possibly both.”

I generally refer to your “compilers” — plural. That’s an outgrowth of
my longstanding belief that you improve the quality (especially the
portability) of your code if you ensure that it works with more than
one compiler. Furthermore, using multiple compilers generally makes
it easier to unravel the Gordian nature of error messages arising from
improper use of the STL. (Item 49 is devoted to approaches to decod-
ing such messages.)

Another aspect of my emphasis on standard-conforming code is my
concern that you avoid constructs with undefined behavior. Such con-
structs may do anything at runtime. Unfortunately, this means they
may do precisely what you want them to, and that can lead to a false
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sense of security. Too many programmers assume that undefined be-
havior always leads to an obvious problem, e.g., a segmentation fault
or other catastrophic failure. The results of undefined behavior can
actually be much more subtle, e.g., corruption of rarely-referenced
data. They can also vary across program runs. I find that a good work-
ing definition of undefined behavior is “works for me, works for you,
works during development and QA, but blows up in your most impor-
tant customer’s face.” It’s important to avoid undefined behavior, so I
point out common situations where it can arise. You should train
yourself to be alert for such situations.

Reference Counting

It’s close to impossible to discuss the STL without mentioning refer-
ence counting. As you’ll see in Items 7 and 33, designs based on con-
tainers of pointers almost invariably lead to reference counting. In
addition, many string implementations are internally reference
counted, and, as Item 15 explains, this may be an implementation de-
tail you can’t afford to ignore. In this book, I assume that you are fa-
miliar with the basics of reference counting. If you’re not, most
intermediate and advanced C++ texts cover the topic. In More Effective
C++, for example, the relevant material is in Items 28 and 29. If you
don’t know what reference counting is and you have no inclination to
learn, don’t worry. You’ll get through this book just fine, though there
may be a few sentences here and there that won’t make as much
sense as they otherwise would. 

string and wstring

Whatever I say about string applies equally well to its wide-character
counterpart, wstring. Similarly, any time I refer to the relationship be-
tween string and char or char*, the same is true of the relationship be-
tween wstring and wchar_t or wchar_t*. In other words, just because I
don’t explicitly mention wide-character strings in this book, don’t as-
sume that the STL fails to support them. It supports them as well as
char-based strings. It has to. Both string and wstring are instantiations
of the same template, basic_string. 

Terms, Terms, Terms

This is not an introductory book on the STL, so I assume you know
the fundamentals. Still, the following terms are sufficiently important
that I feel compelled to review them:
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■ vector, string, deque, and list are known as the standard sequence
containers. The standard associative containers are set, multiset,
map, and multimap.

■ Iterators are divided into five categories, based on the operations
they support. Very briefly, input iterators are read-only iterators
where each iterated location may be read only once. Output itera-
tors are write-only iterators where each iterated location may be
written only once. Input and output iterators are modeled on read-
ing and writing input and output streams (e.g., files). It’s thus un-
surprising that the most common manifestations of input and
output iterators are istream_iterators and ostream_iterators, respec-
tively.

Forward iterators have the capabilities of both input and output it-
erators, but they can read or write a single location repeatedly.
They don’t support operator--, so they can move only forward with
any degree of efficiency. All standard STL containers support iter-
ators that are more powerful than forward iterators, but, as you’ll
see in Item 25, one design for hashed containers yields forward it-
erators. Containers for singly linked lists (considered in Item 50)
also offer forward iterators.

Bidirectional iterators are just like forward iterators, except they
can go backward as easily as they go forward. The standard asso-
ciative containers all offer bidirectional iterators. So does list.

Random access iterators do everything bidirectional iterators do,
but they also offer “iterator arithmetic,” i.e., the ability to jump for-
ward or backward in a single step. vector, string, and deque each
provide random access iterators. Pointers into arrays act as ran-
dom access iterators for the arrays.

■ Any class that overloads the function call operator (i.e., operator())
is a functor class. Objects created from such classes are known as
function objects or functors. Most places in the STL that work with
function objects work equally well with real functions, so I often
use the term “function objects” to mean both C++ functions as
well as true function objects.

■ The functions bind1st and bind2nd are known as binders.

A revolutionary aspect of the STL is its complexity guarantees. These
guarantees bound the amount of work any STL operation is allowed to
perform. This is wonderful, because it can help you determine the rel-
ative efficiency of different approaches to the same problem, regard-
less of the STL platform you’re using. Unfortunately, the terminology
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behind the complexity guarantees can be confusing if you haven’t
been formally introduced to the jargon of computer science. Here’s a
quick primer on the complexity terms I use in this book. Each refers
to how long it takes to do something as a function of n, the number of
elements in a container or range.

■ An operation that runs in constant time has performance that is
unaffected by changes in n. For example, inserting an element into
a list is a constant-time operation. Regardless of whether the list
has one element or one million, the insertion takes about the same
amount of time.

Don’t take the term “constant time” too literally. It doesn’t mean
that the amount of time it takes to do something is literally con-
stant, it just means that it’s unaffected by n. For example, two STL
platforms might take dramatically different amounts of time to
perform the same “constant-time” operation. This could happen if
one library has a much more sophisticated implementation than
another or if one compiler performs substantially more aggressive
optimization.

A variant of constant time complexity is amortized constant time.
Operations that run in amortized constant time are usually con-
stant-time operations, but occasionally they take time that de-
pends on n. Amortized constant time operations typically run in
constant time. 

■ An operation that runs in logarithmic time needs more time to run
as n gets larger, but the time it requires grows at a rate propor-
tional to the logarithm of n. For example, an operation on a million
items would be expected to take only about three times as long as
on a hundred items, because log n3 = 3 log n. Most search opera-
tions on associative containers (e.g., set::find) are logarithmic-time
operations.

■ The time needed to perform an operation that runs in linear time
increases at a rate proportional to increases in n. The standard al-
gorithm count runs in linear time, because it has to look at every
element of the range it’s given. If the range triples in size, it has to
do three times as much work, and we’d expect it to take about
three times as long to do it.

As a general rule, a constant-time operation runs faster than one re-
quiring logarithmic time, and a logarithmic-time operation runs faster
than one whose performance is linear. This is always true when n gets
big enough, but for relatively small values of n, it’s sometimes possible
for an operation with a worse theoretical complexity to outperform an
operation with a better theoretical complexity. If you’d like to know
more about STL complexity guarantees, turn to Josuttis’ The C++
Standard Library [3].
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As a final note on terminology, recall that each element in a map or
multimap has two components. I generally call the first component the
key and the second component the value. Given

map<string, double> m;

for example, the string is the key and the double is the value. 

Code Examples

This book is filled with example code, and I explain each example
when I introduce it. Still, it’s worth knowing a few things in advance.

You can see from the map example above that I routinely omit #in-
cludes and ignore the fact that STL components are in namespace std.
When defining the map m, I could have written this,

#include <map>
#include <string>

using std::map;
using std::string;

map<string, double> m;

but I prefer to save us both the noise.

When I declare a formal type parameter for a template, I use typename
instead of class. That is, instead of writing this,

template<class T>
class Widget { ... };

I write this:

template<typename T>
class Widget { ... };

In this context, class and typename mean exactly the same thing, but I
find that typename more clearly expresses what I usually want to say:
that any type will do; T need not be a class. If you prefer to use class to
declare type parameters, go right ahead. Whether to use typename or
class in this context is purely a matter of style.

It is not a matter of style in a different context. To avoid potential
parsing ambiguities (the details of which I’ll spare you), you are re-
quired to use typename to precede type names that are dependent on
formal type parameters. Such types are known as dependent types,
and an example will help clarify what I’m talking about. Suppose
you’d like to write a template for a function that, given an STL con-
tainer, returns whether the last element in the container is greater
than the first element. Here’s one way to do it:
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template<typename C>
bool lastGreaterThanFirst(const C& container)
{

if (container.empty()) return false;

typename C::const_iterator begin(container.begin());
typename C::const_iterator end(container.end());

return *--end > *begin;
}

In this example, the local variables begin and end are of type
C::const_iterator. const_iterator is a type that is dependent on the formal
type parameter C. Because C::const_iterator is a dependent type, you
are required to precede it with the word typename. (Some compilers in-
correctly accept the code without the typenames, but such code isn’t
portable.)

I hope you’ve noticed my use of color in the examples above. It’s there
to focus your attention on parts of the code that are particularly im-
portant. Often, I highlight the differences between related examples,
such as when I showed the two possible ways to declare the parame-
ter T in the Widget example. This use of color to call out especially
noteworthy parts of examples carries over to diagrams, too. For in-
stance, this diagram from Item 5 uses color to identify the two point-
ers that are affected when a new element is inserted into a list:

I also use color for chapter numbers, but such use is purely gratu-
itous. This being my first two-color book, I hope you’ll forgive me a lit-
tle chromatic exuberance.

Two of my favorite parameter names are lhs and rhs. They stand for
“left-hand side” and “right-hand side,” respectively, and I find them
especially useful when declaring operators. Here’s an example from
Item 19:

class Widget { ... };

bool operator==(const Widget& lhs, const Widget& rhs);
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When this function is called in a context like this,

if (x == y) ... // assume x and y are Widgets

x, which is on the left-hand side of the “==”, is known as lhs inside op-
erator==, and y is known as rhs.

As for the class name Widget, that has nothing to do with GUIs or tool-
kits. It’s just the name I use for “some class that does something.”
Sometimes, as on page 7, Widget is a class template instead of a class.
In such cases, you may find that I still refer to Widget as a class, even
though it’s really a template. Such sloppiness about the difference be-
tween classes and class templates, structs and struct templates, and
functions and function templates hurts no one as long as there is no
ambiguity about what is being discussed. In cases where it could be
confusing, I do distinguish between templates and the classes,
structs, and functions they generate.

Efficiency Items

I considered including a chapter on efficiency in Effective STL, but I
ultimately decided that the current organization was preferable. Still,
a number of Items focus on minimizing space and runtime demands.
For your performance-enhancing convenience, here is the table of
contents for the virtual chapter on efficiency:

Item 4: Call empty instead of checking size() against zero. 23
Item 5: Prefer range member functions to their single-element 

counterparts. 24
Item 14: Use reserve to avoid unnecessary reallocations. 66
Item 15: Be aware of variations in string implementations. 68
Item 23: Consider replacing associative containers with

sorted vectors. 100
Item 24: Choose carefully between map::operator[] and

map::insert when efficiency is important. 106
Item 25: Familiarize yourself with the nonstandard hashed 

containers. 111
Item 29: Consider istreambuf_iterators for character-by-character 

input. 126
Item 31: Know your sorting options. 133
Item 44: Prefer member functions to algorithms with the

same names. 190
Item 46: Consider function objects instead of functions as 

algorithm parameters. 201
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The Guidelines in Effective STL

The guidelines that make up the 50 Items in this book are based on
the insights and advice of the world’s most experienced STL program-
mers. These guidelines summarize things you should almost always
do — or almost always avoid doing — to get the most out of the Stan-
dard Template Library. At the same time, they’re just guidelines. Un-
der some conditions, it makes sense to violate them. For example, the
title of Item 7 tells you to invoke delete on newed pointers in a con-
tainer before the container is destroyed, but the text of that Item
makes clear that this applies only when the objects pointed to by
those pointers should go away when the container does. This is often
the case, but it’s not universally true. Similarly, the title of Item 35 be-
seeches you to use STL algorithms to perform simple case-insensitive
string comparisons, but the text of the Item points out that in some
cases, you’ll be better off using a function that’s not only outside the
STL, it’s not even part of standard C++! 

Only you know enough about the software you’re writing, the environ-
ment in which it will run, and the context in which it’s being created
to determine whether it’s reasonable to violate the guidelines I
present. Most of the time, it won’t be, and the discussions that accom-
pany each Item explain why. In a few cases, it will. Slavish devotion to
the guidelines isn’t appropriate, but neither is cavalier disregard. Be-
fore venturing off on your own, you should make sure you have a good
reason.



Sure, the STL has iterators, algorithms, and function objects, but for
most C++ programmers, it’s the containers that stand out. More pow-
erful and flexible than arrays, they grow (and often shrink) dynami-
cally, manage their own memory, keep track of how many objects they
hold, bound the algorithmic complexity of the operations they sup-
port, and much, much more. Their popularity is easy to understand.
They’re simply better than their competition, regardless of whether
that competition comes from containers in other libraries or is a con-
tainer type you’d write yourself. STL containers aren’t just good.
They’re really good.

This chapter is devoted to guidelines applicable to all the STL contain-
ers. Later chapters focus on specific container types. The topics
addressed here include selecting the appropriate container given the
constraints you face; avoiding the delusion that code written for one
container type is likely to work with other container types; the signifi-
cance of copying operations for objects in containers; difficulties that
arise when pointers or auto_ptrs are stored in containers; the ins and
outs of erasing; what you can and cannot accomplish with custom
allocators; tips on how to maximize efficiency; and considerations for
using containers in a threaded environment. 

That’s a lot of ground to cover, but don’t worry. The Items break it
down into bite-sized chunks, and along the way, you’re almost sure to
pick up several ideas you can apply to your code now.

Item 1: Choose your containers with care.

You know that C++ puts a variety of containers at your disposal, but
do you realize just how varied that variety is? To make sure you
haven’t overlooked any of your options, here’s a quick review.

■ The standard STL sequence containers, vector, string, deque, and
list.

Chapter 1: Containers

Containers
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■ The standard STL associative containers, set, multiset, map, and
multimap.

■ The nonstandard sequence containers slist and rope. slist is a sin-
gly linked list, and rope is essentially a heavy-duty string. (A “rope”
is a heavy-duty “string.” Get it?) You’ll find a brief overview of
these nonstandard (but commonly available) containers in
Item 50.

■ The nonstandard associative containers hash_set, hash_multiset,
hash_map, and hash_multimap. I examine these widely available
hash-table-based variants on the standard associative containers
in Item 25.

■ vector<char> as a replacement for string. Item 13 describes the
conditions under which such a replacement might make sense.

■ vector as a replacement for the standard associative contain-
ers. As Item 23 makes clear, there are times when vector can out-
perform the standard associative containers in both time and
space.

■ Several standard non-STL containers, including arrays, bitset,
valarray, stack, queue, and priority_queue. Because these are non-
STL containers, I have little to say about them in this book,
though Item 16 mentions a case where arrays are preferable to
STL containers and Item 18 explains why bitset may be better than
vector<bool>. It’s also worth bearing in mind that arrays can be
used with STL algorithms, because pointers can be used as array
iterators.

That’s a panoply of options, and it’s matched in richness by the range
of considerations that should go into choosing among them. Unfortu-
nately, most discussions of the STL take a fairly narrow view of the
world of containers, ignoring many issues relevant to selecting the one
that is most appropriate. Even the Standard gets into this act, offering
the following guidance for choosing among vector, deque, and list:

vector, list, and deque offer the programmer different complexity 
trade-offs and should be used accordingly. vector is the type of 
sequence that should be used by default. list should be used 
when there are frequent insertions and deletions from the mid-
dle of the sequence. deque is the data structure of choice when 
most insertions and deletions take place at the beginning or at 
the end of the sequence.

If your primary concern is algorithmic complexity, I suppose this con-
stitutes reasonable advice, but there is so much more to be concerned
with. 
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In a moment, we’ll examine some of the important container-related
issues that complement algorithmic complexity, but first I need to
introduce a way of categorizing the STL containers that isn’t dis-
cussed as often as it should be. That is the distinction between contig-
uous-memory containers and node-based containers.

Contiguous-memory containers (also known as array-based containers)
store their elements in one or more (dynamically allocated) chunks of
memory, each chunk holding more than one container element. If a
new element is inserted or an existing element is erased, other ele-
ments in the same memory chunk have to be shifted up or down to
make room for the new element or to fill the space formerly occupied
by the erased element. This kind of movement affects both perfor-
mance (see Items 5 and 14) and exception safety (as we’ll soon see).
The standard contiguous-memory containers are vector, string, and
deque. The nonstandard rope is also a contiguous-memory container.

Node-based containers store only a single element per chunk of
(dynamically allocated) memory. Insertion or erasure of a container
element affects only pointers to nodes, not the contents of the nodes
themselves, so element values need not be moved when something is
inserted or erased. Containers representing linked lists, such as list
and slist, are node-based, as are all the standard associative contain-
ers. (They’re typically implemented as balanced trees.) The nonstand-
ard hashed containers use varying node-based implementations, as
you’ll see in Item 25.

With this terminology out of the way, we’re ready to sketch some of
the questions most relevant when choosing among containers. In this
discussion, I omit consideration of non-STL-like containers (e.g.,
arrays, bitsets, etc.), because this is, after all, a book on the STL.

■ Do you need to be able to insert a new element at an arbitrary posi-
tion in the container? If so, you need a sequence container; asso-
ciative containers won’t do.

■ Do you care how elements are ordered in the container? If not, a
hashed container becomes a viable choice. Otherwise, you’ll want
to avoid hashed containers.

■ Must the container be part of standard C++? If so, that eliminates
hashed containers, slist, and rope.

■ What category of iterators do you require? If they must be random
access iterators, you’re technically limited to vector, deque, and
string, but you’d probably want to consider rope, too. (See Item 50
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for information on rope.) If bidirectional iterators are required, you
must avoid slist (see Item 50) as well as one common implementa-
tion of the hashed containers (see Item 25).

■ Is it important to avoid movement of existing container elements
when insertions or erasures take place? If so, you’ll need to stay
away from contiguous-memory containers (see Item 5).

■ Does the data in the container need to be layout-compatible with C?
If so, you’re limited to vectors (see Item 16).

■ Is lookup speed a critical consideration? If so, you’ll want to look at
hashed containers (see Item 25), sorted vectors (see Item 23), and
the standard associative containers — probably in that order. 

■ Do you mind if the underlying container uses reference counting? If
so, you’ll want to steer clear of string, because many string imple-
mentations are reference-counted (see Item 13). You’ll need to
avoid rope, too, because the definitive rope implementation is
based on reference counting (see Item 50). You have to represent
your strings somehow, of course, so you’ll want to consider vec-
tor<char>.

■ Do you need transactional semantics for insertions and erasures?
That is, do you require the ability to reliably roll back insertions
and erasures? If so, you’ll want to use a node-based container. If
you need transactional semantics for multiple-element insertions
(e.g., the range form — see Item 5), you’ll want to choose list, be-
cause list is the only standard container that offers transactional
semantics for multiple-element insertions. Transactional seman-
tics are particularly important for programmers interested in writ-
ing exception-safe code. (Transactional semantics can be achieved
with contiguous-memory containers, too, but there is a perfor-
mance cost, and the code is not as straightforward. To learn more
about this, consult Item 17 of Sutter’s Exceptional C++ [8].)

■ Do you need to minimize iterator, pointer, and reference invalida-
tion? If so, you’ll want to use node-based containers, because in-
sertions and erasures on such containers never invalidate
iterators, pointers, or references (unless they point to an element
you are erasing). In general, insertions or erasures on contiguous-
memory containers may invalidate all iterators, pointers, and ref-
erences into the container.

■ Do you care if using swap on containers invalidates iterators, point-
ers, or references? If so, you’ll need to avoid string, because string is
alone in the STL in invalidating iterators, pointers, and references
during swaps.
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■ Would it be helpful to have a sequence container with random ac-
cess iterators where pointers and references to the data are not in-
validated as long as nothing is erased and insertions take place
only at the ends of the container? This is a very special case, but if
it’s your case, deque is the container of your dreams. (Interest-
ingly, deque’s iterators may be invalidated when insertions are
made only at the ends of the container. deque is the only standard
STL container whose iterators may be invalidated without also in-
validating its pointers and references.)

These questions are hardly the end of the matter. For example, they
don’t take into account the varying memory allocation strategies
employed by the different container types. (Items 10 and 14 discuss
some aspects of such strategies.) Still, they should be enough to con-
vince you that, unless you have no interest in element ordering, stan-
dards conformance, iterator capabilities, layout compatibility with C,
lookup speed, behavioral anomalies due to reference counting, the
ease of implementing transactional semantics, or the conditions
under which iterators are invalidated, you have more to think about
than simply the algorithmic complexity of container operations. Such
complexity is important, of course, but it’s far from the entire story.

The STL gives you lots of options when it comes to containers. If you
look beyond the bounds of the STL, there are even more options.
Before choosing a container, be sure to consider all your options. A
“default container”? I don’t think so.

Item 2: Beware the illusion of container-independent 
code.

The STL is based on generalization. Arrays are generalized into con-
tainers and parameterized on the types of objects they contain. Func-
tions are generalized into algorithms and parameterized on the types
of iterators they use. Pointers are generalized into iterators and
parameterized on the type of objects they point to. 

That’s just the beginning. Individual container types are generalized
into sequence and associative containers, and similar containers are
given similar functionality. Standard contiguous-memory containers
(see Item 1) offer random-access iterators, while standard node-based
containers (again, see Item 1) provide bidirectional iterators. Sequence
containers support push_front and/or push_back, while associative
containers don’t. Associative containers offer logarithmic-time
lower_bound, upper_bound, and equal_range member functions, but
sequence containers don’t.
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With all this generalization going on, it’s natural to want to join the
movement. This sentiment is laudable, and when you write your own
containers, iterators, and algorithms, you’ll certainly want to pursue
it. Alas, many programmers try to pursue it in a different manner.
Instead of committing to particular types of containers in their soft-
ware, they try to generalize the notion of a container so that they can
use, say, a vector, but still preserve the option of replacing it with
something like a deque or a list later — all without changing the code
that uses it. That is, they strive to write container-independent code.
This kind of generalization, well-intentioned though it is, is almost
always misguided.

Even the most ardent advocate of container-independent code soon
realizes that it makes little sense to try to write software that will work
with both sequence and associative containers. Many member func-
tions exist for only one category of container, e.g., only sequence con-
tainers support push_front or push_back, and only associative
containers support count and lower_bound, etc. Even such basics as
insert and erase have signatures and semantics that vary from category
to category. For example, when you insert an object into a sequence
container, it stays where you put it, but if you insert an object into an
associative container, the container moves the object to where it
belongs in the container’s sort order. For another example, the form of
erase taking an iterator returns a new iterator when invoked on a
sequence container, but it returns nothing when invoked on an asso-
ciative container. (Item 9 gives an example of how this can affect the
code you write.)

Suppose, then, you aspire to write code that can be used with the
most common sequence containers: vector, deque, and list. Clearly,
you must program to the intersection of their capabilities, and that
means no uses of reserve or capacity (see Item 14), because deque and
list don’t offer them. The presence of list also means you give up opera-
tor[], and you limit yourself to the capabilities of bidirectional itera-
tors. That, in turn, means you must stay away from algorithms that
demand random access iterators, including sort, stable_sort,
partial_sort, and nth_element (see Item 31). 

On the other hand, your desire to support vector rules out use of
push_front and pop_front, and both vector and deque put the kibosh on
splice and the member form of sort. In conjunction with the con-
straints above, this latter prohibition means that there is no form of
sort you can call on your “generalized sequence container.”
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That’s the obvious stuff. If you violate any of those restrictions, your
code will fail to compile with at least one of the containers you want to
be able to use. The code that will compile is more insidious.

The main culprit is the different rules for invalidation of iterators,
pointers, and references that apply to different sequence containers.
To write code that will work correctly with vector, deque, and list, you
must assume that any operation invalidating iterators, pointers, or
references in any of those containers invalidates them in the container
you’re using. Thus, you must assume that every call to insert invali-
dates everything, because deque::insert invalidates all iterators and,
lacking the ability to call capacity, vector::insert must be assumed to
invalidate all pointers and references. (Item 1 explains that deque is
unique in sometimes invalidating its iterators without invalidating its
pointers and references.) Similar reasoning leads to the conclusion
that, unless you’re eraseing the last element of a container, calls to
erase must also be assumed to invalidate everything. 

Want more? You can’t pass the data in the container to a C interface,
because only vector supports that (see Item 16). You can’t instantiate
your container with bool as the type of objects to be stored, because,
as Item 18 explains, vector<bool> doesn’t always behave like a vector,
and it never actually stores bools. You can’t assume list’s constant-
time insertions and erasures, because vector and deque take linear
time to perform those operations.

When all is said and done, you’re left with a “generalized sequence
container” where you can’t call reserve, capacity, operator[], push_front,
pop_front, splice, or any algorithm requiring random access iterators; a
container where every call to insert and erase takes linear time and
invalidates all iterators, pointers, and references; and a container
incompatible with C where bools can’t be stored. Is that really the
kind of container you want to use in your applications? I suspect not.

If you rein in your ambition and decide you’re willing to drop support
for list, you still give up reserve, capacity, push_front, and pop_front; you
still must assume that all calls to insert and erase take linear time and
invalidate everything; you still lose layout compatibility with C; and
you still can’t store bools.

If you abandon the sequence containers and shoot instead for code
that can work with different associative containers, the situation isn’t
much better. Writing for both set and map is close to impossible,
because sets store single objects while maps store pairs of objects.
Even writing for both set and multiset (or map and multimap) is tough.
The insert member function taking only a value has different return
types for sets/maps than for their multi cousins, and you must reli-
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giously avoid making any assumptions about how many copies of a
value are stored in a container. With map and multimap, you must
avoid using operator[], because that member function exists only for
map.

Face the truth: it’s not worth it. The different containers are different,
and they have strengths and weaknesses that vary in significant
ways. They’re not designed to be interchangeable, and there’s little
you can do to paper that over. If you try, you’re merely tempting fate,
and fate doesn’t like to be tempted.

Still, the day will dawn when you’ll realize that a container choice you
made was, er, suboptimal, and you’ll need to use a different container
type. You now know that when you change container types, you’ll not
only need to fix whatever problems your compilers diagnose, you’ll
also need to examine all the code using the container to see what
needs to be changed in light of the new container’s performance char-
acteristics and rules for invalidation of iterators, pointers, and refer-
ences. If you switch from a vector to something else, you’ll also have to
make sure you’re no longer relying on vector’s C-compatible memory
layout, and if you switch to a vector, you’ll have to ensure that you’re
not using it to store bools. 

Given the inevitability of having to change container types from time
to time, you can facilitate such changes in the usual manner: by
encapsulating, encapsulating, encapsulating. One of the easiest ways
to do this is through the liberal use of typedefs for container types.
Hence, instead of writing this,

class Widget { ... };

vector<Widget> vw;

Widget bestWidget;

... // give bestWidget a value

vector<Widget>::iterator i = // find a Widget with the
find(vw.begin(), vw.end(), bestWidget); // same value as bestWidget

write this:

class Widget { ... };

typedef vector<Widget> WidgetContainer;

WidgetContainer cw;

Widget bestWidget;

...

WidgetContainer::iterator i = find(cw.begin(), cw.end(), bestWidget);
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This makes it a lot easier to change container types, something that’s
especially convenient if the change in question is simply to add a cus-
tom allocator. (Such a change doesn’t affect the rules for iterator/
pointer/reference invalidation.)

class Widget { ... };

template<typename T> // see Item 10 for why this
SpecialAllocator { ... }; // needs to be a template

typedef vector<Widget, SpecialAllocator<Widget> > WidgetContainer;

WidgetContainer cw; // still works

Widget bestWidget;

...

WidgetContainer::iterator i =
find(cw.begin(), cw.end(), bestWidget); // still works

If the encapsulating aspects of typedefs mean nothing to you, you’re
still likely to appreciate the work they can save, especially for iterator
types. For example, if you have an object of type

map< string, 
vector<Widget>::iterator,
CIStringCompare> // CIStringCompare is “case-

// insensitive string compare;”
// Item 19 describes it

and you want to walk through the map using const_iterators, do you
really want to spell out 

map<string, vector<Widget>::iterator, CIStringCompare>::const_iterator

more than once? Once you’ve used the STL a little while, you’ll realize
that typedefs are your friends.

A typedef is just a synonym for some other type, so the encapsulation
it affords is purely lexical. A typedef doesn’t prevent a client from
doing (or depending on) anything they couldn’t already do (or depend
on). You need bigger ammunition if you want to limit client exposure
to the container choices you’ve made. You need classes.

To limit the code that may require modification if you replace one con-
tainer type with another, hide the container in a class, and limit the
amount of container-specific information visible through the class
interface. For example, if you need to create a customer list, don’t use
a list directly. Instead, create a CustomerList class, and hide a list in its
private section:
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class CustomerList {
private:

typedef list<Customer> CustomerContainer;
typedef CustomerContainer::iterator CCIterator;

CustomerContainer customers;

public: // limit the amount of list-specific
... // information visible through

}; // this interface

At first, this may seem silly. After all a customer list is a list, right?
Well, maybe. Later you may discover that you don’t need to insert or
erase customers from the middle of the list as often as you’d antici-
pated, but you do need to quickly identify the top 20% of your cus-
tomers — a task tailor-made for the nth_element algorithm (see
Item 31). But nth_element requires random access iterators. It won’t
work with a list. In that case, your customer “list” might be better
implemented as a vector or a deque. 

When you consider this kind of change, you still have to check every
CustomerList member function and every friend to see how they’ll be
affected (in terms of performance and iterator/pointer/reference
invalidation, etc.), but if you’ve done a good job of encapsulating Cus-
tomerList’s implementation details, the impact on CustomerList clients
should be small. You can’t write container-independent code, but they
might be able to.

Item 3: Make copying cheap and correct for objects 
in containers.

Containers hold objects, but not the ones you give them. Instead,
when you add an object to a container (via, e.g., insert or push_back,
etc.), what goes into the container is a copy of the object you specify. 

Once an object is in a container, it’s not uncommon for it to be copied
further. If you insert something into or erase something from a vector,
string, or deque, existing container elements are typically moved (cop-
ied) around (see Items 5 and 14). If you use any of the sorting algo-
rithms (see Item 31); next_permutation or previous_permutation; remove,
unique, or their ilk (see Item 32); rotate or reverse, etc., objects will be
moved (copied) around. Yes, copying objects is the STL way.



Containers Item 3 21
It may interest you to know how all this copying is accomplished.
That’s easy. An object is copied by using its copying member func-
tions, in particular, its copy constructor and its copy assignment oper-
ator. (Clever names, no?) For a user-defined class like Widget, these
functions are traditionally declared like this:

class Widget {
public:

...
Widget(const Widget&); // copy constructor
Widget& operator=(const Widget&); // copy assignment operator
...

};

As always, if you don’t declare these functions yourself, your compil-
ers will declare them for you. Also as always, the copying of built-in
types (e.g., ints, pointers, etc.) is accomplished by simply copying the
underlying bits. (For details on copy constructors and assignment
operators, consult any introductory book on C++. In Effective C++,
Items 11 and 27 focus on the behavior of these functions.)

With all this copying taking place, the motivation for this Item should
now be clear. If you fill a container with objects where copying is
expensive, the simple act of putting the objects into the container
could prove to be a performance bottleneck. The more things get
moved around in the container, the more memory and cycles you’ll
blow on making copies. Furthermore, if you have objects where “copy-
ing” has an unconventional meaning, putting such objects into a con-
tainer will invariably lead to grief. (For an example of the kind of grief
it can lead to, see Item 8.)

In the presence of inheritance, of course, copying leads to slicing. That
is, if you create a container of base class objects and you try to insert
derived class objects into it, the derivedness of the objects will be
removed as the objects are copied (via the base class copy constructor)
into the container:

vector<Widget> vw;

class SpecialWidget: // SpecialWidget inherits from
public Widget { ... }; // Widget above

SpecialWidget sw;

vw.push_back(sw); // sw is copied as a base class
// object into vw. Its specialness
// is lost during the copying

The slicing problem suggests that inserting a derived class object into
a container of base class objects is almost always an error. If you want
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the resulting object to act like a derived class object, e.g., invoke
derived class virtual functions, etc., it is always an error. (For more
background on the slicing problem, consult Effective C++, Item 22.
For another example of where it arises in the STL, see Item 38.)

An easy way to make copying efficient, correct, and immune to the
slicing problem is to create containers of pointers instead of contain-
ers of objects. That is, instead of creating a container of Widget, create
a container of Widget*. Copying pointers is fast, it always does exactly
what you expect (it copies the bits making up the pointer), and noth-
ing gets sliced when a pointer is copied. Unfortunately, containers of
pointers have their own STL-related headaches. You can read about
them in Items 7 and 33. As you seek to avoid those headaches while
still dodging efficiency, correctness, and slicing concerns, you’ll prob-
ably discover that containers of smart pointers are an attractive
option. To learn more about this option, turn to Item 7.

If all this makes it sound like the STL is copy-crazy, think again. Yes,
the STL makes lots of copies, but it’s generally designed to avoid copy-
ing objects unnecessarily. In fact, it’s generally designed to avoid cre-
ating objects unnecessarily. Contrast this with the behavior of C’s and
C++’s only built-in container, the lowly array:

Widget w[maxNumWidgets]; // create an array of maxNumWidgets
// Widgets, default-constructing each one

This constructs maxNumWidgets Widget objects, even if we normally
expect to use only a few of them or we expect to immediately overwrite
each default-constructed value with values we get from someplace
else (e.g., a file). Using the STL instead of an array, we can use a vector
that grows when it needs to:

vector<Widget> vw; // create a vector with zero Widget
// objects that will expand as needed

We can also create an empty vector that contains enough space for
maxNumWidgets Widgets, but where zero Widgets have been con-
structed:

vector<Widget> vw;

vw.reserve(maxNumWidgets); // see Item 14 for details on reserve

Compared to arrays, STL containers are much more civilized. They
create (by copying) only as many objects as you ask for, they do it only
when you direct them to, and they use a default constructor only
when you say they should. Yes, STL containers make copies, and yes,
you need to understand that, but don’t lose sight of the fact that
they’re still a big step up from arrays.
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Item 4: Call empty instead of checking size() against 
zero.

For any container c, writing

if (c.size() == 0) ...

is essentially equivalent to writing

if (c.empty()) ...

That being the case, you might wonder why one construct should be
preferred to the other, especially in view of the fact that empty is typi-
cally implemented as an inline function that simply returns whether
size returns 0.

You should prefer the construct using empty, and the reason is sim-
ple: empty is a constant-time operation for all standard containers,
but for some list implementations, size may take linear time.

But what makes list so troublesome? Why can’t it, too, offer a con-
stant-time size? The answer has much to do with the range form of
list’s unique splicing functions. Consider this code:

list<int> list1;
list<int> list2;

...

list1.splice( // move all nodes in list2
list1.end(), list2, // from the first occurrence
find(list2.begin(), list2.end(), 5), // of 5 through the last 
find(list2.rbegin(), list2.rend(), 10).base() // occurrence of 10 to the

); // end of list1. See Item 28 
// for info on the “base()” call

This code won’t work unless list2 contains a 10 somewhere beyond a
5, but let’s assume that’s not a problem. Instead, let’s focus on this
question: how many elements are in list1 after the splice? Clearly, list1
after the splice has as many elements as it did before the splice plus
however many elements were spliced into it. But how many elements
were spliced into it? As many as were in the range defined by
find(list2.begin(), list2.end(), 5) and find(list2.rbegin(), list2.rend(), 10).base().
Okay, how many is that? Without traversing the range and counting
them, there’s no way to know. And therein lies the problem. 

Suppose you’re responsible for implementing list. list isn’t just any
container, it’s a standard container, so you know your class will be
widely used. You naturally want your implementation to be as efficient
as possible. You figure that clients will commonly want to find out
how many elements are in a list, so you’d like to make size a constant-
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time operation. You’d thus like to design list so it always knows how
many elements it contains.

At the same time, you know that of all the standard containers, only
list offers the ability to splice elements from one place to another with-
out copying any data. You reason that many list clients will choose list
specifically because it offers high-efficiency splicing. They know that
splicing a range from one list to another can be accomplished in con-
stant time, and you know that they know it, so you certainly want to
meet their expectation that splice is a constant-time member function.

This puts you in a quandary. If size is to be a constant-time operation,
each list member function must update the sizes of the lists on which
it operates. That includes splice. But the only way for the range ver-
sion of splice to update the sizes of the lists it modifies is for it to count
the number of elements being spliced, and doing that would prevent it
from achieving the constant-time performance you want for it. If you
eliminate the requirement that the range form of splice update the
sizes of the lists it’s modifying, splice can be made constant-time, but
then size becomes a linear-time operation. In general, it will have to
traverse its entire data structure to see how many elements it con-
tains. No matter how you look at it, something — size or the range
form of splice — has to give. One or the other can be a constant-time
operation, but not both.

Different list implementations resolve this conflict in different ways,
depending on whether their authors choose to maximize the efficiency
of size or the range form of splice. If you happen to be using a list imple-
mentation where a constant-time range form of splice was given higher
priority than a constant-time size, you’ll be better off calling empty
than size, because empty is always a constant-time operation. Even if
you’re not using such an implementation, you might find yourself
using such an implementation in the future. For example, you might
port your code to a different platform where a different implementa-
tion of the STL is available, or you might just decide to switch to a dif-
ferent STL implementation for your current platform.

No matter what happens, you can’t go wrong if you call empty instead
of checking to see if size() == 0. So call empty whenever you need to
know whether a container has zero elements.

Item 5: Prefer range member functions to their 
single-element counterparts.

Quick! Given two vectors, v1 and v2, what’s the easiest way to make
v1’s contents be the same as the second half of v2’s? Don’t agonize
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logarithmic vs. linear 190
map::operator[] vs. map::insert 106–111
mem funcs vs. algorithms 190–192
minimizing reallocs via reserve 66–68
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logarithmic complexity vs. 190

list
algorithm specializations 192
iterator invalidation in, see iterators, 

invalidation
merge 192
remove 142–143

vs. the erase-remove idiom 43
sort 137
splice

exception safety of 50
vs. size 23–24

unique 143
Little Engine that Could, The, allusion 

to 63
local classes

definition of 189
type parameters and 189

locales 232–233
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as part of the STL 2
project1st 219
project2nd 219
proxy objects 49

containers of 82
vector<bool> and 80
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toupper

as inverse of tolow
cost of calling 236

traits classes 113, 2
transactional seman
transform 129, 186
traversal order, in m
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for auto_ptr update page 228
for Boost web site 217, 227
for Dinkumware web site 243
for Effective C++ CD errata list 228
for Effective C++ errata list 228
for Effective STL errata list xii
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for More Effective C++ errata list 228
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for Scott Meyers’ mailing list xiii
for Scott Meyers’ web site xiii
for SGI STL web site 217, 227



260 Index Effective STL
for STLport web site 217
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V
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vector
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arrays vs. 63–66
contiguous memory for 74
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growth factor 66
iterator invalidation in, see iterators, 

invalidation
iterators as pointers 120
legacy APIs and 74–77
reserve, input iterators and 131
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sorted
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vs. associative containers 100–106

string vs. 64
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vector::insert, as member template 240

vector<bool>
alternatives to 81
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problems with 79–82
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Vlissides, John 226
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Wait, John xviii
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functions 119

for Microsoft’s STL platforms 242–244
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write-only code, avoiding 206–208
writing the author xii
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