

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special
sales. For more information, please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales@pearsontechgroup.com

Visit AW on the Web: www.aw.com/cseng/

Library of Congress Cataloging-in-Publication Data

Siek, Jeremy G.
The Boost graph library : user guide and reference manual/ Jeremy G. Siek,

Lie-Quan Lee, Andrew Lumsdaine
p. cm.

Includes bibliographical references and index.
ISBN 0-201-72914-8 (alk. paper)
1. C++ (Computer language). 2. Graph theory. I. Lee, Lie-Quan.

II. Lumsdaine, Andrew. III. Title.

006.6—dc21
2001053553

Copyright © 2002 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior consent
of the publisher. Printed in the United States of America. Published simultane-
ously in Canada.

ISBN 0-201-72914-8
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—MA—0504030201
First printing, December 2001

www.aw.com/cseng/

Contents

Foreword xiii

Preface xvii

I User Guide 1

1 Introduction 3
1.1 Some Graph Terminology . 3
1.2 Graph Concepts . 5

1.2.1 Vertex and Edge Descriptors . 5
1.2.2 Property Maps . 6
1.2.3 Graph Traversal . 7
1.2.4 Graph Construction and Modification 9
1.2.5 Algorithm Visitors . 10

1.3 Graph Classes and Adaptors . 11
1.3.1 Graph Classes . 11
1.3.2 Graph Adaptors . 13

1.4 Generic Graph Algorithms . 13
1.4.1 The Topological Sort Generic Algorithm 14
1.4.2 The Depth-First Search Generic Algorithm 18

2 Generic Programming in C++ 19
2.1 Introduction . 19

2.1.1 Polymorphism in Object-Oriented Programming 20
2.1.2 Polymorphism in Generic Programming 21
2.1.3 Comparison of GP and OOP . 22

2.2 Generic Programming and the STL . 25
2.3 Concepts and Models . 27

2.3.1 Sets of Requirements . 28
2.3.2 Example: InputIterator . 28

vii

viii CONTENTS

2.4 Associated Types and Traits Classes . 30
2.4.1 Associated Types Needed in Function Template 30
2.4.2 Typedefs Nested in Classes . 30
2.4.3 Definition of a Traits Class . 31
2.4.4 Partial Specialization . 32
2.4.5 Tag Dispatching . 33

2.5 Concept Checking . 34
2.5.1 Concept-Checking Classes . 35
2.5.2 Concept Archetypes . 36

2.6 The Boost Namespace . 37
2.6.1 Classes . 37
2.6.2 Koenig Lookup . 38

2.7 Named Function Parameters . 39

3 A BGL Tutorial 41
3.1 File Dependencies . 41
3.2 Graph Setup . 42
3.3 Compilation Order . 44

3.3.1 Topological Sort via DFS . 44
3.3.2 Marking Vertices Using External Properties 46
3.3.3 Accessing Adjacent Vertices . 46
3.3.4 Traversing All the Vertices . 47

3.4 Cyclic Dependencies . 48
3.5 Toward a Generic DFS: Visitors . 49
3.6 Graph Setup: Internal Properties . 52
3.7 Compilation Time . 54
3.8 A Generic Topological Sort and DFS . 55
3.9 Parallel Compilation Time . 57
3.10 Summary . 59

4 Basic Graph Algorithms 61
4.1 Breadth-First Search . 61

4.1.1 Definitions . 61
4.1.2 Six Degrees of Kevin Bacon . 62

4.2 Depth-First Search . 67
4.2.1 Definitions . 67
4.2.2 Finding Loops in Program-Control-Flow Graphs 69

5 Shortest-Paths Problems 75
5.1 Definitions . 75
5.2 Internet Routing . 76

CONTENTS ix

5.3 Bellman–Ford and Distance Vector Routing 77
5.4 Dijkstra and Link-State Routing . 81

6 Minimum-Spanning-Tree Problem 89
6.1 Definitions . 89
6.2 Telephone Network Planning . 89
6.3 Kruskal’s Algorithm . 91
6.4 Prim’s Algorithm . 94

7 Connected Components 97
7.1 Definitions . 97
7.2 Connected Components and Internet Connectivity 98
7.3 Strongly Connected Components and Web Page Links 102

8 Maximum Flow 105
8.1 Definitions . 105
8.2 Edge Connectivity . 106

9 Implicit Graphs: A Knight’s Tour 113
9.1 Knight’s Jumps as a Graph . 114
9.2 Backtracking Graph Search . 116
9.3 Warnsdorff’s Heuristic . 117

10 Interfacing with Other Graph Libraries 119
10.1 Using BGL Topological Sort with a LEDA Graph 120
10.2 Using BGL Topological Sort with a SGB Graph 122
10.3 Implementing Graph Adaptors . 123

11 Performance Guidelines 127
11.1 Graph Class Comparisons . 127

11.1.1 The Results and Discussion . 128
11.2 Conclusion . 132

II Reference Manual 135

12 BGL Concepts 137
12.1 Graph Traversal Concepts . 137

12.1.1 Undirected Graphs . 138
12.1.2 Graph . 142
12.1.3 IncidenceGraph . 143
12.1.4 BidirectionalGraph . 145

x CONTENTS

12.1.5 AdjacencyGraph . 146
12.1.6 VertexListGraph . 147
12.1.7 EdgeListGraph . 148
12.1.8 AdjacencyMatrix . 149

12.2 Graph Modification Concepts . 150
12.2.1 VertexMutableGraph . 152
12.2.2 EdgeMutableGraph . 152
12.2.3 MutableIncidenceGraph . 154
12.2.4 MutableBidirectionalGraph . 154
12.2.5 MutableEdgeListGraph . 155
12.2.6 PropertyGraph . 155
12.2.7 VertexMutablePropertyGraph . 156
12.2.8 EdgeMutablePropertyGraph . 157

12.3 Visitor Concepts . 158
12.3.1 BFSVisitor . 158
12.3.2 DFSVisitor . 160
12.3.3 DijkstraVisitor . 161
12.3.4 BellmanFordVisitor . 162

13 BGL Algorithms 163
13.1 Overview . 163
13.2 Basic Algorithms . 165

13.2.1 breadth first search . 165
13.2.2 breadth first visit . 169
13.2.3 depth first search . 170
13.2.4 depth first visit . 175
13.2.5 topological sort . 176

13.3 Shortest-Path Algorithms . 177
13.3.1 dijkstra shortest paths . 177
13.3.2 bellman ford shortest paths . 182
13.3.3 johnson all pairs shortest paths . 186

13.4 Minimum-Spanning-Tree Algorithms . 189
13.4.1 kruskal minimum spanning tree . 189
13.4.2 prim minimum spanning tree . 192

13.5 Static Connected Components . 195
13.5.1 connected components . 195
13.5.2 strong components . 198

13.6 Incremental Connected Components . 201
13.6.1 initialize incremental components 203
13.6.2 incremental components . 203

CONTENTS xi

13.6.3 same component . 204
13.6.4 component index . 204

13.7 Maximum-Flow Algorithms . 206
13.7.1 edmunds karp max flow . 206
13.7.2 push relabel max flow . 209

14 BGL Classes 213
14.1 Graph Classes . 213

14.1.1 adjacency list . 213
14.1.2 adjacency matrix . 235

14.2 Auxiliary Classes . 242
14.2.1 graph traits . 242
14.2.2 adjacency list traits . 245
14.2.3 adjacency matrix traits . 247
14.2.4 property map . 248
14.2.5 property . 249

14.3 Graph Adaptors . 251
14.3.1 edge list . 251
14.3.2 reverse graph . 252
14.3.3 filtered graph . 257
14.3.4 SGB Graph Pointer . 262
14.3.5 LEDA GRAPH<V,E> . 267
14.3.6 std::vector<EdgeList> . 272

15 Property Map Library 277
15.1 Property Map Concepts . 278

15.1.1 ReadablePropertyMap . 279
15.1.2 WritablePropertyMap . 280
15.1.3 ReadWritePropertyMap . 281
15.1.4 LvaluePropertyMap . 281

15.2 Property Map Classes . 281
15.2.1 property traits . 281
15.2.2 iterator property map . 283
15.2.3 Property Tags . 285

15.3 Creating Your Own Property Maps . 285
15.3.1 Property Maps for Stanford GraphBase 286
15.3.2 A Property Map Implemented with std::map 287

16 Auxiliary Concepts, Classes, and Functions 289
16.1 Buffer . 289
16.2 ColorValue . 290

xii CONTENTS

16.3 MultiPassInputIterator . 291
16.4 Monoid . 291
16.5 mutable queue . 292
16.6 Disjoint Sets . 293

16.6.1 disjoint sets . 293
16.6.2 find with path halving . 295
16.6.3 find with full path compression . 295

16.7 tie . 295
16.8 graph property iter range . 297

Bibliography 299

Index 303

Foreword

When I first looked at this book, I felt envious. After all, what led me to the discovery of
generic programming was the desire to build a library like the Boost Graph Library (BGL). In
1984 I joined the faculty of Polytechnic University in Brooklyn with some vague ideas about
building libraries of software components. Well, to tell you the truth that was my secondary
interest—my real interest at that time was to construct formal underpinnings of natural lan-
guage, something like Aristotle’s Organon, but more complete and formal. I was probably the
only assistant professor in any Electrical Engineering or Computer Science department who
meant to obtain tenure through careful study of Aristotle’s Categories. Interestingly enough,
the design of the Standard Template Library (STL)—in particular the underlying ontology of
objects—is based on my realization that the whole-part relation is a fundamental relation that
describes the real world and that it is not at all similar to the element-set relation familiar to us
from set theory. Real objects do not share parts: my leg is nobody else’s leg. STL containers
are like that: two containers do not share parts. There are operations like std::list::splice that
move parts from one container to another; they are similar to organ transplant: my kidney is
mine until it is spliced into somebody else.

In any case, I was firmly convinced that software components should be functional in
nature and based on John Backus’s FP system. The only novel intuition was that functions
should be associated with some axioms: for example, the “Russian peasant algorithm” that
allows one to compute the nth power in O(log n) steps is defined for any object that has an
associative binary operation defined on it. In other words, I believed that algorithms should be
associated with what we now call concepts (see §2.3 of this book), but what I called structure
types and what type-theorists call multi-sorted algebras.

It was my great luck that Polytechnic had a remarkable person on its faculty, Aaron Ker-
shenbaum, who combined deep knowledge of graph algorithms with an unusual desire to
implement them. Aaron saw potential in my attempts to decompose programs into simple
primitives, and spent a lot of time teaching me graph algorithms and working with me on im-
plementing them. He also showed me that there were some fundamental things that cannot be
done functionally without prohibitive change in the complexity. Although it was often possi-
ble for me to implement linear time algorithms functionally without changing the asymptotic
complexity, it was impossible in practice to implement logarithmic time algorithms without
making them linear. In particular, Aaron explained to me why priority queues were so im-

xiii

xiv FOREWORD

portant for many graph algorithms (and he was well qualified to do so: Knuth in his Stanford
GraphBase book [22] attributes the discovery of how to apply binary heaps to Prim’s and
Dijkstra’s algorithms to Aaron).

It was a moment of great joy when we were able to produce Prim’s and Dijkstra’s algo-
rithms as two instances of the same generic—we called it “high-order” then—algorithm. It
is quite remarkable how close BGL code is to what we had (see, for example, a footnote to
§13.4.2). The following code in Scheme shows how the two algorithms were implemented in
terms of the same higher-order algorithm. The only difference is in how distance values are
combined: using addition for Dijkstra’s and by selecting the second operand for Prim’s.

(define dijkstra
(make−scan−based−algorithm−with−mark
make−heap−with−membership−and−values + <))

(define prim
(make−scan−based−algorithm−with−mark
make−heap−with−membership−and−values (lambda (x y) y) <))

It took me a long time—almost 10 years—to find a language in which this style of pro-
gramming could be effectively realized. I finally found C++, which enabled me to produce
something that people could use. Moreover, C++ greatly influenced my design by providing
a crisp C-based machine model. The features of C++ that enabled STL are templates and
overloading.

I often hear people attacking C++ overloading, and, as is true with most good mecha-
nisms, overloading can be misused. But it is an essential mechanism for the development
of useful abstractions. If we look at mathematics, it has been greatly driven by overloading.
Extensions of a notion of numbers from natural numbers to integers, to rational numbers, to
Gaussian integers, to p-adic numbers, etc, are examples of overloading. One can easily guess
things without knowing exact definitions. If I see an expression that uses both addition and
multiplication, I assume distributivity. If I see less-than and addition, I assume that if a < b
then a + c < b + c (I seldom add uncountable cardinals). Overloading allows us to carry
knowledge from one type to another.

It is important to understand that one can write generic algorithms just with overloading,
without templates: it does, however, require a lot of typing. That is, for every class that satis-
fies, say, random access iterator requirements, one has to define all the relevant algorithms by
hand. It is tedious, but can be done (only signatures would need to be defined: the bodies will
be the same). It should be noted that generics in Ada require hand-instantiation and, therefore,
are not that helpful, since every algorithm needs to be instantiated by hand. Templates in C++
solve this problem by allowing one to define things once.

There are still things that are needed for generic programming that are not yet repre-
sentable in C++. Generic algorithms are algorithms that work on objects with similar inter-
faces. Not identical interfaces as in object-oriented programming, but similar. It is not just
the handling of binary methods (see §2.1.3) that causes the problem, it is the fact that inter-

FOREWORD xv

faces are described in terms of a single type (single-sorted algebra). If we look carefully at
things like iterators we observe that they are describable only in terms of multiple types: the
iterator type itself, the value type, and the distance type. In other words, we need three types
to define the interfaces on one type. And there is no machinery in C++ to do that. The result
of this is that we cannot define what iterators are and, therefore, cannot really compile generic
algorithms. For example, if we define the reduce algorithm as:

template <class InputIterator, class BinaryOperationWithIdentity>
typename iterator traits<InputIterator>::value type
reduce(InputIterator first, InputIterator last, BinaryOperationWithIdentity op)
{
typedef typename iterator traits<InputIterator>::value type T;
if (first == last) return identity element(op);
T result = *first;
while (++first != last) result = op(result, *first);
return result;

}
but instead of: ++first != last we write: ++first<last, no compiler can detect the bug at the point
of definition. Though the standard clearly states that operator< does not need to be defined
for Input Iterators, there is no way for the compiler to know it. Iterator requirements are just
words. We are trying to program with concepts (multi-sorted algebras) in a language that has
no support for them.

How hard would it be to extend C++ to really enable this style of programming? First, we
need to introduce concepts as a new interface facility. For example, we can define:

concept SemiRegular : Assignable, DefaultConstructible {};
concept Regular : SemiRegular, EqualityComparable {};
concept InputIterator : Regular, Incrementable {
SemiRegular value type;
Integral distance type;
const value type& operator*();

};

value type(InputIterator)
reduce(InputIterator first, InputIterator last, BinaryOperationWithIdentity op)
(value type(InputIterator) == argument type(BinaryOperationWithIdentity))
{
if (first == last) return identity element(op);
value type(InputIterator) result = *first;
while (++first != last) result = op(result, *first);
return result;

}
Generic functions are functions that take concepts as arguments and in addition to an

argument list have a list of type constraints. Now full type checking can be done at the point

xvi FOREWORD

of definition without looking at the points of call, and full type-checking can be done at the
points of call without looking at the body of the algorithm.

Sometimes we need multiple instances of the same concept. For example,

OutputIterator merge(InputIterator[1] first1, InputIterator[1] last1,
InputIterator[2] first2, InputIterator[2] last2,
OutputIterator result)

(bool operator<(value type(InputIterator[1]), value type(InputIterator[2])),
value type(InputIterator[1]) == value type(InputIterator[2]),
output type(OutputIterator) == value type(InputIterator[2]));

Note that this merge is not as powerful as the STL merge. It cannot merge a list of floats
and a vector of doubles into a deque of ints. STL algorithms will often do unexpected and, in
my opinion, undesirable type conversions. If someone needs to merge doubles and floats into
ints, he or she should use an explicit function object for asymmetric comparison and a special
output iterator for conversion.

C++ provides two different abstraction mechanisms: object-orientedness and templates.
Object-orientedness allows for exact interface definition and for run-time dispatch. But it
cannot handle binary methods or multi-method dispatching, and its run-time binding is often
inefficient. Templates handle richer interfaces and are resolved at compile-time. They can,
however, cause a software engineering nightmare because of the lack of separation between
interfaces and implementation. For example, I recently tried compiling a 10-line STL-based
program using one of the most popular C++ compilers, and ran away in shock after getting
several pages of incomprehensible error messages. And often one needs run-time dispatch
that cannot be handled by templates. I do believe that introduction of concepts will unify
both approaches and resolve both sets of limitations. And after all, it is possible to represent
concepts as virtual tables that are extended by pointers to type descriptors: the virtual table
for input iterator contains not just pointers to operator* and operator++, but also pointers to the
actual type of the iterator, its value type, and its distance type. And then one could introduce
pointers to concepts and references to concepts!

Generic programming is a relatively young subdiscipline of computer science. I am happy
to see that the small effort—started twenty years ago by Dave Musser, Deepak Kapur, Aaron
Kershenbaum and me—led to a new generation of libraries such as BGL and MTL. And I
have to congratulate Indiana University on acquiring one of the best generic programming
teams in the world. I am sure they will do other amazing things!

Alexander Stepanov
Palo Alto, California
September, 20011

1I would like to thank John Wilkinson, Mark Manasse, Marc Najork, and Jeremy Siek for many valuable
suggestions.

Preface

The graph abstraction is a powerful problem-solving tool used to describe relationships be-
tween discrete objects. Many practical problems can be modeled in their essential form by
graphs. Such problems appear in many domains: Internet packet routing, telephone network
design, software build systems, Web search engines, molecular biology, automated road-trip
planning, scientific computing, and so on. The power of the graph abstraction arises from
the fact that the solution to a graph-theoretic problem can be used to solve problems in a
wide variety of domains. For example, the problem of solving a maze and the problem of
finding groups of Web pages that are mutually reachable can both be solved using depth-
first search, an important concept from graph theory. By concentrating on the essence of
these problems—the graph model describing discrete objects and the relationships between
them—graph theoreticians have created solutions to not just a handful of particular problems,
but to entire families of problems.

Now a question arises. If graph theory is generally and broadly applicable to arbitrary
problem domains, should not the software that implements graph algorithms be just as broadly
applicable? Graph theory would seem to be an ideal area for software reuse. However, up until
now the potential for reuse has been far from realized. Graph problems do not typically occur
in a pure graph-theoretic form, but rather are embedded in larger domain-specific problems.
As a result, the data to be modeled as a graph are often not explicitly represented as a graph
but are instead encoded in some application-specific data structure. Even in the case where
the application data are explicitly represented as a graph, the particular graph representation
chosen by the programmer might not match the representation expected by a library that the
programmer wants to use. Moreover, different applications may place different time and
space requirements on the graph data structure.

This implies a serious problem for the graph library writer who wants to provide reusable
software, for it is impossible to anticipate every possible data structure that might be needed
and to write a different version of the graph algorithm specifically for each one. The current
state of affairs is that graph algorithms are written in terms of whatever data structure is
most convenient for the algorithm and users must convert their data structures to that format
in order to use the algorithm. This is an inefficient undertaking, consuming programmer
time and computational resources. Often, the cost is perceived not to be worthwhile, and the
programmer instead chooses to rewrite the algorithm in terms of his or her own data structure.

xvii

xviii PREFACE

This approach is also time consuming and error prone, and will tend to lead to sub-optimal
solutions since the application programmer may not be a graph algorithms expert.

Generic Programming

The Standard Template Library (STL) [40] was introduced in 1994 and was adopted shortly
thereafter into the C++ Standard. The STL was a library of interchangeable components for
solving many fundamental problems on sequences of elements. What set the STL apart from
libraries that came before it was that each STL algorithm could work with a wide variety
of sequential data structures: linked-lists, arrays, sets, and so on. The iterator abstraction
provided an interface between containers and algorithms and the C++ template mechanism
provided the needed flexibility to allow implementation without loss of efficiency. Each al-
gorithm in the STL is a function template parameterized by the types of iterators upon which
it operates. Any iterator that satisfies a minimal set of requirements can be used regardless
of the data structure traversed by the iterator. The systematic approach used in the STL to
construct abstractions and interchangeable components is called generic programming.

Generic programming lends itself well to solving the reusability problem for graph li-
braries. With generic programming, graph algorithms can be made much more flexible, al-
lowing them to be easily used in a wide variety applications. Each graph algorithm is written
not in terms of a specific data structure, but instead to a graph abstraction that can be eas-
ily implemented by many different data structures. Writing generic graph algorithms has
the additional advantage of being more natural; the abstraction inherent in the pseudo-code
description of an algorithm is retained in the generic function.

The Boost Graph Library (BGL) is the first C++ graph library to apply the notions of
generic programming to the construction of graph algorithms.

Some BGL History

The Boost Graph Library began its life as the Generic Graph Component Library (GGCL),
a software project at the Lab for Scientific Computing (LSC). The LSC, under the direction
of Professor Andrew Lumsdaine, was an interdisciplinary laboratory dedicated to research in
algorithms, software, tools, and run-time systems for high-performance computational sci-
ence and engineering.2 Special emphasis was put on developing industrial-strength, high-
performance software using modern programming languages and techniques—most notably,
generic programming.

Soon after the Standard Template Library was released, work began at the LSC to apply
generic programming to scientific computing. The Matrix Template Library (MTL) was one
of the first projects. Many of the lessons learned during construction of the MTL were applied
to the design and implementation of the GGCL.

2The LSC has since evolved into the Open Systems Laboratory (OSL) http://www.osl.iu.edu. Although the
name and location have changed, the research agenda remains the same.

http://www.osl.iu.edu

PREFACE xix

An important class of linear algebra computations in scientific computing is that of sparse
matrix computations, an area where graph algorithms play an important role. As the LSC
was developing the sparse matrix capabilities of the MTL, the need for high-performance
reusable (and generic) graph algorithms became apparent. However, none of the graph li-
braries available at the time (LEDA, GTL, Stanford GraphBase) were written using the
generic programming style of the MTL and the STL, and hence did not fulfill the flexibil-
ity and high-performance requirements of the LSC. Other researchers were also expressing
interest in a generic C++ graph library. During a meeting with Bjarne Stroustrup, we were
introduced to several individuals at AT&T who needed such a library. Other early work in
the area of generic graph algorithms included some codes written by Alexander Stepanov, as
well as Dietmar Kühl’s master’s thesis.

With this in mind, and motivated by homework assignments in his algorithms class,
Jeremy Siek began prototyping an interface and some graph classes in the spring of 1998.
Lie-Quan Lee then developed the first version of the GGCL, which became his master’s the-
sis project.

During the following year, the authors began collaborating with Alexander Stepanov and
Matthew Austern. During this time, Stepanov’s disjoint-sets-based connected components
implementation was added to the GGCL, and work began on providing concept documenta-
tion for the GGCL, similar to Austern’s STL documentation.

During this year the authors also became aware of Boost and were excited to find an
organization interested in creating high-quality, open source C++ libraries. Boost included
several people interested in generic graph algorithms, most notably Dietmar Kühl. Some
discussions about generic interfaces for graph structures resulted in a revision of the GGCL
that closely resembles the current Boost Graph Library interface.

On September 4, 2000, the GGCL passed the Boost formal review (managed by David
Abrahams) and became the Boost Graph Library. The first release of the BGL was September
27, 2000. The BGL is not a “frozen” library. It continues to grow as new algorithms are con-
tributed, and it continues to evolve to meet users’ needs. We encourage readers to participate
in the Boost group and help with extensions to the BGL.

What Is Boost?

Boost is an online community that encourages development and peer-review of free C++
libraries. The emphasis is on portable and high-quality libraries that work well with (and are
in the same spirit as) the C++ Standard Library. Members of the community submit proposals
(library designs and implementations) for review. The Boost community (led by a review
manager) then reviews the library, provides feedback to the contributors, and finally renders
a decision as to whether the library should be included in the Boost library collection. The
libraries are available at the Boost Web site http://www.boost.org. In addition, the Boost mailing
list provides an important forum for discussing library plans and for organizing collaboration.

http://www.boost.org

xx PREFACE

Obtaining and Installing the BGL Software

The Boost Graph Library is available as part of the Boost library collection, which can be
obtained in several different ways. The CD accompanying this book contains version 1.25.1
of the Boost library collection. In addition, releases of the Boost library collection can be ob-
tained with your Web browser at http://www.boost.org/boost all.zip for the Windows zip archive
of the latest release and http://www.boost.org/boost all.tar.gz for the UNIX archive of the latest
release. The Boost libraries can also be downloaded via FTP at ftp://boost.sourceforge.net/pub-
/boost/release/.

The zip archive of the Boost library collection can be unzipped by using WinZip or other
similar tools. The UNIX “tar ball” can be expanded using the following command:

gunzip −cd boost all.tar.gz | tar xvf −

Extracting the archive creates a directory whose name consists of the word boost and a ver-
sion number. For example, extracting the Boost release 1.25.1 creates a directory boost 1 25 1.
Under this top directory, are two principal subdirectories: boost and libs. The subdirectory
boost contains the header files for all the libraries in the collection. The subdirectory libs
contains a separate subdirectory for each library in the collection. These subdirectories con-
tain library-specific source and documentation files. You can point your Web browser to
boost 1 25 1/index.htm and navigate the whole Boost library collection.

All of the BGL header files are in the directory boost/graph/. However, other Boost header
files are needed since BGL uses other Boost components. The HTML documentation is in
libs/graph/doc/ and the source code for the examples is in libs/graph/example/. Regression tests
for BGL are in libs/graph/test/. The source files in libs/graph/src/ implement the Graphviz file
parsers and printers.

Except as described next, there are no compilation and build steps necessary to use BGL.
All that is required is that the Boost header file directory be added to your compiler’s in-
clude path. For example, using Windows 2000, if you have unzipped release 1.25.1 from
boost all.zip into the top level directory of your C drive, for Borland, GCC, and Metrow-
erks compilers add -Ic:/boost 1 25 1 to the compiler command line, and for the Microsoft
Visual C++ compiler add /I "c:/boost 1 25 1". For IDEs, add c:/boost 1 25 1 (or whatever
you have renamed it to) to the include search paths using the appropriate dialog. Before
using the BGL interface to LEDA or Stanford GraphBase, LEDA or GraphBase must be
installed according to their installation instructions. To use the read graphviz() functions
(for reading AT&T Graphviz files), you must build and link to an additional library under
boost 1 25 1/libs/graph/src.

The Boost Graph Library is written in ISO/IEC Standard C++ and compiles with most
C++ compilers. For an up-to-date summary of the compatibility with a particular com-
piler, see the “Compiler Status” page at the Boost Web site http://www.boost.org/status/-
compiler status.html.

http://www.boost.org/boost_all.zip
http://www.boost.org/boost_all.tar.gz
http://www.boost.org/status/-compiler_status.html
http://www.boost.org/status/-compiler_status.html

PREFACE xxi

How to Use This Book

This book is both a user guide and reference manual for the BGL. It is intended to allow
the reader to begin using the BGL for real-life graph problems. This book should also be
interesting for programmers who wish to learn more about generic programming. Although
there are many books about how to use generic libraries (which in almost all cases means how
to use the STL or Standard Library), there is very little available about how actually to build
generic software. Yet generic programming is a vitally important new paradigm for software
development. We hope that, by way of example, this book will show the reader how to do
(and not simply use) generic programming and to apply and extend the generic programming
paradigm beyond the basic container types and algorithms of the STL.

The third partner to the user guide and reference manual is the BGL code itself. The BGL
code is not simply academic and instructional. It is intended to be used.

For students learning about graph algorithms and data structures, BGL provides a compre-
hensive graph algorithm framework. The student can concentrate on learning the important
theory behind graph algorithms without becoming bogged down and distracted in too many
implementation details.

For practicing programmers, BGL provides high-quality implementations of graph data
structures and algorithms. Programmers will realize significant time saving from this relia-
bility. Time that would have otherwise been spent developing (and debugging) complicated
graph data structures and algorithms can now be spent in more productive pursuits. Moreover,
the flexible interface to the BGL will allow programmers to apply graph algorithms in settings
where a graph may only exist implicitly.

For the graph theoretician, this book makes a persuasive case for the use of generic pro-
gramming for implementing graph-theoretic algorithms. Algorithms written using the BGL
interface will have broad applicability and will be able to be reused in numerous settings.

We assume that the reader has a good grasp of C++. Since there are many sources where
the reader can learn about C++, we do not try to teach it here (see the references at the end
of the book—The C++ Programming Language, Special ed., by Bjarne Stroustrup [42] and
C++ Primer, 3rd ed., by Josee Lajoie and Stanley B. Lippman [25] are our recommenda-
tions). We also assume some familiarity with the STL (see STL Tutorial and Reference Guide
by David R. Musser, Gillmer J. Derge, and Atul Saini [34] and Generic Programming and
the STL by Matthew Austern [3]). We do, however, present some of the more advanced C++
features used to implement generic libraries in general and the BGL in particular.

Some necessary graph theory concepts are introduced here, but not in great detail. For
a detailed discussion of elementary graph theory see Introduction to Algorithms by T. H.
Cormen, C. E. Leiserson, and R. L. Rivest [10].

Literate Programming

The program examples in this book are presented using the literate programming style devel-
oped by Donald Knuth. The literate programming style consists of writing source code and

xxii PREFACE

documentation together in the same file. A tool then automatically converts the file into both
a pure source code file and into a documentation file with pretty-printed source code. The
literate programming style makes it easier to ensure that the code examples in the book really
compile and run and that they stay consistent with the text.

The source code for each example is broken up into parts. Parts can include references
to other parts. For example, the following part labeled “Merge sort function definition” refers
to the parts labeled “Divide the range in half and sort each half” and “Merge the two halves.”
An example often starts with a part that provides an outline for the entire computation, which
is then followed by other parts that fill in the details. For example, the following function
template is a generic implementation of the merge sort algorithm [10]. There are two steps in
the algorithm, sorting each half of the range and then merging the two halves.

〈 Merge sort function definition xxiia 〉 ≡
template <typename RandomAccessIterator, typename Compare>
void merge sort(RandomAccessIterator first, RandomAccessIterator last, Compare cmp)
{
if (first + 1 < last) {
〈Divide the range in half and sort each half xxiib〉
〈Merge the two halves xxiic〉

}
}

Typically, the size of each part is limited to a few lines of code that carry out a specific task.
The names for the parts are chosen to convey the essence of the task.

〈 Divide the range in half and sort each half xxiib 〉 ≡
RandomAccessIterator mid = first + (last − first)/2;
merge sort(first, mid, cmp);
merge sort(mid, last, cmp);

The std::inplace merge() function does the main work of this algorithm, creating a single
sorted range out of two sorted subranges.

〈 Merge the two halves xxiic 〉 ≡
std::inplace merge(first, mid, last, cmp);

Parts are labeled with a descriptive name, along with the page number on which the part
is defined. If more than one part is defined on a page, the definitions are distinguished by a
letter.

Sometimes a file name is used for the label of a part. This means that the part is written
out to a file. Many of the examples in the book are written out to files, and can be found in
the libs/graph/example/ directory of the Boost distribution. The following example shows the
merge sort() function being output to a header file.

PREFACE xxiii

〈 merge-sort.hpp xxiii 〉 ≡
#ifndef MERGE SORT HPP
#define MERGE SORT HPP

〈Merge sort function definition xxiia〉

#endif // MERGE SORT HPP

The Electronic Reference

An electronic version of the book is included on the accompanying CD, in the file bgl-book.pdf.
The electronic version is searchable and is fully hyperlinked, making it a useful companion
for the printed version. The hyperlinks include all internal references such as the literate
programming “part” references as well as links to external Web pages.

Acknowledgments

We owe many debts of thanks to a number of individuals who both inspired and encouraged
us in developing the BGL and in writing this book.

A most profound thanks goes to Alexander Stepanov and David Musser for their pio-
neering work in generic programming, for their continued encouragement of our work, and
for contributions to the BGL. We especially thank David Musser for his careful proofreading
of this book. Matthew Austern’s work on documenting the concepts of the STL provided a
foundation for creating the concepts in the BGL. We thank Dietmar Kühl for his work on
generic graph algorithms and design patterns; especially for the property map abstraction.
This work would not have been possible without the expressive power of Bjarne Stroustrup’s
C++ language.

Dave Abrahams, Jens Maurer, Dietmar Kühl, Beman Dawes, Gary Powell, Greg Colvin
and the rest of the group at Boost provided valuable input to the BGL interface, numerous
suggestions for improvement, and proofreads of this book. We also thank the following BGL
users whose questions helped to motivate and improve BGL (as well as this book): Gordon
Woodhull, Dave Longhorn, Joel Phillips, Edward Luke, and Stephen North.

Thanks to a number of individuals who reviewed the book during its development: Jan
Christiaan van Winkel, David Musser, Beman Dawes, and Jeffrey Squyres.

A great thanks to our editor Deborah Lafferty; Kim Arney Mulcahy, Cherly Ferguson,
and Marcy Barnes, the production coordinators; and the rest of the team at Addison–Wesley.
It was a pleasure to work with them.

Our original work on the BGL was supported in part by NSF grant ACI-9982205. Parts
of the BGL were completed while the third author was on sabbatical at Lawrence Berkeley
National Laboratory (where the first two authors were occasional guests). All of the graph
drawings in this book were produced using the dot program from the Graphviz package.

xxiv PREFACE

License

The BGL software is released under an open source “artistic” license. A copy of the BGL
license is included with the source code in the LICENSE file.

The BGL may be used freely for both commercial and noncommercial use. The main
restriction on BGL is that modified source code can only be redistributed if it is clearly marked
as a nonstandard version of BGL. The preferred method for the distribution of BGL, and for
submitting changes, is through the Boost Web site.

Chapter 3

A BGL Tutorial

As discussed in the previous chapter, concepts play a central role in generic programming.
Concepts are the interface definitions that allow many different components to be used with
the same algorithm. The Boost Graph Library defines a large collection of concepts that cover
various aspects of working with a graph, such as traversing a graph or modifying its structure.
In this chapter, we introduce these concepts and also provide some motivation for the choice
of concepts in the BGL.

From the description of the generic programming process (see page 19), concepts are
derived from the algorithms that are used to solve problems in particular domains. In this
chapter we examine the problem of tracking file dependencies in a build system. For each
subproblem, we examine generalizations that can be made to the solutions, with the goal of
increasing the reusability (the genericity) of the solution. The result, at the end of the chapter,
is a generic graph algorithm and its application to the file-dependency problem.

Along the way, we also cover some of the more mundane but necessary topics, such as
how to create a graph object and fill in the vertices and edges.

3.1 File Dependencies

A common use of the graph abstraction is to represent dependencies. One common type of
dependency that we programmers deal with on a routine basis is that of compilation depen-
dencies between files in programs that we write. Information about these dependencies is
used by programs such as make, or by IDEs such as Visual C++, to determine which files
must be recompiled to generate a new version of a program (or, in general, of some target)
after a change has been made to a source file.

Figure 3.1 shows a graph that has a vertex for each source file, object file, and library that
is used in the killerapp program. An edge in the graph shows that a target depends on another
target in some way (such as a dependency due to inclusion of a header file in a source file, or
due to an object file being compiled from a source file).

41

42 CHAPTER 3. A BGL TUTORIAL

dax.h

bar.o foo.ozag.o

yow.hboz.h

zig.o

zow.hbar.cpp

libfoobar.a

foo.cppzig.cpp

libzigzag.a

zag.cpp

killerapp

Figure 3.1 A graph representing file dependencies.

Answers to many of the questions that arise in creating a build system such as make can
be formulated in terms of the dependency graph. We might ask these questions:

• If all of the targets need to be made, in what order should that be accomplished?

• Are there any cycles in the dependencies? A dependency cycle is an error, and an
appropriate message should be emitted.

• How many steps are required to make all of the targets? How many steps are required
to make all of the targets if independent targets are made simultaneously in parallel
(using a network of workstations or a multiprocessor, for example)?

In the following sections these questions are posed in graph terms, and graph algorithms
are developed to provide solutions. The graph in Figure 3.1 is used in all of the examples.

3.2 Graph Setup

Before addressing these questions directly, we must first find a way to represent the file-
dependency graph of Figure 3.1 in memory. That is, we need to construct a BGL graph
object.

3.2. GRAPH SETUP 43

Deciding Which Graph Class To Use

There are several BGL graph classes from which to choose. Since BGL algorithms are
generic, they can also be used with any conforming user-defined graph class, but in this
chapter we restrict our discussion to BGL graph classes. The principle BGL graph classes
are the adjacency list and adjacency matrix classes. The adjacency list class is a good choice
for most situations, particularly for representing sparse graphs. The file-dependencies graph
has only a few edges per vertex, so it is sparse. The adjacency matrix class is a good choice
for representing dense graphs, but a very bad choice for sparse graphs.

The adjacency list class is used exclusively in this chapter. However, most of what is
presented here also applies directly to the adjacency matrix class because its interface is almost
identical to that of the adjacency list class. Here we use the same variant of adjacency list as
was used in §1.4.1.

typedef adjacency list<
listS, // Store out-edges of each vertex in a std::list
vecS, // Store vertex set in a std::vector
directedS // The file dependency graph is directed
> file dep graph;

Constructing a Graph Using Edge Iterators

In §1.2.4 we showed how the add vertex() and add edge() functions can be used to create a
graph. Those functions add vertices and edges one at a time, but in many cases one would like
to add them all at once. To meet this need the adjacency list graph class has a constructor that
takes two iterators that define a range of edges. The edge iterators can be any InputIterator that
dereference to a std::pair of integers (i, j) that represent an edge in the graph. The two integers
i and j represent vertices where 0 ≤ i < |V | and 0 ≤ j < |V |. The n and m parameters
say how many vertices and edges will be in the graph. These parameters are optional, but
providing them improves the speed of graph construction. The graph properties parameter
p is attached to the graph object. The function prototype for the constructor that uses edge
iterators is as follows:

template <typename EdgeIterator>
adjacency list(EdgeIterator first, EdgeIterator last,
vertices size type n = 0, edges size type m = 0,
const GraphProperties& p = GraphProperties())

The following code demonstrates the use of the edge iterator constructor to create a graph.
The std::istream iterator is used to make an input iterator that reads the edges in from the file.
The file contains the number of vertices in the graph, followed by pairs of numbers that specify
the edges. The second default-constructed input iterator is a placeholder for the end of the
input. The std::istream iterator is passed directly into the constructor for the graph.

44 CHAPTER 3. A BGL TUTORIAL

std::ifstream file in("makefile-dependencies.dat");
typedef graph traits<file dep graph>::vertices size type size type;
size type n vertices;
file in >> n vertices; // read in number of vertices
std::istream iterator<std::pair<size type, size type> > input begin(file in), input end;
file dep graph g(input begin, input end, n vertices);

Since the value type of the std::istream iterator is std::pair, an input operator needs to be de-
fined for std::pair.

namespace std {
template <typename T>
std::istream& operator>>(std::istream& in, std::pair<T,T>& p) {
in >> p.first >> p.second;
return in;

}
}

3.3 Compilation Order

The first question that we address is that of specifying an order in which to build all of the
targets. The primary consideration here is ensuring that before building a given target, all the
targets that it depends on are already built. This is, in fact, the same problem as in §1.4.1,
scheduling a set of errands.

3.3.1 Topological Sort via DFS

As mentioned in §1.4.2, a topological ordering can be computed using a depth-first search
(DFS). To review, a DFS visits all of the vertices in a graph by starting at any vertex and then
choosing an edge to follow. At the next vertex another edge is chosen to follow. This pro-
cess continues until a dead end (a vertex with no out-edges that lead to a vertex not already
discovered) is reached. The algorithm then backtracks to the last discovered vertex that is
adjacent to a vertex that is not yet discovered. Once all vertices reachable from the starting
vertex are explored, one of the remaining unexplored vertices is chosen and the search contin-
ues from there. The edges traversed during each of these separate searches form a depth-first
tree; and all the searches form a depth-first forest. A depth-first forest for a given graph is not
unique; there are typically several valid DFS forests for a graph because the order in which
the adjacent vertices are visited is not specified. Each unique ordering creates a different DFS
tree.

Two useful metrics in a DFS are the discover time and finish time of a vertex. Imagine
that there is an integer counter that starts at zero. Every time a vertex is first visited, the value
of the counter is recorded as the discover time for that vertex and the value of the counter
is incremented. Likewise, once all of the vertices reachable from a given vertex have been

3.3. COMPILATION ORDER 45

visited, then that vertex is finished. The current value of the counter is recorded as the finish
time for that vertex and the counter is incremented. The discover time of a parent in a DFS
tree is always earlier than the discover time of a child. Similarly, the finish time of a parent
is always later than the finish time of a child. Figure 3.2 shows a depth-first search of the file
dependency graph, with the tree edges marked with black lines and with the vertices labeled
with their discover and finish times (written as discover/finish).

dax.h 1/14

bar.o 2/9 foo.o 10/11zag.o 12/13

yow.h 15/16boz.h 17/20

zig.o 18/19

zow.h 21/22bar.cpp 23/24

libfoobar.a 3/8

foo.cpp 25/26zig.cpp 27/28

libzigzag.a 4/7

zag.cpp 29/30

killerapp 5/6

Figure 3.2 A depth-first search of the file dependency graph. Edges in the DFS tree are black
and non-tree edges are gray. Each vertex is labeled with its discover and finish time.

The relationship between topological ordering and DFS can be explained by considering
three different cases at the point in the DFS when an edge (u, v) is examined. For each case,
the finish time of v is always earlier than the finish time of u. Thus, the finish time is simply
the topological ordering (in reverse).

1. Vertex v is not yet discovered. This means that v will become a descendant of u and will
therefore end up with a finish time earlier than u because DFS finishes all descendants
of u before finishing u.

2. Vertex v was discovered in an earlier DFS tree. Therefore, the finish time of v must be
earlier than that of u.

3. Vertex v was discovered earlier in the current DFS-tree. If this case occurs, the graph
contains a cycle and a topological ordering of the graph is not possible. A cycle is a
path of edges such that the first vertex and last vertex of the path are the same vertex.

46 CHAPTER 3. A BGL TUTORIAL

The main part of the depth-first search is a recursive algorithm that calls itself on each
adjacent vertex. We will create a function named topo sort dfs() that will implement a depth-
first search modified to compute a topological ordering. This first version of the function will
be a straightforward, nongeneric function. In the following sections we will make modifica-
tions that will finally result in a generic algorithm.

The parameters to topo sort dfs() include the graph, the starting vertex, a pointer to an
array to record the topological order, and an array for recording which vertices have been
visited. The topo order pointer starts at the end of the array and then decrements to obtain the
topological ordering from the reverse topological ordering. Note that topo order is passed by
reference so that the decrement made to it in each recursive call modifies the original object
(if topo order were instead passed by value, the decrement would happen instead to a copy of
the original object).

void
topo sort dfs(const file dep graph& g, vertex t u, vertex t*& topo order, int* mark)
{
mark[u] = 1; // 1 means visited, 0 means not yet visited
〈For each adjacent vertex, make recursive call 47〉
*−−topo order = u;

}
The vertex t type and edge t types are the vertex and edge descriptors for the file dep graph.

typedef graph traits<file dep graph>::vertex descriptor vertex t;
typedef graph traits<file dep graph>::edge descriptor edge t;

3.3.2 Marking Vertices Using External Properties

Each vertex should be visited only once during the search. To record whether a vertex has
been visited, we can mark it by creating an array that stores the mark for each vertex. In
general, we use the term external property storage to refer to the technique of storing vertex
or edge properties (marks are one such property) in a data structure like an array or hash table
that is separate from the graph object (i.e., that is external to the graph). Property values are
looked up based on some key that can be easily obtained from a vertex or edge descriptor. In
this example, we use a version of adjacency list where the the vertex descriptors are integers
from zero to num vertices(g) - 1. As a result, the vertex descriptors themselves can be used as
indexes into the mark array.

3.3.3 Accessing Adjacent Vertices

In the topo sort dfs() function we need to access all the vertices adjacent to the vertex u.
The BGL concept AdjacencyGraph defines the interface for accessing adjacent vertices. The
function adjacent vertices() takes a vertex and graph object as arguments and returns a pair

3.3. COMPILATION ORDER 47

of iterators whose value type is a vertex descriptor. The first iterator points to the first ad-
jacent vertex, and the second iterator points past the end of the last adjacent vertex. The
adjacent vertices are not necessarily ordered in any way. The type of the iterators is the adja-
cency iterator type obtained from the graph traits class. The reference section for adjacency list
(§14.1.1) reveals that the graph type we are using, adjacency list, models the AdjacencyGraph
concept. We may therefore correctly use the function adjacent vertices() with our file depen-
dency graph. The code for traversing the adjacent vertices in topo sort dfs() follows.

〈 For each adjacent vertex, make recursive call 47 〉 ≡
graph traits<file dep graph>::adjacency iterator vi, vi end;
for (tie(vi, vi end) = adjacent vertices(u, g); vi != vi end; ++vi)
if (mark[*vi] == 0)
topo sort dfs(g, *vi, topo order, mark);

3.3.4 Traversing All the Vertices

One way to ensure that an ordering is obtained for every vertex in the graph (and not just those
vertices reachable from a particular starting vertex) is to surround the call to topo sort dfs()
with a loop through every vertex in the graph. The interface for traversing all the vertices in a
graph is defined in the VertexListGraph concept. The vertices() function takes a graph object
and returns a pair of vertex iterators. The loop through all the vertices and the creation of the
mark array is encapsulated in a function called topo sort().

void topo sort(const file dep graph& g, vertex t* topo order)
{
std::vector<int> mark(num vertices(g), 0);
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++vi)
if (mark[*vi] == 0)
topo sort dfs(g, *vi, topo order, &mark[0]);

}
To make the output from topo sort() more user friendly, we need to convert the vertex

integers to their associated target names. We have the list of target names stored in a file (in
the order that matches the vertex number) so we read in this file and store the names in an
array, which we then use when printing the names of the vertices.

std::vector<std::string> name(num vertices(g));
std::ifstream name in("makefile-target-names.dat");
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++vi)
name in >> name[*vi];

48 CHAPTER 3. A BGL TUTORIAL

Now we create the order array to store the results and then apply the topological sort function.

std::vector<vertex t> order(num vertices(g));
topo sort(g, &order[0] + num vertices(g));
for (int i = 0; i < num vertices(g); ++i)
std::cout << name[order[i]] << std::endl;

The output is

zag.cpp
zig.cpp
foo.cpp
bar.cpp
zow.h
boz.h
zig.o
yow.h
dax.h
zag.o
foo.o
bar.o
libfoobar.a
libzigzag.a
killerapp

3.4 Cyclic Dependencies

One important assumption in the last section is that the file dependency graph does not have
any cycles. As stated in §3.3.1, a graph with cycles does not have a topological ordering. A
well-formed makefile will have no cycles, but errors do occur, and our build system should
be able to catch and report such errors.

Depth-first search can also be used for the problem of detecting cycles. If DFS is applied
to a graph that has a cycle, then one of the branches of a DFS tree will loop back on itself.
That is, there will be an edge from a vertex to one of its ancestors in the tree. This kind of edge
is called a back edge. This occurrence can be detected if we change how we mark vertices.
Instead of marking each vertex as visited or not visited, we use a three-way coloring scheme:
white means undiscovered, gray means discovered but still searching descendants, and black
means the vertex and all of its descendants have been discovered. Three-way coloring is
useful for several graph algorithms, so the header file boost/graph/properties.hpp defines the
following enumerated type.

enum default color type { white color, gray color, black color };
A cycle in the graph is identified by an adjacent vertex that is gray, meaning that an edge loops
back to an ancestor. The following code is a version of DFS instrumented to detect cycles.

3.5. TOWARD A GENERIC DFS: VISITORS 49

bool has cycle dfs(const file dep graph& g, vertex t u, default color type* color)
{
color[u] = gray color;
graph traits<file dep graph>::adjacency iterator vi, vi end;
for (tie(vi, vi end) = adjacent vertices(u, g); vi != vi end; ++vi)
if (color[*vi] == white color)
if (has cycle dfs(g, *vi, color))
return true; // cycle detected, return immediately

else if (color[*vi] == gray color) // *vi is an ancestor!
return true;

color[u] = black color;
return false;

}
As with the topological sort, in the has cycle() function the recursive DFS function call is
placed inside of a loop through all of the vertices so that we catch all of the DFS trees in the
graph.

bool has cycle(const file dep graph& g)
{
std::vector<default color type> color(num vertices(g), white color);
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++vi)
if (color[*vi] == white color)
if (has cycle dfs(g, *vi, &color[0]))
return true;

return false;
}

3.5 Toward a Generic DFS: Visitors

At this point we have completed two functions, topo sort() and has cycle(), each of which
is implemented using depth-first search, although in slightly different ways. However, the
fundamental similarities between the two functions provide an excellent opportunity for code
reuse. It would be much better if we had a single generic algorithm for depth-first search that
expresses the commonality between topo sort() and has cycle() and then used parameters to
customize the DFS for each of the different problems.

The design of the STL gives us a hint for how to create a suitably parameterized DFS al-
gorithm. Many of the STL algorithms can be customized by providing a user-defined function
object. In the same way, we would like to parameterize DFS in such a way that topo sort()
and has cycle() can be realized by passing in a function object.

Unfortunately, the situation here is a little more complicated than in typical STL algo-
rithms. In particular, there are several different locations in the DFS algorithm where cus-
tomized actions must occur. For instance, the topo sort() function records the ordering at the

50 CHAPTER 3. A BGL TUTORIAL

bottom of the recursive function, whereas the has cycle() function needs to insert an operation
inside the loop that examines the adjacent vertices.

The solution to this problem is to use a function object with more than one callback
member function. Instead of a single operator() function, we use a class with several mem-
ber functions that are called at different locations (we refer to these places as event points).
This kind of function object is called an algorithm visitor. The DFS visitor will have five
member functions: discover vertex(), tree edge(), back edge(), forward or cross edge(), and
finish vertex(). Also, instead of iterating over the adjacent vertices, we iterator over out-edges
to allow passing edge descriptors to the visitor functions and thereby provide more informa-
tion to the user-defined visitor. This code for a DFS function has a template parameter for a
visitor:

template <typename Visitor>
void dfs v1(const file dep graph& g, vertex t u, default color type* color, Visitor vis)
{
color[u] = gray color;
vis.discover vertex(u, g);
graph traits<file dep graph>::out edge iterator ei, ei end;
for (tie(ei, ei end) = out edges(u, g); ei != ei end; ++ei) {
if (color[target(*ei, g)] == white color) {
vis.tree edge(*ei, g);
dfs v1(g, target(*ei, g), color, vis);

} else if (color[target(*ei, g)] == gray color)
vis.back edge(*ei, g);

else
vis.forward or cross edge(*ei, g);

}
color[u] = black color;
vis.finish vertex(u, g);

}

template <typename Visitor>
void generic dfs v1(const file dep graph& g, Visitor vis)
{
std::vector<default color type> color(num vertices(g), white color);
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++vi) {
if (color[*vi] == white color)
dfs v1(g, *vi, &color[0], vis);

}
}
The five member functions of the visitor provide the flexibility we need, but a user that

only wants to add one action should not have to write four empty member functions. This is
easily solved by creating a default visitor from which user-defined visitors can be derived.

3.5. TOWARD A GENERIC DFS: VISITORS 51

struct default dfs visitor {
template <typename V, typename G>
void discover vertex(V, const G&) { }

template <typename E, typename G>
void tree edge(E, const G&) { }

template <typename E, typename G>
void back edge(E, const G&) { }

template <typename E, typename G>
void forward or cross edge(E, const G&) { }

template <typename V, typename G>
void finish vertex(V, const G&) { }

};
To demonstrate that this generic DFS can solve our problems, we reimplement the

topo sort() and has cycle() functions. First we need to create a visitor that records the topo-
logical ordering on the “finish vertex” event point. The code for this visitor follows.

struct topo visitor : public default dfs visitor {
topo visitor(vertex t*& order) : topo order(order) { }
void finish vertex(vertex t u, const file dep graph&) {
*−−topo order = u;

}
vertex t*& topo order;

};
Only two lines of code are required in the body of topo sort() when implemented using
generic DFS. One line creates the visitor object and one line calls the generic DFS.

void topo sort(const file dep graph& g, vertex t* topo order)
{
topo visitor vis(topo order);
generic dfs v1(g, vis);

}
To reimplement the has cycle() function, we use a visitor that records that the graph has

a cycle whenever the back edge event point occurs.

struct cycle detector : public default dfs visitor {
cycle detector(bool& cycle) : has cycle(cycle) { }
void back edge(edge t, const file dep graph&) {
has cycle = true;

}
bool& has cycle;

};

52 CHAPTER 3. A BGL TUTORIAL

The new has cycle() function creates a cycle detector object and passes it to the generic DFS.

bool has cycle(const file dep graph& g)
{
bool has cycle = false;
cycle detector vis(has cycle);
generic dfs v1(g, vis);
return has cycle;

}

3.6 Graph Setup: Internal Properties

Before addressing the next question about file dependencies, we are going to take some time
out to switch to a different graph type. In the previous sections we used arrays to store
information such as vertex names. When vertex or edge properties have the same lifetime as
the graph object, it can be more convenient to have the properties somehow embedded in the
graph itself (we call these internal properties). If you were writing your own graph class you
might add data members for these properties to a vertex or edge struct.

The adjacency list class has template parameters that allow arbitrary properties to be at-
tached to the vertices and edge: the VertexProperties and EdgeProperties parameters. These
template parameters expect the argument types to be the property<Tag, T> class, where Tag
is a type that specifies the property and T gives the type of the property object. There are a
number of predefined property tags (see §15.2.3) such as vertex name t and edge weight t. For
example, to attach a std::string to each vertex use the following property type:

property<vertex name t, std::string>

If the predefined property tags do not meet your needs, you can create a new one. One way to
do this is to define an enumerated type named vertex xxx t or edge xxx t that contains an enum
value with the same name minus the t and give the enum value a unique number. Then use
BOOST INSTALL PROPERTY to create the required specializations of the property kind and
property num traits classes.1 Here we create compile-time cost property that we will use in
the next section to compute the total compile time.

namespace boost {
enum vertex compile cost t { vertex compile cost = 111 }; // a unique #
BOOST INSTALL PROPERTY(vertex, compile cost);

}
The property class has an optional third parameter that can be used to nest multiple property
classes thereby attaching multiple properties to each vertex or edge. Here we create a new
typedef for the graph, this time adding two vertex properties and an edge property.

1Defining new property tags would be much simpler if more C++ compilers were standards conformant.

3.6. GRAPH SETUP: INTERNAL PROPERTIES 53

typedef adjacency list<
listS, // Store out-edges of each vertex in a std::list
listS, // Store vertex set in a std::list
directedS, // The file dependency graph is directed
// vertex properties
property<vertex name t, std::string,
property<vertex compile cost t, float,
property<vertex distance t, float,
property<vertex color t, default color type> > > >,

// an edge property
property<edge weight t, float>
> file dep graph2;

We have also changed the second template argument to adjacency list from vecS to listS.
This has some important implications. If we were to remove a vertex from the graph it would
happen in constant time (with vecS the vertex removal time is linear in the number of vertices
and edges). On the down side, the vertex descriptor type is no longer an integer, so storing
properties in arrays and using the vertex as an offset will no longer work. However, the
separate storage is no longer needed because we now have the vertex properties stored in the
graph.

In §1.2.2 we introduced the notion of a property map. To review, a property map is an
object that can be used to map from a key (such as a vertex) to a value (such as a vertex
name). When properties have been specified for an adjacency list (as we have just done),
property maps for these properties can be obtained using the PropertyGraph interface. The
following code shows an example of obtaining two property maps: one for vertex names and
another for compile-time cost. The property map traits class provides the type of the property
map.

typedef property map<file dep graph2, vertex name t>::type name map t;
typedef property map<file dep graph2, vertex compile cost t>::type
compile cost map t;

typedef property map<file dep graph2, vertex distance t>::type distance map t;
typedef property map<file dep graph2, vertex color t>::type color map t;

The get() function returns a property map object.

name map t name map = get(vertex name, g);
compile cost map t compile cost map = get(vertex compile cost, g);
distance map t distance map = get(vertex distance, g);
color map t color map = get(vertex color, g);

There will be another file containing the estimated compile time for each makefile target. We
read this file using a std::ifstream and write the properties into the graph using the property
maps, name map and compile cost map. These property maps are models of LvalueProper-
tyMap so they have an operator[]() that maps from vertex descriptors to a reference to the
appriopriate vertex property object.

54 CHAPTER 3. A BGL TUTORIAL

std::ifstream name in("makefile-target-names.dat");
std::ifstream compile cost in("target-compile-costs.dat");
graph traits<file dep graph2>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++vi) {
name in >> name map[*vi];
compile cost in >> compile cost map[*vi];

}
In the following sections we will modify the topological sort and DFS functions to use the
property map interface to access vertex properties instead of hard-coding access with a pointer
to an array.

3.7 Compilation Time

The next questions we need to answer are, “How long will a compile take?” and “How long
will a compile take on a parallel computer?” The first question is easy to answer. We simply
sum the compile time for all the vertices in the graph. Just for fun, we do this computa-
tion using the std::accumulate function. To use this function we need iterators that, when
dereferenced, yield the compile cost for the vertex. The vertex iterators of the graph do not
provide this capability. When dereferenced, they yield vertex descriptors. Instead, we use the
graph property iter range class (see §16.8) to generate the appropriate iterators.

graph property iter range<file dep graph2, vertex compile cost t>::iterator ci, ci end;
tie(ci, ci end) = get property iter range(g, vertex compile cost);
std::cout << "total (sequential) compile time: "

<< std::accumulate(ci, ci end, 0.0) << std::endl;

The output of the code sequence is

total (sequential) compile time: 21.3

Now suppose we have a parallel super computer with hundreds of processors. If there are
build targets that do not depend on each other, then they can be compiled at the same time
on different processors. How long will the compile take now? To answer this, we need to
determine the critical path through the file dependency graph. Or, to put it another way, we
need to find the longest path through the graph.

The black lines in Figure 3.3 show the file dependency of libfoobar.a. Suppose that we
have already determined when bar.o and foo.o will finish compiling. Then the compile time
for libfoobar.a will be the longer of the times for bar.o and foo.o plus the cost for linking them
together to form the library file.

Now that we know how to compute the “distance” for each vertex, in what order should
we go through the vertices? Certainly if there is an edge (u, v) in the graph, then we better
compute the distance for u before v because computing the distance to v requires the distance
to u. This should sound familiar. We need to consider the vertices in topological order.

3.8. A GENERIC TOPOLOGICAL SORT AND DFS 55

dax.h

bar.o foo.ozag.o

yow.hboz.h

zig.o

zow.hbar.cpp

libfoobar.a

foo.cppzig.cpp

libzigzag.a

zag.cpp

killerapp

Figure 3.3 Compile time contributions to libfoobar.a.

3.8 A Generic Topological Sort and DFS

Due to the change in graph type (from file dep graph to file dep graph2) we can no longer
use the topo sort() function that we developed in §3.4. Not only does the graph type not
match, but also the color array used inside of generic dfs v1() relies on the fact that vertex
descriptors are integers (which is not true for file dep graph2). These problems give us an
opportunity to create an even more generic version of topological sort and the underlying
DFS. We parameterize the topo sort() function in the following way.

• The specific type file dep graph is replaced by the template parameter Graph. Merely
changing to a template parameter does not help us unless there is a standard interface
shared by all the graph types that we wish to use with the algorithm. This is where
the BGL graph traversal concepts come in. For topo sort() we need a graph type that
models the VertexListGraph and IncidenceGraph concepts.

• Using a vertex t* for the ordering output is overly restrictive. A more generalized way
to output a sequence of elements is to use an output iterator, just as the algorithms in
the C++ Standard Library do. This gives the user much more options in terms of where
to store the results.

• We need to add a parameter for the color map. To make this as general as possible, we
only want to require what is essential. In this case, the topo sort() function needs to
be able to map from a vertex descriptor to a marker object for that vertex. The Boost
Property Map Library (see Chapter 15) defines a minimalistic interface for performing

56 CHAPTER 3. A BGL TUTORIAL

this mapping. Here we use the LvaluePropertyMap interface. The internal color map
that we obtained from the graph in §3.6 implements the LvaluePropertyMap interface,
as does the color array we used in §3.3.4. A pointer to an array of color markers can be
used as a property map because there are function overloads in boost/property map.hpp
that adapt pointers to satisfy the LvaluePropertyMap interface.

The following is the implementation of our generic topo sort(). The topo visitor and
generic dfs v2() are discussed next.

template <typename Graph, typename OutputIterator, typename ColorMap>
void topo sort(const Graph& g, OutputIterator topo order, ColorMap color)
{
topo visitor<OutputIterator> vis(topo order);
generic dfs v2(g, vis, color);

}
The topo visitor class is now a class template to accommodate the output iterator. Instead of
decrementing, we now increment the output iterator (decrementing an output iterator is not
allowed). To get the same reversal behavior as in the first version of topo sort(), the user can
pass in a reverse iterator or something like a front insert iterator for a list.

template <typename OutputIterator>
struct topo visitor : public default dfs visitor {
topo visitor(OutputIterator& order) : topo order(order) { }
template <typename Graph>
void finish vertex(typename graph traits<Graph>::vertex descriptor u, const Graph&)
{ *topo order++ = u; }

OutputIterator& topo order;
};
The generic DFS changes in a similar fashion, with the graph type and color map becom-

ing parameterized. In addition, we do not a priori know the color type, so we must get the
color type by asking the ColorMap for its value type (though the property traits class). Instead
of using constants such as white color, we use the color functions defined in color traits.

template <typename Graph, typename Visitor, typename ColorMap>
void generic dfs v2(const Graph& g, Visitor vis, ColorMap color)
{
typedef color traits<typename property traits<ColorMap>::value type> ColorT;
typename graph traits<Graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++vi)
color[*vi] = ColorT::white();

for (tie(vi, vi end) = vertices(g); vi != vi end; ++vi)
if (color[*vi] == ColorT::white())
dfs v2(g, *vi, color, vis);

}

3.9. PARALLEL COMPILATION TIME 57

The logic from the dfs v1 does not need to change; however, there are a few small changes
required due to making the graph type parameterized. Instead of hard-coding vertex t as the
vertex descriptor type, we extract the appropriate vertex descriptor from the graph type using
graph traits. The fully generic DFS function follows. This function is essentially the same as
the BGL depth first visit().

template <typename Graph, typename ColorMap, typename Visitor>
void dfs v2(const Graph& g,
typename graph traits<Graph>::vertex descriptor u,
ColorMap color, Visitor vis)

{
typedef typename property traits<ColorMap>::value type color type;
typedef color traits<color type> ColorT;
color[u] = ColorT::gray();
vis.discover vertex(u, g);
typename graph traits<Graph>::out edge iterator ei, ei end;
for (tie(ei, ei end) = out edges(u, g); ei != ei end; ++ei)
if (color[target(*ei, g)] == ColorT::white()) {
vis.tree edge(*ei, g);
dfs v2(g, target(*ei, g), color, vis);

} else if (color[target(*ei, g)] == ColorT::gray())
vis.back edge(*ei, g);

else
vis.forward or cross edge(*ei, g);

color[u] = ColorT::black();
vis.finish vertex(u, g);

}
The real BGL depth first search() and topological sort() functions are quite similar to the

generic functions that we developed in this section. We give a detailed example of using the
BGL depth first search() function in §4.2, and the documentation for depth first search() is
in §13.2.3. The documentation for topological sort() is in §13.2.5.

3.9 Parallel Compilation Time

Now that we have a generic topological sort and DFS, we are ready to solve the problem
of finding how long the compilation will take on a parallel computer. First, we perform a
topological sort, storing the results in the topo order vector. We pass the reverse iterator of
the vector into topo sort() so that we end up with the topological order (and not the reverse
topological order).

std::vector<vertex t> topo order(num vertices(g));
topo sort(g, topo order.rbegin(), color map);

58 CHAPTER 3. A BGL TUTORIAL

Before calculating the compile times we need to set up the distance map (which we are
using to store the compile time totals). For vertices that have no incoming edges (we call these
source vertices), we initialize their distance to zero because compilation of these makefile
targets can start right away. All other vertices are given a distance of infinity. We find the
source vertices by marking all vertices that have incoming edges.

graph traits<file dep graph2>::vertex iterator i, i end;
graph traits<file dep graph2>::adjacency iterator vi, vi end;

// find source vertices with zero in-degree by marking all vertices with incoming edges
for (tie(i, i end) = vertices(g); i != i end; ++i)
color map[*i] = white color;

for (tie(i, i end) = vertices(g); i != i end; ++i)
for (tie(vi, vi end) = adjacent vertices(*i, g); vi != vi end; ++vi)
color map[*vi] = black color;

// initialize distances to zero, or for source vertices to the compile cost
for (tie(i, i end) = vertices(g); i != i end; ++i)
if (color map[*i] == white color)
distance map[*i] = compile cost map[*i];

else
distance map[*i] = 0;

Now we are ready to compute the distances. We go through all of the vertices stored
in topo order, and for each one we update the distance (total compile time) for each adjacent
vertex. What we are doing here is somewhat different than what was described earlier. Before,
we talked about each vertex looking “up” the graph to compute its distance. Here, we have
reformulated the computation so that instead we are pushing distances “down” the graph. The
reason for this change is that looking “up” the graph requires access to in-edges, which our
graph type does not provide.

std::vector<vertex t>::iterator ui;
for (ui = topo order.begin(); ui != topo order.end(); ++ui) {
vertex t u = *ui;
for (tie(vi, vi end) = adjacent vertices(u, g); vi != vi end; ++vi)
if (distance map[*vi] < distance map[u] + compile cost map[*vi])
distance map[*vi] = distance map[u] + compile cost map[*vi];

}
The maximum distance value from among all the vertices tells us the total parallel compile
time. Again we use graph property iter range to create property iterators over vertex distances.
The std::max element() function does the work of locating the maximum.

graph property iter range<file dep graph2, vertex distance t>::iterator ci, ci end;
tie(ci, ci end) = get property iter range(g, vertex distance);
std::cout << "total (parallel) compile time: "

<< *std::max element(ci, ci end) << std::endl;

3.10. SUMMARY 59

The output is

total (parallel) compile time: 11.9

Figure 3.4 shows two numbers for each makefile target: the compile cost for the target and
the time at which the target will finish compiling during a parallel compile.

dax.h [0, 0]

bar.o [1.5, 1.5] foo.o [2.8, 2.8]zag.o [8.7, 8.7]

yow.h [0, 0]boz.h [0, 0]

zig.o [3.6, 3.6]

zow.h [0, 0]bar.cpp [0, 0]

libfoobar.a [1.5, 4.3]

foo.cpp [0, 0]zig.cpp [0, 0]

libzigzag.a [1.1, 9.8]

zag.cpp [0, 0]

killerapp [2.1, 11.9]

Figure 3.4 For each vertex there are two numbers: compile cost and accumulated compile
time. The critical path consists of black lines.

3.10 Summary

In this chapter we have applied BGL to answer several questions that would come up in
constructing a software build system: In what order should targets be built? Are there any
cyclic dependencies? How long will compilation take? In answering these questions we
looked at topological ordering of a directed graph and how this can be computed via a depth-
first search.

60 CHAPTER 3. A BGL TUTORIAL

To implement the solutions we used the BGL adjacency list to represent the file depen-
dency graph. We wrote straightforward implementations of topological sort and cycle de-
tection. We then identified common pieces of code and factored them out into a generic
implementation of depth-first search. We used algorithm visitors to parameterize the DFS
and then wrote specific visitors to implement the topological sort and the cycle detection.

We then looked at using a different variation of the adjacency list class that allowed prop-
erties such as vertex name and compile cost to be attached to the vertices of the graph. We
then further generalized the generic DFS by parameterizing the graph type and the property
access method. The chapter finished with an application of the generic topological sort and
DFS to compute the time it would take to compile all the targets on a parallel computer.

303

Index

, (comma), 40
. (period), 40
; (semicolon), 73

A
abstract data types (ADTs), 19
accumulate function, 26–27
Adaptor(s)

basic description of, 13–14
implementing, 123–126
pattern, 119

add_edge function, 9, 17, 43, 84, 121,
152–153, 226

EdgeMutablePropertyGraph concept and,
157

performance guidelines and, 128
undirected graphs and, 141

AdditiveAbelianGroup class, 20–21
add_vertex function, 9, 43, 120, 152, 157,

128, 225
AdjacencyGraph concept, 46–47, 114, 115,

146–149
adjacency_graph_tag function, 124
adjacency_iterator function, 47, 146
adjacency_list class, 11–12, 13

Bacon numbers and, 63, 65
basic description of, 43

boost namespace and, 37–39
compilation order and, 37, 46
implicit graphs and, 114
interfacing with other graph libraries and,

119
internal properties and, 52–53
maximum flow and, 107
minimum-spanning-tree problem and, 92
performance guidelines and, 127, 128,

130, 132
shortest-path problems and, 84
template parameters, 52
using topological sort with, 17–18

adjacency_list.hpp, 17, 216, 246
adjacency_matrix class, 11–12, 43

associated types, 238–239
basic description of, 235–242
member functions, 239–240
nonmember functions, 240–242
template parameters, 238
type requirements, 238

adjacency_matrix.hpp, 237
adjacency_vertices function, 46–47, 146

implicit graphs and, 114, 115
maximum flow and, 109

adjacent iterators, 7
ADTs (abstract data types), 19

304 INDEX

advance_dispatch function, 33
advance function, 33
Algorithms. See also Algorithms (listed by

name)
basic description of, 13–18, 61–74
generic, 13–18
Koenig lookup and, 39

Algorithms (listed by name). See also
Algorithms

bellman_ford_shortest_paths algorithm,
40, 76–82, 162, 182–186

breadth_first_search algorithm, 11, 39,
61–67, 158–159, 165–169

depth_first_search algorithm, 13, 18,
44–46, 57, 67–75, 98, 160–161,
170–175

Dijkstra’s shortest-path algorithm, 76,
81–88, 161, 179–181, 277

Edmunds-Karp algorithm, 105, 109
Ford-Fulkerson algorithm, 105
Kruskal’s algorithm, 90–93, 95,

189–192
Prim’s algorithm, 89, 90, 94–96
push-relabel algorithm, 105

ANSI C, 262
archetype class, 36
array_traits class, 31–33
array traits, for pointer types, 32–33
Array type, 30
Assignable concept, 37, 28–29, 143
Associated types, 28–34, 143, 205

adjacency_list class, 216–217
adjacency_matrix class, 238–239
edge_list class, 251–252
filtered _raph class, 259–260
graph_property_iter_range class, 298
iterator_property_map class, 284
LEDA Graph class, 268–269

property_map class, 249
reverse_graph class, 253–255

associative_property_map adaptor, 103
Austern, Matthew, 28

B
back_edge function, 50, 67, 160
back_edge_recorder class, 70
back_edges vector, 71
backward edge, 106
Bacon, Kevin, 62–67
bacon_number array, 66
bacon_number_recorder, 66
Bacon numbers

basic description of, 61–67
graph setup and, 63–65
input files and, 63–65

bar.o, 54
Base

classes, 20, 21
parameter, 37

basic block, 69
BCCL (Boost Concept Checking Library),

35, 36
bellman_ford.cpp, 185–186
bellman_ford_shortest_paths algorithm, 40,

162
basic description of, 76–82, 182–186
named parameters, 184
parameters, 183
time complexity and, 185

BellmanFordVisitor concept, 161–162
BFS (breadth-first search), 11, 39. See also

breadth_first_search algorithm
Bacon numbers and, 65–67
basic description of, 61–67
visitor concepts and, 158–159

bfs_name_printer class, 11

INDEX 305

BFSVisitor interface, 66, 158–159
bgl_named_params class, 40
BidirectionalGraph concept, 69, 72, 124,

145–146
bidirectional_graph_tag class, 124
Binary method problem, 23–24
boost::array, 78
Boost Concept Checking Library (BCCL),

35, 36
boost::forward_iterator_helper, 114
BOOST_INSTALL_PROPERTY, 52
Boost namespace

adjacency_list class and, 37–38
basic description of, 37–39

boost:: prefix, 37–38
Boost Property Map Library, 55–56, 79, 80
Boost Tokenizer Library, 63
breadth-first search (BFS), 11, 39. See also

breadth_first_search algorithm
Bacon numbers and, 65–67
basic description of, 61–67
visitor concepts and, 158–159

breadth_first_search algorithm, 11, 39. See
also breadth-first search (BFS)

Bacon numbers and, 65–67
basic description of, 61–67, 165–169
named parameters, 167
parameters, 166
preconditions, 167
visitor concepts and, 158–159

Breadth-first tree, 61

C
C++ (high-level language)

associated types and, 28
binary method problem and, 23–24
code bloat and, 23
concept checking and, 34–37

expressions, 28
generic programming in, 19–59
GNU, 127, 128
Koenig lookup and, 38–39
Monoid concept and, 291
named parameters and, 39–40
object-oriented programming and, 22–25
Standard, 22, 28, 55, 125
valid expressions and, 28

capacity_map parameter, 206
cap object, 108
cc-internet.dot, 98
Chessboard, Knight’s tour problem for,

113–118
Class(es). See also Classes (listed by name)

abstract, 20
archetype, 36
auxiliary, 242–251, 289–298
basic description of, 13–14, 213–275
base, 20, 21
comparisons, 127–132
concept-checking, 35–36
nesting, 52
selecting, 43–44
typedefs nested in, 30–31

Classes (listed by name). See also
adjacency_list class

AdditiveAbelianGroup class, 20–21
adjacency_matrix class, 11–12, 43,

234–242
adjacency_vertices class, 109, 114, 115
archetype class, 36
array_traits class, 31–33
back_edge_recorder class, 70
bgl_named_params class, 40
ColorPoint class, 23–24
ColorPoint2 class, 24
color_traits class, 56, 290

306 INDEX

Classes, continued
edge_list class, 78–79
equivalence class, 98
filtered_graph class, 256–262
GRAPH class, 120, 123–126
graph_property_iter_range class, 58,

297–298
graph_traits class, 5–7, 33–34, 47, 57,

125–126, 142–148, 242–245
iterator_adaptor class, 125
iterator_property_map class, 79, 283–285
iterator_traits class, 29, 33, 278
johns_int_array class, 32
knights_tour_graph class, 114–117
make_iterator_property_map class, 79
parallel_edge_traits class, 234
Point class, 24
property class, 52–53, 63, 231
property_kind class, 52
property_map class, 53, 156, 248–249
property_num class, 52
property_traits class, 33, 56, 231, 278,

282
put_get_helper class, 286
sgb_vertex_id_map class, 122
sgb_vertex_name_map class, 286
std::iterator_traits class, 29

clear_vertex function, 134, 153, 226
clock function, 128
Code. See also Source code files

“bloat,” 23
size, 23

Color
array, 55
connected components and, 100, 102–104
maps, 55–56, 69, 100, 167–181, 196,

199, 207
markers, 56

three-way, 48
types, accessing, 56

ColorMap, 56, 175, 176–177, 181
color_map parameter, 56, 69, 167, 170, 172,

176, 178, 180–181, 196, 199, 207
ColorPoint class, 23–24
ColorPoint2 class, 24
color_traits class, 56, 290
ColorValue concept, 175, 177, 290
Comma, 40
compare function, 183
Compilation. See also Compilers

dispatch of virtual functions during, 22
order, 44–48
time, 22, 54–55, 57–59

compile_cost_map, 53
Compilers. See also Compilation

Koenig lookup and, 38–39
partial specialization and, 32–33

Complexity, time
adjacency_list class and, 225–227
basic description of, 165
bellman_ford_shortest_paths function

and, 185
breadth_first_search function and, 167
connected_components function and, 196
depth_first_search function and, 172
depth_first_visit function and, 176
dijkstra_shortest_paths function and, 181
disjoint_sets class and, 295
incremental components and, 202, 203,

204
johnson_all_pairs_shortest_paths

function and, 188
kruskal_minimum_spanning_tree

function and, 191
prim_minimum_spanning tree function

and, 194

INDEX 307

strong_components function and, 200
topological_sort function and, 177

Complexity guarantees, 28, 145–148,
152–157

Component array, 103
component_index function, 204–206
Components, connected

basic description of, 97–104
static, 195–201
strongly, 97, 102–104
incremental, 201–205
Internet connectivity and, 98–101
Web page links and, 102–104

Component vector, 100
compute_loop_extent function, 71
Concept(s)

archetypes, 36–37
auxiliary, 289–298
checking, 34–37
covering, 36–37
definitions, 27–28
generic programming, 27–29
graph modification, 150–157
graph traversal, 137–150
notation for, 137
property map, 278–281
refinement of, 28, 138
use of the term, 19
visitor, 158–160

Connected components
basic description of, 97–104
static, 195–201
strongly, 97, 102–104
incremental, 201–205
Internet connectivity and, 98–101
Web page links and, 102–104

connected_components function, 98, 100,
195–197

connected_components.hpp, 196
Constructors, 43–44
container_gen.cpp, 232, 233
Containers

basic description of, 25
hash_map container, 187

CopyConstructible, 36, 143
Cross edge, 68
Cut, capacity of, 106
cycle_edge function, 159
Cycle(s). See also Cyclic dependencies

basic description of, 45
detector objects, 51
makefiles and, 48
visitors and, 51–52

Cyclic dependencies, 42, 48–49. See also
Cycles

D
Data structures, traversal through, 25
default_bfs_visitor, 66, 70
DefaultConstructible, 143
degree_size_type function, 144, 146
Delay array, 79
Dependencies

cyclic, 42, 48–49
file, 41–42, 54–55

Depth-first forest, 44, 67
Depth-first search (DFS). See also

depth_first_search algorithm
basic description of, 67–74
connected components and, 98
cyclic dependencies and, 48–49
generic, 49–52
topological sorts and, 55–57
upstream, 72

depth_first_search algorithm, 13, 18,
57

308 INDEX

Depth-first search (DFS)
basic description of, 67–75, 170–175
connected components and, 98
topological sort and, 44–46
named parameters, 172
parameters, 172
time complexity and, 172
topological sort and, 44–46
visitor concepts and, 160–161

Depth-first tree, 44, 67
depth_first_visit function, 57, 67, 70, 72

basic description of, 175–176
parameters, 175
time complexity and, 176

Descriptors, 5–6, 144, 148, 227–229
DFS (depth-first search). See also

depth_first_search algorithm
basic description of, 67–74
connected components and, 98
cyclic dependencies and, 48–49
generic, 49–52
topological sorts and, 55–57
upstream, 72

DFSVisitor interface, 160–161
dfs_vl, 57
difference_type, 29
DiffType parameter, 251
dijkstra.cpp, 227
Dijkstra’s shortest-path algorithm, 76, 161,

277
basic description of, 81–88, 179–181
named parameters, 179
parameters, 179
time complexity and, 181

DIMACS file format, 207, 211
directed_category function, 34, 124, 244
Directed parameter, 12, 214, 238, 246
directed_tag function, 124

Directed version, 138
disconnecting_set iterator, 110
discover_time parameter, 44–45, 199
discover_vertex function, 50
distance_combine parameter, 184
distance_compare parameter, 184
distance_map parameter, 40, 183, 184, 187,

194
distance_zero parameter, 187
ds.find_set function, 201–205
ds.union_set function, 201–205

E
Edge(s)

adding, 128–129
backward, 106
connectivity, 106–112
cross, 68
descriptors, 5–6, 144, 148
forward, 68, 106
iterators, 7, 43–44, 148, 251
parallel, 4
relaxation, 77–78
removing, 130
residual capacity of, 105, 206
saturated, 105

edge_descriptor, 144, 148
edge function, 149, 226
edge_iterator, 148
EdgeIterator parameter, 251
edge_length_t tag, 266
edge_list class, 78–79
EdgeListGraph interface, 78, 92, 147–148
edge_list.hpp, 251
EdgeList parameter, 12
edge_list template, 78–79
EdgeList type, 65, 127, 132
EdgeMutableGraph concept, 124, 152, 154

INDEX 309

EdgeMutablePropertyGraph concept,
157

edge_parallel_category function, 34, 124,
244

EdgeProperties parameter, 12, 52
EdgeProperty parameter, 238
edges function, 8, 147
edges_size_type, 148–149
edge type, 124
edge_weight_t tag, 52, 92
edge_xxx_t tag, 52
Edmunds-Karp algorithm, 105, 109
edmunds_karp_max_flow function,

206–209
empty function, 290
entry vertex, 70
enum, 78
equal function, 23–24
EqualityComparable, 28–29, 143
equivalence class, 98
Equivalence relations, 98
erase_dispatch function, 234
erase function, 234
Errors, concept checking and, 34–37
Erdös, Paul, 62
Erdös number, 62
Event points, 50
examine_edge function, 159

F
f function, 40
File dependencies

basic description of, 41–42
compilation time and, 54–55

file_dep_graph function, 55
file_dep_graph2 function, 55
filtered_graph, 13, 257–262
find_loops function, 69

find_with_full_path_compression function,
295

find_with_path_halving function, 295
Finish time, 44–45
finish_vertex function, 50
First_Adj_Edge, 126
first argument, 27
first variable, 8
Flow functions, 105. See also

Maximum-flow algorithms
Flow networks, 105. See also

Maximum-flow algorithms
foo.o, 54
Ford, L. R., 105
Ford-Fulkerson algorithm, 105
for_each function, 29
Forward edge, 68, 106
ForwardIterator, 25–26
forward_iterator_tag function, 33
forward_or_cross_edge function, 50
Fulkerson, D. R., 105
Function(s). See also Functions (listed by

name)
auxiliary, 289–298
objects, user-defined, 49
preconditions for, 165
prototypes, 43, 164
virtual, function templates and,

comparison of, 22
Functions (listed by name). See also

Functions(s)
add_edge function, 9, 17, 43, 84, 121,

128, 141, 152–153, 157, 226
add_vertex function, 9, 43, 120, 152, 157,

128, 225
adjacency_graph_tag function, 124
adjacency_iterator function, 47, 146
adjacent_vertices function, 46–47, 146

310 INDEX

Functions, continued
advance_dispatch function, 33
advance function, 33
allow_parallel_edge_tag function, 124
back_edge function, 50, 67, 160
bfs_name_printer function, 11
bidirectional_graph_tag function, 124
clear_vertex function, 134, 153, 226
clock function, 128
compare function, 183
component_index function, 204–206
compute_loop_extent function, 71
connected_components function, 98, 100,

195–197
cycle_edge function, 159
degree_size_type function, 144, 146
depth_first_visit function, 57, 67, 70, 72,

175–176
directed_category function, 34, 124, 244
directed_tag function, 124
discover_vertex function, 50
ds.find_set function, 201–205
ds.union_set function, 201–205
edge function, 149, 226
edge_parallel_category function, 34, 124,

244
edges function, 8, 147
edmunds_karp_max_flow function,

206–209
empty function, 290
equal function, 23–24
erase_dispatch function, 234
erase function, 234
examine_edge function, 159
f function, 40
file_dep_graph function, 55
file_dep_graph2 function, 55
find_loops function, 69

find_with_full_path_compression
function, 295

find_with_path_halving function, 295
finish_vertex function, 50
for_each function, 29
forward_iterator_tag function, 33
forward_or_cross_edge function, 50
function_requires function, 35
gb_new_edge function, 123
generic_dfs_vl function, 55
get function, 6, 79–80, 156, 248, 266,

279, 286
has_cycle function, 49–52
identity_property_map function, 16
in_edges function, 8
incremental_components function, 195,

199
insert function, 64
johnson_all_pairs_shortest_paths

function, 186–188
kruskal_minimum_spanning_tree

function, 91–93, 189–192
link function, 294
make_back_edge_recorder function, 71
max_element function, 58
num_edges function, 149
num_vertices function, 38–39, 46, 115,

147, 162
operator function, 50, 158
out_degree function, 144, 145
out_edges function, 8, 72, 125, 126, 138,

140, 143–145
prim_minimum_spanning_tree function,

94–96, 192–195
print_equal function, 24
print_equal2 function, 24
print_graph function, 272
print_trans_delay function, 6

INDEX 311

print_vertex_name function, 6
push_dispatch function, 234
push function, 234, 290
push_relabel_flow function, 206
push_relabel_max_flow function,

209–212
put function, 279, 280, 286
read_graphviz function, 84, 91
remove_edge function, 152–153, 226,

228
remove_edge_if function, 227
remove_in_edge_if function, 155
remove_out_edge_if function, 154
remove_vertex function, 152, 225, 226
safe_sort function, 35
size function, 290
sort function, 10, 34
source function, 124, 125, 138, 140, 145,

147
std::accumulate function, 54
std::advance function, 33
std::back_inserter function, 92
std::for_each function, 29
strong_components function, 102–103,

198–201
Succ_Adj_Edge function, 125
sum function, 20, 21, 30, 31, 32
target function, 124, 125, 138, 140, 145,

149
tie function, 8, 296
top function, 290
topological_sort function, 13, 14–18,

44–46, 57, 119, 120–123, 176–177
topo_sort_dfs function, 46–47
topo_sort function, 47, 49, 51, 55–58
traversal_category function, 34, 124, 244
tree_edge function, 50, 160
union_set function, 294

valid_position function, 114–115
vertex function, 225
vertex_index_map function, 16, 187, 191,

194, 196, 199, 207
vertex_list_graph_tag function, 124
vertices function, 8, 47, 296
vertices_size_type function, 124
visitor function, 11, 66
who_owes_who function, 231

function_requires function, 35

G
“Gang of Four” (GoF) Patterns Book, 10–11
gb_new_edge function, 123
g_dot, 84
Generalized pointers, 25. See also Iterators
generic_dfs_vl function, 55
Generic programming (GP)

boost namespace and, 37–39
concepts, 27–29, 34–37
in C++, 19–59
Koenig lookup and, 38–39
models, 27–29
named parameters and, 39–40
object-oriented programming and,

comparison of, 22–25
the STL and, 25–27

get function, 6, 79–80, 156, 248, 266, 279,
286

GNU C++, 127, 128. See also C++
(high-level language)

Goldberg, A. V., 105
GP (generic programming). See Generic

programming (GP)
Graph(s)

adaptors, 13–14, 119, 123–126
directed, 3–4
implicit, 113–118

312 INDEX

Graph(s), continued
internal properties for, 52–54, 229–230
libraries, interfacing with, 119–126
modification, 9–10, 150–157
search, backtracking, 116–116
setup, 42–44, 52–54, 63–65
terminology, 3–4
traversal, 7–8, 24, 124, 137–150, 244
undirected, 4, 138–142

graph_archetypes.hpp, 37
GRAPH class, 120, 123–126
Graph concept, 142–153
graph_concepts.hpp, 35
graph.cpp, 126
Graph parameter, 55
GraphProperties parameter, 12
graph_property_iter_range class, 58, 297–298
GraphProperty parameter, 238
graph_traits class, 5–7, 33–34, 47, 57,

125–126, 142–148
basic description of, 242–245
category tags, 244
template parameters, 244

graph_traits.hpp, 244–245
Graph type, 69, 84, 94, 119–120
GraphvizDigraph, 82, 84, 103
GraphvizGraph type, 82, 91, 98, 100
graphviz.hpp, 84, 91
Graphviz.org, 83
Guarantees, complexity, 28, 145–148,

152–157
Guidelines, performance

basic description of, 127–134
graph class comparisons and, 127–132

H
Hamlitonian path, 113–114
has_cycle function, 49–52

hash_map container, 187
Heuristics

path compression, 190, 293
union by rank, 189–190, 293

Hop, use of the term, 76
.hpp files

adjacency_list.hpp, 17, 216, 246
adjacency_matrix.hpp, 237
connected_components.hpp, 196
edge_list.hpp, 251
graph_archetypes.hpp, 37
graph_concepts.hpp, 35
graph_traits.hpp, 244–245
graphviz.hpp, 84, 91
johnson_all_pairs_shortest_path.hpp, 186
kruskal_minimum_spanning_tree.hpp,

190
leda_graph.hpp, 120–121, 126, 243,

266
prim_minimum_spanning_tree.hpp, 193
properties.hpp, 48–49, 248, 250
property.hpp, 256
property_iter_range.hpp, 298
property_map.hpp, 56, 283
push_relabel_max_flow.hpp, 209
reverse_graph.hpp, 253
stanford_graph.hpp, 13, 122, 243
strong_components.hpp, 198
vector_as_graph.hpp, 15, 17, 272

I
identity_property_map function, 16
Implicit graphs

backtracking graph search and,
116–117

basic description of, 113–118
Warnsdorff’s heuristic and, 117–118

in_degree, 145

INDEX 313

In-edge(s)
basic description of, 4–5
BidirectionalGraph concept and, 145–146
iterators, 7–8
undirected graphs and, 138, 140

in_edges function, 8
IncidenceGraph concept, 143–145, 154
incremental_components.cpp, 202
incremental_components function, 195, 199
InputIterator, 25–26, 28–29
insert function, 64
Interface, use of the term, 5
interior_property_map.cpp, 232
Internet. See also Routers; Routing

connectivity, connected components and,
98–101

Movie Database, 63
Internet Protocol (IP), 76
Invariants, 28
IP (Internet Protocol), 76
iterator_adaptor class, 125
iterator_category type, 29, 33
iterator_property_map adaptor, 100
iterator_property_map class, 79, 283–285
Iterators

adjacency_list and, 227–229
basic description of, 25
categories of, 25–27
constructing graphs using, 43–44

iterator_traits class, 29, 33, 278

J
johns_int_array class, 32
johnson_all_pairs_shortest_path.hpp, 186
johnson_all_pairs_shortest_paths function

basic description of, 186–187
named parameters, 187–188
parameters, 187

K
Karzanov, A. V., 105
Keyword parameters, 39–40
Killerapp programs, 41
knights_adjacency_iterator, 115
knights_tour_graph class, 114–117
Knight’s tour problem, 113–118
Knuth, Donald, 119
Koenig lookup, 38–39
Kruskal, J. B., 89, 90, 94, 95
kruskal.cpp, 191
kruskal_minimum_spanning_tree function

basic description of, 91–93, 189–192
named parameters, 190–191
parameters, 190
time complexity and, 191

kruskal_minimum_spanning_tree.hpp, 190
Kruskal’s algorithm, 90–93, 95, 189–192

L
last argument, 27
last variable, 8
LEDA graphs, 119–121, 123–126

basic description of, 13
graph adaptors and, 13
adaptors for, 267–272

leda_g, 120
leda_graph.hpp, 120–121, 126, 243, 266
LessThanComparable interface, 34, 36, 37
lexical_cast, 91
libfoobar.a, 54–55
lib_jack, 38
lib_jill, 39
link function, 294
Link-state advertisement, 81
Lists, vectors of, using topological sorts

with, 14–17
listS argument, 17, 53, 132, 233

314 INDEX

Loop(s)
basic description of, 69
finding, in program-control-flow graphs,

69–73
head, 69
self-, 4
termination, 87

loop_set, 73
LvaluePropertyMap interface, 53, 56, 66,

79

M
make_back_edge_recorder function, 71
Makefiles, 48, 59
make_iterator_property_map class, 79
make_leda_node_property_map, 121
max_element function, 58
Max-Flow Min-Cut Theorem, 106
Maximum-flow algorithms

basic description of, 105–112,
206–213

edge connectivity and, 106–112
miles_span.cpp, 262
Minimum diconnected set, 106
Minimum-spanning-tree problem

basic description of, 89–96, 189–195
Kruskal’s algorithm and, 91–93
Prim’s algorithm and, 94–96

Model, use of the term, 21, 28
MultiPassInputIterator, 146
Musser, D. R., 25
MutableBidirectionalGraph concept,

154–155
MutableEdgeListGraph concept, 155
MutableIncidenceGraph concept, 154
my_array, 30–31
Myers, Nathan, 30

N
Named parameters. See also Parameters

basic description of, 39–40, 164
bellman_ford_shortest_paths function,

184
breadth_first_search function, 167
breadth_first_visit function, 170
connected_components function,

196
depth_first_search function, 172
dijkstra_shortest_paths function,

179–181
edmunds_karp_max_flow function,

206–207
johnson_all_pairs_shortest_paths

function, 187–188
kruskal_minimum_spanning_tree

function, 190–191
prim_minimum_spanning tree function,

194
push_relabel_max_flow function,

210–211
strong_components function,

199–200
topological_sort function, 176–177

name_map, 53
Namespaces

boost namespace, 37–39
Koenig lookup and, 38–39

Nesting classes, 52
NextProperty parameter, 229
node_array, 121
node type, 124
Notation, 137
num_edges function, 149
num_vertices function, 38–39, 46, 115, 147,

162

INDEX 315

O
OOP (object-oriented programming)

generic programming and, comparison
of, 22–25

Graph concept and, 142
polymorphism and, 19–21

operator function, 50, 158
OSPF (Open Shortest Path First) protocol,

82 out_degree function, 144, 145
Out-edge(s)

adaptors, 125
basic description of, 4–5
iterators, 7–8, 126, 144
traversal, 132

out_edge_adaptor, 125
out_edge_iterator, 126, 144
out_edges function, 8, 72, 125, 126

complexity guarantees and, 145
IncidenceGraph concept and, 143–144
undirected graphs and, 138, 140

P
Packets, basic description of, 76
Parallel compilation time, 57–59. See also

Compilation
parallel_edge_traits class, 234
Parameters. See also Named parameters;

Parameters (listed by name); Template
parameters

adjacency_list class, 216
adjacency_list_traits class, 246
adjacency_matrix class, 238
adjacency_matrix_traits class, 247
basic description of, 39–40, 164
bellman_ford_shortest_paths function,

183
breadth_first_search function, 166

breadth_first_visit function, 170
connected_components function, 196
depth_first_search function, 172
depth_first_visit function, 175
dijkstra_shortest_paths function, 179
disjoint_sets class, 294
edge_list class, 251
edmunds_karp_max_flow function,

206
filtered graph class, 259
graph_property_iter_range class, 298
graph_traits class, 244
iterator_property_map class, 284
johnson_all_pairs_shortest_paths

function, 187
kruskal_minimum_spanning_tree

function, 190
LEDA Graph class template, 268
mutable_queue adaptor, 292
prim_minimum_spanning tree function,

193
property class, 250
property_map class, 249
property_traits class, 283
push_relabel_max_flow function, 210
reverse_graph class, 253
strong_components function, 199
topological_sort function, 176

Parameters (listed by name). See also
Parameters

Base parameter, 37
capacity_map parameter, 206
color_map parameter, 56, 69, 167, 170,

172, 176, 178, 180–181, 196, 199,
207

DiffType parameter, 251
Directed parameter, 12, 214, 238, 246

316 INDEX

Parameters, continued
discover_time parameter, 44–45, 199
distance_combine parameter, 184
distance_compare parameter, 184
distance_map parameter, 40, 183, 184,

187, 194
distance_zero parameter, 188
EdgeIterator parameter, 251
EdgeList parameter, 12
EdgeProperties parameter, 12, 52
EdgeProperty parameter, 238
Graph parameter, 55
GraphProperties parameter, 12
GraphProperty parameter, 238
NextProperty parameter, 229
predecessor_map parameter, 85, 183,

184, 190, 207
residual_capacity_map parameter,

206
reverse_edge_map parameter, 207
root_vertex parameter, 194
topo_sort_visitor parameter, 18
ValueType parameter, 251
VertexProperties parameter, 12, 52
VertexProperty parameter, 238
visitor parameter, 162, 184
weight_map parameter, 79, 184, 187,

194
Parent(s)

array, 95
basic description of, 61, 67
maps, 85
minimum-spanning-tree problem and,

94–95
shortest-path problems and, 80

Parsers, 82–84
Partial specialization, providing array traits

for pointer types with, 32–33

Path(s). See also Shortest-path problems
basic description of, 75, 97
Hamlitonian, 113–114
compression heuristics, 190, 293

path_cost, 87
Performance guidelines

basic description of, 127–134
graph class comparisons and,

127–132
Period (.), 40
Point class, 24
Pointer types, 29, 32–33
Polymorphism

basic description of, 19, 20, 21
parametric, 21, 22
subtype, 20, 22

pop function, 290
POSIX, 128
Pred_Adj_Edge function, 125
predecessor_map parameter, 85, 183, 184,

190, 207
Predecessors, basic description of, 61
Prim, R., 89
prim.cpp, 195
prim_minimum_spanning_tree function

basic description of, 94–96, 192–195
named parameters, 194
parameters, 193
time complexity and, 194

prim_minimum_spanning_tree.hpp,
 193

Prim’s algorithm, 89, 90, 94–96
print_equal function, 24
print_equal2 function, 24
print_graph function, 272
print_trans_delay function, 6
print_vertex_name function, 6
Program-control-flow graphs, 69–73

INDEX 317

Properties. See also Property maps;
Property tags

basic description of, 5
custom, 230
external storage of, 46
internal, 52–54, 229–230
marking vertices using, 46

properties.hpp, 48–49, 248, 250
property class, 52–53, 63, 231
PropertyGraph interface, 53, 155–156
property.hpp, 256
property_iter_range.hpp, 298
property_kind class, 52
Property map(s), 53, 103

basic description of, 6–7
classes, 281–285
concepts, 278–281
creating your own, 283–287
implemented with std::map, 287
library, 277–288
objects, 63–64
for the Stanford GraphBase, 285, 286

property_map class, 53, 156, 248–249
property_map.hpp, 56, 283
property_num class, 52
Property tags, 52, 155–156, 250, 285
property_traits class, 33, 56, 231, 278, 282
Prototypes, 43, 122, 164, 262
PROTOTYPES change file, 122, 262
push_dispatch function, 234
push function, 234, 290
push-relabel algorithm, 105
push_relabel_flow function, 206
push_relabel_max_flow function,

209–212
push_relabel_max_flow.hpp, 209
put function, 279, 280, 286
put_get_helper class, 286

R
RandomAccessIterator, 25–26, 27, 36
rank_map, 190
reachable_from_head vector, 72
read_graphviz function, 84, 91
ReadWritePropertyMap, 103 Real model,

21
reference type, 29
Refinement, of concepts, 28, 138
remove_edge function, 152–153, 226, 228
remove_edge_if function, 227
remove_in_edge_if function, 155
remove_out_edge_if function, 154
remove_vertex function, 152, 225, 226
res_cap object, 108
Residual capacity, of edges, 105, 206
residual_capacity_map parameter, 206
rev_edge object, 108
reverse_edge_map parameter, 207
reverse_graph adaptor, 13, 72
reverse_graph.cpp, 252–253
reverse_graph.hpp, 253
RIP (Routing Information Protocol), 76
roget_components.cpp, 262
root_map, 199
root_vertex parameter, 194
Routers. See also Routing

basic description of, 76
shortest-path problems and, 76–77

Routing. See also Routers
distance vector, 77–81
link-state, 81–88
protocols, 76
tables, 76, 85–88

Routing Information Protocol (RIP), 76
Run-time

behavior, testing, 126
dispatch, of virtual functions, 22

318 INDEX

S
safe_sort function, 35
Saturated edges, 105
Scherer, Andreas, 262
Self-loops, 4
Semicolon (;), 73
setS argument, 65, 127, 132 SGB (Stanford

GraphBase), 119, 120, 122–123,
262–266

sgb_vertex_id_map class, 122
sgb_vertex_name_map class, 286
SGI STL Web site, 28
Shortest path. See also Paths; Shortest-path

problems
distance, 61
tree, 75
use of the term, 61, 63
weight, 75

Shortest-path problems. See also Paths;
Shortest path

basic description of, 61, 63, 75–88,
177–189

definitions, 75–76
Internet routing and, 76–77
single-pair, 75
single-source, 75

sink vertices, 105
“Six Degrees of Kevin Bacon” game, 62–67
size function, 290
sort function, 10, 34
Source code files

bellman_ford.cpp, 185–186
container_gen.cpp, 232, 233
dijkstra.cpp, 227
graph.cpp, 126
incremental_components.cpp, 202
interior_property_map.cpp, 232
kruskal.cpp, 191

miles_span.cpp, 262
prim.cpp, 195
reverse_graph.cpp, 252–253
roget_components.cpp, 262

source function, 124, 125
complexity guarantees and, 145
EdgeListGraph concept and, 147
undirected graphs and, 138, 140

Source vertex, 105
Spanning tree

basic description of, 89
minimum-, problems, 89–96, 189–195

spanning_tree_edges iterator, 189
Specialization, partial, providing array traits

for pointer types with, 32–33
Stack, basic description of, 19
Stanford GraphBase (SGB), 119, 120,

122–123, 262–266
stanford_graph.hpp, 13, 122, 243
std::accumulate function, 54
std::advance function, 33
std::back_inserter function, 92
std::back_insert_iterator, 71
std::deque, 16
std::for_each function, 29
std::insert_iterator, 109
std::istream_iterator, 43
std::iterator_traits class, 29
std::list, 17, 23, 27, 127
std::map, 64, 84, 103
std::pair, 7–9, 43

AdjacencyGraph concept and, 146
AdjacencyMatrix concept and, 148–149
IncidenceGraph concept and, 144
interfacing with other graph libraries and,

126
shortest-path problems and, 78

std::set, 107, 109, 127, 132

INDEX 319

std::sort, 36, 37
std::vector, 17, 27, 65, 85, 92, 107, 127
Stepanov, A. A., 25
STL (Standard Template Library)

generic programming and, 22–23, 25–27
graph class comparisons and, 127
Graph concept and, 142
graph traversal and, 7
iterator_traits class, 29, 33, 278
traits class and, 33
visitors and, 10–11, 49
Web site, 28

strong_components function
basic description of, 102–103, 198–201
named parameters, 199–200
parameters, 199
time complexity and, 200

strong_components.hpp, 198
Succ_Adj_Edge function, 125
Successors, number of, 117–118
sum function, 20, 21, 30, 31, 32

T
Tags. See also Tags (listed by name)

basic description of, 155
dispatching, 33–34
property, 52, 155–156, 250, 285

Tags (listed by name). See also Tags
edge_length_t tag, 266
edge_weight_t tag, 52, 92
edge_xxx_t tag, 52
vertex_index_t tag, 223, 230, 266, 283
vertex_name_t tag, 52

target function, 124, 125
complexity guarantees and, 145
EdgeListGraph concept and, 149
undirected graphs and, 138, 140

TCP (Transmission Control Protocol), 76

Telephone lines, computing the best layout
for, 90–96

Template(s). See also STL (Standard
Template Library); Template
parameters

concept checking and, 34–37
for LEDA graphs, 266–272
polymorphism and, 21
size of, 23
specialization, 31
third-party, 32
traits class, 31–32
virtual functions and, comparison of, 22
visitors and, 50–51

Template parameters. See also Templates
adjacency_list_traits class, 246
adjacency_matrix class, 238
adjacency_matrix_traits class, 247
disjoint_sets class, 294
edge_list class, 251
filtered_graph class, 259
graph_property_iter_range class, 298
iterator_property_map class, 284
LEDA Graph class, 268
mutable_queue adaptor, 292
property class, 250
property_map class, 249
property_traits class, 283
reverse_graph class, 253

Testing
with graph class comparisons,

127–132
run-time behavior, 126

tie function, 8, 296
Time. See also Time complexity

compilation, 22, 54–55, 57–59
discover, of vertices, 44–45
finish, 44–45

320 INDEX

Time complexity
adjacency_list class and, 225–227
basic description of, 165
bellman_ford_shortest_paths function

and, 185
breadth_first_search function and, 167
connected_components function and, 196
depth_first_search function and, 172
depth_first_visit function and, 176
dijkstra_shortest_paths function and, 181
disjoint_sets class and, 295
incremental components and, 202, 203, 204
johnson_all_pairs_shortest_paths

function and, 188
kruskal_minimum_spanning_tree

function and, 191
prim_minimum_spanning tree function

and, 194
strong_components function and, 200
topological_sort function and, 177

Timestamps, 116–117
Timing runs, 127–128
Tokens, 63
top function, 290
Topological sort. See also topological_sort

function
adjacency_list class and, 17
basic description of, 13–18, 176–177
via depth-first search, 18, 44–46
generic, 55–57
used with a vector of lists, 14–17

topological_sort function, 13, 14–18, 57.
See also Topological sort

basic description of, 176–177
depth_first search algorithm and, 18,

44–46
interfacing with other graph libraries and,

119, 120–123

named parameters, 176–177
parameters, 176

topo_order, 46, 57–58, 121
topo_sort_dfs function, 46–47
topo_sort function, 47, 49, 51, 55–58
topo_sort_visitor parameter, 18
topo_visitor, 56
tracert, 76
Traits class

associated types and, 30–34
definition of, 31–32
Graph concept and, 142
internal properties and, 52
most well-known use of, 33
partial specialization and, 32–33
requirements and, 28

Transmission Control Protocol (TCP), 76
Traversal, 7–8, 24, 124, 137–150, 244
traversal_category function, 34, 124, 244
tree_edge function, 50, 160
Tree edges, 61, 67
TrivialIterator, 28–29
Typedefs, nested in classes, 30–31

U
Undirected graphs, 4, 138–142
undirectedS argument, 63
Union by rank heuristics, 189–190, 293
union_set function, 294
User-defined objects, 49

V
Valid expressions, 28, 29
valid_position function, 114–115
value_type, 28, 29, 31
ValueType parameter, 251
vecS argument, 17, 53, 127
vector_as_graph.hpp, 15, 17, 273

INDEX 321

Vector model, 21
vertex_descriptor, 142, 144, 148
vertex function, 225
VertexGraph interface, 107
vertex_index_map function, 16, 187, 191,

194, 196, 199, 207
vertex_index_t tag, 223, 230, 266, 283
VertexList, 12, 127, 132, 134, 224–225, 230
VertexListGraph concept, 92, 124, 143, 147
vertex_list_graph_tag function, 124
VertexMutableGraph concept, 152
VertexMutablePropertyGraph concept,

156–157
vertex_name_t tag, 52
VertexProperties parameter, 12, 52
vertex_property, 157
VertexProperty parameter, 238
VertextMutableGraph, 124
vertex.t, 57
vertex_xxx_t, 52
Vertices

accessing, 46–47
adding, 128–129
adjacent, 4, 46–47
basic description of, 3
clearing, 130, 134, 153
discover time of, 44–45
finish time of, 44–45
marking, using external properties, 46

names of, storing, 52, 53
sets of, basic description of, 3
source, 4
target, 4
traversing, 47–48, 130–132

vertices function, 8, 47, 296
vertices_size_type function, 124
Virtual functions

compile-time dispatch of, 22
run-time dispatch of, 22
size of, 22

Visitor(s), 10–11, 50
basic description of, 49–52
concepts, 158–160

visitor function, 11, 66
visitor parameter, 162, 184
Visual C++ (Microsoft), 41, 127, 128

W
Warnsdorff’s heuristic, 113, 117–118
Web page(s)

connected components and, 97, 102–104
links, connected components and,

102–104
well-designed, 97

weight_map parameter, 79, 184, 187, 194
WeightMap type, 190
white_color constant, 56
who_owes_who function, 231

	Contents
	Foreword
	Preface
	3 A BGL Tutorial
	3.1 File Dependencies
	3.2 Graph Setup
	3.3 Compilation Order
	3.4 Cyclic Dependencies
	3.5 Toward a Generic DFS: Visitors
	3.6 Graph Setup: Internal Properties
	3.7 Compilation Time
	3.8 A Generic Topological Sort and DFS
	3.9 Parallel Compilation Time
	3.10 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	H
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

