
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780201702255
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780201702255
https://plusone.google.com/share?url=http://www.informit.com/title/9780201702255
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780201702255
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780201702255/Free-Sample-Chapter

The Writing Process

1. Name the system scope and boundaries.

Track changes to this initial context diagram with the in/out list.

2. Brainstorm and list the primary actors.

Find every human and non-human primary actor, over the life
of the system.

3. Brainstorm and exhaustively list user goals for the system.

The initial Actor-Goal List is now available.

4. Capture the outermost summary use cases to see who really cares.

Check for an outermost use case for each primary actor.

5. Reconsider and revise the summary use cases. Add, subtract, or
merge goals.

Double-check for time-based triggers and other events at the
system boundary.

6. Select one use case to expand.

Consider writing a narrative to learn the material.

7. Capture stakeholders and interests, preconditions and guarantees.

The system will ensure the preconditions and guarantee the interests.

8. Write the main success scenario (MSS).

Use 3 to 9 steps to meet all interests and guarantees.

9. Brainstorm and exhaustively list the extension conditions.

Include all that the system can detect and must handle.

10. Write the extension-handling steps.

Each will end back in the MSS, at a separate success exit, or in failure.

11. Extract complex flows to sub use cases; merge trivial sub use cases.

Extracting a sub use case is easy, but it adds cost to the project.

12. Readjust the set: add, subtract, merge, as needed.

Check for readability, completeness, and meeting stakeholders’
interests.

Agile software development centers on four values, which are identified
in the Agile Alliance’s Manifesto*:

 1. Individuals and interactions over processes and tools
 2. Working software over comprehensive documentation
 3. Customer collaboration over contract negotiation
 4. Responding to change over following a plan

The development of Agile software requires innovation and responsiveness, based on
generating and sharing knowledge within a development team and with the customer.
Agile software developers draw on the strengths of customers, users, and developers
to find just enough process to balance quality and agility.

The books in The Agile Software Development Series focus on sharing the experiences
of such Agile developers. Individual books address individual techniques (such as Use
Cases), group techniques (such as collaborative decision making), and proven solutions
to different problems from a variety of organizational cultures. The result is a core of
Agile best practices that will enrich your experiences and improve your work.

* © 2001, Authors of the Agile Manifesto

Visit informit.com/agileseries for a complete list of available publications.

The Agile Software Development Series
Alistair Cockburn and Jim Highsmith, Series Editors

Writing Effective
Use Cases

This page intentionally left blank

Writing Effective
Use Cases

Alistair Cockburn

Addison-Wesley

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and we were
aware of a trademark claim, the designations have been printed in initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

Copyright © 2001 by Addison-Wesley.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior consent of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information, please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419

corpsales@pearsontechgroup.com

Visit us on the Web at

www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data

Cockburn, Alistair.
 Writing effective use cases / Alistair Cockburn.
 p. cm. -- (The Crystal Collection for software professionals)
 Includes bibliographical references and index.
 ISBN 0-201-70225-8 (alk. paper)
 1. Application software—Development. 2. Use cases (Systems engineering)

I. Title. II. Series.

 QA76.76A65 C63 2000
 005.3--dc2 00-040179

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor,
Michigan.
Twenty-third printing, April 2011

http://www.awl.com/cseng/

vii

Contents

Preface

xix

Acknowlegments

xxiii

Chapter 1

Introduction

1

1.1 What Is a Use Case (More or Less)?

. 1

Use Case 1

 Buy Stocks over the Web

 . 4

Use Case 2

 Get Paid for Car Accident

. 5

Use Case 3

 Register Arrival of a Box

 . 6

1.2 Your Use Case Is Not My Use Case

. 7

Use Case 4

 Buy Something (Casual Version)

 . 9

Use Case 5

 Buy Something (Fully Dressed Version)

. 9

◆

Steve Adolph: “Discovering” Requirements in New Territory

. 12

1.3 Requirements and Use Cases

 . 13

Use Cases as Project-Linking Structure

. 14

Figure 1.1

The “Hub-and-Spoke” model of requirements

. 15

1.4 When Use Cases Add Value

 . 15

1.5 Manage Your Energy

 . 16

1.6 Warm Up with a Usage Narrative

 . 17

◆

Usage Narative: Getting “Fast Cash”

 . 18

1.7 Exercises

. 19

viii

Contents

Part 1

The Use Case Body Parts

21

Chapter 2

The Use Case as a Contract for Behavior

23

2.1 Interactions between Actors with Goals

 . 23

Actors Have Goals

 . 23

Figure 2.1

An actor with a goal calls on the responsibilities of another

. 24

Goals Can Fail

 . 25

Interactions Are Compound

. 25

A Use Case Collects Scenarios

 . 27

Figure 2.2

Striped trousers: Scenarios succeed or fail

. 28

Figure 2.3

The striped trousers showing subgoals

. 29

2.2 Contract between Stakeholders with Interests

. 29

Figure 2.4

The SuD serves the primary actor, protecting offstage stakeholders

 30

2.3 The Graphical Model

. 31

Figure 2.5

Actors and stakeholders.

 . 32

Figure 2.6

Behavior.

 . 32

Figure 2.7

Use Case as responsibility invocation.

. 33

Figure 2.8

Interactions as composite.

. 33

Chapter 3

Scope

35

Table 3.1

A Sample In/Out List

 . 36

3.1 Functional Scope

 . 36

The Actor-Goal List

. 36

Table 3.2

A Sample Actor-Goal List

. 37

The Use Case Briefs

. 37

Table 3.3

Sample Use Case Briefs

. 38

3.2 Design Scope

 . 38

Figure 3.1

Design scope can be any size

. 40

Using Graphical Icons to Highlight the Design Scope

. 40

Design Scope Examples

 . 41

Enterprise-to-System Examples

. 41

Use Case 6

 Add New Service (Enterprise)

. 42

Use Case 7

 Add New Service (Acura)

 . 42

Many Computers to One Application

. 43

Use Case 8

 Enter and Update Requests (Joint System)

. 43

Use Case 9

 Add New Service (into Acura)

 . 44

Use Case 10

 Note New Service Request (in BSSO)

 44

Use Case 11

 Update Service Request (in BSSO)

 . 44

Contents ix

Use Case 12 0 Note Updated Request (in Acura) rfcfc 44
Figure 3.2 Use case diagrams for Acura-BSSO 45
Figure 3.3 A combined use case diagram for Acura-BSSO 45

Nuts and Bolts Use Cases 46
Use Case 13 d"* Serialize Access to a Resource ̂ 46
Use Case 14 • » a Lod: Conversion Policy K2> .. 47
Use Case 15 G " aw Access Compatibility Policy K2> 48
Use Case 16 Q«» 4op/jp an Access Selection Policy 48
Use Case 17 0" Make Service Client Wait for Resource Access K 3 49

3.3 The Outermost Use Cases 49
3.4 Using the Scope-Defining Work Products 57

3.5 Exercises 51

Chapter 4 Stakeholders and Actors 53

4.1 Stakeholders 53
4.2 The Primary Actor 54

Why Primary Actors Are Unimportant (and Important) 55
Actors versus Roles 57
Characterizing the Primary Actors 58

Table 4.1 A Sample Actor Profile Table 56
4.3 Supporting Actors 59
4.4 The System Under Discussion 59
4.5 Internal Actors and White-Box Use Cases 59
4.6 Exercises 60

Chapter 5 Three Named Goal Levels 61

Figure 5.1 Use case levels 62
5.1 User Goals (Blue, Sea-Level) 62

Two Levels of Blue 63
5.2 Summary Level (White, Cloud/ Kite) 64

Use Case 18 # Operate an Insurance Policy + O 65
The Outermost Use Cases Revisited 65

5.3 Subfunctions (Indigo/Black, Underwater/Clam) 66

Summarizing Goal Levels 66
5.4 Using Graphical Icons to Highlight Goal Levels 67
5.5 Finding the Right Goal Level 68

Finding the User's Goal 68

x Contents

Raising and Lowering Goal Levels. 69
Figure 5.2 Ask “why” to shift levels. 69

5.6 A Longer Writing Sample: “Handle a Claim” at Several Levels 70
Use Case 19 Handle a Claim (Business) . 71
Use Case 20 Evaluate Work Comp Claim . 72
Use Case 21 Handle a Claim (Systems) + . 73
Use Case 22 Register a Loss . 75
Use Case 23 Find a Whatever (Problem Statement) 79

5.7 Exercises . 79

Chapter 6 Preconditions, Triggers, and Guarantees 81

6.1 Preconditions . 81
6.2 Minimal Guarantees . 83
6.3 Success Guarantee . 84
6.4 Triggers . 84
6.5 Exercises . 85

Chapter 7 Scenarios and Steps 87

7.1 The Main Success Scenario . 87
The Common Surrounding Structure . 87
The Scenario Body . 89

7.2 Action Steps . 90
Guidelines . 90
Guideline 1: Use Simple Grammar . 90
Guideline 2: Show Clearly “Who Has the Ball” . 90
Guideline 3: Write from a Bird's Eye View . 91
Guideline 4: Show the Process Moving Forward . 91
Guideline 5: Show the Actor’s Intent, Not the Movements . 92
Guideline 6: Include a “Reasonable” Set of Actions . 93

Figure 7.1 A transaction has four parts . 93
Guideline 7: “Validate,” Don’t “Check Whether” . 95
Guideline 8: Optionally Mention the Timing . 95
Guideline 9: Idiom: “User Has System A Kick System B”. 96
Guideline 10: Idiom: “Do Steps x–y until Condition” . 96
To Number or Not to Number . 97

7.3 Exercises . 98

Contents xi

Chapter 8 Extensions 99

8.1 Extension Basics . 99
8.2 The Extension Conditions . 100

Brainstorm All Conceivable Failures and Alternative Courses 101
Guideline 11: Make the Condition Say What Was Detected . 102
Rationalize the Extensions List . 104
Rollup Failures . 105

8.3 Extension Handling. 106
Guideline 12: Indent Condition Handling . 108
Failures within Failures . 109
Creating a New Use Case from an Extension . 109

8.4 Exercises . 110

Chapter 9 Technology and Data Variations 111

Figure 9.1 Technology variations using specialization in UML. 112

Chapter 10 Linking Use Cases 113

10.1 Sub Use Cases. 113
10.2 Extension Use Cases . 114

Figure 10.1 UML diagram of extension use cases. 115
When to Use Extension Use Cases . 116

10.3 Exercises . 117

Chapter 11 Use Case Formats 119

11.1 Formats to Choose From . 119
Fully Dressed . 119

Use Case 24 Fully Dressed Use Case Template <name> . 119
Casual . 120

Use Case 25 Actually Login (Casual Version) . 120
One-Column Table . 121

Table 11.1 One-Column Table Format of a Use Case . 121
Two-Column Table . 122

Table 11.2 Two-Column Table . 122
RUP Style . 123

Use Case 26 Register for Courses . 124

xii Contents

If-Statement Style . 126
Occam Style . 126
Diagram Style . 127
The UML Use Case Diagram . 128

11.2 Forces Affecting Use Case Writing Styles . 128
Consistency . 130
Complexity . 130

11.3 Standards for Five Project Types . 132
For Requirements Elicitation . 133

Use Case 27 Elicitation Template—Oble a New Biscum 133
For Business Process Modeling . 134

Use Case 28 Business Process Template—Symp a Carstromming 134
For Sizing the Requirements. 135

Use Case 29 Sizing Template—Burble the Tramling 135
For a Short, High-Pressure Project . 136

Use Case 30 High-Pressure Template: Kree a Ranfath 136
For Detailed Functional Requirements . 137

Use Case 31 Use Case Name—Nathorize a Permion 137

11.4 Conclusion . 137
11.5 Exercise . 138

Contents xiii

Part 2 Frequently Discussed Topics 139

Chapter 12 When Are We Done? 141

On Being Done . 142

Chapter 13 Scaling Up to Many Use Cases 143

Say Less about Each One (Low-Precision Representation) . 143
Create Clusters of Use Cases . 143

Chapter 14 CRUD and Parameterized Use Cases 145

14.1 CRUD Use Cases . 145
Use Case 32 Manage Reports . 146
Use Case 33 Save Report . 148

14.2 Parameterized Use Cases . 150

Chapter 15 Business Process Modeling 153

15.1 Modeling versus Designing . 153
Work from the Core Business . 154

Figure 15.1 Core business black box. 155
Figure 15.2 New business design in white box. 155

Work from Business Process to Technology . 155
Figure 15.3 New business design in white box (again) . 156
Figure 15.4 New business process in black-box system use cases 156

Work from Technology to Business Process . 157

15.2 Linking Business and System Use Cases . 157

◆ Rusty Walters: Business Modeling and System Requirements. 159

Chapter 16 The Missing Requirements 161

16.1 Precision in Data Requirements . 162
16.2 Cross-linking from Use Cases to Other Requirements 164

Figure 16.1 Recap of Figure 1.1, “Hub-and-Spoke” model of requirements 164

xiv Contents

Chapter 17 Use Cases in the Overall Process 167

17.1 Use Cases in Project Organization. 167
Organize by Use Case Titles . 167

Table 17.1 Sample Planning Table. 168
Handle Use Cases Crossing Releases . 169
Deliver Complete Scenarios . 170

17.2 Use Cases to Task or Feature Lists . 171
Use Case 34 Capture Trade-In . 172

Table 17.2 Work List for Capture Trade-In . 173

17.3 Use Cases to Design . 174
A Special Note to Object-Oriented Designers . 176

17.4 Use Cases to UI Design . 177
17.5 Use Cases to Test Cases . 178

Use Case 35 Order Goods, Generate Invoice (Testing Example) 178
Table 17.3 Main Success Scenario Tests (Good Credit Risk) 179
Table 17.4 Main Success Scenario Tests (Bad Credit Risk). 180

17.6 The Actual Writing . 180
A Branch-and-Join Process . 180
Time Required per Use Case . 184
Collecting Use Cases from Large Groups . 184

◆ Andy Kraus: Collecting Use Cases from a Large, Diverse Lay Group. 184

Chapter 18 Use Case Briefs and Extreme Programming 187

Chapter 19 Mistakes Fixed 189

19.1 No System . 189
19.2 No Primary Actor . 190
19.3 Too Many User Interface Details . 191
19.4 Very Low Goal Levels . 192
19.5 Purpose and Content Not Aligned . 193
19.6 Advanced Example of Too Much UI . 194

Use Case 36 Research a Solution—Before . 194
Use Case 37 Research Possible Solutions—After . 199

Contents xv

Part 3 Reminders for the Busy 203

Chapter 20 Reminders for Each Use Case 205

Reminder 1: A Use Case Is a Prose Essay . 205
Reminder 2: Make the Use Case Easy to Read. 205
Reminder 3: Just One Sentence Form . 206
Reminder 4: “Include” Sub Use Cases . 207
Reminder 5: Who Has the Ball? . 207
Reminder 6: Get the Goal Level Right . 208

Figure 20.1 Ask “why” to shift levels. 208
Reminder 7: Keep the GUI Out . 209
Reminder 8: Two Endings . 209
Reminder 9: Stakeholders Need Guarantees . 210
Reminder 10: Preconditions . 211
Reminder 11: Pass/Fail Tests for One Use Case . 211

Table 20.1 Pass/Fail Tests for One Use Case . 212

Chapter 21 Reminders for the Use Case Set 215

Reminder 12: An Ever-Unfolding Story . 215
Reminder 13: Both Corporate Scope and System Scope. 216
Reminder 14: Core Values and Variations . 216
Reminder 15: Quality Questions across the Use Case Set . 219

Chapter 22 Reminders for Working on the Use Cases 221

Reminder 16: It’s Just Chapter 3 (Where’s Chapter 4?) . 221
Reminder 17: Work Breadth First . 221

Figure 22.1 Work expands with precision. 222
Reminder 18: The 12-Step Recipe . 223
Reminder 19: Know the Cost of Mistakes . 223
Reminder 20: Blue Jeans Preferred . 224
Reminder 21: Handle Failures . 225
Reminder 22: Job Titles Sooner and Later . 225
Reminder 23: Actors Play Roles . 226
Reminder 24: The Great Drawing Hoax . 227

Figure 22.2 “Mommy, I want to go home.”. 227
Figure 22.3 Context diagram in ellipse figure form. 228
Table 22.1 Actor-Goal List for Context Diagram. 228

Reminder 25: The Great Tool Debate . 229
Reminder 26: Project Planning Using Titles and Briefs . 230

xvi Contents

Appendices

Appendix A Use Cases in UML 233

A.1 Ellipses and Stick Figures . 233
A.2 UML’s Includes Relation . 234

Figure A.1 Drawing Includes. 234
Guideline 13: Draw Higher Goals Higher. 235

A.3 UML’s Extends Relation . 235
Figure A.2 Drawing Extends . 236

Guideline 14: Draw Extending Use Cases Lower . 236
Guideline 15: Use Different Arrow Shapes . 236
Correct Use of Extends . 237

Figure A.3 Three interrupting use cases extending a base use case 237
Extension Points . 237

A.4 UML’s Generalizes Relations . 239
Correct Use of Generalizes . 239

Figure A.4 Drawing Generalizes. . 240
Guideline 16: Draw General Goals Higher . 240
Hazards of Generalizes . 240

Figure A.5 Hazardous generalization—closing a big deal. 241
Figure A.6 Correctly closing a big deal. 241

A.5 Subordinate versus Sub Use Cases . 242
A.6 Drawing Use Case Diagrams . 242

Guideline 17: User Goals in a Context Diagram . 243
Guideline 18: Supporting Actors on the Right . 243

A.7 Write Text-based Use Cases Instead . 243

Appendix B Answers to (Some) Exercises 245

Chapter 3, page 51. 245
Exercise 3.1
Exercise 3.2
Figure B.1 Design scopes for the ATM . 245

Chapter 4, page 60. 246
Exercise 4.2
Exercise 4.3

Chapter 5, page 79. 247
Exercise 5.1
Exercise 5.2

Contents xvii

Chapter 6, page 85. 248
Exercise 6.1
Exercise 6.4

Chapter 7, page 98. 249
Exercise 7.1
Exercise 7.2
Exercise 7.4

Use Case 38 Use the Order Processing System . 250
Chapter 8, page 110 . 252

Exercise 8.1
Exercise 8.5

Use Case 39 Buy Stocks Over the Web . 251
Chapter 11, page 138 . 252

Exercise 11.1
Use Case 40 Perform Clean Spark Plugs Service 252

Appendix C Glossary 253

Main Terms . 253
Use Case Types . 255
Diagrams . 256

Appendix D Readings 257

Books Referenced in the Text . 257
Articles Referenced in the Text . 257
Useful Online Resources. 258

Index 259

This page intentionally left blank

xix

Preface

More and more people are writing use cases, for behavioral requirements, for soft-
ware systems or to describe business processes. It all seems easy enough—just write
about using the system. But, faced with writing, one suddenly confronts the question,
“Exactly what am I supposed to write—how much, how little, what details?” That
turns out to be a difficult question to answer. The problem is that writing use cases is
fundamentally an exercise in writing prose essays, with all the difficulties in articulat-
ing

good

 that comes with prose writing in general. It is hard enough to say what a
good use case looks like, but we really want to know something harder: how to write
them so they will come out being good.

These pages contain the guidelines I use in my use case writing and in coaching:
how a person might think, what he or she might observe, to end up with a better use
case and use case set.

I include examples of good and bad use cases, plausible ways of writing differ-
ently, and, best of all, the good news that a use case need not be the

best

 to be

useful

.
Even mediocre use cases are useful, more so than are many of the competing require-
ments files being written. So relax, write something readable, and you will have done
your organization a service.

Audience

This book is predominantly aimed at industry professionals who read and study alone,
and is therefore organized as a self-study guide. It contains introductory through ad-
vanced material: concepts, examples, reminders, and exercises (some with answers,
some without).

Writing coaches should find suitable explanations and samples to show their teams.
Course designers should be able to build course material around the book, issuing

xx

Preface

reading assignments as needed. (However, as I include answers to many exercises,
they will have to construct their own exam material. :-))

Organization

The book is organized as a general introduction to use cases followed by a close de-
scription of the use case body parts, frequently asked questions, reminders for the
busy, and end notes.

The

Introduction

contains an initial presentation of key notions, to get the dis-
cussion rolling: “What does a use case look like?,” “When do I write one?,” and “What
variations are legal?” The brief answer is that they look different depending on when,
where, with whom, and why you are writing them. That discussion begins in this
early chapter, and continues throughout the book

Part 1, The

Use Case Body Parts,

 contains chapters for each of the major con-
cepts that need to mastered, and parts of the template that should be written. These
include “The Use Case as a Contract for Behavior,” “Scope,” “Stakeholders and Actors,”
“Three Named Goal Levels,” “Preconditions, Triggers, and Guarantees,” “Scenarios and
Steps,” “Extensions,” “Technology and Data Variations,” “Linking Use Cases,” and “Use
Case Formats.”

Part 2, Frequently Discussed Topics,

 addresses particular topics that come up re-
peatedly: “When Are We Done?,” “Scaling Up to Many Use Cases,” “CRUD and Param-
eterized Use Cases,” “Business Process Modeling,” “The Missing Requirements,” “Use
Cases in the Overall Process,” “Use Case Briefs and eXtreme Programming,” and
“Mistakes Fixed.”

Part 3, Reminders for the Busy,

 contains a set of reminders for those who have
finished reading the book, or already know this material and want to refer back to key
ideas. The chapters are organized as “Reminders for Each Use Case,” “Reminders for
the Use Case Set,” and “Reminders for Working on the Use Cases.”

There are four appendices: Appendix A discusses “Use Cases in UML” and Appen-
dix B contains “Answers to (Some) Exercises.” The book concludes with Appendix C,
Glossary; and a list of materials used while writing, Appendix D, Readings.

Heritage of the Ideas

In the late 1960s, Ivar Jacobson invented what later became known as use cases while
working on telephony systems at Ericsson. In the late 1980s, he introduced them to
the object-oriented programming community, where they were recognized as filling
a significant gap in the requirements process. I took Jacobson’s course in the early 1990s.
While neither he nor his team used my phrases

goal

 and

goal failure

, it eventually be-
came clear to me that they had been using these notions. In several comparisons, he

Preface

xxi

and I have found no significant contradictions between his and my models. I have
slowly extended his model to accommodate recent insights.

I constructed the Actors and Goals conceptual model in 1994 while writing use
case guides for the IBM Consulting Group. It explained away much of the mystery of
use cases and provided guidance as to how to structure and write them. The Actors
and Goals model has circulated informally since 1995 at

http://members.aol.com/
acockburn

 and later at

www.usecases.org

, and finally appeared in the

Journal of Object-
Oriented Programming

 in 1997, in an article I authored entitled “Structuring Use
Cases with Goals.”

From 1994 to 1999, the ideas stayed stable, even though there were a few loose
ends in the theory. Finally, while teaching and coaching, I saw why people were hav-
ing such a hard time with such a simple idea (never mind that I made many of the
same mistakes in my first tries!). These insights, plus a few objections to the Actors
and Goals model, led to the explanations in this book and to the Stakeholders and In-
terests model, which is a new idea presented here.

The Unified Modeling Language (UML) has had little impact on these ideas—and
vice versa. Gunnar Overgaard, a former colleague of Jacobson’s, wrote most of the
UML use case material and kept Jacobson’s heritage. However, the UML standards
group has a strong drawing-tools influence, with the effect that the textual nature of
use cases has been lost in the standard. Gunnar Overgaard and Ivar Jacobson dis-
cussed my ideas and assured me that most of what I have to say about a use case fits

within

 one of the UML ellipses, and hence neither affects nor is affected by what the
UML standard has to say. That means that you can use the ideas in this book quite
compatibly with the UML 1.3 use case standard. On the other hand, if you only read
the UML standard, which does not discuss the content or writing of a use case, you
will not understand what a use case is or how to use it, and you will be led in the dan-
gerous direction of thinking that use cases are a graphical, as opposed to a textual,
construction. Since the goal of this book is to show you how to write effective use
cases and the standard has little to say in that regard, I have isolated my remarks
about UML to Appendix A.

Samples Used

The writing samples in this book were taken from live projects as much as possible,
and they may seem slightly imperfect in some instances. I intend to show that they
were sufficient to the needs of the project teams that wrote them, and that those im-
perfections are within the variations and economics permissible in use case writing.

The Addison-Wesley editing crew convinced me to tidy them up more than I orig-
inally intended, to emphasize correct appearance over the actual and adequate ap-
pearance. I hope you will find it useful to see these examples and recognize the

http://www.usecases.org
http://members.aol.com/

xxii

Preface

writing that happens on projects. You may apply some of my rules to these samples
and find ways to improve them. That sort of thing happens all the time. Since improv-
ing one’s writing is a never-ending task, I accept the challenge and any criticism.

Use Cases in The Crystal Collection

This is just one in a collection of books, The Crystal Collection for Software Profes-
sionals, that highlights lightweight, human-powered software development tech-
niques. Some books discuss a single technique, some discuss a single role on a
project, and some discuss team collaboration issues.

Crystal

 works from two basic principles:

Software development is a cooperative game of invention and communication. It
improves as we develop people’s personal skills and increase the team’s collabora-
tion effectiveness.

Different projects have different needs. Systems have different characteristics and
are built by teams of differing sizes, with members having differing values and
priorities. It is impossible to name one, best way of producing software.

The foundation book for the Crystal Collection,

Software Development as a Co-
operative Game

, elaborates the ideas of software development as a cooperative game,
of methodology as a coordination of culture, and of methodology families. That book
separates the different aspects of methodologies, techniques and activities, work
products and standards. The essence of the discussion, as needed for use cases, ap-
pears in this book in Section 1.2, Your Use Case Is Not My Use Case on page 7.

Writing Effective Use Cases

is a technique guide, describing the nuts-and-bolts
of use case writing. Although you can use the techniques on almost any project, the
templates and writing standards must be selected according to each project’s needs.

xxiii

Acknowledgments

Thanks to lots of people. Thanks to the people who reviewed this book in draft form
and asked for clarification on topics that were causing their clients, colleagues, and
students confusion. Special thanks to Russell Walters, a practiced person with a sharp
eye for the direct and practical needs of the team, for his encouragement and very
specific feedback. Thanks to FirePond and Fireman’s Fund Insurance Company for
the live use case samples. Pete McBreen, the first to try out the Stakeholders and In-
terests model, added his usual common sense, practiced eye, and suggestions for im-
provement. Thanks to the Silicon Valley Patterns Group for their careful reading of
early drafts and their educated commentary on various papers and ideas. Mike Jones
at the Fort Union Beans & Brew thought up the bolt icon for subsystem use cases.

Susan Lilly deserves special mention for the exact reading she did, correcting every-
thing imaginable: sequencing, content, formatting, and even use case samples. The
huge amount of work she contributed is reflected in the much improved final copy.

Other reviewers who contributed detailed comments and encouragement include
Paul Ramney, Andy Pols, Martin Fowler, Karl Waclawek, Alan Williams, Brian Henderson-
Sellers, Larry Constantine, and Russell Gold. The editors at Addison-Wesley did a good
job of cleaning up my usual ungainly sentences and frequent typos.

Thanks to the people in my classes for helping me debug the ideas in the book.
Thanks again to my family, Deanna, Cameron, Sean, and Kieran, and to the peo-

ple at the Fort Union Beans & Brew who once again provided lots of caffeine and a
convivial atmosphere.

More on use cases is at the web sites I maintain:

members.aol.com/acockburn

and

www.usecases.org

. Just to save us some future embarassment, my name is pro-
nounced Co-burn, with a long o.

http://www.usecases.org

This page intentionally left blank

This page intentionally left blank

35

Chapter 3

Scope

Scope

 is the word we use for the extent of what we design as opposed to someone
else's design job or an already existing design.

Keeping track of the scope of a project, or even just the scope of a discussion, can
be difficult. The consultant Rob Thomsett introduced me to a wonderful little tool for
tracking and managing scope discussions—the

in/out list

. Absurdly simple and re-
markably effective, it can be used to control scope discussions for ordinary meetings
as well as project requirements.

Simply construct a table with three columns. The left column contains any topic;
the next two columns are labeled “In” and “Out.” Whenever there might confusion as
to whether a topic is within the scope of the discussion, add it to the table and ask
people whether it is in or out. The amazing result, as Rob described and I have seen,
is that while is it completely clear to each person in the room whether the topic is in
or out, the views are often opposing. Rob relates that sometimes it requires an appeal
to the project’s steering committee to settle whether a particular topic really is within
the scope of work or not. In or out can make a difference of many work-months. Try
this technique on your next project or perhaps your next meeting.

Table 3.1 is a sample in/out list we produced for our purchase request tracking
system.

Use the in/out list right at the beginning of the requirements or use case writing
activity, to separate the things that are within the scope of work from those that are
out of scope. Refer to it whenever the discussion seems to be going off track or some
requirement is creeping into the discussion that might not belong. Update the chart
as you go.

Use the in/out list for topics relating to both the functional scope and the design
scope of the system under discussion.

36

Chapter 3 Scope

3.1 FUNCTIONAL SCOPE

Functional scope refers to the services your system offers and that will eventually be
captured by the use cases. As you start your project, however, it is quite likely that you
won’t know it precisely. You are deciding the functional scope at the same time you
are identifying the use cases—the two tasks are intertwined. The in/out list helps
with this, since it allows you to draw a boundary between what is in and what is out of
scope. The other two tools are the

actor-goal list

 and the

use case briefs

.

The Actor-Goal List

The actor-goal list names all the user goals that the system supports, showing the sys-
tem’s functional content. Unlike the in/out list, which shows items that are both in
and out of scope, the actor-goal list includes only the services that will actually be
supported by the system. Table 3.2 is one project’s actor-goal list for the purchase re-
quest tracking system.

To make this list, construct a table of three columns. Put the names of the pri-
mary actors—the actors having the goals—in the left column; put each actor’s goals
with respect to the system in the middle column; and put the priority, or an initial
guess as to the release in which the system will support that goal, in the third col-
umn. Update this list continually over the course of the project so that it always re-
flects the status of the system’s functional boundary.

Some people add additional columns—

trigger

, to identify the use cases that will get
triggered by time instead of by a person, and

business priority, development complexity,

Table 3.1.

A Sample In/Out List

Topic In Out

Invoicing in any form Out

Producing reports about requests (e.g., by vendor, by part, by person) In

Merging requests into one PO In

Partial deliveries, late deliveries, wrong deliveries In

All new system services, software In

Any nonsoftware parts of the system Out

Identification of any preexisting software that can be used In

Requisitions In

Functional Scope

37

and

development priority

, so they can separate the business needs from the develop-
ment costs to derive the development priority.

The actor-goal list is the initial negotiating point between the user representa-
tive, the financial sponsor, and the development group. It focuses the layout and con-
tent of the project.

The Use Case Briefs

I will keep repeating the importance of managing your energy and working at low lev-
els of precision wherever possible. The actor-goal list is the lowest level of precision in
describing system behavior, and it is very useful for working with the total picture of
the system. The next level of precision will either be the main success scenario or a

use case brief

.
The use case brief is a two-to-six sentence description of use case behavior, men-

tioning only the most significant activity and failures. It reminds people of what is going
on in the use case. It is useful for estimating work complexity. Teams constructing

Table 3.2.

A Sample Actor-Goal List

Actor Task-level Goal Priority

Any Check on requests 1

Authorizor Change authorizations 2

Buyer Change vendor contacts 3

Requestor Initiate a request 1

 Change a request 1

 Cancel a request 4

 Mark request delivered 4

 Refuse delivered goods 4

Approver Complete request for submission 2

Buyer Complete request for ordering 1

 Initiate PO with vendor 1

 Alert of nondelivery 4

Authorizer Validate Approver’s signature 3

Receiver Register delivery 1

38

Chapter 3 Scope

from commercial, off-the-shelf components (COTS) use this description in selecting
the components. Some project teams, such as those having extremely good internal
communications and continual discussion with their users, never write more than
these use case briefs for their requirements; they keep the rest of the requirements in
the continual discussions, prototypes, and frequently delivered increments.

You can prepare the use case brief as a table, as an extension to the actor-goal list,
or directly as part of the use case body in its first draft. Table 3.3 is a sample of briefs,
thanks to Paul Ford, Steve Young, and Paul Bouzide of Navigation Technologies.

3.2 DESIGN SCOPE

Design scope is the extent of the system—I would say “spatial extent” if software took
up space. It is the set of systems, hardware and software, that we are charged with de-
signing or discussing; it is that boundary. If we are to design an ATM, we are to pro-
duce hardware and software that sits in a box—the box and everything in it is ours to
design. The computer network that the box will talk to is not ours to design—it is out
of the design scope.

Table 3.3.

Sample Use Case Briefs

Actor Goal Brief

Production
Staff

Modify the
administrative
area lattice

Production staff adds administrative area metadata
(administrative hierarchy, currency, language code,
street types, etc.) to the reference database. Contact
information for source data is cataloged. This is a spe-
cial case of updating reference data.

Production
Staff

Prepare digital
cartographic
source data

Production staffs convert external digital data to a
standard format and validate and correct it in prepara-
tion for merging with an operational database. The
data is cataloged and stored in a digital source library.

Production
and Field
Staff

Commit up-
date transac-
tions of a
shared check-
out to an
operational
database

Staff applies accumulated update transactions to an
operational database. Nonconflicting transactions are
committed to the operational database. The applica-
tion context is synchronized with the operational data-
base. Committed transactions are cleared from the
application context, leaving the operational database
consistent, with conflicting transactions available for
manual/interactive resolution.

Design Scope

39

From now on, when I write

scope

 alone, I mean

design scope

. This is because the
functional scope is adequately defined by the actor-goal list and the use cases, while
the design scope is a topic of concern in every use case.

As the following story illustrates, it is very important that the writer and reader
are in agreement about the design scope for a use case—and correct. The price of being
wrong can be a factor of two or more in cost, with disastrous results for the outcome
of a contract. The readers of a use case must quickly see what you intend to be inside
the system boundary. That will not be obvious just from the name of the use case or the
primary actor. Systems of different sizes show up even within the same use case set.

Typically, writers consider the scope of the system to be so obvious that they don't
mention it. However, once there are multiple writers and multiple readers, the design
scope of a use case is not obvious at all. One writer is thinking of the entire corpora-
tion as the scope (see Figure 3.1), one is thinking of all of the company's software sys-
tems, one is thinking of the new, client–server system, and one is thinking of only the
client or only the server. Readers, having no clue as to what is meant, get lost or mis-
understand the document.

What can we do to clear up the misunderstanding?
The only answer I have found is to

label each and every use case with its design
scope

, using specific names for the most significant scopes. To be concrete, let us suppose

A Short, True Story

To help with constructing a fixed-time, fixed-cost bid of a large system, we were walk-
ing through some sample designs. I picked up the printer and spoke its function. The IS
expert laughed. “You personal computer people crack me up, “he said,” You think we
just use a little laser printer to print our invoices? We have a huge printing system,
with a chain printer, batch I/O, and everything. We produce invoices by the boxful!”

I was shocked. “You mean the printer is not in the scope of the system?“
“Of course not! We'll use the printing system we already have.”
Indeed, we found that there was a complicated interface to the printing system.

Our system was to prepare a magnetic tape with things to be printed. Overnight, the
printing system would read the tape and print what it could. It would prepare a reply
tape describing the results of the printing job, with error records for anything it
couldn't print. The following day, our system would read back the results and note
what had not been printed correctly. The design job for interfacing to that tape was
significant, and completely different from what we had been expecting.

The printing system was not for us to design, but was for us to use. It was out of our
design scope. (It was, as described in Section 3.3, a supporting actor.) Had we not de-
tected this mistake, we would have written the use case to include it in our scope and
turned in a bid to build more system than was needed.

40

Chapter 3 Scope

that MyTelCo is designing a NewApp system, which includes a Searcher subsystem.
The design scope names are these:

Enterprise

 (i.e.,

MyTelCo

) . You are discussing the behavior of the entire orga-
nization or enterprise in delivering the goal of the primary actor. Label the

Scope

field of the use case with the name of the organization—

MyTelCo

—rather than
just “the company.” If discussing a department, use the department name. Busi-
ness use cases are written at the enterprise scope.

System

 (i.e.,

NewApp

) . This is the piece of hardware or software you are
charged with building. Outside the system are all the pieces of hardware, soft-
ware, and humanity that the system is to interface with.

Subsystem

 (i.e.,

Searcher

) . You have opened up the main system and are
about to talk about how a piece of it works.

Using Graphical Icons to Highlight the Design Scope

Consider attaching a graphic to the left of the use case title to signal the design scope
to readers before they start reading. There are no tools at this time to manage the
icons, but I find that drawing them reduces confusion. In this book I label each use
case with its appropriate icon to make it easier for you to note its scope.

As you read the following list, remember that a

black-box

 use case does not dis-
cuss the internal structure of the system under discussion while a

white-box

 use case
does.

Figure 3.1

Design scope can be any size

Company

Computer Systems

Our Application

Subsystem

Other
Applications

Other
Department

Other
Company

Design Scope

41

A

business

 use case has the enterprise as its scope. Its graphic is a building. Color
it grey () if you treat the whole enterprise as a black box. Color it white () if
you talk about the departments and staff within the organization.

A

system

 use case has a computer system as its scope. Its graphic is a box. Color
it grey () if you treat it as a black box, white () if you reveal how its compo-
nentry works.

A

component

 use case is about a subsystem or component of the system under
design. Its graphic is a bolt . See Use Cases 13 through 17 for an example.

Design Scope Examples

I offer three examples to illustrate systems at different scopes.

(1) Enterprise-to-System Scope

Suppose that we work for telephone company,

MyTelCo

, which is designing a new
system,

Acura

, to take orders for services and upgrades. Acura consists of a worksta-
tion connected to a server. The server will be connected to a mainframe running the
old system,

BSSO

. BSSO is just a terminal attached to the mainframe. We are not al-
lowed to make any changes to it; we can only use its existing interfaces.

The primary actors for Acura include the customer, the clerk, various managers,
and BSSO (we are clear that BSSO is not within our scope).

Let’s find a few of the goals the system should support. The most obvious is “Add
a new service.” We decide that the primary actor for that is the company clerk, acting
on behalf of the customer. We sit down to write a few use cases.

The immediate question is “What is the system under discussion?” It turns out
that there are two that interest us:

MyTelCo

. We are interested in the question, “What does MyTelCo’s service look
like to the customer, showing the new service implementation in its complete
form, from initial request to implementation and delivery?” This question is of
double interest. The company managers will want to see how the new system ap-
pears to the outside world, and the implementation team will want to see the
context in which the new system will sit.

This use case will be written at the enterprise scope (), with the Scope field
labeled MyTelCo and the use case written without mention of company-internal
players (no clerks, no departments, no computers). This sort of use case is often
referred to as a

business use case

, since it is about the business.

Acura

. We are interested in the question, “How does Acura's service appear, at its
interface to the clerk or customer on one side and to the BSSO system on the

42

Chapter 3 Scope

other side?” This is the use case the designers care most about, since it states ex-
actly what they are to build. The use case will be written at the system scope
(), with the Scope field labeled “Acura.” It will freely mention clerks and de-
partments and other computer systems, but not the workstation and the server
subsystems.

We produce two use cases. To avoid having to repeat the same information twice,
we write the enterprise use case at a higher level (the kite symbol), showing MyTelCo
responding to the request, delivering it, and perhaps even charging for it and getting
paid. The purpose of the enterprise use case is to show the context around the new
system. Then we describe in detail the 5- to 20-minute handling of the request in the
user-goal use case having Acura as its scope.

Use Case 6 Add New Service (Enterprise)

Primary Actor:

 Customer

Scope:

 MyTelCo

Level:

Summary
1. Customer calls MyTelCo, requests new service . . .
2. MyTelCo delivers . . . etc. . . .

Use Case 7 Add New Service (Acura)

Primary Actor:

 Clerk for external customer

Scope:

 Acura

Level:

 User goal
1. Customer calls in, clerk discusses request with customer.
2. Clerk finds customer in Acura.
3. Acura presents customer’s current service package . . . etc. . . .

No use case will be written with a scope of Acura workstation or Acura server, as
these are not of interest to us. Later, someone in the design team may choose to doc-
ument Acura’s subsystem design using use cases. At that time, they will write two use
cases, one with a scope of Acura workstation, the other with a scope of Acura server.
My experience is that these use cases are never written, since there are other adequate
techniques for documenting subsystem architecture.

Design Scope

43

Computer Systems

Acura BSSO

Clerk 2Clerk 1

(2) Many Computers to One Application

The following is a less common situation, but one that is very difficult. Let us build
onto the MyTelCo situation.

Acura will slowly replace BSSO. New service requests will be put into Acura and then
modified using BSSO. Over time, Acura will take on more function. The two systems
must co-exist and synchronize with each other. Thus, use cases have to be written for
both systems: Acura being entirely new and BSSO being modified to synchronize
with it.

The difficulty in this situation is that there are four use cases, two for Acura and
two for BSSO. There is one use case for each system having the clerk as primary actor
and one having the other computer system as the primary actor. There is no way to
avoid these four use cases, but people looking at them get confused because they look
redundant.

To document this situation, I first write a summary-level use case whose scope is
both computer systems. This gives me a chance to document their interactions over
time. In that use case, I reference the specific use cases that comprise each system’s
requirements. This first use case will be of the white-box type (note the white-box
symbol).

The situation is complicated enough that I also include diagrams of each use
case’s scope.

Use Case 8 Enter and Update Requests (Joint System)

Primary Actor:

Clerk for external customer

Scope:

 Computer systems, including Acura and
BSSO (see diagram)

Level:

 Summary

Main Success Scenario:

1. Clerk adds new service into Acura.
2. Acura notes new service request in BSSO.
3. Some time later, Clerk updates service request in BSSO.
4. BSSO notes the updated request in Acura.

The four sub use cases are all user-goal use cases and get marked with the sea-
level symbol. Although they are all system use cases, they are for different systems—
hence the diagrams. In each diagram, I circle the primary actor and shade the SuD.
The use cases are black-box this time, since they are requirements for new work. In

44

Chapter 3 Scope

addition, I give them slightly different verb names, using the verb “note” to indicate
one system synchronizing with the other.

Use Case 9 Add New Service (into Acura)

Primary Actor: Clerk for external customer
Scope: Acura
Level: User goal
. . . use case body follows. . .

Use Case 10 Note New Service Request (in BSSO)

Primary Actor:

 Acura

Scope:

 BSSO

Level:

 User goal
. . . use case body follows. . .

Use Case 11 Update Service Request (in BSSO)

Primary Actor:

 Clerk for external customer

Scope:

BSSO

Level:

 User goal
. . . use case body follows. . .

Use Case 12 Note Updated Request (in Acura)

Primary Actor:

 BSSO

Scope:

Acura

Level:

 User Goal
. . . use case body follows. . .

If you are using UML use case diagrams, you might draw the summary-level use
case instead of writing it. That still does not reduce the confusion within the four
user-goal use cases, so you should still carefully mark their primary actor, scope, and
level, and possibly still draw the scope diagrams within the use cases.

Computer Systems

Acura BSSO

Clerk 1

Computer Systems

Acura BSSO

Clerk 1

Computer Systems

Acura BSSO

Clerk 2

Computer Systems

Acura BSSO

Clerk 2

Design Scope

45

Personally, I do not find that this eliminates much confusion. I would consider
drawing the nonstandard use case diagram in Figure 3.3 to show the connection be-
tween the two systems. This diagram is clearer but harder to maintain over time.
Draw whichever you and your readers find communicates best for you.

Figure 3.2 Use case diagrams for Acura–BSSO

. This is the UML style of denoting the inter-
actions between the two systems. The upper section shows that BSSO is a supporting actor to
one use case of Acura and a primary actor to another use case. In the lower diagram, the roles
are reversed.

Figure 3.3 A combined use case diagram for Acura-BSSO. This drawing shows the
relationships of the four use cases most clearly, but is nonstandard, since it shows one system’s
use case triggering another system’s use case.

BSSO

Note new service request

Update service requestClerk

Acura

Acura

Acura

Note updated request

Add new serviceClerk

BSSO

BSSO

BSSO

Note new service request

Update service request
Clerk

Acura

Note updated request
Add new service

46

Chapter 3 Scope

(3) Nuts and Bolts Use Cases

At the far end of the scale, let’s look at the way one group documented their design
framework with use cases. They started with an 18-page, diagram-loaded description
of the rules for their framework. They decided it was too hard to read and experi-
mented with use cases as the descriptive technique.

The group spent one week on the task. First they drafted 40 use cases to make
sure they had captured all the requests their framework would handle. Using exten-
sions and the data variations list, they revised those down to just six.

Most readers will find these use cases incomprehensible because they are not in
that business. However, I expect some readers to be technical programmers looking
for ways to document their designs, so I include these use cases to show how this
group documented an internal architecture and how they made use of the variations
list. I find them fairly easy to read, given the complexity of their problem. Notice that
sub use cases are underlined. Thanks to Dale Margel in Calgary for the writing.

General Description:

The overall architecture must be able to handle concurrent tasks. To do this, it must
support Process Threads and Resource Locking. These services are handled by the
Concurrency Service Framework (CSF). CSF is used by client objects to protect critical
sections of code from unsafe access by multiple processes.

Use Case 13 Serialize Access to a Resource

Primary Actor:

 Service Client object
Scope: Concurrency Service Framework (CSF)
Level: User goal
Main Success Scenario:
1. Service Client asks a Resource Lock to give it specified access.
2. The Resource Lock returns control to the Service Client so that it may use the

Resource.
3. Service Client uses the Resource.
4. Service Client informs the Resource Lock that it is finished with the Resource.
5. Resource Lock cleans up after the Service Client.
Extensions:
2a. Resource Lock finds that Service Client already has access to the resource:

2a1. Resource Lock applies a lock conversion policy (Use Case 14) to the request.
2b. Resource Lock finds that the resource is already in use:

2b1. The Resource Lock applies a compatibility policy (Use Case 15) to grant ac-
cess to the Service Client.

2c. Resource Locking Holding time limit is nonzero:
2c1. Resource Lock starts the holding timer.

Design Scope 47

3a. Holding Timer expires before the Client informs the Resource Lock that it is
finished:

3a1. Resource Lock sends an Exception to the Client's process.
3a2. Fail!

4a. Resource Lock finds nonzero lock count on Service Client:
4a1. Resource Lock decrements the reference count of the request.
4a2. Success!

5a. Resource Lock finds that the resource is currently not in use:
5a1. Resource Lock applies an access selection policy (Use Case 16) to grant

access to any suspended service clients.
5b. Holding Timer is still running:

5b1. Resource Lock cancels Holding Timer.
Technology and Data Variations List:
1. The specified requested access can be:

For exclusive access
For shared access

2c. The lock holding time-out can be specified by:
The Service Client
A Resource Locking policy
A global default value

Use Case 14 Apply a Lock Conversion Policy

Primary Actor: Client object
Scope: Concurrency Service Framework (CSF)
Level: Subfunction
Main Success Scenario:
1. Resource Lock verifies that request is for exclusive access.
2. Resource Lock verifies that Service Client already has shared access.
3. Resource Lock verifies that there is no Service Client waiting to upgrade access.
4 Resource Lock verifies that there are no other Service Clients sharing the resource.
5. Resource Lock grants Service Client exclusive access to the resource.
6. Resource Lock increments Service Client lock count.
Extensions:
1a. Resource Lock finds that the request is for shared access:

1a1. Resource Lock increments lock count on Service Client.
1a2. Success!

2a. Resource Lock finds that the Service Client already has exclusive access:
2a1. Resource Lock increments lock count on Service Client.
2a2. Success!

48 Chapter 3 Scope

3a. Resource Lock finds that there is another Service Client waiting to upgrade access:
3a1. Signal Service Client that requested access could not be granted.
3a2. Fail!

4a. Resource Lock finds that there are other Service Clients using the resource:
4a1. Resource Lock makes Service Client wait for resource access (Use Case 17).

Use Case 15 Apply an Access Compatibility Policy

Primary Actor: Service Client object
Scope: Concurrency Service Framework (CSF)
Level: Subfunction
Main Success Scenario:
1. Resource Lock verifies that request is for shared access.
2. Resource Lock verifies that all current usage of resource is for shared access.
Extensions:
2a. Resource Lock finds that the request is for exclusive access:

2a1. Resource Lock makes Service Client wait for resource access (Use Case 17)
(the process is resumed later by the Lock serving strategy).

2b. Resource Lock finds that the resource is being exclusively used:
2b1. Resource Lock makes Service Client wait for resource access (Use Case 17)

Variations:
1. The compatibility criterion may be changed.

Use Case 16 Apply an Access Selection Policy

Primary Actor: Client object
Scope: Concurrency Service Framework (CSF)
Level: Subfunction
Main Success Scenario:
Goal in Context: Resource Lock must determine which (if any) waiting requests
should be served.
Note: This strategy is a point of variability.
1. Resource Lock selects oldest waiting request.
2. Resource Lock grants access to selected request(s) by making its process runnable.
Extensions:
1a. Resource Lock finds no waiting requests:

1a1. Success!
1b. Resource Lock finds a request waiting to be upgraded from a shared to an ex-

clusive access:
1b1. Resource Lock selects the upgrading request.

The Outermost Use Cases 49

1c. Resource Lock selects a request that is for shared access:
1c1. Resource repeats [Step 1] until the next one is for exclusive access.

Variations:
1. The selection ordering criterion may be changed.

Use Case 17 Make Service Client Wait for Resource Access

Primary Actor: Client object
Scope: Concurrency Service Framework (CSF)
Level: Subfunction
Main Success Scenario:
Used By: CC 2,4 Resource Locking:
1. Resource Lock suspends Service Client process.
2. Service Client waits until resumed.
3. Service Client process is resumed.
Extensions:
1a. Resource Lock finds that a waiting time-out has been specified:

1a1. Resource Lock starts timer.
2a. Waiting Timer expires:

2a1. Signal Service Client that requested access could not be granted.
2a2. Fail!

Technology and Data Variations List:
1a1. The Lock waiting time-out can be specified by:

The Service Client
A Resource Locking policy
A global default value

3.3 THE OUTERMOST USE CASES
In the Enterprise-to-System Scope subsection on page 41, I recommend writing two
use cases, one for the system under design and one at an outer scope. Now we can get
more specific about that: For each use case, find the outermost design scope at which
it still applies and write a summary-level use case at that scope.

The use case is written to a design scope. Usually, you can find a wider design
scope that still has the primary actor outside it. If you keep widening the scope, you
reach the point at which widening it farther would bring the primary actor inside.
That is the outermost scope. Sometimes the outermost scope is the enterprise, some-
time the department, and sometimes just the computer. Often, the computer depart-
ment is the primary actor on computer security use cases, the marketing department

50 Chapter 3 Scope

is the primary actor on advertising use cases, and the customer is the primary actor
on the main system function use cases.

Typically, there are only two to five outermost use cases for the entire system, so
not every use case gets written twice. There are so few of them because each one
merges the primary actors having similar goals on the same design scope, and pulls
together all the lower-level use cases for those actors.

I highly recommend writing the outermost use cases because it takes very little
time and provides excellent context for the use case set. The outermost use cases
show how the system ultimately benefits the most external users of the system; they
also provide a table of contents for browsing through the system’s behavior.

Let’s visit the outermost use cases for MyTelCo and its Acura system.

MyTelCo decides to let web-based customers access Acura directly to reduce the
load on the clerks. Acura will also report on the clerks’ sales performance. Some-
one will have to set security access levels for customers and clerks. We have four
use cases: Add Service (by Customer), Add Service (by Clerk), Report Sales Perfor-
mance, and Manage Security Access.

We know we will have to write all four use cases with Acura as the scope of the
SuD. We need to find the outermost scope for each of them.

The customer is clearly outside MyTelCo, so there is one outermost use case with
the customer as primary actor and MyTelCo as scope. This use case will be at the sum-
mary level, showing MyTelCo as a black box, responding to the customer’s request,
delivering the service, and so on. In fact, the use case is outlined in Use Case 6, Add
New Service (Enterprise), on page 42.

The clerk is inside MyTelCo. The outermost scope for Add Feature (by Staff) is All
Computer Systems. This use case will gather all the interactions the clerks have with the
computer systems. I would expect all the clerks’ user-goal use cases to be in this out-
ermost use case, along with a few subfunction use cases, such as Log In and Log Out.

Report Sales Performance has the Marketing Department as the ultimate primary
actor. The outermost use case is at scope Service Department and shows the Market-
ing Department interacting with All Computer Systems and the Service Department
for setting up performance bonuses, reporting sales performance, and so on.

Manage Security Access has the Security or IT Department as its ultimate pri-
mary actor and either the IT Department or All Computer Systems as the outermost
design scope. The use case references all the ways the Security Department uses All
Computer Systems to set and track security issues.

Notice that these four outermost use cases cover security, marketing, service,
and customers, using Acura in all the ways that it operates. It is unlikely that more

Exercises 51

than these four need to be written for the Acura system, even if there are a hundred
lower-level use cases to write.

3.4 USING THE SCOPE-DEFINING WORK PRODUCTS
You are defining the functional scope for your upcoming system, brainstorming, and
moving between several work products on the whiteboard. On one part of the white-
board, you have the in/out list to keep track of your scoping decisions (“No, Bob, we
decided that a new printing system is out of scope—or do we need to revisit that entry
in the in/out list?”). You have the actors and their goals in a list. You have a drawing
of the design scope, showing the people, organizations, and systems that will interact
with the system under discussion.

You find that you are evolving them all as you move between them, working out
what you want your new system to do. You think you know what the design scope is,
but a change in the in/out list moves the boundary. Now you have a new primary ac-
tor, and the goal list changes.

Sooner or later, you will probably find that you need a fourth item: a vision statement
for the new system. The vision statement holds together the overall discussion. It helps
you decide whether something should be in scope or out of scope in the first place.

When you are done, you have the four work products that bind the system’s
scope:

Vision statement

Design scope drawing

In/out list

Actor-goal list

What I want you to take from this short discussion is that the four work products
are intertwined and that you are likely to change them all while establishing the
scope of the work to be done.

3.5 EXERCISES

Design Scope
3.1. Name at least five system design scopes that the following user story fragment could be

about: “. . . Jenny is standing in front of her bank's ATM. It is dark. She has entered her PIN
and is looking for the Enter button . . .”

3.2. Draw a picture of the multiple scopes for an ATM, including hardware and software.

52 Chapter 3 Scope

3.3. What system are you, personally, writing requirements for? What is its extent? What is inside
it? What is outside it that it must communicate with? What is the system that encloses it,
and what is outside that containing system that it must communicate with? Give the enclos-
ing system a name.

3.4. Draw a picture of the multiple scopes for the Personal Advisors/Finance (PAF) system. (See
Excercise 4.4.)

3.5. Draw a picture of the multiple scopes for a web application in which a user’s workstation is
connected through the web to your company’s web server, which is attached to a legacy
mainframe system.

3.6. Describe the difference between enterprise-scope white-box business use cases and enter-
prise-scope black-box business use cases.

259

Index

! (user-goal use cases), 3–4, 6–7, 9–11, 62–64
* extensions, 103
+ (summary use cases), 3, 7, 62–67, 142,

144
– (subfunctions), 62–63, 66–67, 69, 142
: extensions, 103

Aas, Torfinn, 6
Accuracy of use cases, 17
Action steps, 90–98.

See also

 Scenarios
bird’s eye view for (Guideline 3), 91, 217
do until condition (Guideline 10), 96–97
exercises, 98, 249–250
extensions, 99–100
forward movement of (Guideline 4), 91–92
grammar (simple) for (Guideline 1), 90
intentions of actors (Guideline 5), 92–93
interface detail description, 92
numbering, 97, 218
reasonable set of (Guideline 6), 93–95
repeating steps, 96–97
scenarios, 88
sentence form for (Reminder 3), 206–207
systems interaction (Guideline 9), 96
timing (Guideline 8), 95–96
validation versus checking (Guideline 7),

95
"Who has the ball?" (Guideline 2, Reminder

5), 90–91, 207
Actor-goal lists

case diagrams versus, 218
scope from, 36–37, 51

Actor profile table, 58

Actors, 54–60.

See also

 Primary actors;
Stakeholders; Supporting actors;
System under discussion

aliases of, 58
design and primary actors, 56–57
exercises, 60, 246–247
goals conceptual model, xix, 23–29
internal actors and white-box cases, 59–60
offstage (tertiary, silent) actors, 30, 53–54
precision, 17
roles (Reminder 23), 57–58, 226
system delivery and primary actors, 57
system under discussion (SuD), 59
triggers, 54–55
ultimate primary actors, 54–55
Unified Modeling Language (UML), 58
use case production and primary actors,

55–56
use case writing and primary actors, 56–57
white-box cases and internal actors, 59–60

Adding value with use cases, 15–16
Adolph, Steve, 11–12, 133
Agreement on use cases for completion, 142
Aliases of actors, 58
Alternate flows (extensions), 123
Alternative paths, 217
Anderson, Bruce, 243
Arrow shapes in UML (Guideline 15), 236–237
Asterisk (*) for extensions, 103
Atlantic Systems Guild, 13

Bear, Kerry, 70
Beck, Kent, 167, 187, 223–224

260

Index

Behavior.

See

 Contract for behavior
Bird’s eye view (Guideline 3), 91, 217
Black-box requirements, 217
Black-box use cases (grey), 4–7, 9–11, 40–41
Black/indigo, underwater fish/clam graphic,

minus sign (subfunctions), 3, 7, 62–
63, 66–67, 69, 142

Blue, sea-level waves graphic, exclamation
mark (user-goal use cases), 3–4, 6–7,
9–11, 62–64

Body of scenarios, 89
Bolt graphic (component use cases), 41, 46–49
Bouzide, Paul, 38
Box graphic, grey/white (system use cases), 3–7,

9–11, 41, 157–159, 216
Brainstorming

extensions, 101–104, 110
use cases for, 12, 16

Bramble, Paul, 128
Branch-and-join process for project planning,

180–183
Building graphic, grey/white (business use

cases), 3, 7, 41
Business

priority, scope, 36
process to technology, 155–157
rules discovered by extensions, 100
setting and formats, 129
system use cases versus (Reminder 13), 216
use cases (building graphic, grey/white), 3,

7, 41
Business process modeling, 153–160

business process to technology, 155–157
core business, working from, 154–155
designing versus modeling, 153–157
external primary actors, 154
linking business and system use cases,

157–159
modeling versus designing, 153–157
prior to use cases, 218
services, 154
stakeholders, 154
standard, 132, 134
system use cases, linking to business,

157–159

technology to business process, 157
triggers, 154
usage experts, 156–157
use case examples, 153

Case diagrams versus actor-goal lists, 218
CASE tools, 127, 227, 230
Casual use cases, 7–9, 97, 120, 218
Central Bank of Norway, 6
Chrysler Comprehensive Compensation, 223
Clam graphic, indigo/black, minus sign (sub-

functions), 3, 7, 62–63, 66–67, 69, 142
Cloud/kite graphic, white, plus sign (summary

use cases), 3, 7, 62–67, 142, 144
Clusters of use cases, 143–144
Collaboration diagrams (UML) versus white-box

cases, 218
Colaizzi, John, 102, 145
Collecting

scenarios, 27–29
use cases from large groups, 184–186

Colon (:) for extensions, 103
Completeness and formats, 131
Completion of use cases, 141–142.

See also

Project planning

Complexity and formats, 130–131
Component use cases (bolt graphic), 41, 46–49
Compound interactions, 25–27
Conditions

extensions, 99–106
failure conditions (fourth work step), 16–17,

222
preconditions (Reminder 10), 2, 81–83, 211
scenarios, 88

Conflict and formats, 131
Consistency and formats, 130
Constantine, Larry, 58, 92, 122, 163, 177
Content and purpose misalignment, 193
Context diagrams, 128, 227–228
Contract for behavior, 23–33.

See also

 Action
steps; Goal levels; Scenarios; Reminders

actors and goals conceptual model, xix, 23–29
compound interactions, 25–27
ever-unfolding story (Reminder 12), 26, 62,

215

Index

261

failure scenario, 31
goal failures and responses, 25
graphical model, 31–33, 229
interaction between two actors, 31
interactions, compound, 25–27
internal state change, 31
main success scenarios (third work step), 3,

17, 28, 87–89, 222
offstage actors, 30, 53–54
partial ordering, 26
primary actors, 23, 27, 30–31
scenario collection, 27–29
scenarios, 25
sequences of interactions, 25–27
sets of possible sequences, 26–27
stakeholders and interests conceptual

model, 29–31
striped trousers image, 27–29
subgoals, 23–24
supporting actors, 23–24
system under discussion (SuD), 24–25, 29
Unified Modeling Language (UML), 31
validation to protect stakeholders, 31

Conversations, formats, 122
Coppolo, Dawn, 70
Core business, working from, 154–155
Core values and variations (Reminder 14), 216–

219
Coverage and formats, 130
Create, Retrieve, Update, Delete (CRUD) use

cases, 145–150
Cross-linking from use cases to missing

requirements, 164–165
Cultures and formats, 129
Curran, Eileen, 70

Data
field details and checks (sixth and seventh

work steps), 223
requirement precision, 162–164
and technology variations, 111–112

Delivery and scenarios, 170
Design

modeling versus, 153–157
primary actors and, 56–57

project planning, 171–174
scenarios and, 177
use cases for, 174–177

Design scope.

See

 Scope
Detailed functional requirements standard, 132,

137
Development

complexity, scope, 36
priority, scope, 37
team for scaling up, 144

Diagram style, 127
Dive-and-surface approach, 12
Do until condition (Guideline 10), 96–97
Documenting requirements from use cases, 12.

See also

 Requirements
Domain concepts from use cases, 177
DOORS, 230
Drawing use case diagrams, UML, 242–243

Elementary business process, 68
Ellipses and stick figures, UML, 233–234
Emphasizing extensions, 103
Empower IT, 145
End condition, scenarios, 88
Endings (two) of use cases (Reminder 8), 209–

210
Energy management, 16–17, 217, 221–223
Enterprise-to-system scope, 41–42
Essential use cases, 122
Evans, Eric, 70
Ever-unfolding story (Reminder 12), 26, 62, 215
Exclamation mark (!) user-goal use cases, 3–4,

6–7, 9–11, 62–64
Experience and formats, 130
Extend relations, UML, 235–238
Extension points, UML, 237–238
Extensions, 99–110.

See also

 Scenarios
action steps, 99–100
asterisk (*) for, 103
brainstorming, 101–104, 110
business rules discovered, 100
colon (:) for, 103
conditions, 99–106
defined, 3
drawing lower in UML (Guideline 14), 236

262

Index

Extensions

(cont.)

emphasizing, 103
exercises, 110, 251–252
failures within failures, 109
goal delivery, 100
handling, 106–110
indenting condition handling (Guideline

12), 108
linking, 114–117
merging conditions, 105–106
Rational Unified Process (RUP), 108
rationalizing, 104–105
rollup failures, 105–106
system detection of condition (Guideline

11), 102–103
use case creation from, 109–110

External primary actors, 154
eXtreme Programming (XP), 187, 223–224

Failure.

See also

 Extensions
conditions (fourth work step), 16–17, 222
handling (Reminder 21), 17, 225
scenario, 31

Feature lists from use cases, 171–174
Field details and field checks, 163–164
Field lists, 163
Finding right goal levels (Reminder 6), 68–69,

208
Fireman’s Fund Insurance, 70–79
FirePond Corporation, 158–159, 194, 205
Fish/clam graphic, indigo/black, minus sign

(subfunctions), 3, 7, 62–63, 66–67, 69,
142

Ford, Paul, 38
Form of use cases, 1
Formality and formats, 130
Formats, 119–138

alternate flows (extensions), 123
business process modeling standard, 132, 134
business setting and, 129
CASE tools, 127, 227, 230
casual, 7–9, 97, 120, 218
completeness and, 131
complexity and, 130–131
conflict and, 131

consistency and, 130
context diagrams, 128, 227–228
conversations, 122
coverage and, 130
cultures and, 129
detailed functional requirements standard,

132, 137
essential use cases, 122
exercises, 138, 252
experience and, 130
forces affecting writing styles, 128–132
formality and, 130
fully dressed, 4–11, 97, 119–120, 218
goals versus tasks, 131
graphical notations (Reminder 24), 127–128,

227–228
if-statement style, 126, 138, 218
Occam style, 126–127
one-column tables, 121
Rational Unified Process (RUP), 123–126
requirements elicitation standard, 132–133
resources and, 131
short, high-pressure project standard, 132, 136
sizing requirements standard, 132, 135
social interaction and, 129
stakeholder needs and, 129
standards for, 132–137
tables, 121–122
tasks versus goals, 131
two-column tables, 122
understanding level and, 129
Unified Modeling Language (UML), 128
Use Case 24 (Fully Dressed Use Case Tem-

plate), 119–120
Use Case 25 (Actually Login, Casual Version),

120, 135, 218
Use Case 26 (Register for Courses), 124–126
Use Case 27 (Elicitation Template—Oble a

New Biscum), 133, 250
Use Case 28 (Business Process Template—

Symp a Carstromming), 134, 251–252
Use Case 29 (Sizing Template—Burble the

Tramling), 135, 252
Use Case 30 (High-Pressure Template: Kree a

Ranfath), 136

Index

263

Use Case 31 (Use Case Name—Nathorize a
Permion), 137

Forward movement of action steps (Guideline
4), 91–92

Fowler, Martin, 236
Fully dressed use cases, 4–11, 97, 119–120, 218
Functional decomposition of use cases, 176
Functional scope, 36–38

Generalizes relations, UML, 236, 239–241
Goal-based core value, 216
Goal levels, 61–79

actors conceptual model, xix, 23–29
delivery, extensions, 100
drawing higher in UML (Guideline 16), 240
elementary business process, 68
ever-unfolding story (Reminder 12), 26, 62,

215
exercises, 79, 247–248
failures and responses, 25
finding right (Reminder 6), 68–69, 208
graphical icons for, 67–68
length of use cases (Reminder 20), 69, 224
low, mistake, 192–193
outermost scope use cases, 49–51, 65–66,

215
precision, 17
raising and lowering, 69, 91–92, 192–193
scenarios, 88
second work step, 221–222
subfunctions (underwater fish/clam graphic,

indigo/black, minus sign), 62–63, 66–
67, 69, 142

summary (strategic) level (cloud/kite
graphic, white, plus sign), 3, 7, 62–67,
142, 144

tasks format versus, 131
Use Case 18 (Operate an Insurance Policy),

65, 67, 153
Use Case 19 (Handle a Claim, Business), 59,

70–71, 153, 159
Use Case 20 (Evaluate Work Comp Claim),

65, 71–72, 153, 209
Use Case 21 (Handle a Claim, Systems), 65,

73–74, 156–157

Use Case 22 (Register a Loss), 74–78, 89,
109, 127, 209

Use Case 23 (Find a Whatever, Problem
Statement), 66, 78–79, 150

user-goal level (sea-level waves graphic,
blue, exclamation mark), 62–64

Grammar (simple) for action steps (Guideline
1), 90

Graphical icons/model.

See also

 Unified Model-
ing Language

contract for behavior, 31–33, 229
for goal levels, 67–68
notations (Reminder 24), 127–128, 227–228
scope of, 45, 51
for scope, 40–41

Graphical user interfaces (GUIs), keeping out
(Reminder 7), 209, 219

Greenberg, Marc, 70
Grey (black-box use cases), 4–7, 9–11, 40–41
Grey/white, box graphic (system use cases), 3–7,

9–11, 41, 157–159, 216
Grey/white, building graphic (business use

cases), 3, 7, 41
Guarantees for stakeholders (Reminder 9), 2,

83–85, 210–211, 248
Guidelines

arrow shapes in UML (Guideline 15), 236–237
bird’s eye view (Guideline 3), 91, 217
detection of condition (Guideline 11), 102–

103
do until condition (Guideline 10), 96–97
extension drawing lower in UML (Guideline

14), 236
forward movement of action steps (Guide-

line 4), 91–92
goals drawing higher in UML (Guideline 16),

240
grammar (simple) for action steps (Guide-

line 1), 90
higher-level goals in UML (Guideline 13), 235
indenting condition handling (Guideline

12), 108
intensions of actors (Guideline 5), 92–93
reasonable set of actions steps (Guideline 6),

93–95

264

Index

Guidelines

(cont.)

supporting actors on right in UML (Guide-
line 18), 243

systems interaction (Guideline 9), 96
timing (Guideline 8), 95–96
user goals in context diagram (Guideline

17), 243
validation versus checking (Guideline 7), 95
“Who has the ball?” (Guideline 2, Reminder

5), 90–91, 207
GUIs, keeping out (Reminder 7), 209, 219

Hammmer, Michael, 154
Handling extensions, 106–110
Heymer, Volker, 108
High-precision view of system’s functions, 180,

182–183
High-pressure project standard, 132, 136
Higher-level goals in UML (Guideline 13), 235
Hoare, Tony, 126–127
Hohmann, Luke, 163, 177
Holistic Diversity pattern, 224
“Hub-and-Spoke” requirements model, 15, 164
Hunt, Andy, 227
Hupp, Brent, 70

IBM, xix, 180, 243
If-statement style format, 126, 138, 218
In/out list for scope, 35–36, 51
Includes relations

sub use cases (Reminder 4), 207
Unified Modeling Language (UML), 234–236

Indenting condition handling (Guideline 12), 108
Indigo/black, underwater fish/clam graphic, mi-

nus sign (subfunctions), 3, 7, 62–63,
66–67, 69, 142

Information nicknames, 162
Intensions of actors (Guideline 5), 92–93
Interaction between two actors, 31
Interactions, compound, 25–27
Interface detail description, 92
Internal actors and white-box cases, 59–60
Internal state change, 31
Italics for linking use cases, 113
Ivey, Paula, 70

Jacobson, Ivar, 93, 227
Jewell, Nancy, 70
Job titles (Reminder 22), 225–226

Kite/cloud graphic, white, plus sign (summary
use cases), 3, 7, 62–67, 142, 144

Kraus, Andy, 180, 184–186

Lazar, Nicole, 70
Length of use cases (Reminder 20), 69, 224
Level of view, 2, 7
Lilly, Susan, 116, 145, 216
Linking use cases, 113–117

business and system use cases, 157–159
exercises, 117
extension use cases, 114–117
italics for, 113
sub use cases, 113
underlining for, 3, 113
Unified Modeling Language (UML) for,

114–115
Lockwood, Lucy, 58, 92, 122, 163, 177
Lotus Notes for tool, 229
Low-precision

representation of use cases, 143
view of system's functions, 180–182

Magdaleno, Trisha, 70
Main success scenarios (third work step), 3, 17,

28, 87–89, 222
Many computers to one application, 43–45
Many use cases, 143–144
Margel, Dale, 46
Maxwell, Allen, 145
McBreen, Pete, 178–180, 211
Merging conditions, extensions, 105–106
Minimal guarantees, 83–85, 248
Minus sign (–) subfunctions, 62–63, 66–67, 69,

142
Missing requirements, 161–165

cross-linking from use cases to, 164–165
data requirement precision, 162–164
field details and field checks, 163–164
field lists, 163
“Hub-and-Spoke” requirements model, 15, 164

Index

265

information nicknames, 162
precision in data requirements, 162–164

Mistakes, costs of (Reminder 19), 223–224
Mistakes fixed, 189–202

content and purpose misalignment, 193
goal levels, very low, 192–193
primary actors (none), 190–191
purpose and content misalignment, 193
system (none), 189–190
Use Case 36 (Research a Solution—Before),

122, 194–199, 205
Use Case 37 (Research Possible Solutions—

After), 199–202
user interface details, too many, 191–192,

194–202
Modeling versus designing, 153–157
MSS.

See

 Main success scenerios

Navigation Technologies, 38
Numbering actions steps, 97, 218
Nuts and bolts use cases, 41, 46–49

Object-oriented design from use cases, 176–177
Occam language, 126–127
Offstage actors, 30, 53–54
One-column table format, 121
Outermost scope use cases, 49–51, 65–66, 215

Packages, UML, 143
Paragraphs versus numbered steps, 97, 218
Parameterized use cases, 150–151
Partial ordering, 26
Pass/fail tests (Reminder 10), 211–213
Passini, Susan, 70
Planning from use cases (Reminder 26), 167–

170, 230
Plus sign (+) summary use cases, 3, 7, 62–67,

142, 144
Pratt, Pamela, 70
Precision

data requirements, 162–164
system’s functions, 180–183
use cases, 16–17
user interface (UI) design, 178

Preconditions (Reminder 10), 2, 81–83, 211

Primary actors, 54–58.

See also

 Stakeholders;
System under discussion

actor profile table, 58
aliases of, 58
contract for behavior, 23, 27, 30–31
defined, 1–2, 54
design and, 56–57
first work step, 221–222
none mistake, 190–191
roles versus (Reminder 23), 57–58, 226
scaling up using, 144
system delivery and, 57
triggers and, 54–55
ultimate primary actors, 54–55
Unified Modeling Language (UML), 58
use case production and, 55–56
use case writing and, 56–57
user goals for completion, 141

Profile table, actor, 58
Project-linking software, use cases as, 14–15
Project planning, 167–186

branch-and-join process for, 180–183
collecting use cases from large groups,

184–186
“completeness,” 175
design documents and, 171–174
design from use cases, 174–177
domain concepts from use cases, 177
feature lists from use cases, 171–174
functional decomposition of use cases, 176
high-precision view of system's functions,

180, 182–183
low-precision view of system's functions,

180–182
object-oriented design from use cases,

176–177
precision of user interface (UI) design, 178
releases and use cases, 169–170, 230
Responsibility-Driven Design, 177
scenarios and design, 177
scenarios (complete) delivery, 170
task lists from use cases, 171–174
test cases from, 178–180
time required per use case, 184
Use Case 34 (Capture Trade-In), 172–173

266

Index

Project planning

(cont.)

Use Case 35 (Order Goods, Generate Invoice,
Testing Example), 178–179

use cases for (Reminder 26), 167–170, 230
user interface design from use cases,

177–178
writing, 180–186

Prose essay, use cases as (Reminder 1), 205
Purpose(s)

and content misalignment, 193
of uses cases, 217
and writing style, 7–11

Quality questions (Reminder 15), 11, 219

Raising and lowering goal levels, 69, 91–92,
192–193

Raison d’être (elementary business process), 68
Rational Software Corporation, 123
Rational Unified Process (RUP)

extensions, 108
formats, 123–126

Rationalizing extensions, 104–105
Readability of use cases (Reminder 2), 205–206,

217
Reasonable set of actions steps (Guideline 6),

93–95
Recovery (fifth work step), 222–223
Reference to another use case (underlined), 3
Relational databases, 229
Releases and use cases, 169–170, 230
Releases for scaling up, 144
Reminders, 205–230

actor-goal lists versus case diagrams, 218
actors play roles (Reminder 23), 57–58, 226
alternative paths, 217
bird’s eye view (Guideline 3), 91, 217
black-box requirements, 217
business process modeling, prior to use

cases, 218
business versus system use cases (Reminder

13), 216
case diagrams versus actor-goal lists, 218
CASE tools, 127, 227, 230
casual versus fully dressed, 218

collaboration diagrams (UML) versus white-
box cases, 218

core values and variations (Reminder 14),
216–219

data field details and checks (seventh work
step), 223

data fields (sixth work step), 223
endings (two) of use cases (Reminder 8),

209–210
energy management, 16–17, 217, 221–223
ever-unfolding story (Reminder 12), 26, 62,

215
failure conditions (fourth work step), 16–17,

222
failure handling (Reminder 21), 17, 225
fully dressed versus casual, 218
goal-based core value, 216
goal level, getting right (Reminder 6), 68–69,

208
goals (second work step), 221–222
graphical notations (Reminder 24), 127–128,

227–228
guarantees for stakeholders (Reminder 9), 2,

83–85, 210–211, 248
GUIs, keeping out (Reminder 7), 209, 219
Holistic Diversity pattern, 224
if-statement style, 126, 138, 218
includes relation, sub use cases (Reminder 4),

207
job titles (Reminder 22), 225–226
length of use cases (Reminder 20), 69, 224
Lotus Notes for tool, 229
main success scenarios (third work step), 3,

17, 28, 87–89, 222
mistakes, costs of (Reminder 19), 223–224
numbered steps versus paragraphs, 97, 218
paragraphs versus numbered steps, 97, 218
pass/fail tests (Reminder 10), 211–213
preconditions (Reminder 10), 2, 81–83,

211
primary actors (first work step), 221–222
project planning, 167–170, 230 (Reminder 26)
prose essay, use cases as (Reminder 1), 205
purposes (several) of uses cases, 217
quality questions (Reminder 15), 11, 219

Index

267

readability of use cases (Reminder 2), 205–
206, 217

recovery (fifth work step), 222–223
relational databases for, 229
releases and use cases, 169–170, 230
requirements and use cases (Reminder 16),

13–15, 19, 221
requirements management tools, 230
roles and actors (Reminder 23), 57–58, 226
sentence form (one) (Reminder 3), 206–207
sequence diagrams as use case text, 219
stakeholders need guarantees (Reminder 9),

2, 83–85, 210–211, 248
sub use cases, includes relation (Reminder 4),

207
system versus business use cases (Reminder

13), 216
tool debate (Reminder 25), 229–230
12-step recipe (Reminder 18), 223
white-box cases versus collaboration dia-

grams (UML), 218
“Who has the ball?” (Guideline 2, Reminder

5), 90–91, 207
word processors with hyperlinks for tool, 229
work breadth first (Reminder 17), 221–223

Repeating actions steps, 96–97
Requirements.

See also

 Missing requirements;
Use cases

discovery, 11–12, 133
elicitation standard, 132–133
management tools, 230
sizing requirements standard, 132, 135
use cases and (Reminder 16), 13–15, 19, 221

RequisitePro, 230
Resources and formats, 131
Responsibility-Driven Design, 177
Robertson, James, 13
Robertson, Suzanne, 13
Roles and actors (Reminder 23), 57–58, 226
Rollup failures, extensions, 105–106
Roshi, 211
RUP.

See

 Rational Unified Process

Sampson, Steve, 70
Sawyer, Jim, 8
Scaling up, 143–144

Scenarios.

See also

 Action steps; Extensions
body, 89
collection, 27–29
condition for, 88
contract for behavior, 25
defined, 1, 3
delivery and, 170
design and, 177
end condition, 88
extensions, 88
goal to achieve, 88
main success scenarios, 3, 17, 28, 87–89, 222

Schicktanz, Jill, 70
Scope (design scope), 35–52

actor-goal list for, 36–37, 51
business priority, 36
defined, 2
development complexity, 36
development priority, 37
enterprise-to-system scope, 41–42
exercises, 51–52, 245
functions scope, 36–38
graphical icons for, 40–41
graphical model, 45, 51
in/out list for, 35–36, 51
many computers to one application, 43–45
nuts and bolts use cases, 41, 46–49
outermost scope use cases, 49–51, 65–66,

215
triggers, 36
Unified Modeling Language (UML), 44–45
use case briefs for, 37–38, 187
Use Case 6 (Add New Service, Enterprise),

42, 50
Use Case 7 (Add New Service, Acura), 42
Use Case 8 (Enter and Update Requests, Joint

System), 43, 59
Use Case 9 (Add New Service into Acura), 44
Use Case 10 (Note New Service Requests in

BSSO), 44
Use Case 11 (Update Service Request in

BSSO), 44
Use Case 12 (Note Updated Request in

Acura), 44
Use Case 13 (Serialize Access to a Resource),

46–47, 112

268

Index

Scope

(cont.)

Use Case 14 (Apply a Lock Conversion Policy),
47–48

Use Case 15 (Apply an Access Compatibility
Policy), 48

Use Case 16 (Apply an Access Selection Policy),
48–49

Use Case 17 (Make Service Client Wait for
Resource Access), 49

vision statements, 51
Scott, Dave, 194–202
Sea-level waves graphic, blue, exclamation

mark (user-goal use cases), 3–4, 6–7,
9–11, 62–64

Secondary actors.

See

 Supporting actors
Sentence form for action steps (Reminder 3),

206–207
Sequence diagrams as use case text, 219
Sequences of interactions, 25–27
Services, business process modeling, 154
Sets of possible sequences, 26–27
Short, high-pressure project standard, 132, 136
Silent (offstage) actors, 30, 53–54
Situations for use cases, 7–11
Sizing requirements standard, 132, 135
Social interaction and formats, 129
Software Futures CCH, 108
S.R.A., 116, 145
Stakeholders.

See also

 Actors
business process modeling, 154
defined, 1–2, 53–54
interests conceptual model, 29–31
need guarantees (Reminder 9), 2, 83–85,

210–211, 248
needs and formats, 129

Standards, 11, 132–137
Statements, vision, 51
Steps.

See

 Action steps
Strategic use cases (cloud/kite graphic, white,

plus sign), 3, 7, 62–67, 142, 144
Striped trousers image, contract for behavior,

27–29
Subforms of use cases, 7–11
Subfunctions (underwater fish/clam graphic,

indigo/black, minus sign), 3, 7, 62–63,
66–67, 69, 142

Subgoals, contract for behavior, 23–24
Subject area for scaling up, 144
Subordinate versus sub use cases, UML, 242
Sub use cases

includes relation (Reminder 4), 207
linking, 113

Success guarantees, 84–85, 248
SuD.

See

 System under discussion
“Sufficient” use cases, 5
Summary use cases (cloud/kite graphic, white,

plus sign), 3, 7, 62–67, 142, 144
Supporting (secondary) actors

contract for behavior, 23–24
defined, 59
on right in UML (Guideline 18), 243

Swift, Jonathan, 24
System under discussion (SuD)

actors, 59
contract for behavior, 24–25, 29
defined, 2
delivery and primary actors, 57
detection of condition (Guideline 11), 102–103
none mistake, 189–190

System use cases (box graphic, grey/white), 3–7,
9–11, 41, 157–159, 216

System versus business use cases (Reminder
13), 216

Systems interaction (Guideline 9), 96

Table format, 121–122
Task lists from use cases, 171–174
Tasks versus goals format, 131
Technology and data variations, 111–112
Technology to business process, 157
Template for use cases, 7
Tertiary (offstage) actors, 30, 53–54
Test cases from project planning, 178–180
Text-based use cases versus UML, 243
Thomas, Dave, 227
Thomsett, Rob, 35
Time required per use case, 184
Timing (Guideline 8), 95–96
Tool debate (Reminder 25), 229–230
Tools, CASE, 127, 227, 230
Triggers

actors and, 54–55

Index

269

business process modeling, 154
completion and, 141–142
defined, 84–85
scope and, 36

12-step recipe (Reminder 18), 223
Two-column table format, 122

UI.

See

 User interface
Ultimate primary actors, 54–55
UML.

See

 Unified Modeling Language
Underlining for linking use cases, 3, 113
Understanding level and formats, 129
Underwater fish/clam graphic, indigo/black,

minus sign (subfunctions), 3, 7, 62–
63, 66–67, 69, 142

Unified Modeling Language (UML), 233–243
actors, 58
arrow shapes, using different (Guideline 15),

236–237
collaboration diagrams versus white-box

cases, 218
contract for behavior, 31
drawing use case diagrams, 242–243
ellipses and stick figures, 233–234
extend relations, 235–238
extension points, 237–238
extension use cases, 114–115
extension use cases, drawing lower (Guide-

line 14), 236
formats, 128
general goals, drawing higher (Guideline

16), 240
generalizes relations, 236, 239–241
higher-level goals (Guideline 13), 235
includes relations, 234–236
linking use cases, 114–115
packages, 143
scope, 44–45
subordinate versus sub use cases, 242
supporting actors on right (Guideline 18), 243
text-based use cases versus, 243
user goals in context diagram (Guideline

17), 243
Usage experts, 156–157
Usage narratives, 17–19

Use case briefs for scope, 37–38, 187
Use cases, 1–19.

See also

 Action steps; Actors;
Formats; Linking use cases; Project
planning; Requirements; Scope
(design scope)

accuracy, 17
adding value with, 15–16
black-box use cases (grey), 4–7, 9–11, 40–41
brainstorming using, 12
brainstorming with, 16
business use cases (building graphic, grey/

white), 3, 7, 41
casual use cases, 7–9, 97, 120, 218
completion, 141–142
component use cases (bolt graphic), 41,

46–49
Create, Retrieve, Update, Delete (CRUD) use

cases, 145–150
defined, 1–3
dive-and-surface approach using, 12
documenting requirements using, 12
energy management, 16–17, 217, 221–223
eXtreme Programming (XP), 187, 223–224
failure conditions, 16–17
failure handling (Reminder 21), 17, 225
form of, 1
fully dressed use cases, 4–11, 97, 119–120, 218
guarantees (Reminder 9), 2, 83–85, 210–211,

248
“Hub-and-Spoke” requirements model, 15, 164
length of (Reminder 20), 69, 224
level of view, 2, 7
main success scenarios (MSS), 3, 17, 28, 87–

89, 222
parameterized use cases, 150–151
preconditions (Reminder 10), 2, 81–83, 211
project-linking software as, 14–15
purpose and writing style, 7–11
quality questions (Reminder 15), 11, 219
reference to another use case (underlined),

3, 113
scaling up, 143–144
situations for, 7–11
standards, 11, 132–137
subforms of, 7–11

270

Index

Use cases

(cont.)

subfunctions (underwater fish/clam graphic,
indigo/black, minus sign), 3, 7, 62–63,
66–67, 69, 142

“sufficient” use cases, 5
summary (cloud/kite graphic, white, plus

sign), 3, 7, 62–67, 142, 144
system use cases (box graphic, grey/white),

3–7, 9–11, 41, 157–159, 216
techniques, 11
technology and data variations, 111–112
template for, 7
usage narratives, 17–19
user-goal level (sea-level waves graphic,

blue, exclamation mark), 3–4, 6–7,
9–11

user goals stated with, 15–16
white-box use cases, 7, 40–41, 59–60, 218

User goals
context diagram in UML (Guideline 17),

243
use cases for stating, 15–16
use cases (sea-level waves graphic, blue,

exclamation mark), 3–4, 6–7, 9–11,
62–64

User interface (UI)
design from use cases, 177–178
details, too many, 191–192, 194–202

User stories, 187

Validation
checking versus (Guideline 7), 95
stakeholders' protection, 31

Vision statements for scope, 51
View of system’s functions, 180–183
“VW-Staging” (Cockburn), 142, 170

Walters, Russell, 158–160, 194–202, 205
Waves graphic, blue, exclamation mark (user-

goal use cases), 3–4, 6–7, 9–11, 62–64
White, cloud/kite graphic, plus sign (summary

use cases), 3, 7, 62–67, 142, 144
White-box use cases, 7, 40–41, 59–60, 218
White/grey, box graphic (system use cases), 3–7,

9–11, 41, 157–159, 216
White/grey, building graphic (business use

cases), 3, 7, 41
“Who has the ball?” (Guideline 2, Reminder 5),

90–91, 207
Williams, Alan, 116–117
Wirfs-Brock, Rebecca, 122, 235
Word processors with hyperlinks for tool, 229
Work breadth first (Reminder 17), 221–223
Writing.

See also

 Use cases
project plans, 180–186
styles, forces affecting, 128–132

XP (eXtreme Programming), 187, 223–224
Young, Steve, 38

	Contents
	Preface
	Acknowledgments
	Chapter 3 Scope
	3.1 Functional Scope
	3.2 Design Scope
	3.3 The Outermost Use Cases
	3.4 Using the Scope-Defining Work Products
	3.5 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

