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The Writing Process

 

1. Name the system scope and boundaries.

 

Track changes to this initial context diagram with the in/out list.

 

2. Brainstorm and list the primary actors.

 

Find every human and non-human primary actor, over the life 
of the system.

 

3. Brainstorm and exhaustively list user goals for the system.

 

The initial Actor-Goal List is now available.

 

4. Capture the outermost summary use cases to see who really cares.

 

Check for an outermost use case for each primary actor.

 

5. Reconsider and revise the summary use cases. Add, subtract, or 
merge goals.

 

Double-check for time-based triggers and other events at the 
system boundary.

 

6. Select one use case to expand.

 

Consider writing a narrative to learn the material.

 

7. Capture stakeholders and interests, preconditions and guarantees.

 

The system will ensure the preconditions and guarantee the interests.

 

8. Write the main success scenario (MSS).

 

Use 3 to 9 steps to meet all interests and guarantees.

 

9. Brainstorm and exhaustively list the extension conditions.

 

Include all that the system can detect and must handle.

 

10. Write the extension-handling steps.

 

Each will end back in the MSS, at a separate success exit, or in failure.

 

11. Extract complex flows to sub use cases; merge trivial sub use cases.

 

Extracting a sub use case is easy, but it adds cost to the project.

 

12. Readjust the set: add, subtract, merge, as needed.

 

Check for readability, completeness, and meeting stakeholders’ 
interests.



Agile software development centers on four values, which are identified  
in the Agile Alliance’s Manifesto*:  

 1. Individuals and interactions over processes and tools
 2. Working software over comprehensive documentation
 3. Customer collaboration over contract negotiation
 4. Responding to change over following a plan

The development of Agile software requires innovation and responsiveness, based on 
generating and sharing knowledge within a development team and with the customer. 
Agile software developers draw on the strengths of customers, users, and developers  
to find just enough process to balance quality and agility.

The books in The Agile Software Development Series focus on sharing the experiences 
of such Agile developers. Individual books address individual techniques (such as Use 
Cases), group techniques (such as collaborative decision making), and proven solutions 
to different problems from a variety of organizational cultures. The result is a core of 
Agile best practices that will enrich your experiences and improve your work.

* © 2001, Authors of the Agile Manifesto

Visit informit.com/agileseries for a complete list of available publications.

The Agile Software Development Series
Alistair Cockburn and Jim Highsmith, Series Editors
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Preface

 

More and more people are writing use cases, for behavioral requirements, for soft-
ware systems or to describe business processes. It all seems easy enough—just write
about using the system. But, faced with writing, one suddenly confronts the question,
“Exactly what am I supposed to write—how much, how little, what details?” That
turns out to be a difficult question to answer. The problem is that writing use cases is
fundamentally an exercise in writing prose essays, with all the difficulties in articulat-
ing 

 

good

 

 that comes with prose writing in general. It is hard enough to say what a
good use case looks like, but we really want to know something harder: how to write
them so they will come out being good. 

These pages contain the guidelines I use in my use case writing and in coaching:
how a person might think, what he or she might observe, to end up with a better use
case and use case set. 

I include examples of good and bad use cases, plausible ways of writing differ-
ently, and, best of all, the good news that a use case need not be the 

 

best

 

 to be 

 

useful

 

.
Even mediocre use cases are useful, more so than are many of the competing require-
ments files being written. So relax, write something readable, and you will have done
your organization a service.

 

Audience

 

This book is predominantly aimed at industry professionals who read and study alone,
and is therefore organized as a self-study guide. It contains introductory through ad-
vanced material: concepts, examples, reminders, and exercises (some with answers,
some without).

Writing coaches should find suitable explanations and samples to show their teams.
Course designers should be able to build course material around the book, issuing
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reading assignments as needed. (However, as I include answers to many exercises,
they will have to construct their own exam material. :-) )

 

Organization

 

The book is organized as a general introduction to use cases followed by a close de-
scription of the use case body parts, frequently asked questions, reminders for the
busy, and end notes.

The 

 

Introduction 

 

contains an initial presentation of key notions, to get the dis-
cussion rolling: “What does a use case look like?,” “When do I write one?,” and “What
variations are legal?” The brief answer is that they look different depending on when,
where, with whom, and why you are writing them. That discussion begins in this
early chapter, and continues throughout the book

 

Part 1, The

 

 

 

Use Case Body Parts,

 

 contains chapters for each of the major con-
cepts that need to mastered, and parts of the template that should be written. These
include “The Use Case as a Contract for Behavior,” “Scope,” “Stakeholders and Actors,”
“Three Named Goal Levels,” “Preconditions, Triggers, and Guarantees,” “Scenarios and
Steps,” “Extensions,” “Technology and Data Variations,” “Linking Use Cases,” and “Use
Case Formats.”

 

Part 2, Frequently Discussed Topics,

 

 addresses particular topics that come up re-
peatedly: “When Are We Done?,” “Scaling Up to Many Use Cases,” “CRUD and Param-
eterized Use Cases,” “Business Process Modeling,” “The Missing Requirements,” “Use
Cases in the Overall Process,” “Use Case Briefs and eXtreme Programming,” and
“Mistakes Fixed.”

 

Part 3, Reminders for the Busy,

 

 contains a set of reminders for those who have
finished reading the book, or already know this material and want to refer back to key
ideas. The chapters are organized as “Reminders for Each Use Case,” “Reminders for
the Use Case Set,” and “Reminders for Working on the Use Cases.”

There are four appendices: Appendix A discusses “Use Cases in UML” and Appen-
dix B contains “Answers to (Some) Exercises.” The book concludes with Appendix C,
Glossary; and a list of materials used while writing, Appendix D, Readings.

 

Heritage of the Ideas

 

In the late 1960s, Ivar Jacobson invented what later became known as use cases while
working on telephony systems at Ericsson. In the late 1980s, he introduced them to
the object-oriented programming community, where they were recognized as filling
a significant gap in the requirements process. I took Jacobson’s course in the early 1990s.
While neither he nor his team used my phrases 

 

goal

 

 and 

 

goal failure

 

, it eventually be-
came clear to me that they had been using these notions. In several comparisons, he
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and I have found no significant contradictions between his and my models. I have
slowly extended his model to accommodate recent insights.

I constructed the Actors and Goals conceptual model in 1994 while writing use
case guides for the IBM Consulting Group. It explained away much of the mystery of
use cases and provided guidance as to how to structure and write them. The Actors
and Goals model has circulated informally since 1995 at 

 

http://members.aol.com/
acockburn

 

 and later at 

 

www.usecases.org

 

, and finally appeared in the 

 

Journal of Object-
Oriented Programming

 

 in 1997, in an article I authored entitled “Structuring Use
Cases with Goals.”

From 1994 to 1999, the ideas stayed stable, even though there were a few loose
ends in the theory. Finally, while teaching and coaching, I saw why people were hav-
ing such a hard time with such a simple idea (never mind that I made many of the
same mistakes in my first tries!). These insights, plus a few objections to the Actors
and Goals model, led to the explanations in this book and to the Stakeholders and In-
terests model, which is a new idea presented here.

The Unified Modeling Language (UML) has had little impact on these ideas—and
vice versa. Gunnar Overgaard, a former colleague of Jacobson’s, wrote most of the
UML use case material and kept Jacobson’s heritage. However, the UML standards
group has a strong drawing-tools influence, with the effect that the textual nature of
use cases has been lost in the standard. Gunnar Overgaard and Ivar Jacobson dis-
cussed my ideas and assured me that most of what I have to say about a use case fits

 

within

 

 one of the UML ellipses, and hence neither affects nor is affected by what the
UML standard has to say. That means that you can use the ideas in this book quite
compatibly with the UML 1.3 use case standard. On the other hand, if you only read
the UML standard, which does not discuss the content or writing of a use case, you
will not understand what a use case is or how to use it, and you will be led in the dan-
gerous direction of thinking that use cases are a graphical, as opposed to a textual,
construction. Since the goal of this book is to show you how to write effective use
cases and the standard has little to say in that regard, I have isolated my remarks
about UML to Appendix A.

 

Samples Used 

 

The writing samples in this book were taken from live projects as much as possible,
and they may seem slightly imperfect in some instances. I intend to show that they
were sufficient to the needs of the project teams that wrote them, and that those im-
perfections are within the variations and economics permissible in use case writing. 

The Addison-Wesley editing crew convinced me to tidy them up more than I orig-
inally intended, to emphasize correct appearance over the actual and adequate ap-
pearance. I hope you will find it useful to see these examples and recognize the

http://www.usecases.org
http://members.aol.com/
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Preface

 

writing that happens on projects. You may apply some of my rules to these samples
and find ways to improve them. That sort of thing happens all the time. Since improv-
ing one’s writing is a never-ending task, I accept the challenge and any criticism.

 

Use Cases in The Crystal Collection

 

This is just one in a collection of books, The Crystal Collection for Software Profes-
sionals, that highlights lightweight, human-powered software development tech-
niques. Some books discuss a single technique, some discuss a single role on a
project, and some discuss team collaboration issues. 

 

Crystal

 

 works from two basic principles:

 

Software development is a cooperative game of invention and communication. It
improves as we develop people’s personal skills and increase the team’s collabora-
tion effectiveness. 

 

Different projects have different needs. Systems have different characteristics and
are built by teams of differing sizes, with members having differing values and
priorities. It is impossible to name one, best way of producing software. 

The foundation book for the Crystal Collection, 

 

Software Development as a Co-
operative Game

 

, elaborates the ideas of software development as a cooperative game,
of methodology as a coordination of culture, and of methodology families. That book
separates the different aspects of methodologies, techniques and activities, work
products and standards. The essence of the discussion, as needed for use cases, ap-
pears in this book in Section 1.2, Your Use Case Is Not My Use Case on page 7.

 

 

Writing Effective Use Cases 

 

is a technique guide, describing the nuts-and-bolts
of use case writing. Although you can use the techniques on almost any project, the
templates and writing standards must be selected according to each project’s needs.
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Chapter 3

 

Scope

 

Scope

 

 is the word we use for the extent of what we design as opposed to someone
else's design job or an already existing design. 

Keeping track of the scope of a project, or even just the scope of a discussion, can
be difficult. The consultant Rob Thomsett introduced me to a wonderful little tool for
tracking and managing scope discussions—the 

 

in/out list

 

. Absurdly simple and re-
markably effective, it can be used to control scope discussions for ordinary meetings
as well as project requirements.

Simply construct a table with three columns. The left column contains any topic;
the next two columns are labeled “In” and “Out.” Whenever there might confusion as
to whether a topic is within the scope of the discussion, add it to the table and ask
people whether it is in or out. The amazing result, as Rob described and I have seen,
is that while is it completely clear to each person in the room whether the topic is in
or out, the views are often opposing. Rob relates that sometimes it requires an appeal
to the project’s steering committee to settle whether a particular topic really is within
the scope of work or not. In or out can make a difference of many work-months. Try
this technique on your next project or perhaps your next meeting.

Table 3.1 is a sample in/out list we produced for our purchase request tracking
system. 

Use the in/out list right at the beginning of the requirements or use case writing
activity, to separate the things that are within the scope of work from those that are
out of scope. Refer to it whenever the discussion seems to be going off track or some
requirement is creeping into the discussion that might not belong. Update the chart
as you go.

Use the in/out list for topics relating to both the functional scope and the design
scope of the system under discussion.
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3.1 FUNCTIONAL SCOPE

 

Functional scope refers to the services your system offers and that will eventually be
captured by the use cases. As you start your project, however, it is quite likely that you
won’t know it precisely. You are deciding the functional scope at the same time you
are identifying the use cases—the two tasks are intertwined. The in/out list helps
with this, since it allows you to draw a boundary between what is in and what is out of
scope. The other two tools are the 

 

actor-goal list

 

 and the 

 

use case briefs

 

. 

 

The Actor-Goal List

 

The actor-goal list names all the user goals that the system supports, showing the sys-
tem’s functional content. Unlike the in/out list, which shows items that are both in
and out of scope, the actor-goal list includes only the services that will actually be
supported by the system. Table 3.2 is one project’s actor-goal list for the purchase re-
quest tracking system.

To make this list, construct a table of three columns. Put the names of the pri-
mary actors—the actors having the goals—in the left column; put each actor’s goals
with respect to the system in the middle column; and put the priority, or an initial
guess as to the release in which the system will support that goal, in the third col-
umn. Update this list continually over the course of the project so that it always re-
flects the status of the system’s functional boundary.

Some people add additional columns—

 

trigger

 

, to identify the use cases that will get
triggered by time instead of by a person, and 

 

business priority, development complexity,

 

Table 3.1.   

 

A Sample In/Out List

 

Topic In Out

 

Invoicing in any form Out

Producing reports about requests (e.g., by vendor, by part, by person) In

Merging requests into one PO In

Partial deliveries, late deliveries, wrong deliveries In

All new system services, software In

Any nonsoftware parts of the system Out

Identification of any preexisting software that can be used In

Requisitions In
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and 

 

development priority

 

, so they can separate the business needs from the develop-
ment costs to derive the development priority.

The actor-goal list is the initial negotiating point between the user representa-
tive, the financial sponsor, and the development group. It focuses the layout and con-
tent of the project. 

 

The Use Case Briefs

 

I will keep repeating the importance of managing your energy and working at low lev-
els of precision wherever possible. The actor-goal list is the lowest level of precision in
describing system behavior, and it is very useful for working with the total picture of
the system. The next level of precision will either be the main success scenario or a

 

use case brief

 

.
The use case brief is a two-to-six sentence description of use case behavior, men-

tioning only the most significant activity and failures. It reminds people of what is going
on in the use case. It is useful for estimating work complexity. Teams constructing

 

Table 3.2.   

 

A Sample Actor-Goal List

 

Actor Task-level Goal Priority

 

Any Check on requests 1

Authorizor Change authorizations 2

Buyer Change vendor contacts 3

Requestor Initiate a request 1

 Change a request 1

 Cancel a request 4

 Mark request delivered 4

 Refuse delivered goods 4

Approver Complete request for submission 2

Buyer Complete request for ordering 1

 Initiate PO with vendor 1

 Alert of nondelivery 4

Authorizer Validate Approver’s signature 3

Receiver Register delivery 1
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from commercial, off-the-shelf components (COTS) use this description in selecting
the components. Some project teams, such as those having extremely good internal
communications and continual discussion with their users, never write more than
these use case briefs for their requirements; they keep the rest of the requirements in
the continual discussions, prototypes, and frequently delivered increments.

You can prepare the use case brief as a table, as an extension to the actor-goal list,
or directly as part of the use case body in its first draft. Table 3.3 is a sample of briefs,
thanks to Paul Ford, Steve Young, and Paul Bouzide of Navigation Technologies.

 

3.2 DESIGN SCOPE

 

Design scope is the extent of the system—I would say “spatial extent” if software took
up space. It is the set of systems, hardware and software, that we are charged with de-
signing or discussing; it is that boundary. If we are to design an ATM, we are to pro-
duce hardware and software that sits in a box—the box and everything in it is ours to
design. The computer network that the box will talk to is not ours to design—it is out
of the design scope.

 

Table 3.3.   

 

Sample Use Case Briefs

 

Actor Goal Brief

 

Production 
Staff

Modify the 
administrative 
area lattice

Production staff adds administrative area metadata 
(administrative hierarchy, currency, language code, 
street types, etc.) to the reference database. Contact 
information for source data is cataloged. This is a spe-
cial case of updating reference data.

Production 
Staff

Prepare digital 
cartographic 
source data

Production staffs convert external digital data to a 
standard format and validate and correct it in prepara-
tion for merging with an operational database. The 
data is cataloged and stored in a digital source library.

Production 
and Field 
Staff

Commit up-
date transac-
tions of a 
shared check-
out to an 
operational 
database

Staff applies accumulated update transactions to an 
operational database. Nonconflicting transactions are 
committed to the operational database. The applica-
tion context is synchronized with the operational data-
base. Committed transactions are cleared from the 
application context, leaving the operational database 
consistent, with conflicting transactions available for 
manual/interactive resolution.
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From now on, when I write 

 

scope

 

 alone, I mean 

 

design scope

 

. This is because the
functional scope is adequately defined by the actor-goal list and the use cases, while
the design scope is a topic of concern in every use case. 

As the following story illustrates, it is very important that the writer and reader
are in agreement about the design scope for a use case—and correct. The price of being
wrong can be a factor of two or more in cost, with disastrous results for the outcome
of a contract. The readers of a use case must quickly see what you intend to be inside
the system boundary. That will not be obvious just from the name of the use case or the
primary actor. Systems of different sizes show up even within the same use case set.

Typically, writers consider the scope of the system to be so obvious that they don't
mention it. However, once there are multiple writers and multiple readers, the design
scope of a use case is not obvious at all. One writer is thinking of the entire corpora-
tion as the scope (see Figure 3.1), one is thinking of all of the company's software sys-
tems, one is thinking of the new, client–server system, and one is thinking of only the
client or only the server. Readers, having no clue as to what is meant, get lost or mis-
understand the document. 

What can we do to clear up the misunderstanding?
The only answer I have found is to 

 

label each and every use case with its design
scope

 

, using specific names for the most significant scopes. To be concrete, let us suppose

 

A Short, True Story

 

To help with constructing a fixed-time, fixed-cost bid of a large system, we were walk-
ing through some sample designs. I picked up the printer and spoke its function. The IS 
expert laughed. “You personal computer people crack me up, “he said,” You think we 
just use a little laser printer to print our invoices? We have a huge printing system, 
with a chain printer, batch I/O, and everything. We produce invoices by the boxful!” 

I was shocked. “You mean the printer is not in the scope of the system?“
“Of course not! We'll use the printing system we already have.”
Indeed, we found that there was a complicated interface to the printing system. 

Our system was to prepare a magnetic tape with things to be printed. Overnight, the 
printing system would read the tape and print what it could. It would prepare a reply 
tape describing the results of the printing job, with error records for anything it 
couldn't print. The following day, our system would read back the results and note 
what had not been printed correctly. The design job for interfacing to that tape was 
significant, and completely different from what we had been expecting.

The printing system was not for us to design, but was for us to use. It was out of our 
design scope. (It was, as described in Section 3.3, a supporting actor.) Had we not de-
tected this mistake, we would have written the use case to include it in our scope and 
turned in a bid to build more system than was needed.
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that MyTelCo is designing a NewApp system, which includes a Searcher subsystem.
The design scope names are these:

 

Enterprise

 

 (i.e., 

 

MyTelCo

 

) . You are discussing the behavior of the entire orga-
nization or enterprise in delivering the goal of the primary actor. Label the 

 

Scope

 

field of the use case with the name of the organization—

 

MyTelCo

 

—rather than
just “the company.” If discussing a department, use the department name. Busi-
ness use cases are written at the enterprise scope. 

 

System

 

 (i.e., 

 

NewApp

 

) . This is the piece of hardware or software you are
charged with building. Outside the system are all the pieces of hardware, soft-
ware, and humanity that the system is to interface with. 

 

Subsystem

 

 (i.e., 

 

Searcher

 

) . You have opened up the main system and are
about to talk about how a piece of it works. 

 

Using Graphical Icons to Highlight the Design Scope

 

Consider attaching a graphic to the left of the use case title to signal the design scope
to readers before they start reading. There are no tools at this time to manage the
icons, but I find that drawing them reduces confusion. In this book I label each use
case with its appropriate icon to make it easier for you to note its scope.

As you read the following list, remember that a 

 

black-box

 

 use case does not dis-
cuss the internal structure of the system under discussion while a 

 

white-box

 

 use case
does. 

 

Figure 3.1   

 

Design scope can be any size

Company

Computer Systems

Our Application

Subsystem

Other
Applications

Other
Department

Other
Company
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A 

 

business

 

 use case has the enterprise as its scope. Its graphic is a building. Color
it grey ( ) if you treat the whole enterprise as a black box. Color it white ( ) if
you talk about the departments and staff within the organization.

 

A 

 

system

 

 use case has a computer system as its scope. Its graphic is a box. Color
it grey ( ) if you treat it as a black box, white ( ) if you reveal how its compo-
nentry works.

 

A 

 

component

 

 use case is about a subsystem or component of the system under
design. Its graphic is a bolt . See Use Cases 13 through 17 for an example.

 

Design Scope Examples

 

I offer three examples to illustrate systems at different scopes.

 

(1) Enterprise-to-System Scope

 

Suppose that we work for telephone company, 

 

MyTelCo

 

, which is designing a new
system, 

 

Acura

 

, to take orders for services and upgrades. Acura consists of a worksta-
tion connected to a server. The server will be connected to a mainframe running the
old system, 

 

BSSO

 

. BSSO is just a terminal attached to the mainframe. We are not al-
lowed to make any changes to it; we can only use its existing interfaces. 

The primary actors for Acura include the customer, the clerk, various managers,
and BSSO (we are clear that BSSO is not within our scope). 

Let’s find a few of the goals the system should support. The most obvious is “Add
a new service.” We decide that the primary actor for that is the company clerk, acting
on behalf of the customer. We sit down to write a few use cases. 

The immediate question is “What is the system under discussion?” It turns out
that there are two that interest us:

 

MyTelCo

 

. We are interested in the question, “What does MyTelCo’s service look
like to the customer, showing the new service implementation in its complete
form, from initial request to implementation and delivery?” This question is of
double interest. The company managers will want to see how the new system ap-
pears to the outside world, and the implementation team will want to see the
context in which the new system will sit. 

This use case will be written at the enterprise scope ( ), with the Scope field
labeled MyTelCo and the use case written without mention of company-internal
players (no clerks, no departments, no computers). This sort of use case is often
referred to as a 

 

business use case

 

, since it is about the business.

 

Acura

 

. We are interested in the question, “How does Acura's service appear, at its
interface to the clerk or customer on one side and to the BSSO system on the
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other side?” This is the use case the designers care most about, since it states ex-
actly what they are to build. The use case will be written at the system scope
( ), with the Scope field labeled “Acura.” It will freely mention clerks and de-
partments and other computer systems, but not the workstation and the server
subsystems.

We produce two use cases. To avoid having to repeat the same information twice,
we write the enterprise use case at a higher level (the kite symbol), showing MyTelCo
responding to the request, delivering it, and perhaps even charging for it and getting
paid. The purpose of the enterprise use case is to show the context around the new
system. Then we describe in detail the 5- to 20-minute handling of the request in the
user-goal use case having Acura as its scope.

 

Use Case 6  Add New Service (Enterprise) 

 

 
Primary Actor:

 

 Customer

 

Scope:

 

 MyTelCo

 

Level: 

 

Summary
1. Customer calls MyTelCo, requests new service . . .
2. MyTelCo delivers . . . etc. . . .

 

Use Case 7  Add New Service (Acura) 

 

 
Primary Actor:

 

 Clerk for external customer

 

Scope:

 

 Acura

 

Level:

 

 User goal
1. Customer calls in, clerk discusses request with customer.
2. Clerk finds customer in Acura.
3. Acura presents customer’s current service package . . . etc. . . .

 

No use case will be written with a scope of Acura workstation or Acura server, as
these are not of interest to us. Later, someone in the design team may choose to doc-
ument Acura’s subsystem design using use cases. At that time, they will write two use
cases, one with a scope of Acura workstation, the other with a scope of Acura server.
My experience is that these use cases are never written, since there are other adequate
techniques for documenting subsystem architecture.
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Computer Systems

Acura BSSO

Clerk 2Clerk 1

 

(2) Many Computers to One Application

 

The following is a less common situation, but one that is very difficult. Let us build
onto the MyTelCo situation. 

 

Acura will slowly replace BSSO. New service requests will be put into Acura and then 
modified using BSSO. Over time, Acura will take on more function. The two systems 
must co-exist and synchronize with each other. Thus, use cases have to be written for 
both systems: Acura being entirely new and BSSO being modified to synchronize 
with it. 

 

The difficulty in this situation is that there are four use cases, two for Acura and
two for BSSO. There is one use case for each system having the clerk as primary actor
and one having the other computer system as the primary actor. There is no way to
avoid these four use cases, but people looking at them get confused because they look
redundant.

To document this situation, I first write a summary-level use case whose scope is
both computer systems. This gives me a chance to document their interactions over
time. In that use case, I reference the specific use cases that comprise each system’s
requirements. This first use case will be of the white-box type (note the white-box
symbol).

The situation is complicated enough that I also include diagrams of each use
case’s scope. 

 

Use Case 8  Enter and Update Requests (Joint System) 

 

 
Primary Actor: 

 

Clerk for external customer

 

Scope:

 

 Computer systems, including Acura and 
BSSO (see diagram)

 

Level:

 

 Summary

 

Main Success Scenario:

 

1. Clerk adds new service into Acura.
2. Acura notes new service request in BSSO.
3. Some time later, Clerk updates service request in BSSO. 
4. BSSO notes the updated request in Acura.

 

The four sub use cases are all user-goal use cases and get marked with the sea-
level symbol. Although they are all system use cases, they are for different systems—
hence the diagrams. In each diagram, I circle the primary actor and shade the SuD.
The use cases are black-box this time, since they are requirements for new work. In
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addition, I give them slightly different verb names, using the verb “note” to indicate
one system synchronizing with the other.

 

Use Case 9  Add New Service (into Acura) 

 

 
Primary Actor: Clerk for external customer
Scope: Acura
Level: User goal
. . . use case body follows. . . 

 

Use Case 10  Note New Service Request (in BSSO) 

 

 
Primary Actor:

 

 Acura

 

Scope:

 

 BSSO

 

Level:

 

 User goal
. . . use case body follows. . . 

 

Use Case 11  Update Service Request (in BSSO) 

 

 
Primary Actor:

 

 Clerk for external customer

 

Scope: 

 

BSSO

 

Level:

 

 User goal
. . . use case body follows. . . 

 

Use Case 12  Note Updated Request (in Acura) 

 

 
Primary Actor:

 

 BSSO

 

Scope: 

 

Acura

 

Level:

 

 User Goal
. . . use case body follows. . . 

 

If you are using UML use case diagrams, you might draw the summary-level use
case instead of writing it. That still does not reduce the confusion within the four
user-goal use cases, so you should still carefully mark their primary actor, scope, and
level, and possibly still draw the scope diagrams within the use cases. 

Computer Systems

Acura BSSO

Clerk 1

Computer Systems

Acura BSSO

Clerk 1

Computer Systems

Acura BSSO

Clerk 2

Computer Systems

Acura BSSO

Clerk 2
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Personally, I do not find that this eliminates much confusion. I would consider
drawing the nonstandard use case diagram in Figure 3.3 to show the connection be-
tween the two systems. This diagram is clearer but harder to maintain over time.
Draw whichever you and your readers find communicates best for you. 

 

Figure 3.2   Use case diagrams for Acura–BSSO

 

. This is the UML style of denoting the inter-
actions between the two systems. The upper section shows that BSSO is a supporting actor to 
one use case of Acura and a primary actor to another use case. In the lower diagram, the roles 
are reversed.

Figure 3.3   A combined use case diagram for Acura-BSSO. This drawing shows the 
relationships of the four use cases most clearly, but is nonstandard, since it shows one system’s 
use case triggering another system’s use case.

BSSO

Note new service request

Update service requestClerk

Acura

Acura

Acura

Note updated request

Add new serviceClerk

BSSO

BSSO

BSSO

Note new service request

Update service request
Clerk

Acura

Note updated request
Add new service
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(3) Nuts and Bolts Use Cases

 

At the far end of the scale, let’s look at the way one group documented their design
framework with use cases. They started with an 18-page, diagram-loaded description
of the rules for their framework. They decided it was too hard to read and experi-
mented with use cases as the descriptive technique. 

The group spent one week on the task. First they drafted 40 use cases to make
sure they had captured all the requests their framework would handle. Using exten-
sions and the data variations list, they revised those down to just six. 

Most readers will find these use cases incomprehensible because they are not in
that business. However, I expect some readers to be technical programmers looking
for ways to document their designs, so I include these use cases to show how this
group documented an internal architecture and how they made use of the variations
list. I find them fairly easy to read, given the complexity of their problem. Notice that
sub use cases are underlined. Thanks to Dale Margel in Calgary for the writing.

 

General Description: 

 

The overall architecture must be able to handle concurrent tasks. To do this, it must 
support Process Threads and Resource Locking. These services are handled by the 
Concurrency Service Framework (CSF). CSF is used by client objects to protect critical 
sections of code from unsafe access by multiple processes. 

 

Use Case 13  Serialize Access to a Resource 

 

 
Primary Actor:

 

 Service Client object
Scope: Concurrency Service Framework (CSF)
Level: User goal
Main Success Scenario:
1. Service Client asks a Resource Lock to give it specified access.
2. The Resource Lock returns control to the Service Client so that it may use the 

Resource.
3. Service Client uses the Resource.
4. Service Client informs the Resource Lock that it is finished with the Resource.
5. Resource Lock cleans up after the Service Client.
Extensions:
2a. Resource Lock finds that Service Client already has access to the resource:

2a1. Resource Lock applies a lock conversion policy (Use Case 14) to the request.
2b. Resource Lock finds that the resource is already in use:

2b1. The Resource Lock applies a compatibility policy (Use Case 15) to grant ac-
cess to the Service Client.

2c. Resource Locking Holding time limit is nonzero:
2c1. Resource Lock starts the holding timer.
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3a. Holding Timer expires before the Client informs the Resource Lock that it is 
finished:

3a1. Resource Lock sends an Exception to the Client's process.
3a2. Fail!

4a.  Resource Lock finds nonzero lock count on Service Client:
4a1. Resource Lock decrements the reference count of the request.
4a2. Success!

5a.  Resource Lock finds that the resource is currently not in use:
5a1. Resource Lock applies an access selection policy (Use Case 16) to grant 

access to any suspended service clients.
5b.  Holding Timer is still running:

5b1. Resource Lock cancels Holding Timer.
Technology and Data Variations List:
1. The specified requested access can be:

For exclusive access
For shared access

2c. The lock holding time-out can be specified by:
The Service Client
A Resource Locking policy
A global default value

Use Case 14  Apply a Lock Conversion Policy 
 

Primary Actor: Client object
Scope: Concurrency Service Framework (CSF)
Level: Subfunction 
Main Success Scenario:
1. Resource Lock verifies that request is for exclusive access.
2. Resource Lock verifies that Service Client already has shared access.
3. Resource Lock verifies that there is no Service Client waiting to upgrade access.
4 Resource Lock verifies that there are no other Service Clients sharing the resource.
5. Resource Lock grants Service Client exclusive access to the resource.
6. Resource Lock increments Service Client lock count.
Extensions:
1a.  Resource Lock finds that the request is for shared access:

1a1.  Resource Lock increments lock count on Service Client.
1a2.  Success!

2a.  Resource Lock finds that the Service Client already has exclusive access:
2a1.  Resource Lock increments lock count on Service Client.
2a2.  Success!
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3a.  Resource Lock finds that there is another Service Client waiting to upgrade access:
3a1.  Signal Service Client that requested access could not be granted.
3a2.  Fail!

4a. Resource Lock finds that there are other Service Clients using the resource:
4a1.  Resource Lock makes Service Client wait for resource access (Use Case 17).

Use Case 15  Apply an Access Compatibility Policy 
 

Primary Actor: Service Client object
Scope: Concurrency Service Framework (CSF)
Level: Subfunction
Main Success Scenario:
1. Resource Lock verifies that request is for shared access.
2. Resource Lock verifies that all current usage of resource is for shared access.
Extensions:
2a.  Resource Lock finds that the request is for exclusive access:

2a1. Resource Lock makes Service Client wait for resource access (Use Case 17)
(the process is resumed later by the Lock serving strategy).

2b. Resource Lock finds that the resource is being exclusively used:
2b1.  Resource Lock makes Service Client wait for resource access (Use Case 17)

Variations:
1. The compatibility criterion may be changed.

Use Case 16  Apply an Access Selection Policy 
 

Primary Actor: Client object
Scope: Concurrency Service Framework (CSF)
Level: Subfunction 
Main Success Scenario:
Goal in Context: Resource Lock must determine which (if any) waiting requests 
should be served.
Note: This strategy is a point of variability.
1. Resource Lock selects oldest waiting request.
2. Resource Lock grants access to selected request(s) by making its process runnable.
Extensions:
1a. Resource Lock finds no waiting requests:

1a1.  Success!
1b. Resource Lock finds a request waiting to be upgraded from a shared to an ex-

clusive access:
1b1.  Resource Lock selects the upgrading request.
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1c. Resource Lock selects a request that is for shared access:
1c1.  Resource repeats [Step 1] until the next one is for exclusive access.

Variations:
1. The selection ordering criterion may be changed.

Use Case 17  Make Service Client Wait for Resource Access 
 

Primary Actor: Client object
Scope: Concurrency Service Framework (CSF)
Level: Subfunction 
Main Success Scenario:
Used By: CC 2,4 Resource Locking:
1. Resource Lock suspends Service Client process.
2. Service Client waits until resumed.
3. Service Client process is resumed.
Extensions:
1a. Resource Lock finds that a waiting time-out has been specified:

1a1. Resource Lock starts timer.
2a. Waiting Timer expires:

2a1. Signal Service Client that requested access could not be granted.
2a2. Fail!

Technology and Data Variations List:
1a1. The Lock waiting time-out can be specified by:

The Service Client
A Resource Locking policy
A global default value

3.3 THE OUTERMOST USE CASES
In the Enterprise-to-System Scope subsection on page 41, I recommend writing two
use cases, one for the system under design and one at an outer scope. Now we can get
more specific about that: For each use case, find the outermost design scope at which
it still applies and write a summary-level use case at that scope. 

The use case is written to a design scope. Usually, you can find a wider design
scope that still has the primary actor outside it. If you keep widening the scope, you
reach the point at which widening it farther would bring the primary actor inside.
That is the outermost scope. Sometimes the outermost scope is the enterprise, some-
time the department, and sometimes just the computer. Often, the computer depart-
ment is the primary actor on computer security use cases, the marketing department
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is the primary actor on advertising use cases, and the customer is the primary actor
on the main system function use cases.

Typically, there are only two to five outermost use cases for the entire system, so
not every use case gets written twice. There are so few of them because each one
merges the primary actors having similar goals on the same design scope, and pulls
together all the lower-level use cases for those actors.

I highly recommend writing the outermost use cases because it takes very little
time and provides excellent context for the use case set. The outermost use cases
show how the system ultimately benefits the most external users of the system; they
also provide a table of contents for browsing through the system’s behavior.

Let’s visit the outermost use cases for MyTelCo and its Acura system.

MyTelCo decides to let web-based customers access Acura directly to reduce the 
load on the clerks. Acura will also report on the clerks’ sales performance. Some-
one will have to set security access levels for customers and clerks. We have four 
use cases: Add Service (by Customer), Add Service (by Clerk), Report Sales Perfor-
mance, and Manage Security Access.

We know we will have to write all four use cases with Acura as the scope of the
SuD. We need to find the outermost scope for each of them.

The customer is clearly outside MyTelCo, so there is one outermost use case with
the customer as primary actor and MyTelCo as scope. This use case will be at the sum-
mary level, showing MyTelCo as a black box, responding to the customer’s request,
delivering the service, and so on. In fact, the use case is outlined in Use Case 6, Add
New Service (Enterprise), on page 42.

The clerk is inside MyTelCo. The outermost scope for Add Feature (by Staff) is All
Computer Systems. This use case will gather all the interactions the clerks have with the
computer systems. I would expect all the clerks’ user-goal use cases to be in this out-
ermost use case, along with a few subfunction use cases, such as Log In and Log Out.

Report Sales Performance has the Marketing Department as the ultimate primary
actor. The outermost use case is at scope Service Department and shows the Market-
ing Department interacting with All Computer Systems and the Service Department
for setting up performance bonuses, reporting sales performance, and so on.

Manage Security Access has the Security or IT Department as its ultimate pri-
mary actor and either the IT Department or All Computer Systems as the outermost
design scope. The use case references all the ways the Security Department uses All
Computer Systems to set and track security issues.

Notice that these four outermost use cases cover security, marketing, service,
and customers, using Acura in all the ways that it operates. It is unlikely that more
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than these four need to be written for the Acura system, even if there are a hundred
lower-level use cases to write.

3.4 USING THE SCOPE-DEFINING WORK PRODUCTS
You are defining the functional scope for your upcoming system, brainstorming, and
moving between several work products on the whiteboard. On one part of the white-
board, you have the in/out list to keep track of your scoping decisions (“No, Bob, we
decided that a new printing system is out of scope—or do we need to revisit that entry
in the in/out list?”). You have the actors and their goals in a list. You have a drawing
of the design scope, showing the people, organizations, and systems that will interact
with the system under discussion. 

You find that you are evolving them all as you move between them, working out
what you want your new system to do. You think you know what the design scope is,
but a change in the in/out list moves the boundary. Now you have a new primary ac-
tor, and the goal list changes.

Sooner or later, you will probably find that you need a fourth item: a vision statement
for the new system. The vision statement holds together the overall discussion. It helps
you decide whether something should be in scope or out of scope in the first place. 

When you are done, you have the four work products that bind the system’s
scope:

Vision statement

Design scope drawing

In/out list

Actor-goal list

What I want you to take from this short discussion is that the four work products
are intertwined and that you are likely to change them all while establishing the
scope of the work to be done.

3.5 EXERCISES

Design Scope
3.1. Name at least five system design scopes that the following user story fragment could be

about: “. . . Jenny is standing in front of her bank's ATM. It is dark. She has entered her PIN
and is looking for the Enter button . . .”

3.2. Draw a picture of the multiple scopes for an ATM, including hardware and software.
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3.3. What system are you, personally, writing requirements for? What is its extent? What is inside
it? What is outside it that it must communicate with? What is the system that encloses it,
and what is outside that containing system that it must communicate with? Give the enclos-
ing system a name.

3.4. Draw a picture of the multiple scopes for the Personal Advisors/Finance (PAF) system. (See
Excercise 4.4.)

3.5. Draw a picture of the multiple scopes for a web application in which a user’s workstation is
connected through the web to your company’s web server, which is attached to a legacy
mainframe system.

3.6. Describe the difference between enterprise-scope white-box business use cases and enter-
prise-scope black-box business use cases.
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Readability of use cases (Reminder 2), 205–206, 

217
Reasonable set of actions steps (Guideline 6), 

93–95
Recovery (fifth work step), 222–223
Reference to another use case (underlined), 3
Relational databases, 229
Releases and use cases, 169–170, 230
Releases for scaling up, 144
Reminders, 205–230

actor-goal lists versus case diagrams, 218
actors play roles (Reminder 23), 57–58, 226
alternative paths, 217
bird’s eye view (Guideline 3), 91, 217
black-box requirements, 217
business process modeling, prior to use 

cases, 218
business versus system use cases (Reminder 

13), 216
case diagrams versus actor-goal lists, 218
CASE tools, 127, 227, 230
casual versus fully dressed, 218

collaboration diagrams (UML) versus white-
box cases, 218

core values and variations (Reminder 14), 
216–219

data field details and checks (seventh work 
step), 223

data fields (sixth work step), 223
endings (two) of use cases (Reminder 8), 

209–210
energy management, 16–17, 217, 221–223
ever-unfolding story (Reminder 12), 26, 62, 

215
failure conditions (fourth work step), 16–17, 

222
failure handling (Reminder 21), 17, 225
fully dressed versus casual, 218
goal-based core value, 216
goal level, getting right (Reminder 6), 68–69, 

208
goals (second work step), 221–222
graphical notations (Reminder 24), 127–128, 

227–228
guarantees for stakeholders (Reminder 9), 2, 

83–85, 210–211, 248
GUIs, keeping out (Reminder 7), 209, 219
Holistic Diversity pattern, 224
if-statement style, 126, 138, 218
includes relation, sub use cases (Reminder 4), 

207
job titles (Reminder 22), 225–226
length of use cases (Reminder 20), 69, 224
Lotus Notes for tool, 229
main success scenarios (third work step), 3, 

17, 28, 87–89, 222
mistakes, costs of (Reminder 19), 223–224
numbered steps versus paragraphs, 97, 218
paragraphs versus numbered steps, 97, 218
pass/fail tests (Reminder 10), 211–213
preconditions (Reminder 10), 2, 81–83, 

211
primary actors (first work step), 221–222
project planning, 167–170, 230 (Reminder 26)
prose essay, use cases as (Reminder 1), 205
purposes (several) of uses cases, 217
quality questions (Reminder 15), 11, 219
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readability of use cases (Reminder 2), 205–
206, 217

recovery (fifth work step), 222–223
relational databases for, 229
releases and use cases, 169–170, 230
requirements and use cases (Reminder 16), 

13–15, 19, 221
requirements management tools, 230
roles and actors (Reminder 23), 57–58, 226
sentence form (one) (Reminder 3), 206–207
sequence diagrams as use case text, 219
stakeholders need guarantees (Reminder 9), 

2, 83–85, 210–211, 248
sub use cases, includes relation (Reminder 4), 

207
system versus business use cases (Reminder 

13), 216
tool debate (Reminder 25), 229–230
12-step recipe (Reminder 18), 223
white-box cases versus collaboration dia-

grams (UML), 218
“Who has the ball?” (Guideline 2, Reminder 

5), 90–91, 207
word processors with hyperlinks for tool, 229
work breadth first (Reminder 17), 221–223

Repeating actions steps, 96–97
Requirements. 

 

See also

 

 Missing requirements; 
Use cases

discovery, 11–12, 133
elicitation standard, 132–133
management tools, 230
sizing requirements standard, 132, 135
use cases and (Reminder 16), 13–15, 19, 221

RequisitePro, 230
Resources and formats, 131
Responsibility-Driven Design, 177
Robertson, James, 13
Robertson, Suzanne, 13
Roles and actors (Reminder 23), 57–58, 226
Rollup failures, extensions, 105–106
Roshi, 211
RUP. 

 

See

 

 Rational Unified Process

Sampson, Steve, 70
Sawyer, Jim, 8
Scaling up, 143–144

Scenarios. 

 

See also

 

 Action steps; Extensions
body, 89
collection, 27–29
condition for, 88
contract for behavior, 25
defined, 1, 3
delivery and, 170
design and, 177
end condition, 88
extensions, 88
goal to achieve, 88
main success scenarios, 3, 17, 28, 87–89, 222

Schicktanz, Jill, 70
Scope (design scope), 35–52

actor-goal list for, 36–37, 51
business priority, 36
defined, 2
development complexity, 36
development priority, 37
enterprise-to-system scope, 41–42
exercises, 51–52, 245
functions scope, 36–38
graphical icons for, 40–41
graphical model, 45, 51
in/out list for, 35–36, 51
many computers to one application, 43–45
nuts and bolts use cases, 41, 46–49
outermost scope use cases, 49–51, 65–66, 

215
triggers, 36
Unified Modeling Language (UML), 44–45
use case briefs for, 37–38, 187
Use Case 6 (Add New Service, Enterprise), 

42, 50
Use Case 7 (Add New Service, Acura), 42
Use Case 8 (Enter and Update Requests, Joint 

System), 43, 59
Use Case 9 (Add New Service into Acura), 44
Use Case 10 (Note New Service Requests in 

BSSO), 44
Use Case 11 (Update Service Request in 

BSSO), 44
Use Case 12 (Note Updated Request in 

Acura), 44
Use Case 13 (Serialize Access to a Resource), 

46–47, 112
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Use Case 14 (Apply a Lock Conversion Policy), 
47–48

Use Case 15 (Apply an Access Compatibility 
Policy), 48

Use Case 16 (Apply an Access Selection Policy), 
48–49

Use Case 17 (Make Service Client Wait for 
Resource Access), 49

vision statements, 51
Scott, Dave, 194–202
Sea-level waves graphic, blue, exclamation 

mark (user-goal use cases), 3–4, 6–7, 
9–11, 62–64

Secondary actors. 

 

See

 

 Supporting actors
Sentence form for action steps (Reminder 3), 

206–207
Sequence diagrams as use case text, 219
Sequences of interactions, 25–27
Services, business process modeling, 154
Sets of possible sequences, 26–27
Short, high-pressure project standard, 132, 136
Silent (offstage) actors, 30, 53–54
Situations for use cases, 7–11
Sizing requirements standard, 132, 135
Social interaction and formats, 129
Software Futures CCH, 108
S.R.A., 116, 145
Stakeholders. 

 

See also

 

 Actors
business process modeling, 154
defined, 1–2, 53–54
interests conceptual model, 29–31
need guarantees (Reminder 9), 2, 83–85, 

210–211, 248
needs and formats, 129

Standards, 11, 132–137
Statements, vision, 51
Steps. 

 

See

 

 Action steps
Strategic use cases (cloud/kite graphic, white, 

plus sign), 3, 7, 62–67, 142, 144
Striped trousers image, contract for behavior, 

27–29
Subforms of use cases, 7–11
Subfunctions (underwater fish/clam graphic, 

indigo/black, minus sign), 3, 7, 62–63, 
66–67, 69, 142

Subgoals, contract for behavior, 23–24
Subject area for scaling up, 144
Subordinate versus sub use cases, UML, 242
Sub use cases

includes relation (Reminder 4), 207
linking, 113

Success guarantees, 84–85, 248
SuD. 

 

See

 

 System under discussion
“Sufficient” use cases, 5
Summary use cases (cloud/kite graphic, white, 

plus sign), 3, 7, 62–67, 142, 144
Supporting (secondary) actors

contract for behavior, 23–24
defined, 59
on right in UML (Guideline 18), 243

Swift, Jonathan, 24
System under discussion (SuD)

actors, 59
contract for behavior, 24–25, 29
defined, 2
delivery and primary actors, 57
detection of condition (Guideline 11), 102–103
none mistake, 189–190

System use cases (box graphic, grey/white), 3–7, 
9–11, 41, 157–159, 216

System versus business use cases (Reminder 
13), 216

Systems interaction (Guideline 9), 96

Table format, 121–122
Task lists from use cases, 171–174
Tasks versus goals format, 131
Technology and data variations, 111–112
Technology to business process, 157
Template for use cases, 7
Tertiary (offstage) actors, 30, 53–54
Test cases from project planning, 178–180
Text-based use cases versus UML, 243
Thomas, Dave, 227
Thomsett, Rob, 35
Time required per use case, 184
Timing (Guideline 8), 95–96
Tool debate (Reminder 25), 229–230
Tools, CASE, 127, 227, 230
Triggers

actors and, 54–55



 

Index

 

269

 

business process modeling, 154
completion and, 141–142
defined, 84–85
scope and, 36

12-step recipe (Reminder 18), 223
Two-column table format, 122

UI. 

 

See

 

 User interface
Ultimate primary actors, 54–55
UML. 

 

See

 

 Unified Modeling Language
Underlining for linking use cases, 3, 113
Understanding level and formats, 129
Underwater fish/clam graphic, indigo/black, 

minus sign (subfunctions), 3, 7, 62–
63, 66–67, 69, 142

Unified Modeling Language (UML), 233–243
actors, 58
arrow shapes, using different (Guideline 15), 

236–237
collaboration diagrams versus white-box 

cases, 218
contract for behavior, 31
drawing use case diagrams, 242–243
ellipses and stick figures, 233–234
extend relations, 235–238
extension points, 237–238
extension use cases, 114–115
extension use cases, drawing lower (Guide-

line 14), 236
formats, 128
general goals, drawing higher (Guideline 

16), 240
generalizes relations, 236, 239–241
higher-level goals (Guideline 13), 235
includes relations, 234–236
linking use cases, 114–115
packages, 143
scope, 44–45
subordinate versus sub use cases, 242
supporting actors on right (Guideline 18), 243
text-based use cases versus, 243
user goals in context diagram (Guideline 

17), 243
Usage experts, 156–157
Usage narratives, 17–19

Use case briefs for scope, 37–38, 187
Use cases, 1–19. 

 

See also

 

 Action steps; Actors; 
Formats; Linking use cases; Project 
planning; Requirements; Scope 
(design scope)

accuracy, 17
adding value with, 15–16
black-box use cases (grey), 4–7, 9–11, 40–41
brainstorming using, 12
brainstorming with, 16
business use cases (building graphic, grey/

white), 3, 7, 41
casual use cases, 7–9, 97, 120, 218
completion, 141–142
component use cases (bolt graphic), 41, 

46–49
Create, Retrieve, Update, Delete (CRUD) use 

cases, 145–150
defined, 1–3
dive-and-surface approach using, 12
documenting requirements using, 12
energy management, 16–17, 217, 221–223
eXtreme Programming (XP), 187, 223–224
failure conditions, 16–17
failure handling (Reminder 21), 17, 225
form of, 1
fully dressed use cases, 4–11, 97, 119–120, 218
guarantees (Reminder 9), 2, 83–85, 210–211, 

248
“Hub-and-Spoke” requirements model, 15, 164
length of (Reminder 20), 69, 224
level of view, 2, 7
main success scenarios (MSS), 3, 17, 28, 87–

89, 222
parameterized use cases, 150–151
preconditions (Reminder 10), 2, 81–83, 211
project-linking software as, 14–15
purpose and writing style, 7–11
quality questions (Reminder 15), 11, 219
reference to another use case (underlined), 

3, 113
scaling up, 143–144
situations for, 7–11
standards, 11, 132–137
subforms of, 7–11
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subfunctions (underwater fish/clam graphic, 
indigo/black, minus sign), 3, 7, 62–63, 
66–67, 69, 142

“sufficient” use cases, 5
summary (cloud/kite graphic, white, plus 

sign), 3, 7, 62–67, 142, 144
system use cases (box graphic, grey/white), 

3–7, 9–11, 41, 157–159, 216
techniques, 11
technology and data variations, 111–112
template for, 7
usage narratives, 17–19
user-goal level (sea-level waves graphic, 

blue, exclamation mark), 3–4, 6–7, 
9–11

user goals stated with, 15–16
white-box use cases, 7, 40–41, 59–60, 218

User goals
context diagram in UML (Guideline 17), 

243
use cases for stating, 15–16
use cases (sea-level waves graphic, blue, 

exclamation mark), 3–4, 6–7, 9–11, 
62–64

User interface (UI)
design from use cases, 177–178
details, too many, 191–192, 194–202

User stories, 187

Validation
checking versus (Guideline 7), 95
stakeholders' protection, 31

Vision statements for scope, 51
View of system’s functions, 180–183
“VW-Staging” (Cockburn), 142, 170

Walters, Russell, 158–160, 194–202, 205
Waves graphic, blue, exclamation mark (user-

goal use cases), 3–4, 6–7, 9–11, 62–64
White, cloud/kite graphic, plus sign (summary 

use cases), 3, 7, 62–67, 142, 144
White-box use cases, 7, 40–41, 59–60, 218
White/grey, box graphic (system use cases), 3–7, 

9–11, 41, 157–159, 216
White/grey, building graphic (business use 

cases), 3, 7, 41
“Who has the ball?” (Guideline 2, Reminder 5), 

90–91, 207
Williams, Alan, 116–117
Wirfs-Brock, Rebecca, 122, 235
Word processors with hyperlinks for tool, 229
Work breadth first (Reminder 17), 221–223
Writing. 

 

See also

 

 Use cases
project plans, 180–186
styles, forces affecting, 128–132

XP (eXtreme Programming), 187, 223–224
Young, Steve, 38
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