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Preface 

Have you ever... 

wasted a lot of time coding the wrong algorithm? 
used a data structure that was much too complicated? 
tested a program but missed an obvious problem? 
spent a day looking for a bug you should have found in five minutes? 
needed to make a program run three times faster and use less memory? 
struggled to move a program from a workstation to a PC or vice versa? 
tried to make a modest change in someone else's program? 
rewritten a program because you couldn't understand it? 

Was it fun? 
These things happen to programmers all the time. But dealing with such problems 

is often harder than it should be because topics like testing, debugging, portability, 
performance, design alternatives, and style—the practice of programming—are not 
usually the focus of computer science or programming courses. Most programmers 
learn them haphazardly as their experience grows, and a few never learn them at all. 

In a world of enormous and intricate interfaces, constantly changing tools and lan
guages and systems, and relentless pressure for more of everything, one can lose sight 
of the basic principles—simplicity, clarity, generality—that form the bedrock of good 
software. One can also overlook the value of tools and notations that mechanize some 
of software creation and thus enlist the computer in its own programming. 

Our approach in this book is based on these underlying, interrelated principles, 
which apply at all levels of computing. These include simplicity, which keeps pro
grams short and manageable; clarity, which makes sure they are easy to understand, 
for people as well as machines; generality, which means they work well in a broad 
range of situations and adapt well as new situations arise; and automation, which lets 
the machine do the work for us, freeing us from mundane tasks. By looking at com
puter programming in a variety of languages, from algorithms and data structures 
through design, debugging, testing, and performance improvement, we can illustrate 

ix 
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universal engineering concepts that are independent of language, operating system, or 
programming paradigm. 

This book comes from many years of experience writing and maintaining a lot of 
software, teaching programming courses, and working with a wide variety of pro
grammers. We want to share lessons about practical issues, to pass on insights from 
our experience, and to suggest ways for programmers of all levels to be more profi
cient and productive. 

We are writing for several kinds of readers. I f you are a student who has taken a 
programming course or two and would like to be a better programmer, this book wil l 
expand on some of the topics for which there wasn't enough time in school. I f you 
write programs as part of your work, but in support of other activities rather than as 
the goal in itself, the information wil l help you to program more effectively. I f you 
are a professional programmer who didn't get enough exposure to such topics in 
school or who would like a refresher, or i f you are a software manager who wants to 
guide your staff in the right direction, the material here should be of value. 

We hope that the advice wil l help you to write better programs. The only prereq
uisite is that you have done some programming, preferably in C, C++ or Java. Of 
course the more experience you have, the easier it wi l l be; nothing can take you from 
neophyte to expert in 21 days. Unix and Linux programmers wil l find some of the 
examples more familiar than wil l those who have used only Windows and Macintosh 
systems, but programmers from any environment should discover things to make their 
lives easier. 

The presentation is organized into nine chapters, each focusing on one major 
aspect of programming practice. 

Chapter 1 discusses programming style. Good style is so important to good pro
gramming that we have chosen to cover it first. Well-written programs are better than 
badly-written ones—they have fewer errors and are easier to debug and to modify— 
so it is important to think about style from the beginning. This chapter also intro
duces an important theme in good programming, the use of idioms appropriate to the 
language being used. 

Algorithms and data structures, the topics of Chapter 2, are the core of the com
puter science curriculum and a major part of programming courses. Since most read
ers wi l l already be familiar with this material, our treatment is intended as a brief 
review of the handful of algorithms and data structures that show up in almost every 
program. More complex algorithms and data structures usually evolve from these 
building blocks, so one should master the basics. 

Chapter 3 describes the design and implementation of a small program that illus
trates algorithm and data structure issues in a realistic setting. The program is imple
mented in five languages; comparing the versions shows how the same data structures 
are handled in each, and how expressiveness and performance vary across a spectrum 
of languages. 
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Interfaces between users, programs, and parts of programs are fundamental in pro
gramming and much of the success of software is determined by how well interfaces 
are designed and implemented. Chapter 4 shows the evolution of a small library for 
parsing a widely used data format. Even though the example is small, it illustrates 
many of the concerns of interface design: abstraction, information hiding, resource 
management, and error handling. 

Much as we try to write programs correctly the first time, bugs, and therefore 
debugging, are inevitable. Chapter 5 gives strategies and tactics for systematic and 
effective debugging. Among the topics are the signatures of common bugs and the 
importance of "numerology," where patterns in debugging output often indicate 
where a problem lies. 

Testing is an attempt to develop a reasonable assurance that a program is working 
correctly and that it stays correct as it evolves. The emphasis in Chapter 6 is on sys
tematic testing by hand and machine. Boundary condition tests probe at potential 
weak spots. Mechanization and test scaffolds make it easy to do extensive testing 
with modest effort. Stress tests provide a different kind of testing than typical users 
do and ferret out a different class of bugs. 

Computers are so fast and compilers are so good that many programs are fast 
enough the day they are written. But others are too slow, or they use too much mem
ory, or both. Chapter 7 presents an orderly way to approach the task of making a pro
gram use resources efficiently, so that the program remains correct and sound as it is 
made more efficient. 

Chapter 8 covers portability. Successful programs live long enough that their 
environment changes, or they must be moved to new systems or new hardware or new 
countries. The goal of portability is to reduce the maintenance of a program by mini
mizing the amount of change necessary to adapt it to a new environment. 

Computing is rich in languages, not just the general-purpose ones that we use for 
the bulk of programming, but also many specialized languages that focus on narrow 
domains. Chapter 9 presents several examples of the importance of notation in com
puting, and shows how we can use it to simplify programs, to guide implementations, 
and even to help us write programs that write programs. 

To talk about programming, we have to show a lot of code. Most of the examples 
were written expressly for the book, although some small ones were adapted from 
other sources. We've tried hard to write our own code well, and have tested it on half 
a dozen systems directly from the machine-readable text. More information is avail
able at the web site for The Practice of Programming: 

http://tpop.awl.com 

The majority of the programs are in C, with a number of examples in C++ and 
Java and some brief excursions into scripting languages. At the lowest level, C and 
C++ are almost identical and our C programs are valid C++ programs as well. C++ 
and Java are lineal descendants of C, sharing more than a little of its syntax and much 
of its efficiency and expressiveness, while adding richer type systems and libraries. 
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In our own work, we routinely use all three of these languages, and many others. The 
choice of language depends on the problem: operating systems are best written in an 
efficient and unrestrictive language like C or C++; quick prototypes are often easiest 
in a command interpreter or a scripting language like Awk or Perl; for user interfaces, 
Visual Basic and Tcl/Tk are strong contenders, along with Java. 

There is an important pedagogical issue in choosing a language for our examples. 
Just as no language solves all problems equally well, no single language is best for 
presenting all topics. Higher-level languages preempt some design decisions. I f we 
use a lower-level language, we get to consider alternative answers to the questions; by 
exposing more of the details, we can talk about them better. Experience shows that 
even when we use the facilities of high-level languages, it's invaluable to know how 
they relate to lower-level issues; without that insight, it's easy to run into performance 
problems and mysterious behavior. So we wil l often use C for our examples, even 
though in practice we might choose something else. 

For the most part, however, the lessons are independent of any particular program
ming language. The choice of data structure is affected by the language at hand; there 
may be few options in some languages while others might support a variety of alterna
tives. But the way to approach making the choice wil l be the same. The details of 
how to test and debug are different in different languages, but strategies and tactics 
are similar in all. Most of the techniques for making a program efficient can be 
applied in any language. 

Whatever language you write in, your task as a programmer is to do the best you 
can with the tools at hand. A good programmer can overcome a poor language or a 
clumsy operating system, but even a great programming environment wil l not rescue 
a bad programmer. We hope that, no matter what your current experience and skill, 
this book wil l help you to program better and enjoy it more. 

We are deeply grateful to friends and colleagues who read drafts of the manuscript 
and gave us many helpful comments. Jon Bentley, Russ Cox, John Lakos, John Lin-
derman, Peter Memishian, Ian Lance Taylor, Howard Trickey, and Chris Van Wyk 
read the manuscript, some more than once, with exceptional care and thoroughness. 
We are indebted to Tom Cargill, Chris Cleeland, Steve Dewhurst, Eric Grosse, 
Andrew Herron, Gerard Holzmann, Doug Mcllroy, Paul McNamee, Peter Nelson, 
Dennis Ritchie, Rich Stevens, Tom Szymanski, Kentaro Toyama, John Wait, Daniel 
C. Wang, Peter Weinberger, Margaret Wright, and Cliff Young for invaluable com
ments on drafts at various stages. We also appreciate good advice and thoughtful sug
gestions from A l Aho, Ken Arnold, Chuck Bigelow, Joshua Bloch, Bi l l Coughran, 
Bob Flandrena, Renee French, Mark Kernighan, Andy Koenig, Sape Mullender, Evi 
Nemeth, Marty Rabinowitz, Mark V. Shaney, Bjarne Stroustrup, Ken Thompson, and 
Phil Wadler. Thank you all. 

Brian W. Kernighan 

Rob Pike 
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3 
Design and Implementation 

Show me your flowcharts and conceal your tables, and I shall con
tinue to be mystified. Show me your tables, and I won't usually 
need your flowcharts; they 'II be obvious. 

Frederick P. Brooks, Jr., The Mythical Man Month 

As the quotation from Brooks's classic book suggests, the design of the data struc
tures is the central decision in the creation of a program. Once the data structures are 
laid out, the algorithms tend to fall into place, and the coding is comparatively easy. 

This point of view is oversimplified but not misleading. In the previous chapter 
we examined the basic data structures that are the building blocks of most programs. 
In this chapter we wil l combine such structures as we work through the design and 
implementation of a modest-sized program. We wil l show how the problem influ
ences the data structures, and how the code that follows is straightforward once we 
have the data structures mapped out. 

One aspect of this point of view is that the choice of programming language is rel
atively unimportant to the overall design. We wil l design the program in the abstract 
and then write it in C, Java, C++, Awk, and Perl. Comparing the implementations 
demonstrates how languages can help or hinder, and ways in which they are unimpor
tant. Program design can certainly be colored by a language but is not usually domi
nated by it. 

The problem we have chosen is unusual, but in basic form it is typical of many 
programs: some data comes in, some data goes out, and the processing depends on a 
little ingenuity. 

Specifically, we're going to generate random English text that reads well. I f we 
emit random letters or random words, the result wi l l be nonsense. For example, a pro
gram that randomly selects letters (and blanks, to separate words) might produce this: 

xptmxgn xusaja afqnzgxl 1 hid!wed rjdjuvpydrlwnjy 
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which is not very convincing. I f we weight the letters by their frequency of appear
ance in English text, we might get this: 

idtefoae tcs trder j c i i ofdslnqetacp t ola 

which isn't a great deal better. Words chosen from the dictionary at random don't 
make much more sense: 

polydactyl equatorial splashily jowl verandah circumscribe 

For better results, we need a statistical model with more structure, such as the fre
quency of appearance of whole phrases. But where can we find such statistics? 

We could grab a large body of English and study it in detail, but there is an easier 
and more entertaining approach. The key observation is that we can use any existing 
text to construct a statistical model of the language as used in that text, and from that 
generate random text that has similar statistics to the original. 

3.1 The Markov Chain Algorithm 

An elegant way to do this sort of processing is a technique called a Markov chain 
algorithm. I f we imagine the input as a sequence of overlapping phrases, the algo
rithm divides each phrase into two parts, a multi-word prefix and a single suffix word 
that follows the prefix. A Markov chain algorithm emits output phrases by randomly 
choosing the suffix that follows the prefix, according to the statistics of (in our case) 
the original text. Three-word phrases work well—a two-word prefix is used to select 
the suffix word: 

set w i and w2 to the first two words in the text 
print wj andw 2 

loop: 
randomly choose w 3 , one of the successors of prefix w i w2 in the text 
print w3 

replace w i and w2 by w2 and w 3 

repeat loop 

To illustrate, suppose we want to generate random text based on a few sentences para
phrased from the epigraph above, using two-word prefixes: 

Show your flowcharts and conceal your tables and I w i l l be 
mystified. Show your tables and your flowcharts w i l l be 
obvious, (end) 

These are some of the pairs of input words and the words that follow them: 
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Input prefix: Suffix words that follow: 

Show your 
your flowcharts 
flowcharts and 
flowcharts w i l l 
your tables 
wi11 be 
be mystified, 
be obvious. 

flowcharts tables 
and w i l l 
conceal 
be 
and and 
mystified, obvious. 
Show 
(end) 

A Markov algorithm processing this text wi l l begin by printing Show your and wil l 
then randomly pick either flowcharts or tables. I f it chooses the former, the cur
rent prefix becomes your flowcharts and the next word wil l be and or w i l l . I f it 
chooses tables, the next word wil l be and. This continues until enough output has 
been generated or until the end-marker is encountered as a suffix. 

Our program wil l read a piece of English text and use a Markov chain algorithm to 
generate new text based on the frequency of appearance of phrases of a fixed length. 
The number of words in the prefix, which is two in our example, is a parameter. 
Making the prefix shorter tends to produce less coherent prose; making it longer tends 
to reproduce the input text verbatim. For English text, using two words to select a 
third is a good compromise; it seems to recreate the flavor of the input while adding 
its own whimsical touch. 

What is a word? The obvious answer is a sequence of alphabetic characters, but it 
is desirable to leave punctuation attached to the words so "words" and "words . " are 
different. This helps to improve the quality of the generated prose by letting punctua
tion, and therefore (indirectly) grammar, influence the word choice, although it also 
permits unbalanced quotes and parentheses to sneak in. We wil l therefore define a 
"word" as anything between white space, a decision that places no restriction on 
input language and leaves punctuation attached to the words. Since most program
ming languages have facilities to split text into white-space-separated words, this is 
also easy to implement. 

Because of the method, all words, all two-word phrases, and all three-word 
phrases in the output must have appeared in the input, but there should be many four-
word and longer phrases that are synthesized. Here are a few sentences produced by 
the program we wil l develop in this chapter, when given the text of Chapter V I I of 
The Sun Also Rises by Ernest Hemingway: 

As I started up the undershirt onto his chest black, and big stomach mus
cles bulging under the light. "You see them?" Below the line where his 
ribs stopped were two raised white welts. "See on the forehead." "Oh, 
Brett, I love you." "Let's not talk. Talking's all bilge. I 'm going away 
tomorrow." "Tomorrow?" "Yes. Didn't I say so? I am." "Let's have a 
drink, then." 

We were lucky here that punctuation came out correctly; that need not happen. 
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3.2 Data Structure Alternatives 

How much input do we intend to deal with? How fast must the program run? It 
seems reasonable to ask our program to read in a whole book, so we should be pre
pared for input sizes of n = 100,000 words or more. The output wi l l be hundreds or 
perhaps thousands of words, and the program should run in a few seconds instead of 
minutes. With 100,000 words of input text, n is fairly large so the algorithms can't be 
too simplistic i f we want the program to be fast. 

The Markov algorithm must see all the input before it can begin to generate out
put, so it must store the entire input in some form. One possibility is to read the 
whole input and store it in a long string, but we clearly want the input broken down 
into words. I f we store it as an array of pointers to words, output generation is simple: 
to produce each word, scan the input text to see what possible suffix words follow the 
prefix that was just emitted, and then choose one at random. However, that means 
scanning all 100,000 input words for each word we generate; 1,000 words of output 
means hundreds of millions of string comparisons, which wil l not be fast. 

Another possibility is to store only unique input words, together with a list of 
where they appear in the input so that we can locate successor words more quickly. 
We could use a hash table like the one in Chapter 2, but that version doesn't directly 
address the needs of the Markov algorithm, which must quickly locate all the suffixes 
of a given prefix. 

We need a data structure that better represents a prefix and its associated suffixes. 
The program wil l have two passes, an input pass that builds the data structure repre
senting the phrases, and an output pass that uses the data structure to generate the ran
dom output. In both passes, we need to look up a prefix (quickly): in the input pass to 
update its suffixes, and in the output pass to select at random from the possible suf
fixes. This suggests a hash table whose keys are prefixes and whose values are the 
sets of suffixes for the corresponding prefixes. 

For purposes of description, we'll assume a two-word prefix, so each output word 
is based on the pair of words that precede it. The number of words in the prefix 
doesn't affect the design and the programs should handle any prefix length, but select
ing a number makes the discussion concrete. The prefix and the set of all its possible 
suffixes we'll call a state, which is standard terminology for Markov algorithms. 

Given a prefix, we need to store all the suffixes that follow it so we can access 
them later. The suffixes are unordered and added one at a time. We don't know how 
many there wi l l be, so we need a data structure that grows easily and efficiently, such 
as a list or a dynamic array. When we are generating output, we need to be able to 
choose one suffix at random from the set of suffixes associated with a particular pre
fix. Items are never deleted. 

What happens i f a phrase appears more than once? For example, 'might appear 
twice' might appear twice but 'might appear once' only once. This could be repre
sented by putting 'twice' twice in the suffix list for 'might appear' or by putting it in 
once, with an associated counter set to 2. We've tried it with and without counters; 
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without is easier, since adding a suffix doesn't require checking whether it's there 
already, and experiments showed that the difference in run-time was negligible. 

In summary, each state comprises a prefix and a list of suffixes. This information 
is stored in a hash table, with prefix as key. Each prefix is a fixed-size set of words. 
I f a suffix occurs more than once for a given prefix, each occurrence wi l l be included 
separately in the list. 

The next decision is how to represent the words themselves. The easy way is to 
store them as individual strings. Since most text has many words appearing multiple 
times, it would probably save storage i f we kept a second hash table of single words, 
so the text of each word was stored only once. This would also speed up hashing of 
prefixes, since we could compare pointers rather than individual characters: unique 
strings have unique addresses. We'll leave that design as an exercise; for now, strings 
wil l be stored individually. 

3.3 Building the Data Structure in C 
Let's begin with a C implementation. The first step is to define some constants, 

enum { 
NPREF = 2, /* number of p r e f i x words */ 
NHASH = 4093, /* size of state hash table array */ 
MAXGEN = 10000 /* maximum words generated */ 

} ; 

This declaration defines the number of words (NPREF) for the prefix, the size of the 
hash table array (NHASH), and an upper limit on the number of words to generate 
(MAXGEN). I f NPREF is a compile-time constant rather than a run-time variable, storage 
management is simpler. The array size is set fairly large because we expect to give 
the program large input documents, perhaps a whole book. We chose NHASH = 4093 
so that i f the input has 10,000 distinct prefixes (word pairs), the average chain wil l be 
very short, two or three prefixes. The larger the size, the shorter the expected length 
of the chains and thus the faster the lookup. This program is really a toy, so the per
formance isn't critical, but i f we make the array too small the program wil l not handle 
our expected input in reasonable time; on the other hand, i f we make it too big it 
might not fit in the available memory. 

The prefix can be stored as an array of words. The elements of the hash table wi l l 
be represented as a State data type, associating the Suffix list with the prefix: 

typedef s t r u c t State State; 
typedef s t r u c t Suffix S u f f i x ; 
s t r u c t State { /* pr e f i x + s u f f i x l i s t */ 

char *pref[NPREF]; /* pr e f i x words */ 
Suffix *suf; /* l i s t of suffixes */ 
State *next; /* next i n hash table */ 

} ; 
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s t r u c t Suffix { /* l i s t of suffixes */ 
char *word; /* s u f f i x */ 
Suffix *next; /* next i n l i s t of suffixes */ 

} ; 

State *statetab[NHASH]; /* hash table of states */ 

Pictorially, the data structures look like this: 

s t a t e t a b : 

word r word 

nex t 

\ " t a b l e s " 

We need a hash function for prefixes, which are arrays of strings. It is simple to 
modify the string hash function from Chapter 2 to loop over the strings in the array, 
thus in effect hashing the concatenation of the strings: 

/* hash: compute hash value f o r array of NPREF strings */ 
unsigned i n t hash(char *s[NPREF]) 
{ 

unsigned i n t h; 
unsigned char *p; 
i nt i ; 

h = 0; 
for ( i = 0; i < NPREF; i++) 

for (p = (unsigned char *) s [ i ] ; *p != '\0'; p++) 
h = MULTIPLIER * h + *p; 

return h % NHASH; 

A similar modification to the lookup routine completes the implementation of the 
hash table: 
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/* lookup: search f o r p r e f i x ; create i f requested. */ 
/* returns pointer i f present or created; NULL i f not. */ 
/* creation doesn't strdup so strings mustn't change l a t e r . */ 
State* lookup(char *prefix[NPREF], i n t create) 
{ 

i nt i , h; 
State *sp; 

h = hash(prefix); 
f o r (sp = sta t e t a b [ h ] ; sp != NULL; sp = sp->next) { 

for ( i = 0; i < NPREF; i++) 
i f ( s t r c m p ( p r e f i x [ i ] , s p - > p r e f [ i ] ) != 0) 

break; 
i f ( i = NPREF) /* found i t */ 

return sp; 
} 
i f (create) { 

sp = (State *) emalloc(sizeof(State)); 
f o r ( i = 0; i < NPREF; i++) 

sp->pref[i] = p r e f i x [ i ] ; 
sp->suf = NULL; 
sp->next = sta t e t a b [ h ] ; 
statetab[h] = sp; 

} 
return sp; 

} 

Notice that 1 ookup doesn't make a copy of the incoming strings when it creates a new 
state; it just stores pointers in sp->pref [ ] . Callers of 1 ookup must guarantee that the 
data won't be overwritten later. For example, i f the strings are in an I/O buffer, a 
copy must be made before lookup is called; otherwise, subsequent input could over
write the data that the hash table points to. Decisions about who owns a resource 
shared across an interface arise often. We wil l explore this topic at length in the next 
chapter. 

Next we need to build the hash table as the file is read: 

/* b u i l d : read input, build p r e f i x table */ 
void build(char ^prefix[NPREF], FILE * f ) 
{ 

char buf[100], fmt[10]; 

/* create a format s t r i n g ; %s could overflow buf */ 
sp r i n t f ( f m t , ,,%%%ds", sizeof (buf)-1) ; 
while ( f s c a n f ( f , fmt, buf) != EOF) 

add(prefix, estrdup(buf)); 
} 

The peculiar call to spri n t f gets around an irritating problem with f scanf, which 
is otherwise perfect for the job. A call to f scanf with format %s wi l l read the next 
white-space-delimited word from the file into the buffer, but there is no limit on size: 
a long word might overflow the input buffer, wreaking havoc. I f the buffer is 100 



68 DESIGN AND IMPLEMENTATION CHAPTER 3 

bytes long (which is far beyond what we expect ever to appear in normal text), we can 
use the format %99s (leaving one byte for the terminal '\0'), which tells f scanf to 
stop after 99 bytes. A long word wil l be broken into pieces, which is unfortunate but 
safe. We could declare 

? enum { BUFSIZE = 100 }; 
? char f m t [ ] = "%99s"; /* BUFSIZE-1 */ 

but that requires two constants for one arbitrary decision—the size of the buffer—and 
introduces the need to maintain their relationship. The problem can be solved once 
and for all by creating the format string dynamically with s p r i n t f , so that's the 
approach we take. 

The two arguments to build are the p r e f i x array holding the previous NPREF 
words of input and a FILE pointer. It passes the pref i x and a copy of the input word 
to add, which adds the new entry to the hash table and advances the prefix: 

/* add: add word to s u f f i x l i s t , update p r e f i x */ 
void add(char *prefix[NPREF], char * s u f f i x ) 
{ 

State *sp; 

sp = lookup(prefix, 1); /* create i f not found */ 
addsuffix(sp, s u f f i x ) ; 
/* move the words down the p r e f i x */ 
memmove(prefix, prefix+1, (NPREF-l)*sizeof(prefix[0])); 
prefix[NPREF-l] = s u f f i x ; 

} 

The call to memmove is the idiom for deleting from an array. It shifts elements 1 
through NPREF-1 in the prefix down to positions 0 through NPREF-2, deleting the first 
prefix word and opening a space for a new one at the end. 

The addsuffix routine adds the new suffix: 

/* addsuffix: add to state, s u f f i x must not change l a t e r */ 
void addsuffix(State *sp, char * s u f f i x ) 
{ 

Suffix *suf; 

suf = (Su f f i x *) emalloc(sizeof(Suffix)); 
suf->word = s u f f i x ; 
suf->next = sp->suf; 
sp->suf = suf; 

} 

We split the action of updating the state into two functions: add performs the general 
service of adding a suffix to a prefix, while addsuffix performs the implementation-
specific action of adding a word to a suffix list. The add routine is used by bui 1 d, but 
addsuffix is used internally only by add; it is an implementation detail that might 
change and it seems better to have it in a separate function, even though it is called in 
only one place. 
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3.4 Generating Output 

With the data structure built, the next step is to generate the output. The basic idea 
is as before: given a prefix, select one of its suffixes at random, print it, then advance 
the prefix. This is the steady state of processing; we must still figure out how to start 
and stop the algorithm. Starting is easy i f we remember the words of the first prefix 
and begin with them. Stopping is easy, too. We need a marker word to terminate the 
algorithm. After all the regular input, we can add a terminator, a "word" that is guar
anteed not to appear in any input: 

b u i l d ( p r e f i x , s t d i n ) ; 
add(prefix, NONWORD); 

NONWORD should be some value that wil l never be encountered in regular input. Since 
the input words are delimited by white space, a "word" of white space wi l l serve, 
such as a newline character: 

char NONWORD[] = n \ n " ; / * cannot appear as real word * / 

One more worry: what happens i f there is insufficient input to start the algorithm? 
There are two approaches to this sort of problem, either exit prematurely i f there is 
insufficient input, or arrange that there is always enough and don't bother to check. 
In this program, the latter approach works well. 

We can initialize building and generating with a fabricated prefix, which guaran
tees there is always enough input for the program. To prime the loops, initialize the 
prefix array to be all NONWORD words. This has the nice benefit that the first word of 
the input file wi l l be the first suffix of the fake prefix, so the generation loop needs to 
print only the suffixes it produces. 

In case the output is unmanageably long, we can terminate the algorithm after 
some number of words are produced or when we hit NONWORD as a suffix, whichever 
comes first. 

Adding a few NONWORDs to the ends of the data simplifies the main processing 
loops of the program significantly; it is an example of the technique of adding sentinel 
values to mark boundaries. 

As a rule, try to handle irregularities and exceptions and special cases in data. 
Code is harder to get right so the control flow should be as simple and regular as pos
sible. 

The generate function uses the algorithm we sketched originally. It produces 
one word per line of output, which can be grouped into longer lines with a word pro
cessor; Chapter 9 shows a simple formatter called f mt for this task. 

With the use of the initial and final NONWORD strings, generate starts and stops 
properly: 
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/* generate: produce output, one word per l i n e */ 
void generate(int nwords) 
{ 

State *sp; 
Suffix *suf; 
char *prefix[NPREF], *w; 
i n t i , nmatch; 

fo r ( i = 0 ; i < NPREF; i++) /* reset i n i t i a l p r e f i x */ 
p r e f i x [ i ] = NONWORD; 

for ( i = 0 ; i < nwords; i++) { 
sp = lookup(prefix, 0 ) ; 
nmatch = 0; 
f o r (suf = sp->suf; suf != NULL; suf = suf->next) 

i f (randQ % ++nmatch == 0) /* prob = 1/nmatch */ 
w = suf->word; 

i f (strcmpCw, NONWORD) == 0) 
break; 

printfC'XsXn", w); 
memmove(prefix, prefi x + 1 , (NPREF-l)*sizeof(prefix [ 0 ] ) ) ; 
prefix[NPREF-l] = w; 

} 
} 

Notice the algorithm for selecting one item at random when we don't know how many 
items there are. The variable nmatch counts the number of matches as the list is 
scanned. The expression 

rand() % ++nmatch == 0 

increments nmatch and is then true with probability 1/nmatch. Thus the first match
ing item is selected with probability 1, the second wil l replace it with probability 1/2, 
the third wil l replace the survivor with probability 1/3, and so on. At any time, each 
one of the k matching items seen so far has been selected with probability 1/k. 

At the beginning, we set the p r e f i x to the starting value, which is guaranteed to 
be installed in the hash table. The first Suffix values we find wi l l be the first words 
of the document, since they are the unique follow-on to the starting prefix. After that, 
random suffixes wi l l be chosen. The loop calls 1 ookup to find the hash table entry for 
the current pref i x, then chooses a random suffix, prints it, and advances the prefix. 

I f the suffix we choose is NONWORD, we're done, because we have chosen the state 
that corresponds to the end of the input. I f the suffix is not NONWORD, we print it, then 
drop the first word of the prefix with a call to memmove, promote the suffix to be the 
last word of the prefix, and loop. 

Now we can put all this together into a mai n routine that reads the standard input 
and generates at most a specified number of words: 
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/* markov main: markov-chain random te x t generation */ 
i n t main(void) 
{ 

i n t i , nwords = MAXGEN; 
char *prefix[NPREF]; /* current input p r e f i x */ 
for ( i = 0 ; i < NPREF; i++) /* set up i n i t i a l p r e f i x */ 

p r e f i x [ i ] = N0NW0RD; 
b u i l d ( p r e f i x , s t d i n ) ; 
add(prefix, NONWORD); 
generate(nwords); 
return 0; 

} 

This completes our C implementation. We wil l return at the end of the chapter to 
a comparison of programs in different languages. The great strengths of C are that it 
gives the programmer complete control over implementation, and programs written in 
it tend to be fast. The cost, however, is that the C programmer must do more of the 
work, allocating and reclaiming memory, creating hash tables and linked lists, and the 
like. C is a razor-sharp tool, with which one can create an elegant and efficient pro
gram or a bloody mess. 

Exercise 3-1. The algorithm for selecting a random item from a list of unknown 
length depends on having a good random number generator. Design and carry out 
experiments to determine how well the method works in practice. • 

Exercise 3-2. I f each input word is stored in a second hash table, the text is only 
stored once, which should save space. Measure some documents to estimate how 
much. This organization would allow us to compare pointers rather than strings in the 
hash chains for prefixes, which should run faster. Implement this version and mea
sure the change in speed and memory consumption. • 

Exercise 3-3. Remove the statements that place sentinel NONWORDs at the beginning 
and end of the data, and modify generate so it starts and stops properly without 
them. Make sure it produces correct output for input with 0, 1, 2, 3, and 4 words. 
Compare this implementation to the version using sentinels. • 

3.5 Java 
Our second implementation of the Markov chain algorithm is in Java. Object-

oriented languages like Java encourage one to pay particular attention to the interfaces 
between the components of the program, which are then encapsulated as independent 
data items called objects or classes, with associated functions called methods. 

Java has a richer library than C, including a set of container classes to group exist
ing objects in various ways. One example is a Vector that provides a dynamically-
growable array that can store any Object type. Another example is the Hashtable 
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class, with which one can store and retrieve values of one type using objects of 
another type as keys. 

In our application, Vectors of strings are the natural choice to hold prefixes and 
suffixes. We can use a Hashtable whose keys are prefix vectors and whose values 
are suffix vectors. The terminology for this type of construction is a map from pre
fixes to suffixes; in Java, we need no explicit State type because Hashtable implic
itly connects (maps) prefixes to suffixes. This design is different from the C version, 
in which we installed State structures that held both prefix and suffix list, and hashed 
on the prefix to recover the full State. 

A Hashtable provides a put method to store a key-value pair, and a get method 
to retrieve the value for a key: 

Hashtable h = new HashtableO; 
h.put(key, value); 
Sometype v = (Sometype) h.get(key); 

Our implementation has three classes. The first class, Prefix, holds the words of 
the prefix: 

class Prefix { 
public Vector pref; // NPREF adjacent words from input 

The second class, Chai n, reads the input, builds the hash table, and generates the 
output; here are its class variables: 

class Chain { 
s t a t i c f i n a l i n t NPREF = 2; // size of p r e f i x 
s t a t i c f i n a l String NONWORD = n\n"; 

// "word" that can't appear 
Hashtable statetab = new HashtableO; 

// key = Prefix, value = s u f f i x Vector 
Prefix p r e f i x = new Prefix(NPREF, NONWORD); 

// i n i t i a l p r e f i x 
Random rand = new RandomO; 

The third class is the public interface; it holds mai n and instantiates a Chai n: 

class Markov { 
s t a t i c f i n a l i n t MAXGEN = 10000; // maximum words generated 
public s t a t i c void main(String[] args) throws IOException 
{ 

Chain chain = new Chain(); 
i n t nwords = MAXGEN; 
chain.build(System.in); 
chain.generate(nwords); 

} 
} 
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When an instance of class Chai n is created, it in turn creates a hash table and sets 
up the initial prefix of NPREF NONWORDs. The bui 1 d function uses the library function 
StreamTokenizer to parse the input into words separated by white space characters. 
The three calls before the loop set the tokenizer into the proper state for our definition 
of "word." 

// Chain b u i l d : build State table from input stream 
void build(InputStream i n ) throws IOException 
{ 

StreamTokenizer st = new StreamTokenizer(in); 

st.resetSyntaxO; // remove default rules 
st.wordChars(0, Character.MAX_VALUE); // turn on a l l chars 
st.whitespaceChars(0, ' ' ) ; // except up to blank 
while (st.nextTokenO != st.TT_EOF) 

add(st.sval); 
add(NONWORD); 

} 

The add function retrieves the vector of suffixes for the current prefix from the 
hash table; i f there are none (the vector is null), add creates a new vector and a new 
prefix to store in the hash table. In either case, it adds the new word to the suffix vec
tor and advances the prefix by dropping the first word and adding the new word at the 
end. 

// Chain add: add word to s u f f i x l i s t , update p r e f i x 
void add(String word) 
{ 

Vector suf = (Vector) s t a t e t a b . g e t ( p r e f i x ) ; 
i f (suf == n u l l ) { 

suf = new VectorO; 
statetab.put(new P r e f i x ( p r e f i x ) , s u f ) ; 

} 
suf.addElement(word); 
prefix.pref.removeElementAt(O); 
prefix.pref.addElement(word); 

} 

Notice that i f suf is null, add installs a new Prefix in the hash table, rather than 
p r e f i x itself. This is because the Hashtable class stores items by reference, and i f 
we don't make a copy, we could overwrite data in the table. This is the same issue 
that we had to deal with in the C program. 

The generation function is similar to the C version, but slightly more compact 
because it can index a random vector element directly instead of looping through a 
list. 
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// Chain generate: generate output words 
void generate(int nwords) 
{ 

p r e f i x = new Prefix(NPREF, NONWORD); 
for ( i n t i = 0 ; i < nwords; i++) { 

Vector s = (Vector) s t a t e t a b . g e t ( p r e f i x ) ; 
i n t r = Math.abs(rand.nextlntO) % s.size(); 
String suf = (String) s.elementAt(r); 
i f (suf.equals(NONWORD)) 

break; 
System.out.println(suf); 
prefix.pref.removeElementAt(O); 
prefix.pref.addElement(suf); 

} 
} 

The two constructors of Pref i x create new instances from supplied data. The first 
copies an existing Prefix, and the second creates a prefix from n copies of a string; 
we use it to make NPREF copies of NONWORD when initializing: 

// Prefix constructor: duplicate e x i s t i n g p r e f i x 
P r e f i x ( P r e f i x p) 
{ 

pref = (Vector) p.pref.clone(); 
} 

// Prefix constructor: n copies of s t r 
P r e f i x ( i n t n, String s t r ) 
{ 

pref = new VectorO; 
for ( i n t i = 0; i < n; i++) 

pref.addElement(str); 
} 

Prefix also has two methods, hashCode and equals, that are called implicitly by 
the implementation of Hashtabl e to index and search the table. It is the need to have 
an explicit class for these two methods for Hashtable that forced us to make Prefix 
a full-fledged class, rather than just a Vector like the suffix. 

The hashCode method builds a single hash value by combining the set of 
hashCodes for the elements of the vector: 

s t a t i c f i n a l i n t MULTIPLIER = 31; // fo r hashCodeO 

// Prefix hashCode: generate hash from a l l p r e f i x words 
public i n t hashCode() 
{ 

i n t h = 0; 
for ( i n t i = 0 ; i < pref.sizeO; i++) 

h = MULTIPLIER * h + pref. elementAt(i) . hashCodeO ; 
return h; 

} 
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and equal s does an elementwise comparison of the words in two prefixes: 

// Prefix equals: compare two prefixes f o r equal words 
public boolean equals(Object o) 
{ 

Prefix p = (Prefix) o; 
for ( i n t i = 0 ; i < p r e f . s i z e ( ) ; i++) 

i f (!pref.elementAt(i).equals(p.pref.elementAt(i))) 
return fa l s e ; 

return true; 
} 

The Java program is significantly smaller than the C program and takes care of 
more details; Vectors and the Hashtabl e are the obvious examples. In general, stor
age management is easy since vectors grow as needed and garbage collection takes 
care of reclaiming memory that is no longer referenced. But to use the Hashtabl e 
class, we still need to write functions hashCode and equal s, so Java isn't taking care 
of all the details. 

Comparing the way the C and Java programs represent and operate on the same 
basic data structure, we see that the Java version has better separation of functionality. 
For example, to switch from Vectors to arrays would be easy. In the C version, 
everything knows what everything else is doing: the hash table operates on arrays that 
are maintained in various places, lookup knows the layout of the State and Suffix 
structures, and everyone knows the size of the prefix array. 

% Java Markov <jr_chemistry.txt | fmt 
Wash the blackboard. Watch i t dry. The water goes 
in t o the a i r . When water goes i n t o the a i r i t 
evaporates. Tie a damp cloth to one end of a so l i d or 
l i q u i d . Look around. What are the s o l i d things? 
Chemical changes take place when something burns. I f 
the burning material has l i q u i d s , they are stable and 
the sponge r i s e . I t looked l i k e dough, but i t i s 
burning. Break up the lump of sugar i n t o small pieces 
and put them together again i n the bottom of a l i q u i d . 

Exercise 3-4. Revise the Java version of markov to use an array instead of a Vector 
for the prefix in the State class. • 
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3.6 C++ 

Our third implementation is in C++. Since C++ is almost a superset of C, it can 
be used as i f it were C with a few notational conveniences, and our original C version 
of markov is also a legal C++ program. A more appropriate use of C++, however, 
would be to define classes for the objects in the program, more or less as we did in 
Java; this would let us hide implementation details. We decided to go even further by 
using the Standard Template Library or STL, since the STL has built-in mechanisms 
that wil l do much of what we need. The ISO standard for C++ includes the STL as 
part of the language definition. 

The STL provides containers such as vectors, lists, and sets, and a family of funda
mental algorithms for searching, sorting, inserting, and deleting. Using the template 
features of C++, every STL algorithm works on a variety of containers, including both 
user-defined types and built-in types like integers. Containers are expressed as C++ 
templates that are instantiated for specific data types; for example, there is a vector 
container that can be used to make particular types like vector<int> or 
vector<string>. A l l vector operations, including standard algorithms for sorting, 
can be used on such data types. 

In addition to a vector container that is similar to Java's Vector, the STL pro
vides a deque container. A deque (pronounced "deck") is a double-ended queue that 
matches what we do with prefixes: it holds NPREF elements, and lets us pop the first 
element and add a new one to the end, in 0{ 1 ) time for both. The STL deque is more 
general than we need, since it permits push and pop at either end, but the performance 
guarantees make it an obvious choice. 

The STL also provides an explicit map container, based on balanced trees, that 
stores key-value pairs and provides O(logn) retrieval of the value associated with any 
key. Maps might not be as efficient as 0(1) hash tables, but it's nice not to have to 
write any code whatsoever to use them. (Some non-standard C++ libraries include a 
hash or hash_map container whose performance may be better.) 

We also use the built-in comparison functions, which in this case wil l do string 
comparisons using the individual strings in the prefix. 

With these components in hand, the code goes together smoothly. Here are the 
declarations: 

typedef deque<string> Pref ix; 
map<Prefix, vector<str ing> > statetab; / / p re f ix -> suffixes 

The STL provides a template for deques; the notation deque<stri ng> specializes it to 
a deque whose elements are strings. Since this type appears several times in the pro
gram, we used a typedef to give it the name Prefix. The map type that stores pre
fixes and suffixes occurs only once, however, so we did not give it a separate name; 
the map declaration declares a variable statetab that is a map from prefixes to vec
tors of strings. This is more convenient than either C or Java, because we don't need 
to provide a hash function or equal s method. 
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The main routine initializes the prefix, reads the input (from standard input, called 
cin in the C++ iostream library), adds a tail, and generates the output, exactly as in 
the earlier versions: 

// markov main: markov-chain random te x t generation 
i n t main(void) 
{ 

i n t nwords = MAXGEN; 
Prefix p r e f i x ; // current input p r e f i x 

f o r ( i n t i = 0; i < NPREF; i++) // set up i n i t i a l p r e f i x 
add(prefix, N0NW0RD); 

bu i I d ( p r e f i x , c i n ) ; 
add(prefix, N0NW0RD); 
generate(nwords); 
return 0; 

} 

The function build uses the iostream library to read the input one word at a 
time: 

// b u i l d : read input words, build state table 
void build(Prefix& p r e f i x , istream& i n ) 
{ 

s t r i n g buf; 

while ( i n » buf) 
add(prefix, buf); 

} 

The string buf will grow as necessary to handle input words of arbitrary length. 
The add function shows more of the advantages of using the STL: 

// add: add word to s u f f i x l i s t , update p r e f i x 
void add(Prefix& p r e f i x , const string& s) 
{ 

i f ( p r e f i x . s i z e ( ) == NPREF) { 
statetab[prefix].push_back(s); 
p r e f i x . p o p _ f r o n t ( ) ; 

} 
prefix.push_back(s); 

} 

Quite a bit is going on under these apparently simple statements. The map container 
overloads subscripting (the [ ] operator) to behave as a lookup operation. The expres
sion statetab [ p r e f i x ] does a lookup in statetab with p r e f i x as key and returns a 
reference to the desired entry; the vector is created i f it does not exist already. The 
push_back member functions of vector and deque push a new string onto the back 
end of the vector or deque; pop_f ront pops the first element off the deque. 

Generation is similar to the previous versions: 
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// generate: produce output, one word per l i n e 
void generate(int nwords) 
{ 

Prefix p r e f i x ; 
i nt i ; 
f o r ( i = 0 ; i < NPREF; i++) // reset i n i t i a l p r e f i x 

add(prefix, NONWORD); 

for ( i = 0 ; i < nwords; i++) { 
vector<string>& suf = s t a t e t a b [ p r e f i x ] ; 
const string& w = suf[rand() % s u f . s i z e ( ) ] ; 
i f ( w == NONWORD) 

break; 
cout « w « "\n"; 
pr e f i x . p o p _ f r o n t ( ) ; // advance 
prefix.push_back(w); 

} 
} 

Overall, this version seems especially clear and elegant—the code is compact, the 
data structure is visible and the algorithm is completely transparent. Sadly, there is a 
price to pay: this version runs much slower than the original C version, though it is 
not the slowest. We'l l come back to performance measurements shortly. 

Exercise 3-5. The great strength of the STL is the ease with which one can experi
ment with different data structures. Modify the C++ version of Markov to use various 
structures to represent the prefix, suffix list, and state table. How does performance 
change for the different structures? • 

Exercise3-6. Write a C++ version that uses only classes and the s t r i n g data type 
but no other advanced library facilities. Compare it in style and speed to the STL ver
sions. • 

3.7 Awk and Perl 
To round out the exercise, we also wrote the program in two popular scripting lan

guages, Awk and Perl. These provide the necessary features for this application, asso
ciative arrays and string handling. 

An associative array is a convenient packaging of a hash table; it looks like an 
array but its subscripts are arbitrary strings or numbers, or comma-separated lists of 
them. It is a form of map from one data type to another. In Awk, all arrays are asso
ciative; Perl has both conventional indexed arrays with integer subscripts and associa
tive arrays, which are called "hashes," a name that suggests how they are imple
mented. 

The Awk and Perl implementations are specialized to prefixes of length 2. 
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# markov.awk: markov chain algorithm f o r 2-word prefixes 
BEGIN { MAXGEN = 10000; NONWORD = "\n"; wl = w2 = NONWORD } 

{ fo r ( i = 1 ; i <= NF; i++) { # read a l l words 
statetab[wl,w2,++nsuffix[wl,w2]] = $i 
wl = w2 
w2 = $i 

} 
} 

END { 
statetab[wl,w2,++nsuffix[wl,w2]] = NONWORD # add t a i l 
wl = w2 = NONWORD 
for ( i = 0 ; i < MAXGEN; i++) { # generate 

r = int(rand()*nsuffix [ w l,w2]) + 1 # nsu f f i x >= 1 
p = statetab [ w l,w2 , r ] 
i f ( P == NONWORD) 

ex i t 
p r i n t p 
wl = w2 # advance chain 
w2 = p 

} 
} 

Awk is a pattern-action language: the input is read a line at a time, each line is 
matched against the patterns, and for each match the corresponding action is executed. 
There are two special patterns, BEGIN and END, that match before the first line of input 
and after the last. 

An action is a block of statements enclosed in braces. In the Awk version of Mar
kov, the BEGIN block initializes the prefix and a couple of other variables. 

The next block has no pattern, so by default it is executed once for each input line. 
Awk automatically splits each input line into fields (white-space delimited words) 
called $1 through $NF; the variable NF is the number of fields. The statement 

statetab[wl,w2,++nsuffix[wl,w2]] = $i 

builds the map from prefix to suffixes. The array n s u f f i x counts suffixes and the 
element nsuffix [ w l,w2] counts the number of suffixes associated with that prefix. 
The suffixes themselves are stored in array elements statetab [wl,w2,1], 
statetab [wl,w2,2], and so on. 

When the END block is executed, all the input has been read. At that point, for 
each prefix there is an element of n s u f f i x containing the suffix count, and there are 
that many elements of statetab containing the suffixes. 

The Perl version is similar, but uses an anonymous array instead of a third sub
script to keep track of suffixes; it also uses multiple assignment to update the prefix. 
Perl uses special characters to indicate the types of variables: $ marks a scalar and @ 
an indexed array, while brackets [ ] are used to index arrays and braces { } to index 
hashes. 
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# markov.pl: markov chain algorithm f o r 2-word prefixes 

$MAXGEN = 10000; 
$N0NW0RD = "\n"; 
$wl = $w2 = $N0NW0RD; # i n i t i a l state 
while (<>) { # read each l i n e of input 

foreach ( s p l i t ) { 
push(@{$statetab{$wl}{$w2}}, $_); 
($wl, $w2) = ($w2, $_); # multiple assignment 

} 
} 
push(@{$statetab{$wl}{$w2}}, $N0NW0RD); # add t a i l 

$wl = $w2 = $N0NW0RD; 
for ($i = 0 ; $i < $MAXGEN; $i++) { 

$suf = $statetab{$wl}{$w2}; # array reference 
$r = i n t ( r a n d @$suf); # @$suf i s number of elems 
e x i t i f C($t = $suf->[$r]) eq $N0NW0RD); 
p r i n t "$t\n"; 
($wl, $w2) = ($w2, $ t ) ; # advance chain 

} 

As in the previous programs, the map is stored using the variable statetab. The 
heart of the program is the line 

push(@{$statetab{$wl}{$w2}}, $_); 

which pushes a new suffix onto the end of the (anonymous) array stored at 
statetab{$wl}{$w2}. In the generation phase, $statetab{$wl}{$w2} is a refer
ence to an array of suffixes, and $suf->[$r] points to the r-th suffix. 

Both the Perl and Awk programs are short compared to the three earlier versions, 
but they are harder to adapt to handle prefixes that are not exactly two words. The 
core of the C++ STL implementation (the add and generate functions) is of compara
ble length and seems clearer. Nevertheless, scripting languages are often a good 
choice for experimental programming, for making prototypes, and even for produc
tion use i f run-time is not a major issue. 

Exercise 3-7. Modify the Awk and Perl versions to handle prefixes of any length. 
Experiment to determine what effect this change has on performance. • 

3-8 Performance 
We have several implementations to compare. We timed the programs on the 

Book of Psalms from the King James Bible, which has 42,685 words (5,238 distinct 
words, 22,482 prefixes). This text has enough repeated phrases ("Blessed is the . . .") 

http://markov.pl
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that one suffix list has more than 400 elements, and there are a few hundred chains 
with dozens of suffixes, so it is a good test data set. 

Blessed is the man of the net. Turn thee unto me, and raise me up, that I 
may tell all my fears. They looked unto him, he heard. My praise shall 
be blessed. Wealth and riches shall be saved. Thou hast dealt well with 
thy hid treasure: they are cast into a standing water, the flint into a stand
ing water, and dry ground into watersprings. 

The times in the following table are the number of seconds for generating 10,000 
words of output; one machine is a 250MHz MIPS R10000 running Irix 6.4 and the 
other is a 400MHz Pentium I I with 128 megabytes of memory running Windows NT. 
Run-time is almost entirely determined by the input size; generation is very fast by 
comparison. The table also includes the approximate program size in lines of source 
code. 

250MHz 400MHz Lines of 
R10000 Pentium I I source code 

c 0.36 sec 0.30 sec 150 
Java 4.9 9.2 105 
C++/STL/deque 2.6 11.2 70 
C++/STL/list 1.7 1.5 70 
Awk 2.2 2.1 20 
Perl 1.8 1.0 18 

The C and C++ versions were compiled with optimizing compilers, while the Java 
runs had just-in-time compilers enabled. The Irix C and C++ times are the fastest 
obtained from three different compilers; similar results were observed on Sun SPARC 
and DEC Alpha machines. The C version of the program is fastest by a large factor; 
Perl comes second. The times in the table are a snapshot of our experience with a par
ticular set of compilers and libraries, however, so you may see very different results in 
your environment. 

Something is clearly wrong with the STL deque version on Windows. Experi
ments showed that the deque that represents the prefix accounts for most of the run
time, although it never holds more than two elements; we would expect the central 
data structure, the map, to dominate. Switching from a deque to a list (which is a 
doubly-linked list in the STL) improves the time dramatically. On the other hand, 
switching from a map to a (non-standard) hash container made no difference on Irix; 
hashes were not available on our Windows machine. It is a testament to the funda
mental soundness of the STL design that these changes required only substituting the 
word l i s t for the word deque or hash for map in two places and recompiling. We 
conclude that the STL, which is a new component of C++, still suffers from immature 
implementations. The performance is unpredictable between implementations of the 
STL and between individual data structures. The same is true of Java, where imple
mentations are also changing rapidly. 
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There are some interesting challenges in testing a program that is meant to pro
duce voluminous random output. How do we know it works at all? How do we know 
it works all the time? Chapter 6, which discusses testing, contains some suggestions 
and describes how we tested the Markov programs. 

3.9 Lessons 
The Markov program has a long history. The first version was written by Don P. 

Mitchell, adapted by Bruce Ellis, and applied to humorous deconstructionist activities 
throughout the 1980s. It lay dormant until we thought to use it in a university course 
as an illustration of program design. Rather than dusting off the original, we rewrote 
it from scratch in C to refresh our memories of the various issues that arise, and then 
wrote it again in several other languages, using each language's unique idioms to 
express the same basic idea. After the course, we reworked the programs many times 
to improve clarity and presentation. 

Over all that time, however, the basic design has remained the same. The earliest 
version used the same approach as the ones we have presented here, although it did 
employ a second hash table to represent individual words. I f we were to rewrite it 
again, we would probably not change much. The design of a program is rooted in the 
layout of its data. The data structures don't define every detail, but they do shape the 
overall solution. 

Some data structure choices make little difference, such as lists versus growable 
arrays. Some implementations generalize better than others—the Perl and Awk code 
could be readily modified to one- or three-word prefixes but parameterizing the 
choice would be awkward. As befits object-oriented languages, tiny changes to the 
C++ and Java implementations would make the data structures suitable for objects 
other than English text, for instance programs (where white space would be signifi
cant), or notes of music, or even mouse clicks and menu selections for generating test 
sequences. 

Of course, while the data structures are much the same, there is a wide variation in 
the general appearance of the programs, in the size of the source code, and in perfor
mance. Very roughly, higher-level languages give slower programs than lower level 
ones, although it's unwise to generalize other than qualitatively. Big building-blocks 
like the C++ STL or the associative arrays and string handling of scripting languages 
can lead to more compact code and shorter development time. These are not without 
price, although the performance penalty may not matter much for programs, like Mar
kov, that run for only a few seconds. 

Less clear, however, is how to assess the loss of control and insight when the pile 
of system-supplied code gets so big that one no longer knows what's going on under
neath. This is the case with the STL version; its performance is unpredictable and 
there is no easy way to address that. One immature implementation we used needed 
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to be repaired before it would run our program. Few of us have the resources or the 
energy to track down such problems and fix them. 

This is a pervasive and growing concern in software: as libraries, interfaces, and 
tools become more complicated, they become less understood and less controllable. 
When everything works, rich programming environments can be very productive, but 
when they fail, there is little recourse. Indeed, we may not even realize that some
thing is wrong i f the problems involve performance or subtle logic errors. 

The design and implementation of this program illustrate a number of lessons for 
larger programs. First is the importance of choosing simple algorithms and data 
structures, the simplest that wi l l do the job in reasonable time for the expected prob
lem size. I f someone else has already written them and put them in a library for you, 
that's even better; our C++ implementation profited from that. 

Following Brooks's advice, we find it best to start detailed design with data struc
tures, guided by knowledge of what algorithms might be used; with the data structures 
settled, the code goes together easily. 

It's hard to design a program completely and then build it; constructing real pro
grams involves iteration and experimentation. The act of building forces one to clar
ify decisions that had previously been glossed over. That was certainly the case with 
our programs here, which have gone through many changes of detail. As much as 
possible, start with something simple and evolve it as experience dictates. I f our goal 
had been just to write a personal version of the Markov chain algorithm for fun, we 
would almost surely have written it in Awk or Perl—though not with as much polish
ing as the ones we showed here—and let it go at that. 

Production code takes much more effort than prototypes do, however. I f we think 
of the programs presented here as production code (since they have been polished and 
thoroughly tested), production quality requires one or two orders of magnitude more 
effort than a program intended for personal use. 

Exercise 3-8. We have seen versions of the Markov program in a wide variety of lan
guages, including Scheme, Tel, Prolog, Python, Generic Java, M L , and Haskell; each 
presents its own challenges and advantages. Implement the program in your favorite 
language and compare its general flavor and performance. • 

Supplementary Reading 
The Standard Template Library is described in a variety of books, including Gen

eric Programming and the STL, by Matthew Austern (Addison-Wesley, 1998). The 
definitive reference on C++ itself is The C++ Programming Language, by Bjarne 
Stroustrup (3rd edition, Addison-Wesley, 1997). For Java, we refer to The Java Pro
gramming Language, 2nd Edition by Ken Arnold and James Gosling (Addison-
Wesley, 1998). The best description of Perl is Programming Perl, 2nd Edition, by 
Larry Wall, Tom Christiansen, and Randal Schwartz (O'Reilly, 1996). 
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The idea behind design patterns is that there are only a few distinct design con
structs in most programs in the same way that there are only a few basic data struc
tures; very loosely, it is the design analog of the code idioms that we discussed in 
Chapter 1. The standard reference is Design Patterns: Elements of Reusable Object-
Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides (Addison-Wesley, 1995). 

The picaresque adventures of the markov program, originally called shaney, were 
described in the "Computing Recreations" column of the June, 1989 Scientific Amer
ican. The article was republished in The Magic Machine, by A. K. Dewdney (W. H. 
Freeman, 1990). 
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Woman: Is my Aunt Minnie in here? 

Driftwood: Well, you can come in and prowl around if you want to. 
If she isn't in here, you can probably find somebody just as good. 
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. any character metacharacter, 223 
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= assignment operator, 9,13 
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> » Java logical right shift operator, 194 
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[ ] character class metacharacter, 223,228 
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line continuation character, 240 
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{ } braces, position of, 10 
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bitwise operator, 7, 127 
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abort library function, 125 
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add function, Markov C, 68 
addend list function, 46 
addf ront list function, 46 
addname list function, 42 
addop function, 233,244 
addsuf f i x function, Markov C, 68 
advquoted function, CSV, 97-98 
Aho, A l , x i i 
algorithm 

binary search, 31, 52 
constant-time, 41, 44, 49, 55, 76 
cubic, 41 
exponential, 41 
linear, 30,41,46-47 
log ft, 32,41,51-52,76 
Markov chain, 62-63 

log 34, 41 
quadratic, 40, 43, 176 
quicksort, 32 
sequential search, 30 
tree sort, 53 

alignment, 206 
structure member, 195 

al 1 oca function, 180 
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error, memory, 130 
memory, 48, 67, 92 
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allocator, special-purpose, 180, 182 
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and parenthesization, 6 
i f - e l s e , 10 

analysis of algorithms, see O-notation 
ANSI/ISO C standard, 190, 212 
any character metacharacter, ., 223 
application program interface (API), 105, 198 
appl y list function, 47 
applyinorder tree function, 53 
applypostorder tree function, 54 
approximate values, 181 
Ariane 5 rocket, 157 
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IEEE floating-point, 112,181,193 
shift, 135, 194 

Arnold, Ken, x i i , 83 
array bounds, 14 
Array 

Java, 39 
length field, Java, 22 

array, s t a t i c , 131 
* a r r a y [ ] vs. **array, 30 
arrays, growing, 41-44, 58, 92, 95, 97, 158 
ASCII encoding, 210 
assembly language, 152,181,237 
assert macro, 142 
<assert. h> header, 142 
assignment 

multiple, 9 
operator, =, 9, 13 
operator, » = , 8 

associative array, see also hash table 
associative array, 78, 82 
atexi t library function, 107 
Austern, Matthew, 83 
avg function, 141 
Awk, 229 

profile, 174 
program, fmt, 229 
program, Markov, 79 
program, s p l i t . awk, 229 
test, 150 

backwards compatibility, 209, 211 
balanced tree, 52, 76 
benchmarking, 187 
Bentley, Jon, x i i , 59, 163, 188 
beta release test, 160 
Bigelow, Chuck, x i i 
big-endian, 204,213 
binary 

files, 132, 157, 203 
mode I/O, 134,207 

binary search 
algorithm, 31,52 
for error, 124 

function, lookup, 31,36 
testing, 146 
tree, 50 
tree diagram, 51 

bi nhex program, 203 
bi son compiler-compiler, 232 
b i t b i t operator, 241 
bitfields, 183, 191, 195 
bitwise operator 

&, 7, 127 
I , 7, 127 

black box testing, 159 
Bloch, Joshua, x i i 
block, t r y , 113 
Booth, Rick, 188 
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Bourne, Steven R., 158 
braces, position of { } , 10 
Brooks, Frederick P., Jr., 61, 83, 87, 115 
bsearch library function, 36 
B-tree, 54 
buffer 

flush, 107, 126 
overflow error, 67, 156-157 

buffering, I/O, 180 
bug, see also error 
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environment dependent, 131 
header file, 129 
i s p r i n t , 129, 136 
list, 128 
mental model, 127 
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Markov C++, 77 
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caching, 179, 186, 243 
can't get here message, 124 
can't happen message, 15,142,155 
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Cargill, Tom, x i i 
carriage return, \ r , 89,96,203-204 
cast, 35, 40, 43, 244 
C/C++ preprocessor, see preprocessor directive 
C/C++ data type sizes, 192, 216 
c e r r error stream, 126 
Chai n class, Markov Java, 72 
Chai n. add function, Markov Java, 73 
Chai n. bui 1 d function, Markov Java, 73 
Chai n. generate function, Markov Java, 74 
character set, see encoding 
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Christiansen, Tom, 83 
c i n input stream, 77 
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status return, 109, 225 
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time, 171 
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csvnf i el d function, 98 
endofl i ne function, 96 
mai n function, 89,98, 103 
reset function, 96 
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Csv:: advpl ai n function, 102 
Csv: : advquoted function, 102 
Csv: : endof 1 i ne function, 101 
Csv: : g e t f i el d function, 102 
Csv:: get! i ne function, 100 
Csv:: getnf i el d function, 102 
Csv: : spl i t function, 101 
Csv class, 100 
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csvnfi el d function, CSV, 98 
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data 
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type sizes, C/C++, 192, 216 
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Date class, Java, 172 
Date. getTi me Java library function, 172 
dbx debugger, 122 
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Java synchronized, 108 
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s t a t i c , 94 
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del name function, 43 
deque container, 76, 81 
derived type, 38 
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Markov hash table, 66 
packet format, 216 
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environment dependent bug, 131 
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EOF value, 194 
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" e p r i n t f . h " header, 110 

eqn language, 229 

errno variable, 112,193 
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file, see also header 
files 

binary, 132, 157, 203 
test data, 157 
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1 ookup binary search, 31,36 
lookup hash table, 56 
lookup list, 47 
lookup tree, 52 
macro, i soctal , 5 
macros, 17-19 
Markov C add, 68 
Markov C addsuffix, 68 
Markov C build, 67 
Markov C++ b u i l d , 77 
Markov C generate, 70 
Markov C++ generate, 78 
Markov C hash, 66 
Markov C lookup, 67 
Markov C main, 71 
Markov C++ mai n, 77 
Markov Java Chai n. add, 73 
Markov Java Chain, bui Id, 73 
Markov Java Chain, gene rate, 74 
Markov Java mai n, 72 
Markov Java Pref i x. equal s, 75 

Markov Java Pref i x. hashCode, 74 
match, 224 
matchhere, 224 
matchstar, 225 
memset, 152 
names, 4 
newi tern list, 45 
n r l ookup tree, 53 
nvcmp name-value comparison, 37 
pack, 218 
pack_typel, 217,219 
parameter, . . . ellipsis, 109, 218 
pointer, 34, 47, 122, 220-221, 233, 236, 244 
p r i n t n v list, 47 
progname, 110 
prototype, C, 191 
pushop, 236 
quicksort, 33 
Quicksort. rand, 39 
Qui cksort. sort, 39 
Quicksort.swap, 39 
receive, 221 
Scmp S t r i ng comparison, 38 
scmp string comparison, 35 
setprogname, 110 
strdup, 14, 110, 196 
s t r i n g s , 132 
s t r i n g s main, 133 
s t r s t r , 167 
swap, 33 
testmalloc, 158 
unpack, 219 
unpack_type2, 220 
unquote, 88 
usage, 114 
virtual, 221 
weprintf, 52, 109, 197 
wrapper, 111 

f w r i t e library function, 106, 205 

Gamma, Erich, 84 
garbage collection, 48, 75, 108 

reference countv 108 
gcc compiler, 120 
generate function, 235 

Markov C, 70 
Markov C++, 78 

generic class, see container class 
g e t b i t s function, 183 
getchar 

idioms, 13, 194 
library function, 13, 194 

getquotes. t c l Tel program, 87 
gets 

error, 14, 156 
library function, 14, 156 

g e t u r l . t c l Tcl program, 230 
GIF encoding, 184 
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hash table chains, 126 
hash table size, 174 

grep 
function, 226 
implementation, 225-227 
mai n function, 225 
options, 228 
program, 223-226 
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arrays, 41-44, 58, 92, 95, 97, 158 
hash table, 58 

Hanson, David, 115,245 
Harbison, Sam, 212 
hardware error, 130 
hash 

function, 55-57 
function, Java, 57 
function multiplier, 56-57 
table, 55-58, 78, 169 
table chains, graph of, 126 
table diagram, 55 
table function, lookup, 56 
table, growing, 58 
table insertion, 56 
table, prefix, 64 
table size, 56-57, 65 
table size, graph of, 174 
value, 55 

hash 
container, 76, 81 
function, Markov C, 66 

hashing, coordinate, 57-58 
Hashtabl e class, Java, 71 
header 

<assert.h>, 142 
"csv.h", 94 
<ctype.h>, 18,21, 129,210 
" e p r i n t f .h", 110 
<errno.h>, 109 
"errors.h", 238 
<stdarg.h>, 109,218 
<stddef.h>, 192 
<stdio.h>, 104, 196 
<stdlib.h>, 198 
<time.h>, 171 

header file 
bug, 129 
organization, 94 
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Hemingway, Ernest, 63 
Hennessy, John, 188 

Herron, Andrew, xi i 
hexadecimal output, 125 
histogram, 126 
Hoare, C. A. R., 32,37 
holes in structure, 195 
Holzmann, Gerard, x i i , 57, 59 
homoiousian vs. homoousian, 228 
hot spot, 130, 172-174 
HTML, 86, 157, 215, 230, 237 

characters, 31 
HTTP, 89,204 

Icmp Integer comparison function, 38 
i cmp integer comparison function, 36 
idioms, 10-17 

f o r loop, 12, 194 
getchar, 13, 194 
infinite loop, 12 
list traversal, 12 
loop, 12-13, 140 
mal loc, 14 
memmove array update, 43, 68 
new, 14 
realloc, 43,95 
side effects, 195 
string copy, 14 
string truncation, 26 
switch, 16 

idle loop, 177 
IEEE floating-point arithmetic, 112, 181, 193 
#i f preprocessor directive, 196 
#i f def, see also conditional compilation 
# i f def preprocessor directive, 25, 196, 198-201 
i f-e 1 se ambiguity, 10 
inccounter list function, 48 
increment operator, ++, 9 
incremental testing, 145 
indentation style, 6, 10, 12, 15 
independent implementations, testing by, 148 
i ndexOf Java library function, 30 
Inferno operating system, 181,210,213 
infinite loop idioms, 12 
information hiding, 92, 99, 104, 202 

in C, 94, 103 
initialization, static, 99, 106 
inline function, C++, 17, 19 
in-order tree traversal, 53 
input 

mode, rb, 134, 207 
stream, c i n, 77 
stream, s t d i n, 104 

i n s e r t tree function, 51 
insertion, hash table, 56 
instructions, stack machine, 235 
integer 

comparison function, i cmp, 36 
overflow, 36, 157 
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Cmp, 38 
Comparable, 37 
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Ser ia l i zab le , 207 

in ter face , Java, 38 
interfaces, user, 113-115 
internationalization, 209-211 
interpreter, 231, 234 
intersection, portability by, 198 
I/O 

binary mode, 134,207 
buffering, 180 
text mode, 134 

IOException, 113 
i ost ream library, C++, 77 
i sal pha library function, 210 
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10646 encoding, 31,210 
C++ standard, 76, 190, 212 

i s o c t a l function macro, 5 
i s p r i n t bug, 129, 136 
i s spam function, 167, 169, 177 
i supper library function, 18, 21 
i sLIppe rCase Java library function, 21 

Java 
Array, 39 
Array length field, 22 
data type sizes, 193 
Date class, 172 
Decimal Format class, 221 
hash function, 57 
Hashtable class, 71 
in te r face , 38 
library function, Date. getTi me, 172 
library function, i ndexOf, 30 
library function, isUpperCase, 21 
library function, Math. abs, 39 
logical right shift operator, » > , 194 
Object, 38,40,71 
quicksort, 37-40 
Random class, 39 
random library function, 24, 162 
StreamTokenizer class, 73 
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Virtual Machine, 237 
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JIT, see just-in-time compiler 
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matchstar function, 227 
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design, 91-94 
sort, 34-37 

library function 
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a t e x i t , 107 
bsearch, 36 
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c t i me, 25, 144 
Date. getTi me Java, 172 
f f l u s h , 126 
f gets, 22, 88, 92, 140, 156 
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f i n d _ f i r s t _ o f , 101-102 
fread, 106,205 
free, 48 
fscanf, 67 
f w r i t e , 106,205 
getchar, 13, 194 
gets, 14, 156 
indexOf Java, 30 
i sal pha, 210 
i supper, 18,21 
isUpperCaseJava, 21 
Java random, 24, 162 
longjmp, 113 
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memcmp, 173 
memcpy, 43, 105 
memmove, 43, 68, 105 
memset, 182 
new, 14, 120 
qsort , 34 
rand, 33,70 
real loc, 43,95, 120 
scanf, 9, 156, 183 
setbuf, setvbuf, 126 
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strcmp, 26 
strcpy, 14 
strcspn, 97, 101, 155 
s t r e r r o r , 109, 112 
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s t r s t r , 30, 167 
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bug, 128 
diagram, 45 
doubly-linked, 49, 81 
function, addend, 46 
function, addfront, 46 
function, addname, 42 
function, apply, 47 
function, del i tern, 49 
function, f r e e a l l , 48 
function, inccounter, 48 
function, lookup, 47 
function, newi tern, 45 
function, p r i ntnv, 47 
representation, 45-46, 49 
singly-linked, 45 
traversal idioms, 12 

l i s t container, 81 
lists, 44-50 
literate programming, 240 
little languages, 151, 216, 229 
little-endian, 204 
local variable, 3, 122 

pointer to, 130 
Locanthi, Bart, 241,246 
log file, 111, 125, 131 
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operator, | | , 6, 193 
right shift operator, » > Java, 194 
shift, 135, 194 

log n algorithm, 32,41,51-52,76 
1 ong j mp library function, 113 
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binary search function, 31, 36 
function, Markov C, 67 
hash table function, 56 
list function, 47 
tree function, 52 

loop 
do-while, 13, 133,225 
elimination, 179 
idioms, 12-13, 140 
inversion, 169 

LOOP macro, 240 
loop 

unrolling, 179 
variable declaration, 12 

machine 
stack, 234 
virtual, 203, 213, 232, 236 

machine-dependent code, 181 
macro, 17-19 

argument, multiple evaluation of, 18, 129 
assert, 142 
code generation by, 240 
LOOP, 240 
NELEMS, 22,31 
va_arg, va_l i st, va_start, va_end, 109, 218 

magic numbers, 2, 19-22, 129 
Maguire, Steve, 28, 137 
mai n function 

CSV, 89, 98, 103 
grep, 225 
Markov C, 71 
Markov C++, 77 
Markov Java, 72 
s t r i n g s , 133 
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debugging, 131 
idioms, 14 
library function, 14,120,131,157 
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memory, 48 
resource, 92, 106-109 

map container, 72, 76, 81 
Markov 

Awk program, 79 
C add function, 68 
C addsuffix function, 68 
C bui 1 d function, 67 
C++ bui 1 d function, 77 
C generate function, 70 
C++generate function, 78 
C hash function, 66 
C lookup function, 67 
C main function, 71 
C++ mai n function, 77 
chain algorithm, 62-63 
data structure diagram, 66 
hash table diagram, 66 
Java Chai n class, 72 
Java Chai n . add function, 73 
Java Chain, bui I d function, 73 
Java Chai n. generate function, 74 
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Java P r e f i x class, 72 
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Java Pref i x. equal s function, 75 
Java Pref i x. hashCode function, 74 
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program testing, 160-162 
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state, 64 

t e s t program, 161 
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Mars Pathfinder, 121 
Marx Brothers, 253 
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match function, 224 
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matchstar function, 225 
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Math. abs Java library function, 39 
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Mcllroy, Doug, x i i , 59 
McNamee, Paul, x i i 
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memcmp library function, 173 
memcpy library function, 43, 105 
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library function, 43, 68, 105 
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leak, 107, 129, 131 
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memset 
function, 152 
library function, 182 
test, 152-153 

mental model bug, 127 
message, see also epri n t f , wepri n t f 
message 

can't get here, 124 
can't happen, 15, 142, 155 
format, error, 114 
got here, 124 

metacharacter 
. any character, 223 
[ ] character class, 223,228 
$ end of string, 222 
+ one or more, 223,228 

I OR, 223 
\ quote, 223,228 
A start of string, 222 
* zero or more, 223, 225, 227 
? zero or one, 223,228 

metacharacters 
Perl, 231 
regular expression, 222 

M I M E encoding, 203 
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misleading error message, 134 
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Modula-3, 237 
Mullender, Sape, x i i 
Mullet, Kevin, 115 
multiple 

assignment, 9 
calls of free, 131 
evaluation, 18-19,22 
evaluation of macro argument, 18, 129 

multiplier, hash function, 56-57 
multi-threading, 90, 108, 118 
multi-way decisions, 14 
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function, 4 
variable, 3-4, 155 

Nameval structure, 31, 42, 45, 50, 55 
name-value structure, see Nameval structure 
name-value comparison function, nvcmp, 37 
naming convention, 3-5, 104 

__, 104 
NaN not a number, 112 
near pointer, 192 
negated expressions, 6, 8, 25 
NELEMS macro, 22, 31 
Nelson, Peter, x i i 
Nemeth, Evi, x i i 
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idioms, 14 
library function, 14, 120 

newi tern list function, 45 
n log n algorithm, 34, 41 
non-printing characters, 132 
non-reproducible bug, 130-131 
NONWORD value, 69 
not a number, NaN, 112 
notation 

for zero, 21 
p r in t f - l i ke , 87,99,217 

n r l ookup tree function, 53 
null byte, ' \ 0 ' , 21 
NULL pointer, 21 
n u l l reference, 21, 73 
numbers, magic, 2, 19-22, 129 
numeric patterns of error, 124 
numerology, 124 
nvcmp name-value comparison function, 37 
NVtab structure, 42 

object copy, 67,73, 107-108, 161 
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Object, Java, 38,40,71 
off-by-one error, 13,124,141 
one or more metacharacter, +, 223, 228 
O-notation, see also algorithm 
<9-notation, 40-41 

table, 41 

on-the-fly compiler, see just-in-time compiler 
opaque type, 104 
operating system 

Inferno, 181,210,213 
Plan 9, 206,210,213,238 
virtual, 202,213 

operator 
& bitwise, 7, 127 
&& logical, 6, 193 
++ increment, 9 
= assignment, 9, 13 
» right shift, 8, 135, 194 
» = assignment, 8 
» > Java logical right shift, 194 
?: conditional, 8̂  193 
I bitwise, 7, 127 
I | logical, 6, 193 
b i t b l t , 241 
function table, optab, 234 
overloading, 100, 183 
precedence, 6-7, 127 
relational, 6, 127 
sizeof, 22, 192, 195 

optab operator function table, 234 
optimization, compiler, 176,186 
options, grep, 228 
OR metacharacter, | , 223 
order of evaluation error, 9, 193 
organization, header file, 94 
out of bounds error, 153 
output 

debugging, 123 
format, 89 
hexadecimal, 125 
stream, stdout, 104 

overflow, integer, 36, 157 
overloading, operator, 100,183 

pack function, 218 
pack . type l function, 217,219 
packet format diagram, 216 
pack, unpack, 216-221 
pai r container, 112 

parameter, . . . ellipsis function, 109, 218 
parameters, default, 100 
parentheses, redundant, 6 
paren thesization, 18 

and ambiguity, 6 
parse tree, 54, 232 

diagram, 54, 232 

parser generator, see compiler-compiler 
pattern matching, see regular expression 
patterns, error, 120 
Patterson, David, 188 
Pentium floating-point error, 130 
performance 

bug, 18, 82, 175 
cost model, 184 
estimation, 184-187 
expected, 40 
graph, 126, 174 
test suite, 168 
worst-case, 40 

Perl 
metacharacters, 231 
program, enum. p i , 239 
program, Markov, 80 
program, unhtml . p i , 230 
regular expression, 230 
test suite, 162 

picture, see diagram 
Pike, Rob, 213, 245-246 
pipeline, CPU, 179,244 
pivot element, quicksort, 32-34 
Plan 9 operating system, 206, 210, 213, 238 
Plauger, P. J., 28 
pointer 

dangling, 130 
far , 192 
function, 34, 47, 122, 220-221, 233, 236, 244 
near, 192 
NULL, 21 
to local variable, 130 
void*, 21,43,47 

portability, 189 
by intersection, 198 
by union, 198 

position of { } braces, 10 
POSIX standard, 198,212 
post-condition, 141 
post-order tree traversal, 54, 232 
PostScript, 203, 215, 237, 239 
PPM encoding, 184 
Practice of Programming web page, x i 
precedence, operator, 6-7, 127 
pre-condition, 141 
Pre f ix 

class, Markov Java, 72 
constructor, Markov Java, 74 

prefix hash table, 64 
Pref i x . equal s function, Markov Java, 75 
Pref i x . hashCode function, Markov Java, 74 
pre-order tree traversal, 54 
preprocessor directive 

#define, 2,20,240 
# e l i f , 199 
#endif, 199 
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# i f , 196 
# i f d e f , 25, 196, 198-201 

Presotto, David, 213 
principles, interface, 91, 103-106 
p r i n t f 

conversion error, 120 
extensions, 216 
format, dynamic, 68 
format string, 216 
%.*s format, 133 

p r i ntf - l i k e notation, 87, 99, 217 
p r i ntnv list function, 47 
production code, 83, 99 
profile 

Awk, 174 
spam filter, 173-174 

profiling, 167, 172-174 
progname function, 110 
program 
byteorder, 205 
counter, 236,243 
enum.pl Perl, 239 
fmtAwk, 229 
f req, 147,161 
getquotes.tcl Tcl, 87 
g e t u r l . t c l Tcl, 230 
grep, 223-226 
inverse, 147 
Markov Awk, 79 
Markov Perl, 80 
Markov t e s t , 161 
sizeof, 192 
s p l i t , awk Awk, 229 
strings, 131-134 
unhtml .pi Perl, 230 
v i s , 134 

programmable tools, 228-231 
programming, defensive, 114, 142 
protocol checker, Supertrace, 57 
prototype 

code, 83,87 
CSV, 87-91 
csvgetl ine, 88 

pushop function, 236 

qsort 
argument error, 122 
library function, 34 

quadratic algorithm, 40, 43, 176 
questionable code notation, ?, 2, 88 
quicksort 

algorithm, 32 
analysis, 34 
diagram, 33 
Java, 37-40 
pivot element, 32-34 

qui cksort function, 33 

Qui cksort. rand function, 39 
Qui cksort. sort function, 39 
Qui cksort. swap function, 39 
quote metacharacter, \ , 223, 228 
quotes, stock, 86 

\ r carriage return, 89, 96, 203-204 
Rabinowitz, Marty, x i i 
rand library function, 33, 70 
Random class, Java, 39 
random selection, 1/k, 70 
random library function, Java, 24, 162 
rb input mode, 134,207 
readability of expressions, 6 
r e a l l o c 

idioms, 43,95 
library function, 43,95, 120 

receive function, 221 
recent change error, 120 
records, test, 151 
recovery, error, 92, 109-113 
reduction in strength, 178 
redundant parentheses, 6 
reentrant code, 108 
reference 

argument, 111,220 
n u l l , 21,73 

reference count garbage collection, 108 
regression testing, 149 
regular expression, 99, 222-225, 239, 242 

examples, 223, 230, 239 
metacharacters, 222 
Perl, 230 
Tcl, 230 

Reiser, John, 246 
relational operator, 6, 127 
representation 

list, 45-46, 49 
sparse matrix, 183 
tree, 50 
two's complement, 194 

reproducible error, 123 
reset function, CSV, 96 
resource management, 92, 106-109 
return, see carriage return 
right shift 

operator, » , 8, 135, 194 
operator, » > Java logical, 194 

Ritchie, Dennis, x i i , 212-213 

Sam text editor, 202,213 
Sano, Darrell, 115 
scanf 

error, 120 
library function, 9, 156, 183 

Schwartz, Randal, 83 
Scmp S t r i ng comparison function, 38 
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script 

configuration, 201 
test, 149, 160 

scripting languages, 80, 82, 230 
search 

algorithm, sequential, 30 
key, 36,55,77 

searching, 30-32 
Sedgewick, Robert, 59 
selection, Ilk random, 70 
self-checking code, 125 
self-contained test, 150 
semantic comments, 239 
sentinel, 30,69-71 
sequential search algorithm, 30 
Se r i al i zabl e interface, 207 
setbuf, setvbuf library function, 126 
set jmp library function, 113 
setmode library function, 134 
setprogname function, 110 
Shakespeare, William, 165 
Shaney, Mark V., x i i , 84 
shell, see command interpreter 
Shneiderman, Ben, 115 
side effects, 8-9, 18, 193 

idioms, 195 
signals, 197 
single point of truth, 238 
singly-linked list, 45 
size, hash table, 56-57, 65 
size_ttype, 192, 199 
s izeof 

operator, 22, 192, 195 
program, 192 

sizes 
C/C++data type, 192,216 
Java data type, 193 

sort 
algorithm, tree, 53 
library, 34-37 

so r t function, C++, 37 
sorting strings, 35 
source code control, 121,127 
space efficiency, 182-184 
spam filter, 166-170 

data structure diagram, 170 
profile, 173-174 

sparse matrix representation, 183 
special-case tuning, 181 
special-purpose allocator, 180, 182 
specification, 87, 93 

CSV, 93 
s p l i t function, CSV, 97 
s p l i t , awk Awk program, 229 
spreadsheet format, see comma-separated values 
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spreadsheet, 139,221 
Excel, 97 

s p r i n t f library function, 67 
stack 

machine, 234 
machine instructions, 235 
trace, 118-119, 122 

standard 
ANSI/ISO C, 190,212 
ISO C++, 76, 190, 212 
language, 190 
POSIX, 198,212 

Standard Template Library, see STL 
start of string metacharacter, A, 222 
state, Markov, 64 
State structure, 65 
static initialization, 99, 106 
s t a t i c 

array, 131 
declaration, 94 

statistical test, 161 
status return 

command, 109,225 
error, 109 

<stdarg. h> header, 109, 218 
<stddef.h> header, 192 
s tder r error stream, 104,126 
s t d i n input stream, 104 
<s td io .h> header, 104,196 
< s t d l i b . h > header, 198 
stdout output stream, 104 
Steele, Guy, 212 
Stevens, Rich, x i i , 212 
STL, 49, 76, 104, 155, 192 
stock quotes, 86 
Strachey, Giles Lytton, 215 
s t r ch r library function, 30, 167 
strcmp library function, 26 
s t rcpy library function, 14 
strcspn library function, 97, 101, 155 
strdup function, 14,110,196 
StreamTokenizer class, Java, 73 
s t re r r o r library function, 109,112 
stress testing, 155-159,227 
string copy idioms, see also strdup 
string 

comparison function, scmp, 35 
copy idioms, 14 
truncation idioms, 26 

s t r i ng class, C++, 100 
s t r i n g s 

function, 132 
mai n function, 133 
program, 131-134 

s t r i en library function, 14 
strncmp library function, 167 
Stroustrup, Bjarne, x i i , 83 
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s t r s t r 
function, 167 
implementation, 167-168 
library function, 30, 167 

s t r t o k library function, 88,96, 105, 108, 155 
structure 

Code, 234 
holes in, 195 
member alignment, 195 
Nameval, 31,42,45,50,55 
NVtab, 42 
State, 65 
Suff ix , 66 
Symbol, 232 
Tree, 233 

Strunk, William, 1,28 
style 

expression, 6-8 
indentation, 6, 10, 12, 15 

subscript out of range error, 14, 140, 157 
suffix, 62 
Suf f ix structure, 66 
sum command, 208 
Supertrace protocol checker, 57 
swap function, 33 
Swift, Jonathan, 213 
switch 

fall-through, 16 
idioms, 16 

Symbol structure, 232 
symbol table, 55, 58 
synchroni zed declaration, Java, 108 
syntax tree, see parse tree 
System, e r r error stream, 126 
Szymanski, Tom, x i i 

table 
Markov run-time, 81 
O-notation, 41 
optab operator function, 234 

tail recursion, 53 
Taylor, Ian Lance, x i i 
Tcl 

program, getquotes. t c l , 87 
program, ge tu r l . t c l , 230 
regular expression, 230 

teddy bear, 123, 137 
test 

Awk, 150 
beta release, 160 
coverage, 148 
data files, 157 
memset, 152-153 
program bug, 129 
records, 151 
scaffold, 89, 98, 146, 149, 151-155 
script, 149, 160 

self-contained, 150 
statistical, 161 
suite, performance, 168 
suite, Perl, 162 

t e s t program, Markov, 161 
testing 

binary search, 146 
black box, 159 
boundary condition, 140-141, 152, 159-160 
by independent implementations, 148 
compiler, 147,239 
conservation properties, 147, 161 
exhaustive, 154 
incremental, 145 
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