
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780201615869
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780201615869
https://plusone.google.com/share?url=http://www.informit.com/title/9780201615869
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780201615869
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780201615869/Free-Sample-Chapter

The Practice of Programming

This page intentionally left blank

The Practice of Programming

Brian W. Kernighan
Rob Pike

•
T T

A D D I S O N - W E S L E Y

Boston • San Francisco • New York • Toronto • Montreal

London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley were aware of a
trademark claim, the designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more informa
tion, please contact:

Pearson Education Corporate Sales Division
201 W. 103rd Street
Indianapolis, IN 46290
(800) 428-5331
corpsal es @ pearsoned. com

Visit AW on the Web: www.awprofessional.com

This book was typeset (grap | pi c j tbl | eqn | t r o f f - mpm) in Times and Lucida Sans Typewriter by the
authors.

Library of Congress Cataloging-in-Publication Data

Kernighan, Brian W.
The practice of programming / Brian W. Kernighan, Rob Pike,

p. cm. -(Addison-Wesley professional computing series)
Includes bibliographical references.
ISBN 0-201-61586-X
1. Computer programming. I . Pike, Rob. II . Title. III . Series.
QA76.6 .K48 1999
005.1~dc21 99-10131

CIP

Copyright,© 1999 by Lucent Technologies.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or other
wise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

ISBN 0-201-61586-X

Text printed in the United States on recycled paper at RR Donnelley in Harrisonburg, Virginia.

Twenty-second printing, February 2013

http://www.awprofessional.com

Contents

Preface ix

Chapter 1: Style 1
1.1 Names 3
1.2 Expressions and Statements 6
1.3 Consistency and Idioms 10
1.4 Function Macros 17

1.5 Magic Numbers 19
1.6 Comments 23
1.7 Why Bother? 27

Chapter 2: Algorithms and Data Structures 29
2.1 Searching 30
2.2 Sorting 32

2.3 Libraries 34
2.4 A Java Quicksort 37
2.5 O-Notation 40
2.6 Growing Arrays 41
2.7 Lists 44
2.8 Trees 50
2.9 Hash Tables 55
2.10 Summary 58

Chapter 3: Design and Implementation 61
3.1 The Markov Chain Algorithm 62

3.2 Data Structure Alternatives 64
3.3 Building the Data Structure in C 65
3.4 Generating Output 69

v

Vi THE PRACTICE OF PROGRAMMING

3.5 Java 71
3.6 C++ 76
3.7 Awk and Perl 78
3.8 Performance 80
3.9 Lessons 82

Chapter 4: Interfaces 85
4.1 Comma-Separated Values 86

4.2 A Prototype Library 87

4.3 A Library for Others 91
4.4 A C++ Implementation 99
4.5 Interface Principles 103
4.6 Resource Management 106
4.7 Abort, Retry, Fail? 109
4.8 User Interfaces 113

Chapter 5: Debugging 117
5.1 Debuggers 118

5.2 Good Clues, Easy Bugs 119
5.3 No Clues, Hard Bugs 123
5.4 Last Resorts 127
5.5 Non-reproducible Bugs 130
5.6 Debugging Tools 131
5.7 Other People's Bugs 135
5.8 Summary 136

Chapter 6: Testing 139
6.1 Test as You Write the Code 140
6.2 Systematic Testing 145

6.3 Test Automation 149
6.4 Test Scaffolds 151
6.5 Stress Tests 155
6.6 Tips for Testing 158
6.7 Who Does the Testing? 159
6.8 Testing the Markov Program 160
6.9 Summary 162

Chapter 7: Performance 165
7.1 A Bottleneck 166
7.2 Timing and Profiling 171
7.3 Strategies for Speed 175

7.4 Tuning the Code 178
7.5 Space Efficiency 182

THE PRACTICE OF PROGRAMMING VII

7.6 Estimation 184

7.7 Summary 187

Chapter 8: Portability 189
8.1 Language 190

8.2 Headers and Libraries 196

8.3 Program Organization 198
8.4 Isolation 202

8.5 Data Exchange 203

8.6 Byte Order 204

8.7 Portability and Upgrade 207
8.8 Internationalization 209
8.9 Summary 212

Chapter 9: Notation 215
9.1 Formatting Data 216

9.2 Regular Expressions 222

9.3 Programmable Tools 228
9.4 Interpreters, Compilers, and Virtual Machines 231

9.5 Programs that Write Programs 237
9.6 Using Macros to Generate Code 240
9.7 Compiling on the Fly 241

Epilogue 247

Appendix: Collected Rules 249

Index 253

This page intentionally left blank

Preface

Have you ever...

wasted a lot of time coding the wrong algorithm?
used a data structure that was much too complicated?
tested a program but missed an obvious problem?
spent a day looking for a bug you should have found in five minutes?
needed to make a program run three times faster and use less memory?
struggled to move a program from a workstation to a PC or vice versa?
tried to make a modest change in someone else's program?
rewritten a program because you couldn't understand it?

Was it fun?
These things happen to programmers all the time. But dealing with such problems

is often harder than it should be because topics like testing, debugging, portability,
performance, design alternatives, and style—the practice of programming—are not
usually the focus of computer science or programming courses. Most programmers
learn them haphazardly as their experience grows, and a few never learn them at all.

In a world of enormous and intricate interfaces, constantly changing tools and lan
guages and systems, and relentless pressure for more of everything, one can lose sight
of the basic principles—simplicity, clarity, generality—that form the bedrock of good
software. One can also overlook the value of tools and notations that mechanize some
of software creation and thus enlist the computer in its own programming.

Our approach in this book is based on these underlying, interrelated principles,
which apply at all levels of computing. These include simplicity, which keeps pro
grams short and manageable; clarity, which makes sure they are easy to understand,
for people as well as machines; generality, which means they work well in a broad
range of situations and adapt well as new situations arise; and automation, which lets
the machine do the work for us, freeing us from mundane tasks. By looking at com
puter programming in a variety of languages, from algorithms and data structures
through design, debugging, testing, and performance improvement, we can illustrate

ix

X PREFACE

universal engineering concepts that are independent of language, operating system, or
programming paradigm.

This book comes from many years of experience writing and maintaining a lot of
software, teaching programming courses, and working with a wide variety of pro
grammers. We want to share lessons about practical issues, to pass on insights from
our experience, and to suggest ways for programmers of all levels to be more profi
cient and productive.

We are writing for several kinds of readers. I f you are a student who has taken a
programming course or two and would like to be a better programmer, this book wil l
expand on some of the topics for which there wasn't enough time in school. I f you
write programs as part of your work, but in support of other activities rather than as
the goal in itself, the information wil l help you to program more effectively. I f you
are a professional programmer who didn't get enough exposure to such topics in
school or who would like a refresher, or i f you are a software manager who wants to
guide your staff in the right direction, the material here should be of value.

We hope that the advice wil l help you to write better programs. The only prereq
uisite is that you have done some programming, preferably in C, C++ or Java. Of
course the more experience you have, the easier it wi l l be; nothing can take you from
neophyte to expert in 21 days. Unix and Linux programmers wil l find some of the
examples more familiar than wil l those who have used only Windows and Macintosh
systems, but programmers from any environment should discover things to make their
lives easier.

The presentation is organized into nine chapters, each focusing on one major
aspect of programming practice.

Chapter 1 discusses programming style. Good style is so important to good pro
gramming that we have chosen to cover it first. Well-written programs are better than
badly-written ones—they have fewer errors and are easier to debug and to modify—
so it is important to think about style from the beginning. This chapter also intro
duces an important theme in good programming, the use of idioms appropriate to the
language being used.

Algorithms and data structures, the topics of Chapter 2, are the core of the com
puter science curriculum and a major part of programming courses. Since most read
ers wi l l already be familiar with this material, our treatment is intended as a brief
review of the handful of algorithms and data structures that show up in almost every
program. More complex algorithms and data structures usually evolve from these
building blocks, so one should master the basics.

Chapter 3 describes the design and implementation of a small program that illus
trates algorithm and data structure issues in a realistic setting. The program is imple
mented in five languages; comparing the versions shows how the same data structures
are handled in each, and how expressiveness and performance vary across a spectrum
of languages.

PREFACE Xi

Interfaces between users, programs, and parts of programs are fundamental in pro
gramming and much of the success of software is determined by how well interfaces
are designed and implemented. Chapter 4 shows the evolution of a small library for
parsing a widely used data format. Even though the example is small, it illustrates
many of the concerns of interface design: abstraction, information hiding, resource
management, and error handling.

Much as we try to write programs correctly the first time, bugs, and therefore
debugging, are inevitable. Chapter 5 gives strategies and tactics for systematic and
effective debugging. Among the topics are the signatures of common bugs and the
importance of "numerology," where patterns in debugging output often indicate
where a problem lies.

Testing is an attempt to develop a reasonable assurance that a program is working
correctly and that it stays correct as it evolves. The emphasis in Chapter 6 is on sys
tematic testing by hand and machine. Boundary condition tests probe at potential
weak spots. Mechanization and test scaffolds make it easy to do extensive testing
with modest effort. Stress tests provide a different kind of testing than typical users
do and ferret out a different class of bugs.

Computers are so fast and compilers are so good that many programs are fast
enough the day they are written. But others are too slow, or they use too much mem
ory, or both. Chapter 7 presents an orderly way to approach the task of making a pro
gram use resources efficiently, so that the program remains correct and sound as it is
made more efficient.

Chapter 8 covers portability. Successful programs live long enough that their
environment changes, or they must be moved to new systems or new hardware or new
countries. The goal of portability is to reduce the maintenance of a program by mini
mizing the amount of change necessary to adapt it to a new environment.

Computing is rich in languages, not just the general-purpose ones that we use for
the bulk of programming, but also many specialized languages that focus on narrow
domains. Chapter 9 presents several examples of the importance of notation in com
puting, and shows how we can use it to simplify programs, to guide implementations,
and even to help us write programs that write programs.

To talk about programming, we have to show a lot of code. Most of the examples
were written expressly for the book, although some small ones were adapted from
other sources. We've tried hard to write our own code well, and have tested it on half
a dozen systems directly from the machine-readable text. More information is avail
able at the web site for The Practice of Programming:

http://tpop.awl.com

The majority of the programs are in C, with a number of examples in C++ and
Java and some brief excursions into scripting languages. At the lowest level, C and
C++ are almost identical and our C programs are valid C++ programs as well. C++
and Java are lineal descendants of C, sharing more than a little of its syntax and much
of its efficiency and expressiveness, while adding richer type systems and libraries.

Xii PREFACE

In our own work, we routinely use all three of these languages, and many others. The
choice of language depends on the problem: operating systems are best written in an
efficient and unrestrictive language like C or C++; quick prototypes are often easiest
in a command interpreter or a scripting language like Awk or Perl; for user interfaces,
Visual Basic and Tcl/Tk are strong contenders, along with Java.

There is an important pedagogical issue in choosing a language for our examples.
Just as no language solves all problems equally well, no single language is best for
presenting all topics. Higher-level languages preempt some design decisions. I f we
use a lower-level language, we get to consider alternative answers to the questions; by
exposing more of the details, we can talk about them better. Experience shows that
even when we use the facilities of high-level languages, it's invaluable to know how
they relate to lower-level issues; without that insight, it's easy to run into performance
problems and mysterious behavior. So we wil l often use C for our examples, even
though in practice we might choose something else.

For the most part, however, the lessons are independent of any particular program
ming language. The choice of data structure is affected by the language at hand; there
may be few options in some languages while others might support a variety of alterna
tives. But the way to approach making the choice wil l be the same. The details of
how to test and debug are different in different languages, but strategies and tactics
are similar in all. Most of the techniques for making a program efficient can be
applied in any language.

Whatever language you write in, your task as a programmer is to do the best you
can with the tools at hand. A good programmer can overcome a poor language or a
clumsy operating system, but even a great programming environment wil l not rescue
a bad programmer. We hope that, no matter what your current experience and skill,
this book wil l help you to program better and enjoy it more.

We are deeply grateful to friends and colleagues who read drafts of the manuscript
and gave us many helpful comments. Jon Bentley, Russ Cox, John Lakos, John Lin-
derman, Peter Memishian, Ian Lance Taylor, Howard Trickey, and Chris Van Wyk
read the manuscript, some more than once, with exceptional care and thoroughness.
We are indebted to Tom Cargill, Chris Cleeland, Steve Dewhurst, Eric Grosse,
Andrew Herron, Gerard Holzmann, Doug Mcllroy, Paul McNamee, Peter Nelson,
Dennis Ritchie, Rich Stevens, Tom Szymanski, Kentaro Toyama, John Wait, Daniel
C. Wang, Peter Weinberger, Margaret Wright, and Cliff Young for invaluable com
ments on drafts at various stages. We also appreciate good advice and thoughtful sug
gestions from A l Aho, Ken Arnold, Chuck Bigelow, Joshua Bloch, Bi l l Coughran,
Bob Flandrena, Renee French, Mark Kernighan, Andy Koenig, Sape Mullender, Evi
Nemeth, Marty Rabinowitz, Mark V. Shaney, Bjarne Stroustrup, Ken Thompson, and
Phil Wadler. Thank you all.

Brian W. Kernighan

Rob Pike

This page intentionally left blank

3
Design and Implementation

Show me your flowcharts and conceal your tables, and I shall con
tinue to be mystified. Show me your tables, and I won't usually
need your flowcharts; they 'II be obvious.

Frederick P. Brooks, Jr., The Mythical Man Month

As the quotation from Brooks's classic book suggests, the design of the data struc
tures is the central decision in the creation of a program. Once the data structures are
laid out, the algorithms tend to fall into place, and the coding is comparatively easy.

This point of view is oversimplified but not misleading. In the previous chapter
we examined the basic data structures that are the building blocks of most programs.
In this chapter we wil l combine such structures as we work through the design and
implementation of a modest-sized program. We wil l show how the problem influ
ences the data structures, and how the code that follows is straightforward once we
have the data structures mapped out.

One aspect of this point of view is that the choice of programming language is rel
atively unimportant to the overall design. We wil l design the program in the abstract
and then write it in C, Java, C++, Awk, and Perl. Comparing the implementations
demonstrates how languages can help or hinder, and ways in which they are unimpor
tant. Program design can certainly be colored by a language but is not usually domi
nated by it.

The problem we have chosen is unusual, but in basic form it is typical of many
programs: some data comes in, some data goes out, and the processing depends on a
little ingenuity.

Specifically, we're going to generate random English text that reads well. I f we
emit random letters or random words, the result wi l l be nonsense. For example, a pro
gram that randomly selects letters (and blanks, to separate words) might produce this:

xptmxgn xusaja afqnzgxl 1 hid!wed rjdjuvpydrlwnjy

61

62 DESIGN AND IMPLEMENTATION CHAPTER 3

which is not very convincing. I f we weight the letters by their frequency of appear
ance in English text, we might get this:

idtefoae tcs trder j c i i ofdslnqetacp t ola

which isn't a great deal better. Words chosen from the dictionary at random don't
make much more sense:

polydactyl equatorial splashily jowl verandah circumscribe

For better results, we need a statistical model with more structure, such as the fre
quency of appearance of whole phrases. But where can we find such statistics?

We could grab a large body of English and study it in detail, but there is an easier
and more entertaining approach. The key observation is that we can use any existing
text to construct a statistical model of the language as used in that text, and from that
generate random text that has similar statistics to the original.

3.1 The Markov Chain Algorithm

An elegant way to do this sort of processing is a technique called a Markov chain
algorithm. I f we imagine the input as a sequence of overlapping phrases, the algo
rithm divides each phrase into two parts, a multi-word prefix and a single suffix word
that follows the prefix. A Markov chain algorithm emits output phrases by randomly
choosing the suffix that follows the prefix, according to the statistics of (in our case)
the original text. Three-word phrases work well—a two-word prefix is used to select
the suffix word:

set w i and w2 to the first two words in the text
print wj andw 2

loop:
randomly choose w 3 , one of the successors of prefix w i w2 in the text
print w3

replace w i and w2 by w2 and w 3

repeat loop

To illustrate, suppose we want to generate random text based on a few sentences para
phrased from the epigraph above, using two-word prefixes:

Show your flowcharts and conceal your tables and I w i l l be
mystified. Show your tables and your flowcharts w i l l be
obvious, (end)

These are some of the pairs of input words and the words that follow them:

SECTION 3.1 THE MARKOV CHAIN ALGORITHM 63

Input prefix: Suffix words that follow:

Show your
your flowcharts
flowcharts and
flowcharts w i l l
your tables
wi11 be
be mystified,
be obvious.

flowcharts tables
and w i l l
conceal
be
and and
mystified, obvious.
Show
(end)

A Markov algorithm processing this text wi l l begin by printing Show your and wil l
then randomly pick either flowcharts or tables. I f it chooses the former, the cur
rent prefix becomes your flowcharts and the next word wil l be and or w i l l . I f it
chooses tables, the next word wil l be and. This continues until enough output has
been generated or until the end-marker is encountered as a suffix.

Our program wil l read a piece of English text and use a Markov chain algorithm to
generate new text based on the frequency of appearance of phrases of a fixed length.
The number of words in the prefix, which is two in our example, is a parameter.
Making the prefix shorter tends to produce less coherent prose; making it longer tends
to reproduce the input text verbatim. For English text, using two words to select a
third is a good compromise; it seems to recreate the flavor of the input while adding
its own whimsical touch.

What is a word? The obvious answer is a sequence of alphabetic characters, but it
is desirable to leave punctuation attached to the words so "words" and "words . " are
different. This helps to improve the quality of the generated prose by letting punctua
tion, and therefore (indirectly) grammar, influence the word choice, although it also
permits unbalanced quotes and parentheses to sneak in. We wil l therefore define a
"word" as anything between white space, a decision that places no restriction on
input language and leaves punctuation attached to the words. Since most program
ming languages have facilities to split text into white-space-separated words, this is
also easy to implement.

Because of the method, all words, all two-word phrases, and all three-word
phrases in the output must have appeared in the input, but there should be many four-
word and longer phrases that are synthesized. Here are a few sentences produced by
the program we wil l develop in this chapter, when given the text of Chapter V I I of
The Sun Also Rises by Ernest Hemingway:

As I started up the undershirt onto his chest black, and big stomach mus
cles bulging under the light. "You see them?" Below the line where his
ribs stopped were two raised white welts. "See on the forehead." "Oh,
Brett, I love you." "Let's not talk. Talking's all bilge. I 'm going away
tomorrow." "Tomorrow?" "Yes. Didn't I say so? I am." "Let's have a
drink, then."

We were lucky here that punctuation came out correctly; that need not happen.

64 DESIGN AND IMPLEMENTATION CHAPTER 3

3.2 Data Structure Alternatives

How much input do we intend to deal with? How fast must the program run? It
seems reasonable to ask our program to read in a whole book, so we should be pre
pared for input sizes of n = 100,000 words or more. The output wi l l be hundreds or
perhaps thousands of words, and the program should run in a few seconds instead of
minutes. With 100,000 words of input text, n is fairly large so the algorithms can't be
too simplistic i f we want the program to be fast.

The Markov algorithm must see all the input before it can begin to generate out
put, so it must store the entire input in some form. One possibility is to read the
whole input and store it in a long string, but we clearly want the input broken down
into words. I f we store it as an array of pointers to words, output generation is simple:
to produce each word, scan the input text to see what possible suffix words follow the
prefix that was just emitted, and then choose one at random. However, that means
scanning all 100,000 input words for each word we generate; 1,000 words of output
means hundreds of millions of string comparisons, which wil l not be fast.

Another possibility is to store only unique input words, together with a list of
where they appear in the input so that we can locate successor words more quickly.
We could use a hash table like the one in Chapter 2, but that version doesn't directly
address the needs of the Markov algorithm, which must quickly locate all the suffixes
of a given prefix.

We need a data structure that better represents a prefix and its associated suffixes.
The program wil l have two passes, an input pass that builds the data structure repre
senting the phrases, and an output pass that uses the data structure to generate the ran
dom output. In both passes, we need to look up a prefix (quickly): in the input pass to
update its suffixes, and in the output pass to select at random from the possible suf
fixes. This suggests a hash table whose keys are prefixes and whose values are the
sets of suffixes for the corresponding prefixes.

For purposes of description, we'll assume a two-word prefix, so each output word
is based on the pair of words that precede it. The number of words in the prefix
doesn't affect the design and the programs should handle any prefix length, but select
ing a number makes the discussion concrete. The prefix and the set of all its possible
suffixes we'll call a state, which is standard terminology for Markov algorithms.

Given a prefix, we need to store all the suffixes that follow it so we can access
them later. The suffixes are unordered and added one at a time. We don't know how
many there wi l l be, so we need a data structure that grows easily and efficiently, such
as a list or a dynamic array. When we are generating output, we need to be able to
choose one suffix at random from the set of suffixes associated with a particular pre
fix. Items are never deleted.

What happens i f a phrase appears more than once? For example, 'might appear
twice' might appear twice but 'might appear once' only once. This could be repre
sented by putting 'twice' twice in the suffix list for 'might appear' or by putting it in
once, with an associated counter set to 2. We've tried it with and without counters;

SECTION 3.3 BUILDING THE DATA STRUCTURE IN C 65

without is easier, since adding a suffix doesn't require checking whether it's there
already, and experiments showed that the difference in run-time was negligible.

In summary, each state comprises a prefix and a list of suffixes. This information
is stored in a hash table, with prefix as key. Each prefix is a fixed-size set of words.
I f a suffix occurs more than once for a given prefix, each occurrence wi l l be included
separately in the list.

The next decision is how to represent the words themselves. The easy way is to
store them as individual strings. Since most text has many words appearing multiple
times, it would probably save storage i f we kept a second hash table of single words,
so the text of each word was stored only once. This would also speed up hashing of
prefixes, since we could compare pointers rather than individual characters: unique
strings have unique addresses. We'll leave that design as an exercise; for now, strings
wil l be stored individually.

3.3 Building the Data Structure in C
Let's begin with a C implementation. The first step is to define some constants,

enum {
NPREF = 2, /* number of p r e f i x words */
NHASH = 4093, /* size of state hash table array */
MAXGEN = 10000 /* maximum words generated */

} ;

This declaration defines the number of words (NPREF) for the prefix, the size of the
hash table array (NHASH), and an upper limit on the number of words to generate
(MAXGEN). I f NPREF is a compile-time constant rather than a run-time variable, storage
management is simpler. The array size is set fairly large because we expect to give
the program large input documents, perhaps a whole book. We chose NHASH = 4093
so that i f the input has 10,000 distinct prefixes (word pairs), the average chain wil l be
very short, two or three prefixes. The larger the size, the shorter the expected length
of the chains and thus the faster the lookup. This program is really a toy, so the per
formance isn't critical, but i f we make the array too small the program wil l not handle
our expected input in reasonable time; on the other hand, i f we make it too big it
might not fit in the available memory.

The prefix can be stored as an array of words. The elements of the hash table wi l l
be represented as a State data type, associating the Suffix list with the prefix:

typedef s t r u c t State State;
typedef s t r u c t Suffix S u f f i x ;
s t r u c t State { /* pr e f i x + s u f f i x l i s t */

char *pref[NPREF]; /* pr e f i x words */
Suffix *suf; /* l i s t of suffixes */
State *next; /* next i n hash table */

} ;

66 DESIGN AND IMPLEMENTATION CHAPTER 3

s t r u c t Suffix { /* l i s t of suffixes */
char *word; /* s u f f i x */
Suffix *next; /* next i n l i s t of suffixes */

} ;

State *statetab[NHASH]; /* hash table of states */

Pictorially, the data structures look like this:

s t a t e t a b :

word r word

nex t

\ " t a b l e s "

We need a hash function for prefixes, which are arrays of strings. It is simple to
modify the string hash function from Chapter 2 to loop over the strings in the array,
thus in effect hashing the concatenation of the strings:

/* hash: compute hash value f o r array of NPREF strings */
unsigned i n t hash(char *s[NPREF])
{

unsigned i n t h;
unsigned char *p;
i nt i ;

h = 0;
for (i = 0; i < NPREF; i++)

for (p = (unsigned char *) s [i] ; *p != '\0'; p++)
h = MULTIPLIER * h + *p;

return h % NHASH;

A similar modification to the lookup routine completes the implementation of the
hash table:

SECTION 3.3 BUILDING THE DATA STRUCTURE IN C 67

/* lookup: search f o r p r e f i x ; create i f requested. */
/* returns pointer i f present or created; NULL i f not. */
/* creation doesn't strdup so strings mustn't change l a t e r . */
State* lookup(char *prefix[NPREF], i n t create)
{

i nt i , h;
State *sp;

h = hash(prefix);
f o r (sp = sta t e t a b [h] ; sp != NULL; sp = sp->next) {

for (i = 0; i < NPREF; i++)
i f (s t r c m p (p r e f i x [i] , s p - > p r e f [i]) != 0)

break;
i f (i = NPREF) /* found i t */

return sp;
}
i f (create) {

sp = (State *) emalloc(sizeof(State));
f o r (i = 0; i < NPREF; i++)

sp->pref[i] = p r e f i x [i] ;
sp->suf = NULL;
sp->next = sta t e t a b [h] ;
statetab[h] = sp;

}
return sp;

}

Notice that 1 ookup doesn't make a copy of the incoming strings when it creates a new
state; it just stores pointers in sp->pref [] . Callers of 1 ookup must guarantee that the
data won't be overwritten later. For example, i f the strings are in an I/O buffer, a
copy must be made before lookup is called; otherwise, subsequent input could over
write the data that the hash table points to. Decisions about who owns a resource
shared across an interface arise often. We wil l explore this topic at length in the next
chapter.

Next we need to build the hash table as the file is read:

/* b u i l d : read input, build p r e f i x table */
void build(char ^prefix[NPREF], FILE * f)
{

char buf[100], fmt[10];

/* create a format s t r i n g ; %s could overflow buf */
sp r i n t f (f m t , ,,%%%ds", sizeof (buf)-1) ;
while (f s c a n f (f , fmt, buf) != EOF)

add(prefix, estrdup(buf));
}

The peculiar call to spri n t f gets around an irritating problem with f scanf, which
is otherwise perfect for the job. A call to f scanf with format %s wi l l read the next
white-space-delimited word from the file into the buffer, but there is no limit on size:
a long word might overflow the input buffer, wreaking havoc. I f the buffer is 100

68 DESIGN AND IMPLEMENTATION CHAPTER 3

bytes long (which is far beyond what we expect ever to appear in normal text), we can
use the format %99s (leaving one byte for the terminal '\0'), which tells f scanf to
stop after 99 bytes. A long word wil l be broken into pieces, which is unfortunate but
safe. We could declare

? enum { BUFSIZE = 100 };
? char f m t [] = "%99s"; /* BUFSIZE-1 */

but that requires two constants for one arbitrary decision—the size of the buffer—and
introduces the need to maintain their relationship. The problem can be solved once
and for all by creating the format string dynamically with s p r i n t f , so that's the
approach we take.

The two arguments to build are the p r e f i x array holding the previous NPREF
words of input and a FILE pointer. It passes the pref i x and a copy of the input word
to add, which adds the new entry to the hash table and advances the prefix:

/* add: add word to s u f f i x l i s t , update p r e f i x */
void add(char *prefix[NPREF], char * s u f f i x)
{

State *sp;

sp = lookup(prefix, 1); /* create i f not found */
addsuffix(sp, s u f f i x) ;
/* move the words down the p r e f i x */
memmove(prefix, prefix+1, (NPREF-l)*sizeof(prefix[0]));
prefix[NPREF-l] = s u f f i x ;

}

The call to memmove is the idiom for deleting from an array. It shifts elements 1
through NPREF-1 in the prefix down to positions 0 through NPREF-2, deleting the first
prefix word and opening a space for a new one at the end.

The addsuffix routine adds the new suffix:

/* addsuffix: add to state, s u f f i x must not change l a t e r */
void addsuffix(State *sp, char * s u f f i x)
{

Suffix *suf;

suf = (Su f f i x *) emalloc(sizeof(Suffix));
suf->word = s u f f i x ;
suf->next = sp->suf;
sp->suf = suf;

}

We split the action of updating the state into two functions: add performs the general
service of adding a suffix to a prefix, while addsuffix performs the implementation-
specific action of adding a word to a suffix list. The add routine is used by bui 1 d, but
addsuffix is used internally only by add; it is an implementation detail that might
change and it seems better to have it in a separate function, even though it is called in
only one place.

SECTION 3.4 GENERATING OUTPUT 69

3.4 Generating Output

With the data structure built, the next step is to generate the output. The basic idea
is as before: given a prefix, select one of its suffixes at random, print it, then advance
the prefix. This is the steady state of processing; we must still figure out how to start
and stop the algorithm. Starting is easy i f we remember the words of the first prefix
and begin with them. Stopping is easy, too. We need a marker word to terminate the
algorithm. After all the regular input, we can add a terminator, a "word" that is guar
anteed not to appear in any input:

b u i l d (p r e f i x , s t d i n) ;
add(prefix, NONWORD);

NONWORD should be some value that wil l never be encountered in regular input. Since
the input words are delimited by white space, a "word" of white space wi l l serve,
such as a newline character:

char NONWORD[] = n \ n " ; / * cannot appear as real word * /

One more worry: what happens i f there is insufficient input to start the algorithm?
There are two approaches to this sort of problem, either exit prematurely i f there is
insufficient input, or arrange that there is always enough and don't bother to check.
In this program, the latter approach works well.

We can initialize building and generating with a fabricated prefix, which guaran
tees there is always enough input for the program. To prime the loops, initialize the
prefix array to be all NONWORD words. This has the nice benefit that the first word of
the input file wi l l be the first suffix of the fake prefix, so the generation loop needs to
print only the suffixes it produces.

In case the output is unmanageably long, we can terminate the algorithm after
some number of words are produced or when we hit NONWORD as a suffix, whichever
comes first.

Adding a few NONWORDs to the ends of the data simplifies the main processing
loops of the program significantly; it is an example of the technique of adding sentinel
values to mark boundaries.

As a rule, try to handle irregularities and exceptions and special cases in data.
Code is harder to get right so the control flow should be as simple and regular as pos
sible.

The generate function uses the algorithm we sketched originally. It produces
one word per line of output, which can be grouped into longer lines with a word pro
cessor; Chapter 9 shows a simple formatter called f mt for this task.

With the use of the initial and final NONWORD strings, generate starts and stops
properly:

70 DESIGN AND IMPLEMENTATION CHAPTER 3

/* generate: produce output, one word per l i n e */
void generate(int nwords)
{

State *sp;
Suffix *suf;
char *prefix[NPREF], *w;
i n t i , nmatch;

fo r (i = 0 ; i < NPREF; i++) /* reset i n i t i a l p r e f i x */
p r e f i x [i] = NONWORD;

for (i = 0 ; i < nwords; i++) {
sp = lookup(prefix, 0) ;
nmatch = 0;
f o r (suf = sp->suf; suf != NULL; suf = suf->next)

i f (randQ % ++nmatch == 0) /* prob = 1/nmatch */
w = suf->word;

i f (strcmpCw, NONWORD) == 0)
break;

printfC'XsXn", w);
memmove(prefix, prefi x + 1 , (NPREF-l)*sizeof(prefix [0])) ;
prefix[NPREF-l] = w;

}
}

Notice the algorithm for selecting one item at random when we don't know how many
items there are. The variable nmatch counts the number of matches as the list is
scanned. The expression

rand() % ++nmatch == 0

increments nmatch and is then true with probability 1/nmatch. Thus the first match
ing item is selected with probability 1, the second wil l replace it with probability 1/2,
the third wil l replace the survivor with probability 1/3, and so on. At any time, each
one of the k matching items seen so far has been selected with probability 1/k.

At the beginning, we set the p r e f i x to the starting value, which is guaranteed to
be installed in the hash table. The first Suffix values we find wi l l be the first words
of the document, since they are the unique follow-on to the starting prefix. After that,
random suffixes wi l l be chosen. The loop calls 1 ookup to find the hash table entry for
the current pref i x, then chooses a random suffix, prints it, and advances the prefix.

I f the suffix we choose is NONWORD, we're done, because we have chosen the state
that corresponds to the end of the input. I f the suffix is not NONWORD, we print it, then
drop the first word of the prefix with a call to memmove, promote the suffix to be the
last word of the prefix, and loop.

Now we can put all this together into a mai n routine that reads the standard input
and generates at most a specified number of words:

SECTION 3.5 JAVA 71

/* markov main: markov-chain random te x t generation */
i n t main(void)
{

i n t i , nwords = MAXGEN;
char *prefix[NPREF]; /* current input p r e f i x */
for (i = 0 ; i < NPREF; i++) /* set up i n i t i a l p r e f i x */

p r e f i x [i] = N0NW0RD;
b u i l d (p r e f i x , s t d i n) ;
add(prefix, NONWORD);
generate(nwords);
return 0;

}

This completes our C implementation. We wil l return at the end of the chapter to
a comparison of programs in different languages. The great strengths of C are that it
gives the programmer complete control over implementation, and programs written in
it tend to be fast. The cost, however, is that the C programmer must do more of the
work, allocating and reclaiming memory, creating hash tables and linked lists, and the
like. C is a razor-sharp tool, with which one can create an elegant and efficient pro
gram or a bloody mess.

Exercise 3-1. The algorithm for selecting a random item from a list of unknown
length depends on having a good random number generator. Design and carry out
experiments to determine how well the method works in practice. •

Exercise 3-2. I f each input word is stored in a second hash table, the text is only
stored once, which should save space. Measure some documents to estimate how
much. This organization would allow us to compare pointers rather than strings in the
hash chains for prefixes, which should run faster. Implement this version and mea
sure the change in speed and memory consumption. •

Exercise 3-3. Remove the statements that place sentinel NONWORDs at the beginning
and end of the data, and modify generate so it starts and stops properly without
them. Make sure it produces correct output for input with 0, 1, 2, 3, and 4 words.
Compare this implementation to the version using sentinels. •

3.5 Java
Our second implementation of the Markov chain algorithm is in Java. Object-

oriented languages like Java encourage one to pay particular attention to the interfaces
between the components of the program, which are then encapsulated as independent
data items called objects or classes, with associated functions called methods.

Java has a richer library than C, including a set of container classes to group exist
ing objects in various ways. One example is a Vector that provides a dynamically-
growable array that can store any Object type. Another example is the Hashtable

72 DESIGN AND IMPLEMENTATION CHAPTER 3

class, with which one can store and retrieve values of one type using objects of
another type as keys.

In our application, Vectors of strings are the natural choice to hold prefixes and
suffixes. We can use a Hashtable whose keys are prefix vectors and whose values
are suffix vectors. The terminology for this type of construction is a map from pre
fixes to suffixes; in Java, we need no explicit State type because Hashtable implic
itly connects (maps) prefixes to suffixes. This design is different from the C version,
in which we installed State structures that held both prefix and suffix list, and hashed
on the prefix to recover the full State.

A Hashtable provides a put method to store a key-value pair, and a get method
to retrieve the value for a key:

Hashtable h = new HashtableO;
h.put(key, value);
Sometype v = (Sometype) h.get(key);

Our implementation has three classes. The first class, Prefix, holds the words of
the prefix:

class Prefix {
public Vector pref; // NPREF adjacent words from input

The second class, Chai n, reads the input, builds the hash table, and generates the
output; here are its class variables:

class Chain {
s t a t i c f i n a l i n t NPREF = 2; // size of p r e f i x
s t a t i c f i n a l String NONWORD = n\n";

// "word" that can't appear
Hashtable statetab = new HashtableO;

// key = Prefix, value = s u f f i x Vector
Prefix p r e f i x = new Prefix(NPREF, NONWORD);

// i n i t i a l p r e f i x
Random rand = new RandomO;

The third class is the public interface; it holds mai n and instantiates a Chai n:

class Markov {
s t a t i c f i n a l i n t MAXGEN = 10000; // maximum words generated
public s t a t i c void main(String[] args) throws IOException
{

Chain chain = new Chain();
i n t nwords = MAXGEN;
chain.build(System.in);
chain.generate(nwords);

}
}

SECTION 3.5 JAVA 73

When an instance of class Chai n is created, it in turn creates a hash table and sets
up the initial prefix of NPREF NONWORDs. The bui 1 d function uses the library function
StreamTokenizer to parse the input into words separated by white space characters.
The three calls before the loop set the tokenizer into the proper state for our definition
of "word."

// Chain b u i l d : build State table from input stream
void build(InputStream i n) throws IOException
{

StreamTokenizer st = new StreamTokenizer(in);

st.resetSyntaxO; // remove default rules
st.wordChars(0, Character.MAX_VALUE); // turn on a l l chars
st.whitespaceChars(0, ' ') ; // except up to blank
while (st.nextTokenO != st.TT_EOF)

add(st.sval);
add(NONWORD);

}

The add function retrieves the vector of suffixes for the current prefix from the
hash table; i f there are none (the vector is null), add creates a new vector and a new
prefix to store in the hash table. In either case, it adds the new word to the suffix vec
tor and advances the prefix by dropping the first word and adding the new word at the
end.

// Chain add: add word to s u f f i x l i s t , update p r e f i x
void add(String word)
{

Vector suf = (Vector) s t a t e t a b . g e t (p r e f i x) ;
i f (suf == n u l l) {

suf = new VectorO;
statetab.put(new P r e f i x (p r e f i x) , s u f) ;

}
suf.addElement(word);
prefix.pref.removeElementAt(O);
prefix.pref.addElement(word);

}

Notice that i f suf is null, add installs a new Prefix in the hash table, rather than
p r e f i x itself. This is because the Hashtable class stores items by reference, and i f
we don't make a copy, we could overwrite data in the table. This is the same issue
that we had to deal with in the C program.

The generation function is similar to the C version, but slightly more compact
because it can index a random vector element directly instead of looping through a
list.

74 DESIGN AND IMPLEMENTATION CHAPTER 3

// Chain generate: generate output words
void generate(int nwords)
{

p r e f i x = new Prefix(NPREF, NONWORD);
for (i n t i = 0 ; i < nwords; i++) {

Vector s = (Vector) s t a t e t a b . g e t (p r e f i x) ;
i n t r = Math.abs(rand.nextlntO) % s.size();
String suf = (String) s.elementAt(r);
i f (suf.equals(NONWORD))

break;
System.out.println(suf);
prefix.pref.removeElementAt(O);
prefix.pref.addElement(suf);

}
}

The two constructors of Pref i x create new instances from supplied data. The first
copies an existing Prefix, and the second creates a prefix from n copies of a string;
we use it to make NPREF copies of NONWORD when initializing:

// Prefix constructor: duplicate e x i s t i n g p r e f i x
P r e f i x (P r e f i x p)
{

pref = (Vector) p.pref.clone();
}

// Prefix constructor: n copies of s t r
P r e f i x (i n t n, String s t r)
{

pref = new VectorO;
for (i n t i = 0; i < n; i++)

pref.addElement(str);
}

Prefix also has two methods, hashCode and equals, that are called implicitly by
the implementation of Hashtabl e to index and search the table. It is the need to have
an explicit class for these two methods for Hashtable that forced us to make Prefix
a full-fledged class, rather than just a Vector like the suffix.

The hashCode method builds a single hash value by combining the set of
hashCodes for the elements of the vector:

s t a t i c f i n a l i n t MULTIPLIER = 31; // fo r hashCodeO

// Prefix hashCode: generate hash from a l l p r e f i x words
public i n t hashCode()
{

i n t h = 0;
for (i n t i = 0 ; i < pref.sizeO; i++)

h = MULTIPLIER * h + pref. elementAt(i) . hashCodeO ;
return h;

}

SECTION 3.5 JAVA 75

and equal s does an elementwise comparison of the words in two prefixes:

// Prefix equals: compare two prefixes f o r equal words
public boolean equals(Object o)
{

Prefix p = (Prefix) o;
for (i n t i = 0 ; i < p r e f . s i z e () ; i++)

i f (!pref.elementAt(i).equals(p.pref.elementAt(i)))
return fa l s e ;

return true;
}

The Java program is significantly smaller than the C program and takes care of
more details; Vectors and the Hashtabl e are the obvious examples. In general, stor
age management is easy since vectors grow as needed and garbage collection takes
care of reclaiming memory that is no longer referenced. But to use the Hashtabl e
class, we still need to write functions hashCode and equal s, so Java isn't taking care
of all the details.

Comparing the way the C and Java programs represent and operate on the same
basic data structure, we see that the Java version has better separation of functionality.
For example, to switch from Vectors to arrays would be easy. In the C version,
everything knows what everything else is doing: the hash table operates on arrays that
are maintained in various places, lookup knows the layout of the State and Suffix
structures, and everyone knows the size of the prefix array.

% Java Markov <jr_chemistry.txt | fmt
Wash the blackboard. Watch i t dry. The water goes
in t o the a i r . When water goes i n t o the a i r i t
evaporates. Tie a damp cloth to one end of a so l i d or
l i q u i d . Look around. What are the s o l i d things?
Chemical changes take place when something burns. I f
the burning material has l i q u i d s , they are stable and
the sponge r i s e . I t looked l i k e dough, but i t i s
burning. Break up the lump of sugar i n t o small pieces
and put them together again i n the bottom of a l i q u i d .

Exercise 3-4. Revise the Java version of markov to use an array instead of a Vector
for the prefix in the State class. •

76 DESIGN AND IMPLEMENTATION CHAPTER 3

3.6 C++

Our third implementation is in C++. Since C++ is almost a superset of C, it can
be used as i f it were C with a few notational conveniences, and our original C version
of markov is also a legal C++ program. A more appropriate use of C++, however,
would be to define classes for the objects in the program, more or less as we did in
Java; this would let us hide implementation details. We decided to go even further by
using the Standard Template Library or STL, since the STL has built-in mechanisms
that wil l do much of what we need. The ISO standard for C++ includes the STL as
part of the language definition.

The STL provides containers such as vectors, lists, and sets, and a family of funda
mental algorithms for searching, sorting, inserting, and deleting. Using the template
features of C++, every STL algorithm works on a variety of containers, including both
user-defined types and built-in types like integers. Containers are expressed as C++
templates that are instantiated for specific data types; for example, there is a vector
container that can be used to make particular types like vector<int> or
vector<string>. A l l vector operations, including standard algorithms for sorting,
can be used on such data types.

In addition to a vector container that is similar to Java's Vector, the STL pro
vides a deque container. A deque (pronounced "deck") is a double-ended queue that
matches what we do with prefixes: it holds NPREF elements, and lets us pop the first
element and add a new one to the end, in 0{ 1) time for both. The STL deque is more
general than we need, since it permits push and pop at either end, but the performance
guarantees make it an obvious choice.

The STL also provides an explicit map container, based on balanced trees, that
stores key-value pairs and provides O(logn) retrieval of the value associated with any
key. Maps might not be as efficient as 0(1) hash tables, but it's nice not to have to
write any code whatsoever to use them. (Some non-standard C++ libraries include a
hash or hash_map container whose performance may be better.)

We also use the built-in comparison functions, which in this case wil l do string
comparisons using the individual strings in the prefix.

With these components in hand, the code goes together smoothly. Here are the
declarations:

typedef deque<string> Pref ix;
map<Prefix, vector<str ing> > statetab; / / p re f ix -> suffixes

The STL provides a template for deques; the notation deque<stri ng> specializes it to
a deque whose elements are strings. Since this type appears several times in the pro
gram, we used a typedef to give it the name Prefix. The map type that stores pre
fixes and suffixes occurs only once, however, so we did not give it a separate name;
the map declaration declares a variable statetab that is a map from prefixes to vec
tors of strings. This is more convenient than either C or Java, because we don't need
to provide a hash function or equal s method.

SECTION 3.6 c + + 77

The main routine initializes the prefix, reads the input (from standard input, called
cin in the C++ iostream library), adds a tail, and generates the output, exactly as in
the earlier versions:

// markov main: markov-chain random te x t generation
i n t main(void)
{

i n t nwords = MAXGEN;
Prefix p r e f i x ; // current input p r e f i x

f o r (i n t i = 0; i < NPREF; i++) // set up i n i t i a l p r e f i x
add(prefix, N0NW0RD);

bu i I d (p r e f i x , c i n) ;
add(prefix, N0NW0RD);
generate(nwords);
return 0;

}

The function build uses the iostream library to read the input one word at a
time:

// b u i l d : read input words, build state table
void build(Prefix& p r e f i x , istream& i n)
{

s t r i n g buf;

while (i n » buf)
add(prefix, buf);

}

The string buf will grow as necessary to handle input words of arbitrary length.
The add function shows more of the advantages of using the STL:

// add: add word to s u f f i x l i s t , update p r e f i x
void add(Prefix& p r e f i x , const string& s)
{

i f (p r e f i x . s i z e () == NPREF) {
statetab[prefix].push_back(s);
p r e f i x . p o p _ f r o n t () ;

}
prefix.push_back(s);

}

Quite a bit is going on under these apparently simple statements. The map container
overloads subscripting (the [] operator) to behave as a lookup operation. The expres
sion statetab [p r e f i x] does a lookup in statetab with p r e f i x as key and returns a
reference to the desired entry; the vector is created i f it does not exist already. The
push_back member functions of vector and deque push a new string onto the back
end of the vector or deque; pop_f ront pops the first element off the deque.

Generation is similar to the previous versions:

78 DESIGN AND IMPLEMENTATION CHAPTER 3

// generate: produce output, one word per l i n e
void generate(int nwords)
{

Prefix p r e f i x ;
i nt i ;
f o r (i = 0 ; i < NPREF; i++) // reset i n i t i a l p r e f i x

add(prefix, NONWORD);

for (i = 0 ; i < nwords; i++) {
vector<string>& suf = s t a t e t a b [p r e f i x] ;
const string& w = suf[rand() % s u f . s i z e ()] ;
i f (w == NONWORD)

break;
cout « w « "\n";
pr e f i x . p o p _ f r o n t () ; // advance
prefix.push_back(w);

}
}

Overall, this version seems especially clear and elegant—the code is compact, the
data structure is visible and the algorithm is completely transparent. Sadly, there is a
price to pay: this version runs much slower than the original C version, though it is
not the slowest. We'l l come back to performance measurements shortly.

Exercise 3-5. The great strength of the STL is the ease with which one can experi
ment with different data structures. Modify the C++ version of Markov to use various
structures to represent the prefix, suffix list, and state table. How does performance
change for the different structures? •

Exercise3-6. Write a C++ version that uses only classes and the s t r i n g data type
but no other advanced library facilities. Compare it in style and speed to the STL ver
sions. •

3.7 Awk and Perl
To round out the exercise, we also wrote the program in two popular scripting lan

guages, Awk and Perl. These provide the necessary features for this application, asso
ciative arrays and string handling.

An associative array is a convenient packaging of a hash table; it looks like an
array but its subscripts are arbitrary strings or numbers, or comma-separated lists of
them. It is a form of map from one data type to another. In Awk, all arrays are asso
ciative; Perl has both conventional indexed arrays with integer subscripts and associa
tive arrays, which are called "hashes," a name that suggests how they are imple
mented.

The Awk and Perl implementations are specialized to prefixes of length 2.

SECTION 3.7 AWK AND PERL 79

markov.awk: markov chain algorithm f o r 2-word prefixes
BEGIN { MAXGEN = 10000; NONWORD = "\n"; wl = w2 = NONWORD }

{ fo r (i = 1 ; i <= NF; i++) { # read a l l words
statetab[wl,w2,++nsuffix[wl,w2]] = $i
wl = w2
w2 = $i

}
}

END {
statetab[wl,w2,++nsuffix[wl,w2]] = NONWORD # add t a i l
wl = w2 = NONWORD
for (i = 0 ; i < MAXGEN; i++) { # generate

r = int(rand()*nsuffix [w l,w2]) + 1 # nsu f f i x >= 1
p = statetab [w l,w2 , r]
i f (P == NONWORD)

ex i t
p r i n t p
wl = w2 # advance chain
w2 = p

}
}

Awk is a pattern-action language: the input is read a line at a time, each line is
matched against the patterns, and for each match the corresponding action is executed.
There are two special patterns, BEGIN and END, that match before the first line of input
and after the last.

An action is a block of statements enclosed in braces. In the Awk version of Mar
kov, the BEGIN block initializes the prefix and a couple of other variables.

The next block has no pattern, so by default it is executed once for each input line.
Awk automatically splits each input line into fields (white-space delimited words)
called $1 through $NF; the variable NF is the number of fields. The statement

statetab[wl,w2,++nsuffix[wl,w2]] = $i

builds the map from prefix to suffixes. The array n s u f f i x counts suffixes and the
element nsuffix [w l,w2] counts the number of suffixes associated with that prefix.
The suffixes themselves are stored in array elements statetab [wl,w2,1],
statetab [wl,w2,2], and so on.

When the END block is executed, all the input has been read. At that point, for
each prefix there is an element of n s u f f i x containing the suffix count, and there are
that many elements of statetab containing the suffixes.

The Perl version is similar, but uses an anonymous array instead of a third sub
script to keep track of suffixes; it also uses multiple assignment to update the prefix.
Perl uses special characters to indicate the types of variables: $ marks a scalar and @
an indexed array, while brackets [] are used to index arrays and braces { } to index
hashes.

80 DESIGN AND IMPLEMENTATION CHAPTER 3

markov.pl: markov chain algorithm f o r 2-word prefixes

$MAXGEN = 10000;
$N0NW0RD = "\n";
$wl = $w2 = $N0NW0RD; # i n i t i a l state
while (<>) { # read each l i n e of input

foreach (s p l i t) {
push(@{$statetab{$wl}{$w2}}, $_);
($wl, $w2) = ($w2, $_); # multiple assignment

}
}
push(@{$statetab{$wl}{$w2}}, $N0NW0RD); # add t a i l

$wl = $w2 = $N0NW0RD;
for ($i = 0 ; $i < $MAXGEN; $i++) {

$suf = $statetab{$wl}{$w2}; # array reference
$r = i n t (r a n d @$suf); # @$suf i s number of elems
e x i t i f C($t = $suf->[$r]) eq $N0NW0RD);
p r i n t "$t\n";
($wl, $w2) = ($w2, $ t) ; # advance chain

}

As in the previous programs, the map is stored using the variable statetab. The
heart of the program is the line

push(@{$statetab{$wl}{$w2}}, $_);

which pushes a new suffix onto the end of the (anonymous) array stored at
statetab{$wl}{$w2}. In the generation phase, $statetab{$wl}{$w2} is a refer
ence to an array of suffixes, and $suf->[$r] points to the r-th suffix.

Both the Perl and Awk programs are short compared to the three earlier versions,
but they are harder to adapt to handle prefixes that are not exactly two words. The
core of the C++ STL implementation (the add and generate functions) is of compara
ble length and seems clearer. Nevertheless, scripting languages are often a good
choice for experimental programming, for making prototypes, and even for produc
tion use i f run-time is not a major issue.

Exercise 3-7. Modify the Awk and Perl versions to handle prefixes of any length.
Experiment to determine what effect this change has on performance. •

3-8 Performance
We have several implementations to compare. We timed the programs on the

Book of Psalms from the King James Bible, which has 42,685 words (5,238 distinct
words, 22,482 prefixes). This text has enough repeated phrases ("Blessed is the . . .")

http://markov.pl

SECTION 3.8 PERFORMANCE 81

that one suffix list has more than 400 elements, and there are a few hundred chains
with dozens of suffixes, so it is a good test data set.

Blessed is the man of the net. Turn thee unto me, and raise me up, that I
may tell all my fears. They looked unto him, he heard. My praise shall
be blessed. Wealth and riches shall be saved. Thou hast dealt well with
thy hid treasure: they are cast into a standing water, the flint into a stand
ing water, and dry ground into watersprings.

The times in the following table are the number of seconds for generating 10,000
words of output; one machine is a 250MHz MIPS R10000 running Irix 6.4 and the
other is a 400MHz Pentium I I with 128 megabytes of memory running Windows NT.
Run-time is almost entirely determined by the input size; generation is very fast by
comparison. The table also includes the approximate program size in lines of source
code.

250MHz 400MHz Lines of
R10000 Pentium I I source code

c 0.36 sec 0.30 sec 150
Java 4.9 9.2 105
C++/STL/deque 2.6 11.2 70
C++/STL/list 1.7 1.5 70
Awk 2.2 2.1 20
Perl 1.8 1.0 18

The C and C++ versions were compiled with optimizing compilers, while the Java
runs had just-in-time compilers enabled. The Irix C and C++ times are the fastest
obtained from three different compilers; similar results were observed on Sun SPARC
and DEC Alpha machines. The C version of the program is fastest by a large factor;
Perl comes second. The times in the table are a snapshot of our experience with a par
ticular set of compilers and libraries, however, so you may see very different results in
your environment.

Something is clearly wrong with the STL deque version on Windows. Experi
ments showed that the deque that represents the prefix accounts for most of the run
time, although it never holds more than two elements; we would expect the central
data structure, the map, to dominate. Switching from a deque to a list (which is a
doubly-linked list in the STL) improves the time dramatically. On the other hand,
switching from a map to a (non-standard) hash container made no difference on Irix;
hashes were not available on our Windows machine. It is a testament to the funda
mental soundness of the STL design that these changes required only substituting the
word l i s t for the word deque or hash for map in two places and recompiling. We
conclude that the STL, which is a new component of C++, still suffers from immature
implementations. The performance is unpredictable between implementations of the
STL and between individual data structures. The same is true of Java, where imple
mentations are also changing rapidly.

82 DESIGN AND IMPLEMENTATION CHAPTER 3

There are some interesting challenges in testing a program that is meant to pro
duce voluminous random output. How do we know it works at all? How do we know
it works all the time? Chapter 6, which discusses testing, contains some suggestions
and describes how we tested the Markov programs.

3.9 Lessons
The Markov program has a long history. The first version was written by Don P.

Mitchell, adapted by Bruce Ellis, and applied to humorous deconstructionist activities
throughout the 1980s. It lay dormant until we thought to use it in a university course
as an illustration of program design. Rather than dusting off the original, we rewrote
it from scratch in C to refresh our memories of the various issues that arise, and then
wrote it again in several other languages, using each language's unique idioms to
express the same basic idea. After the course, we reworked the programs many times
to improve clarity and presentation.

Over all that time, however, the basic design has remained the same. The earliest
version used the same approach as the ones we have presented here, although it did
employ a second hash table to represent individual words. I f we were to rewrite it
again, we would probably not change much. The design of a program is rooted in the
layout of its data. The data structures don't define every detail, but they do shape the
overall solution.

Some data structure choices make little difference, such as lists versus growable
arrays. Some implementations generalize better than others—the Perl and Awk code
could be readily modified to one- or three-word prefixes but parameterizing the
choice would be awkward. As befits object-oriented languages, tiny changes to the
C++ and Java implementations would make the data structures suitable for objects
other than English text, for instance programs (where white space would be signifi
cant), or notes of music, or even mouse clicks and menu selections for generating test
sequences.

Of course, while the data structures are much the same, there is a wide variation in
the general appearance of the programs, in the size of the source code, and in perfor
mance. Very roughly, higher-level languages give slower programs than lower level
ones, although it's unwise to generalize other than qualitatively. Big building-blocks
like the C++ STL or the associative arrays and string handling of scripting languages
can lead to more compact code and shorter development time. These are not without
price, although the performance penalty may not matter much for programs, like Mar
kov, that run for only a few seconds.

Less clear, however, is how to assess the loss of control and insight when the pile
of system-supplied code gets so big that one no longer knows what's going on under
neath. This is the case with the STL version; its performance is unpredictable and
there is no easy way to address that. One immature implementation we used needed

SECTION 3.9 LESSONS 83

to be repaired before it would run our program. Few of us have the resources or the
energy to track down such problems and fix them.

This is a pervasive and growing concern in software: as libraries, interfaces, and
tools become more complicated, they become less understood and less controllable.
When everything works, rich programming environments can be very productive, but
when they fail, there is little recourse. Indeed, we may not even realize that some
thing is wrong i f the problems involve performance or subtle logic errors.

The design and implementation of this program illustrate a number of lessons for
larger programs. First is the importance of choosing simple algorithms and data
structures, the simplest that wi l l do the job in reasonable time for the expected prob
lem size. I f someone else has already written them and put them in a library for you,
that's even better; our C++ implementation profited from that.

Following Brooks's advice, we find it best to start detailed design with data struc
tures, guided by knowledge of what algorithms might be used; with the data structures
settled, the code goes together easily.

It's hard to design a program completely and then build it; constructing real pro
grams involves iteration and experimentation. The act of building forces one to clar
ify decisions that had previously been glossed over. That was certainly the case with
our programs here, which have gone through many changes of detail. As much as
possible, start with something simple and evolve it as experience dictates. I f our goal
had been just to write a personal version of the Markov chain algorithm for fun, we
would almost surely have written it in Awk or Perl—though not with as much polish
ing as the ones we showed here—and let it go at that.

Production code takes much more effort than prototypes do, however. I f we think
of the programs presented here as production code (since they have been polished and
thoroughly tested), production quality requires one or two orders of magnitude more
effort than a program intended for personal use.

Exercise 3-8. We have seen versions of the Markov program in a wide variety of lan
guages, including Scheme, Tel, Prolog, Python, Generic Java, M L , and Haskell; each
presents its own challenges and advantages. Implement the program in your favorite
language and compare its general flavor and performance. •

Supplementary Reading
The Standard Template Library is described in a variety of books, including Gen

eric Programming and the STL, by Matthew Austern (Addison-Wesley, 1998). The
definitive reference on C++ itself is The C++ Programming Language, by Bjarne
Stroustrup (3rd edition, Addison-Wesley, 1997). For Java, we refer to The Java Pro
gramming Language, 2nd Edition by Ken Arnold and James Gosling (Addison-
Wesley, 1998). The best description of Perl is Programming Perl, 2nd Edition, by
Larry Wall, Tom Christiansen, and Randal Schwartz (O'Reilly, 1996).

84 DESIGN AND IMPLEMENTATION CHAPTER 3

The idea behind design patterns is that there are only a few distinct design con
structs in most programs in the same way that there are only a few basic data struc
tures; very loosely, it is the design analog of the code idioms that we discussed in
Chapter 1. The standard reference is Design Patterns: Elements of Reusable Object-
Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides (Addison-Wesley, 1995).

The picaresque adventures of the markov program, originally called shaney, were
described in the "Computing Recreations" column of the June, 1989 Scientific Amer
ican. The article was republished in The Magic Machine, by A. K. Dewdney (W. H.
Freeman, 1990).

This page intentionally left blank

Index

Woman: Is my Aunt Minnie in here?

Driftwood: Well, you can come in and prowl around if you want to.
If she isn't in here, you can probably find somebody just as good.

The Marx Brothers, A Night at the Opera

0, see zero, notation for
1 Ik random selection, 70

naming convention, 104
$ end of string metacharacter, 222
& bitwise operator, 7, 127
&& logical operator, 6, 193
' \ 0 ' null byte, 21
*

wildcards, 106,222
zero or more metacharacter, 223, 225, 227

+ one or more metacharacter, 223, 228
++ increment operator, 9
. any character metacharacter, 223
. . . ellipsis function parameter, 109, 218
= assignment operator, 9,13
» right shift operator, 8, 135, 194
» = assignment operator, 8
> » Java logical right shift operator, 194
?

questionable code notation, 2, 88
zero or one metacharacter, 223, 228

?: conditional operator, 8, 193
[] character class metacharacter, 223,228

\
line continuation character, 240
quote metacharacter, 223,228

A start of string metacharacter, 222
{ } braces, position of, 10
I

OR metacharacter, 223
bitwise operator, 7, 127

I | logical operator, 6, 193

abort library function, 125
abstraction, 104,202
add function, Markov C, 68
addend list function, 46
addf ront list function, 46
addname list function, 42
addop function, 233,244
addsuf f i x function, Markov C, 68
advquoted function, CSV, 97-98
Aho, A l , x i i
algorithm

binary search, 31, 52
constant-time, 41, 44, 49, 55, 76
cubic, 41
exponential, 41
linear, 30,41,46-47
log ft, 32,41,51-52,76
Markov chain, 62-63

log 34, 41
quadratic, 40, 43, 176
quicksort, 32
sequential search, 30
tree sort, 53

alignment, 206
structure member, 195

al 1 oca function, 180
allocation

error, memory, 130
memory, 48, 67, 92

253

254 INDEX

allocator, special-purpose, 180, 182
ambiguity

and parenthesization, 6
i f - e l s e , 10

analysis of algorithms, see O-notation
ANSI/ISO C standard, 190, 212
any character metacharacter, ., 223
application program interface (API), 105, 198
appl y list function, 47
applyinorder tree function, 53
applypostorder tree function, 54
approximate values, 181
Ariane 5 rocket, 157
arithmetic

IEEE floating-point, 112,181,193
shift, 135, 194

Arnold, Ken, x i i , 83
array bounds, 14
Array

Java, 39
length field, Java, 22

array, s t a t i c , 131
* a r r a y [] vs. **array, 30
arrays, growing, 41-44, 58, 92, 95, 97, 158
ASCII encoding, 210
assembly language, 152,181,237
assert macro, 142
<assert. h> header, 142
assignment

multiple, 9
operator, =, 9, 13
operator, » = , 8

associative array, see also hash table
associative array, 78, 82
atexi t library function, 107
Austern, Matthew, 83
avg function, 141
Awk, 229

profile, 174
program, fmt, 229
program, Markov, 79
program, s p l i t . awk, 229
test, 150

backwards compatibility, 209, 211
balanced tree, 52, 76
benchmarking, 187
Bentley, Jon, x i i , 59, 163, 188
beta release test, 160
Bigelow, Chuck, x i i
big-endian, 204,213
binary

files, 132, 157, 203
mode I/O, 134,207

binary search
algorithm, 31,52
for error, 124

function, lookup, 31,36
testing, 146
tree, 50
tree diagram, 51

bi nhex program, 203
bi son compiler-compiler, 232
b i t b i t operator, 241
bitfields, 183, 191, 195
bitwise operator

&, 7, 127
I , 7, 127

black box testing, 159
Bloch, Joshua, x i i
block, t r y , 113
Booth, Rick, 188

boundary condition testing, 140-141, 152,
159-160

Bourne, Steven R., 158
braces, position of { } , 10
Brooks, Frederick P., Jr., 61, 83, 87, 115
bsearch library function, 36
B-tree, 54
buffer

flush, 107, 126
overflow error, 67, 156-157

buffering, I/O, 180
bug, see also error
bug

environment dependent, 131
header file, 129
i s p r i n t , 129, 136
list, 128
mental model, 127
non-reproducible, 130-131
performance, 18, 82, 175
reports, 136
test program, 129
typographical, 128

b u i l d function
Markov C, 67
Markov C++, 77

byte order, 194,204-207
diagram, 204

byteorder program, 205

C
function prototype, 191
standard, ANSI/ISO, 190, 212

C++
inline function, 17, 19
i ost ream library, 77
sort function, 37
standard, ISO, 76, 190, 212
s t r i n g class, 100

caching, 179, 186, 243
can't get here message, 124
can't happen message, 15,142,155

INDEX 255

Cargill, Tom, x i i
carriage return, \ r , 89,96,203-204
cast, 35, 40, 43, 244
C/C++ preprocessor, see preprocessor directive
C/C++ data type sizes, 192, 216
c e r r error stream, 126
Chai n class, Markov Java, 72
Chai n. add function, Markov Java, 73
Chai n. bui 1 d function, Markov Java, 73
Chai n. generate function, Markov Java, 74
character set, see encoding
character class metacharacter, [] , 223,228
characters

HTML, 31
non-printing, 132
unsigned, 57, 152, 193

check function, 125
Christiansen, Tom, 83
c i n input stream, 77
class

C + + s t r i n g , 100
container, 71, 76
Csv, 100
Java Date, 172
Java Decimal Format, 221
JavaHashtable, 71
Java Random, 39
Java StreamTokenizer, 73
Java Vector, 71
Markov, 72
Markov Java Chai n, 72
Markov Java Pref i x, 72

Cleeland, Chris, x i i
c lock library function, 171
CL0CKS_PER_SEC timer resolution, 172
done method, see object copy
Cmp interface, 38
code generation by macro, 240
Code structure, 234
code tuning, 176, 178-182
Cohen, Danny, 213
Coleridge, Samuel Taylor, 247
command

echo, 207
interpreter, 106,228
status return, 109, 225
sum, 208
time, 171

comma-separated values, see also CSV
comma-separated values, 86-87
comments, 23-27,203

semantic, 239
common subexpression elimination, 178
Comparable interface, 37
compatibility, backwards, 209,211
compiler

gcc, 120

just-in-time, 81, 241, 243
optimization, 176, 186
testing, 147,239

compiler-compiler
bison, 232
yacc, 232,245

compile-time control flow, 199
complex expressions, 7
complexity, 40
conditional

compilation, 25, 199
operator, ?:, 8, 193

configuration script, 201
conservation properties, testing, 147, 161
consistency, 4, 11, 105
const declaration, 20
constant-time algorithm, 41, 44, 49, 55, 76
constructor, 100, 107-108

Markov Java Pref i x, 74
container

class, 71, 76
deque, 76, 81
hash, 76, 81
l i s t , 81
map, 72,76,81
pair , 112
vector, 76, 100

control flow, compile-time, 199
control-Z end of file, 134, 207
convention

naming, 104
naming, 3-5, 104

conversion error, p r i n t f , 120
Cooper, Alan, 115
coordinate hashing, 57-58
copy, object, 67, 73, 107-108, 161
cost model, performance, 184
Coughran, Bi l l , x i i
coverage, test, 148
Cox, Russ, x i i
CPU pipeline, 179,244
CRLF, 204
CSV

advquoted function, 97-98
c s v f i e l d function, 98
csvnf i el d function, 98
endofl i ne function, 96
mai n function, 89,98, 103
reset function, 96
spl i t function, 97
field diagram, 95
format, 91,93,96
inC , 91-99
in C++, 99-103
prototype, 87-91
specification, 93

"csv.h" header, 94

256 INDEX

Csv:: advpl ai n function, 102
Csv: : advquoted function, 102
Csv: : endof 1 i ne function, 101
Csv: : g e t f i el d function, 102
Csv:: get! i ne function, 100
Csv:: getnf i el d function, 102
Csv: : spl i t function, 101
Csv class, 100
csvf i el d function, CSV, 98
csvgetline

function, 95
prototype, 88
variables, 94

csvnfi el d function, CSV, 98
ctime library function, 25, 144
<ctype. h> header, 18, 21, 129, 210
cubic algorithm, 41
cyclic redundancy check, 58

dangling el se, see i f-el se ambiguity
dangling pointer, 130
data

exchange, 203-204, 216
structure diagram, Markov, 66
structure diagram, spam filter, 170
structure, trie, 171
type sizes, C/C++, 192, 216
type sizes, Java, 193

Date class, Java, 172
Date. getTi me Java library function, 172
dbx debugger, 122
OxDEADBEEF, 159
debuggers, 118-119
debugging

code, 200,202
malloc, 131
output, 123

Decimal Format class, Java, 221
decisions, multi-way, 14
declaration
const, 20
enum, 20
f i n a l , 21
Java synchronized, 108
loop variable, 12
s t a t i c , 94
typedef, 76,217

deconstruction, 82, 114
default parameters, 100
defensive programming, 114, 142
#def i ne, see also macro, function macro
#define preprocessor directive, 2, 20, 240
del i tern list function, 49
del name function, 43
deque container, 76, 81
derived type, 38
Descartes, Rene, 249

descriptive names, 3
design tradeoffs, 90
destructor, 108
Dewdney, A. K., 84
Dewhurst, Steve, x i i
diagram

binary search tree, 51
byte order, 204
CSV field, 95
hash table, 55
list, 45
Markov data structure, 66
Markov hash table, 66
packet format, 216
parse tree, 54, 232
quicksort, 33
spam filter data structure, 170

Dijkstra, Edsger, 139
directive, see preprocessor directive
discrete cosine transform, 24
divide and conquer, 52, 124
division by zero, 141-142, 236, 241
divop function, 236
Dorward, Sean, 213
double vs. f l o a t , 183
doubly-linked list, 49, 81
do-while loop, 13, 133,225
dynamic p r i n t f format, 68

eager evaluation, 181
echo command, 207
Edison, Thomas A., 117
#el i f preprocessor directive, 199
elimination, common subexpression, 178
ellipsis function parameter, . . . , 109, 218
Ellis, Bruce, 82
else i f , 14
emal 1 oc function, 46, 110
emi t function, 244
empty string, 91, 100
encapsulation, 104
encoding

ASCII, 210
GIF, 184
ISO 10646, 31,210
Latin-1, 210
M I M E , 203
PPM, 184
Unicode, 31,210,228
UTF-8, 211,213,228

#endi f preprocessor directive, 199
end of file, control-Z, 134, 207
endof 1 i ne function, CSV, 96
end of string metacharacter, $, 222
enum declaration, 20
enum. pi Perl program, 239
environment dependent bug, 131

INDEX 257

EOF value, 194

epr i n t f function, 49, 109

" e p r i n t f . h " header, 110

eqn language, 229

errno variable, 112,193

<e r r no. h> header, 109

error message, see also epr i n t f , wepri n t f

error
binary search for, 124
buffer overflow, 67, 156-157
gets, 14, 156
handling, 109
hardware, 130
memory allocation, 130
message format, 114
message, misleading, 134
numeric patterns of, 124
off-by-one, 13, 124, 141
order of evaluation, 9, 193
out of bounds, 153
patterns, 120
Pentium floating-point, 130
p r i n t f conversion, 120
qsor t argument, 122
recent change, 120
recovery, 92, 109-113
reproducible, 123
return values, 91, 111, 141, 143
scanf, 120
status return, 109
stream, cerr, 126
stream, s tderr , 104, 126
stream, System.err, 126
subscript out of range, 14, 140, 157

"e r ro r s .h" header, 238

estimation, performance, 184-187

est rdup function, 110,114

eval function, 233-234, 236

evaluation
eager, 181
expression, 233
lazy, 92, 99
multiple, 18-19,22
of macro argument, multiple, 18,129

examples, regular expression, 223, 230, 239

Excel spreadsheet, 97

exhaustive testing, 154

expected performance, 40

exponential algorithm, 41

expression, see also regular expression

expression
evaluation, 233
format, 7
style, 6-8

expressions
complex, 7

negated, 6, 8, 25
readability of, 6

extensions, p r i n t f , 216

f a l l o c symbol, 5
fall-through, swi tch, 16
f a r pointer, 192
fdopen function, 134
f f 1 ush library function, 126
fgets library function, 22, 88, 92, 140, 156
Fielding, Raymond, 29
file, see also header
files

binary, 132, 157, 203
test data, 157

f i n a l declaration, 21
f i nd library function, 30
f i nd_f i r s t _ o f library function, 101-102
Flandrena, Bob, x i i , 188
f l o a t vs. double, 183
floating-point

arithmetic, IEEE, 112,181,193
error, Pentium, 130

flush, buffer, 107, 126
fmt Awk program, 229
f o r loop idioms, 12,194
format

CSV, 91, 93, 96
dynamic p r i n t f , 68
output, 89
p r i n t f % . * s , 133
string, p r i n t f , 216

Fraser, Chris, 245
f read library function, 106, 205
free list, 180
free

library function, 48
multiple calls of, 131

freeal 1 list function, 48
French, Renee, x i i
f req program, 147, 161
Friedl, Jeffrey, 246
Frost, Robert, 85
f scanf library function, 67
function, see also library function
function macros, see also macros
function

addend list, 46
addf ront list, 46
addnamelist, 42
addop, 233, 244
a l l oca, 180
appl y list, 47
applyinordertree, 53
appl ypostorder tree, 54
avg, 141
C++ inline, 17, 19

258 INDEX

C + +sort, 37
check, 125
CSV advquoted, 97-98
CSV c s v f i e l d , 98
CSV csvnfield, 98
CSV endofline, 96
CSV main, 89,98, 103
CSV reset, 96
CSV s p l i t , 97
Csv: :advplain, 102
Csv::advquoted, 102
Csv:: endof l i n e , 101
Csv: : g e t f i e l d , 102
Csv: :get!ine, 100
csvgetl ine, 95
Csv: :getnfield, 102
Csv:: s p l i t , 101
del item list, 49
del name, 43
divop, 236
email oc, 46, 110
emit, 244
epri nt f , 49, 109
estrdup, 110, 114
eval, 233-234,236
fdopen, 134
f r e e a l l list, 48
generate, 235
g e t b i t s , 183
grep, 226
grep main, 225
Icmp Integer comparison, 38
i cmp integer comparison, 36
inccounter list, 48
i n s e r t tree, 51
isspam, 167,169,177
leftmost longest matchstar, 227
1 ookup binary search, 31,36
lookup hash table, 56
lookup list, 47
lookup tree, 52
macro, i soctal , 5
macros, 17-19
Markov C add, 68
Markov C addsuffix, 68
Markov C build, 67
Markov C++ b u i l d , 77
Markov C generate, 70
Markov C++ generate, 78
Markov C hash, 66
Markov C lookup, 67
Markov C main, 71
Markov C++ mai n, 77
Markov Java Chai n. add, 73
Markov Java Chain, bui Id, 73
Markov Java Chain, gene rate, 74
Markov Java mai n, 72
Markov Java Pref i x. equal s, 75

Markov Java Pref i x. hashCode, 74
match, 224
matchhere, 224
matchstar, 225
memset, 152
names, 4
newi tern list, 45
n r l ookup tree, 53
nvcmp name-value comparison, 37
pack, 218
pack_typel, 217,219
parameter, . . . ellipsis, 109, 218
pointer, 34, 47, 122, 220-221, 233, 236, 244
p r i n t n v list, 47
progname, 110
prototype, C, 191
pushop, 236
quicksort, 33
Quicksort. rand, 39
Qui cksort. sort, 39
Quicksort.swap, 39
receive, 221
Scmp S t r i ng comparison, 38
scmp string comparison, 35
setprogname, 110
strdup, 14, 110, 196
s t r i n g s , 132
s t r i n g s main, 133
s t r s t r , 167
swap, 33
testmalloc, 158
unpack, 219
unpack_type2, 220
unquote, 88
usage, 114
virtual, 221
weprintf, 52, 109, 197
wrapper, 111

f w r i t e library function, 106, 205

Gamma, Erich, 84
garbage collection, 48, 75, 108

reference countv 108
gcc compiler, 120
generate function, 235

Markov C, 70
Markov C++, 78

generic class, see container class
g e t b i t s function, 183
getchar

idioms, 13, 194
library function, 13, 194

getquotes. t c l Tel program, 87
gets

error, 14, 156
library function, 14, 156

g e t u r l . t c l Tcl program, 230
GIF encoding, 184

INDEX 259

global variable, 3, 24, 104, 122
Gosling, James, 83,212
got here message, 124
graph of

hash table chains, 126
hash table size, 174

grep
function, 226
implementation, 225-227
mai n function, 225
options, 228
program, 223-226

Grosse, Eric, x i i
growing

arrays, 41-44, 58, 92, 95, 97, 158
hash table, 58

Hanson, David, 115,245
Harbison, Sam, 212
hardware error, 130
hash

function, 55-57
function, Java, 57
function multiplier, 56-57
table, 55-58, 78, 169
table chains, graph of, 126
table diagram, 55
table function, lookup, 56
table, growing, 58
table insertion, 56
table, prefix, 64
table size, 56-57, 65
table size, graph of, 174
value, 55

hash
container, 76, 81
function, Markov C, 66

hashing, coordinate, 57-58
Hashtabl e class, Java, 71
header

<assert.h>, 142
"csv.h", 94
<ctype.h>, 18,21, 129,210
" e p r i n t f .h", 110
<errno.h>, 109
"errors.h", 238
<stdarg.h>, 109,218
<stddef.h>, 192
<stdio.h>, 104, 196
<stdlib.h>, 198
<time.h>, 171

header file
bug, 129
organization, 94

Helm, Richard, 84
Hemingway, Ernest, 63
Hennessy, John, 188

Herron, Andrew, xi i
hexadecimal output, 125
histogram, 126
Hoare, C. A. R., 32,37
holes in structure, 195
Holzmann, Gerard, x i i , 57, 59
homoiousian vs. homoousian, 228
hot spot, 130, 172-174
HTML, 86, 157, 215, 230, 237

characters, 31
HTTP, 89,204

Icmp Integer comparison function, 38
i cmp integer comparison function, 36
idioms, 10-17

f o r loop, 12, 194
getchar, 13, 194
infinite loop, 12
list traversal, 12
loop, 12-13, 140
mal loc, 14
memmove array update, 43, 68
new, 14
realloc, 43,95
side effects, 195
string copy, 14
string truncation, 26
switch, 16

idle loop, 177
IEEE floating-point arithmetic, 112, 181, 193
#i f preprocessor directive, 196
#i f def, see also conditional compilation
i f def preprocessor directive, 25, 196, 198-201
i f-e 1 se ambiguity, 10
inccounter list function, 48
increment operator, ++, 9
incremental testing, 145
indentation style, 6, 10, 12, 15
independent implementations, testing by, 148
i ndexOf Java library function, 30
Inferno operating system, 181,210,213
infinite loop idioms, 12
information hiding, 92, 99, 104, 202

in C, 94, 103
initialization, static, 99, 106
inline function, C++, 17, 19
in-order tree traversal, 53
input

mode, rb, 134, 207
stream, c i n, 77
stream, s t d i n, 104

i n s e r t tree function, 51
insertion, hash table, 56
instructions, stack machine, 235
integer

comparison function, i cmp, 36
overflow, 36, 157

260 INDEX

interface
Cmp, 38
Comparable, 37
principles, 91, 103-106
Ser ia l i zab le , 207

in ter face , Java, 38
interfaces, user, 113-115
internationalization, 209-211
interpreter, 231, 234
intersection, portability by, 198
I/O

binary mode, 134,207
buffering, 180
text mode, 134

IOException, 113
i ost ream library, C++, 77
i sal pha library function, 210
ISO

10646 encoding, 31,210
C++ standard, 76, 190, 212

i s o c t a l function macro, 5
i s p r i n t bug, 129, 136
i s spam function, 167, 169, 177
i supper library function, 18, 21
i sLIppe rCase Java library function, 21

Java
Array, 39
Array length field, 22
data type sizes, 193
Date class, 172
Decimal Format class, 221
hash function, 57
Hashtable class, 71
in te r face , 38
library function, Date. getTi me, 172
library function, i ndexOf, 30
library function, isUpperCase, 21
library function, Math. abs, 39
logical right shift operator, » > , 194
Object, 38,40,71
quicksort, 37-40
Random class, 39
random library function, 24, 162
StreamTokenizer class, 73
synchroni zed declaration, 108
Vector class, 71
Virtual Machine, 237

JavaScript, 215
JIT, see just-in-time compiler
Johnson, Ralph, 84
Joy, B i l l , 212
just-in-time compiler, 81,241,243

Kernighan, Brian, 28, 212, 245
Kernighan, Mark, x i i
key, search, 36,55,77

Knuth, Donald, 59, 159, 162, 172, 188, 245
Koenig, Andy, x i i , 239

Lakos, John, x i i , 115
language

eqn, 229
lawyer, 191
mainstream, 191
standard, 190

languages
scripting, 80, 82, 230
testing, 150

Latin-1 encoding, 210
lazy evaluation, 92, 99
leap year computation, 7, 11, 144
leftmost longest

match, 226
matchstar function, 227

1 ength field, Java Array, 22
library

C++ iostream, 77
design, 91-94
sort, 34-37

library function
abort, 125
a t e x i t , 107
bsearch, 36
clock, 171
c t i me, 25, 144
Date. getTi me Java, 172
f f l u s h , 126
f gets, 22, 88, 92, 140, 156
f i n d , 30
f i n d _ f i r s t _ o f , 101-102
fread, 106,205
free, 48
fscanf, 67
f w r i t e , 106,205
getchar, 13, 194
gets, 14, 156
indexOf Java, 30
i sal pha, 210
i supper, 18,21
isUpperCaseJava, 21
Java random, 24, 162
longjmp, 113
malloc, 14, 120, 131, 157
Math.absJava, 39
memcmp, 173
memcpy, 43, 105
memmove, 43, 68, 105
memset, 182
new, 14, 120
qsort , 34
rand, 33,70
real loc, 43,95, 120
scanf, 9, 156, 183
setbuf, setvbuf, 126

INDEX 261

setjmp, 113
setmode, 134
s p r i n t f , 67
strchr, 30, 167
strcmp, 26
strcpy, 14
strcspn, 97, 101, 155
s t r e r r o r , 109, 112
s t r l e n , 14
strncmp, 167
s t r s t r , 30, 167
s t r t o k , 88,96, 105, 108, 155
v f p r i n t f , 109

Linderman, John, x i i
Lindholm, Tim, 245
line continuation character, \ , 240
linear

algorithm, 30,41,46-47
search, 30, 32

list
bug, 128
diagram, 45
doubly-linked, 49, 81
function, addend, 46
function, addfront, 46
function, addname, 42
function, apply, 47
function, del i tern, 49
function, f r e e a l l , 48
function, inccounter, 48
function, lookup, 47
function, newi tern, 45
function, p r i ntnv, 47
representation, 45-46, 49
singly-linked, 45
traversal idioms, 12

l i s t container, 81
lists, 44-50
literate programming, 240
little languages, 151, 216, 229
little-endian, 204
local variable, 3, 122

pointer to, 130
Locanthi, Bart, 241,246
log file, 111, 125, 131
logical

operator, &&, 6, 193
operator, | | , 6, 193
right shift operator, » > Java, 194
shift, 135, 194

log n algorithm, 32,41,51-52,76
1 ong j mp library function, 113
lookup

binary search function, 31, 36
function, Markov C, 67
hash table function, 56
list function, 47
tree function, 52

loop
do-while, 13, 133,225
elimination, 179
idioms, 12-13, 140
inversion, 169

LOOP macro, 240
loop

unrolling, 179
variable declaration, 12

machine
stack, 234
virtual, 203, 213, 232, 236

machine-dependent code, 181
macro, 17-19

argument, multiple evaluation of, 18, 129
assert, 142
code generation by, 240
LOOP, 240
NELEMS, 22,31
va_arg, va_l i st, va_start, va_end, 109, 218

magic numbers, 2, 19-22, 129
Maguire, Steve, 28, 137
mai n function

CSV, 89, 98, 103
grep, 225
Markov C, 71
Markov C++, 77
Markov Java, 72
s t r i n g s , 133

mainstream, language, 191
malloc

debugging, 131
idioms, 14
library function, 14,120,131,157

management
memory, 48
resource, 92, 106-109

map container, 72, 76, 81
Markov

Awk program, 79
C add function, 68
C addsuffix function, 68
C bui 1 d function, 67
C++ bui 1 d function, 77
C generate function, 70
C++generate function, 78
C hash function, 66
C lookup function, 67
C main function, 71
C++ mai n function, 77
chain algorithm, 62-63
data structure diagram, 66
hash table diagram, 66
Java Chai n class, 72
Java Chai n . add function, 73
Java Chain, bui I d function, 73
Java Chai n. generate function, 74

262 INDEX

Java mai n function, 72
Java P r e f i x class, 72
Java P r e f i x constructor, 74
Java Pref i x. equal s function, 75
Java Pref i x. hashCode function, 74
Perl program, 80
program testing, 160-162
run-timetable, 81
state, 64

t e s t program, 161
Markov class, 72
Mars Pathfinder, 121
Marx Brothers, 253
match, leftmost longest, 226
match function, 224
matchhe re function, 224
matchstar function, 225

leftmost longest, 227
Math. abs Java library function, 39
McConnell, Steve, 28, 115, 137
Mcllroy, Doug, x i i , 59
McNamee, Paul, x i i

mechanization, 86, 146, 149, 155, 237-240
memcmp library function, 173
memcpy library function, 43, 105
Memishian, Peter, x i i
memmove

array update idioms, 43, 68
library function, 43, 68, 105

memory allocator, see mal 1 oc, new
memory

allocation, 48, 67, 92
allocation error, 130
leak, 107, 129, 131
management, 48

memset
function, 152
library function, 182
test, 152-153

mental model bug, 127
message, see also epri n t f , wepri n t f
message

can't get here, 124
can't happen, 15, 142, 155
format, error, 114
got here, 124

metacharacter
. any character, 223
[] character class, 223,228
$ end of string, 222
+ one or more, 223,228

I OR, 223
\ quote, 223,228
A start of string, 222
* zero or more, 223, 225, 227
? zero or one, 223,228

metacharacters
Perl, 231
regular expression, 222

M I M E encoding, 203
Minnie, A., 253
misleading error message, 134
Mitchell, Don P., 82
Modula-3, 237
Mullender, Sape, x i i
Mullet, Kevin, 115
multiple

assignment, 9
calls of free, 131
evaluation, 18-19,22
evaluation of macro argument, 18, 129

multiplier, hash function, 56-57
multi-threading, 90, 108, 118
multi-way decisions, 14

names
descriptive, 3
function, 4
variable, 3-4, 155

Nameval structure, 31, 42, 45, 50, 55
name-value structure, see Nameval structure
name-value comparison function, nvcmp, 37
naming convention, 3-5, 104

__, 104
NaN not a number, 112
near pointer, 192
negated expressions, 6, 8, 25
NELEMS macro, 22, 31
Nelson, Peter, x i i
Nemeth, Evi, x i i
new

idioms, 14
library function, 14, 120

newi tern list function, 45
n log n algorithm, 34, 41
non-printing characters, 132
non-reproducible bug, 130-131
NONWORD value, 69
not a number, NaN, 112
notation

for zero, 21
p r in t f - l i ke , 87,99,217

n r l ookup tree function, 53
null byte, ' \ 0 ' , 21
NULL pointer, 21
n u l l reference, 21, 73
numbers, magic, 2, 19-22, 129
numeric patterns of error, 124
numerology, 124
nvcmp name-value comparison function, 37
NVtab structure, 42

object copy, 67,73, 107-108, 161

INDEX 263

Object, Java, 38,40,71
off-by-one error, 13,124,141
one or more metacharacter, +, 223, 228
O-notation, see also algorithm
<9-notation, 40-41

table, 41

on-the-fly compiler, see just-in-time compiler
opaque type, 104
operating system

Inferno, 181,210,213
Plan 9, 206,210,213,238
virtual, 202,213

operator
& bitwise, 7, 127
&& logical, 6, 193
++ increment, 9
= assignment, 9, 13
» right shift, 8, 135, 194
» = assignment, 8
» > Java logical right shift, 194
?: conditional, 8̂ 193
I bitwise, 7, 127
I | logical, 6, 193
b i t b l t , 241
function table, optab, 234
overloading, 100, 183
precedence, 6-7, 127
relational, 6, 127
sizeof, 22, 192, 195

optab operator function table, 234
optimization, compiler, 176,186
options, grep, 228
OR metacharacter, | , 223
order of evaluation error, 9, 193
organization, header file, 94
out of bounds error, 153
output

debugging, 123
format, 89
hexadecimal, 125
stream, stdout, 104

overflow, integer, 36, 157
overloading, operator, 100,183

pack function, 218
pack . type l function, 217,219
packet format diagram, 216
pack, unpack, 216-221
pai r container, 112

parameter, . . . ellipsis function, 109, 218
parameters, default, 100
parentheses, redundant, 6
paren thesization, 18

and ambiguity, 6
parse tree, 54, 232

diagram, 54, 232

parser generator, see compiler-compiler
pattern matching, see regular expression
patterns, error, 120
Patterson, David, 188
Pentium floating-point error, 130
performance

bug, 18, 82, 175
cost model, 184
estimation, 184-187
expected, 40
graph, 126, 174
test suite, 168
worst-case, 40

Perl
metacharacters, 231
program, enum. p i , 239
program, Markov, 80
program, unhtml . p i , 230
regular expression, 230
test suite, 162

picture, see diagram
Pike, Rob, 213, 245-246
pipeline, CPU, 179,244
pivot element, quicksort, 32-34
Plan 9 operating system, 206, 210, 213, 238
Plauger, P. J., 28
pointer

dangling, 130
far , 192
function, 34, 47, 122, 220-221, 233, 236, 244
near, 192
NULL, 21
to local variable, 130
void*, 21,43,47

portability, 189
by intersection, 198
by union, 198

position of { } braces, 10
POSIX standard, 198,212
post-condition, 141
post-order tree traversal, 54, 232
PostScript, 203, 215, 237, 239
PPM encoding, 184
Practice of Programming web page, x i
precedence, operator, 6-7, 127
pre-condition, 141
Pre f ix

class, Markov Java, 72
constructor, Markov Java, 74

prefix hash table, 64
Pref i x . equal s function, Markov Java, 75
Pref i x . hashCode function, Markov Java, 74
pre-order tree traversal, 54
preprocessor directive

#define, 2,20,240
e l i f , 199
#endif, 199

264 INDEX

i f , 196
i f d e f , 25, 196, 198-201

Presotto, David, 213
principles, interface, 91, 103-106
p r i n t f

conversion error, 120
extensions, 216
format, dynamic, 68
format string, 216
%.*s format, 133

p r i ntf - l i k e notation, 87, 99, 217
p r i ntnv list function, 47
production code, 83, 99
profile

Awk, 174
spam filter, 173-174

profiling, 167, 172-174
progname function, 110
program
byteorder, 205
counter, 236,243
enum.pl Perl, 239
fmtAwk, 229
f req, 147,161
getquotes.tcl Tcl, 87
g e t u r l . t c l Tcl, 230
grep, 223-226
inverse, 147
Markov Awk, 79
Markov Perl, 80
Markov t e s t , 161
sizeof, 192
s p l i t , awk Awk, 229
strings, 131-134
unhtml .pi Perl, 230
v i s , 134

programmable tools, 228-231
programming, defensive, 114, 142
protocol checker, Supertrace, 57
prototype

code, 83,87
CSV, 87-91
csvgetl ine, 88

pushop function, 236

qsort
argument error, 122
library function, 34

quadratic algorithm, 40, 43, 176
questionable code notation, ?, 2, 88
quicksort

algorithm, 32
analysis, 34
diagram, 33
Java, 37-40
pivot element, 32-34

qui cksort function, 33

Qui cksort. rand function, 39
Qui cksort. sort function, 39
Qui cksort. swap function, 39
quote metacharacter, \ , 223, 228
quotes, stock, 86

\ r carriage return, 89, 96, 203-204
Rabinowitz, Marty, x i i
rand library function, 33, 70
Random class, Java, 39
random selection, 1/k, 70
random library function, Java, 24, 162
rb input mode, 134,207
readability of expressions, 6
r e a l l o c

idioms, 43,95
library function, 43,95, 120

receive function, 221
recent change error, 120
records, test, 151
recovery, error, 92, 109-113
reduction in strength, 178
redundant parentheses, 6
reentrant code, 108
reference

argument, 111,220
n u l l , 21,73

reference count garbage collection, 108
regression testing, 149
regular expression, 99, 222-225, 239, 242

examples, 223, 230, 239
metacharacters, 222
Perl, 230
Tcl, 230

Reiser, John, 246
relational operator, 6, 127
representation

list, 45-46, 49
sparse matrix, 183
tree, 50
two's complement, 194

reproducible error, 123
reset function, CSV, 96
resource management, 92, 106-109
return, see carriage return
right shift

operator, » , 8, 135, 194
operator, » > Java logical, 194

Ritchie, Dennis, x i i , 212-213

Sam text editor, 202,213
Sano, Darrell, 115
scanf

error, 120
library function, 9, 156, 183

Schwartz, Randal, 83
Scmp S t r i ng comparison function, 38

scmp string comparison function, 35
script

configuration, 201
test, 149, 160

scripting languages, 80, 82, 230
search

algorithm, sequential, 30
key, 36,55,77

searching, 30-32
Sedgewick, Robert, 59
selection, Ilk random, 70
self-checking code, 125
self-contained test, 150
semantic comments, 239
sentinel, 30,69-71
sequential search algorithm, 30
Se r i al i zabl e interface, 207
setbuf, setvbuf library function, 126
set jmp library function, 113
setmode library function, 134
setprogname function, 110
Shakespeare, William, 165
Shaney, Mark V., x i i , 84
shell, see command interpreter
Shneiderman, Ben, 115
side effects, 8-9, 18, 193

idioms, 195
signals, 197
single point of truth, 238
singly-linked list, 45
size, hash table, 56-57, 65
size_ttype, 192, 199
s izeof

operator, 22, 192, 195
program, 192

sizes
C/C++data type, 192,216
Java data type, 193

sort
algorithm, tree, 53
library, 34-37

so r t function, C++, 37
sorting strings, 35
source code control, 121,127
space efficiency, 182-184
spam filter, 166-170

data structure diagram, 170
profile, 173-174

sparse matrix representation, 183
special-case tuning, 181
special-purpose allocator, 180, 182
specification, 87, 93

CSV, 93
s p l i t function, CSV, 97
s p l i t , awk Awk program, 229
spreadsheet format, see comma-separated values

INDEX 265

spreadsheet, 139,221
Excel, 97

s p r i n t f library function, 67
stack

machine, 234
machine instructions, 235
trace, 118-119, 122

standard
ANSI/ISO C, 190,212
ISO C++, 76, 190, 212
language, 190
POSIX, 198,212

Standard Template Library, see STL
start of string metacharacter, A, 222
state, Markov, 64
State structure, 65
static initialization, 99, 106
s t a t i c

array, 131
declaration, 94

statistical test, 161
status return

command, 109,225
error, 109

<stdarg. h> header, 109, 218
<stddef.h> header, 192
s tder r error stream, 104,126
s t d i n input stream, 104
<s td io .h> header, 104,196
< s t d l i b . h > header, 198
stdout output stream, 104
Steele, Guy, 212
Stevens, Rich, x i i , 212
STL, 49, 76, 104, 155, 192
stock quotes, 86
Strachey, Giles Lytton, 215
s t r ch r library function, 30, 167
strcmp library function, 26
s t rcpy library function, 14
strcspn library function, 97, 101, 155
strdup function, 14,110,196
StreamTokenizer class, Java, 73
s t re r r o r library function, 109,112
stress testing, 155-159,227
string copy idioms, see also strdup
string

comparison function, scmp, 35
copy idioms, 14
truncation idioms, 26

s t r i ng class, C++, 100
s t r i n g s

function, 132
mai n function, 133
program, 131-134

s t r i en library function, 14
strncmp library function, 167
Stroustrup, Bjarne, x i i , 83

266 INDEX

s t r s t r
function, 167
implementation, 167-168
library function, 30, 167

s t r t o k library function, 88,96, 105, 108, 155
structure

Code, 234
holes in, 195
member alignment, 195
Nameval, 31,42,45,50,55
NVtab, 42
State, 65
Suff ix , 66
Symbol, 232
Tree, 233

Strunk, William, 1,28
style

expression, 6-8
indentation, 6, 10, 12, 15

subscript out of range error, 14, 140, 157
suffix, 62
Suf f ix structure, 66
sum command, 208
Supertrace protocol checker, 57
swap function, 33
Swift, Jonathan, 213
switch

fall-through, 16
idioms, 16

Symbol structure, 232
symbol table, 55, 58
synchroni zed declaration, Java, 108
syntax tree, see parse tree
System, e r r error stream, 126
Szymanski, Tom, x i i

table
Markov run-time, 81
O-notation, 41
optab operator function, 234

tail recursion, 53
Taylor, Ian Lance, x i i
Tcl

program, getquotes. t c l , 87
program, ge tu r l . t c l , 230
regular expression, 230

teddy bear, 123, 137
test

Awk, 150
beta release, 160
coverage, 148
data files, 157
memset, 152-153
program bug, 129
records, 151
scaffold, 89, 98, 146, 149, 151-155
script, 149, 160

self-contained, 150
statistical, 161
suite, performance, 168
suite, Perl, 162

t e s t program, Markov, 161
testing

binary search, 146
black box, 159
boundary condition, 140-141, 152, 159-160
by independent implementations, 148
compiler, 147,239
conservation properties, 147, 161
exhaustive, 154
incremental, 145
languages, 150
Markov program, 160-162
regression, 149
stress, 155-159,227
tools, 147, 149
white box, 159

testmal 1 oc function, 158
text mode I/O, 134
Thimbleby, Harold, 115
Thompson, Ken, x i i , 188, 213, 242, 246
threaded code, 234
time command, 171
<t i me. h> header, 171
timer resolution, CL0CKS_PER_SEC, 172
tools

programmable, 228-231
testing, 147, 149

Toyama, Kentaro, x i i
tradeoffs, design, 90
Traveling Salesman Problem, 41
tree, 50-54,231-237

balanced, 52, 76
binary search, 50
function, applyinorder, 53
function, applypostorder, 54
function, i n se r t , 51
function, lookup, 52
function, nrlookup, 53
parse, 54, 232
representation, 50
sort algorithm, 53

Tree structure, 233
tree traversal

in-order, 53
post-order, 54,232
pre-order, 54

Trickey, Howard, x i i , 213
trie data structure, 171
TRIP test for TEX, 159, 162
t r y block, 113
tuning

code, 176,178-182
special-case, 181

INDEX 267

tuple, 112
two's complement representation, 194
type

derived, 38
opaque, 104
s i z e _ t , 192, 199

typedef declaration, 76,217
typographical bug, 128

unhtml .pi Perl program, 230
Unicode encoding, 31, 210, 228
uninitialized variables, 120, 159
union, portability by, 198
unpack function, 219
unpack_type2 function, 220
unquote function, 88
unsigned characters, 57, 152, 193
usage function, 114
user interfaces, 113-115
USS Yorktown, 142
UTF-8 encoding, 211,213,228
uuencode, uudecode, 203

va_arg, va_l i st, va_start, va_end macro,
109,218

values, error return, 91, 111, 141, 143
van der Linden, Peter, 28
Van Wyk, Chris, x i i
variable
errno, 112, 193
global, 3, 24, 104, 122
local, 3, 122
names, 3-4, 155

variables
csvgetl ine, 94
uninitialized, 120, 159

Vector class, Java, 71
vector container, 76, 100
Venturi, Robert, 189
v f p r i n t f library function, 109

virtual
function, 221
machine, 203, 213, 232, 236
operating system, 202, 213

v i s program, 134
Visual Basic, 215,237
Vlissides, John, 84
vo id* pointer, 21,43,47

Wadler,Phil, x i i
Wait, John W., x i i
Wall, Larry, 83
Wang, Daniel C , x i i
warning message, ^ e w e p r i n t f
web

browser, 86, 231
page, Practice of Programming, x i

Weinberger, Peter, x i i
wepri n t f function, 52, 109, 197
white box testing, 159
White, E.B. , 1,28
wide characters, 211
Wiener, Norbert, 139
wildcards,*, 106,222
Winterbottom, Philip, 213
worst-case performance, 40
wrapper function, 111
Wright, Margaret, x i i

X Window system, 202,206

yacc compiler-compiler, 232, 245
Year 2000 problem, 144,182
Yellin, Frank, 245
Yorktown, 142
Young, Cliff, x i i

zero, 21
division by, 141-142, 236, 241
notation for, 21

zero or more metacharacter, *, 223, 225, 227
zero or one metacharacter, ?, 223, 228

	Contents
	Preface
	Chapter 3: Design and Implementation
	3.1 The Markov Chain Algorithm
	3.2 Data Structure Alternatives
	3.3 Building the Data Structure in C
	3.4 Generating Output
	3.5 Java
	3.6 C++
	3.7 Awk and Perl
	3.8 Performance
	3.9 Lessons

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

