

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley, Inc. was aware of
a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Schmidt, Douglas C.
C++ network programming / Douglas C. Schmidt, Stephen D. Huston.

p. cm.
Includes bibliographical references and index.
Contents: Vol. 1. Mastering complexity with ACE and patterns.
ISBN 0-201-60464-7 (v. 1 : pbk.)
1. C++ (Computer program language) 2. Object-oriented programming (Computer

science) 3. Computer networks. I. Huston, Stephen D. II. Title.

QA 76.73.C153 S368 2002
005.2’762—dc21

2001053345

Copyright c© 2002 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America.
Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-201-60464-7

Text printed in the United States at Offset Paperback Manufacturers in Laflin, Pennsylvania.

Printing 10th September 2009

www.awprofessional.com

Foreword

As I write this foreword I’m traveling through Europe, relying on the excel-
lent European public transportation infrastructure. Being an American,
I’m fascinated and amazed by this infrastructure. Wherever I land at an
airport I have easy access to trains and buses that are fast, clean, reliable,
on time, and perhaps most importantly, going directly to my destination.
Departure and arrival announcements are available in multiple languages.
Signs and directions are easy to follow, even for non-native speakers like
me.

I live and work in the Boston area, and like most Americans I rely almost
entirely on my automobile to get from one place to the next. Except for an
occasional use of the Boston subway system, I use my car to get around
because the public transportation infrastructure is too limited to get me to
my destination. Since millions of others in Boston and elsewhere are in the
same predicament, our highway infrastructure is now well past the point
of coping with the traffic volume. I know I’d be appalled if I knew exactly
how much of my life I’ve wasted sitting in traffic jams.

There are some interesting similarities between networked computing
systems and transportation systems, the most significant of these be-
ing that the success of both depends on scalable infrastructure. Scal-
able transportation systems comprise not just obvious infrastructure ele-
ments, such as trains and rails or airplanes and airports. They also require
scheduling, routing, maintenance, ticketing, and monitoring, for example,
all of which must scale along with the physical transportation system it-
self. Similarly, networked computing requires not only host machines and
networks—the physical computing and communication infrastructure—

xi

xii Foreword

but also software-based scheduling, routing, dispatching, configuration,
versioning, authentication, authorization, and monitoring that allows the
networked system to scale as necessary.

An ironic fact about infrastructure is that it’s extremely difficult to do
well, and yet the more transparent to the user it is, the more success-
ful we consider it to be. Despite the rugged terrain of the Swiss Alps, for
example, a few architects, engineers, and builders have applied their ex-
pertise to provide an efficient transportation system that millions of people
in Switzerland use daily with ease. In fact, the system is so reliable and
easy to use that you quickly take it for granted, and it becomes transparent
to you. For example, when boarding the Swiss railway your focus is simply
on getting from one point to another, not on the machinery used to get
you there. Unless you’re a tourist, you probably miss the fact that you’re
traversing a tunnel that took years to design and build, or ascending an
incline so steep that the railway includes a cog rail to help the train climb.
The rail infrastructure does flawlessly what it’s supposed to do, and as a
result, you don’t even notice it.

This book is about infrastructure software, normally called middleware,
for networked computing systems. It’s called middleware because it’s the
“waist in the hourglass” that resides above the operating system and net-
works, but underneath the application. Middleware comes in a wide va-
riety of shapes, sizes, and capabilities, ranging from J2EE application
servers, asynchronous messaging systems, and CORBA ORBs to software
that monitors sockets for small embedded systems. Middleware must sup-
port an ever-wider variety of applications, operating systems, networking
protocols, programming languages, and data formats. Without middle-
ware, taming the ever-increasing diversity and heterogeneity in networked
computing systems would be tedious, error prone, and expensive.

Despite the variety of types of middleware, and the variety of issues that
middleware addresses, different types of middleware tend to use the same
patterns and common abstractions to master complexity. If you were to
peek inside a scalable and flexible application server, messaging system,
or CORBA ORB, for example, you would likely find that they employ sim-
ilar techniques for tasks such as connection management, concurrency,
synchronization, event demultiplexing, event handler dispatching, error
logging, and monitoring. Just as the users of the Swiss railways far out-
number those who designed and built it, the number of users of successful
middleware far exceeds the number of people who designed and built it. If

Foreword xiii

you design, build, or use middleware, your success depends on knowing,
understanding, and applying these common patterns and abstractions.

While many understand the need for scalability and flexibility in mid-
dleware, few can provide it as effectively as the ADAPTIVE Communica-
tion Environment (ACE) that Doug Schmidt and Steve Huston describe in
this book. ACE is a widely used C++ toolkit that captures common pat-
terns and abstractions used in a variety of highly successful middleware
and networked applications. ACE has become the basis for many net-
worked computing systems, ranging from real-time avionics applications
to CORBA ORBs to mainframe peer-to-peer communication support.

Like all good middleware, ACE hides the complexity of the diverse and
heterogeneous environments beneath it. What sets ACE apart from most
other infrastructure middleware, however, is that even though it allows for
maximum flexibility wherever needed by the application, it doesn’t degrade
the performance or scalability of the system. Being a long-time middleware
architect myself, I know all too well that achieving both performance and
flexibility in the same package is hard.

In a way, though, the flexibility and performance aspects of ACE don’t
surprise me. Due to my long-time association with Doug, I’m well aware
that he is a pioneer in this area. The wide variety of scalable, high-
performing, and flexible middleware that exists today clearly bears his
mark and influence. His teaming with Steve, who’s a gifted C++ devel-
oper and author whose work on ACE has led to many improvements over
the years, has yielded a work that’s a “must read” for anyone involved
in designing, building, or even using middleware. The increasing perva-
siveness of the World Wide Web and of interconnected embedded systems
means that the number, scale, and importance of networked computing
systems will continue to grow. It’s only through understanding the key
patterns, techniques, classes, and lessons that Doug and Steve describe
in this book that we can hope to supply the middleware infrastructure to
make it all transparent, efficient, and reliable.

Steve Vinoski
Chief Architect & Vice President, Platform Technologies
IONA Technologies
September 2001

CHAPTER 0

Design Challenges, Middleware
Solutions, and ACE

CHAPTER SYNOPSIS

This chapter describes the paradigm shift that occurs when transitioning
from stand-alone application architectures to networked application archi-
tectures. This shift yields new challenges in two categories: those in the
problem space that are oriented to software architecture and design and
those in the solution space that are related to software tools and techniques
used to implement networked applications. This chapter first presents a
domain analysis of design dimensions affecting the former category, and
the middleware that is motivated by and applied to the latter category.
The chapter then introduces the ACE toolkit and the example networked
application that’s used to illustrate the solutions throughout this book.

0.1 Challenges of Networked Applications

Most software developers are familiar with stand-alone application archi-
tectures, in which a single computer contains all the software components
related to the graphical user interface (GUI), application service processing,
and persistent data resources. For example, the stand-alone application
architecture illustrated in Figure 0.1 consolidates the GUI, service process-
ing, and persistent data resources within a single computer, with all pe-
ripherals attached directly. The flow of control in a stand-alone application
resides solely on the computer where execution begins.

1

2 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

CD-ROM

PRINTER

FILE
SYSTEM

COMPUTER

Figure 0.1: A Stand-alone Application Architecture

In contrast, networked application architectures divide the application
system into services that can be shared and reused by multiple applica-
tions. To maximize effectiveness and usefulness, services are distributed
among multiple computing devices connected by a network, as shown in
Figure 0.2. Common network services provided to clients in such envi-
ronments include distributed naming, network file systems, routing table
management, logging, printing, e-mail, remote login, file transfer, Web-
based e-commerce services, payment processing, customer relationship
management, help desk systems, MP3 exchange, streaming media, instant
messaging, and community chat rooms.

The networked application architecture shown in Figure 0.2 partitions
the interactive GUI, instruction processing, and persistent data resources
among a number of independent hosts in a network. At run time, the
flow of control in a networked application resides on one or more of the
hosts. All the system components communicate cooperatively, transfer-
ring data and execution control between them as needed. Interoperabil-
ity between separate components can be achieved as long as compati-
ble communication protocols are used, even if the underlying networks,
operating systems, hardware, and programming languages are heteroge-
neous [HV99]. This delegation of networked application service responsi-
bilities across multiple hosts can yield the following benefits:

Section 0.1 Challenges of Networked Applications 3
C

LI
E

N
T

S

REQUESTS

REPLIES

SERVICES
NAMING

NFS
LOGGING
PRINTING

E-COMMERCE
CHAT ROOMS

NETWORK

Figure 0.2: A Common Networked Application Environment

1. Enhanced connectivity and collaboration disseminates informa-
tion rapidly to more potential users. This connectivity avoids the need
for manual information transfer and duplicate entry.

2. Improved performance and scalability allows system configurations
to be changed readily and robustly to align computing resources with
current and forecasted system demand.

3. Reduced costs by allowing users and applications to share expensive
peripherals and software, such as sophisticated database manage-
ment systems.

Your job as a developer of networked applications is to understand the ser-
vices that your applications will provide and the environment(s) available
to provide them, and then

1. Design mechanisms that services will use to communicate, both be-
tween themselves and with clients.

4 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

2. Decide which architectures and service arrangements will make the
most effective use of available environments.

3. Implement these solutions using techniques and tools that eliminate
complexity and yield correct, extensible, high-performance, low-main-
tenance software to achieve your business’s goals.

This book provides the information and tools you need to excel at these
tasks.

Your job will not be easy. Networked applications are often much harder
to design, implement, debug, optimize, and monitor than their stand-alone
counterparts. You must learn how to resolve the inherent and accidental
complexities [Bro87] associated with developing and configuring networked
applications. Inherent complexities arise from key domain challenges that
complicate networked application development, including

Selecting suitable communication mechanisms and designing proto-
cols to use them effectively
Designing network services that utilize the available computing re-
sources efficiently and reduce future maintenance costs
Using concurrency effectively to achieve predictable, reliable, high per-
formance in your system
Arranging and configuring services to maximize system availability
and flexibility.

Dealing with inherent complexity requires experience and a thorough un-
derstanding of the domain itself. There are many design tradeoffs related
to these inherent complexity issues that we will investigate in Chapters 1
and 5.

Accidental complexities arise from limitations with tools and techniques
used to develop networked application software, including

The lack of type-safe, portable, and extensible native OS APIs
The widespread use of algorithmic decomposition, which makes it un-
necessarily hard to maintain and extend networked applications
The continual rediscovery and reinvention of core networked applica-
tion concepts and capabilities, which keeps software life-cycle costs
unnecessarily high

Networked application developers must understand these challenges and
apply techniques to deal with them effectively. Throughout this book we
illustrate by example how ACE uses object-oriented techniques and C++
language features to address the accidental complexities outlined above.

Section 0.2 Networked Application Design Dimensions 5

0.2 Networked Application Design Dimensions

It’s possible to learn programming APIs and interfaces without appreciat-
ing the key design dimensions in a domain. In our experience, however,
developers with deeper knowledge of networked application domain fun-
damentals are much better prepared to solve key design, implementation,
and performance challenges effectively. We therefore explore the core ar-
chitectural design dimensions for networked application development first.
We focus on servers that support multiple services, or multiple instances
of a service, and that collaborate with many clients simultaneously, similar
to the networked application environment shown in Figure 0.2.

The design dimensions discussed in this book were identified by a thor-
ough domain analysis based on hands-on design and implementation ex-
perience with hundreds of production networked applications and sys-
tems developed over the past decade. A domain analysis is an inductive,
feedback-driven process that examines an application domain systemati-
cally to identify its core challenges and design dimensions in order to map
them onto effective solution techniques. This process yields the following
benefits:

It defines a common vocabulary of domain abstractions, which en-
ables developers to communicate more effectively with each other [Fow97].
In turn, clarifying the vocabulary of the problem space simplifies the map-
ping onto a suitable set of patterns and software abstractions in the solu-
tion space. For example, a common understanding of network protocols,
event demultiplexing strategies, and concurrency architectures allows us
to apply these concepts to our discussions of wrapper facades, as well as
to our discussions of ACE frameworks in [SH].

It enhances reuse by separating design considerations into two cat-
egories:

1. Those that are specific to particular types of applications and
2. Those that are common to all applications in the domain.

By focusing on common design concerns in a domain, application and
middleware developers can recognize opportunities for adapting or build-
ing reusable software class libraries. When the canonical control flows
between these class libraries are factored out and reintegrated, they can
form middleware frameworks, such as those in ACE, that can reduce sub-
sequent application development effort significantly. In a mature domain,

6 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

SERVICE SERVICE

COMMUNICATION

CONCURRENCY

CONFIGURATION

Figure 0.3: Networked Application Design Dimensions

application-specific design considerations can be addressed systematically
by extending and customizing existing middleware frameworks via object-
oriented language features, such as inheritance, dynamic binding, param-
eterized types, and exceptions.

Within the domain of networked applications, developers are faced with
design decisions in each of the four dimensions depicted in Figure 0.3.
These design dimensions are concerned mainly with managing inherent
complexities. They are therefore largely independent of particular life-cycle
processes, design methods and notations, programming languages, oper-
ating system platforms, and networking hardware. Each of these design
dimensions is composed of a set of relatively independent alternatives. Al-
though mostly orthogonal to each other, changes to one or more dimen-
sions of your networked application can change its “shape” accordingly.
Design changes therefore don’t occur in isolation. Keep this in mind as
you consider the following design dimensions:

1. Communication dimensions address the rules, form, and level of
abstraction that networked applications use to interact.

2. Concurrency dimensions address the policies and mechanisms gov-
erning the proper use of processes and threads to represent multiple
service instances, as well as how each service instance may use mul-
tiple threads internally.

3. Service dimensions address key properties of a networked applica-
tion service, such as the duration and structure of each service in-
stance.

Section 0.3 Object-Oriented Middleware Solutions 7

4. Configuration dimensions address how networked services are iden-
tified and the time at which they are bound together to form complete
applications. Configuration dimensions often affect more than one
service, as well as the relationships between services.

We examine the first two dimensions in more depth in Chapters 1 and 5,
respectively, while the third and fourth are discussed in [SH]. We illustrate
the key vocabulary, design trade-offs, and solution abstractions first, fol-
lowed by the platform capabilities related to each dimension, its associated
accidental complexities, and the solutions provided by ACE, which evolved
over the past decade in response to these design dimensions. As you’ll see,
the ACE toolkit uses time-proven object-oriented partitioning, interface de-
sign, data encapsulation patterns, and C++ features to enable the design
dimensions of your networked applications to vary as independently and
portably as possible.

0.3 Object-Oriented Middleware Solutions

Some of the most successful techniques and tools devised to address acci-
dental and inherent complexities of networked applications have centered
on object-oriented middleware, which helps manage the complexity and
heterogeneity in networked applications. Object-oriented middleware pro-
vides reusable service/protocol component and framework software that
functionally bridges the gap between

1. End-to-end application functional requirements and
2. The lower-level operating systems, networking protocol stacks, and

hardware devices.

Object-oriented middleware provides capabilities whose qualities are crit-
ical to help simplify and coordinate how networked applications are con-
nected and how they interoperate.

0.3.1 Object-Oriented Middleware Layers

Networking protocol stacks, such as TCP/IP [Ste93], can be decomposed
into multiple layers, such as the physical, data-link, network, transport,
session, presentation, and application layers defined in the OSI reference
model [Bla91]. Likewise, object-oriented middleware can be decomposed

8 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

APPLICATIONS

DOMAIN-SPECIFIC MIDDLEWARE SERVICES

COMMON MIDDLEWARE SERVICES

DISTRIBUTION MIDDLEWARE

HOST INFRASTRUCTURE MIDDLEWARE

OPERATING SYSTEMS & PROTOCOLS

HARDWARE DEVICES

HUD

Nav

WTS
AVIONICS

REPLICATION
SERVICE

Cons

Cons

EVENT
CHANNEL

Cons

Figure 0.4: Object-Oriented Middleware Layers in Context

into multiple layers [SS01], as shown in Figure 0.4. A common hierarchy
of object-oriented middleware includes the layers described below:

Host infrastructure middleware encapsulates OS concurrency and inter-
process communication (IPC) mechanisms to create object-oriented net-
work programming capabilities. These capabilities eliminate many tedious,
error-prone, and nonportable activities associated with developing net-
worked applications via native OS APIs, such as Sockets or POSIX threads
(Pthreads). Widely used examples of host infrastructure middleware in-
clude Java Packages [AGH00] and ACE.

Distribution middleware uses and extends host infrastructure middleware
in order to automate common network programming tasks, such as con-

Section 0.3 Object-Oriented Middleware Solutions 9

nection and memory management, marshaling and demarshaling, end-
point and request demultiplexing, synchronization, and multithreading.
Developers who use distribution middleware can program distributed ap-
plications much like stand-alone applications, that is, by invoking oper-
ations on target objects without concern for their location, language, OS,
or hardware [HV99]. At the heart of distribution middleware are Object
Request Brokers (ORBs), such as COM+ [Box97], Java RMI [Sun98], and
CORBA [Obj01].

Common middleware services augment distribution middleware by defin-
ing higher-level domain-independent services, such as event notification,
logging, persistence, security, and recoverable transactions. Whereas dis-
tribution middleware focuses largely on managing end-system resources
in support of an object-oriented distributed programming model, common
middleware services focus on allocating, scheduling, and coordinating var-
ious resources throughout a distributed system. Without common middle-
ware services, these end-to-end capabilities would have to be implemented
ad hoc by each networked application.

Domain-specific middleware services satisfy specific requirements of par-
ticular domains, such as telecommunications, e-commerce, health care,
process automation, or avionics. Whereas the other object-oriented mid-
dleware layers provide broadly reusable “horizontal” mechanisms and ser-
vices, domain-specific services target vertical markets. From a “commer-
cial off-the-shelf” (COTS) perspective, domain-specific services are the least
mature of the middleware layers today. This is due in part to the historical
lack of middleware standards needed to provide a stable base upon which
to create domain-specific services.

Object-oriented middleware is an important tool for developing net-
worked applications. It provides the following three broad areas of im-
provement for developing and evolving networked applications:

1. Strategic focus, which elevates application developer focus beyond
a preoccupation with low-level OS concurrency and networking APIs.
A solid grasp of the concepts and capabilities underlying these APIs
is foundational to all networked application development. However,
middleware helps abstract the details away into higher-level, more
easily used artifacts. Without needing to worry as much about low-

10 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

level details, developers can focus on more strategic, application-
centric concerns.

2. Effective reuse, which amortizes software life-cycle effort by lever-
aging previous development expertise and reifying implementations
of key patterns [SSRB00, GHJV95] into reusable middleware frame-
works. In the future, most networked applications will be assembled
by integrating and scripting domain-specific and common “pluggable”
middleware service components, rather than being programmed en-
tirely from scratch [Joh97].

3. Open standards, which provide a portable and interoperable set of
software artifacts. These artifacts help to direct the focus of develop-
ers toward higher-level software application architecture and design
concerns, such as interoperable security, layered distributed resource
management, and fault tolerance services. An increasingly important
role is being played by open and/or standard COTS object-oriented
middleware, such as CORBA, Java virtual machines, and ACE, which
can be purchased or acquired via open-source means. COTS middle-
ware is particularly important for organizations facing time-to-market
pressures and limited software development resources.

Although distribution middleware, common middleware services, and
domain-specific middleware services are important topics, they are not
treated further in this book for the reasons we explore in the next sec-
tion. For further coverage of these topics, please see either http://ace.
ece.uci.edu/middleware.html or Advanced CORBA Programming with
C++ [HV99].

0.3.2 The Benefits of Host Infrastructure Middleware

Host infrastructure middleware is preferred over the higher middleware
layers when developers are driven by stringent quality of service (QoS) re-
quirements and/or cost containment. It’s also a foundational area for ad-
vancing the state-of-the-art of middleware. These areas and their rationale
are discussed below.

Meeting stringent QoS requirements. Certain types of applications
need access to native OS IPC mechanisms and protocols to meet stringent
efficiency and predictability QoS requirements. For example, multimedia

http://ace.ece.uci.edu/middleware.html
http://ace.ece.uci.edu/middleware.html

Section 0.3 Object-Oriented Middleware Solutions 11

applications that require long-duration, bidirectional bytestream commu-
nication services are poorly suited to the synchronous request/response
paradigm provided by some distribution middleware [NGSY00]. Despite
major advances [GS99, POS 00] in optimization technology, many con-
ventional distribution middleware implementations still incur significant
throughput and latency overhead and lack sufficient hooks to manipulate
other QoS-related properties, such as jitter and dependability.

In contrast, host infrastructure middleware is often better suited to en-
sure end-to-end QoS because it allows applications to

Omit functionality that may not be necessary, such as omitting mar-
shaling and demarshaling in homogeneous environments
Exert fine-grained control over communication behavior, such as sup-
porting IP multicast transmission and asynchronous I/O and
Customize networking protocols to optimize network bandwidth us-
age or to substitute shared memory communication in place of loop-
back network communication

By the end of the decade, we expect research and development (R&D)
on distribution middleware and common services will reach a point where
its QoS levels rival or exceed that of handwritten host infrastructure mid-
dleware and networked applications. In the meantime, however, much
production software must be written and deployed. It’s within this con-
text that host infrastructure middleware plays such an important role by
elevating the level of abstraction at which networked applications are de-
veloped without unduly affecting their QoS.

Cost containment. To survive in a globally competitive environment,
many organizations are transitioning to object-oriented development pro-
cesses and methods. In this context, host infrastructure middleware offers
powerful and time-proven solutions to help contain the costs of the inher-
ent and accidental complexities outlined in Section 0.1, page 4.

For example, adopting new compilers, development environments, de-
buggers, and toolkits can be expensive. Training software engineers can be
even more expensive due to steep learning curves needed to become profi-
cient with new technologies. Containing these costs is important when em-
barking on software projects in which new technologies are being evaluated
or employed. Host infrastructure middleware can be an effective tool for
leveraging existing OS and networking experience, knowledge, and skills

12 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

while expanding development to new platforms and climbing the learning
curve toward more advanced, cost-saving software technologies.

Advancing the state-of-the-practice by improving core knowledge. A
solid understanding of host infrastructure middleware helps developers
identify higher-level patterns and services so they can become more pro-
ductive in their own application domains. There are many new technology
challenges to be conquered beyond today’s method- and message-oriented
middleware technologies. Infrastructure middleware provides an impor-
tant building block for future R&D for the following reasons:

Developers with a solid grasp of the design challenges and patterns
underlying host infrastructure middleware can become proficient with
software technology advances more rapidly. They can then catalyze
the adoption of more sophisticated middleware capabilities within a
team or organization.
Developers with a thorough understanding of what happens “under
the covers” of middleware are better suited to identify new ways of
improving their networked applications.

0.4 An Overview of the ACE Toolkit

The ADAPTIVE Communication Environment (ACE) is a widely used exam-
ple of host infrastructure middleware. The ACE library contains 240,000
lines of C++ code and 500 classes. The ACE software distribution also
contains hundreds of automated regression tests and example applica-
tions. ACE is freely available as open-source software and can be down-
loaded from http://ace.ece.uci.edu/ or http://www.riverace.com.

To separate concerns, reduce complexity, and permit functional sub-
setting, ACE is designed using a layered architecture [BMR 96], shown
in Figure 0.5. The foundation of the ACE toolkit is its combination of OS
adaptation layer and C++ wrapper facades [SSRB00], which encapsulate
core OS concurrent network programming mechanisms. The higher layers
of ACE build upon this foundation to provide reusable frameworks, net-
worked service components, and standards-based middleware. Together,
these middleware layers simplify the creation, composition, configuration,
and porting of networked applications without incurring significant perfor-
mance overhead.

http://ace.ece.uci.edu/
http://www.riverace.com

Section 0.4 An Overview of the ACE Toolkit 13

NETWORKED
SERVICE

COMPONENTS
LAYER

FRAMEWORK
LAYER

C++
WRAPPER
FACADE
LAYER

C
APIs

COMMUNICATION
SUBSYSTEM

VIRTUAL MEMORY & FILE
SUBSYSTEM

PROCESS/THREAD
SUBSYSTEM

PROCESSES/
THREADS

WIN32 NAMED
PIPES & UNIX

STREAM PIPES

SOCKETS/
TLI

UNIX
FIFOS

SELECT/
IO COMP

DYNAMIC
LINKING

SHARED
MEMORY

FILE SYS
APIS

OS ADAPTATION LAYER

SYNCH
WRAPPERS

SPIPE
SAP

SOCK SAP/
TLI SAP

FIFO
SAP

PROCESS/
THREAD

MANAGERS SERVICE
CONFIGU-

RATOR MEM
MAP

SHARED
MALLOC

FILE
SAP

REACTOR/
PROACTOR

STREAMS LOG
MSG

CONNECTOR
CORBA

HANDLERACCEPTOR
SERVICE
HANDLER

THE ACE ORB
(TAO)

STANDARDS-BASED MIDDLEWARE

TOKEN
SERVER

TIME
SERVER

GATEWAY
SERVER

LOGGING
SERVER

NAME
SERVER

JAWS ADAPTIVE
WEB SERVER

GENERAL OPERATING SYSTEM SERVICES

Figure 0.5: The Layered Architecture of ACE

This book focuses on the ACE wrapper facades for native OS IPC and
concurrency mechanisms. The additional benefits of frameworks and a
comprehensive description of the ACE frameworks are described in the
second volume of C++ Network Programming [SH]. The remainder of this
chapter outlines the structure and functionality of the various layers in
ACE. Section B.1.4 on page 263 describes the standards-based middleware
(TAO [SLM98] and JAWS [HS99]) that’s based upon and bundled with ACE.

0.4.1 The ACE OS Adaptation Layer

The ACE OS adaptation layer constitutes approximately 10 percent of ACE
(about 27,000 lines of code). It consists of a class called ACE_OS that con-
tains over 500 C++ static methods. These methods encapsulate the native,
C-oriented OS APIs that hide platform-specific details and expose a uni-

14 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

form interface to OS mechanisms used by higher ACE layers. The ACE_OS
adaptation layer simplifies the portability and maintainability of ACE and
ensures that only ACE developers—not applications developers—must un-
derstand the arcane platform-specific knowledge underlying the ACE wrap-
per facades. The abstraction provided by the ACE_OS class enables the use
of a single source tree for all the OS platforms shown in Sidebar 1.

Sidebar 1: OS Platforms Supported by ACE

ACE runs on a wide range of operating systems, including:

PCs, for example, Windows (all 32/64-bit versions), WinCE; Redhat,
Debian, and SuSE Linux; and Macintosh OS X;
Most versions of UNIX, for example, SunOS 4.x and Solaris, SGI IRIX,
HP-UX, Digital UNIX (Compaq Tru64), AIX, DG/UX, SCO OpenServer,
UnixWare, NetBSD, and FreeBSD;
Real-time operating systems, for example, VxWorks, OS/9, Chorus,
LynxOS, Pharlap TNT, QNX Neutrino and RTP, RTEMS, and pSoS;
Large enterprise systems, for example, OpenVMS, MVS OpenEdi-
tion, Tandem NonStop-UX, and Cray UNICOS.

ACE can be used with all of the major C++ compilers on these platforms.
The ACE Web site at http://ace.ece.uci.edu contains a complete,
up-to-date list of platforms, along with instructions for downloading and
building ACE.

0.4.2 The ACE C++ Wrapper Facade Layer

A wrapper facade consists of one or more classes that encapsulate func-
tions and data within a type-safe object-oriented interface [SSRB00]. The
ACE C++ wrapper facade layer resides atop its OS adaptation layer and
provides largely the same functionality, as shown in Figure 0.5. Packaging
this functionality as C++ classes, rather than stand-alone C functions, sig-
nificantly reduces the effort required to learn and use ACE correctly. The
ACE wrapper facades are designed carefully to minimize or eliminate per-
formance overhead resulting from its increased usability and safety. The
principles that guide ACE’s design are discussed in Appendix A.

http://ace.ece.uci.edu

Section 0.4 An Overview of the ACE Toolkit 15

ACE provides an extensive set of wrapper facades, constituting nearly
50 percent of its total source base. Applications combine and refine these
wrapper facades by selectively inheriting, aggregating, and/or instantiat-
ing them. In this book we show how the socket, file, concurrency, and
synchronization wrapper facades are used to develop efficient, portable
networked applications.

0.4.3 The ACE Framework Layer

The remaining 40 percent of ACE consists of object-oriented frameworks,
which are integrated sets of classes that collaborate to provide a reusable
software architecture for a family of related applications [FS97]. Object-
oriented frameworks are a key to successful systematic reuse because they
complement and amplify other reuse techniques, such as class libraries,
components, and patterns [Joh97]. By emphasizing the integration and
collaboration of application-specific and application-independent classes,
for example, the ACE frameworks enable larger-scale reuse of software
than is possible by reusing individual classes or stand-alone functions.
The frameworks in ACE integrate and augment its C++ wrapper facade
classes by applying advanced concurrency and network programming pat-
terns [BMR 96, SSRB00] to reify the canonical control flow and collabora-
tion among families of related classes in ACE.

The following ACE frameworks support the efficient, robust, and flexible
development and configuration of concurrent networked applications and
services:

Event demultiplexing and dispatching frameworks. The ACE Reac-
tor and Proactor frameworks implement the Reactor and Proactor pat-
terns [SSRB00], respectively. The Reactor and Proactor frameworks auto-
mate the demultiplexing and dispatching of application-specific handlers
in response to various types of I/O-based, timer-based, signal-based, and
synchronization-based events.

Connection establishment and service initialization framework. The
ACE Acceptor-Connector framework implements the Acceptor-Connector
pattern [SSRB00]. This framework decouples the active and passive ini-
tialization roles from application processing performed by communicating
peer services after initialization is complete.

16 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

Concurrency framework. ACE provides the Task framework that can be
used to implement key concurrency patterns [SSRB00, Lea99], such as
Active Object and Half-Sync/Half-Async, which simplify concurrent pro-
gramming by decoupling method execution from method invocation and
decoupling asynchronous and synchronous processing, respectively.

Service configurator framework. This framework implements the Com-
ponent Configurator pattern [SSRB00] to support the configuration of appli-
cations whose services can be assembled dynamically late in their design
cycle, for example, at installation time. It also supports the dynamic re-
configuration of services in an application at run time.

Streams framework. This framework implements the Pipes and Filters
pattern [BMR 96], wherein each processing step is encapsulated in a fil-
tering module that can access and manipulate data flowing through the
stream of modules. The ACE Streams framework simplifies the develop-
ment of hierarchically layered services that can be composed flexibly to
create certain types of networked applications, such as user-level protocol
stacks and network management agents [SS94].

An in-depth discussion of the motivation, design, and use of the frame-
works in ACE appears in C++ Network Programming: Systematic Reuse
with ACE and Frameworks [SH]. Additional information on the ACE wrap-
per facades and frameworks is also available in The ACE Programmer’s
Guide [HJS].

0.4.4 The ACE Networked Service Components Layer

In addition to its host infrastructure middleware wrapper facades and
frameworks previously described, ACE also provides a library of networked
services that are packaged as components. A component is an encapsu-
lated part of a software system that implements a specific service or set of
services [Szy98]. Although these components aren’t included in the ACE li-
brary itself, they are bundled with the ACE software distribution to provide
the following capabilities:

Demonstrate common uses of ACE capabilities—The components
demonstrate how key ACE frameworks and classes can be used to
develop flexible, efficient, and robust networked services.

Section 0.5 Example: A Networked Logging Service 17

Factor out reusable networked application building blocks—These
components provide reusable implementations of common networked
application services, such as naming, event routing [Sch00], logging,
time synchronization [SSRB00], and network locking.

0.5 Example: A Networked Logging Service

Throughout this book we use a running example of a networked logging
service to help illustrate key points and ACE capabilities. This service
collects and records diagnostic information sent from one or more client
applications. It’s a departure from the usual way of logging to a Windows
NT/2000 event log, which is not available on Windows 95 or 98. If you’re
an experienced UNIX programmer, however, you may be thinking this is a
waste of time since SYSLOGD provides this type of service already. Yet this
underscores a key benefit of the logging service: it’s portable, so applica-
tions can log messages on all platforms that ACE supports.

The logging service example is a microcosm of the actual Logging Ser-
vice in ACE. ACE’s logging service can be configured dynamically via the
Component Configurator pattern [SSRB00] and ACE Service Configurator
framework [SH]. By applying the Adapter pattern [GHJV95], records can
be redirected to a UNIX SYSLOGD or to the Windows NT/2000 event log,
or both—even if the initiating application is on another type of OS plat-
form. This book’s logging service example is purposely scaled back so we
can focus on mastering complexity. Figure 0.6 illustrates the application
processes and server in our networked logging service. Below, we outline
the key entities shown in Figure 0.6.

Client application processes run on client hosts and generate log records
ranging from debugging messages to critical error messages. The logging
information sent by a client application indicates the following:

1. The time the log record was created

2. The process identifier of the application

3. The priority level of the log record and

4. A string containing the logging message text, which can vary in size
from 0 to a configurable maximum length, such as 4K bytes.

18 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

Oct 31 14:48:13 2001@tango.ece.uci.edu@38491@7@client::unable to fork in function spawn
Oct 31 14:50:28 2001@mambo.cs.wustl.edu@18352@2@drwho::sending request to server tango

TCP CONNECTION

NETWORK

STORAGE DEVICE

Logging
Server

TCP
CONNECTION

if (Options::instance ()–>debug())
 ACE_DEBUG ((LM_DEBUG,
 “sending request to server %s",
 server_host));

int spawn (void){
 if (ACE_OS::fork () ==-1)
 ACE_ERROR (LM_ERROR,
 "unable to fork in function spawn");

CONSOLE

CLIENT

CLIENT

Logging
Client

Logging
Client

SERVER

Figure 0.6: Participants in the Networked Logging Service

Logging servers collect and output log records received from client ap-
plications. A logging server can determine which client host sent each
message by using addressing information it obtains from the Socket API.
There’s generally one logging server per system configuration, though they
can be replicated to enhance fault tolerance.

Throughout the book, we refer to the networked logging service to make
our discussion of domain analysis dimensions for networked applications
more concrete. The architecture of our logging service is driven by this
domain analysis. Just as real products change in scope as they progress
through their life cycles, the logging service’s design, functionality, scal-
ability, and robustness will evolve as we progress through this book and
[SH]. We’ll continue developing this service incrementally to show solu-

Section 0.6 Summary 19

tions to common design challenges using many key patterns implemented
by classes in ACE. Sidebar 2 describes how to build the ACE library so that
you can experiment with the examples we present in this book.

Sidebar 2: Building ACE and Programs that Use ACE

ACE is open-source software, so you can download it from http://
ace.ece.uci.edu and build it yourself. Here are some tips to help you
understand the source examples we show, and how to build ACE, the
examples, and your own applications:

Install ACE in an empty directory. The top-level directory in the dis-
tribution is named ACE_wrappers. We refer to this top-level direc-
tory as $ACE_ROOT. Create an environment variable by that name
containing the full path to the top-level ACE directory.
The ACE source and header files reside in $ACE_ROOT/ace.
The source and header files for this book’s networked logging ser-
vice examples reside in $ACE_ROOT/examples/C++NPv1.
When compiling your programs, the $ACE_ROOT directory must be
added to your compiler’s file include path, which is often desig-
nated by the -I or /I compiler option.
The $ACE_ROOT/ACE-INSTALL.html file contains complete in-
structions on building and installing ACE and programs that use
ACE.

You can also purchase a prebuilt version of ACE from Riverace at a
nominal cost. A list of the prebuilt compiler and OS platforms supported
by Riverace is available at http://www.riverace.com.

0.6 Summary

This chapter described the challenges of developing networked applications
and middleware that can run effectively in distributed computing environ-
ments. We introduced the inherent and accidental complexities encoun-
tered when developing software ranging from tightly constrained real-time
and embedded systems [SLM98] to newly evolving middleware abstrac-
tions [MSKS00] and next-generation networked applications [SKKK00] with

http://www.riverace.com
http://ace.ece.uci.edu
http://ace.ece.uci.edu

20 CHAPTER 0 Design Challenges, Middleware Solutions, and ACE

stringent QoS requirements. We presented a taxonomy of middleware lay-
ering, emphasizing the benefits of host infrastructure middleware, which
is the focus of this book.

This chapter also introduced the results of a domain analysis of the key
design dimensions for networked application architectures. These were
grouped into four categories:

1. Communication protocols and mechanisms
2. Concurrency architectures
3. Service architectures and
4. Service configuration strategies.

This domain analysis has been refined while developing hundreds of net-
worked applications and middleware components during the past decade.
This analysis also guided the development of the ACE concurrent network
programming toolkit. ACE exemplifies the principles and benefits gained
through refactoring [FBB 99] the recurring structure and behavior of net-
worked applications into host infrastructure middleware. ACE’s pattern-
oriented software architecture constitutes an industrial-strength example
of how proper object-oriented design and C++ usage can yield significant
improvements in your development schedules and the quality, flexibility,
and performance of your networked applications and middleware.

Finally, we introduced the networked logging service, which stores di-
agnostic information sent from one or more client applications. We use
this example throughout the book to illustrate common design problems
and their effective solutions using ACE. The next two parts of the book are
organized as follows:

Part I—Chapters 1 through 4 outline communication design alter-
natives and describe the object-oriented techniques used in ACE to
programming OS IPC mechanisms effectively.
Part II—Chapters 5 through 10 outline concurrency design alterna-
tives and describe the object-oriented techniques used in ACE to pro-
gram OS concurrency mechanisms effectively.

Throughout both parts of the book, we illustrate common problems that
arise when developers design networked applications and when they pro-
gram them using native OS IPC and concurrency APIs directly. We also
show how ACE applies object-oriented design techniques, C++ features,
and patterns to resolve these problems.

Index

Abstract types, 30
accept(), 65, 66
Acceptor-Connector pattern, 15
Acceptors, nonblocking, 145
ACE (ADAPTIVE Communication

Environment), 8, 12–17
building, 19
C++ wrapper facade layer, 14–15
displaying classes, 50
downloading, 12
evolution of, 259–267
framework layer, 15–16
future for, 267–268
layered architecture of, 12, 13
network services, 16–17
OS adaptation layer, 13–14
web site for, 14

ACE::read_n(), 76
ACE::select(), 141, 151–152
ACE::write_n(), 76
ACE_Addr, 49–52

hash(), 51
operator!=(), 51
operator==(), 51

ACE_Atomic_Op, 221
ACE_Condition_Thread_Mutex,

208, 229–230
broadcast(), 229
signal(), 229

wait(), 229
ACE_const_cast, 176
ACE_Data_Block, 72
ACE_DEBUG, 93
ACE_dynamic_cast, 176
ACE_ERROR, 93
ACE_ERROR_RETURN, 92, 93
ACE_FILE_Connector, 85
ACE_FILE_IO, 85
ACE_Guard, 208–212, 216–217
ACE_Handle_Set, 140–147

clr_bit(), 143
fdset(), 143
is_set(), 143
max_set(), 143
num_set(), 143
reset(), 143
set_bit(), 143
sync(), 143

ACE_Handle_Set_Iterator, 140,
147–151

operator(), 148
ACE_Hash_Map_Manager, 154, 155
ACE_INET_Addr, 49–52

addr_to_string(), 52
get_host_name(), 52
get_port_number(), 52
string_to_addr(), 52

ACE_InputCDR, 76–80

295

296 INDEX

good_bit(), 78
operator>>(), 78
steal_contents(), 78

ACE_IPC_SAP, 52–53
disable(), 53, 62
enable(), 53, 62
get_handle(), 53
set_handle(), 53

ACE_Log_Msg::log(), 93
ACE_Mem_Map, 66
ACE_Message_Block, 72–76

clone(), 74
clr_flags(), 74
copy(), 74
duplicate(), 74
length(), 74
msg_priority(), 74
msg_type(), 74
next(), 74
prev(), 74
rd_ptr(), 74
release(), 74
set_flags(), 74
size(), 74
total_length(), 74
wr_ptr(), 74

ACE_Message_Queue, 72
ACE_Null_Condition, 208, 230–231
ACE_Null_Mutex, 208, 212–217
ACE_Null_Semaphore, 208, 222–229
ACE_Object_Manager, 217–218
ACE_OutputCDR, 76–80

begin(), 78
end(), 78
good_bit(), 78
operator<<(), 78
total_length(), 78

ACE_Process, 160–165
child(), 163
exit_code(), 162
getpid(), 162
kill(), 163

parent(), 163
prepare(), 162
spawn(), 162
terminate(), 162
unmanage(), 162
wait(), 162

ACE_Process_Manager, 160, 182
close(), 170
instance(), 170
open(), 170
spawn(), 170
spawn_n(), 170
wait(), 170

ACE_Process_Manager, 169
ACE_Process_Mutex, 208, 212–217
ACE_Process_Options, 160,

165–169
avoid_zombies(), 168
creation_flags(), 168
set_process_attributes(),

168
command_line(), 167
pass_handle(), 167
set_handles(), 167
setenv(), 167
seteuid(), 168
setruid(), 168
working_directory(), 167

ACE_Process_Semaphore, 208,
222–229

ACE_Read_Guard, 208–212, 219–221
ACE_Recursive_Thread_Mutex,

231–233
ACE_reinterpret_cast, 176
ACE_RW_Process_Mutex, 208,

219–221
ACE_RW_Thread_Mutex, 208,

219–221
ACE_Sched_Params, 186, 198–201

next_priority(), 199
prev_priority(), 199
priority_max(), 199

INDEX 297

priority_min(), 199
ACE::select(), 140
ACE_SOCK, 54–55

close(), 55
get_local_addr(), 55
get_option(), 55
get_remote_addr(), 55, 85, 88
open(), 55
set_option(), 55

ACE_SOCK_Acceptor, 64–67
accept(), 66
open(), 66

ACE_SOCK_Connector, 56–60
complete(), 58
connect(), 58

ACE_SOCK_IO, 60–64
ACE_SOCK_Stream, 60–64

recv(), 62
recv_n(), 62
recvv_n(), 62
send(), 62
send_n(), 62
sendv_n(), 62

ACE_static_cast, 176
ACE_Task, 205
ACE_Thread_Manager, 186–198

cancel_all(), 189
close(), 189
exit(), 189
instance(), 189
join(), 189
spawn(), 189
spawn_n(), 189
testcancel(), 189
wait(), 189

ACE_Thread_Mutex, 208, 212–217
ACE_Thread_Semaphore, 208,

222–229
ACE_Time_Value, 58, 62
ACE_TSS, 186, 187, 201–205

cleanup(), 203
operator->(), 203

ACE_Write_Guard, 208–212,
219–221

Active Object, 205
Active Object pattern, 16, 133
addr_to_string(), 52
Address family, 37
Arrays of primitive types, 77
Asynchronous I/O, 108
Asynchronous message exchange,

synchronous versus, 26–28
avoid_zombies(), 168

Barrier synchronization, 197
begin(), 78
Blocking, 56, 58, 61, 62, 65
broadcast(), 229

C++ code, displaying, 50
C++ iostreams, 76
C++ wrapper facade layer, 14
cancel_all(), 189
Casts, 176
child(), 163
cleanup(), 203
clone(), 74
close(), 55, 170, 189
clr_bit(), 143
clr_flags(), 74
COM+, 9
command_line(), 167
Commercial off-the-shelf (COTS), 9,

10
Common middleware services layer,

role of, 9
Communication design

connectionless versus
connection-oriented protocols,
23–26

message passing versus shared
memory, 28–31

synchronous versus
asynchronous message
exchange, 26–28

298 INDEX

Communication dimensions, 6
Communication domain, 36
complete(), 58
Component, 16
Component Configurator Pattern,

16–17
Concrete class, 30
Concurrency design, 6

concurrent servers, 105–106
iterative servers, 103–105
limitations with OS, 135–136
process/thread spawning

strategies, 112–114
processes versus threads,

109–112
reactive servers, 106–108
real-time scheduling, 119–121
task- versus message-based

architectures, 121–122
threading models, 114–119
time-shared scheduling, 119–121

Concurrency framework, 15
Concurrent servers, 105–106
Condition variables, 133–134
Configuration dimensions, 6
connect(), 56, 58
Connection establishment and

termination, Socket API, 35
Connection establishment

framework, 15
Connectionless versus

connection-oriented protocols,
23–26

const_cast, 176
Container classes, 155
Contention scope, 114
Cooperative cancelation, 190–191,

197
copy(), 74
CORBA, 9, 29

Common Data Representation
(CDR), 77

Cost containment, 11
CreateProcess(), 109, 161
CreateThread(), 110, 129
creation_flags(), 168
CreateProcess(), 128

Data framing strategies, 24
Data transfer mechanism, Socket

API, 35
Data-mode socket, 56
Deadlocks, 107
Debugging macros, 93
Demarshaling, 9, 11, 76–77
dequeue_head(), 227–228
Descriptor, see Handles
disable(), 53, 62
Dispatching framework, 15
Distributed shared memory (DSM),

30–31
Distribution middleware, role of, 8–9
Domain analysis, 5
Domain-crossing penalty, 91
Domain-specific middleware services

layer, role of, 9
Double-Checked Locking

Optimization pattern, 191,
192, 203

duplicate(), 74
dynamic_cast, 176

Eager spawning, 112
echo_server(), 237
echo_server, 37–38
Efficiency issues, 46
enable(), 53, 62
end(), 78
Endpoints, 34
enqueue_tail(), 226–227
errno, 130, 202
Error macros, 93
Error propagation strategies, 137
Escape hatches, 237–238
Event demultiplexing framework, 15

INDEX 299

synchronous, 125–127
Event loops, 125
exit(), 111, 128, 189
exit_code(), 162
ExitProcess(), 111, 128
ExitThread(), 129

FD_CLR(), 127
FD_ISSET(), 127
FD_SET(), 127
fd_set, 126, 141–143, 148–150
FD_ZERO(), 127
fdset(), 143
First-in, first-out (FIFO), 120, 198
for loop, 147
fork(), 109, 128, 161, 164
Framework layer, 15–16

get_handle(), 53, 238
get_host_name(), 52
get_local_addr(), 55
get_option(), 55
get_port_number(), 52
get_remote_addr(), 55, 85, 88
gethostbyname(), 84
getpid(), 162
GetThreadPriority(), 130
good_bit(), 78

Half-Sync/Half-Async pattern, 16,
112, 206

handle_connections(), 84, 91, 93,
156

handle_connections, 177–179
handle_data(), 84, 91, 94, 146,

156–157, 196–197
Handles, 34

errors and, 37–40
hash(), 51
Hook methods, Logging_Server,

83–84
Host infrastructure middleware

layer, role of, 8, 10–13

Hybrid-threading model, 116–117

instance(), 170, 189
Internet Protocol (IP), 24
Interprocess communication (IPC),

local and remote, 33
iovec structure, 63
is_set(), 143
Iterative servers, 103–105
Iterative_Logging_Server, 91–95
Iterator pattern, 148

Java Packages, 8
Java RMI, 9
JAWS, 265
Jitter, 11
join(), 189

Kernel-threading model, 115–116
kill(), 161, 163

Last-in, first-out (LIFO), 218
Leader/Followers pattern, 112
length(), 74
Lightweight processes (LWPs),

116–117
Linearization, 76
Local context management, Socket

API, 35
Local shared memory, 29
Lock-step sequence, 27
Locking, 203, 210–212, 218–224
log_record(), 91
Logging service

asynchronous request/response
protocol, 28

client application, 95–98
example of, 17–19
initial, 80–95
message framing protocol, 86
message passing, 31
TCP/IP connection, 25

Logging service, implementing

300 INDEX

ACE_InputCDR, 72–80
ACE_OutputCDR, 76–80

Logging_Client::send(), 95–97
Logging_Handler, 86–91

log_record(), 91
recv_log_record(), 87–90
write_log_record(), 90–91

Logging_Process, 180–182
Logging_Server, 81–86

handle_connections(), 84, 91
handle_data(), 84, 91
hook methods, 83–84
make_log_file(), 85–86
open(), 83–84
run(), 83
wait_for_multiple_events(),

84

Macros
debugging and error, 93
guard, 216

main(), 94, 157
make_log_file(), 85–86, 92, 156
Marshaling, 9, 11, 76–77
max_set(), 143
Memory management unit (MMU),

109
Memory-mapped files, 29–30
Message exchange, synchronous

versus asynchronous, 26–28
Message passing versus shared

memory, 28–31
Message(s)

composite, 73
framing protocol, 86
simple, 73

Message-based concurrency
architecture, 121–122

Message-oriented middleware
(MOM), 29

Message_Queue, 223–229
Microsoft Windows, 34
Middleware standards, 263–264

Monitor Object pattern, 133, 224
msg_priority(), 74
msg_type(), 74
Multiplexing connections, 24–25
Multiprocessing

advantages and disadvantages of,
109–110

mechanisms, 127–128
spawning strategies, 112–114

Multiprocessing wrapper facades
ACE_Process, 161–165
ACE_Process_Manager, 169–182
ACE_Process_Options, 165–169
overview of, 159–161

Multithreading
advantages and disadvantages of,

110–112
mechanisms, 129–130
models, 114–119
spawning strategies, 112–114

Multithreading wrapper facades
ACE_Sched_Params, 186,

198–201
ACE_Thread_Manager, 186–198
ACE_TSS, 186, 187, 201–205
overview of, 185–187

Mutual exclusion (mutex) locks, see
also ACE_Condition_Thread_
Mutex, ACE_Null_Mutex,
ACE_Process_Mutex,
ACE_RW_Process_Mutex,
ACE_RW_Thread_Mutex, and
ACE_Thread_Mutex, 105, 132,
134

N:1 user-threading model, 114–115
N:M hybrid-threading model,

116–117
Nagle’s algorithm, 55, 63, 64
Network addressing, Socket API, 36
Network services, library of, 16–17
Networked applications

challenges of, 1–4

INDEX 301

design dimensions, 5–7
example of, 2–3

next(), 74
next_priority(), 199
Nonblocking, 56, 58, 61, 62, 65
Nonmultiplexing connections, 25
num_set(), 143

Object Lifetime Manager pattern,
218

Object Request Brokers (ORBs), 9
Object, differences between a thread

and an, 194
Object-oriented middleware

benefits of host infrastructure,
10–13

layers, 7–10
role of, 7, 9–10

On-demand spawning, 113
1:1 kernel-threading model, 115–116
open(), 55, 66, 155, 170

Logging_Server, 83–84, 92
operator!=(), 51
operator(), 148
operator->(), 203
operator<<(), 78–79
operator==(), 51
operator>>(), 78–80
Options management, Socket API, 36
OS adaptation layer, 13–14

parent(), 163
pass_handle(), 167
Passive-mode socket, 56
Pattern

Acceptor-Connector, see
Acceptor-Connector pattern

Active Object, see Active Object
pattern

Component Configurator, see
Component Configurator
pattern

Double-Checked Locking
Optimization, see
Double-Checked Locking
Optimization pattern

Half-Sync/Half-Async, see
Half-Sync/Half-Async pattern

Iterator, see Iterator pattern
Leader/Followers, see

Leader/Followers pattern
Monitor Object, see Monitor

Object pattern
Object Lifetime Manager, see

Object Lifetime Manager
pattern

Pipes and Filters, see Pipes and
Filters pattern

Proactor, see Proactor framework
Reactor, see Reactor framework
Singleton, see Singleton pattern
Thread-Safe Interface, see

Thread-Safe Interface pattern
Wrapper Facade, see Wrapper

Facade pattern
PEER_ADDR, 57
PEER_STREAM, 57
Pipes and Filters pattern, 16
poll(), 126
Portability, 46, 52, 135, 136, 152,

164, 176
lack of, Socket API, 41–43

Ports, ephemeral, 51
POSIX, 161, 163
prepare(), 162
prev(), 74
prev_priority(), 199
Primitive types, 77

arrays of, 77
printf(), 93
Priority inversion, 25
priority_max(), 199
priority_min(), 199
Proactive servers, 108

302 INDEX

Proactor framework, 15
Process, see also Multiprocessing

contention scope, 114
lifetime operations, 128
pool, 106
property operations, 128
synchronization operations, 128

Process-per-connection, 171–180
Protocol stacks, 7
Protocols

connectionless versus
connection-oriented, 23–26

defined, 23
family, 36

pthread_cancel(), 129, 187
pthread_create(), 110, 129
pthread_exit(), 129
pthread_getschedparam(), 130
pthread_getspecific(), 130
pthread_join(), 129
pthread_key_create(), 130
pthread_kill(), 188
pthread_setschedparam(), 130
pthread_setspecific(), 130
pthread_testcancel(), 187

Quality of service (QoS)
requirements, 10–11

Race conditions, 130–132
rd_ptr(), 74
Reactive servers, 106–108
Reactor framework, 15
read_n(), 76
Readers/writer locks, 132–133
Real-time scheduling, 119–121
recv(), 56, 62
recv_log_record(), 87–90
recv_n(), 62
recvv_n(), 62
reinterpret_cast, 176
release(), 74

Request/response protocols,
asynchronous and
synchronous, 26–28

reset(), 143
Reuse, 10
Round-robin, 120, 198–199
RPC, 29
run(), 83, 173, 174
run_master(), 174–175
run_svc(), 194–196
run_worker(), 175–176

Scheduler activations, 116
Scoped Locking, 203, 210–212, 224
select(), 107, 126–127, 140,

151–152
Semantic variations, 187
Semaphores, see also

ACE_Null_Semaphore,
ACE_Process_Semaphore, and
ACE_Thread_Semaphore, 105,
133–134

send(), 56, 62
send_n(), 62
sendv_n(), 62
Serialization, 30
Service configurator framework,

16–17
Service dimensions, 6
Service initialization framework, 15
set_bit(), 143
set_flags(), 74
set_handle(), 53, 238
set_handles(), 167
set_option(), 55
set_process_attributes(), 168
setenv(), 167
seteuid(), 168
setruid(), 168
SetThreadPriority(), 130
Shared memory

C++ objects and, 30
distributed, 30–31

INDEX 303

local, 29–30
message passing versus, 28–31

signal(), 229
Singleton pattern, 191, 192
size(), 74
Sleep locks, 133
sockaddr, 49
Socket API

address family, 37
Connection establishment and

termination, 35
Data transfer mechanisms, 35
limitations of, 37–43
local context management, 35
network addressing, 36
nonportable and nonuniform,

41–43
options management, 36
protocol family, 36
role of, 34

Socket wrapper facades
ACE_Addr, 49–52
ACE_INET_Addr, 49–52
ACE_IPC_SAP, 52–53
ACE_SOCK, 54–55
ACE_SOCK_Acceptor, 64
ACE_SOCK_Connector, 56–60
ACE_SOCK_IO, 60–64
ACE_SOCK_Stream, 60–64
benefits of, 46
overview of, 45–49
relationships between, 47
structure of, 46
using traits for, 57

Sockets, 34
spawn(), 162, 170, 189
spawn_n(), 170, 189
Spawning

of threads, 195
of worker processes, 175, 178
strategies for processes and

threads, 112–114

Spin locks, 132
Stand-alone applications, example

of, 2
Standards, open, 10
static_cast, 176
steal_contents(), 78
Strategic focus, 9
Strategized Locking pattern, 215
Streams framework, 16
string_to_addr(), 52
structtimeval, 127
sync(), 143
Synchronization mechanisms,

130–134
Synchronization wrapper facades

ACE_Condition_Thread_Mutex,
208, 229–230

ACE_Guard, 208–212, 216–217
ACE_Null_Condition, 208,

230–231
ACE_Null_Mutex, 208, 212–217
ACE_Null_Semaphore, 208,

222–229
ACE_Process_Mutex, 208,

212–217
ACE_Process_Semaphore, 208,

222–229
ACE_Read_Guard, 208–212,

219–221
ACE_Recursive_Thread_Mutex,

231–233
ACE_RW_Process_Mutex, 208,

219–221
ACE_RW_Thread_Mutex, 208,

219–221
ACE_Thread_Mutex, 208,

212–217
ACE_Thread_Semaphore, 208,

222–229
ACE_Write_Guard, 208–212,

219–221
overview of, 207–209

304 INDEX

Synchronous event demultiplexing,
125–127

Synchronous event demultiplexing,
wrapper facades

ACE::select(), 141, 151–152
ACE_Handle_Set, 141–147
ACE_Handle_Set_Iterator,

147–151
ACE_Handle_Set, 140
ACE_Handle_Set_Iterator, 140
overview of, 139–141

Synchronous versus asynchronous
message exchange, 26–28

Syntactic variations, 187
System contention scope, 114
System V STREAMS, 73
System V UNIX shared memory, 29

TAO, 264–265
Task, 205
Task framework, 15
Task-based concurrency

architecture, 121
Template method,

Logging_Server::run(), 83
terminate(), 162
TerminateProcess(), 128, 161
TerminateThread(), 129
testcancel(), 189
THR_DETACHED, 190
THR_JOINABLE, 190
thr_kill(), 188
THR_NEW_LWP, 190
THR_SCOPE_PROCESS, 190
THR_SCOPE_SYSTEM, 190
Thread, see also Multithreading

difference between an object and
a, 194

lifetime operations, 129
pool, 106
property operations, 130
spawning of, 195
specific storage, 130

synchronization operations, 129
Thread-per-connection, 106,

191–198
Thread-per-request concurrent

server, 105–106
Thread-Safe Interface pattern, 224,

226
Thread-specific storage (TSS), see

also ACE_TSS, 130
Timed socket operations, 56, 58,

60–62, 65
Timeouts, 62–64, 152
timeval, 127
TlsAlloc(), 130
TlsGetValue(), 130
TlsSetValue(), 130
total_length(), 74, 78
TP4, 24
Traits, 57
Transmission Control Protocol (TCP),

24–26
TSS, see Thread-specific storage
Type errors, 46

UNIX, 34, 35, 161, 163
unmanage(), 162
User Datagram Protocol (IP), 24
User-threading model, 114–115

Virtual methods, 30

wait(), 128, 162, 170, 189, 229
wait_for_multiple_events(), 84,

93, 144–145, 155–156
WaitForMultipleObjects(), 107,

126, 128, 129, 161
WaitForSingleObject(), 128, 129,

161
waitpid(), 128, 161
Wildcard, 51
Win32, 161
working_directory(), 167
wr_ptr(), 74

INDEX 305

Wrapper Facade pattern, 14, 45, 85
hide platform differences,

248–254
hierarchies to enhance clarity

and extensibility, 246–248
optimize for efficiency, 255–257
simplify for common case,

238–246
to enhance type safety, 236–238

write_log_record(), 90–91
write_n(), 76
writev(), 63
WSASend(), 63

XTP, 24

	Foreword
	Chapter 0 Design Challenges, Middleware Solutions, and ACE
	0.1 Challenges of Networked Applications
	0.2 Networked Application Design Dimensions
	0.3 Object-Oriented Middleware Solutions
	0.4 An Overview of the ACE Toolkit
	0.5 Example: A Networked Logging Service
	0.6 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

