7.1.2 ANSWERS TO EXERCISES 963

16. A computation that uses only @ and complementation produces nothing but
affine functions (see exercise 7.1.1-132). Suppose f(z) = f(z1,...,T,) is a non-affine
function computable in minimum memory. Then f(z) has the form g(Ax + ¢) where
g1, Y2, yn) = 9(y1 Ay2,¥y2,...,Yn), for some nonsingular n x n matrix A of Os
and 1s, where x and ¢ are column vectors and the vector operations are performed
modulo 2; in this formula the matrix A and vector ¢ account for all operations xz; +
x; ®xj and/or permutations and complementations of coordinates that occur after the
most recent non-affine operation that was performed. We will exploit the fact that
9(0,0,y3,...,yn) = 9(1,0,y3, ..., Yn)-

Let o and 3 be the first two rows of A; also let a and b be the first two elements
of ¢. Then if Az + ¢ =y (modulo 2) we have y1 = y» = 0 if and only if a - * = a and
B -z =b. Exactly 2" 2 vectors z satisfy this condition, and for all such vectors we
have f(z) = f(z ® w), where Aw = (1,0,...,0)T.

Given a, 3, a, b, and w, with a # (0,...,0), 8 #(0,...,0),a# B,and a-w =1
(modulo 2), there are 22" ~2""7 functions f with the property that f(z) = f(z ® w)
whenever - x mod 2 = a and -z mod 2 = b. Therefore the total number of functions
computable in minimum memory is at most 2" (for affine functions) plus

(Zn _ 1)(2n _ 2)22(2n71)(22"72n_2) < 22"72"_2+3n+1.

17. Let f(z1,...,2n) = g(z1,...,2n-1) ® (A(z1,...,2n—1) A zp) as in 7.1.1-(16).
Representing h in CNF, form the clauses one by one in zp and AND them into z,
obtaining hAx,. Representing g as a sum (mod 2) of conjunctions, form the successive
conjunctions in x¢ and XOR them into x, when ready.

(It appears to be impossible to evaluate all functions inside of n+ 1 registers if we
disallow the non-canalizing operators @ and =. But n + 2 registers clearly do suffice,
even if we restrict ourselves to the single operator A.)

18. As mentioned in answer 14, we should extend the text’s definition of minimum-
memory computation to allow also steps like ;) <= Tk (i) 0i Ti(;), with k(¢) # j(¢) and
(i) # j(i), because that will give better results for certain functions that depend on
only four of the five variables. Then we find C,,, (f) = (0,1,...,13,14) for respectively
(2, 2, 5, 20, 93, 389, 1960, 10459, 47604, 135990, 198092, 123590, 21540, 472, 0) classes
of functions . .. leaving 75,908 classes (and 575,963,136 functions) for which C,(f) = co
because they cannot be evaluated at all in minimum memory. The most interesting
function of that kind is probably

(1'1 A 1‘2) Vv (1‘2 A 1,'3) Vv (1‘3 A 1‘4) Vv (1'4 A 1‘5) Vv (1‘5 A 1'1),

which has C(f) = 7 but Cy,(f) = co. Another interesting case is (((z1 V x2) ® x3) V
((x2VZ4) Axs)) A ((z1 =22) V23V 34), for which C(f) = 8 and C,,(f) = 13. One way
to evaluate that function in eight steps is x¢ = 1 V z2, 7 = z1 V x4, 3 = 2 & w7,
To9 =3 D Te, T1i0 = T4 D Tg, T11 = T5 V T9, T12 = T8 A\ T10, T13 = T11 N\ T12.

19. If not, the left and right subtrees of the root must overlap, since case (i) fails.
Each variable must occur at least once as a leaf, by hypothesis. At least two variables
must occur at least twice as leaves, since case (ii) fails. But we can’t have n + 2 leaves
with 7 < n + 1 internal nodes, unless the subtrees fail to overlap.

20. Now Algorithm L (with ‘f = g ® h’ omitted in step L5) shows that some formulas
must have length 15; and even the footprint method of exercise 11 does no better
than 14. To get truly minimum chains, the 25 special chains for r = 6 in the text must
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be supplemented by five others that can no longer be ruled out, namely

B A ) Bl

1212 1212
1212 1212
and when r = (7, 8,9) we must also consider respectively (653, 12387, 225660) additional
potential chains that are not special cases of the top-down and bottom-up constructions.
Here are the resulting statistics, for comparison with Table 1:

Cu(y) Class Banee w(y) Clas Bne () Claev ane ) Ol T
0 2 10 0 2 10 0 2 10 0 2 10
1 1 48 1 1 48 1 1 48 1 1 48
2 2 256 2 2 256 2 2 256 2 7 684
3 7 940 3 7 940 3 7 940 3 59 17064
4 9 2336 4 9 2336 4 7 2048 4 151 47634
5 24 6464 5 21 6112 5 20 5248 5 2 96
6 30 10616 6 28 9664 6 23 8672 6 0 0
7 61 18984 7 45 15128 7 37 11768 7 0 0
8 45 17680 8 40 14296 8 27 10592 8 0 0
9 37 7882 9 23 8568 9 33 11536 9 0 0

10 4 320 10 28 5920 10 16 5472 10 0 0
11 0 0 11 6 1504 11 30 6304 11 0 0
12 0 0 12 5 576 12 3 960 12 0 0
13 0 0 13 3 144 13 8 1472 13 0 0
14 0 0 14 2 34 14 2 96 14 0 0
15 0 0 15 0 0 15 4 114 15 0 0

The two function classes of depth 5 are represented by S»4(x1,%2,23,24) and z1 ®
Sa(x2, x3, x4); and those two functions, together with Sa(z1, 2,3, z4) and the parity
function Si3(x1,T2,T3,7T4) = T1 O T2 D T3 D T4, have length 15. Also Uc(S2,4) =
U:(S1,3) = 14. The four classes of cost 10 are represented by Si4(z1,z2,23,z4),
52,4(1‘1, T2, T3, 1‘4)7 (1'4? r1DraPrs: (Z‘ll‘zl‘:g)), and [(1‘11}21’31’4)2 € {0, 1, 47 7,10, 13}]
(The third of these, incidentally, is equivalent to (20), “Harvard’s hardest case.”)

21. (The authors stated that their table entries “should be regarded only as the most
economical operators known to the present writers.”) The minimum cost of their
hardest function (20) is still unknown, but David Stevenson has shown that V' (f) < 17:

g = AND(NAND(w, z), NAND(w, Z));
f = OR(AND(NOT(g), NAND(w, Z), NAND(y, 2)),
AND(NOT(NOT(g)),NAND(y, 2), NAND(, 2))).
Although they failed to find this particular construction, the Harvard researchers did
remarkably well, in some cases beating the footprint heuristic by as many as 6 grids!
22. v(z1zoxsraxs) = 3 if and only if v(z1x22324) € {2,3} and v(z1z2232475) is odd.
Similarly, S>(z1, %2, 23,4, x5) = S3(Z1, T2, T3, T4, T5) incorporates Si,2(z1, T2, 23, 24):




