
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138360221
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138360221
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138360221

JOHN RAY

A Beginner’s Guide to Building Immersive Experiences

APPLE
VISION PRO
 CREATORSfor

Apple Vision Pro for Creators:
A Beginner’s Guide to Building Immersive Experiences
John Ray

New Riders
www.peachpit.com
Copyright © 2025 by Pearson Education, Inc. or its affiliates. All Rights Reserved.

New Riders is an imprint of Pearson Education, Inc.
To report errors, please send a note to errata@peachpit.com

Notice of Rights
This publication is protected by copyright, and permission should be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
department, please visit www.pearson.com/permissions.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property
of their respective owners and any references to third party trademarks, logos or other trade dress are for
demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship,
endorsement, authorization, or promotion of Pearson Education, Inc. products by the owners of such marks,
or any relationship between the owner and Pearson Education, Inc., or its affiliates, authors, licensees or
distributors.

Text Figure Credits
1.3-1.54, 2.2, 2.4-2.26, 2.27a-c, 2.28-2.32, 2.34-2.37, 3.1-3.22a-b, 3.23-3.41, 4.1-4.40, 4.43-4.51, 4.53-4.71,
5.1-5.20, 6.1-6.24, 7.1-7.21, 8.1, 8.3, 8.4, 8.6, 9.1-9.24, 9.26-9.30, 10.1-10.11, 11.1, 11.2, 11.5-11.12, 12.1-12.4,
12.6-12.62: Apple Inc

Executive Editor: Laura Norman
Editorial Services: Charlotte Kughen
Associate/Sponsoring Editor: Anshul Sharma
Senior Production Editor: Tracey Croom
Compositor: Bronkella Publishing, LLC
Proofreader: The Wordsmithery LLC
Indexer: Johnna VanHoose Dinse
Cover Design: Chuti Prasertsith
Chapter Opener Illustration: ZinetroN/Shutterstock
Cover Art: AlpakaVideo/Shutterstock and frantic00/Shutterstock
Interior Graphics: tj graham art

ISBN-13:	 978-0-13-836022-1
ISBN-10:	 0-13-836022-7

$PrintCode

http://www.pearson.com/permissions
http://www.peachpit.com
mailto:errata@peachpit.com

This book is dedicated to those who seek new knowledge and try new
things. You are a rare breed, and I’m honored to have you as a reader.

TABLE OF CONTENTS

About the Author. ix
Acknowledgments. x
Introduction . x

CHAPTER 1
Understanding the visionOS Toolkit. . . . 1
Setting Up Xcode. 2

Downloading Xcode 3
Configuring Xcode with Your Apple ID. . 5

Creating a Project. 7
Exploring the Xcode Workspace. 12

Navigators. 13
The Xcode Editor 16
Inspectors . 21
Detecting and Correcting Code

Issues. 23
Debugging Runtime Errors 25
Adding the Apple Vision Pro Platform. . . 27

Previewing and Running Applications
with Xcode . 29
Previewing Your Application 30
Using the Simulator Directly. 35
Running on the Apple Vision Pro. 38

Summary. 41
Go Further. 42

CHAPTER 2
From Traditional Applications to
Spatial Workspaces with SwiftUI 43
Understanding SwiftUI. 44

Comparing HTML and SwiftUI Views. . . 45
Getting to Know Variables and

Structures. 48

Laying Out and Populating a SwiftUI
Interface. 50

Understanding SwiftUI Views and
Modifiers . 52

User Input with Actions, Events, and
Bindings. 53
Actions. 53
Event Modifiers . 55
Bindings. 56
Conditionals and Repetition 58

Simple 3D with SwiftUI. 63
Changing the Z-Axis Offset (or

Making Things Float!). 63
SwiftUI Interface Tools and References. . 66

Finding and Setting Modifiers in
Xcode . 66

SwiftUI References. 69
SwiftUI Interface Tools 70

Hands On: Earth Day Quiz. 71
Creating the Project 72
Adding visionOS Support. 74
Creating the Three Views. 76
User Input Elements. 80
Making It Spatial 84
One More Thing… Animation. 88

Summary. 90
Go Further. 90

CHAPTER 3
Getting Started with Reality
Composer Pro. 91
Introducing Reality Composer Pro. 92

Launching Reality Composer Pro. 93
Touring the Interface. 95
Managing Assets with the Editor. 96

iv   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCESiv  

Building a Scene 99
Adding Particle Emitters. 106

Understanding visionOS Windows. 109
Setting Up WindowGroups. 109
Opening (and Closing) Windows 111
Setting Window Styles. 113
Setting Window Dimensions 114

Displaying and Manipulating 3D
Scenes and Entities with RealityView . . 116
Loading Scenes . 116

Sharing Information Within Your App. . . 118
Global Variables. 119
Environment Objects. 120

Hands-On: A Configurable Snow
Globe. 123
Creating the Project 123
Creating the Snow Globe. 125
Adding a WindowGroup. 129
Adding an Environment Object for

Settings. 131
Creating the ContentView. 132
Creating the GlobeView Content. 135
Fixing the Previews 136
Cleaning Up . 137

Summary. 138
Go Further. 138

CHAPTER 4
Creating and Customizing Models
and Materials. 139
Working with Photogrammetry and

Reality Composer 140
Hands-on: Capturing an Object with

Photogrammetry. 141
Sharing with Reality Composer Pro. . 147

Reprocessing the Model in Reality
Composer Pro. 148

Customizing Scenes with MaterialX,
Shaders, and Node Graphs. 150
Node Graphs . 151
Dissecting the Shader Graph 153
Surface Shaders Versus Geometry

Modifiers . 156
Creating a Custom Shader Graph. 156

Adding a Material. 157
Adding Nodes. 159
Naming the Material. 161
Assigning the Material to an Object. . . 161
Using Inputs for Reusable Materials . . 161

Hands-on: Animated Visibility. 164
Setting Up the Project and Scene. . . . 165
Planning Shader Graph Logic. 166
Creating the Shader Graph. 168
More Exploring. 171

Hands-on: Animated Size with a
Geometry Modifier. 171
Setting Up the Project and Scene. 172
Planning the Geometry Shader

Graph Logic. 173
Creating the Shader Graph. 174
Exploring More. 179

Summary. 180
Go Further. 180

CHAPTER 5
Object Interaction and
Transformation. 181
Understanding Indirect Gestures. 182

Common Gesture Types. 183
Gesture Modifiers 184
Reusable Gestures. 190

﻿ table of contents   v

Preparing Entity Interactions 193
Transforming Objects. 194

Matrices. 195
Multiple Transformations. 198
Simple Property-Based

Transformations 198
Controlling Shaders 200

Loading the Shader. 200
Setting Shader Parameters. 201
Applying the Shader. 202

Adding New Objects. 204
Adding Packaged Entities. 204
Creating New Entities 205

Hands-on: Touchy Volumes. 206
Setting Up the Project. 207
Adding the RealityKit Content

Resources. 209
Loading the Scene and Entities. 212
Adding the Gestures 214
Earth Rotation with Drag 218
Moon Rotation with Drag. 220
RealityView Rotation with Drag. 221
Moon Magnification. 222
Long Press to Add Planets 224

Summary. 228
Go Further. 228

CHAPTER 6
Spaces, Direct Gestures, and a
Touch of Physics. 229
Immersive Spaces. 230

Types of Immersive Spaces. 230
Development Differences. 231
Creating Immersive Projects. 232
Defining the Immersive Space Type . . . 233
Understanding Content and

Immersive Views 235
Cleaning Up the Template. 236

The ECS Paradigm. 238
Entities . 239
Components. 239
Systems . 240
ECS and Reality Composer Pro. 241

Direct Gestures . 242
Physics. 244

Adding the Physics Body Component
in Code . 244

Putting It All Together 246
Adding the Physics Body Component

in Reality Composer Pro 246
One More Component: Opacity. 252

Hands-on: Immersive Bubbles. 253
Project Description 253
Setting up the Project. 253
Setting Up the Immersive Space

and Entities. 255
Adding the Gestures 258

Summary. 260
Go Further. 260

CHAPTER 7
Anchors and Planes 261
Anchors. 262

Getting to Know Targets and Types
of Anchors. 263

Creating an Anchor. 263
Adding and Using Anchor Entities. . . . 267
Working with Anchors and Reality

Composer Pro. 268
Video Materials . 269

Importing AVKit. 269
Creating a Video Material 270

Hands-On: Anchor Playground 271
Setting Up the Project. 271
Adding Model Resources. 272
Adding a Video File and AVKit 273
Coding the Anchor Entities. 274
Adding Entities to Anchor Entities 275
Adding Anchor Entities to the

RealityView. 276
Rotating the Movie Clapper. 276
Rotating and Offsetting the Sphere. . 277
Looping the Video Material. 277

Plane Detection via ARKit. 278
ARKit. 279
Requesting Permissions 279

vi   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

Creating an ARKit Data Provider
Class . 282

Planes, Spatial Taps, and Gaze. 285
Hands-On: Plane Detection 285

Setting Up the Project. 286
Creating the Reality Composer Pro

Assets. 287
Coding the Plane Detector Class 288
Adding the planeLabel to

ContentView. 295
Implementing Spatial Taps in

ImmersiveView. 295
Summary. 299

Go Further. 300

CHAPTER 8
Reconstructing Reality. 301
Hand-Tracking. 302

ARKit’s HandAnchor. 303
Hands-On: Creating a Hand Tracker

Class. 305
Setting Up the Project. 306
Adding the HandTracker Class 306
Adding Model Entities. 309

Scene Reconstruction. 310
ARKit MeshAnchors. 310
Generating Collision Shapes. 311
Occlusion. 311

Hands-On: Creating a Scene
Reconstructor Class 312
Setting Up the Project. 313
Adding the SceneReconstructor

Class . 313
Visualizing the Results. 317

Hands-On: Reconstruction 318
Setting Up the Project. 319
Adding the HandTracker and

SceneReconstructor Classes. 319
Generating Random Objects. 320
Initializing the Data Providers. 322
Defining the Hand Objects. 323
Managing the User-Added Objects. . . 325
Adding the Scene Reconstruction

Shapes . 325

Creating Random Objects with the
Tap Gesture. 325

Dragging Objects 327
Cleaning Up . 329

Summary. 329
Go Further. 330

CHAPTER 9
Lights, Sounds, and Skyboxes 331
Lighting . 332

Adding Image-Based Lighting 334
Lights and Reality Composer Pro. . . . 336
Adding Grounding Shadows. 338

Hands-On: Hand-Lit Objects 338
Project Setup . 339
Adding the Random Object Code. . . 339
Setting Up the Image-Based Light

Entity . 340
Generating an Object Field. 341

Playing Sounds. 342
Adding Audio Resources. 343
Playing Ambient Audio. 343
Playing Spatial Audio 344
Looping and Other Settings. 345
Controlling Playback. 346
Audio and Reality Composer Pro. . . . 347

Hands-On: Sounds Good. 350
Project Setup . 351
Building the Reality Composer

Scene. 352
Adding the Pop Sound 354
Generating An(other) Object Field. . . 354
Preparing the DrumKit and

Tambourine for Playback 355
Adding the Gestures 357
Cleaning Up. 358

Building a Skybox 359
Skybox Images. 359
Adding Texture Assets. 360
Coding the Skybox. 362
(Mini) Hands-On: SkyBox It 363

Summary. 365
Go Further. 365

table of contents  vii

CHAPTER 10
Components, Systems, and the
Kitchen Sink. 367
Components and Systems. 369

Components. 369
Systems . 373

Collisions. 376
Singletons. 378

Creating a Singleton Class. 378
Accessing a Singleton Class. 379

The Kitchen Sink. 380
Physics Forces. 380
Relative Scale. 382
Absolute Values 382
String Comparisons. 383

Hands-On: Spatial Special 383
Project Description 384
Project Setup . 386
Creating the Components 388
Creating the ScoreKeeper

Singleton. 395
Initializing the Variables 396
Registering the Components and

Systems. 397
Initializing the Singleton 397
Setting Up a Hand Anchor. 398
Adding and Anchoring the Head

Sphere. 398
Loading the Models. 399
Generating the Asteroid Belt. 401
Creating the Ship’s Weapon 403
Handling Ship-Asteroid Collisions. . . . 405
Handling Spaceship–Space Station

Collisions. 409
Handling Shot-Asteroid Collisions. . . . 409
Cleaning Up the Immersive Space. . . 412
Adding the Score Screen 412

Summary. 414
Go Further. 414

Index . 415

ONLINE-ONLY
 (www.peachpit.com/visionpro)

CHAPTER 11
Thoughtful Design

CHAPTER 12
Sharing Your Creations

APPENDIX A
Introducing Swift

APPENDIX B
Chapter Q&A

APPENDIX C
Rebuilding Reality Composer Object
Capture Materials

APPENDIX D
Hands-On Activities

viii   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

ABOUT THE AUTHOR
John Ray is a lifelong Apple enthusiast and developer. He created a handwriting recognition
engine at 15, published his first commercial application at 16, and continues contributing to
development projects today. Over the past 25 years, John has written books on macOS, iOS,
and iPadOS development, Linux, web development, networking, and computer security. He
currently serves as the Senior Director of the Office of Research Information Systems at The
Ohio State University. When John isn’t writing, editing, or directing he is either re-creating a
marine disaster in his living room or over-engineering apps and embedded systems for home
automation and device integration.

ACKNOWLEDGMENTS
Many thanks to the Pearson team that made this book possible—Anshul Sharma, Charlotte
Kughen, Laura Norman, Anne Groves, and everyone else behind the scenes. Writing is much
more work than putting words on a page (that’s the easy part!). Keeping me on track, making
sense of my gibberish, and making sure that what I’ve written actually works is hard. Trust
me, I’ve met myself.

INTRODUCTION
Welcome to Apple Vision Pro for Creators, a guide for learning how to create spatial com-
puting experiences on the Apple Vision Pro. If you’re reading this book, you probably have
an idea of what Apple’s headset is, but you might not fully appreciate how it fits in with the
dozens of virtual reality headsets, augmented reality glasses, and other “tools of the future”
that you can buy on the Internet. What advantage does a $3500 headset offer over a $150 pair
of glasses or competitors’ high-end gear like the Microsoft HoloLens?

To answer the question, we must first take a trip through the industry jargon that has sprung
up as companies struggle to find some way not to use the words virtual reality or augmented
reality with their products.

WHAT ARE VIRTUAL REALITY AND AUGMENTED REALITY?
These terms describe interactions with objects that do not exist in the real world—also
known as physical reality. Virtual reality is typically a “replacement” for physical reality:
computer generated environments where you can move and interact with items that
aren’t present. In virtual reality, the laws of physics (and nature itself) can be altered
to present the user with otherwise impossible experiences, like flying, visiting distant
planets, or just touring faraway and inaccessible places.

Augmented reality is a bit different in that it allows virtual objects and information to
be mixed with physical objects. Users can interact with both physical reality and virtual
reality at the same time. Augmented reality has been around in different forms for
quite some time. Viewfinders on cameras that display lighting conditions, distances,
and shutter speed are an example of augmented reality that we take for granted. Cars
with heads-up windshield displays are another example where we can see physical
reality (the road, signs, and so on) combined with virtual reality (gauges, navigation
prompts, and more).

THE JARGON
When virtual reality headsets, such as the Oculus Rift DK1, initially started shipping to
consumers, those of us lucky enough to obtain and develop on these devices were given a
very limited set of tools. You essentially had two screens sitting on someone’s face—the basic
requirements for stereoscopic vision—and very little else. The way you interacted with the
system varied by application, and there was rarely consistency in how you did anything.

It’s been over a decade since these consumer headsets first appeared, and while some things
have improved, many have stayed the same. There is some semblance of interface consistency

on popular platforms like the Oculus Quest family, but developers are still forcing users to
shift their expectations of how to work and play in three dimensions as they move between
applications.

Over time, virtual reality headsets added external cameras for tracking and understanding a
user’s environment (some even adding quite awful “pass-thru” video to mingle the real world
with virtual reality). Marketing departments were delighted to create new terms for each
minor tweak introduced–hybrid reality, mixed reality, and extended reality, for example—
despite no real changes from a user standpoint.

Products like Microsoft HoloLens, Google Glass, and Magic Lens have moved the state-of-
the-art forward with augmented reality, but each have serious limitations in what they can
display and how well it “mixes” with physical reality. Microsoft’s HoloLens has a very limited
area where virtual objects can be displayed; turn or tilt your head and they’re gone. Google
Glasses, on the other hand, are more like information overlays. Yes, you can see informa-
tion projected into your view of the physical world, but they lack the ability to create virtual
objects or immersive environments.

Recent consumer products like the XReal Air AR glasses do little more than place a flat 2D
screen in front of the user. It’s a relatively low-res, jittery, and poorly anchored monitor that
all but obscures the physical world anyway, but hey, it’s floating in front of you!

To call this industry and the state of AR/VR solutions “chaotic” is charitable. There are doz-
ens of devices, each making different claims, each offering different interactivity, and each
with a complete lack of consistency in experience. This confusion is frustrating for consum-
ers and developers, and—in my opinion—it has led to a market where technology terms are
thrown around with little regard to customer expectations.

THE APPLE APPROACH
Apple has entered the world of AR and VR explosively and (strangely) extremely cautiously.
Rather than leaning on the various marketing terms that have been watered-down to almost
no meaning, Apple is embracing the concept of spatial computing. Spatial computing, a term
coined in the early 2000s, describes the convergence of the physical and virtual worlds. In
spatial computing, there is an expectation that the headset understands the user’s environ-
ment—what objects are in it, their sizes, what portions of a user’s view (or other objects) are
obstructed, and so on. This information is collected through myriad sensors and used to
blend the physical with virtual in a way that feels natural, accounting for elements such as
lighting and shadows to seamlessly meld the real and virtual.

INTRODUCTION  xi

Apple has also purposefully leaned into the computing portion of spatial computing, enabling
the platform to run hundreds of thousands of apps at launch, while presenting a consistent
user experience throughout. Other devices focus on games or niche use cases; the “vision”
of the Apple Vision Pro is to create an all-in-one computer that you can use for productivity,
entertainment, and gaming. It just happens to reside on your head, rather than your desktop.

What about the price? A $3500 price tag isn’t far from a traditional high-end computer setup.
My first personal “large” computer purchase was a G4 Cube with an Apple Cinema Display,
which cost similar to two Apple Vision Pros. Apple isn’t pinning the future of the Vision Pro
on a $3500 device; they’re offering it as an entry point into a new Apple platform that will
expand in the coming years with cheaper, and also probably more expensive, options. This is
a long-term effort, not a declaration that a single device is the pinnacle of spatial computing.
This book, while specific to the Apple Vision Pro, is more about building a foundation in
creating applications and experiences for the underlying operating system: visionOS. Today
visionOS powers only the Vision Pro, shown in FIGURE I.1. Tomorrow? Who knows?

FIGURE I.1  The Apple Vision Pro

NOTE  Yes, Apple itself has a tremendous marketing machine and has been known to use industry jargon and
magical words in its product descriptions. The original name for visionOS was xrOS (something you may still
see in Xcode and visionOS documentation.) XR is the abbreviation for “extended reality,” so it’s clear Apple was
originally going to adopt one of the same terms as its competitors.

xii   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCESxii  

THE DEVICE
So, what is the Apple Vision Pro? Augmented reality headsets (such as HoloLens) use
advanced transparent optics to create lenses that work like glasses, but with the ability to
project virtual objects that overlap and obscure the real world. Apple has done something
different.

Instead of combining the physical with the virtual through optical means, Apple has gone the
route of pure virtual reality. What?! How is that possible if you can see and interact with the
real world? The answer is extremely high-quality pass-thru video. You aren’t seeing through
the device; instead, you’re looking at tiny screens that are mirroring the real world to your
eyes. With 23 million pixels representing the world, Apple is betting that users of the Vision
Pro will not even notice that they’re looking at a screen.

Taking the illusion to another level, the Vision Pro has a front-facing 3D lenticular display
that projects a rendering of your eyes to the outside of the device, making it appear transpar-
ent to those observing the wearer. This feature, dubbed EyeSight, provides greater engage-
ment with the physical world and helps eliminate the isolation of wearing a headset that
completely covers the eyes. The outcome is a product that appears to be a pair of transparent
goggles, but in reality, they completely obscure the user’s vision. It remains to be seen if this
is the long-term approach for the visionOS platform, but as an initial product, it is a truly a
unique approach to achieving the best of VR and AR worlds.

The Apple Vision Pro uses a total of 12 cameras on the inside and outside of the device for eye
tracking, pass-thru video, and hand and world tracking. Speaking of which, the headset lacks
dedicated controllers; the user experience relies entirely on eye-tracking, hand tracking, and
gestures. This includes individual finger tracking—no giant motions or full-hand movements
needed. Cameras also authenticate you to the device using eye-scanning to identify the owner
of the headset.

To mix the physical and virtual, the headset includes a LiDAR sensor that measures depth by
reading the time it takes for light emitted by a laser to be reflected. This can instantly create a
mesh (a digital representation of physical surfaces using polygons) of the user’s environment,
as shown in FIGURE I.2. The device also uses six microphones to map how audio interacts with
the objects in the environment. The result is that virtual objects can be appropriately lit in
the environment, generate shadows, and be hidden by (or hide) physical objects in the room
(this is known as occlusion). If the object generates audio, the sound generated considers the
different surfaces in the environment to create a spatial audio experience that feels natural
and mixes perfectly with the physical world.

INTRODUCTION  xiii

FIGURE I.2  A partial mesh of my living room loveseat (with blankets), captured by an iPhone 15 Pro LiDAR
sensor

NOTE  When setting up the Apple Vision Pro, you can scan your ears so that your individual ear shape is consid-
ered by the device’s audio engine. Talk about thorough!

There is even more on the feature list, such as foveated rendering (using eye position to deter-
mine a user’s point of interest to focus rendering power in that area), high-end Apple Silicon
Processors (the R1 and M2), OLED and MicroLED technology, and on and on. Apple has
packed a tremendous amount of tech into a small wearable package.

THE SOFTWARE
The raw hardware of the Apple Vision Pro is a dream for many developers, but having to deal
with the dozens of sensors and cameras would be a nightmare by any measure. In typical
Apple fashion, they’ve leveraged years of augmented reality work on the iPhone and iPad, as
well as their macOS and iOS operating system experience, to create a new operating system,
vision OS, that makes both using and developing for the device accessible by anyone with an
interest and an ounce of motivation

Using visionOS, you gain access to all the features of the Apple Vision Pro without needing to
delve into the complexities that make it work. If you want to display an object in your envi-
ronment, you load the object and display it. Want to interact with the object? Attach a gesture
and interact away. In Chapter 1, “Understanding the visionOS Toolkit,” you’ll begin by learn-
ing the Xcode development environment and a touch of the Swift programming language. By
the end of Chapter 2, “From Traditional Applications to Spatial Workspaces with SwiftUI,”
you will have written an interactive app that displays a three-dimensional model.

xiv   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

The specific software and digital technologies that this book focuses on include

•	 Xcode: The platform for Apple development. Whether you’re creating for a Mac or a
Vision Pro, you’ll be spending most of your time building your projects in Xcode.

•	 Swift: Apple’s programming language for the entire Apple ecosystem. It isn’t a stretch
to say that once you know how to develop for the Apple Vision Pro, you can develop for
any Apple device.

•	 SwiftUI: A Swift extension for defining user interfaces in code. Similar in some
respects to HTML, SwiftUI enables you to quickly define controls, windows, and other
objects for user interaction regardless of whether you’re creating for iOS, iPadOS, tvOS,
macOS, or visionOS.

•	 Simulator: The Simulator application lets you test your creations on your Mac without
needing a headset (or an iPhone, iPad, and so on). You use the Simulator to build and
test your apps and then fine-tune them on a physical device.

•	 RealityKit: This framework is the workhorse behind the capabilities of the Apple
Vision Pro. It offers 3D rendering capabilities but does so with augmented reality at the
forefront. It makes use of Apple’s existing augmented framework (ARKit) and builds
upon it with gestures and other means of interaction.

NOTE  A framework is a collection of related functions that developers can use for a specific purpose. Apple
platforms have frameworks for audio, web interactions, and, in the case of the Apple Vision Pro, augmented
and virtual reality.

•	 Windows, volumes, and spaces: These three components make up the different
scenarios you can create with visionOS. Windows are simply 2D application windows—
nothing terribly special. Volumes are three-dimensional virtual objects added to the
environment. Spaces, on the other hand, are entire 3D scenes that can (but don’t have
to) replace the physical reality entirely.

•	 USD files: Universal Scene Description files are used extensively in this book and in
your projects. This file format, created by Pixar, provides a means of describing objects,
materials, and even animations. Apple has standardized on these files for 3D develop-
ment on its platforms. You’ll most frequently encounter USDA (USD ASCII) and USDZ
(USD zipped) files in the wild.

•	 Reality Composer Pro: An application for building 3D scenes in a point-and-click
manner. This can be a great starting point for many projects, and you can even visualize
your scenes directly on the Vision Pro without writing any code.

INTRODUCTION  xv

•	 Object Capture: An application and a collection of technologies that use photos of real-
world objects to construct a virtual facsimile that you can use in your creations.

•	 Materials: A digital representation of the composition of an object, such as rubber,
metal, glass, denim, fuzz, and so on.

•	 Shaders: A description, usually based on mathematical algorithms, of how light inter-
acts with the surface of an object. Imagine an object with ridges in the surface. It would
be nightmarish to create all your 3D objects with tiny ridges on their surface. A “ridge”
shader might create this effect automatically so that it can be applied to any object
you’d like.

•	 Spatial Audio: Audio that can be positioned in three dimensions that tracks your posi-
tion and movement. Spatial audio gives the user the ability to move around different
virtual audio sources and realistically changes the audio to match.

•	 Scene reconstruction: The Vision Pro enables the user to see their environment as if
they were looking through glasses. Scene reconstruction takes that environment and
recreates it digitally so that virtual objects can interact naturally with the real world.

This sounds like a lot, doesn’t it? It is (and there’s more), but it’s something that you (yes,
you!) can do without spending the next few years reading and watching development
tutorials.

THE EXPECTATIONS
For you to get the most out of this book, we need to agree on what you can expect. First,
you need the motivation to read chapters from start to finish. Concepts are introduced and
reinforced through hands-on exercises. If you don’t practice (even the simple stuff), you’ll
find it difficult to see how the different components work together. You do not need to be a
developer, but you shouldn’t be afraid of having to type a few lines of code to make a project
work. Most importantly (life lesson time), this should be a topic that excites you. If it isn’t,
find something that does and do that instead! Watching my first projects come to life made
me giddy, and I hope they do the same for you.

You don’t have to do difficult math or geometry, but you should understand the difference
between 2D and 3D and how coordinates are defined in three dimensions—(x, y, and z), as
shown in FIGURE I.3. When wearing the Apple Vision Pro, the x-axis gives us positioning to
the left and right and the y-axis up and down. The z-axis (the third dimension) moves objects
toward and away from you. I cover these topics in more detail throughout the book, but if
this makes sense to you, you’re good to go! If you’d like a nice introduction to 3D concepts,

xvi   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

Adobe has published an excellent tutorial at https://blog.adobe.com/en/publish/2020/11/09/
start-3d-an-introduction-to-key-3d-concepts.

Y (up)

X (Right)X (Left)

Y (Down)

Z (Toward)

Z (Away)

FIGURE I.3  The three axes (x, y, and z) used to define 3D positions

Regardless of your skill-level, you need at least one thing to be a successful creator: an Apple
Silicon Mac. Xcode is only available on macOS, and Vision Pro development requires an M1
or later processor. It would be beneficial if you had access to a headset for testing, but this
isn’t required to get started. Additionally, I cover tools for the iPhone and iPad in Chapter
4, “Creating and Customizing Models and Materials,” that can help with your development
workflow. These devices aren’t necessary to be successful, but they can help supplement the
tools available on macOS.

THE PHILOSOPHY
I have spent more than three decades developing for platforms big and small, esoteric and
mainstream. In recent years, I’ve noticed a trend of development being turned into a mun-
dane engineering exercise. Web development, which was once something that many peo-
ple enjoyed as a hobby, has become so convoluted that even small websites take months to
design, debug, secure, and make accessible. Experimentation and exploration are gone—
replaced with strict rules and rigidity.

Development, like art, can be a platform for self-expression and creativity. There will always
be business to conduct and boring code to write, but shouldn’t there be time to just play? I
think so.

INTRODUCTION  xvii

https://blog.adobe.com/en/publish/2020/11/09/start-3d-an-introduction-to-key-3d-concepts
https://blog.adobe.com/en/publish/2020/11/09/start-3d-an-introduction-to-key-3d-concepts

I’ve been thinking recently about a discussion where a peer mused “imagine what amazing
creations we’d have if developers weren’t obsessed with creating the perfect unimpeach-
able code.” This cuts the crux of the problem. We’ve been trained that perfect code is more
important than anything else, even if it affects the user experience, makes development
tedious, and maintenance problematic.

My philosophy is to make things that work but to give developers the leeway to “color outside
the lines”. I encourage you to progress through this book looking at the techniques being pre-
sented and thinking about how you might use them for your projects. Take the examples and
change them, substitute your own files and controls in place of what I present. If you think
something can be done differently or better, do it!

You’re in possession of the tools to bring new worlds to life. If that doesn’t sound like an
opportunity for fun, I don’t know what does!

Let’s play!

NOTE  Project files and corrections for this book are available at https://visionproforcreators.com/ and www.
peachpit.com/visionpro. I prompt you to download each chapter’s files before you get started. Be aware that
visionOS is in active development and Apple is tweaking their tools constantly, so some figures and files may
have changed before you read this.

If you have questions, you can get in touch with me through the visionproforcreators.com site or via Mastodon
at @johnemeryray@wisdomhole.com.

xviii   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

https://visionproforcreators.com/
http://www.peachpit.com/visionpro
http://www.peachpit.com/visionpro
http://visionproforcreators.com
mailto:@johnemeryray@wisdomhole.com

CHAPTER 8

Reconstructing Reality
When I started this book, I had a plan for where I wanted it to go and what I
wanted to cover. There have been some issues that have cropped up (like a
Simulator that isn’t quite capable of fully simulating the Vision Pro), and even
some code that just doesn’t quite match with the developer documentation.
Nonetheless, I have persevered, and you are now in the home stretch! I’m
pleased to say that with the technologies covered in this chapter, you’ll have a
leg up on many of the other visionOS developers I’ve chatted with.

You’re going to be using the data provider pattern established in Chapter 7,
“Anchors and Planes,” with additional data providers to bring more of the real
world into your applications. In the Plane Detection hands-on, you may have
noticed that the planes weren’t quite as precise as you might hope, and objects
placed in your scenes are still visible even if you walk into a different room. This
chapter is going to solve those problems using the computing horsepower of the
Apple Vision Pro.

301

This chapter focuses on three useful topics:

•	 Hand-tracking: In Chapter 7, you used a hand AnchorEntity to attach objects to your
left and right hands. Using the full ARKit hand-tracking provider, however, you can
(and will) monitor each finger joint.

•	 Scene reconstruction: See the world around you? When wearing your Vision Pro, you
can literally see whatever is in your environment thanks to the high-resolution displays.
However, that world is just an image. Yes, you can use a plane detector to find walls and
tabletops, but with scene reconstruction, you can represent all the nooks and crannies
as well.

•	 Occlusion: Occlusion means to hide or block, and it’s something you experience in real-
ity all the time. Walls hide the outdoors, closets hide your clothes, and basements hide
unspeakable terrors. With the tools you’ve used up to this point, nothing hides your vir-
tual objects (except other virtual objects). Using occlusion magic, you can make objects
in the real world cover virtual objects to deliver much more immersive experiences.

Once again, what you’re working on is going to require a real Apple Vision Pro. The simulator
just can’t provide the sensor access needed.

NOTE  Be sure to head to https://visionproforcreators.com/files/ or www.peachpit.com/visionpro and down-
load the Chapter 8 project files.

HAND-TRACKING
Most VR and pseudo-AR headsets require the use of handheld controllers that present them-
selves as “hands” within your view. This is generally fine for gaming, but it doesn’t take long
before your brain registers the disconnect between what you’re seeing on the screen versus
what your hands are really doing. The Apple Vision Pro is designed to use your hands as its
controllers, and it does so with almost alarming accuracy.

The hand-tracking you used in the last chapter is fun and can certainly create some inter-
esting effects, but it has very little flexibility in terms of interactions. Wouldn’t you like to
interact directly with objects with more than just a fingertip and a thumb? A hand-targeted
AnchorEntity is easy to use, but by employing ARKit with a HandTrackingProvider (https://
developer.apple.com/documentation/arkit/handtrackingprovider), you can track up to 27
different joints per hand.

302   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

https://visionproforcreators.com/files/
http://www.peachpit.com/visionpro
https://developer.apple.com/documentation/arkit/handtrackingprovider
https://developer.apple.com/documentation/arkit/handtrackingprovider

Hand-tracking works in the same way as the PlaneDataDetector:

1.	 You create an ARKit session with ARKitSession().

2.	 A data provider is created. For hand-tracking this is done with HandTrackingProvider().

3.	 The ARKit session is run with the tracking provider.

4.	 Updates arrive containing a HandAnchor.

5.	 You process the updates however you want!

Hands are different than planes and so is the data that hand anchors provide. Let’s take a look
at ARKit’s HandAnchor and what information it contains.

ARKit’s HandAnchor
An ARKit hand anchor tracks a hand’s position in 3D space and provides three useful proper-
ties you’ll access in your upcoming code:

•	 .originFromAnchorTransform: The location and orientation of the base of the hand in
world space.

•	 .chirality: The “handedness” of the update. In other words, the .right or .left hand.

•	 .hand: Access to the individual joints in the hand, along with the location of each joint
in relation to the base of the hand.

Of these, I’d like to believe that your interest gravitates toward handSkeleton—because who
doesn’t like a skeleton? Read more about HandAnchors at https://developer.apple.com/
documentation/arkit/handanchor.

Hand Skeletons and Joints
The .handSkeleton property is an instance of a HandSkeleton data structure. Within the skele-
ton is a collection of joints, with associated names and transformations.

That, unfortunately, is about all the information Apple makes easily available. You can get
a list of all the available hand joints at https://developer.apple.com/documentation/arkit/
handskeleton/jointname, but the names of the joints don’t necessarily make that much sense
(what is the intermediate tip of a finger?!).

For a better sense of where the different joints are located, you can turn to a developer video
where Apple displays a few frames with a diagram of hand and joint locations: https://devel-
oper.apple.com/videos/play/wwdc2023/10082/?time=935.

Assuming you aren’t interested in playing a video as reference material, I’ve provided a screen
capture in FIGURE 8.1. This figure, however, includes the word “hand” in front of each joint,
which has been removed from the actual data structure since the video was created.

Chapter 8  Reconstructing Reality   303

https://developer.apple.com/documentation/arkit/handanchor
https://developer.apple.com/documentation/arkit/handanchor
https://developer.apple.com/documentation/arkit/handskeleton/jointname
https://developer.apple.com/documentation/arkit/handskeleton/jointname
https://devel-oper.apple.com/videos/play/wwdc2023/10082/?time=935
https://devel-oper.apple.com/videos/play/wwdc2023/10082/?time=935

FIGURE 8.1  The joint locations on a hand— just ignore the “hand” prefix to each joint name

Accessing Individual Joint Locations
To access the current location and orientation (the transform matrix) of an individual joint
within a hand anchor, you use this syntax:

<joint transform matrix> = <anchor>.handSkeleton?.

 joint(<joint name>).anchorFromJointTransform

The transformation matrix you can get from a joint is relative to the base of the hand, so you
can’t use it directly. Instead, you must multiply it by the transformation matrix of the base in
world space. That value is provided by anchor.originFromAnchorTransform:

<world transform matrix of joint> = <joint transform matrix> *

 <anchor>.anchorFromJointTransform

The world transform of the joint can subsequently be used to set the position of an entity. This
enables you to create an entity that behaves like an AnchorEntity for every single joint on each
hand.

Working with All Joints
When I first started coding the project in this chapter, I began by explicitly referring to indi-
vidual joints and tracking just a few. After explicitly listing out about a dozen of the joints, I
decided that rather than manually coding up a few joints, why not track them all?

To access a collection of all the joints in a HandSkeleton, you use the class property Joint-
Name.allCases:

HandSkeleton.JointName.allCases

From there, you can iterate over each joint with a loop like this:

304   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

for joint in HandSkeleton.JointName.allCases {

 if let fingerJoint = anchor.handSkeleton?.joint(joint) {

 // Do something useful with the fingerJoint here.

 }

}

That’s everything you need to create a tracking class. You’ll be doing this as a hands-on proj-
ect in a way that is slightly different from past projects. Your primary goal in this hands-on
is to create a new HandTracker.swift class, not to build any fancy interfaces or experiences.
Nonetheless, you’ll want to create that class within a Mixed Immersive Space project, making
it much easier to test the code.

HANDS-ON: CREATING A HAND TRACKER CLASS
One of the difficulties of being this far into the development process is that you’re not going
to encounter many cases where a line or two of code does something useful. Instead, you
need to use established coding patterns that all developers use. There are three projects in
this chapter, and each fits this category. Don’t feel bad about not writing all the code yourself
because no one else did either!

This project establishes a Hand Tracker class that can be used for tracking all the joints in
both hands. The class publishes two variables: rightHandParts and leftHandParts. Each is a
collection using the joint name as the key and an Entity as the value. The Entity is positioned
according to the relevant HandAnchor and can be used to hold whatever you want.

To verify that it all works, in ImmersiveView.swift, you attach a ModelEntity to each joint in
the hand skeleton, as shown in FIGURE 8.2. There isn’t going to be much hand-holding here
(unintentional pun!), because you’ve been through these processes several times.

FIGURE 8.2  The output: a bunch of clown noses attached to the joints of your hand

Chapter 8  Reconstructing Reality   305

Setting Up the Project
Create a new Mixed Immersive project in Xcode named Hand Skeleton. Once open in
Xcode, complete the usual steps to get the project ready for coding:

1.	 [Optional] Update the ContentView.swift file to include an introduction and the <App
Name>App.swift file to size the content appropriately.

2.	 Remove the extra sample code from the ImmersiveView.swift file. Make sure the Reali-
tyView is empty.

3.	 This project (obviously) uses hand-tracking capabilities, the project’s Info.plist file
(“Info” within the Project Navigator) to include the key NSHandsTrackingUsageDescrip-
tion, and a string prompt to ask for permission.

NOTE  If any of this sounds unfamiliar, please revisit Chapters 6 and 7 to learn more about Immersive Spaces,
Data Providers, and the accompanying project setup.

Adding the HandTracker Class
Select the Hand Skeleton folder in the Xcode Project Navigator. Choose File, New, File from
the Xcode menu. When prompted for the template to use, select visionOS, Swift File, and
click Next. Name the new file HandTracker and save it to the folder with your project’s other
swift files. Also, be sure that the Group and Target settings remain on their default values.

Rather than adding bits and pieces of code to the class file, it makes the most sense to enter
the entire contents of the file and then review it. As you already know, this is going to be very
similar to the Chapter 7 PlaneDetector class. Replace the contents of the HandTracker.swift
file with the code in LISTING 8.1.

If you don’t feel like typing this yourself, use the HandTracker.swift file included with the
Chapter 8 project archive. It’s much shorter than it looks. The wrapping of the book text
makes it appear more unwieldy than it is.

LISTING 8.1  Tracking Each Joint in Each Hand

import ARKit

import RealityKit

	

@MainActor class HandTracker: ObservableObject {

 private let session = ARKitSession()

 private let handData = HandTrackingProvider()

 @Published var leftHandParts: [HandSkeleton.JointName:Entity] = [:]

 @Published var rightHandParts: [HandSkeleton.JointName:Entity] = [:]

306   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

 func startHandTracking() async {

 print("Starting Tracking")

 for joint in HandSkeleton.JointName.allCases {

 rightHandParts[joint] = Entity()

 leftHandParts[joint] = Entity()

 }

 try! await session.run([handData])

 if HandTrackingProvider.isSupported {

 for await update in handData.anchorUpdates {

 switch update.event {

 case .added, .updated:

 updateHand(update.anchor)

 case .removed:

 continue

 }

 }

 }

 }

 func updateHand(_ anchor: HandAnchor) {

 for joint in HandSkeleton.JointName.allCases {

 if let fingerJointTransform = anchor.handSkeleton?

 .joint(joint).anchorFromJointTransform {

 let worldspaceFingerTransform =

 anchor.originFromAnchorTransform * fingerJointTransform

 if anchor.chirality == .right { rightHandParts[joint]!.

 setTransformMatrix(worldspaceFingerTransform,

 relativeTo: nil)

 } else {

 leftHandParts[joint]!.

 setTransformMatrix(worldspaceFingerTransform,

 relativeTo: nil)

 }

 }

 }

 }

}

The class file starts by importing ARKit and RealityKit, the two frameworks needed for this
code to work.

Chapter 8  Reconstructing Reality   307

An ARKit session is defined (session), as well as an instance of the HandTrackingProvider
(handData). Next, the leftHandParts and rightHandParts collections are defined. Each con-
sists of key/value pairs where the key is a joint name (HandSkeleton.JointName) and the value
is an Entity. These include the @Published wrapper because they’ll be accessed directly in
your application views.

The startHandTracking function begins by looping over the full list of joint names:

for joint in HandSkeleton.JointName.allCases {

 rightHandParts[joint] = Entity()

 leftHandParts[joint] = Entity()

}

With Plane Detector project, you added planes to an Entity as visionOS detected them.
It would be impossible to “use” a plane before it was detected. With the joints in a hand,
however, you already know all the possible joints. You code could be much simpler if you can
access any joint at any time, regardless of whether it’s currently detected by the sensors. To
that end, you use this loop to initialize each joint in the rightHandParts and leftHandParts
collections to an empty Entity. Now you can access the joints in other code without issue,
even if they happen to be momentarily hidden.

NOTE  My experience with the HandTrackingProvider has been that it sometimes temporarily loses joints if you
move your hands to extreme locations outside the range of the cameras, but they are very quickly reestab-
lished as soon as the Vision Pro can see your hands again.

Finally, the ARKit session is started with the handData data provider. If the application has
been granted hand-tracking permission (HandTrackingProvider.isSupported), a loop begins
that waits for hand anchor updates (handAnchor.anchorUpdates). When an update with the
event type added or updated is received, the switch statement calls handUpdate. If the update
is of the type removed, nothing happens. The joint is left as-is until it is redetected.

The updateHand function accepts an incoming HandAnchor in the anchor variable. It loops
through all the names of the joints in a hand skeleton (HandSkeleton.JointName.all-
Cases), setting a joint variable to each name as the loop runs. Each joint’s location (anchor.
handSkeleton?.joint(joint).anchorFromJointTransform) is multiplied by the hand anchor’s
transform matrix in world space (anchor.originFromAnchorTransform), giving us a final trans-
form matrix worldspaceFingerTransform that can be used to position an entity.

As the final step, the chirality is tested and is used to set either the leftHandParts or
rightHandParts collection’s entity transform matrix to the worldspaceFingerTransform.

The finished HandTracker class is capable of tracking every single joint available through
visionOS and can be used much like an AnchorEntity. You’ll do that now.

308   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

Adding Model Entities
Open the ImmersiveView.swift file in Xcode. Add an import statement for ARKit after the
existing imports. This is required to access all the HandSkeleton joint names:

import ARKit

At the start ImmersiveView struct, add a new @Observed variable for the HandTracker class:

@ObservedObject var handTracker = HandTracker()

Within the RealityView block, create a new material (I’m using an unlit red material) and an
object to anchor on your fingers. My code looks like this:

let material = UnlitMaterial(color: .red)

let fingerObject = ModelEntity(

 mesh: .generateSphere(radius: 0.01),

 materials: [material]

)

Now, add another loop through all the recognized joints. This time, add a copy of the finger-
Object ModelEntity to each joint entity.

for joint in HandSkeleton.JointName.allCases {

 handTracker.rightHandParts[joint]!.addChild(

 fingerObject.clone(recursive: true))

 handTracker.leftHandParts[joint]!.addChild(

 fingerObject.clone(recursive: true))

 content.add(handTracker.rightHandParts[joint]!)

 content.add(handTracker.leftHandParts[joint]!)

}

TIP  You can only add one instance of a given ModelEntity to your content. To use it again, you have to make
a copy. You can do this with the clone function. Typing <model entity>.clone(recursive: true) creates a
brand-new copy of the model entity that can be used elsewhere.

Now the code in ImmersiveView.swift needs to start the handTracker. Add a task immediately
following the RealityView code block:

.task() {

 await handTracker.startHandTracking() 

}

You may now start the application, enter the immersive scene, and take a look at your
sphere-covered hands!

Chapter 8  Reconstructing Reality   309

SCENE RECONSTRUCTION
Hand-tracking can enable experiences where interactions with the environment seem very
natural. However, the problem is that the environment itself still doesn’t seem very natural.
Plane detection provides the ability to place virtual objects on real-world surfaces like seats
and tables, but it doesn’t consider things like pillows on couches and the fact that literally no
living human has ever kept a table surface completely clean for more than 47 seconds. As a
result, virtual objects added to the planes could exist inside real-world objects that happened
to be in the same location on the plane. Let’s face it, plane detection is cool, but it just doesn’t
give us a very “exact” representation of all the different surfaces that virtual objects may
encounter.

Scene reconstruction takes plane detection to another level. Think of scene reconstruction
as plane detection on steroids. Rather than just looking for flat surfaces, a SceneReconstruc-
tionProvider (https://developer.apple.com/documentation/arkit/scenereconstructionpro-
vider) considers all the incoming data from the Vision Pro to recreate the geometry of all the
surroundings where the user is located. It’s like taking a giant sheet and covering everything
with it, tucking the sheet into all the spaces around all the different objects.

This data is provided by multiple MeshAnchors, each with a mesh (shape) that’s constantly
tracked in the environment. By adding these meshes to your content, you effectively “recon-
struct” the real world within a virtual space.

With the right meshes in place, you can have objects interact with the miscellaneous “stuff”
you place around yourself. Objects can roll off pillows and under tables and even fall in places
that make them difficult to retrieve—making virtual life just as annoying as the real thing.

ARKit MeshAnchors
Yes, a MeshAnchor works in a very similar way to the hand anchors and plane anchors, so
you’re gonna be experiencing more déjà vu. Let’s quickly cover the properties you might need
when you process mesh anchor updates:

•	 .originFromAnchorTransform: The location and orientation of the detected shape in
world space.

•	 .geometry: A collection of the different shapes that make up a mesh anchor.

•	 .geometry.classifications: A classification of each face of the geometry that makes
up a mesh. Because a mesh may span multiple objects, one must look at all the different
geometry classifications to see everything that has been detected. Review https://devel-
oper.apple.com/documentation/arkit/meshanchor/meshclassification if you’re inter-
ested in what objects can be reported by a MeshAnchor.

310   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

https://developer.apple.com/documentation/arkit/scenereconstructionpro-vider
https://developer.apple.com/documentation/arkit/scenereconstructionpro-vider
https://devel-oper.apple.com/documentation/arkit/meshanchor/meshclassification
https://devel-oper.apple.com/documentation/arkit/meshanchor/meshclassification

You can learn more about MeshAnchors at https://developer.apple.com/documentation/
arkit/meshanchor, but probably the most important thing to understand is that it takes work
to turn a MeshAnchor into something useful. With planes, for example, you need to create a
plane ModelEntity and add it to your content. MeshAnchors come to use with geometry infor-
mation but not in a form you can use.

Generating Collision Shapes
To use a MeshAnchor, you need to turn it into something that can be used in your Reality View
content. To do this, you take advantage of a ShapeResource class method that turns a MeshAn-
chor into a shape that can be used as a collision component.

You might be wondering, “What good does that do? Are you saying it doesn’t give a shape
I can use to style and present a virtual object?” Yes, that’s exactly what I’m saying. You can
create an entity and assign a collision component based on the anchor, and then add it to the
content. This will have the effect of creating an invisible object that matches the shape and
placement of real-world objects, but it only serves the purpose of allowing objects to collide
with it realistically.

To generate a collision shape from a mesh anchor, you first generate the shape:

let <shape mesh> = try! await ShapeResource.generateStaticMesh(

 from: <mesh anchor>)

Then, you can create a new ModelEntity, set its collision component to the generated mesh,
and add a physicsBody for good measure:

let <model entity> = ModelEntity()

<model entity>.collision = CollisionComponent(shapes: [<shape mesh>],

 isStatic: true)

meshEntity.physicsBody = PhysicsBodyComponent(mode: .static)

Like all the other data providers, this process must be repeated over and over as the headset
detects or stops detecting new surfaces, so you need another new class for the implementa-
tion (which you make momentarily). But, before you do that, there’s “one more thing” I need
to discuss because it will truly bring your projects to life.

Occlusion
Apple has built a heck of a device, but the Apple Vision Pro’s development tools are still in
their early stages. Some tasks that have worked great on the iOS/iPadOS platforms can be
painful on the Vision Pro. One of these is occlusion, or the process of hiding one object
behind another. Your hands, for example, occlude virtual objects, which is necessary for
interactions. Virtual objects hide other virtual objects that are behind them. What’s missing
is for real-world objects to occlude virtual objects.

Chapter 8  Reconstructing Reality   311

https://developer.apple.com/documentation/arkit/meshanchor
https://developer.apple.com/documentation/arkit/meshanchor

You may have noticed over the past several exercises that if you place a virtual object some-
where in the environment then walk behind a wall or put a physical object in front of it, you
can still see the virtual object. It’s like having virtual X-ray vision but can also be quite jarring
and bring you out of an experience really quickly.

Occlusion Material
Apple provides a special material, called an occlusion material, that can be applied to virtual
objects. The object becomes invisible to the viewer but still blocks virtual objects behind it:

let material = OcclusionMaterial()

You should be able to take this occlusion material, apply it to the model entities you create
during scene reconstruction, and gain the effect of real objects blocking the virtual.

But it’s not going to work. The collision shape you add to a model entity isn’t a visible surface.
You can’t apply a material or see a model that only has a collision shape. I suspect Apple will
remedy this in the future, but for now, occlusion is not simple.

Or is it?

Occlusion Meshes
As it turns out, the occlusion mesh problem has been solved reasonably well by a GitHub user
named XRealityZone. Within their GitHub repository, they maintain a visionOS project called
what-vision-os-can-do. This has some useful code snippets that you can use in your creations and
is a combination of community contributions and code that Apple has published in its examples.

You can access the repository here:

https://github.com/XRealityZone/what-vision-os-can-do/tree/main

Within the project is a method that translates a MeshAnchor into a MeshResource, which is
exactly what you need to do. You make use of a modified version of this code when you build
a scene reconstruction class next. You create entity models with collision shapes and model
meshes that can use any material or shader you want—including the occlusion material.

I’m sure Apple will eventually make the process easier, but if you use the SceneReconstructor
class you’re about to code, you’ll have that functionality now.

HANDS-ON: CREATING A SCENE RECONSTRUCTOR CLASS
Here you are, once again, about to build a class that uses an ARKit session to collect data.
This is yet again the same code pattern used for plane and hand-tracking. It’s also the last time
you’re going to have to hear me say that. Once you’ve finished the class, you’re going to jump
into a third exercise that puts it and the hand-tracking class to good use.

312   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

https://github.com/XRealityZone/what-vision-os-can-do/tree/main

In this project, you create another new class, SceneReconstructor, that employs a Scen-
eReconstructionProvider to generate MeshAnchors. Each MeshAnchor is used to position a
ModelEntity that is built using the geometry in the anchor. It has both collision shapes and a
surface with applied material. You track all of them in an EntityMap collection.

In ImmersiveView.swift, you add these model entities to the RealityView. Users will see a
version of their surroundings covered in any material you choose, as shown in FIGURE 8.3.

FIGURE 8.3  You are now living in the Matrix.

Setting Up the Project
Create a new Mixed Immersive project in Xcode named Room Virtualizer and then follow
these steps:

1.	 [Optional] Update the ContentView.swift file to include an introduction and the <App
Name>App.swift file to size the content appropriately.

2.	 Remove the extra code from the ImmersiveView.swift file. Edit the RealityView so that
it is empty.

3.	 The project uses world-sensing capabilities; the project’s Info.plist file (Info within the
Project Navigator) needs to be updated with the key NSWorldSensingUsageDescription,
along with a string prompt to ask for permission.

Adding the SceneReconstructor Class
Add a new Swift file named SceneReconstructor to your project. Save the file to the same
location as the other Room Virtualizer Swift files. Leave the other settings at their defaults.

Chapter 8  Reconstructing Reality   313

Open the SceneReconstructor.swift file in the Xcode editor then enter the code in LISTING 8.2.

LISTING 8.2  Tracking Shapes Detected by the Vision Pro

import ARKit

import RealityKit

import Foundation

@MainActor class SceneReconstructor: ObservableObject {

 private let session = ARKitSession()

 private let sceneData = SceneReconstructionProvider()

 private var entityMap: [UUID: Entity] = [:]

 @Published var parentEntity = Entity()

 func startReconstruction() async {

 try! await session.run([sceneData])

 if SceneReconstructionProvider.isSupported {

 for await update in sceneData.anchorUpdates {

 switch update.event {

 case .added, .updated:

 let shape = try! await

 ShapeResource.generateStaticMesh(from:

 update.anchor)

 updateMesh(update.anchor, shape: shape)

 case .removed:

 removeMesh(update.anchor)

 }

 }

 }

 }

 func updateMesh(_ anchor: MeshAnchor, shape: ShapeResource) {

 if entityMap[anchor.id] == nil {

 let entity = Entity()

 let meshEntity = ModelEntity(mesh:

 anchorToMeshResource(anchor))

 let material = SimpleMaterial(color: .red, isMetallic: true)

 meshEntity.collision = CollisionComponent(shapes:

 [shape], isStatic: true)

 meshEntity.components.set(InputTargetComponent())

 meshEntity.model?.materials = [material]

 meshEntity.physicsBody =

 PhysicsBodyComponent(mode: .static)

 entity.addChild(meshEntity)

 entityMap[anchor.id] = entity

314   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

 parentEntity.addChild(entity)

 } else {

 let entity = entityMap[anchor.id]!

 let meshEntity = entity.children[0] as! ModelEntity

 meshEntity.collision?.shapes = [shape]

 meshEntity.model?.mesh = anchorToMeshResource(anchor)

 }

 entityMap[anchor.id]?.transform = Transform(matrix:

 anchor.originFromAnchorTransform)

 }

 func removeMesh(_ anchor: MeshAnchor) {

 entityMap[anchor.id]?.removeFromParent()

 entityMap.removeValue(forKey: anchor.id)

 }

 func anchorToMeshResource(_ anchor: MeshAnchor) -> MeshResource {

 var desc = MeshDescriptor()

 let posValues = anchor.geometry.vertices.asSIMD3(ofType:

 Float.self)

 desc.positions = .init(posValues)

 let normalValues = anchor.geometry.normals.asSIMD3(ofType:

 Float.self)

 desc.normals = .init(normalValues)

 do {

 desc.primitives = .polygons(

 (0..<anchor.geometry.faces.count).map { _ in UInt8(3) },

 (0..<anchor.geometry.faces.count * 3).map {

 anchor.geometry.faces.buffer.contents()

 .advanced(by: $0 *

 anchor.geometry.faces.bytesPerIndex)

 .assumingMemoryBound(to: UInt32.self).pointee

 }

)

 }

 let meshResource = try! MeshResource.generate(from: [desc])

 return(meshResource)

 }

}

extension GeometrySource {

 func asArray<T>(ofType: T.Type) -> [T] {

 assert(MemoryLayout<T>.stride == stride,

 "Invalid stride \(MemoryLayout<T>.stride); expected \(stride)")

 return (0..<self.count).map {

 buffer.contents().advanced(by: offset + stride *

Chapter 8  Reconstructing Reality   315

 Int($0)).assumingMemoryBound(to: T.self).pointee

 }

 }

 func asSIMD3<T>(ofType: T.Type) -> [SIMD3<T>] {

 return asArray(ofType: (T, T, T).self).map

 { .init($0.0, $0.1, $0.2) }

 }

}

TIP  No worries if you’re not up to typing all of that into Xcode. You can use the SceneReconstructor.swift file
included in the Chapter 8 Room Virtualizer project instead.

The logic should be obvious by now: An ARKit session is created along with an instance of
SceneReconstructionProvider (sceneData). Supporting data structures parentEntity and
entityMap hold all the mesh model entities and a mapping between anchor IDs and model
entities, respectively.

The startReconstruction function first verifies you have permission to monitor the environ-
ment (SceneReconstructionProvider.isSupported). Assuming there are no issues, it waits
for an incoming MeshAnchor and calls updateMesh or removeMesh depending on whether an
anchor has been updated/added or removed. For new and updated meshes, a shape is created;
this is the collision shape you can easily generate from the anchor.

When updateMesh is called, the shape and the anchor are provided as arguments. The func-
tion checks entityMap to see if the anchor has been seen before. If it hasn’t, a new entity
is created—our version of an AnchorEntity. A ModelEntity named meshEntity is defined
with the generated collision shapes, a metallic red color, a physics body, and an input target
component.

NOTE  The meshEntity is initialized with a mesh created from the function anchorToMeshResource(<anchor>).
This is the utility function that Apple should define for you but doesn’t. It takes the MeshAnchor and builds a
MeshResource that is used to give meshEntity a visible model.

The meshEntity is then added to entity, which, in turn, is added to the published
parentEntity.

If an anchor has been seen before and needs an update, the code fetches the entity from
entityMap, grabs the meshEntity from that, and changes its collision shapes to the updated
shape as well as updating the visible model mesh with anchorToMeshResource.

When a MeshAnchor is no longer being tracked, the removeMesh function removes the entity
(and the ModelEntity it contains) as well as any entityMap references to it.

316   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

The remainder of the code (anchorToMeshResource, asArray, and asSIMD3 functions) is
provided as-is with minor modifications from the community code at https://github.com/
XRealityZone/what-vision-os-can-do/blob/ed7adb8c281d68aaf2cdc472986127fc11f44cca/
WhatVisionOSCanDo/ShowCase/WorldScening/WorldSceningTrackingModel.swift#L70.

EXTENSIONS
Notice that the asArray and asSIMD3 functions are in a block labeled with exten-
sion. An extension enables a developer to add new functionality to an existing class
or struct—in this case, an ARKit structure named GeometrySource (https://developer.
apple.com/documentation/arkit/geometrysource).

These two data conversion functions aren’t part of GeometrySource by default. By
adding them as an extension, they behave as if they were features originally provided
by Apple.

Visualizing the Results
To view the results of all this work, you need to make some modifications to Immer-
siveView.swift. Add a sceneReconstructor variable initialized to the new SceneRecon-
structor class at the top of the ImmersiveView struct:

@ObservedObject var sceneReconstructor = SceneReconstructor()

Next, add the parentEntity to the content within RealityView:

RealityView { content in

 content.add(sceneReconstructor.parentEntity)

}

Finish up by adding a task that starts scene reconstruction immediately after the RealityView
block. Apple indicates that any scene reconstruction tasks should be started with low priority,
which you can indicate with the priority argument:

task(priority: .low) {

 await sceneReconstructor.startReconstruction()

}

You can now run the application on your Apple Vision Pro and watch as your familiar sur-
roundings are turned into a metallic red nightmare.

Chapter 8  Reconstructing Reality   317

https://github.com/XRealityZone/what-vision-os-can-do/blob/ed7adb8c281d68aaf2cdc472986127fc11f44cca/WhatVisionOSCanDo/ShowCase/WorldScening/WorldSceningTrackingModel.swift#L70
https://github.com/XRealityZone/what-vision-os-can-do/blob/ed7adb8c281d68aaf2cdc472986127fc11f44cca/WhatVisionOSCanDo/ShowCase/WorldScening/WorldSceningTrackingModel.swift#L70
https://github.com/XRealityZone/what-vision-os-can-do/blob/ed7adb8c281d68aaf2cdc472986127fc11f44cca/WhatVisionOSCanDo/ShowCase/WorldScening/WorldSceningTrackingModel.swift#L70
https://developer.apple.com/documentation/arkit/geometrysource
https://developer.apple.com/documentation/arkit/geometrysource

Congratulations! You’ve built hand-tracking and scene reconstructions classes that can be
used in future applications. Let’s wrap up by building an application that uses these classes to
build a fully interactive physics playground that blends virtual and reality seamlessly.

HANDS-ON: RECONSTRUCTION
One of the nice things about creating reusable code is that once it is built, it can just be used
without thinking about it again. By reusing the HandTracker and SceneReconstructor classes
in this project, you can focus solely on the functionality you want to provide without getting
into the nitty-gritty of data providers and ARKit sessions and all that fun. You just get to build
and play.

This exercise is designed to be a playground for you, the developer. You can try different indi-
rect and direct object interactions, mess with gravity, and just practice with all the capabili-
ties you’ve been learning throughout the book.

In this project, Reconstruction, you use tap gestures to drop random objects from your fin-
gertips. Then you can (carefully) use your hands to scoop up the objects and move them, flick
them around, or use an indirect gesture to pick them up and position them throughout the
environment. Using scene reconstruction, the application considers the shapes in your space
in its physics simulation and virtual objects react to physical objects as you’d expect.

The finished project will likely result in a significant mess around your room, as shown in
FIGURE 8.4. Thankfully, cleaning up is just a matter of closing the application.

FIGURE 8.4  Place and interact with random objects scattered around your room.

318   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

Setting Up the Project
Create a new Mixed Immersive project named Reconstruction.

If desired, update the ContentView.swift file to include an introduction and the <App
Name>App.swift file to size the content appropriately.

Remove the extra code from the ImmersiveView.swift file. Be sure the RealityView code
block is empty.

This project needs both world-sensing and hand-tracking; update the project’s Info.
plist file to include keys and string values for NSWorldSensingUsageDescription and
NSHandsTrackingUsageDescription.

Adding the HandTracker and SceneReconstructor Classes
Now add the HandTracker.swift and SceneReconstructor.swift files you created in the pre-
vious two projects to the Reconstruction project. The easiest way to do this is to choose File,
Add Files to “Reconstruction” from the Xcode menu. When prompted, as shown in FIGURE

8.5, drill down into the Hand Skeleton project and select the HandTracker.swift file.

Leave the other settings with their defaults (Copy Items, Create Groups, and Add to Targets
are all selected) and then click Add. The file now appears in your Xcode Project navigator.
Repeat these steps for SceneReconstructor.swift file found within the Room Virtualizer
project.

FIGURE 8.5  Importing the class files to the Reconstruction project

Chapter 8  Reconstructing Reality   319

Before going any further (and before I forget), open the newly added SceneReconstructor.
swift file and comment out the material definition for the red metallic surfaces by adding two
forward slashes to the line:

// let material = SimpleMaterial(color: .red, isMetallic: true)

Add a new line that initializes material to the occlusion material:

let material = OcclusionMaterial()

This is typically the material you would want in the SceneReconstructor class. The red metallic
material was only used to help visualize what the reconstruction was doing behind the scenes.

Generating Random Objects
In this project, I’m finally breaking free from the shackles of the lowly sphere and adding
in codes, cylinders, and cubes (oh my!). The generateRandomSphere function you’ve used
repeatedly is evolving to handle the additional shapes. Let’s get this crucial functionality out
of the way now. Edit ImmersiveView.swift to include the new generateRandomObject func-
tion (and the old getRandomColor function) in LISTING 8.3. These should be placed inside the
ImmersiveView struct, near the very bottom.

LISTING 8.3  Randomizing Objects and Materials

func generateRandomObject() -> ModelEntity {

 var object: ModelEntity

 let randomChoice = Int.random(in: 0...3)

 switch randomChoice {

 case 0:

 object = ModelEntity(mesh: .generateSphere(radius:

 Float.random(in: 0.005...0.025)))

 case 1:

 object = ModelEntity(mesh: .generateCone(height:

 Float.random(in: 0.01...0.09),

 radius: Float.random(in: 0.02...0.03)))

 case 2:

 object = ModelEntity(mesh: .generateCylinder(height:

 Float.random(in: 0.01...0.09),

 radius: Float.random(in: 0.02...0.03)))

 default:

 object = ModelEntity(mesh: .generateBox(size:

 Float.random(in: 0.01...0.05),

 cornerRadius: Float.random(in: 0.0...0.009)))

 }

 let material : SimpleMaterial = SimpleMaterial(color:

 getRandomColor(),

320   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

 roughness: MaterialScalarParameter(

 floatLiteral: Float.random(in: 0.0...1.0)),

 isMetallic: Bool.random())

 object.model?.materials = [material]

 object.generateCollisionShapes(recursive: true)

 object.components.set(GroundingShadowComponent(castsShadow: true))

 object.physicsBody = PhysicsBodyComponent(

 massProperties: PhysicsMassProperties(mass: 2.0),

 material: .generate(friction: 1.0, restitution: 0.1),

 mode: .dynamic)

 object.physicsBody?.angularDamping = 0.1

 object.physicsBody?.linearDamping = 0.1

 return object

}

func getRandomColor() -> UIColor {

 let red = CGFloat.random(in: 0...1)

 let green = CGFloat.random(in: 0...1)

 let blue = CGFloat.random(in: 0...1)

 let color = UIColor(red: red, green: green, blue: blue, alpha: 1.0)

 return color

}

There are three primary additions to the generateRandomObject function versus the
sphere-centric version you’ve been using.

First, you define a generic ModelEntity named object. To decide what kind of object it will
be, a random integer between 0 and 3 is calculated and stored in randomChoice. A switch
statement handles generating models from each of the possibilities of randomChoice:

0: Sphere

1: Cone

2: Cylinder

3 (or other): Box

The parameters (radius, height, and so on) of each shape are also randomized so that the appear-
ance changes for each model entity created. The new randomized model is stored in object.

NOTE  There is no “logic” to any of the random numbers. I decided to go with relatively small hand-sized
objects, but you can increase the size and fill your room with beach balls and traffic cones if you prefer.

The second change is that you use a new component with the object. For the first time, you
cast shadows with the GroundShadowComponent:

object.components.set(GroundingShadowComponent(castsShadow: true))

Chapter 8  Reconstructing Reality   321

The final change is to define slightly more physics than you have in the past:

object.physicsBody = PhysicsBodyComponent(

 massProperties: PhysicsMassProperties(mass: 2.0),

 material: .generate(friction: 1.0, restitution: 0.1),

 mode: .dynamic)

object.physicsBody?.angularDamping = 0.1

object.physicsBody?.linearDamping = 0.1

Within the PhysicsBodyComponent, I specify a mass of 2.0 kilogram. I found this value helpful
for keeping the objects from bouncing everywhere at the slightest touch. Friction is set high
(1.0), and restitution (bounciness) is low at 0.1. The physics mode is dynamic, meaning the
objects can fully receive and transmit energy through collisions.

You also alter two additional physics body properties: angularDamping and linearDamping,
which are values between 0 and infinity that define how quickly an object slows down when
it is spinning or moving, respectively. You can play with all these values to see their effects. I
used what I found to offer a pleasing experience after much trial and error.

The rest of the generateRandomObject (and getRandomColor) code is the same that you’ve
already seen and used many times before.

Initializing the Data Providers
With the supporting functions under control, it’s time to initialize and start the two data pro-
viders via the HandTracker and SceneReconstructor classes. At the top of the ImmersiveView
struct, add these lines:

@ObservedObject var sceneReconstructor = SceneReconstructor()

@ObservedObject var handTracker = HandTracker()

Use normal (hand-tracking) and low-priority (scene reconstruction) tasks to start each of the
detectors running. Add these lines directly following the RealityView code block:

.task() {

 await handTracker.startHandTracking()

}

.task(priority: .low) {

 await sceneReconstructor.startReconstruction()

}

Now, all you need to do is make the application do something interesting. You have two data
detectors up and running, so let’s make use of them.

322   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

Defining the Hand Objects
One of my goals with this project was to try to enable the user to use their hands to interact with
the objects added to the Reality View using just the physics simulation. This isn’t (currently)
a particularly easy thing to do because your hands can’t feel objects if you try to pick them up.
Squeeze too hard and the object “squirts” out of your fingers. For this reason, I’ve decided to add
a plane to the palms of my hands so that I can “scoop” objects into a hand or pick them up and
drop them into a hand. In addition to the plane, adding spheres for the joints aids in the interac-
tivity (and provides the ability to flick objects around or pull them toward you).

Importing ARKit
Because you need to access the finger joints by name, you need ARKit imported into the Immer-
siveView.swift file. Add the required import line following the other import statements:

import ARKit

Creating Objects and Materials
Within the RealityView code, define the material to use for the finger joints as well as a
fingerObject model entity that can be copied and used at each joint. This is virtually identical to
what you did in the Hand Tracker project but with some additional physics properties and a clear
material:

let material = UnlitMaterial(color: .clear)

let fingerObject = ModelEntity(

 mesh: .generateSphere(radius: 0.005),

 materials: [material]

)

fingerObject.physicsBody = PhysicsBodyComponent(

 massProperties: .default,

 material: .generate(friction: 1.0, restitution: 0.0),

 mode: .kinematic)

fingerObject.generateCollisionShapes(recursive: true)

This setup gives you a high-friction sphere you can use with your finger joints. The spheres are
clear, so you can’t see them, but they’ll be able to interact with other objects. Note that the
physicsBody mode is set to .kinematic, which means the object is being controlled by the user.

Next, define a palmObject that is used to cover the palm. It’s a plane and uses the same clear
material and physics properties as the finger joints. Add this code following the fingerObject
definition:

let palmObject = ModelEntity(mesh: .generatePlane(width: 0.09, depth: 0.09),

materials: [material])

palmObject.physicsBody = PhysicsBodyComponent(

Chapter 8  Reconstructing Reality   323

 massProperties: .default,

 material: .generate(friction: 1.0, restitution: 0.0),

 mode: .kinematic)

palmObject.generateCollisionShapes(recursive: true)

You now have a finger and a palm object that are configured and can be used for your finger
joints and palms.

Adding the Palm Entities
The location of the palm is based on the wrist joint, but it’s going to be offset slightly from the
wrist so that it roughly covers the average person’s palm. Define rightPalmObject and left-
PalmObject as clones of the PalmObject and then adjust their positions like this:

let rightPalmObject = palmObject.clone(recursive: true)

let leftPalmObject = palmObject.clone(recursive: true)

leftPalmObject.position.x += 0.07

leftPalmObject.position.y += 0.02

rightPalmObject.position.x -= 0.07

rightPalmObject.position.y -= 0.02

NOTE  As a reminder, <variable> += <value> is the same as typing <variable> = <variable> + <value>. The
same goes for the subtraction version: <variable> -= <value>.

These positions, like so many other things, were a matter of trial and error. You can set the
color of the material to something other than clear and see for yourself where they sit. You
may want to adjust them further for your needs.

Next, add the left and right palm objects to the wrist entity contained in the handTracker.
leftHandParts and handTracker.rightHandParts.

handTracker.leftHandParts[.wrist]!.addChild(leftPalmObject)

handTracker.rightHandParts[.wrist]!.addChild(rightPalmObject)

Finally, add left and right wrist entities to the RealityView content:

content.add(handTracker.rightHandParts[.wrist]!)

content.add(handTracker.leftHandParts[.wrist]!)

Adding the Finger Joint Entities
The finger joints are handled with a loop, just as you did with the Hand Tracker project. Iter-
ate through the joint names, accessing each entity in rightHandParts and leftHandParts. For
each entity, the code adds a child containing a clone of the fingerObject ModelEntity:

324   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

for joint in HandSkeleton.JointName.allCases {

 handTracker.rightHandParts[joint]!.addChild(

 fingerObject.clone(recursive: true))

 handTracker.leftHandParts[joint]!.addChild(

 fingerObject.clone(recursive: true))

 content.add(handTracker.rightHandParts[joint]!)

 content.add(handTracker.leftHandParts[joint]!)

}

Each entity in each hand is then added to the RealityView content.

Managing the User-Added Objects
Each object (sphere, cylinder, box, sphere) a user creates will be added to a parent entity
named worldObjects. Define this variable at the top of the ImmersiveView struct:

private var worldObjects = Entity()

After the content additions you’ve already made, set worldObjects to be an input target for
indirect gestures. This is used in conjunction with a drag gesture to move objects around.
Finally, add worldObjects to the content:

worldObjects.components.set(InputTargetComponent(

 allowedInputTypes: [.indirect]))

content.add(worldObjects)

As objects are added to worldObjects, they subsequently appear within the RealityView.

Adding the Scene Reconstruction Shapes
The other objects you need to include in the content are possibly the most important: the
scene reconstruction model entities. Without these, user-added objects have nowhere to
land, so they will fall… and fall…. and fall.

Add the sceneReconstructor.parentEntity to the RealityView code as well:

content.add(sceneReconstructor.parentEntity)

The code is in place to store user-added models, finger joints and palms, and the surfaces that
make up the environment. The remainder of the project is setting up the gestures that turn
the environment into a playground of shiny trinkets.

Creating Random Objects with the Tap Gesture
When a user wants to add an object to the environment, they perform a tap (pinch) gesture
with either of their hands. The object is created and appears to fall from their hand position.
In general, objects fall from the hand that performs the gesture—or at least the hand that is
being looked at when the gesture is detected.

Chapter 8  Reconstructing Reality   325

GESTURES AND CHIRALITY
Does that last paragraph sound non-committal to you? It should. There isn’t a particu-
larly convenient way to get which hand performed the tap gesture.

To estimate which hand performed a gesture, I chose to calculate the distance of both
hands to the tap location of the gesture. Whichever is closer to the gesture location is the
hand that releases the object. This doesn’t always work, but it does have the helpful side
effect of working quite consistently if you look at the hand you want to release the object.

Add a SpatialTapGesture after the closing brace in RealityView, as in LISTING 8.4.

LISTING 8.4  Detect and React to Tap Gestures

.gesture (

 SpatialTapGesture(count: 1)

 .targetedToAnyEntity()

 .onEnded { event in

 var releaseLocation = Transform()

 let tapLocation3D = Point3D(event.convert(event.location3D,

 from: .local, to: .scene))

 let distanceToRight = tapLocation3D.distance(to:

 Point3D(handTracker.

 rightHandParts[.indexFingerTip]!.position))

 let distanceToLeft = tapLocation3D.distance(to:

 Point3D(handTracker.

 leftHandParts[.indexFingerTip]!.position))

 if distanceToLeft<distanceToRight {

 releaseLocation =

 handTracker.leftHandParts[.indexFingerTip]!.transform

 } else {

 releaseLocation =

 handTracker.rightHandParts[.indexFingerTip]!.transform

 }

 let object = generateRandomObject()

 object.transform = releaseLocation

 object.position.y = object.position.y - 0.05

 worldObjects.addChild(object)

 }

)

326   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

The gesture block starts by declaring that a SpatialTapGesture with a count of 1 is the trigger.
The gesture is then targeted to any entity with the .targetedToAnyEntity() modifier.

When the tap gesture ends (.onEnded), the calculations begin.

First, a release location (releaseLocation) for the random object is defined as an empty trans-
formation matrix. Keep in mind that this is a transformation matrix, so it also carries orienta-
tion (rotation) information in addition to the location.

In this gesture, I make use of several instances of Point3D, a data structure containing x, y,
and z coordinates in 3D space. Point3D also offers a useful distance function that calculates
the distance to another Point3D.

The first use is in tapLocation3D, a Point3D data structure derived from the location where
the spatial tap event took place, converted into world coordinates. Values distanceToRight
and distanceToLeft are subsequently assigned using the Point3D distance function to find
the distance between the tapLocation3D and the tip of the index finger on both the right and
left hands.

If distancetoLeft value is larger than distanceToRight, you set the releaseLocation to be the
same as the transform matrix of the left index finger entity. If not, you set it to the transform
matrix of the right index finger.

Lastly, an object is generated from the generateRandomObject function, and its transform
matrix is set to releaseLocation. For good measure, the object is lowered by adjusting its y
position. This ensures that the object appears below the user’s physical hand.

TIP  If the object is not released from a slightly lower position than the user’s hand, there’s a good chance it’ll
collide with some of the finger joint entities or the palm plane, making it bounce around. Lowering the release
location reduces this possibility. You may even want to lower it further.

Finally, the object is added as a child to worldObjects, at which point it appears in the envi-
ronment and falls to the surface below it.

The project is now in a testable state and can be launched on the Vision Pro. You should be
able to add objects, interact with them, and move them around with your hands.

As I mentioned earlier, however, trying to pick up objects with your fingers can lead to frus-
tration. You add one more gesture: an indirect drag gesture that will make it easier to grab
and move any object anywhere in the environment.

Dragging Objects
The last major piece of functionality needed in the application is the ability to look at indi-
vidual objects, and then drag them to other locations (including dropping them in a user’s

Chapter 8  Reconstructing Reality   327

hands.) To do this, you use a second gesture—DragGesture—targeted to the worldObjects
entity that contains anything a user adds to the environment.

Dragging objects that are moving or under the effect of gravity can have some strange side
effects, so part of the code needs to “turn off” gravity for the duration of the drag.

Add the second gesture code block in LISTING 8.5 directly after or before the
SpatialTapGesture.

LISTING 8.5  Reposition Objects with a Drag Gesture

.gesture(

 DragGesture()

 .targetedToEntity(worldObjects)

 .onChanged { event in

 let object = event.entity as! ModelEntity

 object.physicsBody?.isAffectedByGravity = false

 object.physicsBody?.angularDamping = 1.0

 object.physicsBody?.linearDamping = 1.0

 object.position = event.convert(

 event.location3D, from: .local, to: .scene)

 }

 .onEnded { event in

 let object = event.entity as! ModelEntity

 object.physicsBody?.isAffectedByGravity = true

 object.physicsBody?.angularDamping = 0.1

 object.physicsBody?.linearDamping = 0.1

 }

)

In this gesture, you make use of both the .onChanged and .onEnded events. In .onChanged, you
assign object to the entity referenced by the event (event.entity). You typecast the entity
to ModelEntity because you know that the objects added are model entities, and you need to
access specific features of model entities, namely the physics body.

Next, these lines “turn off” gravity and stop any spin or other motion on the object:

object.physicsBody?.isAffectedByGravity = false

object.physicsBody?.angularDamping = 1.0

object.physicsBody?.linearDamping = 1.0

If the changes to the physics body are not included, the object moves in unexpected ways
while it is being dragged.

During the drag, the object’s position is updated in to match the event’s location3D attribute
but converted to world coordinates.

328   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

When the drag gesture ends (.onEnded), you once again assign object to the entity targeted
by the drag and reset its physics properties to their defaults. This means that gravity once
again takes effect, and the object falls onto the nearest surface.

For an interesting effect, you can try leaving gravity disabled. Objects can then be positioned
in the air and just hang in empty space. It’s cool, but do you really need any new ways to
make a cluttered mess of your homes and office?

Cleaning Up
One last block and you’re done! After ImmersiveView is dismissed, you need to remove the
entities you’ve added outside of the initial RealityView setup.

Add the code in LISTING 8.6 as yet another modifier to the RealityView, similar to what you’ve
done in other projects:

LISTING 8.6  Remove Entities from the RealityView

.onDisappear {

 worldObjects.children.removeAll()

 for joint in HandSkeleton.JointName.allCases {

 handTracker.rightHandParts[joint]!.children.removeAll()

 handTracker.leftHandParts[joint]!.children.removeAll()

 }

 sceneReconstructor.parentEntity.children.removeAll()

}

This removes all worldObjects, all finger joints, and the surfaces added by the scene recon-
struction, leaving a blank canvas for when the immersive view is opened again.

Run the application on your Apple Vision Pro and try scooping, throwing, and making a mess
with the randomly generated objects. Cleaning up after throwing a tantrum just got much
easier!

TIP  For those without a paid developer account, you can load a maximum of four development applications to
your device. If you hit the limit, you get a warning message and need to remove some of the apps before more
can be installed.

SUMMARY
In this chapter, you learned about some of the most useful tools for visionOS: scene recon-
struction and occlusion. Using scene reconstruction, you can rebuild your entire environ-
ment using the Apple Vision Pro sensors and compute power. Successfully combining the real

Chapter 8  Reconstructing Reality   329

and virtual is the lynchpin of creating compelling experiences. Although Apple hasn’t made
this process as easy as it could be, it is still simple enough to include in everyday projects with
the help of the reusable SceneReconstructor class.

You also explored advanced hand-tracking with the HandTracker class. This code takes the
complexities of working with the ARKit hand skeleton and, again, turns it into a reusable
piece of code that makes entities available for every single joint in both of a user’s hands.

While there is still more ahead, you have what you need to build some fun and functional
applications. I’ll round out your primary toolkit over the next two chapters, then show you
how you can prepare your creations to reach as wide an audience as possible via the App
Store.

Go Further
I highly recommend downloading and exploring the source code for Apple’s scene recon-
struction example: https://developer.apple.com/documentation/visionos/incorporating-re-
al-world-surroundings-in-an-immersive-experience. It may give you some good ideas of how
to manipulate and place objects differently from what we’ve done in these examples.

It would also be good practice to go back to the Chapter 7 plane detection example and add
scene reconstruction for more precise placement of the objects within the environment.
Plane detection is a much less resource-intensive operation than scene reconstruction, so
don’t disregard it entirely, but scene reconstruction does a significantly better job of enabling
your physical environment to accommodate virtual objects.

With hand-tracking, you now have access to all the data that visionOS can provide. Exper-
iment with ways that hands can be involved in natural direct and indirect gestures. An
important goal for any AR or VR developer is to make the actions the user performs feel as
natural as possible. The more you can make your virtual world feel real, the better. Just add-
ing the ability to flick an object if you want to move it feels incredibly satisfying and can make
you forget you’re staring at a piece of glass and metal.

330   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

https://developer.apple.com/documentation/visionos/incorporating-re-al-world-surroundings-in-an-immersive-experience
https://developer.apple.com/documentation/visionos/incorporating-re-al-world-surroundings-in-an-immersive-experience

Symbols
2D windows, 114–115
3D assets, 141
3D models (SwiftUI), adding, 64–66
3D objects in Reality Composer Pro, 93
3D Scanner App, 142
3D space, gestures in, 327
3D text, 205
3D windows, 116

A
.aboveHand location, 264
absolute values

distance, 382
world position, 395

accessibility, 183
actions, 44
actions (SwiftUI), 53–55
ambient audio, 342

decibels, 344
playing, 343–344
volume, 343

anchor entities, 267
Anchor Playground project, 274–275

adding entities, 275
coding, 274–275
RealityView, 276

hand-targeted, 302
AnchorEntity, 263
Anchor Playground project, 271

anchor entities
adding entities, 275
coding, 274–275
RealityView, 276

INDEX

AVKit, 273–274
Creepy Head.usdz file, 272
models, 272–273
movie clapper, rotating, 276
setup, 271–272
sphere, 277
video file, 273–274
video materials, looping, 277–278

anchors, 262
ARKit, 263, 279
attaching logically, 263
MeshAnchors, 310
Reality Composer Pro, 268–269
RealityKit, 263
targets, 263

hand anchors, 264–265
head anchors, 264
plane anchors, 265–266
world anchors, 266–267

angular force, physics bodies, 381
animation

Earth Day project, 88–89
invisible, 164
project setup, 165
Reality Composer Pro, 93
scenes, 165
surface shader

Divide node, 167
Remap node, 167
sin, 166
time, 166

visible, 164
visionOS, 44

.any plane anchor, 266
App file, 16
Apple Cinema Display, xii
Apple ID, adding to Xcode, 5–6

looping, 345
playback control, 346
Reality Composer Pro

audio components, 348–350
audio file resources, 347
entities, 348–350
playback, 350
Sounds Good project, 350–358

spatial, 343
beam of sound, 345
playing, 344–345
reverb, 345

augmented reality, x
AVKit

Anchor Playground project, 273–274
importing, 269
video materials, 270

AVPlayer, 277
axes, xvi

B
bindings, 44
bindings (SwiftUI), 56–57
Blur modifier, 67
bounding boxes, 144
braces ({ }), 50
breakpoints in debugging, 26–27
Bundle Identifier, 10

C
CAD (computer-aided design), 141
cameras, xiii
Canvas, 32–33
.ceiling plane anchor, 266
child entities, relative scale and, 382
classes

HandTracker, 306–309, 319
inheritance, 120
instances, 121
objects, 120
observable classes, 262
Plane Detector, 289–294
SceneReconstructor, 313, 316, 319
singletons, 378–379

codable components, 373
codable data, 370

Apple Silicon Processors, xiv
Apple Vision Pro, 38–41

support, adding, 27–29
applications

Canvas, 32, 33
environment

Selectable view, 35
Simulation Scene, 34

multiplatform, 8
navigating, 33

WSAD keys, 33
previewing, 30, 31
Simulator, 35

Capture Pointer and/or Capture
Keyboard, 36

Home button, 36
Reset Camera, 37
Save Screen, 36

application signing, 9
App Store, Xcode, 3
ARKit, xv, 279

anchors, 263
data providers classes, 282

Plane Detector, 282–285
hand anchor, 303

hand skeletons, 303–305
joints, 303–305

HandTracker class, 308
hand-tracking, 302–303
MeshAnchors, 310–311
permissions, 279
Reconstruction project, 323

ARKitSession, 279
assets, 3D, 141
asteroidBelt, Spatial Special project, 397
asteroids in Spatial Special project, 397,

400–403
Attributes Inspector, 22, 66
audio, 332

ambient, 342
decibels, 344
playing, 343–344
volume, 343

AudioFileResource, 343
audio file resources, 343
AudioPlaybackController, 343
entity, 344

416   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

ContentView, 92
Snow Globe project, 132–133

ContentView.swift file, template, 236, 238
ContentView window

planeLabel, 295
sizing, 237

coordinates, xvi
coordinate system, immersive spaces, 231–232
corrections to code, 24
cotton ball model, 273
Creative Commons Attribution license, 97

D
data, codable, 370
data providers

ARKit classes, 282–285
hand-tracking and, 303
Reconstruction project, 322

data sharing, 92
debris, Spatial Special project, 385
Debug area, gesture events, 192
debugging, 25–26

breakpoints, 26–27
Debug area, 25

decibels, 344
development

immersive spaces, 231–232
platforms, 3, 5

direct gestures, 184, 230
distance

absolute values, 382
world position, 394–395

Divide node, super shaders, 167
Speed Input, 167

double tap gesture, Touchy Volumes project,
217

downloads
Reality Composer, 142
Xcode, 3–5

drag gesture, 183, 187
Touchy Volumes project, 218–222
updating event and, 189

dragging, Reconstruction project, 327, 329

code
corrections, 24
debugging, 25–26

breakpoints, 26–27
Debug area, 25

errors, 23
warnings, 24

code completion editor, 17
Code folder, 14
coding assets library, 18
coefficient of friction, entities, 245
collections, 60
collision detection, 377

Spatial Special project, 386
collisions, 368, 376

collision event subscription, 377
components, 193–194
Spatial Special project

ship-asteroid, 405–409
shot-asteroid, 409–412
spaceship-space station, 409

collision shapes, MeshAnchors and, 311
components, 368

adding, 371–373
codable, 370, 373
defining, 369

init() method, 369
Reality Composer Pro, 371–373
syntax, 369

entities, adding to, 370–371
interacting with, 371
object cleanup, 394–395
Opacity, 252, 253
orbit behavior, 388–392
RealityKit Content package, 372
registering, 370, 397
removing, 371
spin behavior, 392–394
spinning and, 369
values, 375

conditionals (SwiftUI), 58–62
if statements, 58
toggles, 58–59

constant force, 381
Content Library, 98

primitive objects, 105–106

INDEX   417

hierarchy, 239
model entities, Hand Skeleton project, 309
queries, 374
packaged, 204
palm entities, Reconstruction project, 324
PhysicsBody component, 244

PhysicsBodyMode, 246
PhysicsMassProperties, 245
PhysicsMaterialResource, 245
Reality Composer Pro and, 246–252

RealityView, 118
relative scale, 382
restitution, 245
term use, 93
text, 205

entitlements, 14
environment detection, 279
environments, 112

objects, 120
adding, 121
Snow Globe project, 131–132
views, 122

property wrappers, 112
Selectable view, 35
Simulation Scene, 34

error handling, 23
event modifiers (SwiftUI), 55–56
events, 44

gesture events, 185
updating, 189, 190

explicitly unwrapping variables, 89
expressions, regular expressions, 383

F
Falling Objects project, 247–251
File Inspector, 21
floating point numbers, spin behavior, 393
floating-point values, vectors, 196
floor, Immersive Bubbles project, 257–258
.floor plane anchor, 266
folders, project folder, 7
for each loops, 60–62
Fractal3D node, 159
full immersive spaces, 231–234
func keyword, 49

E
Earth Day project, 71

animation, 88–89
project creation, 72, 74
user input, 80–82
views, 76–78

system image, 78
text, 78

visionOS support, 74–75
Earth model, 209
ECS (entity component system), 230, 238, 369

components, 239
CollisionComponent, 240
defining, 369–370
entities, adding to, 370–371
interacting with, 371
ModelComponent, 240
registering, 370
removing, 371
TransformComponent, 240
values, 375

entities, 239
hierarchy, 239

Reality Composer Pro, 241–242
systems, 240, 373

component values, 375
defining, 374–376
entity queries, 374
registering, 376
structure, 374
update function, 374

editor, 16
code completion, 17
documentation, 19, 21
Help, 19, 21
Library, 18
Minimap, 17

entities, 92
anchor entities, 263, 267

Anchor Playground project, 274–276
hand-targeted, 302

coefficient of friction, 245
components, 368, 370–371
constant force, 381
creating, 205, 206
finger joint entities, Reconstruction project,

324

418   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

Touchy Volumes project, 214
double tap gesture, 217
drag gesture, 218–222
long press gesture, 224
magnify gesture, 222–223
tap gesture, 214–216

updating event, 189–190
getRandomColor function, 225
GitHub, XRealityZone files, 312
Git Repository, 11
global variables, 119
Globe project file, 63
GlobeView

Snow Globe project, 133
content creation, 135, 136

Google Glass, xi
graphs

node graphs, 140
surface shaders, 156

gravity, physics bodies, 381
grounding shadows, lighting and, 338

H
hand anchor, 264–265

hand skeletons, 303
joint locations, 304
joints, all, 304–305

joints, 303
all joints, 304–305
locations, 304

handAnchor, Spatial Special project, 397–398
hand-held controllers, 302
Hand-Lit Object project, 339

image-based light entity, 340
object field generation, 341–342
random object code, 339–340

Hand Skeleton project
HandTracker class, 306–309

ARKit, 308
model entities, 309

hand skeletons, 303–305
hands-on project

Earth Day, 71–89
handTracker, Spatial Special project, 396

functions
Immersive Bubbles project, 255–256
ModelEntity, 205
Swift, 49

G
game over message, Spatial Special project, 385
gaze, 182, 262, 285
Geometry Modifier, 140, 156, 171

inputs, 174
Shader graph

Combine3 node, 173
creating, 174
Multiply node, 174
new nodes, 176–178
Position node, 173
Remap node, 173
reuse, 175

gesture events, 185
Debug area, 192

gestures
3D space, 327
direct, 184, 230
drag, 183, 187, 189
events, 185
hover component, 243
Immersive Bubbles project, 258–259
indirect, 182, 242–243

gaze and, 182
interactions, 193

collision components, 193–194
long drag, updating event and, 189
long press, 183, 186
magnify, 183, 187

updating event and, 190
modifiers, 184
reusable, 190–192
rotate, 183, 188

updating event and, 190
Sounds Good project, 357–358
Spatial Special project, 386

shot and, 405
spatial taps, 285, 295–299
tap, 183–185

Reconstruction project, 325, 327

INDEX   419

immersive projects, 230–233
immersive spaces, 230

coordinate system, 231–232
developing for, 231–232
full, 231, 234
mixed, 231, 233
progressive, 231, 234
selection parameters, 234
Show ImmersiveSpace toggle, 235
Spatial Special project, cleanup, 412

ImmersiveView, spatial taps, 296
ImmersiveView.swift file, 235–236, 238
.indexFingerTip location, 264
indirect gestures, 182, 242–243
Information Property List, permissions, 280
inheritance classes, 120
inherited settings (SwiftUI), 69
inputs

material inputs, 182
MaterialX, 161–162

inspectors, 21
Attributes Inspector, 22, 66
File Inspector, 21
Help Inspector, 21
Information Inspector, 98

instances
of classes, 121
MaterialX, 163–164

interactive objects, 186
Interface Builder, 44–45
Issue Navigator, 15–16

J–K
joints, hand skeletons, 303

all joints, 304–305
locations, 304

keywords
func, 49
HStack, 51
some, 51
@State, 57
VStack, 51

kinematic physics mode, 381

HandTracker class
Hand Skeleton project, 306–309
Reconstructor project, 319

hand-tracking, 302
ARKit and, 303
data providers and, 303
Spatial Special project, 387

headAnchor, Spatial Special project, 397
head anchors, 264
headSphere, Spatial Special project, 385,

397–399
Help editor, 19, 21
Help Inspector, 21
hover component, 243
HStack keyword, 51
HTML (Hypertext Markup Language)

tags, 45–46
views, 45–47

I
IDE (integrated development environment), 2
if statements, 58
image-based lighting, 332

brightness, 335
entity rotation, 335
ImageBasedLightComponent, 335–336
ImageBasedLightReceiver, 336
image resources, 334–335
Reality Composer Pro

grounding shadows, 338
Hand-Lit Object project, 339–342
Image-Based Light Component, 337
Image-Based Light Receiver Com-

ponent, 337–338
image resource, 336

receiver, 336
image files, 334–335
images

Earth Day project, 78
skyboxes, 359–360

Immersive Bubbles project, 253–254
bubble sky, 256–257
functions, 255–256
gestures, 258–259
invisible floor, 257–258
spheres, 258
variables, 255

420   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

mass of objects, 245
material inputs, 182
materials, xvi

entities created in code, 205
video materials, 262

MaterialX, 140, 150
inputs, 161–162
instances, 163–164
material names, 161
materials in objects, 161
new materials, 157–158
nodes

adding, 159–160
Fractal3D, 159
graphs, 150–151

reusable materials, 161–164
surface shaders, 150, 153

Tiled Image node, 153
textures, downloaded, 151

MeshAnchors, scene reconstruction, 310–311
meshes, occlusion meshes, 312
messages, status messages, 12
Microsoft HoloLens, xi
Minimap, 17
mixed immersive spaces, 231–233
model entities, HandTracker class, 309
ModelEntity function, 205
models

Anchor Playground project, 272–273
cotton ball, 273
movie clapper, 273
resizing, 146
Spatial Special project, 385, 387–399

asteroids, 400
spaceship, 401
spacestation, 400–401

Moon model, 210
motion detection, 279
movie clapper model, 273
movie clapper, rotating, 276
multiplatform applications, 8

N
natural lighting, 332
navigation, 33

WSAD keys, 33

L
lenticular display, xiii
Library, 18

Xcode, 13
LiDAR, 142, 262
LiDAR sensor, xiii
lighting

entity orientation, 333
image-based, 332

brightness, 335
entity rotation, 335
image resources, 334–335

ImageBasedLightComponent, 335–336
ImageBasedLightReceiver, 336
natural lighting, 332
Reality Composer Pro

grounding shadows, 338
Hand-Lit Object project, 339–342
Image-Based Light Component, 337
Image-Based Light Receiver Com-

ponent, 337–338
image resource, 336

receiver, 336
room lighting and, 332
solar eclipse, 333
sun, 333

linear force, physics bodies
linear impulses, 380
Newton-seconds, 380

Local coordinates, 103
long drag gesture, updating event and, 189
long press gesture, 183, 186

Touchy Volumes project, 224
looping audio, 345
loops

collections, 60
for each, 60–62
ranges, 60

M
Magic Lens, xi
magnify gesture, 183, 187

Touchy Volumes project, 222–223
updating event and, 190

Manipulator, 101
axes, 101
resizing objects, 102

INDEX   421

orbitSpeed value, 389
orbitStart value, 389
Organizational Identifier, 10
orientation. See also rotation

lighting and, 333
Outputs node, 154

P
.palm location, 265
parameters (SwiftUI), 53

shaders, 201–202
parent entities, relative scale and, 382
parentheses, 50
particle emitters, 106–108

Snow Globe project, 128–129
permissions

ARKit, 279
Information Property List, 280

photogrammetry, 140–141
physics, 230, 244
physics bodies, 380

angular force, 381
constant force, 381
gravity, 381
kinematics physics mode, 381
linear forces, linear impulses, 380

PhysicsBody component, 244
PhysicsBodyMode, 246
PhysicsMassProperties, 245
PhysicsMaterialResource, 245
Reality Composer Pro and, 246–252

plain windows, 113
Plane Detection project, 285

ContentView window, planeLabel, 295
Plane Detector class

anchor updates, monitoring, 290
forgetting planes, 294
internal variables, 290
output, defining, 289
planeLabel, 291
removePlane, 294
structure, 289
updatePlane, 291–294

Reality Composer Pro assets, 287
setup, 286–287
spatial taps, ImmersiveView, 296–299

Navigator panel, 13
Issue Navigator, 15–16
Project Navigator, 13–15
Search Navigator, 15

Newton-seconds, 380
nodes

adding, 159–160
graphs, 140, 150–151
Fractal3D, 159
surface shaders, 169–170

O
Object Capture, Reality Composer, xvi, 142

bounding box, 144
guided capture, 143–146
household items, 142
lighting, 143
model, resizing, 146
objects, white dot, 144
point clouds, 145

object cleanup component, Spatial Special
project, 394–395

objects
adding to environments, 121
bounding boxes, 144
classes, 120
dragging, Reconstruction project, 327, 329
entities

creating, 205–206
packaged, 204

environment objects, 120
Snow Globe project, 131–132

interactive, 186
mass, 245
point clouds, 145
random object generation, 320–322
user-added, Reconstruction project, 325
viewing, 122

observable classes, 262
occlusion, 302, 311
occlusion materials, 312
occlusion meshes, 312
Opacity component, 252–253
orbit behavior component, Spatial Special

project, 388–392
orbitCenter value, 389
orbitRadius value, 389

422   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

models, 272–273
movie clapper, rotating, 276
project setup, 271–272
sphere, 277
video file, 273–274
video materials, looping, 277–278

creating, 7–9, 11–12
Hand Skeleton, 306–309
immersive, 230, 232
Immersive Bubbles, 253–254

bubble sky, 256–257
functions, 255–256
gestures, 258–259
invisible floor, 257–258
spheres, 258
variables, 255

Plane Detection, 285
ContentView window, 295
Plane Detector class, 288–294
Reality Composer Pro assets, 287
setup, 286–287
spatial taps, 295–299

platforms, adding, 27–29
Reconstruction, 318–329
Room Virtualizer, 313, 316
saving, 11
teams, 9
templates, 8
unit tests, 11

property-base transformations, 198–200
property wrappers, 112, 121
protocols, 120–121

SwiftUI Interfaces, 51
public keyword, global variables, 119
publishing variables, 282

Q–R
quaternion, 197

random object generation, Reconstruction
class, 320–322

random objects, Hand-Lit Object project,
339–340

ranges, 60

Plane Detector class
anchor updates, monitoring, 290
ARKit, 282–285
forgetting planes, 294
internal variables, 290
output, defining, 289
planeLabel, 291
planes, updatePlane, 291
removePlane, 294
spatial taps, 296
structure, 289
updatePlane, 291–294

planes, 262
anchors, 265–266
tracking, 280

platforms
adding, 3, 27–29
removing, 5
support, 5

point clouds, objects, 145
Preview Content folder, 14
Preview Device menu, 66
Preview pane, 66
Preview Surface node, 154
primitives

objects, 105–106
programmatic primitives, 182
shapes, 99

Product Name, 9
programmatic primitives, 182
progressive immersive spaces, 231, 234
project files, 14
project folder, 7
Project Navigator, 13, 124

Code folder, 14
entitlements, 14
Preview Content folder, 14
project file, 14

projects, 2
Anchor Playground, 271

anchor entities, adding entities, 275
anchor entities, coding, 274–275
anchor entities, RealityView, 276
AVKit, 273–274
Creepy Head.usdz file, 272

INDEX   423

Moon model, 210
object names, 105
opening, 94
particle emitters, 106–108
PhysicsBody component, 246–252
Plane Detection project, 287
primitive objects, 105–106
Project Navigator, 124
Reality Composer Window, 100
Reality Kit Assets, 96
scene building, 99–100
scene hierarchy, 104
shaders, 210
sharing to from Reality Composer, 147–148
snow globes, 123
Transform, 103
workspace, 94–95

Editor, 98
Editor area, 96
Information Inspector, 98
Manipulator Space icon, 95
Preview area, 100
toolbar, 95

RealityKit, xv, 64, 92
anchors, 263
scenes, loading, 116–117
Touchy Volumes project, 209–211

RealityKit Content package component files,
372

RealityView
anchor entities, 276
entities, 118
entity removal, 329
gesture modifiers, 184
planeDetector class, 296
tap gesture, 190
Touchy Volume project, 227

Reconstruction project, 318
ARKit, 323
data providers, 322
dragging objects, 327, 329
entities

finger joint entities, 324
palm entities, 324

entity removal, 329
hand objects, 323
HandTracker class, 319
materials, 323–324

Reality Composer, 141
downloading, 142
Object Capture, 142

bounding box, 144
guided capture, 143–146
household items, 142
lighting, 143
model, 146
point clouds, 145
white dot on object, 144

sharing to Reality Composer Pro, 147–148
Reality Composer Pro, xv, 92–93

Anchoring component, 268
anchors, 268–269
audio

audio components, 348–350
audio file resources, 347
entities, 348–350
playback, 350
Sounds Good project, 350–358

components
adding, 371–373
defining, 371–373

Content Library, 105–106
coordinates, 103
Earth model, 209
ECS (entity composer component) system

and, 241–242
Falling Objects project, 247–248

components, adding, 249, 251
files

from Content Library, 98
importing, 96–98

gestures, 243
Immersive scene, 247
launching, 93–94
lighting

grounding shadows, 338
Hand-Lit Object project, 339–342
Image-Based Light Component, 337
Image-Based Light Receiver Com-

ponent, 337–338
image resource, 336

Manipulator, 101–102
models

reprocessing, 148, 150
Spatial Special project, 387–388

424   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

palm entities, 324
random object generation, 320–322
SceneReconstructor class, 319
shapes, 325
user-added objects, 325

Room Virtualizer project, 313, 316
SceneReconstructor class, 313, 316, 319
scenes, 92

animation, 165
building, 99–100
hierarchy, 104
objects, adding, 100
RealityKit, loading, 116–117
term use, 93
Touchy Volumes project, 212–213
.usda files, 94

Scenes, WindowGroups, 109
ScoreKeeper, Spatial Special project, 395–396,

412–413
Search Navigator, 15
.seat plane anchor, 266
Selectable view, 35
selection parameters in immersive spaces, 234
shaders, xvi, 166, 200

applying, 202–203
entities created in code, 205
loading, 200
parameters, 201–202
Touchy Volumes project, 210, 214–216
variables, 202

ship-asteroid collisions, Spatial Special project,
386, 405–409

shipCollision, Spatial Special project, 397
ship-space station collision, Spatial Special

project, 386
shot-asteroid collision, Spatial Special project,

386, 409–412
Simulation Scene, 34
Simulator, xv, 1–2, 35

Capture Pointer/Capture Keyboard, 36
Home button, 36
Reset Camera, 37
Safe Screen, 36

Sin function, super shaders, 166
singletons, 368, 378

classes, 378–379
Spatial Special project, 395–397

objects, 323–324
user-added, 325

objects, tap gesture and, 325, 327
random object generation, 320–322
SceneReconstructor class, 319
shapes, 325

references, SwiftUI interface, 69
regex (regular expressions), 383
relative scale of entities, 382
Remap node, super shaders, 167
repetition (SwiftUI), 58–62

for each loops, 60–62
restitution, entities, 245
reusable gestures, 190–192
reverb, spatial audio, 345
Room Virtualizer project, 313

SceneReconstructor class, 313, 316
rotate gesture, 183, 188

updating event and, 190
rotation

lighting and, 335
property-base transformation, 199
quaternion, 197
spin behavior, 393–394

rotation (orientation), 197
rotation value, 189

S
saving projects, 11
scale

objects, 196
property-base transformation, 199
relative scale of entities, 382

sceneCollision, Spatial Special project, 396
scene reconstruction, xvi, 302, 310

MeshAnchors, 310–311
occlusion, 311–312
Reconstruction project, 318

data providers, 322
dragging objects, 327, 329
entity removal, 329
finger joint entities, 324
hand objects, 323
HandTracker class, 319
materials, 323–324
object creation, 323
objects, tap gesture and, 325, 327

INDEX   425

spatial audio, xvi, 343
beam of sound, 345
playing, 344–345
reverb, 345

spatial computing, xi–xii
Spatial Special project, 384

asteroid belt, 385, 397, 401–403
asteroids, 397, 400
collision detection, 386
collisions

ship-asteroid, 405–409
shot-asteroid, 409–412
spaceship-space station, 409

components
object cleanup, 394–395
orbit behavior, 388–392
registering, 397
spin behavior, 392–394

debris, 385
debris generation, 410
game over, 406–407
game over message, 385
gestures, 386
handAnchor, 397–398
handTracker, 396
hand-tracking, 387
headAnchor, 397
head sphere, 385
headSphere, 397–399
immersive space cleanup, 412
models, 385–388

loading, 399–401
object cleanup, 386
rocket naming, 408
sceneCollision, 396
scoreKeeper, 396, 412–413
score screen, 412–413
scoring, 386
shipCollision, 397
shots, 385, 397
singletons

initializing, 397
ScoreKeeper, 395–396

spaceship, 385, 397, 401, 404–405
space station, 385, 397, 400–401
spin, 385
variables, initializing, 396–397

skyboxes, 332, 359
code, 362
images, 359–360
texture assets, 360–361

SkyBox It project, 363–365
Snow Globe project, 123

clean up, 137
ContentView, 132–133
environment objects, 131–132
GlobeView, 133, 135–136
particle emitters, 128–129
Pine_Tree, 125–127
previews, 136
snow, 128–129
Snowman - Low Poly, 125–127
WindowGroups, 129–131

solar system, 206
solar system project. See Touchy Volumes

project
sound, 332. See also audio
Sounds Good project, 350

audio components, 353
clean up, 358
DrumKit entity, 355–356
entities, 353
files, 352
gestures, 357–358
Input component, 353
object field generation, 354–355
pop sound, 354
resources, 352
Tambourine entity, 355–356

spaces, xv
immersive

coordinate system, 231–232
developing for, 231–232
full, 231, 234
mixed, 231, 233
progressive, 231, 234

immersive spaces, 230
spaceship, Spatial Special project, 397, 401,

404–405
spaceship-space station collisions, Spatial

Special project, 409
spaceStation, Spatial Special project, 397,

400–401

426   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

buttons, 53
conditionals, 58–62

if statements, 58
toggles, 58–59

event modifiers, 55, 56
inherited settings, 69
interfaces, 50

protocols, 51
references, 69
tools, 66, 70

modifiers, 44, 52–53
Xcode, 66–69

parameters, 53
repetition, 58–62

for each loops, 60–62
@State keyword, 57
views, 44–47, 52–54
View template, 110
z-axis offset, 63–64

systems, 368, 373
component values, 375
defining, 374–376
entity queries, 374
registering, 376
structure, 374
update function, 374

T
.table plane anchor, 266
tags, HTML, 45–46
tap gesture, 183, 185

RealityView, 190
Reconstruction project, 325, 327
Touchy Volumes project, 214–216

targets, anchors, 263
hand anchors, 264–265
head anchors, 264
plane anchors, 265–266
world anchors, 266–267

teams, 9
templates, 8
text

3D, 205
Earth Day project, 78

text entities 205
texture assets

skyboxes, 360–361
SkyBox It project, 364–365

spatial tap gesture, 285
Plane Detection project, 295–299

spheres
head sphere, 385
Immersive Bubbles project, 258
offsetting, 277
rotating, 277

spin behavior component, Spatial Special
project, 392–394

spinning, components, 369
@State keyword, 57
status messages, 12
string comparisons, 383
structures, Swift, 49–50
subviews, 109
sunlight, 333
surface, video materials as, 269
surface shaders, 140, 150, 168

animation
Divide node and, 167
Remap node and, 167
sin and, 166
time and, 166

custom, 153, 155
graphs, 156
nodes, 169–170
Tiled Image node, 153
versus geometry modifiers, 156

Swift, xv, 2
braces ({ }), 50
func keyword, 49
functions, 49
keywords

HStack, 51
some, 51
VStack, 51
ZStack, 51

parentheses, 50
properties, 49
structures, 49, 50
variables, 48–49
variable types, 48

SwiftUI, xv, 44
3D models, 64–66
actions, 53–55
Attributes Inspector, 66
bindings, 57
Bindings, 56–57

INDEX   427

USD (Universal Scene Description) files, xv
USDZ (USD zipped) files, xv

V
variables

explicitly unwrapping, 89
global, 119
Immersive Bubbles project, 255
publishing, 282
shaders, 202
Spatial Special project, 396–397
string comparisons, 383
Swift, 48–49

vectors, floating-point values, 196
video materials, 262, 269

Anchor Playground project, 273–274
as surface, 269
AVKit, 270
looping, Anchor Playground project,

277–278
views

Earth Day project, 76–78
HTML, 45–47
multiple, 92
subviews, 109
SwiftUI, 45–47, 54

virtual reality, x
virtual reality headset history, xi
visionOS, 2

animation, 44
depth, 44
Earth Day project, 74–75

volumes, xv
volumetric windows, 92, 113
VStack keyword, 51

W
.wall plane anchor, 266
warnings in code, 24
WASD keys, 33
WindowGroup, 109

new, 109–110
opening/closing windows, 111–112
subviews, 109
SwiftUI View templates, 110

.thumbTip location, 265
time, super shaders, 166
toggles, 58–59
tools, SwiftUI interface, 70
Touchy Volumes project

addPlanet function, 225–226
earth rotation, 218–220
earth scaling, 217
entities, loading, 212–213
gestures, 214

double tap gesture, 217
drag gesture, 218–222
long press gesture, 224
magnify gesture, 222–223
tap gesture, 214–216

getRandomColor function, 225
moon magnification, 222–223
moon rotation, 220–221
planets, adding, 224
RealityKitContent, 209–211
RealityView updates, 227
RealityView rotation, 221–222
scene loading, 212–213
setup, 207
shaders, 210, 214–216

Transform, 103
transformation matrices, 195

multiple, 198
rotation (orientation), 197, 199
scale, 196

property-base, 199
translation (position), 195

property-base, 199
transformations, 182, 195

multiple, 198
property-base, 198–200
rotation (orientation), 197, 199
scale, 196, 199
translation (position), 195, 199

translation (position), 195, 199

U
unit tests, 11
updating event, 189, 190
USDA (USD ASCII) files, xv
.usda files, 94

428   APPLE VISION PRO FOR CREATORS: A BEGINNER’S GUIDE TO BUILDING IMMERSIVE EXPERIENCES

editor, 16
code completion, 17
documentation, 19, 21
Library, 18
Minimap, 17

error handling, 23
Help, 19, 21
inspectors, 21

Attributes Inspector, 22
File Inspector, 21
Help Inspector, 21

Library, 13
modifiers, 66–69
New Project, 72
Project Navigator, ContentView, 76–78
projects, adding platforms, 27–29
SDK license agreement, 3
setup, 2–7
Simulator, 1
status messages, 12
Vision Pro code, 64
warnings, 24
workspace, 12

Hide/Show buttons, 12
Navigator panel, 13–16
Play button, 12
Stop button, 12

XReal Air AR glasses, xi

z-axis offset (SwiftUI), 63–64
ZStack keyword, 51

WindowGroups
Scenes, 109
Snow Globe project, 129–131

windows, xv
2D, 114–115
3D, 116
dimensions, 114, 116
immersive projects, 233
opening/closing, 111–112
plain, 113
volumetric, 92, 113
WindowGroup, 109–110

WindowTestsApp.swift file, 109
.wrist location, 265
world anchors, 266–267
World coordinates, 103
world position, 394–395

X–Y–Z
Xcode, xv, 1

Apple ID and, 5–6
applications

Canvas, 32–33
environment, 34–35
navigation, 33
previewing, 30–31
Simulator, 35–36, 38

corrections, 24
debugging, 25

Debug area, 25
debugger, 26–27

downloading, 3–5

INDEX   429

	Cover
	Title Page
	Copyright Page
	Contents
	About the Author
	Acknowledgments
	Introduction
	CHAPTER 8 Reconstructing Reality
	Hand-Tracking
	ARKit’s HandAnchor

	Hands-On: Creating a Hand Tracker Class
	Setting Up the Project
	Adding the HandTracker Class
	Adding Model Entities

	Scene Reconstruction
	ARKit MeshAnchors
	Generating Collision Shapes
	Occlusion

	Hands-On: Creating a Scene Reconstructor Class
	Setting Up the Project
	Adding the SceneReconstructor Class
	Visualizing the Results
	Hands-On: Reconstruction
	Setting Up the Project
	Adding the HandTracker and SceneReconstructor Classes
	Generating Random Objects
	Initializing the Data Providers
	Defining the Hand Objects
	Managing the User-Added Objects
	Adding the Scene Reconstruction Shapes
	Creating Random Objects with the Tap Gesture
	Dragging Objects
	Cleaning Up

	Summary
	Go Further

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

