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Foreword

Data is ubiquitous—generated	by	and	Áowing	between	applications,	deYices,	users,	
and systems. It can provide valuable insights into the performance, behavior, and 

security of one’s environment. However, accessing, analyzing, and acting on this data can 
be challenging. How can you turn it into actionable intelligence that can help optimize 
operations, enhance security, and solve problems?

One solution is KQL—Kusto Query Language—a powerful and expressive language 
that enables the querying and manipulation of large volumes of data in Azure Data 
Explorer, Azure Monitor, Azure Sentinel, and other Microsoft data platforms. KQL can 
help perform complex queries, apply advanced functions, and leverage operators to 
transform data into meaningful information. KQL can also help visualize data, create 
dashboards,	and	automate	workÁows�

KQL is critical for a modern cybersecurity team. It allows defenders to detect and 
respond to threats, anomalies, and incidents in near real-time. Whether a beginner or 
an expert, this book will teach everything readers need to know about KQL, including 
the fundamentals of the language, such as its syntax, functions, and operators. Readers 
will	also	learn	how	to	write	eIficient	and	eIIectiYe	Tueries	and	manipulate	and	transIorm	
data.

In the later chapters, this book covers common security investigations using KQL and 
recommendations on leveraging KQL queries before these incidents occur. Readers will 
see these queries are just the beginning of what is possible with KQL. In the concluding 
chapter, the authors offer perspective on contributing their own KQL queries to the  
community, supporting the “team sport” of security.

This book is based on the experience and expertise of Mark, Matt, and Rod, Microsoft 
employees and KQL experts. They have authored this book to help individuals master 
KQL and to help organizations use the technology to improve their operational and 
security	posture	with	data�	Readers	will	also	benefit	Irom	the	additional	Tueries	and	 
content contributed by different product managers, service engineers, and cloud  
solution architects who use KQL daily.

Readers	will	find	this	to	be	a	practical	guide—enabling readers to follow along, run 
included queries in their own environment, or use the sample datasets provided by the 
authors and help apply learnings.
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Introduction

“Attacks always get better; they never get worse” (Schneier, 2011, para. 4).

Digital transformation has hit every large and small business in the world. If you were 
born	beIore	the	year	����	and	look	at	how	you	book	traYel,	order	Iood,	and	find	

tickets for an event today, you will realize the methods and technologies you use are 
much better than they once were. They are much more digitized and often provided by 
very different vendors. The cloud has brought this disruption to the market of ideas and 
innovation at a global scale. This digital transformation of our world has been very dis-
ruptive to all industries and organizations, causing cloud adoption at an unprecedented 
scale. Adopting the cloud is no longer seen as a luxury or a thought experiment. It is 
imperative to remain competitive and relevant as a business. It has fundamentally shifted 
the way a business operates. 

This business shift has impacted how IT professionals, information security profes-
sionals, and even developers work day to day. Operational IT staff no longer just have 
on-premises servers to manage. Their responsibilities have increased and changed dra-
matically with the shift to the cloud. Servers can now operate entirely in the cloud, and 
cloud-native platform as a service (PaaS) or software as a service (SaaS) solutions form 
a	significant	part	oI	many	companies’ system portfolios. These systems’ performance, 
availability, and resilience are more crucial than ever.

Understanding big data analytics concepts now impacts IT operations staff in many 
facets of their day-to-day work. IT professionals and developers can now scale up or 
scale out resources and deploy code changes multiple times a day to meet the needs 
of their business. With this comes the need for telemetry to make those operational 
decisions. 

For information security professionals, the change is even more drastic. There is now 
more of everything. There are more organizational resources than ever before. More 
users are accessing these resources from more devices and more locations. There are just 
more things to monitor malicious activity for. It used to be the goal to have a Security 
Incident & Event Management (SIEM) system that integrates and pulls data from all 
sources. However, your security team is now swimming in data. Being able to sift through 
data masterfully and quickly is now your primary challenge. Adversaries are aided with 
automatic tools to perform more attacks, leading many companies to adopt a Zero Trust 
framework. 
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Assume breach is a core tenant of Zero Trust, creating a shift in the modernization of 
organizational security operations. We are drowning in raw data. Organizations need 
to focus on managing realized risk—risk that has actually happened—and need to take 
action on this risk quickly. Serious cyberattacks are often driven in near-real-time by 
human attack operators. 

This is why a core metric of a modern security operations team should be ‘mean time 
to remediate’ (MTTR). How quickly did we detect the attacker and stop them from  
meeting their goals? In other words, how did we reduce attacker dwell time? The less 
time the attacker has to conduct their operation results in less time the attacker can 
cause damage, reducing organization risk. 

But how do organizations speed up this detection process with all this data? The 
answer is moving from raw data ingestion as a traditional Security Incident and Event 
Management (SIEM) to a more automated approach on actionable insights using Secu-
rity Orchestration, Automation, and Remediation (SOAR) technologies and integrating 
toolsets. Figure 1 depicts modern security operations capabilities.

FIGURE 1 Turning raw data into insights and action of a modern SOC

62$R	has	a	Iew	benefits	Ior	analysts	and	threat	hunters�	First,	manual	work	should	
be reduced. Instead of spending time moving between different tools and consoles, 
connecting data points together in different languages, more meaningful work is being 
done,	fighting	the	adYersary�	6econd,	because	automation	is	happening	at	machine	
speed rather than human speed, our response times are greatly speeding up. Finally, our 
analysts and hunters can handle this increase in the scale of the environment, including 
the growing number of attacks taking place both in scope and complexity.
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This leads us to why you’ve picked up this book. The language you will use to unlock 
these actionable insights and detect the most advanced attacks as part of SOAR is the 
Kusto Query Language, better known as KQL, which is at the heart of the Microsoft cloud 
for parsing data from various datasets. You will be able to quickly search through millions 
of records across multiple products to determine the scope and detect some of the most 
advanced attacks. More importantly, you will take action to remediate it natively in tools 
like Microsoft Sentinel and Microsoft Defender.

The KQL language must become second nature for information security professionals, 
just as PowerShell or Python is today. Microsoft’s latest threat actor detections found in 
blog posts and playbooks and community-shared detections include KQL queries. These 
need	to	be	run,	modified,	and	adapted	Ior	your	enYironment	to	continue	driYing	down	
that MTTR (mean time to repair) in an ever-growing environment. Every second counts.

Note The full Microsoft Cybersecurity Reference Architecture and more can 
be found at aka.ms/mcra.

Organization of This Book

This book is divided into six chapters, moving from the basics and most common KQL 
tasks you will perform. Chapter 1, “Introduction and Fundamentals,” and Chapter 2, “Data 
Aggregation,” introduce the basics. Chapter 3, “Unlocking Insights with Advanced KQL 
Operators,” and Chapter 4, “Operational Excellence with KQL,” introduce more advanced 
Iunctionality	and	begin	putting	the	power	oI	.4/	into	practice�	7he	final	chapters,	 
Chapter 5, “KQL for Cybersecurity,” and Chapter 6, “Advanced KQL Cybersecurity Use 
Cases and Operators,” delve into defending and threat hunting and how the skills 
learned throughout this book can be used from a security perspective.

Each chapter is self-contained and tries to be as independent as possible so they 
can be read individually. However, there are cross-references between chapters, so you 
might sometimes need to read a section in a different chapter to get the big picture. 

We tried to make this book accessible for a broad range of people with varying KQL 
e[pertise,	including	those	who	are	leYeraging	the	skills	taught	here	Ior	the	first	time,	as	
well as those who have been using KQL for many years. If you are new to KQL, start with 
Chapter 1 and work your way forward. If you are a seasoned KQL expert, quickly skim the 
first	two	chapters	beIore	diYing	into	the	more	adYanced	topics�
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Who Should Read This Book?

This book is for anyone leveraging Microsoft cloud resources such as the Azure or 
Microsoft 365 suite of products, including administrators, engineers, architects, and even 
developers who want to be able to monitor and understand what is happening in their 
environment and then use those insights to take action to improve the environment. It’s 
also for information security professionals who can monitor and take action on malicious 
actiYity	as	Tuickly	and	eIficiently	as	possible�	

Conventions and Features in This Book

This book presents information using conventions designed to make the information 
readable and easy to follow.

 ■ Sidebar elements with labels such as “Note,” “Tip,” or “Caution” provide additional 
information. Many Tips provide queries from Microsoft professionals, which you 
can use in your environment.

 ■ Text that you type (apart from code blocks) appears in bold.

 ■ A plus sign (+) between two key names means that you must press those keys at 
the same time. For example, “Press Alt+Tab” means that you hold down the Alt 
key while you press the Tab key.

 ■ A chevron—>—between two commands (e.g., File > Close) means that you 
should	select	the	first	menu	or	menu	item,	then	the	ne[t,	and	so	on�

System Requirements

Examples and scenarios in this book require access to an Azure Log Analytics environ-
ment and a computer that can connect to Azure using an up-to-date browser such as 
Microsoft Edge, Google Chrome, or Apple Safari. A demo Log Analytics environment is 
available at aka.ms/LADemo. For some advanced scenarios, we use Azure Data Explorer. 
See dataexplorer.azure.com/clusters/help/databases/Samples.

http://dataexplorer.azure.com/clusters/help/databases/Samples
http://aka.ms/LADemo
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GitHub Repo

The book’s GitHub repository includes all the KQL queries used throughout this book 
for easy copying and pasting as well as any of the sample datasets used in the chapters: 
https://github.com/KQLMSPress/definitive-guide-kql. 

The download content will also be available on the book’s product page at  
MicrosoftPressStore.com/DefKQL/downloads.

Errata, Updates, and Book Support

We’ve made every effort to ensure the accuracy of this book and its companion content. 
You can access updates to this book—in the form of a list of submitted errata and their 
related corrections—at:

MicrosoftPressStore.com/DefKQL/errata

If you discover an error that is not already listed, please submit it to us at the  
same page.

For additional book support and information, please visit  
MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not offered 
through the previous addresses. For help with Microsoft software or hardware, go to 
support.microsoft.com.

Stay in Touch

Let’s keep the conversation going! We’re on X / Twitter: twitter.com/MicrosoftPress.

https://github.com/KQLMSPress/definitive-guide-kql
http://MicrosoftPressStore.com/DefKQL/downloads
http://MicrosoftPressStore.com/DefKQL/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress
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C H A P T E R  2

Data Aggregation

After completing this chapter, you will be able to:

 ■ Perform common statistical analysis on data such as counting totals, distinct counts, and the 
first	and	last	time	an	eYent	takes	place

 ■ Group your data by common time delimitations such as week, day, or hour

 ■ Visualize your dataset in various graph types

We Are Dealing with a Lot of Data Here

,n	the	preYious	chapter,	we	stressed	how	critical	it	is	to	filter	down	the	initial	starting	data	to	your	
desired	dataset�	7here	were	many	ways	to	do	this�	by	time,	by	specific	Yalues	in	a	column,	and	by	when	
a	specific	Yalue	was	not	present�	'espite	being	able	to	filter	down	millions	oI	records	to	a	subset	you	
want to look at, you’re often left with, well, a lot of data—too much to deal with manually. 

For	e[ample,	let·s	say	you	work	at	a	��,����user	company	based	in	&hicago�	<ou	haYe	large	oIfices	
in	New	<ork,	$tlanta,	and	6eattle�	<ou	also	haYe	smaller	oIfices	in	New	2rleans	and	'enYer	and	a	Iew	
international	oIfices	in	/ondon,	3aris,	and	7okyo�	$	phishing	message	is	sent	to	all	your	users�	,t·s	a	Yery	
good message, and many of them fall for it. Your leadership team wants to know how many fell for it 
and	which	oIfices	are	impacted	the	most�	<ou	filter	based	on	that	specific	message	in	the	last	��	days	
and your heart drops; it’s 12,139. 

Reporting on that number to your leadership team isn’t good enough. They need to know which 
oIfice	was	most	aIIected	because	the	New	<ork	oIfice	has	much	oI	the	finance	team,	and	Tuarterly	
earnings	will	be	posted	in	��	days�	7he	&hicago	oIfice	is	the	home	to	the	main	research	and	deYelop-
ment	team�	7he	3aris	oIfice	is	closing	a	strategic	deal	with	a	partner�	.nowing	which	users	at	these	loca-
tions are possibly compromised is critical because some parts of the business could suffer more impact 
if those compromises are not remediated quickly. With 12,139 users affected, that’s far too many to sort 
into regions manually. 

,n	an	attempt	to	reduce	the	dataset,	you	apply	another	filter	to	those	locations,	and	the	number	
drops to 7,013. However, in the sign-in logs, you notice that the same user is shown three times because 
multiple sign-ins have occurred. How do you determine if the user or the threat actor did those sign-
ins? You also still have too many users to determine which region was hit the hardest. 
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Your leadership team needs to give a status update to the company’s senior leadership team. You 
have a few choices. First, you can just scroll down the list, trying to get a rough estimate based on what 
users you recognize. That is no way to make a critical and strategic decision. You can try exporting this 
data	to	another	tool	like	([cel,	where	you	can	do	additional	deduplication	filtering,	but	some	data	
types don’t export cleanly, so many of your tools won’t work. So, to fully use the data export, more 
work must be done on those 7,013 records. 

Or you can use another strength of KQL, data aggregation. In this chapter, we will show you how to 
answer	these	Tuestions	Tuickly	and	include	much	more	inIormation,	such	as	the	first	and	last	time	this	
was witnessed. You will turn your dataset into insights and actions. You can also convert them into one 
of the things managers love most: pretty charts. Many of the functions discussed in this chapter will be 
used as building blocks to answer questions like those in our scenario and many more! 

Obfuscating Results

Before we jump into a whole chapter full of queries, you should know there are ways to enable auditing 
of your queries. We can skip the whole “with great power comes great responsibility” admin talk here. 
The important thing is knowing your query might show up in the audit logs. 

Those queries might contain sensitive information, such as an API key/secret or possible personally 
identifiable	inIormation	�3,,�	about	a	user�	7he	good	news	is	there	is	a	Yery	simple	way	to	tell	.4/	to	
obfuscate the string. Simply add h or H before the string you are trying to match. Obfuscation will not 
work in our Log Analytics Demo environment, but this is a good habit to get into. The audit results are 
displayed in Figure 2-1.

FIGURE 2-1 Query text that has been obfuscated in the audit logs

The query to obfuscate those strings is very simple:

SigninLogs
| where TimeGenerated > ago (30d)
| where ResultType == 0
| where UserDisplayName has h'mark.morowczynski'

Again, this will not work in our Log Analytics Demo environment, and none of the queries that we’ll 
cover in this chapter have secret info or PII, but if you are slightly modifying these and running them in 
your production environment, add that h or H beforehand, so the strings would be obfuscated in the 
audit logs. 
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Distinct and Count 

Some common scenarios you will need to repeat repeatedly are narrowing down to the distinct  
number of elements returned and counting the elements. Often, you’ll want to combine those two 
things! We can do all that and much more. 

Distinct 
We’ll start with the distinct operator, which will return the results based on the distinct combination 
of columns you provide. We’ll start by trying to answer a simple question: How many different user 
agents are being used in the environment? If we run our query as we did in Figure 2-1, we’ll see we have 
many different records; see Figure 2-2. 

SigninLogs
| where TimeGenerated > ago (14d)
| project UserAgent

FIGURE 2-2 User agents that have been used in the last 14 days
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As you can see, in the last 14 days, we had 24,696 sign-ins, and the list of the different user agents 
aYailable	seems	pretty	Yaried�	7he	first	two	results	are	the	same�	iI	we	look	near	the	bottom,	the	third	
and	fiIth	results	are	the	same�	But	to	answer	our	Tuestion,	we	need	to	remoYe	the	duplicates	and	only	
return unique values. Let’s try our query again, but instead of using project, let’s use the distinct 
operator in its place. The results should look similar to Figure 2-3. 

SigninLogs
| where TimeGenerated > ago (14d)
| distinct UserAgent

FIGURE 2-3 Distinct user agents that have been used in the last 14 days

Our dataset was further reduced to 154 unique UserAgent strings in this environment. We need to 
work on some of our device management and patching to reduce this number further and ensure that 
our environment is uniform. A few other things now easily stick out. First, the last row shows a user 
using Firefox on Ubuntu. Do our security policies and Microsoft Entra ID conditional access policies 
apply to the Linux platform? If not, we probably need to turn this insight into action and update our 
policies. Also, third from the bottom is the axios/0.21.4 user agent. This looks very different from our 
other user agents. Is this expected in this environment? It’s hard to say; this is a demo environment, so 
probably. 
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Looking through these types of results in your own data can lead to many interesting discoveries. 
Besides	finding	gaps	in	their	0icrosoIt	(ntra	,'	conditional	access	policies,	we·Ye	had	customers	find	
pockets of computers that were never upgraded to the latest operating system, running unpatched 
and	unsupported	in	production�	:e	can	do	a	Iew	other	things	to	make	important	findings	stand	out	a	
bit more, which we’ll get to shortly. 

The distinct operator isn’t limited to one column. You can add multiple columns in your query and 
get the distinct values of that combination. Let’s expand on the previous scenario, where we looked for 
the unique number of user agents being used and now extend it to which user agents are accessing 
which applications. We can easily update our query to include applications. Run the following query 
and add the sorting direction for clarity. Your query should look similar to Figure 2-4:

SigninLogs
| where TimeGenerated > ago (14d)
| distinct AppDisplayName, UserAgent
| sort by AppDisplayName asc

FIGURE 2-4 Distinct applications and the user agents accessing them
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We can now tell the unique instance of each user agent mapped to which application they were 
accessing�	$bout	halIway	down	the	screen,	we	see	fiYe	diIIerent	UserAgent strings used against the 
AXA Google Cloud Instance application. This is easy enough for us to see, and we can actually see one 
of those browsers is much older than the others: Chrome 113. But what if we also need to determine the 
count across all the applications and user agents/browsers? 

Summarize By Count 
Before we can answer that question directly, we need to introduce a new operator: summarize. We’ll use 
this frequently in this chapter and the rest of the book. The summarize operator will summarize data 
and produce a table of the aggregated results. There are several aggregate values, such as count(), 
dcount(), countif(), and dcountif(), which we’ll discuss in this section. We’ll cover additional  
aggregate	Yalues	later	in	this	chapter,	such	as	finding	the	minimum	and	ma[imum	Yalues�	

The summarize	operator	Iollows	an	input	pattern	oI	first	speciIying	a	column	name	Ior	the	output-
ted results of the query you are about to run. This is optional; if nothing is chosen, the default name 
will be used. The second input is the name of the aggregate function you are using, such as count or 
dcount. The next output determines which column(s) you want passed through the aggregate function. 
That seems complicated, but you’ll see shortly that this can be extremely powerful.

:e·ll	start	the	first	Tuery	with	summarize, similar to what we did in the previous chapter, by select-
ing a random sample value—in this case, a table column—and pass it into the aggregate function. To 
do this, we will use the take_any() aggregate function. Note that any() has been deprecated. Run the 
following query; your output should be similar to Figure 2-5:

SigninLogs
| where TimeGenerated > ago (14d)
| project TimeGenerated, UserAgent, AppDisplayName
| summarize take_any(*)

FIGURE 2-5 A random sample row has been returned

This query returned a random row, and we altered our output to show the TimeGenerated, the 
UserAgent, and AppDisplayName columns. If we wanted to see just the value for UserAgent with  
summarize, we could also do that by specifying that column in the take_any() function. 
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Tip This query is useful for operational and security teams alike. If you don’t know which 
applications are currently leveraging WPAD, this will help you start to build that list. If you 
do see suspicious names or unexpected applications, these should be further investigated. 
–Michael Barbush, Senior Cloud Solution Architect

//Change timeframe to fit needs
DeviceNetworkEvents
| where RemoteUrl has 'wpad' and Timestamp > ago(1h)
|  summarize by InitiatingProcessFileName, InitiatingProcessVersionInfoProductName, 
RemoteUrl, ActionType

| sort by InitiatingProcessFileName asc

Because we have a good handle on the UserAgent value, let’s try and answer a question: Which 
UserAgent string values do we have in this environment, and how often do they show up? To do that, 
run the following query; your output should look similar to Figure 2-6. 

SigninLogs
| where TimeGenerated > ago (14d)
| summarize count() by UserAgent

FIGURE 2-6 UserAgents by how many times they were found 
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Again, a few things should stick out. First, we didn’t provide a column name for the count()  
aggregation, so it’s just named count_. We can set that display value, which we will do in the next 
query. Second, we have a wide range of values for count. A good operational practice is to look at the 
longer tail of these results by looking at user agents that have only a handful of results, which might 
identify clients that need to be updated or an attacker that has misspelled a user agent name when try-
ing	to	blend	in	with	the	normal	traIfic�	Run	the	Iollowing	Tuery�	the	output	will	be	similar	to	Figure	����

SigninLogs
| where TimeGenerated > ago (14d)
| summarize UserAgentCount = count() by UserAgent
| sort by UserAgentCount asc

FIGURE 2-7 UserAgents by how many times they were found, sorted from least to most

Many user agents have only been seen once in the last 14 days. But python-requests/2.28.1 sticks 
out; we should investigate it. We can add additional columns to the count() by. This will allow us to 
determine which user agent accessed each application. Run the following query; your output will be 
similar to Figure 2-8. 
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SigninLogs
| where TimeGenerated > ago (14d)
| summarize UserAgentCount = count() by UserAgent, AppDisplayName
| sort by UserAgent desc

FIGURE 2-8 UserAgents Sorted Z to A with what apps they accessed

The python-requests/2.28.1 request accessed the Microsoft Azure CLI application once. But even 
more interesting, we see other user agents named python-requests in this environment. Look to see 
what information you uncover in your environment. 

 

Tip	 7his	Tuery	summari]es	the	count	oI	$3,	reTuests	to	0icrosoIt	*raph	$3,s	Ior	a	specific	
application, with metadata about the clients, such as IP Address and UserAgent strings. This 
can	be	useIul	to	understand	more	about	the	deployment	and	use	oI	a	specific	application	in	
your	tenant�	7he	/ocation	field	reÁects	the	region	oI	the	0icrosoIt	*raph	serYice	that	serYes	
the request. This is typically the closest region to the client. –Kristopher Bash, Principal Prod-
uct Manager
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We can also look at this query from the application perspective if we want to know which  
application	has	been	accessed	the	most	by	which	user	agent�	7o	determine	this,	we·ll	simply	Áip	our	
count() by. Instead of counting by user agent, we’ll count by application and show which user agent  
is accessing that application the most. Run the following query; your output should be similar to  
Figure 2-9. 

SigninLogs
| where TimeGenerated > ago (14d)
| summarize AppDisplayNameCount = count() by AppDisplayName, UserAgent
| sort by AppDisplayNameCount desc

FIGURE 2-9 Most-accessed application by user agent

MicrosoftGraphActivityLogs
| where TimeGenerated > ago(3d)
| where AppId =='e9134e10-fea8-4167-a8d0-94c0e715bcea'
| summarize RequestCount=count() by  Location, IPAddress, UserAgent



CHAPTER 2 Data Aggregation 75

In this demo environment, the Azure Portal application with an Edge browser version 121.0.0.0 was 
used 2,653 times. At the start of this section, we focused on getting the distinct set of results returned, 
but we had to count manually. Then, we used a count() of the results returned, but these are not 
distinct. Let’s combine both of these with the aggregate function dcount(), which allows us to get the 
estimated distinct count by passing the column for which we want to get a distinct count and which 
additional columns we want to aggregate/group the data by. Let’s take our current example. What 
user agent is accessing the most unique applications? Run the following query; your output should be 
similar to Figure 2-10. 

SigninLogs
| where TimeGenerated > ago (14d)
| summarize AppDisplayNameCount = dcount(AppDisplayName) by UserAgent
| sort by AppDisplayNameCount desc

FIGURE 2-10 Distinct applications and how many times a user agent has accessed them

This is extremely useful information as we can see our most used user agent in the environment 
regarding the total number of applications it is accessing. Sorting the opposite way is also interesting 
to see what user agent is accessing only a small number of apps. These might be good candidates to be 
updated and brought into the standard browser versions for the environment. 
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Tip These queries offer critical insights into activities necessitating further scrutiny. This 
suite of queries is designed to enumerate operations linked to pivotal identity governance 
features, thereby illuminating the extent of Identity Governance and Administration (IGA) 
actiYities�	,t	aims	to	enhance	administrator	awareness	regarding	configuration	modifications	
and end-user actions, including access requests, approvals, and subsequent assignments. 
Further	e[ploration	oI	specific	operations	proYides	a	deeper	understanding	oI	the	access	
goYernance	state,	showcasing	the	eIficiency	oI	implemented	access	control	measures�	
Ensure your query time range includes as much history as you have enabled for retention in 
your log analytics workspace. –Jef Kazimer, Principal Product Manager

AuditLogs
| where LoggedByService == "Entitlement Management"
| summarize OperationCount = count() by OperationName, AADOperationType
| order by OperationCount desc
 
AuditLogs
| where LoggedByService == "Access Reviews"
| summarize OperationCount = count() by OperationName, AADOperationType
| order by OperationCount desc
 
AuditLogs
| where LoggedByService == "Lifecycle Workflows"
| summarize OperationCount = count() by OperationName, AADOperationType
| order by OperationCount desc
 
AuditLogs
| where LoggedByService == "PIM"
| summarize OperationCount = count() by OperationName, AADOperationType
| order by OperationCount desc

:e	can	also	Áip	this�	:hat	iI	we	want	to	see	how	many	uniTue	user	agents	access	each	application"	
We can see this number pretty quickly by getting the dcount() for the UserAgent column and grouping 
by application. Run the following query; your results should be similar to Figure 2-11:

SigninLogs
| where TimeGenerated > ago (14d)
| summarize UserAgentCount = dcount(UserAgent) by AppDisplayName
| sort by UserAgentCount desc

This is even more interesting; 100 different user agents access the Azure Portal! Thankfully, this is a 
test environment, but this tells a compelling story. Many customers will have their own line-of-business 
(LOB) applications in Microsoft Entra ID. Running a similar query and seeing many user agents will show 
the possible browsers that would need to be tested to ensure compatibility. That’s great data for the 
leadership	team	to	show	why	standardi]ation	on	specific	Yersions	should	be	warranted�	
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FIGURE 2-11 Counting the distinct user agents and which applications they accessed 

Note In the Log Analytics demo environment, UserPrincipalName, UserID, and 
UserDisplay Name are blank. However, these are excellent columns for your queries when 
looking for unique things in your environment. 

There are two other similar aggregation functions to count and dcount: countif and dcountif. 
These functions allow you to count the rows if the expression passed to it evaluates true. For example, 
we have many applications in our Microsoft Entra ID tenant. We want to be able to determine the num-
ber of access attempts per application, and we want to see how many occurred in the US region. You 
could accomplish this by running two separate queries, one for the total count and then another where 
you	filter	based	on	location�	But	with	countif, you can accomplish this in one query and see the results 
side by side. Run the following query; your results should be similar to the output in Figure 2-12:

SigninLogs
| where TimeGenerated > ago(14d)
| summarize TotalCount = count(), USLogins=countif(Location == "US") by AppDisplayName
| sort by USLogins desc
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FIGURE 2-12 Total logins per application and total US logins

This view is much easier to read than two separate queries. Those with a sharp eye will also notice 
that we combined two summarize	aggregate	Iunctions�	/ike	how	we	combined	multiple	data�filtering	
methods in Chapter 1, we can do some powerful things by combining those functions. We highlight a 
few of those throughout this chapter.

Tip These queries can help you get a sense of what is happening with your devices in 
,ntune�	7he	first	Tuery	will	show	you	the	count	oI	successIul	create,	delete,	and	patch	eYents	
for the last seven days. The second will show the number of device enrollment successes and 
failures broken out by operating system. Looking for patterns and changes can help indicate 
something is not working as expected. –Mark Hopper, Senior Product Manager

IntuneAuditLogs
| where TimeGenerated > ago(7d)
| where ResultType == "Success"
| where OperationName has_any ("Create", "Delete", "Patch")
| summarize Operations=count() by OperationName, Identity
| sort by Operations, Identity
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Going a step further, how many unique user agents are using that application in that US region? 
Again, we could run separate queries like before, but combining them is much more useful, so we will 
use the dcountif() to only count the distinct rows that evaluate to true based on the expression. Run 
the following query; the output should be similar to Figure 2-13:

SigninLogs
| where TimeGenerated > ago(14d)
| summarize TotalCount = count(), USUserAgent=dcountif(UserAgent,  
Location == "US") by AppDisplayName
| where USUserAgent > 0
| sort by USUserAgent desc

The dcountif function evaluates the column you want to have the distinct count of when the 
expression is evaluated to true. In this example, we are looking for the unique number of user agents 
when the location is US. Next, we grouped them by application display name (AppDisplayName). 

You’ll also notice we then have another where operator after summarize. So far in this book, we have 
filtered	first	and	then	done	something	with	the	output�	<ou	can	continue	filtering	your	Tuery	to	drill	
down	to	the	data	you	are	interested	in�	,n	this	e[ample,	we	then	filter	out	all	the	results	that	don·t	haYe	
a value and sort by descending order so the largest is at the top. Filtering and re-analyzing the data will 
be something we do repeatedly in the more advanced chapters of the book. 

There is one last thing to know about dcount() and dcountif(). Earlier, we said that it provides 
an estimate of distinct values. If you need complete accuracy, you can use count_distinct() or 
count_distinctif(), which are limited to 100 million unique values. We are trading accuracy for speed 
because dcount() and dcountif() functions estimate based on the cardinality of the dataset. They are 
also less resource-intensive. If you only need an estimate, use dcount() or dcountif().

IntuneOperationalLogs 
| where OperationName == "Enrollment" 
| extend PropertiesJson = todynamic(Properties)
| extend OS = tostring(PropertiesJson["Os"]) 
| extend EnrollmentTimeUTC = todatetime(PropertiesJson["EnrollmentTimeUTC"])
| extend EnrollmentType = tostring(PropertiesJson["EnrollmentType"])
| project OS, Date = format_datetime(EnrollmentTimeUTC, 'M-d-yyyy'), Result
| summarize 
    iOS_Successful_Enrollments = countif(Result == "Success" and OS == "iOS"), 
    iOS_Failed_Enrollments = countif(Result == "Fail" and OS == "iOS"), 
    Android_Successful_Enrollmenst = countif(Result == "Success" and  
OS == "Android"),
    Android_Failed_Enrollments = countif(Result == "Fail" and OS == "Android"),
    Windows_Succesful_Enrollments = countif(Result == "Success" and  
OS == "Windows"),
    Windows_Failed_Enrollments = countif(Result == "Fail" and OS == "Windows")
    by Date
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FIGURE 2-13 Total logins per application and by US access

Min, Max, Average, and Sum

Counting totals and determining the distinct number of rows is just the start when it comes to using 
summarize. There are many additional statistical types of information we’ll frequently want to pull 
Irom	our	dataset,	such	as	determining	the	first	and	last	time	something	occurred�	3erhaps	you	want	to	
determine the average number of connections to a resource or the total amount of disk space con-
sumed by your resources. There are aggregate functions to help you calculate these quickly. 

Determining the Min and Max
$	common	scenario	that	will	come	up	more	oIten	than	you	think	is	determining	the	first	or	last	 
occurrence of something. You can use the min() or max()	Iunctions	to	find	the	minimum	or	ma[imum	
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Yalue	oI	what	is	passed	to	it,	such	as	finding	the	first	time	someone	signed	in	to	an	application�	Run	the	
following query; your output should be similar to Figure 2-14:

SigninLogs
| where TimeGenerated > ago (14d)
| summarize TotalCount = count(), FirstEvent=min(TimeGenerated) by AppDisplayName
| sort by FirstEvent asc

FIGURE 2-14 7he	first	sign�in	eYent	in	the	application	and	the	total	sign�ins	Ior	that	app

:e	can	now	Tuickly	determine	the	first	time	a	sign�in	eYent	was	generated	Ior	that	application	and	
sort our results based on the earliest time. We can also do the opposite and determine the last time a 
sign-in event occurred for an application. To do that, we’ll use the max function. Update the query to 
match the one listed here; the output should be similar to Figure 2-15.

SigninLogs
| where TimeGenerated > ago (14d)
| summarize TotalCount = count(), LastEvent=max(TimeGenerated) by AppDisplayName
| sort by LastEvent desc
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FIGURE 2-15 The last sign-in event in the application and the total sign-ins for the app

The output is similar to our last result but now shows the last sign-in event for that application. As 
mentioned earlier, we can combine multiple summarize	Iunctions	to	refine	our	results	Iurther�	:e	can	
get	a	side�by�side	timeline	Yiew	oI	the	first	and	last	eYents	with	Must	the	min and max functions. Run the 
following query; your results should be similar to the output in Figure 2-16:

SigninLogs
| where TimeGenerated > ago (14d)
| summarize TotalCount = count(), FirstEvent = min(TimeGenerated), 
LastEvent=max(TimeGenerated) by AppDisplayName
| project AppDisplayName, TotalCount, FirstEvent, LastEvent
| sort by FirstEvent asc, LastEvent desc

Here, we are combining a few things that we’ve used so far in this book:

 1. First, we use our new min and max	aggregate	Iunctions	to	easily	pull	out	the	first	and	the	last	
time a sign-in event occurred. 

 2. Next, we re-order the column’s output to put the functions’ results side by side to make it 
easier to see the difference. 

 3. Finally,	we	sort	both	columns,	starting	with	the	first	eYent	and	then	the	last�	
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FIGURE 2-16 7he	first	and	last	sign�in	eYent	Ior	each	application	and	the	total	sign�ins	Ior	each	application

As we move into more advanced queries, you will see this similar pattern of combining multiple 
Iunctions	and	filters,	continuing	to	refine	the	Tuery,	and	then	Iormatting	the	output�	<ou	could	easily	
add	a	filter	Ior	a	specific	user	account	to	see	this	same	inIormation	but	Ior	that	user	account�

Both min() and max() functions have a corresponding minif() and maxif() function. These work 
similarly to the countif() and dcountif() functions, where you can provide an expression to be  
evaluated; if the expression evaluates to true, it will then determine their min and max range. 

The min and max functions return the value of a column, but what if you want the values for addi-
tional	columns	or	find	the	columns	where	that	Yalue	is	located"	<ou	would	use	the	arg_min() and 
arg_max()	aggregate	Iunctions�	<ou	would	proYide	the	first	column	Ior	which	you	want	to	find	the	
minimum or maximum values, followed by the other columns for which you’d also like these values 
returned. You’d enter an asterisk (*�	Ior	all	columns�	Run	the	Iollowing	Tuery	to	find	the	minimum	 
values of TimeGenerated; your output will be similar to Figure 2-17:

SigninLogs
| where TimeGenerated > ago (14d)
| summarize FirstEvent = arg_min(TimeGenerated, ConditionalAccessStatus, 
ClientAppUsed, AuthenticationRequirement) by AppDisplayName
| sort by FirstEvent asc 
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FIGURE 2-17 7he	minimum	Yalue	oI	7ime*enerated	by	application	with	the	additional	columns	specified

Here, we are looking for the minimum value of TimeGenerated³the	first	result	showing	an	appli-
cation sign-in event. Then, we also included additional columns we want to see the values of when 
TimeGenerated is at its minimum value, such as conditional access status, the client application used to 
access	the	application,	and	finally,	whether	it	was	a	single�Iactor	or	multiIactor	reTuest�	:e	can	run	a	
similar query using the arg_max and return all columns using a *. Run the following query; your output 
will be similar to Figure 2-18:

SigninLogs
| where TimeGenerated > ago (14d)
| summarize LastEvent = arg_max(TimeGenerated, *) by AppDisplayName
| sort by LastEvent desc

This is similar to the minimum-value results, except we start with the most recent event and return 
all the columns in the table. The scrollbar at the bottom of Figure 2-18 shows that we have many more 
output columns to see all the values for each application’s most recent event.
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FIGURE 2-18 Maximum value 

Determining the Average and Sum
7he	final	set	oI	statistical	Iunctions	we·ll	look	at	in	this	section	are	average and summation. Just as you 
learned	in	school,	these	Iunctions	will	find	the	avg(), otherwise known as the arithmetic mean, and 
sum(),	which	will	find	the	sum	oI	Yalues	in	a	column�	/et·s	run	the	Iollowing	Tuery	to	understand	how	
these work; your output should be similar to Figure 2-19:

SigninLogs
| where TimeGenerated > ago (14d)
| summarize AvgCreatedTime = avg(CreatedDateTime)by AppDisplayName
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FIGURE 2-19 The average time when a sign-in event occurred for each application

Here, we can see the average time an event was created per application. We can also expand this 
with the avgif() function. Like our previous aggregate functions that use an if function, we can 
evaluate an expression; if its results are true, that expression is used for the calculation. For this, let’s 
determine the average creation date if the user signed in from the US. Run the following query; your 
results should be similar to Figure 2-20:

SigninLogs
| where TimeGenerated > ago (14d)
| summarize AvgCreatedTime = avgif(CreatedDateTime, Location == "US")by 
AppDisplayName

6imilar	to	our	preYious	results,	we	are	now	filtering	on	the	aYerage	creation	time	iI	the	sign�in	came	
from the US. Some good examples of when to use average would be calculating the processor utiliza-
tion or memory consumption of our IaaS virtual machines or even more advanced functionality from 
our Internet of Things (IoT) devices that might be reporting the temperature and humidity of their 
locations. 
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FIGURE 2-20 Average time when a US sign-in occurred for each application

Tip This query looks at common performance metrics for virtual machines to help you 
look at resource consumption and if the virtual machines are sized correctly. –Laura  
Hutchcroft, Senior Service Engineer

Perf
| where TimeGenerated > ago(1h)
| where (ObjectName == "Processor" and CounterName == "% Processor Time") or 
        (ObjectName == "Memory" and CounterName == "Available MBytes")
| summarize avg(CounterValue) by Computer, CounterName

The next aggregate functions we will look at are sum() and sumif(). For these, you simply provide 
the column you want to summarize. The data type value in the column needs to be numeric, such as a 
decimal, double, long, or integer. For more information on data types, see Chapter 1, “Data Types and 
Statements.” Our sample sign-in logs don’t have any good columns to sum, so we are using a different 
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table, AppPerformanceCounters, for this query because it has more data with values that can be totaled. 
Run the following query; the results should be similar to Figure 2-21:

AppPerformanceCounters
| where  TimeGenerated > ago(14d)
| summarize sum(Value) by AppRoleName, Name

FIGURE 2-21 The sum of the application performance counters
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Going through these performance counters for an application is a bit outside of the scope of this 
book, but the aggregate functions used so far can be applied to this table and columns. Understand-
ing how much time an application has been executing or how much memory it has consumed might 
highlight places for optimization to drive some of the consumption costs down. 

We can see that the Fabrikam-App handles 7,835 requests per second, more than ch1- 
usagegen funcy37ha6, which performs 5,507 requests per second. We could have made this easier to 
read by only displaying that column. See “Visualizing Data” later in this chapter to see how to graph  
this data. 

So far, everything we’ve been looking at is just doing the aggregate function for the 14-day  
timespan we’ve provided. In the previous example, Fabrikam-App handled 7,835 requests per second 
over those 14 days. Was one day busier for that application than another? Which day was the slowest 
day? Can we reduce our resource count? You could change your query to be only for the last day and 
run it daily, or you can have KQL do that using a concept called binning, which is covered next. 

Bins, Percentages, and Percentiles

As we continue to analyze more of our data, we’ll often need ways to group this data out by different 
segments to answer questions. What day of the week was the most active? Which month of the year 
was the least active? We will use a common technique called binning to accomplish this and more. We’ll 
also frequently need to quickly convert the data into something a little easier to understand. Showing 
the percentage and the 25th or 95th percentile distribution for the data will help you tell a story with 
the data. 

Grouping Data By Values (Binning)
Binning, or as you’ll see it called, the bin() or floor() function, allows you to group your datasets by a 
smaller,	specific	set	oI	Yalues�	7he	bin function takes two parameters:

 ■ 7he	first	is	the	Yalue	you	want	to	round	down�	7his	can	be	the	int, long, real, datetime, or 
timespan types. (You’ll end up using timespan often.)

 ■ The second parameter is the bin size by which the values will be divided. This can be the int, 
long, real, or timespan types. 

The most common type of binning will be by a date interval, frequently using a per-day interval. The 
bin function would be bin(TimeGenerated, 1d). Another type of binning could be on different size 
groupings�	For	e[ample,	you	could	Tuery	how	much	Iree	space	was	on	a	disk	Ior	your	entire	Áeet	and	
then bin them by intervals of 50 GB to see how many fall into each bucket. 
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Let’s run through a few examples of using per-day bins. Run the following query; your results should 
be similar to Figure 2-22.

SigninLogs
| where  TimeGenerated > ago(14d)
| where ResultType == 0
| summarize SuccessfullSignIn=count() by bin(TimeGenerated, 1d)
| sort  by  TimeGenerated asc

FIGURE 2-22 Daily Successful sign-in count

:e	are	first	filtering	Ior	how	successIul	sign�ins	are�	,n	the	preYious	e[amples,	we	counted	them	
for those 14 days, but now you can see some days are busier than most. For most organizations, this is 
expected as people are off not working on the weekend. But the ability to bin by date is extremely  
useful. We’ll use this functionality multiple times throughout this book. 
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Let’s also look at our previous application example, where we looked at how many requests per 
second it performed. We can simply add a binning technique to our existing query to break that  
summarized column by that daily time interval. Run the following query; your output should be similar 
to Figure 2-23:

AppPerformanceCounters
| where  TimeGenerated > ago(14d)
| where Name == "Requests/Sec" and AppRoleName == "Fabrikam-App"
| summarize sum(Value) by AppRoleName, Name, bin (TimeGenerated, 1d)
| project TimeGenerated, AppRoleName, Name, sum_Value
| sort by TimeGenerated asc

FIGURE 2-23 Total requests per second, per day

:e	made	a	Iew	small	modifications	to	the	original	Tuery�	First,	we	only	filtered	Ior	the	application	
and performance counter we were interested in. Our summarize function is the same as before, except 
we added a 1-day bin interval. We then cleaned up the output and sorted by date. If you wished any of 
the previous queries had been broken down by different intervals, feel free to alter them using the bin 
function! 
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Tip	 7his	Tuery	looks	at	network	Áows	per	hour	Ior	the	last	��	hours�	/ook	Ior	patterns	and	
suspicious	or	long�running	network	Áows�	6ee	https://aka.ms/KQLMSPress/NetFlows for  
set-up requirements. –Laura Hutchcroft, Senior Service Engineer

AzureNetworkAnalytics_CL
| where TimeGenerated > ago(24h)
| summarize sum(InboundFlows_d), sum(OutboundFlows_d) by bin(TimeGenerated, 1h)

Percentage
Calculating percentages is another common task. There is no built-in “to percentage” function, but 
we can calculate things using the todouble() function, dividing values, and multiplying results by 
100—just as you would by hand. Let’s use an example with real-life recommendations and combine it 
with some of the new KQL skills you’ve picked up so far. What is the percentage of sign-ins using single-
factor authentication versus multifactor authentication? The summarize count() functions will tally the 
number of each authentication method, and then we use extend to calculate the percentage. Run the 
following query; your results should be similar to Figure 2-24:

SigninLogs
| where TimeGenerated > ago (14d)
| where ResultType == 0
| project TimeGenerated, AppDisplayName, UserPrincipalName, ResultType, ResultDes
cription,AuthenticationRequirement, Location
| summarize TotalCount=count(),MultiFactor=countif(AuthenticationRequirement == 
"multiFactorAuthentication"), SingleFactor=countif(AuthenticationRequirement == 
"singleFactorAuthentication")
| extend ['MFA Percentage']=(todouble(MultiFactor) * 100 / todouble(TotalCount))
| extend ['SFA Percentage']=(todouble(SingleFactor) * 100 / todouble(TotalCount))

FIGURE 2-24 Percentage of MFA and single-factor sign-ins

Thankfully, this is a test environment because those numbers look bad. If you see similar numbers in 
your production environment, stop reading and roll out multifactor authentication immediately. 

/et·s	break	down	this	Tuery�	7he	beginning	is	the	normal	stuII,	where	we	filter	by	time	and	 
successful sign-ins. Then, we pull the columns we want to work with and summarize the total count  
of all sign-ins, and then totals depending if the sign-ins are single-factor or multifactor. 

https://aka.ms/KQLMSPress/NetFlows
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Now, we will calculate the percentage of single-factor and multifactor by taking each integer total 
and casting the single-factor count and mulitfactor count to double using the todouble() function and 
multiplying by 100. Remember, as covered in the “Numerical Operators” section in Chapter 1, the data 
types can impact your results for numerical calculations. As you can see below, we have less than  
1 percent of multifactor authentication sign-ins! 

We can also round these results using the round() function, where you pass in the number you want 
to round and how much precision you want. We’ll use 2 and 3 digits in the query below to show you the 
difference. Update your previous query to the following; your results will be similar to Figure 2-25:

SigninLogs
| where TimeGenerated > ago (14d)
| where ResultType == 0
| project TimeGenerated, AppDisplayName, UserPrincipalName, ResultType, ResultDes
cription,AuthenticationRequirement, Location
| summarize TotalCount=count(),MultiFactor=countif(AuthenticationRequirement == 
"multiFactorAuthentication"), SingleFactor=countif(AuthenticationRequirement == 
"singleFactorAuthentication")
| extend ['MFA Percentage']=round((todouble(MultiFactor) * 100 / 
todouble(TotalCount)), 2)
| extend ['SFA Percentage']=round((todouble(SingleFactor) * 100 / 
todouble(TotalCount)), 3)

FIGURE 2-25 The rounded percentage of multifactor sign-ins and single-factor sign-ins

As you can see, you can round and alter how many digits you want to round to. This will be one of 
those common tactics you use repeatedly to calculate the percentage. 

Percentiles
:hat	iI	you	wanted	to	determine	iI	the	Yalues	Ior	the	column	are	larger	than	a	specific	percentage	
compared to the other data? For that, we’ll need to use the percentile() or percentiles() functions. 
Percentile() takes two parameters: the column you want to use for the calculation, and then the 
percentage you want to determine is equal to or larger than for that sample set. Percentiles() works 
similarly, except you can specify multiple comma-separated values. Let’s go back to the Application-
PerformanceCounters table and run the following query; your results should be similar to Figure 2-26:

AppPerformanceCounters
| where  TimeGenerated > ago(14d)
| where Name == "Available Bytes"
| summarize percentile(Value,50) by AppRoleName, Name



94 CHAPTER 2 Data Aggregation

FIGURE 2-26 The 50th percentile value for Available Bytes per application

Here, we can see the value of Available Bytes that would be 50 percent or larger of the values for 
each application. We can get the values for multiple percentages using percentiles(). Update your  
command to the following; your output will be similar to Figure 2-27:

AppPerformanceCounters
| where  TimeGenerated > ago(14d)
| where Name == "Available Bytes"
| summarize percentiles(Value,25,50, 75) by AppRoleName, Name 

FIGURE 2-27 The 25th, 50th, and 75th percentile values for available bytes per application
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These values fall along the 25 percent, 50 percent, and 75 percent percentiles. This type of query 
is very interesting when you are trying to determine how to allocate and size resources such as virtual 
machine size or Azure App Service plan to pick for capacity planning or looking at usage spikes. You 
can also leverage this when looking for anomalies or outliers in your datasets. For example, if you have 
a simple test application that authenticates 100 times a day, that isn’t the most concerning. However, if 
you looked at the percentiles of sign-ins and found that it was in the 95 percent percentile, that would 
probably be a big cause for concern. The simple test application should not be one of our environ-
ment·s	most	logged�in	applications�	(ither	something	is	misconfigured,	or	it·s	being	used	in	a	way	
outside its normal scope. Percentiles can help highlight those types of behaviors.

Lists and Sets

We’ve been returning lots of interesting data so far in our KQL journey. What if we needed to tem-
porarily store it to do some additional processing? For example, let’s say when we returned all the 
UserAgent strings, we wanted to check them against a known set of known malicious user agents. 
Another scenario would be a compromised user account, and we want to be able to quickly determine 
all the unique applications they have accessed from the time of known compromise until we regained 
control of the account. 

To be able to temporarily store some of these results or even create our own dataset, we’ll use a 
common programming concept called a dynamic array. We’ll cover more details of leveraging arrays in 
Chapter 3, “Advanced KQL Operators,” and Chapter 5, “Security and Threat Hunting,” but we’ll use two 
very common functions—lists and sets—to get you started. 

Lists
A list is pretty simple. You’ll add items to the list either manually or as part of a summarize query.  
/et·s	first	create	our	own	list	manually�	$gain,	we·ll	coYer	this	more	in	&hapter	�,	´6ecurity	and	7hreat	
Hunting.” Here, we’re just looking at a simple example to get you started. Run the following query; your 
output will be similar to Figure 2-28:

let worldSeriesChampions = datatable (teamName: string, yearWon: int)
[
    "New York Yankees", 2000,
    "Arizona Diamondback", 2001,
    "Anaheim Angels", 2002,
    "Florida Marlins", 2003,
    "Boston Red Sox", 2004,
    "Chicago White Sox", 2005,
    "St. Louis Cardinals", 2006,
    "Boston Red Sox", 2007,
    "Philadelphia Phillies", 2008,
    "New York Yankees", 2009,
    "San Francisco Giants", 2010,
    "St. Louis Cardinals", 2011,
    "San Francisco Giants", 2012,
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    "Boston Red Sox", 2013,
    "San Francisco Giants", 2014,
    "Kansas City Royals", 2015
];
worldSeriesChampions
| summarize mylist = make_list(teamName)

FIGURE 2-28 MLB World Series winners 2000–2015

Here, we can see the values—World Series winners from 2000 to 2015—inputted into this list. The 
New York Yankees and St. Louis Cardinals appear twice in the output. The list will store whatever is 
inputted, including multiple values of the same thing. But you can now manipulate this data as we’ve 
done throughout this chapter. Let’s group these winners by even and odd years. Update your query; 
the output should be similar to Figure 2-29. 

let worldSeriesChampions = datatable (teamName: string, yearWon: int)
[
    "New York Yankees", 2000,
    "Arizona Diamondback", 2001,
    "Anaheim Angels", 2002,
    "Florida Marlins", 2003,
    "Boston Red Sox", 2004,
    "Chicago White Sox", 2005,
    "St. Louis Cardinals", 2006,
    "Boston Red Sox", 2007,
    "Philadelphia Phillies", 2008,
    "New York Yankees", 2009,
    "San Francisco Giants", 2010,
    "St. Louis Cardinals", 2011,
    "San Francisco Giants", 2012,
    "Boston Red Sox", 2013,
    "San Francisco Giants", 2014,
    "Kansas City Royals", 2015
];
worldSeriesChampions
| summarize mylist = make_list(teamName) by isEvenYear= yearWon % 2 == 0
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FIGURE 2-29 MLB World Series winners 2000–2015, by even- or odd-numbered years

The San Francisco Giants sure seem to do well in even-numbered years. This data is just for fun but 
demonstrates you can input your own dataset and perform different aggregate techniques. Let’s go 
back to our built-in sample data and use a different function to make a list—the make_list_if()  
function. This will work similarly to the previous if functions we’ve seen throughout this chapter, where 
an expression evaluated as true will be added to the list. Run the following query; your output will be 
similar to Figure 2-30:

SigninLogs
| where TimeGenerated > ago (14d)
| summarize RiskLevels= make_list_if(RiskEventTypes_V2, RiskState == "atRisk") by 
AppDisplayName

FIGURE 2-30 Applications with associated sign-in risk events
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If the RiskState of a sign-in had risk indicated by the atRisk value, we then added the Risk-
EventType to the list. We then summarized this by application. In the output, we can see Azure Portal, 
0icrosoIt	2Ifice	���	3ortal,	and	0icrosoIt	���	6ecurity	and	&ompliance	&enter	haYe	risky	signs	taking	
place. The other apps did not, so no risk events were added to their lists, essentially null lists. Depend-
ing on what you are trying to determine, you might want to remove the duplicate values. In other 
words, you might want only to store the distinct values. For that, we’ll need to use sets.

Sets
The make_set() function works very similarly to the make_list, except it only stores the distinct values. 
Let’s rerun our previous World Series champions query, but instead of making a list, let’s make a set. 
The output should be similar to Figure 2-31. 

let worldSeriesChampions = datatable (teamName: string, yearWon: int)
[
    "New York Yankees", 2000,
    "Arizona Diamondback", 2001,
    "Anaheim Angels", 2002,
    "Florida Marlins", 2003,
    "Boston Red Sox", 2004,
    "Chicago White Sox", 2005,
    "St. Louis Cardinals", 2006,
    "Boston Red Sox", 2007,
    "Philadelphia Phillies", 2008,
    "New York Yankees", 2009,
    "San Francisco Giants", 2010,
    "St. Louis Cardinals", 2011,
    "San Francisco Giants", 2012,
    "Boston Red Sox", 2013,
    "San Francisco Giants", 2014,
    "Kansas City Royals", 2015
];
worldSeriesChampions
| summarize myset = make_set(teamName) by isEvenYear= yearWon % 2 == 0

Notice that each team only appears once in that set, whereas previously, the San Francisco Giants 
appeared multiple times in the even-year list. This is because only distinct values are stored. 

The make_set_if() function works similarly to make_list_if(), but once again, it will only store 
distinct values. Let’s rerun our previous make_list_if() query but store it as a set instead. The output 
should be similar to Figure 2-32:

SigninLogs
| where TimeGenerated > ago (14d)
| summarize RiskLevels= make_set_if(RiskEventTypes_V2, RiskState == "atRisk") by 
AppDisplayName
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Symbols
- operator, 50
/ operator, 50
+ operator, 50
== operator, 50, 236–237
!= operator, 50, 236–237
!contains operator, 235–236
!has operator, 233–234
!has_any operator, 234
!in operator, 28, 237–238
% operator, 50
* operator, 50
* wildcard, 16–17
< operator, 50
<= operator, 50
> operator, 50
>= operator, 50
! symbol, 234

A
abs() operator, 239–240
advanced hunting, 173, 178–179, 188

best practices, 190–191
detection rules, 190
examples, 173–174

ADX (Azure Data Explorer), 198
cluster, setting up, 176
connecting as a data source to Power BI, 200–201
web UI, 199–200

aggregate function/s, 114–115
countif(), 77–79
dcount(), 75, 76
dcountif(), 79
sum(), 87–89
sumif(), 87–89
take_any(), 70

ago operator, 51, 52–54, 238–239, 404
anomaly detection, 412–415
API, Logs Ingestion, 209–210

application
scanning, 174
usage, 180–181

area chart, creating, 107–108
arg_max function, 83–84
arg_max() operator, 250–252
arg_min function, 83
arg_min() operator, 252
arithmetic mean, 85
array

dynamic, 95
JSON, 157–158

atomic indicator, 267
attacks, ransomware, TTPs (tactics, techniques, and  

procedures), 347–362
Audit Logs, Intune, 186

finding	settings	changes	in	policies,	���–���
graphical representation of policy changes by user, 186
hunting	specific	policy	group	assignment	changes,	���

auditing security posture, 310–311
endpoint devices, 321–329
guest accounts, 319–321
MFA (multifactor authentication), 311–318
user accounts, 318

authentication, 267, 311–318. See also MFA (multifactor 
authentication)

authorization, 267
automation, incident response, 188
avg() function, 85–87
avgif() function, 86–87
az monitor log-analytics query command, 9
Azure, 1

documentation, 198
enabling Diagnostic Settings, 183

Azure CLI, 9
Azure Data Explorer, 193
Azure Data Studio, 8, 204
Azure Monitor

Agent, 209
diagnostic settings, 5–8
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Logs Ingestion API, 209–210
pricing page, 8
query performance indicators, 202–203
transformations, 206, 207–208

cost considerations, 210–211
creating, 209
custom data sources, 210
DCRs (data collection rules), 208
reasons for using, 207
supported tables, 207
working with multiple destinations, 209
workspace transformation DCR, 208

workbooks, 191
for data analysis, 192
effective, 196–197
exploring data sources, 193
getting started, 192–193
key	Ieatures	and	benefits,	���–���
mastering visualization, 194–195
queries, 195
real-world use cases and examples, 197–198
styling and customization, 196

Azure Resource Graph, 193

B
bar chart, 102
base64_decode_tostring() function, 152–153, 422

base64 decoding in data transformation  
pipelines, 155

best practices, 154
chaining functions for complex decoding, 154
decoding base64 strings in log analysis, 155
error handling and validation, 154
handling large base64-encoded strings, 154

best practices
advanced hunting, 190–191
base64_decode_tostring() function, 154
JSON

avoid full parsing, 156
early	filtering,	���
use effective aggregation functions, 156

materialize() function, 169
performance optimization, 128
using KQL in IT operations, 177–178
using variables in KQL, 123–124

bin() function, 162
binning, 89–92

datetime, 163–164
null, 164
numeric, 162–163
timespan, 163

Bool data type, 13
built-in functions, 164

C
calculated values, 119
calculating, percentage, 92–93
case sensitivity

search, 25–26
startswith/endswith operator, 31–32

case() statement, 309, 390–392
case studies

detecting and mitigating security threats using  
advanced hunting, 178–179

improving incident response with KQL, 180–181
securing cloud infrastructure, 179–180

certutil.exe, 354
chaining functions, 154
chart, 109

area, 107–108
bar, 102
column, 103–105
line, 109
pie, 101–102
rendering values, 109–110
scatter, 109
time, 105–106, 113

CIDR (Classless Inter-Domain Routing) notation. See  
,3�prefi[	notation

cloud
common security challenges, 174
hardening security, 175
securing the infrastructure, 179–180

coalesce() operator, 392–393
codes, Microsoft Entra ID, 268
column chart, creating, 103–105
columns

removing, 59
sorting, 42–44

combining, data summation operators, 252–254
command/s, 2. See also operator

az monitor log-analytics query, 9
pipe character ( | ), 10

comments, adding to a query, 10–11
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conditional access policies, 21–22, 68, 102, 364, 365
failure event, 366–367, 368–369
token protection, 157–158

configuration, Intune diagnostic settings, 185–186
constants, creating with let operator, 118–119
contains operator, 27–28, 235–236
cost, transformations, 210–211
count() operator, 242–244
countif() function, 77–79
Cousteau, Jacques, 10
creating

constants with let operator, 118–119
lists, 95–97
transformations, 209
user�defined	Iunctions,	���
views, 122
visualizations

area chart, 107–108
bar chart, 102
column chart, 103–105
line chart, 109
pie chart, 101–102
scatter chart, 109
time chart, 105–106

Curzi, Simone, Designing and Developing Secure Azure 
Solutions, 4

customization, Azure workbook, 196
CVE (Common Vulnerabilities and Exposures), 328–329
cybersecurity, 221

auditing security posture, 310–311
endpoint devices, 321–329
guest accounts, 319–321
MFA (multifactor authentication), 311–318
user accounts, 318

benefits	oI	using	.4/	Ior,	���
ad hoc digital forensics and investigations, 

225–226
cybersecurity-focused operators, 48–228
easy pivoting between datasets, 223–224
eIficient	with	large	data	Yolumes,	���
Áe[ibility	Ior	sources	and	data	structures,	���
forgiving query crafting, 226
inbuilt visualization tools, 226
out-of-the-box data aggregation and summation, 

224–225
querying against time, 225
versatility, 227

data manipulation operators

extend, 257–258
externaldata, 264–266
let, 262–264
parse(), 258–260, 297–298
project, 254–257
split(), 260–261, 294–296
trim, 261–262

data summation operators, 241–242
arg_max(), 250–252
arg_min(), 252
combining, 252–254
count(), 242–244
dcount(), 244–245
make_list(), 246–247
make_set(), 247–249
max(), 249–250
min(), 252

environment, 221–222
searching operators, 228–230

in and !in, 237–238
!=, 236–237
!has, 233–234
!has_any, 234
==, 236–237
contains and !contains, 235–236
has, 230–232
has_all, 233
has_any, 232–233

time operators, 238
abs(), 239–240
ago, 238–239
between, 239
datetime_diff(), 240–241

D
data

aggregation, 224. See also aggregate function/s
geolocation, 415–419
joining, 129–130

on	multiple	fields,	���–���
on multiple tables, 386

schema, 189
visualizations, 100, 109

area chart, 107–108
bar chart, 102
column chart, 103–105
line chart, 109
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data

pie chart, 101–102
scatter chart, 109
time chart, 105–106, 113

data manipulation operators. See also sorting
extend, 257–258
externaldata, 264–266
let, 262–264
order alias, 41–44
parse(), 258–260
project, 254–257
sort operator, 41–44
split(), 260–261
trim, 261–262

data sources, 2, 193
data summation operators, 241–242

arg_max(), 250–252
arg_min(), 252
combining, 252–254
count(), 242–244
dcount(), 244–245
make_list(), 246–247
make_set(), 247–249
max(), 249–250
min(), 252

data type, 50–51
Bool, 13
categories, 13
datetime, 13, 51
decimal, 12
dynamic, 13
Guid, 13
Int, 12
real, 12
string, 12
timespan, 13

datatable operator, 230
date and time, formatting, 56–59
datetime, 13, 163–164
datetime_diff() operator, 240–241, 406–408
DAX, 204
dcount() function, 75, 76
dcount() operator, 244–245
dcountif() function, 79
DCR (data collection rule), 208, 209, 209

templates
combination of Azure and custom tables, 213–214

multiple Azure tables, 212–213
single destination, 211–212

decimal data type, 12
deconÁiction, 342
default values,	user�defined	Iunction,	���
detection rules, advanced hunting, 190
DevOps, integrating security into the pipeline with KQL, 

174
diagnostic settings

enabling in Azure, 183
enabling in Azure services, 184
Intune, 185–186

distinct operator, 67–70, 282
documentation, Azure, 198
double, 12
dynamic array, 95
dynamic data type, 13

E
early	filtering, 203
email, investigating phishing attacks, 277–279, 289–292

event data, 279–282
indicators, 278–279
URL info, 282–289

endpoint devices, querying, 321–329
environment

cybersecurity, 221–222
mapping, 357
setting up, 4

equals operator, 18–19
evaluate pivot() operator, 423–424
Event Hub, 8
exporting, Kusto queries to M, 204–205
extend operator, 37–40, 257–258
externaldata operator, 135–136

best practices, 137
syntax and parameters, 136
use cases

analyzing processor utilization, 136–137
dynamic thresholds for processor utilization, 137

extract() function, 64
extract operator, 401–402
extract_all operator, 402–403
extract_ json() function, 155
extracting data, from strings, 150
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F
filter�ing, 13

early, 203
JSON data, 155
seriesBfir��	and	seriesBiir��	Iunctions,	���–���
time, 64
unioned data, 125–126

finding
settings changes in policies, 186–187
short-lived connections, 172

firewall	log	parsing, 292–294
fi[ing	the	other	deYices,	���–���
parse() operator, 297–298
split() operator, 294–296
timestamps, 298–300

building, 302
changing to UTC, 303–304
converting decimal points to colons, 301–302
removing ordinals, 300
removing time zones, 301

Áoor��	Iunction, 89–92
format_datetime function, 58–59
format_timespan function, 58–59
formatting, date and time, 56–59
forward slash (/), 10
fullouter join, 132, 377–379
function/s, 424–429. See also aggregate function/s; 

operator/s
arg_max(), 83–84
arg_min(), 83
avg(), 85–87
avgif(), 86–87
base64_decode_tostring(), 152–153, 422

chaining functions for complex decoding, 154
decoding base64 strings in log analysis, 155
error handling and validation, 154
handling large base64-encoded strings, 154

bin(), 89–92, 162
datetime bins, 163–164
null bins, 164
numeric binning, 162–163
timespan bins, 163

built-in, 164
chaining, 154
countif(), 77–79
dcount(), 75, 76
dcountif(), 79

extract(), 64
extract_ json(), 155
Áoor��,	��–��
format_datetime(), 58–59
format_timespan(), 58–59
geo_info_from_ip_address(), 144–146
getschema(), 11–12
ipv4_is_in_range(), 138–139
ipv4_is_match(), 139
ipv4_is_private(), 142–143
ipv6_compare(), 139–140
ipv6_is_match(), 140–142
isnotempty(), 44
isnotnull(), 44–45
make_list_if(), 97–98
make_set(), 98
make_set_if(), 98–100
materialize(), 123, 167, 218

advantages, 167
best practices, 169
common mistakes to avoid, 169–170
performance improvement examples, 168

max(), 80–84
maxif(), 83
min(), 80–84
minif(), 83
now(), 55–56
parameters, specifying default values, 121–122
parse(), 48–49
percentile, 93–95
percentiles, 93–95
Tuery�defined,	���
reusable, 120–121
round, 93
seriesBfir��,	���–���
series_iir(), 159–160
stored, 164–165
sum(), 87–89, 91
sumif(), 87–89
take_any(), 70
todouble(), 92–93, 315
user�defined,	���

creating and declaring, 165
default values, 166
invoking, 166
syntax and naming conventions, 165
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Gantenbein, Heinrich, Designing and Developing Secure Azure Solutions

G
Gantenbein, Heinrich, Designing and Developing Secure 

Azure Solutions, 4
geo_info_from_ip_address() function, 144–146
geolocation, 415–419
getschema() function, 11–12
GitHub repositories, 3, 431–432
grouping data, by values, 89–92
guest accounts, querying, 319–321
Guid, 13

H
hands-on training, 176

ingesting and exploring data using KQL, 176
setting up an ADX cluster, 176
writing complex queries for advanced analytics, 177

hardening cloud security, 175
has operator, 23–25, 28, 230–232
has_all operator, 233
has_any operator, 28, 29–31, 173, 232–233
hasprefi[�hassuIfi[	operator, 31–33
Howard, Michael, Designing and Developing Secure Azure 

Solutions, 4
hunting

advanced, 173–174, 178–179, 188
using time, 405–406
wide, 351, 354–355

I
iff() operator, 389–390
IGA (Identity Governance and Administration), 76
incident response, 225–226

automation, 188
integrating	.4/	into	the	workÁow,	���–���
Microsoft Entra ID compromise, 329–347
phishing attacks, 277–279, 289–292

email event data, 279–282
indicators, 278–279
investigating URL info, 282–289

post-incident reporting, 347–348
tracking non-compliant devices, 187–188
user compromise in Microsoft 365, 266–271, 276–277

reviewing events in Microsoft Defender for Cloud 
Apps, 275–276

reviewing Microsoft Entra ID audit log, 272–275
summarizing the data, 271

indexing, 230, 231, 399
indicators

of compromise, 347
malicious actor, 369–370
phishing attack, 278–279
query performance, 202–203

infrastructure
cloud, securing cloud infrastructure, 179–180
scanning, 174

inner join, 130–131, 374–377
innerunique join, 130, 377
Int data type, 12
IntelliSense, 61–63
Intune, 184

Audit Logs, 186
finding	settings	changes	in	policies,	���–���
graphical representation of policy changes by 

user, 186
hunting	specific	policy	group	assignment	

changes, 187
diagnostic settings, 185–186

invoking,	user�defined	Iunctions,	���
IOC (indicators of compromise), 347, 350
IP address

getting geolocation from, 144–145
private, 142
private, searching for, 419–420
public, searching for, 420

,3�prefi[	notation, 138, 143
ipv4_is_in_range() function, 138–139
ipv4_is_match() function, 139
ipv4_is_private() function, 142–143, 144
ipv6_compare() function, 139–140
ipv6_is_match() function, 140–142
isnotempty() function, 44
isnotnull() function, 44–45
ISV (independent software vendor), 8
IT operations. See also incident response; Intune

advanced hunting with KQL, 173
advancing your KQL skills, 182–183
best practices for using KQL in, 177–178
enabling Diagnostic Settings in Azure, 183
getting started with KQL, 172
hands-on training

ingesting and exploring data using KQL, 176
setting up an ADX cluster, 176
writing complex queries for advanced  

analytics, 177
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improving incident response with KQL, 180–181
integrating security into DevOps pipeline  

with KQL, 174
monitoring application usage, 180–181
securing cloud infrastructure, 179–180

J
join operator

joining data, 129–130
versus union operator, 127–128

joins and joining, 371–374
data	on	muliple	fields,	���–���
fullouter, 132, 377–379
inner, 130–131, 374–377
innerunique, 130, 377
leftanti, 134, 380–381
leftouter, 131, 379–380
leftsemi, 132–133, 381–382
on multiple tables, 386
rightanti, 134–135, 383–384
rightouter, 131–132, 382–383
rightsemi, 133–134, 384–385

Jones, Don, 1
JSON

aggregating data, 156
arrays, 157–158
best practices for optimizing processing

avoid full parsing, 156
early	filtering,	���
use effective aggregation functions, 156

extracting properties, 155
filtering	data,	���
joining data, 158
nested objects, 158
parsing, 395–396

jump host, detecting user login, 358

K
KQL, 10

Advanced mode, 189
Azure data sources, 2
benefits	oI	using	Ior	cybersecurity,	���

ad hoc digital forensics and investigations, 
225–226

cybersecurity-focused operators, 48–228
easy pivoting between datasets, 223–224
eIficient	with	large	data	Yolumes,	���

Áe[ibility	Ior	sources	and	data	structures,	���
forgiving query crafting, 226
inbuilt visualization tools, 226
out-of-the-box data aggregation and summation, 

224–225
querying against time, 225
versatility, 227

from the command line, 9
contributing to the community, 429–431
hands-on training, 176

ingesting and exploring data, 176
setting up an ADX cluster, 176
writing complex queries for advanced analytics, 177

Query Builder, 188
query structure, 10–11
reasons for learning, 1
resources, 432
schema exploration, 189
setup, Log Analytics demo, 4–5

Kusto CLI, 9
Kusto/Data Explorer Connector, 205–206
Kusto.Explorer, 8–9

L
ladder chart, 109
learning, queries, 2–3
left goalpost, 239
leftanti join, 134, 380–381
leftouter join, 131, 379–380
leftsemi join, 132–133, 381–382
let operator, 262–264, 386–389

calculated values, 119
creating constants, 118–119
creating views, 122
reusable functions, 120–121
using materialize(), 169
using multiple variables in queries, 121
using with union operator, 126–127

let statement, 13
limit operator, 17
line chart, creating, 109
list, creating, 95–97
living-off-the-land binaries, 347–348
Log Analytics

demo setup, 4–5
Query Performance Pane, 217
setting up a workspace, 185
user interface, 59–63
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logs and logging, 193, 362
destinations, 8
firewall,	parsing,	���–���

fi[ing	the	other	deYices,	���–���
parse() operator, 297–298
split() operator, 294–296
timestamps, 298–304

MDE (Microsoft Defender for Endpoint),  
321–325

Microsoft Entra ID, 6–7
sign-in, monitoring, 175–176

Logs Ingestion API, 209–210

M
make_list() operator, 246–247
make_list_if() function, 97–98
make_set() function, 98
make_set() operator, 247–249
make_set_if() function, 98–100
make-series operator, 110–114, 158–159, 410
materialization, 123
materialize() function, 167, 218

advantages, 167
best practices, 169
common mistakes to avoid, 169–170
performance improvement examples, 168

max function, 80–84
max() operator, 249–250
maxif function, 83
MDE (Microsoft Defender for Endpoint), 321–325, 

349–350
metrics, 193
MFA

investigating user compromise, 266–277
performing a security audit, 311–318

Microsoft 365, user compromise, investigating, 266–271, 
276–277
reviewing events in Microsoft Defender for Cloud 

Apps, 275–276
reviewing Microsoft Entra ID audit log, 272–275
summarizing the data, 271

Microsoft Azure. See Azure
Microsoft Defender for Cloud Apps, 275–276
Microsoft Entra ID

audit log, 272–275
codes, 268
compromise, 329–347
log sources and destinations, 6–7

sign-in logs schema, 311–312
test sign-in dataset, 364
tracking and visualizing authentication methods, 159

Microsoft Graph, 73, 135
Microsoft Intune. See Intune
Microsoft Sentinel, 2, 161
min function, 80–84
min() operator, 252
minif function, 83
monitoring

query performance, 218–219
sign-in events, 21–32

mv-apply operator, 370
versus mv-expand, 371
searching for mailbox creation rules, 370–371
syntax, 370

mv-expand operator, 146, 364–370
modes of expansion, 147
versus mv-apply, 371
single column–array expansion, 147
single column–bag expansion, 147
single column–bag expansion to key-value pairs, 148
syntax, 146
typeof() clause, 149
when to use, 151–152
zipped two columns, 148–149

N
naming conventions

user�defined	Iunction,	���
variable, 123

nested objects, JSON, 158
next() operator, 406–408
non-compliant devices, tracking, 187–188
not () operator, 234
notebooks, 204
now() function, 55–56
null bins, 164
nulls, 44–45
numeric binning, 162–163
numerical operators, 50–51

O
obfuscation, 66
2Ifice+ome, 270–271
operations, 3–4
in operator, 28–31, 50
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between operator, 52, 54–55
in operator, 237–238
between operator, 239
operator/s

!=, 50
!has_any, 234
ago, 51, 404
between, 52
coalesce(), 392–393
contains, 27–28
data manipulation

extend, 257–258
externaldata, 264–266
let, 262–264
parse(), 258–260, 297–298
project, 254–257
split(), 260–261, 294–296
trim, 261–262

data summation, 241–242
arg_max(), 250–252
arg_min(), 252
combining, 252–254
count(), 242–244
dcount(), 244–245
make_list(), 246–247
make_set(), 247–249
max(), 249–250
min(), 252

datatable, 230
datetime_diff(), 406–408
distinct, 67–70, 282
equals, 18–19
evaluate pivot(), 423–424
extend, 37–40
externaldata, 135–136

analyzing processor utilization, 136–137
best practices, 137
dynamic thresholds for processor utilization, 137
syntax and parameters, 136

extract, 401–402
extract_all, 402–403
has, 23–25, 28
has_any, 28, 29–31, 173
hasprefi[�hassuIfi[,	��–��
iff(), 389–390
in, 28–31, 50
join, 127–128

fullouter join, 132
inner join, 130–131

innerunique join, 130
joining data, 129–130
leftanti join, 134
leftouter join, 131
leftsemi join, 132–133
rightanti join, 134–135
rightouter join, 131–132
rightsemi join, 133–134

let, 386–389
calculated values, 119
creating constants, 118–119
creating views, 122
defining	reusable	Iunctions,	���–���
using materialize(), 169
using multiple variables in queries, 121
using with union operator, 126–127

limit, 17
make-series, 110–114, 158–159, 410
mv-apply, 370

searching for mailbox creation rules, 370–371
syntax, 370

mv-expand, 146, 364–370
modes of expansion, 147
single column–array expansion, 147
single column–bag expansion, 147
single column–bag expansion to key-value  

pairs, 148
syntax, 146
typeof() clause, 149
when to use, 151–152
zipped two columns, 148–149

next(), 406–408
numerical, 50–51
parse, 149–150

extracting data from a well-formatted string, 150
extracting multiple parts from a string, 150
when to use, 151–152

parse_ json(), 395–396
parse_url(), 398–399
parse_user_agent(), 397–398
parse_xml(), 397
parse-where, 393–395
prev(), 406–408
print, 63–64
project, 33–37, 173
regex, 399–401
render, 100
search, 14–17, 354–356
searching, 228–230
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!in, 28, 237–238
!=, 236–237
!has, 233–234
!has_any, 234
==, 236–237
contains and !contains, 235–236
has, 230–232
has_all, 233
has_any, 232–233
not (), 234

series_stats, 411–415
sort, 41–44
startswith/endswith, 31–33
string, 217
summarize, 70–79
take, 17
time, 51, 238

abs(), 239–240
ago, 52–54, 238–239
between, 54–55, 239
datetime_diff(), 240–241

top, 45–46, 173
top-nested, 114–115
toscalar(), 422–423
trim, 48
union, 124–125, 173, 351–353

avoiding wildcards in table references, 127
filtering	and	sorting	unioned	data,	���–���
versus join operator, 127–128
optimizing performance, 127
parameters, 124
syntax, 124
using let statements with, 126–127

where, 18–33, 155, 173
order alias, 41–44

P
parameters

externaldata operator, 136
function, specifying default values, 121–122
make-series operator, 112
union operator, 124

parse functions, 48–49
parse() operator, 149–150, 258–260

extracting data from a well-formatted string, 150
extracting multiple parts from a string, 150
when to use, 151–152

parse_ json() operator, 395–396

parse_url() operator, 398–399
parse_user_agent() operator, 397–398
parse_xml() operator, 397
parse-where operator, 393–395
parsing, 46

firewall	log,	���–���
fi[ing	the	other	deYices,	���–���
parse() operator, 297–298
split() operator, 294–296
timestamps, 298–304

JSON, 156
percentage

calculating, 92–93
rounding, 93

percentile() function, 93–95
percentiles() function, 93–95
performance

best practices, 128
query

monitoring, 218–219
optimizing, 168, 215–217

SQL server, evaluating, 174–175
union operator, 127

phishing attacks, investigating, 277–279, 289–292
email event data, 279–282
indicators, 278–279
URL info, 282–289

pie chart, creating, 101–102
pipe character ( | ), 10
pivot chart, 109
policies, 361

conditional access, 21–22, 68, 102, 364, 365
failure event, 366–367, 368–369
token protection, 157–158

finding	settings	changes	in,	���–���
hunting	specific	group	assignment	changes,	���

post-incident reporting, 347–348
Power BI, 198

connecting ADX as a data source, 199–200
connectivity modes, 199
Desktop, 200–201
Kusto/Data Explorer Connector, 205–206

Power Query M, 204
predicate, 18
prev() operator, 406–408
preventative controls, 361
pricing, Azure Monitor, 8
print operator, 63–64
private IPv4 address, 142, 419–420



searching operators

 443

processor utilization
analyzing, 136–137
dynamic thresholds, 137

project operator, 33–37, 173, 254–257
public IP address, searching for, 420

Q
Query Performance Pane, 217
query/ies

* wildcard, 16–17
adding comments, 10–11
advanced, 177
advanced hunting, 173–174, 178–179
application scanning, 174
contributing to the KQL community, 429–431
�defined	Iunctions,	���
exporting to M, 204–205
finding	risky	users,	���–���
finding	settings	changes	in	policies,	���–���
finding	short�liYed	connections,	���
geolocation information, 415–419
guest account, 319–321
hardening cloud security, 175
incident response, 180–181
infrastructure scanning, 174
IP address, 419–421
learning, 2–3
log, optimizing, 202. See also logs and logging

avoid using where clauses, 203
early	filtering	oI	records,	���
use effective aggregation commands, 204

materialization, 123
MFA, 311–318
monitoring sign-in logs, 175–176
operator

equals, 18–19
limit, 17
search, 14–17
take, 17

performance
indicators, 202–203
monitoring and troubleshooting, 218–219
optimizing, 215–217

pipe character ( | ), 10
predicate, 18
results, obfuscating, 66
sample, 190
securing cloud infrastructure, 179–180

service principal, 160–161
SQL server performance, evaluating, 174–175
structure, 10–11
template, 430–431
time, 225
tracking and visualizing Microsoft Entra ID  

authentication methods, 159
user account, 318, 329–347
variables, 118

best practices, 123–124
calculated values, 119
naming conventions, 123
using multiple, 121

workbook, 195

R
ransomware, TTPs (tactics, techniques, and procedures), 

347–362
rate-limit exhaustion, 184
Real data type, 12
reconnaissance tools, 357
regex, 399–401
regular expressions, 46, 64, 160

enhancing detection rules, 162
in Microsoft Sentinel, 161
testing, 161–162

removing, columns, 59
render operator, 100. See also visualizations
reports, post-incident, 347–348
reusable functions, 120–121
right goalpost, 239
rightanti join, 134–135, 383–384
rightouter join, 131–132, 382–383
rightsemi join, 133–134, 384–385
risky users,	finding,	���–���
round function, 93

S
scatter chart, creating, 109
schema, 189
search, case sensitivity, 25–26
search operator, 14–17, 354–356
searching operators, 228–230

in and !in, 237–238
!=, 236–237
==, 236–237
has, 230–232
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searching operators

has_all, 233
has_any, 232–233
not (), 234

security. See also cybersecurity
information, 4
integrating into DevOps pipeline with KQL, 174
operational, 3–4
posture, auditing, 310–311

endpoint devices, 321–329
guest accounts, 319–321
MFA (multifactor authentication), 311–318
user accounts, 318

seriesBfir��	Iunction, 159–160
series_iir() function, 159–160
series_stats operator, 411–415
service principal, querying, 160–161
set statement, 13
sets, 98–100
setup

Azure Monitor, diagnostic settings, 5–8
Log Analytics demo, 4–5

short-lived connections,	finding,	���
SIEM (security information and event management), 2, 8, 

223, 225
sign-in logs and events, 1, 364

anomaly detection, 412–415
conditional access policies, 364, 365–367
finding	risky	users,	���–���
geolocation information, 415–419
jump host, 358
monitoring, 21–32, 175–176, 311–312. See also user 

accounts
RDP, 359

SignInLogs, 135
sort operator, 41–44
sorting

ascending/descending, 45–46
by column header, 59
columns, 42–44
dealing with nulls, 44–45
unioned data, 125–126

split() operator, 260–261, 294–296
splitting strings, 46–48
SQL server performance, evaluating, 174–175
startswith/endswith operator, 31–33
statement

case(), 309
let, 13

set, 13
tabular expression, 13

stored functions, 164–165
String, 12
string/s

extracting data, 150
obfuscating, 66
operators, 217
terms, 229–230

strings, splitting, 46–48
structure, KQL query, 10–11
sum() function, 87–89, 91
sumif() function, 87–89
summarize operator, 70–79
syntax

externaldata operator, 136
mv-apply operator, 370
mv-expand operator, 146
RE2, 161
union operator, 124
user�defined	Iunction,	���

T
tabular expression statement, 13
take operator, 17
take_any() function, 70
template

DCR (data collection rule)
combination of Azure and custom tables, 213–214
multiple Azure tables, 212–213
single destination, 211–212

query, 430–431
terms, 229–230
testing, regular expressions, 161–162
time

advanced queries, 403–406
chart, 105–106, 113
filtering,	��
as hunting mechanism, 405–406
operators, 51, 238. See also date and time

abs(), 239–240
ago, 52–54, 238–239, 404
between, 54–55, 239
datetime_diff(), 240–241

pivot, 109
querying against, 225
-series analysis, 158–160, 408–411
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visualization/s

Timespan, 13
timespan bins, 163
timestamps, 298–300

adding additional time zones, 404
building, 302
changing to UTC, 303–304
converting decimal points to colons, 301–302
removing ordinals, 300
removing time zones, 301

todouble() function, 92–93, 315
tool/s

Azure Data Studio, 8
reconnaissance, 357
visualization, 226

top operator, 45–46, 173
top-nested operator, 114–115
toscalar() operator, 422–423
tracking, non-compliant devices, 187–188
transformations, 206, 207–208

cost considerations, 210–211
creating, 209
custom data sources, 210
DCR (data collection rule), 208, 209
reasons for using, 207
supported tables, 207
template

combination of Azure and custom tables, 213–214
multiple Azure tables, 212–213
single destination, 211–212

working with multiple destinations, 209
workspace transformation DCR, 208

tree map, 109
trend line, 411–412
trim operator, 48, 261–262
TTPs (tactics, techniques, and procedures), ransomware, 

347–362
typeof() clause, 149

U
union operator, 124–125, 173, 351–353

avoiding wildcards in table references, 127
filtering	and	sorting	unioned	data,	���–���
versus join operator, 127–128
optimizing performance, 127
parameters, 124
syntax, 124
using let statements with, 126–127

Update user event, 364
URLs, parsing, 398–399
use cases

Azure Monitor workbook, 197–198
externaldata operator

analyzing processor utilization, 136–137
dynamic thresholds for processor utilization, 137

ipv4_is_private function, 144
user accounts

investigating, 318, 329–347
logon spikes, 357–358
risky, 387–389

user compromise in Microsoft 365, investigating, 
266–271, 276–277
reviewing events in Microsoft Defender for Cloud 

Apps, 275–276
reviewing Microsoft Entra ID audit log, 272–275
summarizing the data, 271

user interface, Log Analytics, 59–63
User-Agent string, parsing, 397–398
user�defined	Iunctions, 164

creating and declaring, 165
default values, 166
invoking, 166
syntax and naming conventions, 165

UTC, 57

V
variables, 118

best practices, 123–124
calculated values, 119
naming conventions, 123
using multiple, 121

views
creating, 122
materialized, 218

visualization/s, 100, 109
area chart, 107–108
Azure workbook, 196
bar chart, 102
column chart, 103–105
line chart, 109
mastering in Azure Workbooks, 194–195
pie chart, 101–102
rendering values, 109–110
scatter chart, 109
time chart, 105–106, 113
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visualization/s

timechart, 409–410
tools, 226
trend line, 411–412

vulnerabilities, 328–329

W
where operator, 18–33, 155, 173
wildcard/s

*, 16–17
avoiding in table references, 127

workbooks, Azure Monitor, 191, 431
for data analysis, 192

effective, 196–197
exploring data sources, 193
getting started, 192–193
key	Ieatures	and	benefits,	���–���
mastering visualization, 194–195
queries, 195
real-world use cases and examples, 197–198
styling and customization, 196

workspace transformation DCR, 208

X-Y-Z
XML, parsing, 397
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