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Foreword
The journey of technology in customer service is a story of evolution, from 
the early days of switchboards and mail correspondence to the digital age’s 
omnichannel support platforms. This voyage reflects a continuous pursuit 
of efficiency, personalization, and satisfaction in supporting customers and 
driving product loyalty. In an era when artificial intelligence (AI) is redefin-
ing the parameters of customer interaction and satisfaction, our mission 
is to ensure that you, the dedicated professionals at the heart of customer 
service, are fully equipped with the information and resources you will 
need to navigate and lead in this transformative landscape.

I’ve witnessed firsthand the remarkable strides we have made through 
cross-industry collaboration over the years. By embodying a wealth of 
insights from pioneers who have led the charge in integrating AI into 
customer service frameworks, we will serve our customers better if we 
build on these successes and continue advancing our collective thinking 
and innovation. We all play an instrumental role in fostering partnerships, 
bringing together the brightest minds from technology, customer service, 
and beyond to share insights, challenges, and successes.

In customer service history, there has never been a more important time 
for us to collaborate across organizational boundaries. Through shared 
learning environments, we can explore the potential of emerging tech-
nologies, ensuring that the customer service industry keeps pace with 
technological change and leads it. The goal is to empower you with the 
knowledge, resources, tools, and intelligence you need to leverage AI to 
enhance your customer service capabilities while maintaining the human 
touch that has always defined our industry.

We’re at the forefront of navigating this evolution and leading the industry 
through each phase of technological advancement in the ever-chang-
ing customer service and support world. We see The AI Revolution in 
Customer Service and Support as a guide for customer service and support 
professionals who sit directly at the intersection of customer service excel-
lence and cutting-edge AI technology.

We recognize that the pace of technological advancement can be exhila-
rating, inspiring, intimidating, and daunting. This book is designed as a 
compass for those navigating the new terrain, bridging the gap between tra-
ditional customer service expertise and AI’s technical details and nuances.
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As customer service and support professionals, our role is pivotal in shap-
ing the experiences that define brand loyalty and customer satisfaction 
for your organizations. This industry, rich in tradition and human connec-
tion, is now at the cusp of a transformative era brought about by AI. As AI 
technologies redefine the boundaries of what’s possible within customer 
service and beyond, sharing insights, challenges, and solutions across dif-
ferent sectors has become invaluable. This knowledge-sharing accelerates 
the pace of AI integration into customer service practices and ensures a 
broader understanding of its impact across various customer touchpoints.

While the advent of AI in customer service and support brings us transfor-
mative innovation and endless opportunities, this revolution is not merely 
about integrating innovative technology into our industry. It’s a reimagin-
ing of what customer service is and can be. AI has the means to become 
a powerful tool—more importantly, an important partner—in creating 
deeper, more meaningful connections with customers. Its potential to 
analyze vast datasets in real time allows for a level of service customiza-
tion previously unimaginable, offering personalized solutions, predictive 
support, and seamless interactions across multiple support channels.

Capitalizing on the collaboration between technologists, customer service 
experts, and business leaders in crafting innovative AI solutions and 
becoming deeply attuned to the human aspects of customer interaction 
will set a new standard for excellence in the industry.

This book is a testament to a collaborative spirit and is designed to offer 
a comprehensive understanding of AI’s impact on the customer success 
field. By encapsulating a wide array of lessons learned and perspec-
tives, the book offers a unique vantage point on how AI can and will be 
harnessed across the service industry spectrum. It provides a compre-
hensive overview of cutting-edge applications, ethical considerations, 
and the future trajectory of AI technologies, making it an indispensable 
resource for support professionals seeking to navigate the complexities of 
this new era.

I want to encourage us all to build an ecosystem of collaboration where 
challenges are tackled collectively and successes are celebrated as 
milestones for the entire industry. We are the experts in our field, and 
by leveraging best practices as we enter this new era of AI, we will cre-
ate unprecedented customer experiences. We will face and overcome 
shared challenges in implementing AI, such as ethical considerations, data 
privacy, and workforce adaptation. AI adoption is a strategic opportunity 
and only through strong collaboration and maintaining an open dialogue 
will we continually learn and ultimately enhance our collective success in 
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this rapidly evolving landscape. I’d like to invite leaders, innovators, and 
frontline professionals to join forces in leveraging AI to enhance customer 
experiences, streamline operations, and forge lasting relationships with 
customers and each other.

AI will not just enhance customer service; it will help us all actively 
shape it. By working together, we can transform our industry to be 
more efficient, responsive, empathetic, and connected to the needs 
of every customer.

Welcome to the revolution: The AI Revolution in Customer Service and 
Support! I’m excited to help launch this new era of collaboration as we 
build a bright future with the help of AI technology.

J.B. Wood 
Technology Services Industry Association (TSIA) 

President and CEO
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Introduction
Artificial intelligence has made amazing advances in the last year, and 
customer service and support is one of the most important areas where 
this new technology is having an immediate impact. While the technol-
ogy is not yet in a place where it will fully replace agents and support 
engineers, it can do wonders to dramatically improve customer experi-
ence while also contributing to optimizing productivity in various ways. 
This book will help you understand how and where to incorporate AI 
technology, such as large language models (LLMs), machine learning, 
predictive analytics, augmented reality, and others, into the customer 
experience flow.

Please note that a percentage of proceeds from the sale of this book will 
be donated to the nonprofit Future World Alliance, dedicated to curating 
K-12 education in AI ethics. See https://futureworldalliance.org. 

Who Is This Book For?
The AI Revolution in Customer Service and Support is a practical guide for 
adopting and deploying generative AI models within a customer service 
and support organization. It is written for technical and non-technical 
customer service professionals and customer service and support profes-
sionals who have been thrust into the technical limelight and need to 
learn quickly about deploying and leveraging AI.

This book is for customer service professionals who want to learn more 
about deploying and leveraging AI in their organizations but are unsure 
where to get started. Their leaders look to them as customer professionals, 
but the new world is highly technical. Reading this book will help them 
leverage their customer service experience to navigate this new world.

https://futureworldalliance.org


 Introduction xix

Errata, Updates & Book Support
We’ve made every effort to ensure the accuracy of this book and its com-
panion content. The world of AI is moving quickly, with new advances 
every week. You can access updates to this book—in the form of a list of 
submitted errata and their related corrections—at: 

informit.com/airevcs/errata

If you discover an error that is not already listed, please submit it to us 
at the same page.

For additional book support and information, please visit 

InformIT.com/Support and http://airevolutionbook.com.

http://informit.com/airevcs/errata
http://InformIT.com/Support
http://airevolutionbook.com
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You may grow old and trembling in your anatomies, you may 

lie awake at night listening to the disorder of your veins, you 

may miss your only love, you may see the world about you 

devastated by evil lunatics, or know your honour trampled 

in—to learn. Learn why the world wags and what wags it. That 

is the only thing which the mind can never exhaust, never 

alienate, never be tortured by, never fear or distrust, and 

never dream of regretting. Learning is the only thing for you. 

Look what a lot of things there are to learn.

—T.H. White
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Welcome to the most technical chapter of our journey into the AI 
Revolution. Unlike the other chapters in this book, this chapter is a deep 
dive into the history and details of the data science technology that pow-
ers today’s AI Revolution in customer service and support. In this chapter, 
we explore concepts such as generative AI, machine learning, various 
language models, reinforcement machine learning, and prompt engineer-
ing—among other topics—in detail. This chapter goes into the technical 
details of the foundation upon which the AI that is changing customer 
support is built.

However—and this is important—you don’t have to read this chapter to 
get the most out of the following chapters. You may have technical col-
leagues who know or will learn about the topics in this chapter, or you 
may have partners or vendors to help you build and deploy AI solutions. 
You don’t have to know this level of detail to move forward in leading 
your organization through the deployment of AI. We recognize that not 
everyone will feel comfortable navigating this more complex territory, and 
that’s okay—it won’t matter for the rest of the book. 

However, we felt that we would be remiss if we didn’t cover this technol-
ogy in some detail as a foundational component of this book. This chapter 
will not supplant the myriad of courses, papers, books, theories, algo-
rithms, and other details in this fast-moving technology. This chapter is 
worth a skim to understand the underlying developments driving the AI 
Revolution and what to explore in more detail if you are interested.

If you’re a customer service and support professional eager to leverage AI 
in your organization but less versed in technical jargon—please know this 
chapter is not a prerequisite for the valuable insights and steps outlined in 
the other chapters in this book. It’s here to provide a deeper understand-
ing for those who wish to explore further. Skipping it won’t diminish your 
ability to apply AI effectively within your role.

The rest of the book is designed with you in mind, focusing on practical 
applications, deployment strategies, and real-world scenarios that don’t 
require a deep technical background to understand. However, if you want 
to be the leader who queries your team or a vendor on their understand-
ing and application of reinforcement learning from human feedback 
(RLHF), you might want to investigate to understand more. 

Whether you decide to brave this chapter or flip past it and go directly to 
the next, rest assured that this chapter is not required reading to enable a 
successful AI deployment! Happy reading, wherever you land next.
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Unveiling the Realm of AI Technologies: 
A Glimpse into the Augmented Future

In 1947, Alan Turing gave a public lecture about computer intelligence—the 
original concept of artificial intelligence. In 1950, he proposed the Turing 
test, a criterion for machine intelligence based on natural language conver-
sation. In 1956, John McCarthy coined the term artificial intelligence and 
organized the first conference on the topic at Dartmouth College.

In the 1970s and 1980s, AI research focused on developing rule-based 
systems that could encode human knowledge and reasoning in specific 
domains, such as medicine, engineering, and finance. These systems, 
known as expert systems, could perform tasks requiring human expertise, 
such as diagnosis, planning, and decision-making.

In the late 1980s and 1990s, the development of AI underwent a paradigm 
shift from relying on predefined rules to learning from data, enabling 
machines to achieve higher levels of intelligence and performance. 
Machine learning (ML) is a subfield of AI that enables machines to learn 
from data and improve their performance without explicit programming. 
Machine learning techniques include supervised, unsupervised, and 
reinforcement learning, which can be applied to various problems, such 
as classification, clustering, regression, and control.

In the 2000s and 2010s, AI experienced a major breakthrough with the 
advent of deep learning, a subset of machine learning that uses multiple 
layers of artificial neural networks to learn from large amounts of data. 
2015 was a big year in AI history; a five-game Go match was hosted 
between the European champion Fan Hui and AlphaGo, a computer Go 
program developed by DeepMind. AlphaGo won all five games. Deep 
learning has enabled significant advances in various domains, such as 
computer vision, natural language processing (NLP), speech recognition, 
and robotics. Some notable deep learning models include convolutional 
neural networks (CNNs), recurrent neural networks (RNNs), and trans-
former models, such as BERT (Bidirectional Encoder Representations 
from Transformers)1 and GPT (Generative Pre-trained Transformer).2

In 2017, Google developed the transformer model and published a paper, 
“Attention Is All You Need.”3 Transformers opened a new chapter for the 
natural language processing field. Since then, companies and researchers 
worldwide have built large-scale language models based on the trans-
former architecture.
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In the 2020s and beyond, AI is entering a new frontier of generative tech-
nologies, which aim to create novel and realistic content, such as images, 
texts, sounds, and videos. Generative technologies use deep learning 
models, such as generative adversarial networks (GANs), variational auto-
encoders (VAEs), and large language models (LLMs), to generate content 
that is indistinguishable from human-produced content. Generative tech-
nologies have various applications, such as art, entertainment, education, 
and communication.

Generative AI and Language Models
One of the most exciting and challenging areas of generative technologies 
is natural language generation (NLG), which generates natural language 
text from a given input, such as an image, a keyword, or a prompt. NLG 
has many applications, including summarization, translation, dialogue, 
storytelling, and content creation. However, NLG also poses many techni-
cal and ethical challenges, such as ensuring the generated texts’ quality, 
diversity, coherence, and fairness.

A key component of NLG is the language model (LM), a probabilistic 
model that assigns a probability to a sequence of words or tokens. LMs can 
generate new texts by sampling tokens according to their probabilities or 
evaluating the likelihood of existing texts. LMs can be trained on large cor-
pora of text data, such as Wikipedia, books, news articles, or social media 
posts, using deep learning techniques, such as RNNs or transformers.

Because statistical language models (SLMs) cannot capture long-term 
dependencies or semantic relations in natural language, this underscores 
the importance of building these models with responsibility and ethics in 
mind, as discussed throughout this book.

The development of LMs has gone through several stages, reflecting 
the advances in computational power, data availability, and algorithmic 
innovation. There are four main development stages of LMs: statistical 
language models, neural language models, pre-trained language models, 
and large language models (LLMs).4

• Statistical language models are based on statistical learning models. 
The idea is to build models based on the n-gram assumption, which 
states that the probability of a word only depends on the previous 
n-1 words and not on the rest of the sentence or the document. An 
n-gram is a sequence of n-words, such as “the cat” or “a big house.” For 
instance, predicting when the probability of the word “model” would 
come after the words “large language” is illustrated as P(model|large 
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language). Statistical language models estimate the probabilities of 
n-grams from a corpus of text data using techniques such as counting, 
smoothing, or interpolation. 

• Counting: Counting is simply the frequency of the n-gram in the 
corpus divided by the total number of n-grams. 

• Smoothing: Smoothing adds some small values to the counts to 
avoid zero probabilities for unseen n-grams. 

• Interpolation: Interpolation combines the probabilities of different 
n-grams, such as unigrams, bigrams, and trigrams, to balance the 
trade-off between specificity and generality. 

Smoothing and interpolation are often adopted to mitigate the data spar-
sity problem. Statistical language models are simple and efficient but have 
limited expressive power and cannot capture long-term dependencies or 
semantic relations in natural language. For example, statistical language 
models cannot distinguish between the meanings of “bank” in “I went to 
the bank” and “The bank was closed” or the contexts of “She saw a bear” 
and “She saw a bare.” Statistical language models cannot handle the 
ambiguity of words with multiple meanings, such as “bat,” “right,” or the 
influence of words that are far apart in the sequence, such as “The man 
who wore a hat” and “The hat was red.” 

• Neural language models (NLMs) use neural networks, such as 
recurrent neural networks (RNNs) or convolutional neural networks 
(CNNs), to learn distributed representations of words and sequences 
and to model the conditional probability of the next word given the 
previous words. A groundbreaking work in the field of neural language 
modeling was the paper “A neural probabilistic language model,”5 
which presented the idea of representing words as continuous vec-
tors in a high-dimensional space and learning the probability of the 
next word based on the sum of the context word vectors. Many studies 
have opened a new chapter for using language models for representa-
tion learning, playing an influential role in the NLP field. For example, 
word2vec6 utilizes two methods to learn word embedding: 

• Using context to predict a target word through CBOW 
(Continuous Bags of Words): CBOW is like a guessing game 
where the AI tries to predict a word based on the words around it. 
Imagine a sentence with a missing word; CBOW looks around the 
neighboring words to guess the missing one, helping the AI better 
understand the language.

• Using a word to predict a target context through Skip-Gram: 
Skip-Gram is like a word puzzle where the challenge is to find the 
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related words. Given a specific word, Skip-Gram tries to predict 
the surrounding words, helping the AI grasp the context and rela-
tionships between words in a sentence.7

NLMs can overcome some of the limitations of statistical language 
models, such as capturing longer contexts and learning richer 
features, but they also have drawbacks, such as requiring more 
computation and data and suffering from the vanishing or explod-
ing gradient problem.

• Pre-trained language models (PLMs) are a type of model that uses 
transfer learning. PLMs are first trained on a large collection of text 
data that doesn't have specific labels (this is the pre-training phase). 
After this, PLMs are fine-tuned on a particular task or domain with 
more specific data (this is the fine-tuning phase). This process allows 
PLMs to be highly effective at understanding and generating human 
language in various applications. As mentioned earlier, RNNs have 
some drawbacks and limitations, such as the difficulty of learning 
long-term dependencies, the gradient vanishing or exploding problem, 
and the sequential nature of computation, which prevents paralleliza-
tion and reduces efficiency. To address these issues, long short-term 
memory (LSTM) models were proposed by researchers as one of the 
most popular and effective variants of RNNs. LSTM models have a 
special structure consisting of three gates and a cell state, which can 
regulate the input, output, and forget operations of the recurrent unit. 
LSTM models can generate natural language texts by updating the cell 
state and the hidden state at each time step, based on the current input 
and the previous states, and then producing the next word or token 
from the hidden state. As one of the first models that demonstrated 
the effectiveness of PLMs on large-scale unlabeled text data and then 
transferring the learned knowledge to downstream tasks or domains, 
embeddings from language models (ELMo) was built as an LSTM-
based model that can generate contextualized word embeddings, 
which are vector representations of words that capture their meanings 
and usage in different contexts. Unlike traditional word embeddings, 
such as word2vec or GloVe, which assigns a fixed vector to each 
word regardless of its context, ELMo can dynamically compute word 
embeddings based on the entire input sentence or document, using a 
bidirectional LSTM that encodes both the left and the right contexts of 
each word. PLMs also adopt the transformer architecture, which is an 
attention-based neural network that can learn long-range dependen-
cies and parallelize computation. Some of the most influential PLMs are 
BERT, developed by Google, and GPT, developed by OpenAI. Based 
on pre-trained context-aware word representations, these models have 
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shown remarkable effectiveness and versatility as general-purpose 
semantic features that can significantly improve the performance and 
efficiency of various NLP tasks.

• Large language models (LLMs) are the latest and most advanced 
stage of LMs, which aim to build very large-scale and powerful LMs 
that can generate natural language texts across multiple domains and 
tasks, given minimal or no supervision. LLMs rely on massive amounts 
of computation and data and use sophisticated optimization and 
regularization techniques, such as self-attention, dropout, or layer nor-
malization, to train billions or trillions of parameters. Some of the most 
prominent examples of LLMs are GPT-3, GPT-3.5 (Instruct GPT) GPT-4 
and GPT-4o, developed by OpenAI. 

• GPT-3: GPT-3 is a transformer-based model with 175 billion 
parameters and can generate coherent and diverse texts on various 
topics and domains, given a few words or sentences as input. 

• GPT-3.5: In 2022, OpenAI deployed GPT-3.5, which performs 
more significantly in following instructions, making up facts less 
often, and generating less toxic output. They used prompts sub-
mitted by the customers through Playground and hired human 
annotators to provide demonstrations of the desired model behav-
ior and rank outputs from the models. GPT-3.5 is fine-tuned based 
on this data from GPT-3. 

• GPT-4: In 2023, GPT-4, a 1.8T-parameter model with 16 Mixture of 
Experts (MoE), was announced by OpenAI to improve the security 
of the model and enable multimodal capability. However, LLMs 
also have limitations and risks, such as producing inaccurate, 
biased, or harmful content or violating the data sources’ privacy or 
intellectual property rights.

• GPT-4o: Launched in 2024, GPT-4o (“o” for “omni”) is a step 
towards a much more natural human-computer interaction—it 
accepts any combination of text, audio, image, and video as input 
and generates any combination of text, audio, and image as out-
put. It can respond to audio inputs in as little as 232 milliseconds, 
with an average of 320 milliseconds, which is similar to human 
response time in a conversation. It matches GPT-4 Turbo perfor-
mance on text in English and code, with significant improvement 
on text in non-English languages, while also being much faster and 
50% cheaper in the API. GPT-4o is especially better at vision and 
audio understanding compared to existing models.8

The emergence and advancement of LLMs significantly impact the AI 
community and society at large, as they open up new possibilities and 
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challenges for natural language understanding and generation. LLMs can 
be seen as a form of generative technologies that can create novel and 
valuable outputs from minimal or no inputs, such as images, music, art, 
or texts. They can foster interdisciplinary collaboration and innovation by 
bringing together researchers and practitioners from different fields and 
domains and creating new paradigms and methods for natural language 
understanding and generation.

Despite the exciting progress and impact of LLMs and generative AI, many 
mysterious and unpredictable perspectives remain. There are some risks 
associated with LLMs. They can amplify existing biases and harms, such 
as perpetuating stereotypes, discrimination, misinformation, or manipula-
tion, by learning from unfiltered and unrepresentative data sources, or by 
being misused or abused by malicious actors. They can also pose ethical 
and legal dilemmas, such as violating privacy, intellectual property, or 
human dignity, by exposing sensitive or personal information, infringing 
on copyrights or trademarks, or generating deceptive or harmful content. 
Moreover, they can challenge existing norms and values, such as account-
ability, transparency, or trust, by obscuring natural language generation’s 
sources, processes, and outcomes or by creating conflicts of interest, 
responsibility, or authority.

LLMs and Their Applications
As discussed earlier, LLMs are trained on billions or trillions of words, sen-
tences, paragraphs, or documents collected from various online sources, 
such as websites, blogs, social media, news articles, books, or academic 
papers, using a technique called self-attention, which enables them to 
learn the contextual and semantic relationships between different units 
of language. LLMs can then use the learned representations to perform 
a wide range of natural language tasks, such as classification, summari-
zation, translation, question answering, sentiment analysis, or dialogue 
generation. They do this by fine-tuning specific datasets or domains or 
by applying a method called prompting, which consists of providing the 
model with a few words or sentences as input or output examples and let-
ting it infer the rest.

LLMs have demonstrated remarkable capabilities and achievements in 
natural language understanding and generation, surpassing previous 
state-of-the-art models and even human performance in some tasks. Some 
of the most notable and influential LLMs include GPTs, BERT, XLNet, 
T5, and DALL-E, which have been developed and released by leading 
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research labs and companies, such as OpenAI, Google, Facebook, and 
Microsoft. LLMs have also enabled and inspired the creation and innova-
tion of various applications and products, such as chatbots, assistants, 
recommender systems, content generators, summarizers, translators, 
analyzers, or synthesizers, which have been deployed and adopted by 
various industries and sectors, such as education, health, business, media, 
entertainment, or art, among others. LLMs have thus revolutionized and 
democratized the field of natural language processing and generation, 
opening up new possibilities and opportunities for research, development, 
and impact.

LLMs and Customer Support
One possible application domain of LLMs is customer support, which 
involves providing assistance and guidance to customers or users of a 
product or service through various channels, such as phone, email, chat, 
or social media. Customer support is an essential and integral part of 
any business or organization, as it affects customer satisfaction, reten-
tion, loyalty, advocacy, brand reputation, revenue, and growth. However, 
customer support can also be challenging and costly, as it requires hiring, 
training, and managing a large number of human agents, who have to 
deal with high volumes of queries, requests, complaints, or feedback, 
often repetitive, mundane, or complex while maintaining a high quality of 
service, professionalism, and empathy.

LLMs can offer a solution to some of these challenges by augmenting or 
automating some aspects of customer support, such as answering fre-
quently asked questions, providing information or instructions, resolving 
issues or problems, collecting feedback or ratings, generating reports or 
summaries, or escalating cases or tickets, and so on. LLMs can leverage 
their natural language abilities, such as understanding, reasoning, gener-
ating, or adapting, to provide personalized, contextualized, and relevant 
responses or actions based on the customer’s input, profile, history, or 
preferences, as well as the product or service specifications, policies, or 
updates. LLMs can also learn from the data and feedback collected from 
the interactions and improve their performance and accuracy over time, 
using techniques such as reinforcement learning, active learning, or trans-
fer learning. Furthermore, LLMs can enhance the customer experience 
and engagement by adding elements of conversation, personality, emo-
tion, or humor, to the interactions, depending on the tone, mood, or style 
of the customer and the situation.
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Development, Optimization, Localization, 
and Personalization Based on LLMs

The rapid growth of the tech field has seen significant disruptions when 
the right combination of technology and user experiences come together. 
Generative AI–infused experiences bring a great opportunity for intel-
ligent product development. Besides fostering AI’s capabilities for business 
and real products, we must also ensure localization and personalization 
and operate with a clear customer-centric intent and goal.

There are multiple strategies to employ regarding integrating the gen-
erative AI large models into productions with further optimization, 
localization, and personalization.

Large deep neural networks have achieved remarkable success with 
great performance in research and real-world products with large-scale 
data. However, it is still a great challenge to deploy these large-scale AI 
models to real production systems, especially mobile devices and embed-
ded systems, with the considerations of cost, computational resources, 
and memory capacity. The main purpose of teacher–student distillation 
(see Figure 2.1) is to train a small student model that simulates the large 
teacher model with equivalent or superior performance.9 Another advan-
tage of teacher–student distillation is that when we do not have enough 
labeled data, the teacher model can help generate a “pseudo-label” when 
training the student model. Pseudo-labels are then used to train the 
smaller student model, helping it learn and perform tasks as if it had been 
trained on a fully labeled dataset. Put more simply, imagine you’re playing 
a video game, and there’s a really tough level that you can’t beat. So, you 
call in an expert friend.

The three main components of the teacher–student distillation framework 
include knowledge, distillation algorithm, and teacher–student architecture.

Figure 2.1 illustrates two AI models:

• Teacher model: The teacher model is like an expert friend. It’s very 
smart but also big and needs a lot of power to run.

• Student model: Like you, the student model is eager to learn. It doesn’t 
have as much power. 

The goal is to make the student AI learn from the teacher AI without 
needing as much power. The process is such that the teacher model, 
trained with huge volumes of data, helps the student model by guiding it 
or giving it tips—in NLP; this is called “knowledge transfer.” Sometimes, 
the teacher doesn’t have all the answers (or labeled data), so the teacher 
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makes up some good guesses (pseudo-labels) for the student to practice 
with. It’s like getting hints for your video game level. This way, the student 
learns a lot and gets really good at the game, so it can almost match the 
teacher’s skill level.

Teacher model

Knowledge transfer

Distill Transfer
K

n
o

w
le

d
g

e

Student model

Data

FIGURE 2.1 The general teacher–student distillation framework 

This framework can be useful for any large-scale prediction or generative 
AI model, although it was originally introduced for an image classification 
model. With the rapid development of generative AI, many of the current 
large-scale models are significantly effective in generalization. However, 
many factors must be considered for real production, including cost, 
scalability, resource consumption during inference, adopting the existing 
model into some specific scenarios, and so on. Developing an AI-assistant 
writing tool by leveraging GPT to help users write articles or posts more 
casually and recognize contextual information is an example of adopting 
the existing GPT model to the specific scenario of an AI-assistant writing 
tool. Directly running GPT models is very challenging, considering cost 
and scalability. The teacher–student distillation framework helps serve 
lighter-weight models in production and localizes the model with task-
specific data when leveraging the existing large-scale model.

Reinforcement Learning from Human/AI Feedback

As mentioned earlier, Instruct GPT/ GPT-3.5 was developed by OpenAI to 
have a better human alignment and address some issues like factuality, harm, 
etc. They collected prompts submitted by customers through Playground and 
ranked outputs from the models responding to the human-annotated instruc-
tions. InstructGPT/ GPT-3.5 is fine-tuned based on this data from GPT-3. The 
success of GPT-3.5 over GPT-3 is mainly due to the reinforcement learning 
from human feedback (RLHF) technique, which is adopted to fine-tune 
GPT-3 using human labels as a reward signal (see Figure 2.2).10
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Step 1

Collect demonstration data
and train a supervised policy.

Step 2

Collect comparison data
and train a reward model.

A prompt is
sampled from
a prompt dataset.

A labeler
demonstrates the
desired output
behavior.

The data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6-year-old.

Explain the moon
landing to a 6-year-old.

Some people went
to the moon…

SFT

A new prompt
is sampled from
the dataset.

The reward is
used to update
the policy
using PPO.

The reward model
calculates a
reward for the
output.

The policy
generates
an output.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.
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The data is used
to train a reward
model.

Explain gravity…

People went
to the moon…

Moon is natural
satellite of…

Explain war…
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Step 3

Optimize a policy against the reward
model using reinforcement learning.

Write a story about frogs.

Once upon a time…

A

D C BA

> > =D C BA
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C D

FIGURE 2.2 The reinforcement learning framework

The human annotators compare and rank multiple outputs from GPT-3 
corresponding to each prompt. Based on this labeled data, a reward 
model is trained to predict the preferred output. Lastly, this reward model 
is a reward function and policy optimized to maximize the reward using 
the proximal policy optimization (PPO) algorithm. 

Imagine you’re teaching a teenager how to ride a snowboard for the first 
time. You want them to learn fancy tricks, but every time they try some-
thing new, you don’t want them risking a big crash. The proximal policy 
optimization (PPO) algorithm is like a smart snowboard coach for the 
teen. It has a rule: “Try new turns or try new moves but not so different 
from what you already know, or you will definitely fall.”

Here’s how it works: The teenager tries a new turn or trick, sees how well 
they do (like scoring confidence points for staying upright and doing small 
tricks), and learns the way any human would. Then they try again, slightly 
tweaking their approach but with a twist. There’s a safety net (the “clip” 
in PPO can be related to “clipping” the trick’s extremes to avoid moving 
too far away from the original effort), making sure these tweaks aren’t too 
drastic. This way, the teen steadily gets better without taking big risks that 
could lead to epic wipeouts.
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PPO keeps a machine learning efficiently by reusing its experiences sev-
eral times to refine its strategy, ensuring it learns a lot from each practice 
session. It’s like watching a video of a snowboard performance on the hill 
and spotting a dozen ways to improve instead of just one. This makes the 
machine a quick learner and smart, avoiding unnecessary risks while it 
masters its metaphorical ability to shred on the mountain!

Despite the impressive results achieved by GPT3.5, this technique also 
faces some challenges and limitations that need to be addressed for 
further improvement and broader application. Table 2.1 shows example 
challenges and potential mitigation activities with RLHF utilizing future 
research and development.

TABLE 2.1 Example challenges and potential mitigation activities

CHALLENGE FUTURE RESEARCH AND 

DEVELOPMENT

Data quality and quantity:  

The quality and quantity of human 

feedback data are crucial for training 

a reliable reward model and a robust 

policy . However, collecting human 

feedback data can be costly, time-

consuming, and prone to noise and 

bias . Moreover, human preferences 

may vary across domains, tasks, and 

contexts, requiring more diverse and 

representative data to capture the 

nuances and subtleties of human 

expectations and instructions .

Improving the data collection and 

annotation methods and tools to 

ensure human feedback data quality, 

quantity, and diversity . For example, 

using active learning, crowdsourcing, 

gamification, or interactive learning 

techniques to solicit more relevant, 

informative, and consistent feed-

back from the users or the experts . 

Alternatively, using synthetic, simu-

lated, or generated data to augment 

the real data and increase the cover-

age and robustness of the data .

continued
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TABLE 2.1 continued

CHALLENGE FUTURE RESEARCH AND 

DEVELOPMENT

Reward shaping and alignment:  

The reward model learned from 

human feedback data may not 

always reflect the true objectives and 

values of the users or the develop-

ers . There may be gaps or conflicts 

between what humans express and 

what they actually want or need . 

For example, humans may provide 

inconsistent, ambiguous, or mislead-

ing feedback due to cognitive biases, 

emotional states, or communica-

tion errors . Furthermore, the reward 

model may not align with the ethical, 

social, or legal norms and standards 

that should guide the behavior of AI 

systems . For example, the reward 

model may incentivize harmful, 

deceptive, or manipulative actions 

that violate the principles of fairness, 

accountability, or transparency .

Enhancing the reward shaping and 

alignment methods and mechanisms 

to ensure the validity, reliability, and 

alignment of the reward model . For 

example, using inverse reinforce-

ment learning, preference elicitation, 

or value learning techniques to infer 

the latent or implicit objectives and 

values of the users or the develop-

ers from their feedback or behavior . 

Alternatively, using multi-objective, 

constrained, or regularized rein-

forcement learning techniques to 

incorporate multiple criteria, con-

straints, or penalties into the reward 

function and balance the trade-offs 

among them .

Generalization and adaptation:  

The policy optimized by RLHF may 

not generalize well to new or unseen 

prompts, scenarios, or environ-

ments . The policy may overfit to 

the specific data distribution or the 

reward model and fail to handle 

novel or complex situations that 

require more creativity, reasoning, or 

common sense . Moreover, the policy 

may not adapt well to the dynamic 

and evolving needs and prefer-

ences of the users or the developers . 

The policy may become outdated, 

irrelevant, or incompatible with the 

changing goals, expectations, or 

instructions of the stakeholders .

Developing the generalization and 

adaptation methods and strategies 

to ensure the flexibility, versatil-

ity, and applicability of the policy . 

For example, using meta-learning, 

transfer learning, or lifelong learning 

techniques to enable the policy to 

learn from multiple sources, tasks, 

or domains and apply the learned 

knowledge or skills to new or dif-

ferent situations . Alternatively, using 

online learning, interactive learn-

ing, or self-learning techniques to 

enable the policy to update, refine, 

or improve itself based on the feed-

back or performance in real time or 

over time .
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Anthropic, a startup founded by former employees of OpenAI, devel-
oped Claude, an AI chatbot that is similar to ChatGPT.11 It is claimed that 
Claude outperforms ChatGPT in a variety of perspectives. It not only 
tends to generate more helpful and harmless answers but also answers 
in a more fun way when facing inappropriate requests. Its writing is 
more verbose but also more naturalistic. Claude’s key approach is called 
constitutional AI.12 Like ChatGPT, Claude also uses reinforcement learning 
to train a preference model, though Claude uses reinforcement learning 
from AI Feedback (RLAIF) without any human feedback labels for AI 
harms.13 The constitutional AI process consists of two stages: supervised 
learning and reinforcement learning, as shown in Figure 2.3.

Fine-tuned
SL-CAI
model

Final
RL-CAI
model

Helpful
RLHF
model

Generate responses
to red team elicits
harmful samples

Generate responses
to red team elicits

sample pairs

Constitutional AI
feedback for

self-improvement

Fine-tuned
preference
model (PM)

Response

Critique

Revision

RLAIF training
with PM and

SL-CAI models

FIGURE 2.3 Steps used in the constitutional AI process

The constitutional AI process works like this:

1. In the supervised learning phase, initial responses to harmful prompts 
using a pre-trained language model that has been fine-tuned on a data-
set of helpful-only responses are called helpful-only AI assistants. 

2. The model is asked to critique and revise the responses using randomly 
selected principles from the 16 pre-written principles in the constitution. 

3. As a result, the supervised learning–constitutional AI (SL-CAI) model 
is gained by fine-tuning the pretrained LLM on the final revised 
responses in a supervised learning way. 

4. Claude uses a preference model as a reward signal in the reinforce-
ment learning stage to optimize its responses to different prompts. 

5. The fine-tuned model generates a pair of responses to each 
harmful prompt and evaluates responses according to a set of 
constitutional principles. 

6. Then, a preference model is trained on the final dataset, combining 
the AI-generated preference dataset for harmlessness and the human 
feedback dataset for helpfulness. 
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7. The preference model learns to rank the responses based on their com-
bined scores of helpfulness and harmlessness. 

8. Finally, the SL model is fine-tuned via reinforcement learning 
against this preference model as a reward signal, which results in an 
optimized policy.

One advantage of this more advanced framework is that it can eliminate 
human annotation, saving a lot of time, cost, and energy. Similarly, we 
can develop specific principles with constitutional AI to ensure those 
LLMs produce factual, harmless, ethical, and fair outputs that also serve 
the needs of our particular scenarios. This approach, utilized by Claude, 
is based on the idea of aligning the AI chatbot’s behavior with a set of 
constitutional principles that reflect the values and goals of the users and 
developers. These principles ensure that the chatbot generates helpful, 
harmless, ethical, responsible, and fair responses.

Claude’s constitutional principles are respecting human dignity, avoiding 
harm and deception, promoting well-being and social good, and valuing 
diversity and inclusion. These principles provide a framework that can be 
modified and updated according to the customized needs and preferences 
of users and developers.

By using constitutional AI, Claude can outperform ChatGPT in several ways:

• Claude can generate more helpful and harmless responses because it is 
trained on a dataset that filters out harmful or unhelpful responses and 
incorporates human feedback on helpfulness. 

• Claude can generate more ethical, responsible, and fair responses 
because it is under the guidance of a set of constitutional principles 
reflecting the values and goals of the users and developers. 

• Claude can generate more fun and naturalistic responses by exploring 
and exploiting different responses using reinforcement learning and 
learning from its own critique and revision. 

Chatbot customization can utilize reinforcement learning through 
human/AI feedback (RLHF/RLAIF). Chatbots are becoming increas-
ingly prevalent in various domains, such as customer service, education, 
entertainment, health, and so on. However, not all users have the same 
preferences or needs when interacting with chatbots. 

Some users prefer a more formal or professional tone, while others enjoy 
a casual or humorous style. Some users may want a more informative 
or detailed response, while others may seek a more concise or simple 
answer. Some users may appreciate a more empathetic or supportive 
response, while others may desire a more objective or factual one. 
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Therefore, it is important to customize the chatbot’s behavior and person-
ality according to the user’s profile and feedback. A chatbot can leverage 
reinforcement learning to learn from its own actions and outcomes and 
adapt to the user’s preferences and expectations over time. 

Reinforcement learning is based on the idea of reward and punishment, 
where the chatbot receives positive or negative feedback from the user or 
itself and adjusts its policy accordingly. For example, if the user expresses 
satisfaction or gratitude after receiving a response from the chatbot, the 
chatbot can reinforce that response and generate similar ones in the future. 

Conversely, if the user expresses dissatisfaction or frustration after receiv-
ing a response from the chatbot, the chatbot can avoid that response 
and generate different ones in the future. Moreover, the chatbot can also 
self-evaluate its responses and give itself feedback based on predefined 
criteria or metrics, such as relevance, coherence, fluency, informative-
ness, politeness, and the like.

Fine-Tuning Large-Scale Models

Fine-tuning is a popular method in the ML and AI fields and is done after 
a model has been pretrained. Then, the additional training is performed 
with a dataset specific to the scenarios practitioners and professionals 
work on. Fine-tuning solves common issues caused by large-scale AI 
models, such as difficulties productionizing big models and not being 
generalized enough for specific tasks.14 See Figure 2.4.

Pretraining

MLM on
unlabeled data

word2vec
GloVe
Skip-thought
InferSent
ELMo
ULMFit
GPT
BERT

Fine-tuning

Cross-entropy
on task labels

Classification
sequence labeling
Q&ADocDoc

FIGURE 2.4 Fine-tuning pretrained large-scale models

Traditionally, most AI professionals do model tuning for fine-tuning, 
in which the pre-trained models’ parameters (classification, sequence 
labeling, and question answering (Q&A) using task-specific labels and 
cross-entropy loss) are tuned. There have been several challenges with 
this approach and potential mitigation activities, as shown in Table 2.2.
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TABLE 2.2  Challenges and potential mitigation activities of fine-tuning on 

pre-trained models

CHALLENGE MITIGATION ACTIVITIES

Data availability:  

Fine-tuning requires sufficient 

labeled data for the target task or 

domain, which may not always be 

available or easy to collect . Fine-

tuning may lead to overfitting or 

poor generalization if the data is too 

small or noisy .

Data augmentation:  

This is an approach to increase the 

size and diversity of the training 

data by applying some transforma-

tions or modifications to the existing 

data, such as cropping, flipping, 

rotating, adding noise, and so on . 

Data augmentation can help reduce 

overfitting and improve the general-

ization of the fine-tuned model .

Task transfer:  

Fine-tuning works best when the 

target task or domain is similar to 

the pretrained model . If the tasks 

or domains are too different, fine-

tuning may not transfer the relevant 

knowledge or may even degrade the 

performance of the model .

Transfer learning:  

This is a technique to leverage the 

knowledge learned from one or 

more source tasks or domains to 

improve the performance of a target 

task or domain . Transfer learning 

can be done by freezing some of the 

layers in the pretrained model and 

adapting its output layer to the target 

task . Transfer learning can help 

overcome data availability and task 

transfer problems .

Cost and scalability:  

Fine-tuning large-scale models 

such as GPT or DALL-E requires a 

lot of computational resources and 

memory space, which may not be 

accessible or affordable for many 

users or organizations . Moreover, 

fine-tuning large models may intro-

duce more complexity and instability 

to the optimization process .

Meta-learning:  

This is a technique to learn from 

multiple tasks or domains and 

then apply the learned knowledge 

to a new task or domain . Meta-

learning can be done by training 

a meta-model or a meta-learner 

that can generate or update the 

parameters of a base model for a 

given task or domain . Meta-learning 

can help achieve fast adjustment 

and robust generalization of the 

fine-tuned model .
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The evolvement and growing capabilities of current large-scale language 
models with prompt-tuning have become increasingly popular, in which 
the pre-trained model is frozen while a small set of learnable vectors can 
be optimized and added as the input for the task. Prompt design is even 
more commonly utilized, as of the writing of this book, which is a tech-
nique used to guide the behavior of a frozen pretrained model by crafting 
an input prompt for a specific task without changing any parameters. 
This is more effective and less expensive than prompt-tuning.15 We can 
compare these three approaches to adapting pre-trained language models 
for specific tasks: 

• Model tuning: The pre-trained model is further trained or “fine-tuned” 
on a task-specific dataset.

• Prompt tuning: The model remains frozen, and only a set of tunable 
soft prompts are optimized.

• Prompt design: Exemplified by GPT-3, crafted prompts guide the fro-
zen model’s responses without any parameter changes. 

Prompt-tuning and prompt design methods are often used because of 
their effectiveness and reduced cost compared to full model tuning. See 
Figure 2.5, which illustrates a shift toward efficiency and multitasking 
in language model applications, highlighting the less resource-intensive 
nature of prompt-based methods.

Strong task performance
E�cient multitask serving

Model tuning
(fine-tuning)

Pretrained model
Tunable

Input text

Prompt design
(GPT-3)

Pretrained model
Frozen

Input textEngineered
prompt

Prompt tuning

Pretrained model
Frozen

Input textTunable
soft

prompt

FIGURE 2.5 The architecture of model tuning, prompt tuning, and prompt design
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Prompt Engineering

With the remarkable success and powerful generalization capabilities 
of current large pre-trained AI models, more and more AI practitioners 
are focusing on prompt engineering by directly integrating the exist-
ing generative AI models such as DALL-E 3, GPT-4, and ChatGPT into 
real applications. As we know, fine-tuning requires huge computational 
resources and memory space and causes catastrophic forgetting. Prompt 
engineering is a discipline focused on optimizing prompts for efficient use 
of LLMs across various applications and research. It enhances our under-
standing of LLMs’ capabilities and limitations. 

Prompt engineering encompasses diverse skills and techniques, crucial for 
effective LLM use. It enhances LLM safety and empowers integration with 
domain knowledge and external tools. 

A prompt is a parameter that can be provided to large-scale pretrained 
LMs like GPT to enable its capability to identify the context of the problem 
to be solved and accordingly return the resulting text. In other words, the 
prompt includes the task description and demonstrations or examples that 
can be fed into the LMs to be completed. Prompt engineering, sometimes 
called in-context learning or prompt-based fine-tuning, is a paradigm of 
learning where only the prompt, which includes a task description and a 
few demonstrations, is fed into the model as if it were a black box. There 
are multiple prompt engineering techniques:

• Retrieval augmentation for in-context learning: The main idea is to 
retrieve a set of relevant documents or examples given a source and 
take these as context with the original input prompt to let the LLM 
generate the final output. There are different methods for in-context 
learning, such as one-shot and few-shot prompting. One example 
is the method RAG (Retrieval Augmented Generation) introduced 
by Meta AI that essentially takes the initial prompt plus searches for 
relevant source materials, such as Wikipedia articles, and combines 
the information with the sequence-to-sequence generation to provide 
the output.16
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• Chain-of-Thought (CoT): This prompting technique encourages 
the model to generate a series of intermediate reasoning steps (see 
Figure 2.6).17 A less formal way to induce this behavior is to include 
“Let’s think step-by-step” in the prompt.

Standard prompting Chain-of-thought prompting

Q: Roger has 5 tennis balls. He buys 2 more
cans of tennis balls. Each can has 3 tennis balls.
How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20
to make lunch and bought 6 more, how many 
apples do they have?

Model input

A: The answer is 27.

Model output

Q: Roger has 5 tennis balls. He buys 2 more cans
of tennis balls. Each can has 3 tennis balls. How
many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model input

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 – 20 = 3.
They bought 6 more applies, so they have 3 + 6 = 9.
The answer is 9.

Model output

FIGURE 2.6 Chain-of-thought prompting

• Action Plan Generation: This prompt utilizes a language model to 
generate actions to take, as shown in Figure 2.7.18 The results of these 
actions can then be fed back into the language model to generate a 
subsequent action.

Search <query>
Clicked on link <link ID>
Find in page: <text>
Quote: <text>
Scrolled down <1, 2, 3>
Scrolled up <1, 2, 3>
Top
Back
End: Answer
End: <Nonsense, Controversial>

Command

Send <query> to the Bing API and display a search results page
Follow the link with the given ID to a new page
Find the next occurrence of <text> and scroll to it
If <text> is found in the current page, add it as a reference
Scroll down a number of times
Scroll up a number of times
Scroll to the top of the page
Go to the previous page
End browsing and move to answering phase
End browsing and skip answering phase

E�ect

FIGURE 2.7 Action plan generation prompting
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• ReAct Prompting: This prompting technique combines chain-of-thought 
prompting with action plan generation (see Figure 2.8). This induces the 
model to think about what action to take, and then take it. ReAct allows 
language models to produce both verbal reasoning traces and text 
actions that alternate with each other, while actions cause observation 
feedback from an external environment. The example shown in 
Figure 2.8 compares the performance of the standard prompting, chain-
of-thought (reason only), act only, and ReAct prompting techniques.19

HotPotQA

Question: Seven Brief Lessons on Physics was written by an Italian physicist that 
has worked in France since what year?

Reason only

Thought: Let's think step by step. Seven Brief Lessons on Physics was written by 
Carlo Rovelli. Carlo Rovelli has worked in France since 1990.

Answer: 1990

Act only

Act 1: Search [Seven Brief Lessons on Physics]
Obs 1: Seven Brief Lessons on Physics (Italian: Sette brevi lezioni di fisica) is a 
short book by the Italian physicist Carlo Rovelli. Originally published in Italian in...

Act 2: Lookup [Carlo Rovelli]
Obs 2: (Result 1/1) Seven Brief Lessons on Physics (Italian: Sette brevi lezioni di 
fisica) is a short book by the Italian physicist Carlo Rovelli. 

Act 3: Finish [1983]

ReAct

Thought 1: I need to search Seven Brief Lessons on Physics, find its author, then 
find when the author has worked in France since.

Act 1: Search [Seven Brief Lessons on Physics]
Obs 1: Seven Brief Lessons on Physics (Italian: Sette brevi lezioni di fisica) is a 
short book by the Italian physicist Carlo Rovelli. Originally published in Italian in...

Thought 2: The author of Seven Brief Lessons on Physics is Carlo Rovelli. I need 
to search Carlo Rovelli next and find when he has worked in France since.
Act 2: Search [Carlo Rovelli]
Obs 2: Carlo Rovelli is an Italian theoretical physicist and writer who has worked 
in Italy, the United States, and since 2000, in France. [1] He is also currently a 
Distinguished Visiting Research Chair at the Perimeter Institute...

Thought 3: Carlo Rovelli has worked in France since 2000. So the answer is 2000.
Act 3: Finish [2000]

Standard

Answer: 1986

FIGURE 2.8 The results of four prompting methods
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Prompt Chaining

This approach combines multiple LLM calls, with the output of one step 
being the input to the next. The overall process includes a few steps:

1. The process starts with an initial prompt or question. This could be a 
broad inquiry, instruction, or a request for information.

2. The model generates an initial response based on the input prompt. 
However, this response might be a bit generic or need refinement.

3. The generated response is then used as part of a new prompt. This 
time, the prompt is more specific, providing additional context or ask-
ing for clarification.

The chaining continues iteratively. Each new response becomes the 
input for the next prompt. The generated content becomes more focused 
and contextually relevant with each iteration. The advantages of prompt 
chaining are as follows:20 

• It helps preserve context across responses and makes the generated 
output more coherent.

• The user can guide the model through the iteration process to provide 
more precise and relevant generation.

• It leads to more customized generation, which enables users to tailor 
the responses to their specific requirements. However, it still does not 
alter the fundamental capabilities and limitations of the underlying 
language model.

Tree of Thoughts

The tree of thoughts framework generalizes over chain-of-thought 
prompting and encourages the exploration of thoughts that serve as 
intermediate steps for general problem-solving with language models. 
This method allows a language model to self-assess the progress of its 
intermediate thoughts during problem-solving through a deliberate 
reasoning process. The LM’s capacity to produce and assess thoughts is 
then integrated with search algorithms like breadth-first search and depth-
first search, facilitating systematic thought exploration with lookahead 
and backtracking.21
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Self-Consistency

The idea behind self-consistency is based on chain-of-thought (CoT), but it 
samples multiple diverse reasoning paths through few-shot CoT and uses 
the generations to select the most consistent answer. This helps to boost 
the performance of CoT prompting on tasks involving arithmetic and 
commonsense reasoning.22

Unveiling the Power of Clustering and 
Topic Modeling

Despite the rapid evolution of LLMs that can produce coherent and 
diverse texts across various domains, many tasks still require more granu-
lar and structured analysis of textual data. Clustering and topic modeling 
are techniques that can help discover hidden patterns, themes, and cat-
egories in a large collection of documents, without relying on predefined 
labels or annotations. They can also help reduce the data’s dimensionality 
and complexity, making it easier to visualize, summarize, and interpret.

There are some example applications where clustering and topic model-
ing can be useful, such as:

• Document classification and retrieval: Clustering and topic model-
ing can help search and navigate large collections of documents by 
grouping similar ones according to their content. Moreover, they can 
also facilitate the identification of relevant documents for a given 
query or task.

• Text summarization and generation: Although LLMs can also be 
utilized for text summarization and clustering, topic modeling can 
supplement LLMs by extracting the main topics and keywords from the 
targeted collections of documents and providing concise and informa-
tive summaries that capture the essence and different granularities of 
the data. They can also serve as input or an additional layer for text 
generation systems, such as LLMs, that can produce longer and more 
detailed texts based on the topics and keywords.

• Sentiment analysis and opinion mining: Although LLMs have shown 
remarkable performance in understanding the context and capturing 
nuances in natural languages, topic modeling, and clustering meth-
ods, taking Latent Dirichlet Allocation (LDA) or K-mean clustering as 
examples can be more interpretable and can provide insights into the 
main themes in a collection of texts.23 Utilizing a hybrid approach that 
combines both might be a good solution. For instance, using LLMs for 
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fine-grained sentiment analysis and using topic modeling to understand 
broader themes or trends.

• Knowledge discovery and extraction: By uncovering the latent 
concepts and relations among the documents, clustering and topic 
modeling can enrich the semantic representation of the data, as well 
as the knowledge base of the domain. They can also help to identify 
gaps and inconsistencies in the data, as well as new and emerging 
topics and issues.

Therefore, clustering and topic modeling are still necessary and valuable 
tools for many tasks that involve understanding, analyzing, and generat-
ing textual data, especially when the data is large, heterogeneous, and 
unlabeled. They can complement and enhance the capabilities of LLMs’ 
capabilities and provide insights and feedback for improving their perfor-
mance and quality.

Enhancing Customer Support Through 
Hybrid AI: LLMs Meet Clustering and 
Topic Modeling

Customer support is evolving, and businesses seek more sophisticated and 
powerful solutions to handle the vast amount of textual data generated 
in interactions. A hybrid approach, blending the capabilities of LLMs and 
traditional machine learning techniques, emerges as a robust strategy. 
We’ll explore a few of these machine learning techniques often utilized in 
support organizations to make sense of the large amounts of data to help 
optimize the business.

Clustering and Customer Support

Clustering is an unsupervised learning approach of grouping a set of 
samples based on their similarity without using any predefined labels or 
categories. Clustering aims to discover the natural structure or patterns of 
the data, as well as to reduce its complexity and dimensionality. Clustering 
can be used for various purposes, such as data exploration, summariza-
tion, organization, retrieval, and visualization. There are several different 
clustering methods:

• Hierarchical clustering: This method builds a hierarchy of clusters, 
where each cluster is either a subcluster or a supercluster of another 
cluster. Hierarchical clustering can be either agglomerative or divi-
sive. Agglomerative clustering starts with each sample as a singleton 
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cluster and then merges the most similar clusters until a single cluster 
remains. Divisive clustering starts with all documents in one cluster 
and then splits the most dissimilar clusters until each cluster contains 
only one sample.

• Partitioning clustering: This method divides the data points into a pre-
defined number of non-overlapping clusters, where each point belongs 
to exactly one cluster. K-mean clustering is one of the most popular 
algorithms for partitioning clustering. Partitioning clustering can be 
either distance-based or centroid-based. Distance-based clustering 
assigns each data point to the cluster with the closest or most similar 
representative, such as the nearest neighbor. Centroid-based clustering 
assigns each data point to the cluster with the smallest or least average 
distance to the center or the cluster’s mean, such as K-mean clustering. 
K-mean clustering classifies samples based on attributes or features into 
k clusters. It starts with a first group of randomly selected centroids, 
which are used as the beginning points for every cluster, and then 
assigns each point to the cluster whose mean has the least squared 
Euclidean distance and optimizes the centroid based on the distances 
from the points to it. The hard assignment stops creating and optimiz-
ing clustering when either the centroids have stabilized or the defined 
number of iterations has been reached.

• Density-based clustering: This method identifies clusters based on 
the density or the concentration of the data points in the feature space, 
where regions of separate low-density clusters can be uncovered and 
assist in identifying unforeseen patterns. Density-based clustering can 
handle outliers, noise, and arbitrary shapes of clusters. One of the 
popular algorithms for density-based clustering is DBSCAN (density-
based spatial clustering of applications with noise). DBSCAN defines a 
cluster as a set of densely connected core points; a point is a core point 
if it has at least a minimum number of points within a given radius 
or neighborhood.

Clustering is a powerful technique for identifying patterns and insights 
from large and complex data sets. It can be used to segment customers, 
optimize services, categorize issues based on their similarities or differ-
ences, and provide personalized and efficient solutions. In the field of 
customer service and support, clustering has been a popular approach for 
solving some problems, such as:

• Customer segmentation: Clustering can help discover different 
groups of customers based on their demographics, preferences, needs, 
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behaviors, or characteristics, such as age, gender, location, income, 
spending habits, loyalty, satisfaction, or feedback. This can help tailor 
the marketing strategies, product recommendations, pricing policies, 
or communication channels for each segment and to improve cus-
tomer retention and acquisition.

• Service optimization: Clustering can help optimize the service 
delivery and support processes based on the complexity, urgency, or 
frequency of customer requests, issues, or inquiries, such as order sta-
tus, product information, technical support, billing, or feedback. This 
can help allocate the appropriate resources, staff, or channels for each 
service type and improve service efficiency and quality.

• Support case categorization: Clustering can help resolve customer 
issues faster and more effectively by grouping similar or related issues 
based on their causes, symptoms, or solutions, such as product defects, 
software bugs, network failures, or user errors. When AI technology 
is used to cluster similar cases together, these groupings can help 
by offering new insights that are not obvious when looking at cases 
individually or by product. An example might be multiple unrelated 
services experiencing login or profile creation issues. Viewed on their 
own, these could be hard to relate or determine the root cause of the 
issue, but after clustering them together, it might be more obvious that 
this is a problem with shared code providing identity services to mul-
tiple workloads. This clustering can help diagnose the root causes, find 
the best solutions or prevent future occurrences of the issues, increase 
customer satisfaction, and enhance retention.

Topic Modeling and Customer Support

Topic modeling is a technique for extracting hidden topics or concepts 
from a collection of text documents, such as customer reviews, feedback, 
complaints, or inquiries. Topic modeling can help discover the main 
themes or patterns of customer needs, preferences, opinions, or issues 
and provide valuable insights for customer support improvement, product 
development, marketing strategy, or sentiment analysis.

There are several different topic modeling methods. These algorithms differ 
in their assumptions, mathematical models, and implementations, but they 
all share the same basic idea: finding a low-dimensional representation 
of the documents and the words in terms of topics and probabilities. The 
output of a topic modeling algorithm is usually a matrix that shows the rela-
tionship between documents and topics, and another matrix that shows the 
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relationship between topics and words. These matrices can be used to infer 
the topics of new documents, find similar documents, visualize the topics, 
and extract insights from the text data. These methods include:

• Latent Dirichlet Allocation (LDA): This is one of the most popular 
topic modeling methods. LDA is an unsupervised learning algorithm 
that describes a set of observations as a mixture of distinct catego-
ries. These categories are themselves a probability distribution over 
the features. LDA is most commonly used to discover a user-specific 
number of topics shared by a collection of documents within a text 
corpus. Each observation is a document, the features are the presence 
or occurrence count of each word, the categories are the topics. LDA 
uses a generative process to assign topic probabilities to each docu-
ment and word probabilities to each topic, based on the observed word 
frequencies in the documents. LDA can be applied to large, diverse 
text corpora and produce interpretable and coherent topics.

• Non-negative Matrix Factorization (NMF): NMF is a linear algebra 
method that decomposes a matrix of word-document frequencies into 
two lower-dimensional non-negative matrices, one representing the 
word-topic associations and the other representing the topic-document 
associations. NMF imposes a non-negativity constraint on the matrices, 
which ensures that the topics and the documents have additive and 
meaningful components. NMF can be faster and more robust than 
LDA and can handle sparse and noisy data.

• Hierarchical Dirichlet Process (HDP): HDP is a Bayesian nonpara-
metric model that extends LDA by allowing the number of topics to 
be automatically inferred from the data rather than fixed in advance. 
HDP uses a hierarchical structure of Dirichlet processes to generate 
a potentially infinite number of topics and assigns them to the docu-
ments based on their relevance and specificity. HDP can adapt to the 
complexity and diversity of the text data and can avoid overfitting or 
underfitting the topics.

Topic modeling is a valuable technique in the customer service and sup-
port field for extracting insights from large volumes of textual data, such as 
customer reviews, feedback, and support cases. Here’s how topic model-
ing is leveraged in this domain:

• Automated support case categorization: Customer support teams often 
deal with a variety of issues and requests. Topic modeling can be lever-
aged to automatically categorize support tickets into different topics or 
categories based on their content. This helps in routing tickets to appro-
priate product support teams and improves response time and efficiency. 
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Moreover, topic modeling can help automate some processes in the 
customer support workflow. For example, it can point customers to the 
self-help knowledge base, diagnostics, or websites with the accurate 
topic category prediction. This can enhance the customer experience, 
reduce customer effort, and increase operational efficiency.

• Identifying emerging issues: Topic modeling can help uncover emerg-
ing trends or issues in customer feedback and support cases. It provides 
actionable insights for companies to address top issues before they 
escalate proactively.

• Improving search and retrieval: Topic modeling helps organize and 
index articles based on the topics for a large knowledge base of support 
or self-help articles. This improves the search and retrieval process for 
support agents or engineers and the customers looking for solutions.

• Customer feedback analysis: Topic modeling can help analyze and 
summarize customer feedback from multiple channels and platforms. 
This can help identify the most common and important topics, issues, 
compliments, complaints, and suggestions that customers express. 
This can also help products and companies measure and track key 
performance indicators related to customer support, customer sat-
isfaction, and loyalty. For instance, it can help measure the volume 
of support cases in different categories, identify resolution time, and 
assess customer satisfaction for each topic. Furthermore, product 
teams can prioritize and address customer complaints and grievances 
more effectively.

• Content creation and knowledge management. Topic modeling aids 
in content creation for FAQs, manuals, and support articles. It helps 
identify the most discussed topics, allowing companies to create rel-
evant and helpful content that addresses common customer queries.

In essence, topic modeling enhances the efficiency and effectiveness of 
customer service and support operations by providing automated tools 
for organizing, analyzing, and extracting insights from large volumes of 
textual customer data.

Hybrid AI Opportunity

Traditional machine learning methods like topic modeling and clustering 
have their own limitations and challenges. One of the main drawbacks is 
that they rely on statistical methods that do not account for the semantic 
and contextual nuances of natural language. For example, topic modeling 
may fail to distinguish between different meanings or senses of the same 
word, such as apple as a company but not as a fruit, or group together 
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words that are syntactically similar but semantically different, such as 
bass as a type of fish but not low-frequency sound in music. Moreover, 
topic modeling may produce topics that are too broad, too narrow, or not 
coherent, depending on the choice of parameters and algorithms. In con-
trast, large language models, such as GPT and Gemini, have demonstrated 
remarkable proficiency in understanding context, generating human-like 
responses, and extracting intricate patterns from textual data. In customer 
support, LLMs can be employed for tasks like sentiment analysis, intent 
recognition, and even generating responses to common queries.

While LLMs excel in understanding context and generating text, tra-
ditional machine learning methods like clustering and topic modeling 
offer strengths in structuring and organizing information. Clustering can 
group similar customer queries or issues, facilitating efficient handling by 
support agents. Topic modeling, on the other hand, extracts underlying 
themes from a vast dataset, aiding in understanding prevalent customer 
concerns. Moreover, when computational resources and budget are 
limited, it is easier and cheaper to leverage traditional machine learning 
methods like topic modeling and clustering.

In the dynamic landscape of customer support, a hybrid approach, inte-
grating the capabilities of LLMs with the structuring prowess of traditional 
methods, proves to be a holistic solution. By combining LLMs with topic 
modeling, more accurate, robust, and interpretable models can be utilized 
for customer feedback analysis. For instance, language models can help 
generate more natural and fluent texts from topics and can also help 
capture the semantic and contextual information that topic modeling may 
miss. Furthermore, LLMs can help generate new and novel topics that 
may not be present in the existing data or suggest relevant and personal-
ized content based on the topics of interest of each customer, while topic 
modeling and clustering can bring more interpretability and flexibility. 
This hybrid solution addresses the complexities of customer interactions, 
providing businesses with a powerful tool for improving customer satisfac-
tion and support efficiency.
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