Companion Website and Pearson Test Prep Access Code

Access interactive study tools on this book's companion website, including practice test software, review exercises, Key Term flash card application, a study planner, and more!

To access the companion website, simply follow these steps:

3. Answer the security question to validate your purchase.
4. Go to your account page.
5. Click on the Registered Products tab.

When you register your book, your Pearson Test Prep practice test access code will automatically be populated with the book listing under the Registered Products tab. You will need this code to access the practice test that comes with this book. You can redeem the code at PearsonTestPrep.com. Simply choose Pearson IT Certification as your product group and log into the site with the same credentials you used to register your book. Click the Activate New Product button and enter the access code. More detailed instructions on how to redeem your access code for both the online and desktop versions can be found on the companion website.

If you have any issues accessing the companion website or obtaining your Pearson Test Prep practice test access code, you can contact our support team by going to pearsonitp.echelp.org.
This page intentionally left blank
Warning and Disclaimer

This book discusses the content and skills needed to pass the 350-601 CCNP Data Center Core certification exam, which is the prerequisite for CCNP as well as CCIE certification. Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.
Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Vice President, IT Professional: Mark Taub
Alliances Managers, Cisco Press: Jaci Featherly; James Risler
Director, ITP Product Management: Brett Bartow
Executive Editor: James Manly
Managing Editor: Sandra Schroeder
Development Editor: Ellie Bru
Senior Project Editor: Tonya Simpson
Copy Editor: Chuck Hutchinson
Technical Editor: Donald S. Bacha
Editorial Assistant: Cindy Teeters
Cover Designer: Chuti Prasertsith
Composition: codeMantra
Indexer: Ken Johnson
Proofreader: Charlotte Kughen
Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world’s leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

- Everyone has an equitable and lifelong opportunity to succeed through learning
- Our educational products and services are inclusive and represent the rich diversity of learners
- Our educational content accurately reflects the histories and experiences of the learners we serve
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.
About the Authors

Somit Maloo, CCIE No. 28603, CCDE No. 20170002, is a content architect from the data center team in the Learning & Certifications’ organization. He holds a master’s degree in telecommunication networks and a bachelor’s degree in electronics and telecommunication engineering. He is also a penta CCIE in routing and switching, service provider, wireless, security, and data center technologies. Somit holds various industry-leading certifications, including CCDE, PMP, RHCSA, and VMware VCIX6 in Data Center and Network Virtualization. Somit has extensive experience in designing and developing various data center courses for the official Cisco curriculum. He started his career as a Cisco TAC engineer. Somit has more than 13 years of experience in the networking industry, working mostly with data center networks. You can reach Somit on Twitter: @somitmaloo.

Iskren Nikolov, CCIE No. 20164, CCSI No. 32481, MCT Alumni, content architect, engineer, and developer with the Cisco Learning & Certifications’ Data Center & Cloud team. He is responsible for designing, developing, and reviewing Data Center Official Learning Cisco courses, including lab infrastructures and exercises. He holds a master’s degree in computer systems and management from the Technical University-Sofia, Bulgaria. Iskren has more than 26 years of experience in designing, implementing, and supporting solutions based on the data center, security, storage, wide area networks, software-defined networks, cloud, hybrid, and multi-cloud technologies, including 11 years of teaching, and developing Cisco Data Center & Cloud and Microsoft Azure courses. The huge experience across technologies from multiple vendors such as Cisco Systems, VMware, Microsoft, and Barracuda, combined with the different perspectives gained from the different roles in his work and experience with customers from different industries, allow Iskren to have a unique view of the current data center technologies and the future trends. You can reach Iskren on LinkedIn: https://www.linkedin.com/in/iskrennikolov.

Firas Ahmed, CCIE No. 14967, is a solution architect on the data center technologies team at Nile. He completed a master’s degree in systems and control engineering following a bachelor’s degree in computer engineering. Firas holds CCIE certificates in routing and switching, collaboration, wireless, security, and data center technologies in addition to industry-based certifications, including CISSP, PMP, VMware VCP6.5-DCV, ITIL, and GICSP. Firas has more than 18 years of experience in designing, developing, and supporting various data centers for enterprise and IoT customers. Firas has additional experience as a seasonal instructor in a number of community colleges in Toronto, where he taught various computer networking courses. You can reach Firas on Twitter: @dccor_firas.
About the Technical Reviewer

Donald Bacha is an infrastructure manager with a health research organization in New York City. He’s the technical lead responsible for designing and implementing network, compute, virtualization, storage, and disaster recovery solutions. During the past 18 years, Donald has supported Cloud Services Provider, Enterprise, and Data Center environments contributing to complex routing and switching, data center, storage, and virtualization projects in both greenfield and brownfield deployments. Donald’s certifications include CCNP Data Center, CCNP Enterprise, and VCAP-DCV. Donald holds a master of science in network engineering from Southern Methodist University (SMU) Lyle School of Engineering and a master of business administration from the Commonwealth of Learning/University of Guyana. You can reach Donald on Twitter: @donald_bacha.
Dedications

Somit:

To my loving wife, Renuka, for her unending love and support.
To my wonderful parents, who supported me in every phase of my life.
To Navya and Namit, who agreed not to fight while Papa was working on the book.
To my aunt, Tara, for being the guiding angel in my life.

Iskren:

To my loving family—my wife, Petya, and my kids, Diana and Valentin—for their continued support and unconditional love!

Firas:

To my amazing wife, Nora, who has been extremely supportive throughout this process. Thanks for letting me spend long hours on my computer once again!
To Ibrahim and Maryam, you are growing so fast. Never give up on what you want. If at first you don't succeed, try and try again. I love you more than anything!
To my parents, you are still the guiding light that keeps me on the right path.
Acknowledgments

Somit Maloo:
I would like to thank my coauthors, Iskren Nikolov and Firas Ahmed, for working as a team to complete this book. Without their support, this book would not have been possible. I am thankful to all our professional editors, especially James Manly and Ellie Bru, for their patience and guidance at every step of the book process. I would also like to thank our technical editor, Donald Bacha, for his keen attention to detail and for agreeing to review the book, taking time out of his busy schedule.

Firas Ahmed:
I would like to thank my co-author, Somit Maloo, for taking the initiative to form this partnership and for his dedication in putting together the outline of this book. Thank you for your valuable input and continuous support throughout the process.

Thanks to the Cisco Press team, especially James Manly, for believing in us, and Ellie Bru, for her guidance and extreme patience while editing and amending the chapters of the book.

A special credit to Hazim Dahir, distinguished engineer at Cisco Systems, for his help and support with the technical review of the book.

In addition, I want to thank my colleague Naveen Chapa for reviewing and providing constructive feedback that helped enhance the ACI chapter.

Iskren Nikolov:
I would like to thank my co-author, Somit Maloo—it's not that often one can work effortlessly as a team with someone. I am thankful to the whole production team, especially James Manly and Ellie Bru, for their professionalism and endless patience with me! Special thanks also to our technical editor, Donald Bacha, for providing this precious other perspective on how we can tell a better story about the technology!
Contents at a Glance

Introduction xxxv

Part I Networking

- **Chapter 1** Implementing Routing in the Data Center 2
- **Chapter 2** Implementing Data Center Switching Protocols 90
- **Chapter 3** Implementing Data Center Overlay Protocols 150
- **Chapter 4** Describe Cisco Application Centric Infrastructure 172
- **Chapter 5** Cisco Cloud Services and Deployment Models 240
- **Chapter 6** Data Center Network Management and Monitoring 252
- **Chapter 7** Describe Cisco Nexus Dashboard 314

Part II Storage

- **Chapter 8** Implement Fibre Channel 352
- **Chapter 9** Implement FCoE Unified Fabric 434
- **Chapter 10** Describe NFS and NAS Concepts 478
- **Chapter 11** Describe Software Management and Infrastructure Monitoring 488

Part III Compute

- **Chapter 12** Cisco Unified Computing Systems Overview 530
- **Chapter 13** Cisco Unified Computing Infrastructure Monitoring 628
- **Chapter 14** Cisco Unified Compute Software and Configuration Management 658
- **Chapter 15** Cisco HyperFlex Overview 702

Part IV Automation

- **Chapter 16** Automation and Scripting Tools 730
- **Chapter 17** Evaluate Automation and Orchestration Technologies 762

Part V Security

- **Chapter 18** Network Security 798
- **Chapter 19** Compute Security 874
Chapter 20 Storage Security 896
Chapter 21 Final Preparation 932
Chapter 22 CCNP and CCIE Data Center Core DCCOR 350-601 Official Cert Guide
 Exam Updates 942
Appendix A Answers to the “Do I Know This Already?” Quizzes 946
 Glossary 961
 Index 984

Online Elements

Appendix B Memory Tables
Appendix C Memory Tables Answer Key
Appendix D Study Planner
 Glossary
Chapter 7 Describe Cisco Nexus Dashboard 314

“Do I Know This Already?” Quiz 314
Foundation Topics 316
Cisco Nexus Dashboard 316
 Cisco Nexus Dashboard Insights 318
 Cisco Nexus Dashboard Insights Features and Benefits 318
 Cisco Nexus Dashboard Insights GUI Overview 320
Cisco Nexus Dashboard Orchestrator 323
 Cisco Nexus Dashboard Orchestrator Features and Benefits 324
Cisco Nexus Dashboard Fabric Controller 325
 Cisco Nexus Dashboard Fabric Controller Features and Benefits 326
Cisco Nexus Dashboard Fabric Controller GUI Overview 331
Cisco Nexus Dashboard Data Broker 335
 Cisco Nexus Dashboard Data Broker Features and Benefits 337
Cisco Nexus Dashboard Platforms 337
Cisco Nexus Dashboard Cluster Nodes 339
Cisco Nexus Dashboard External Networks 341
Cisco Nexus Dashboard GUI Overview 342
 One View Page 343
 Admin Console Page 343
 Overview Page 344
 Sites Page 345
 Services Page 345
 System Resources Pages 346
Part II Storage

Chapter 8 Implement Fibre Channel 352

“Do I Know This Already?” Quiz 353

Foundation Topics 356

Cisco MDS 9000 Series Hardware 356

 Cisco MDS 9700 Series Multilayer Directors 356
 Cisco MDS 9300 Series Multilayer Fabric Switches 360
 Cisco MDS 9200 Series Multiservice Switches 361
 Cisco MDS 9100 Series Multilayer Fabric Switches 362

Fibre Channel Basics 365

 Fibre Channel Topologies 365
 Fibre Channel Port Types 368
 E Port 369
 F Port 369
 NP Ports 369
 TE Port 369
 TF Port 370
 TNP Port 370
 Fx Port 370
 Auto Mode 370

Fibre Channel Addressing 371

Flow Control 372

Switched Fabric Initialization 373

Principal Switch Selection 374

Domain ID Distribution 375

FCID Allocation 377

Fabric Reconfiguration 377

Device Registration: FLOGI, PLOGI, PRLI 378

FLOGI and FCNS Databases 378
CFS 380
 CFS Features 381
 CFS Fabric Lock 382
 CFSoIP and CFSoFC 382
 CFS Merge 384
 CFS Regions 384
VSAN 386
 VSAN Features 386
 VSAN Attributes 387
 VSAN Advantages 388
 Dynamic Port VSAN Membership (DPVM) 388
 VSAN Trunking 389
SAN Port Channels 396
 Types of SAN Port Channels 396
 Port Channel Load Balancing 398
 Port Channel Modes 399
Zoning 404
 Zoning Features 404
 Zone Enforcement 406
 Full and Active Zone Set 407
 Autozone 410
 Zone Merge 410
 Smart Zoning 411
 Enhanced Zoning 412
Device Alias 418
 Device Alias Features 419
 Device Alias Modes 419
 Device Alias Distribution 420
 Zone Aliases (FC Aliases) Versus Device Aliases 421
NPIV and NPV 424
Exam Preparation Tasks 431
Review All Key Topics 431
Memory Tables 432
Define Key Terms 432
References 433
Chapter 11 Describe Software Management and Infrastructure Monitoring 488

“Do I Know This Already?” Quiz 488

Foundation Topics 490

Cisco MDS NX-OS Setup Utility 490

Cisco MDS NX-OS Software Upgrade and Downgrade 498

Nondisruptive Upgrade on a Cisco MDS Fabric Switch 500

Disruptive Upgrade on a Cisco MDS Fabric Switch 505

Nondisruptive Downgrade on a Cisco MDS Fabric Switch 508

Disruptive Downgrade on a Cisco MDS Fabric Switch 513

EPLD Upgrade on Cisco MDS 9000 Series Switches 515

Infrastructure Monitoring 521

System Messages 521

Call Home 521

Embedded Event Manager 522

RMON 523

SPAN 523

SPAN Configuration Example 526

Remote SPAN 526

Exam Preparation Tasks 528

Review All Key Topics 528

Define Key Terms 529

References 529

Part III Compute

Chapter 12 Cisco Unified Computing Systems Overview 530

“Do I Know This Already?” Quiz 530

Foundation Topics 532

Cisco UCS Architecture 532

Cisco UCS Components and Connectivity 534

Cisco UCS 5108 Blade Server Chassis 536
UCS Blade Servers 536
Cisco UCS Rack Servers 537
Cisco UCS Storage Servers 537
Cisco UCS Mini 539
Cisco UCS Fabric Infrastructure 539
Cisco UCS 6536 Fabric Interconnect 540
Cisco UCS 6454 Fabric Interconnect 541
Cisco UCS 6300 Series Fabric Interconnects 543
Fabric Interconnect and Fabric Extender Connectivity 544
Cisco UCS Virtualization Infrastructure 550
Cisco UCS-X System 555
Cisco UCS Initial Setup and Management 557
Fabric Interconnect Connectivity and Configurations 565
Uplink Connectivity 566
Downlink Connectivity 567
Fabric Interconnect Port Modes 567
Fabric Failover for Ethernet: High-Availability vNIC 569
Ethernet Switching Mode 570
UCS Device Discovery 577
Chassis/FEX Discovery 577
Rack Server Discovery Policy 577
Initial Server Setup for Standalone UCS C-Series 578
Cisco UCS Network Management 584
UCS Virtual LAN 584
Named VLANs 586
UCS Identity Pools 591
Universally Unique Identifier Suffix Pools 591
MAC Pools 593
IP Pools 593
Server Pools 596
Service Profiles 596
UCS Server Policies 599
UCS Service Profile Templates 602
Quality of Service 608
QoS System Classes 608
QoS System Classes Configurations 609
Configuring Quality of Service Policies 610
Cisco UCS Storage 611
 UCS SAN Connectivity 611
 UCS SAN Configuration 615
 Virtual Storage-Area Networks 616
 Named VSANs Configurations 616
 Zones and Zone Sets 618
 World Wide Name Pool 621
 SAN Connectivity Policies 624
Exam Preparation Tasks 625
Review All Key Topics 625
Define Key Terms 626
References 626

Chapter 13 **Cisco Unified Computing Infrastructure Monitoring** 628
“Do I Know This Already?” Quiz 628
Foundation Topics 630
Cisco UCS System Monitoring 630
 Data Management Engine 631
 Application Gateway 631
 Northbound Interfaces 631
 Cisco UCS Monitoring Events and Logs 632
 Cisco UCS Monitoring Policies 634
 Cisco UCS Simple Network Management Protocol 636
 Cisco UCS Call Home and Smart Call Home 636
 Cisco UCS Manager Database Health and Hardware Monitoring 638
 Cisco UCS NetFlow Monitoring 638
 Traffic Monitoring 640
 Traffic Monitoring Across Ethernet 641
 Traffic Monitoring Across Fibre Channel 642
Cisco Intersight 647
 Intersight Management as a Service 648
 Intersight as a Telemetry Data Collection 650
 Cisco Intersight Supported Software 650
 Cisco Intersight Licensing 652
Exam Preparation Tasks 656
Review All Key Topics 656
Define Key Terms 657
References 657
Chapter 14 Cisco Unified Compute Software and Configuration Management 658

“Do I Know This Already?” Quiz 658

Foundation Topics 660

Cisco UCS Configuration Management 660
 Creating and Running a Backup Operation 661
 Backup Policies 666
 Backup Policy Configuration 666
 Import Backups 668
 Enable the Import Operation 669
 System Restore 670
 Restoring the Configuration for a Fabric Interconnect 671

UCS Firmware and Software Updates 672
 Firmware Version Terminology 679
 Firmware Upgrades Through Auto Install 680
 Direct Upgrade After Auto Install Procedure 684
 Install Infrastructure Firmware Procedure 688
 Upgrading the Server Firmware with Auto Install 691
 Standalone Cisco UCS C-Series Server Firmware Upgrade Using the Host Upgrade Utility (HUU) 693
 Downloading and Preparing the ISO for an Upgrade 694

Exam Preparation Tasks 700

Review All Key Topics 700

Define Key Terms 700

References 700

Chapter 15 Cisco HyperFlex Overview 702

“Do I Know This Already?” Quiz 702

Foundation Topics 704

Cisco HyperFlex Solution and Benefits 704
 HyperFlex Benefits 707
 Intelligent End-to-End Automation 708
 Unified Management for All Workloads 709
 Independent Resource Scaling 710
 Superior Virtual Machine Density with Lower and Consistent Latency 711

HyperFlex as an Edge, Hybrid, and All-Flash Nodes 712
 HyperFlex as an Edge Device 712
HyperFlex Hyperconverged Multicloud Platform (Hybrid or All-Flash) 714
HyperFlex All NVMe 715
Cisco HyperFlex Data Platform 716
HX Storage Cluster Physical Components 717
HX Data Platform High Availability 718
HX Data Platform Cluster Tolerated Failures 719
HX Data Platform Ready Clones 719
HX Data Platform Native Snapshots 719
HX Cluster Interfaces 720
HX Self-Encrypting Drives 720
Configuring a Local Encryption Key 721
Managing HX Disks in the Cluster 721
Managing HX Datastores 724
Expand Cisco HX System Clusters 725
Enabling HX Logical Availability Zones 726
Exam Preparation Tasks 728
Review All Key Topics 728
Define Key Terms 728
References 728

Part IV Automation

Chapter 16 Automation and Scripting Tools 730
“Do I Know This Already?” Quiz 730
Foundation Topics 733
EEM Overview 733
 Policies 733
 Event Statements 734
 Action Statements 734
Configuring EEM 735
 Verifying the EEM Configuration 736
Scheduler 736
 Configuring Scheduler 737
 Verifying Scheduler Configuration 739
Bash Shell for Cisco NX-OS 740
 Managing Feature RPMs 742
 Managing Patch RPMs 742
Guest Shell for Cisco NX-OS 743
Chapter 17 Evaluate Automation and Orchestration Technologies 762

“Do I Know This Already?” Quiz 762

Foundation Topics 764

Ansible 764

Ansible Components 765
Important Ansible Concepts 766
Ansible CLI Tools 767
Cisco NX-OS and Ansible Example 767

Python 768

Python Package for Cisco 769
Using the CLI Command APIs 771
Python in Interactive Mode 772
Python in Noninteractive Mode 773
UCS Manager Python SDK 775
Convert to UCS Python 777

PowerOn Auto Provisioning (POAP) 777

Limitations of POAP 778
Network Requirements for POAP 778
Part V Security

Chapter 18 Network Security 798

“Do I Know This Already?” Quiz 798

Foundation Topics 801

Authentication, Authorization, and Accounting 801

AAA Service Configuration Options 802

Authentication and Authorization User Login Process 803

AAA NX-OS Configurations 804

Role-Based Access Control 807

NX-OS User Roles and Rules 809

NX-OS RBAC Configurations 811

Nexus First-Hop Security 815

Nexus Dynamic ARP Inspection 816

NX-OS DAI Configurations 819

NX-OS DHCP Snooping 827

DHCP Snooping Trusted and Untrusted Sources 827

DHCP Snooping Packet Validation 828

DHCP Snooping Option 82 Data Insertion 829
Chapter 19 Compute Security 874
“Do I Know This Already?” Quiz 874
Foundation Topics 875
Securing UCS Management Using Authentication, Authorization, and Accounting 875
User RADIUS and TACACS+ Attributes 876
Two-Factor Authentication 879
UCS Web Session Refresh and Session Timeout Period 879
UCS LDAP Providers and Groups 879
LDAP Group Mapping 885
RADIUS and TACACS+ Authentication Configurations 888
UCS Remote Users Role Policy 892
Multiple Authentication Services Configuration 894
Exam Preparation Tasks 895
Review All Key Topics 895
Define Key Terms 895
References 895

Chapter 20 Storage Security 896
“Do I Know This Already?” Quiz 896
Foundation Topics 898
Authentication, Authorization, and Accounting 898
Authentication 899
Authorization 899
Accounting 900
Server Groups 900
AAA Service Configuration Options 900
AAA Server Monitoring 900
Remote AAA Services 901
RADIUS 902
TACACS+ 904
LDAP 907
Local AAA Services 911
AAA Authentication and Authorization Process 912
AAA Server Distribution 913
Merging RADIUS and TACACS+ Configurations 914
User Accounts and RBAC 914
User Roles 915
Appendix A Answers to the “Do I Know This Already?” Quizzes 946
 Glossary 961
 Index 984

Online Elements

Appendix B Memory Tables
Appendix C Memory Tables Answer Key
Appendix D Study Planner
 Glossary
Other Features

In addition to the features in each of the core chapters, this book has additional study resources on the companion website, including the following:

Practice exams: The companion website contains an exam engine that enables you to review practice exam questions. Use these questions to prepare with a sample exam and to pinpoint topics where you need more study.

An online interactive Flash Cards application to help you drill on Key Terms by chapter.

Glossary quizzes: The companion website contains interactive quizzes that enable you to test yourself on every glossary term in the book.

More than two hours of video training: The companion website contains multiple hours of unique test-prep videos.

To access this additional content, simply register your product. To start the registration process, go to www.ciscopress.com/register and log in or create an account*. Enter the product ISBN 9780138228088 and click Submit. After the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
Icons Used in This Book

- Cisco Nexus 9500 Series
- ATM Router
- Cisco Nexus 7000
- File Server
- Laptop
- Server
- Switch
- Cisco Nexus 5000
- Cisco Nexus 2000
- Terminal
- Cloud
- Cisco Nexus 9300 Series
- API Controller
- Generic/Unknown
- Database
- Storage Array
- Telephony Router
- Net Ranger
- Router with Firewall
- IP Phone

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).

- **Italic** indicates arguments for which you supply actual values.

- Vertical bars (`|`) separate alternative, mutually exclusive elements.

- Square brackets (`[]`) indicate an optional element.

- Braces (`{ }`) indicate a required choice.

- Braces within brackets (`{[]}`) indicate a required choice within an optional element.
Introduction

Professional certifications have been an important part of the computing industry for many years and will continue to become more important. Many reasons exist for these certifications, but the most popularly cited reason is that of credibility. All other considerations held equal, the certified employee/consultant/job candidate is considered more valuable than one who is not.

Goals and Methods

The most important and somewhat obvious goal of this book is to help you pass the 350-601 CCNP Data Center Core Exam. In fact, if the primary objective of this book were different, the book's title would be misleading; however, the methods used in this book to help you pass the 350-601 CCNP Data Center Core Exam are designed to also make you much more knowledgeable about how to do your job. Although this book and the companion website together have more than enough questions to help you prepare for the actual exam, the method in which they are used is not simply to make you memorize as many questions and answers as you possibly can.

One key methodology used in this book is to help you discover the exam topics that you need to review in more depth, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. So, this book does not try to help you pass by memorization, but helps you truly learn and understand the topics. The Data Center Core Exam is just one of the foundation topics in the CCNP and CCIE certification, and the knowledge contained within is vitally important to consider yourself a truly skilled data center engineer or specialist. This book would do you a disservice if it didn't attempt to help you learn the material. To that end, the book will help you pass the Data Center Core Exam by using the following methods:

■ Helping you discover which test topics you have not mastered
■ Providing explanations and information to fill in your knowledge gaps
■ Supplying exercises and scenarios that enhance your ability to recall and deduce the answers to test questions
■ Providing practice exercises on the topics and the testing process via test questions through the companion website

Who Should Read This Book?

This book is not designed to be a general networking topics book, although it can be used for that purpose. This book is intended to tremendously increase your chances of passing the CCNP Data Center Core Exam. Although other objectives can be achieved from using this book, the book is written with one goal in mind: to help you pass the exam.

So why should you want to pass the CCNP Data Center Core Exam? Because it’s one of the milestones toward getting the CCNP and CCIE certification—no small feat in itself.
What would getting the CCNP or CCIE mean to you? A raise, a promotion, recognition? How about to enhance your resume? To demonstrate that you are serious about continuing the learning process and that you’re not content to rest on your laurels. To please your reseller-employer, who needs more certified employees for a higher discount from Cisco. Or one of many other reasons.

Strategies for Exam Preparation

The strategy you use for the CCNP Data Center Core Exam might be slightly different from strategies used by other readers, mainly based on the skills, knowledge, and experience you already have obtained. For instance, if you have attended the DCFNDU course, you might take a different approach than someone who learned data center technologies via on-the-job training.

Regardless of the strategy you use or the background you have, the book is designed to help you get to the point where you can pass the exam with the least amount of time required. For instance, there is no need for you to practice or read about OSPF or BGP if you fully understand it already. However, many people like to make sure that they truly know a topic and thus read over material that they already know. Several book features will help you gain the confidence that you need to be convinced that you know some material already and to also help you know what topics you need to study more.

The Companion Website for Online Content Review

All the electronic review elements, as well as other electronic components of the book, exist on this book’s companion website.

How to Access the Companion Website

To access the companion website, which gives you access to the electronic content with this book, start by establishing a login at ciscopress.com and register your book. To do so, simply go to ciscopress.com/register and enter the ISBN of the print book: 9780138228088. After you have registered your book, go to your account page and click the Registered Products tab. From there, click the Access Bonus Content link to get access to the book’s companion website.

Note that if you buy the Premium Edition eBook and Practice Test version of this book from Cisco Press, your book will automatically be registered on your account page.

Simply go to your account page, click the Registered Products tab, and select Access Bonus Content to access the book’s companion website.

How to Access the Pearson Test Prep (PTP) App

You have two options for installing and using the Pearson Test Prep application: a web app and a desktop app. To use the Pearson Test Prep application, start by finding the registration code that comes with the book. You can find the code in these ways:

- **Print book or bookseller eBook versions**: You can get your access code by registering the print ISBN (9780138228088) on ciscopress.com/register. Make sure to use the
print book ISBN regardless of whether you purchased an eBook or the print book. Once you register the book, your access code will be populated on your account page under the Registered Products tab. Instructions for how to redeem the code are available on the book’s companion website by clicking the Access Bonus Content link.

- **Premium Edition**: If you purchase the Premium Edition eBook and Practice Test directly from the Cisco Press website, the code will be populated on your account page after purchase. Just log in at www.ciscopress.com, click Account to see details of your account, and click the digital purchases tab.

NOTE Do not lose the activation code because it is the only means with which you can access the QA content with the book.

When you have the access code, to find instructions about both the PTP web app and the desktop app, follow these steps:

Step 1. Open this book’s companion website, as shown earlier in this Introduction under the heading “How to Access the Companion Website.”

Step 2. Click the Practice Exams button.

Step 3. Follow the instructions listed there both for installing the desktop app and for using the web app.

Note that if you want to use the web app only at this point, just navigate to www.pearsontestprep.com, establish a free login if you do not already have one, and register this book’s practice tests using the registration code you just found. The process should take only a couple of minutes.

How This Book Is Organized

Although this book could be read cover to cover, it is designed to be flexible and allow you to easily move between chapters and sections of chapters to cover just the material that you need more work with.

The core chapters, Chapters 1 through 20, cover the following topics:

- **Chapter 1, “Implementing Routing in the Data Center”**: This chapter discusses data center Layer 3 routing protocols, focusing on OSPF and BGP routing protocols. It also discusses multicast and First Hop Redundancy Protocols such as HSRP and VRRP.

- **Chapter 2, “Implementing Data Center Switching Protocols”**: This chapter discusses data center Layer 2 switching protocols, focusing on spanning tree and multiport aggregation. It also discusses virtual port channels (multichassis port channels).

- **Chapter 3, “Implementing Data Center Overlay Protocols”**: This chapter discusses data center overlay protocol Virtual Extensible LAN (VXLAN).
Chapter 4, “Describe Cisco Application Centric Infrastructure”: This chapter discusses various aspects of Cisco ACI, including but not limited to fabric discovery, fabric access policies, fabric packet flow, tenants, and VMM domains.

Chapter 5, “Cisco Cloud Services and Deployment Models”: This chapter discusses an overview of what cloud computing is along with cloud service models per the NIST 800-145 definition, such as Infrastructure as a Service (IaaS), Software as a Service (SaaS), and Platform as a Service (PaaS). It also discusses various cloud deployment models per the NIST 800-145 definition, such as public, private, community, and hybrid cloud.

Chapter 6, “Data Center Network Management and Monitoring”: This chapter discusses data center network disruptive/nondisruptive upgrade procedures, network configurations, and infrastructure monitoring aspects in detail. It also discusses data center network assurance and data telemetry.

Chapter 7, “Describe Cisco Nexus Dashboard”: This chapter discusses various services/applications for the Cisco Nexus Dashboard platform including Cisco Nexus Dashboard Insights (NDI), Cisco Nexus Dashboard Orchestrator (NDO), Cisco Nexus Dashboard Fabric Controller (NDFC), and Cisco Nexus Dashboard Data Broker (NDDB), along with their features and benefits. It also discusses various form factors, node types, and network types for Cisco Nexus Dashboard deployment along with a graphical user interface (GUI) overview of the Cisco Nexus Dashboard platform.

Chapter 8, “Implement Fibre Channel”: This chapter discusses the MDS 9000 Series Hardware and Fibre Channel protocol in detail. It discusses Fibre Channel topologies, port types, switched fabric initialization, CFS distribution, VSAN, zoning, device alias, FLOGI, and FCNS databases. It also discusses NPV and NPIV features in detail.

Chapter 9, “Implement FCoE Unified Fabric”: This chapter discusses the FCoE Unified Fabric Protocol in detail. It discusses various Ethernet enhancements that enable FCoE support on Ethernet interfaces. It also discusses FCoE topology options and various FCoE implementations—for example, FCoE over FEX and FCoE NPV.

Chapter 10, “Describe NFS and NAS Concepts”: This chapter discusses NFS basics along with various NFS versions. It also discusses NAS basics with an overview of the Cisco UCS S-Series Storage Servers.

Chapter 11, “Describe Software Management and Infrastructure Monitoring”: This chapter discusses how the Cisco MDS NX-OS Setup Utility helps to build an initial configuration file using the System Configuration dialog. It also discusses Cisco MDS NX-OS software upgrade and downgrade procedures, along with infrastructure monitoring features such as SPAN, RSPAN, RMON, and Call Home.

Chapter 12, “Cisco Unified Computing Systems Overview”: This chapter discusses the Cisco Unified Computing System (UCS) architecture. It also discusses in detail UCS initial setup, along with network management aspects of Cisco UCS, such as identity pools, policies, QoS, and templates.
Chapter 13, “Cisco Unified Computing Infrastructure Monitoring”: This chapter discusses Cisco Unified Compute traffic monitoring and Intersight cloud management.

Chapter 14, “Cisco Unified Compute Software and Configuration Management”: This chapter discusses Cisco UCS configuration management such as backup and restore. It also discusses aspects of firmware and software updates on Cisco UCS.

Chapter 15, “Cisco HyperFlex Overview”: This chapter discusses the Cisco Hyperflex solution and benefits. It also discusses edge solutions that enable any application to be deployed, monitored, and managed anywhere.

Chapter 16, “Automation and Scripting Tools”: This chapter discusses various automation and scripting tools. It discusses the Embedded Event Manager (EEM), Scheduler, Bash Shell, and Guest Shell for Cisco NX-OS software, and various data formats such as XML and JSON. It also discusses how the REST API can be used to configure Cisco NX-OS devices.

Chapter 17, “Evaluate Automation and Orchestration Technologies”: This chapter discusses various automation and orchestration technologies. It discusses how Ansible, Python, and Terraform can be used to automate Cisco Data Center products. It also discusses the PowerOn Auto Provisioning (POAP) process, along with the UCS PowerShell modules, also referred to as UCS PowerTool Suite.

Chapter 18, “Network Security”: This chapter discusses network authentication, authorization, and accounting (AAA) and user role-based access control (RBAC). It also discusses various network security protocols in detail, including control plan policing, dynamic ARP inspection, DHCP snooping, and port security, along with the keychain authentication method.

Chapter 19, “Compute Security”: This chapter discusses Cisco UCS authentication and user role-based access control.

Chapter 20, “Storage Security”: This chapter discusses various storage security features in detail. It discusses authentication, authorization, and accounting (AAA), user accounts, and RBAC. It also discusses configuration and verification of port security and fabric binding features on the Cisco MDS 9000 Series switches.

Chapter 21, “Final Preparation”: This chapter suggests a plan for final preparation after you have finished the core parts of the book, in particular explaining the many study options available in the book.

Certification Exam Topics and This Book

The questions for each certification exam are a closely guarded secret. However, we do know which topics you must know to successfully complete this exam. Cisco publishes them as an exam blueprint for the Implementing Cisco Data Center Core Technologies (DCCOR 350-601) Exam. Table I-1 lists each exam topic listed in the blueprint along with a reference to the book chapter that covers the topic. These are the same topics you should be proficient in when working with Cisco data center technologies in the real world.
Table I-1 DCCOR Exam 350-601 Topics and Chapter References

<table>
<thead>
<tr>
<th>DCCOR 350-601 Exam Topic</th>
<th>Chapter(s) in Which Topic Is Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Network</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Apply routing protocols</td>
<td>1</td>
</tr>
<tr>
<td>1.1.a OSPFv2, OSPFv3</td>
<td>1</td>
</tr>
<tr>
<td>1.1.b MP-BGP</td>
<td>1</td>
</tr>
<tr>
<td>1.1.c PIM</td>
<td>1</td>
</tr>
<tr>
<td>1.1.d FHRP</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Apply switching protocols such as RSTP+, LACP and vPC</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Apply overlay protocols such as VXLAN EVPN</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Apply ACI concepts</td>
<td>4</td>
</tr>
<tr>
<td>1.4.a Fabric setup</td>
<td>4</td>
</tr>
<tr>
<td>1.4.b Access policies</td>
<td>4</td>
</tr>
<tr>
<td>1.4.c VMM</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Analyze packet flow (unicast, multicast, and broadcast)</td>
<td>4</td>
</tr>
<tr>
<td>1.6 Describe Cloud service and deployment models (NIST 800-145)</td>
<td>5</td>
</tr>
<tr>
<td>1.7 Describe software updates and their impacts</td>
<td>6</td>
</tr>
<tr>
<td>1.7.a Disruptive/nondisruptive</td>
<td>6</td>
</tr>
<tr>
<td>1.7.b EPLD</td>
<td>6</td>
</tr>
<tr>
<td>1.7.c Patches</td>
<td>6</td>
</tr>
<tr>
<td>1.8 Implement network configuration management</td>
<td>6</td>
</tr>
<tr>
<td>1.9 Implement infrastructure monitoring such as NetFlow and SPAN</td>
<td>6</td>
</tr>
<tr>
<td>1.10 Explain network assurance concepts such as streaming telemetry</td>
<td>6</td>
</tr>
<tr>
<td>1.11 Describe the capabilities and features of Nexus Dashboard</td>
<td>7</td>
</tr>
<tr>
<td>2.0 Compute</td>
<td>12</td>
</tr>
<tr>
<td>2.1 Implement Cisco Unified Compute System Rack Servers</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Implement Cisco Unified Compute System Blade Chassis</td>
<td>12</td>
</tr>
<tr>
<td>2.2.a Initial setup</td>
<td>12</td>
</tr>
<tr>
<td>2.2.b Infrastructure management</td>
<td>12</td>
</tr>
<tr>
<td>2.2.c Network management (VLANs, pools and policies, templates, QoS)</td>
<td>12</td>
</tr>
<tr>
<td>2.2.d Storage management (SAN connectivity, Fibre Channel zoning, VSANs, WWN pools, SAN policies, templates)</td>
<td>12</td>
</tr>
<tr>
<td>2.2.e Server management (Server pools and boot policies)</td>
<td>12</td>
</tr>
<tr>
<td>DCCOR 350-601 Exam Topic</td>
<td>Chapter(s) in Which Topic Is Covered</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>2.3 Explain HyperFlex Infrastructure concepts and benefits (Edge and Hybrid Architecture vs all-flash)</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Describe firmware and software updates and their impacts on B-Series and C-Series servers</td>
<td>14</td>
</tr>
<tr>
<td>2.5 Implement compute configuration management (Backup and restore)</td>
<td>14</td>
</tr>
<tr>
<td>2.6 Implement infrastructure monitoring such as SPAN and Cisco Intersight</td>
<td>13</td>
</tr>
<tr>
<td>3.0 Storage Network</td>
<td></td>
</tr>
<tr>
<td>3.1 Implement Fibre Channel</td>
<td>8</td>
</tr>
<tr>
<td>3.1.a Switch fabric initialization</td>
<td>8</td>
</tr>
<tr>
<td>3.1.b Port channels</td>
<td>8</td>
</tr>
<tr>
<td>3.1.c FCID</td>
<td>8</td>
</tr>
<tr>
<td>3.1.d CFS</td>
<td>8</td>
</tr>
<tr>
<td>3.1.e Zoning</td>
<td>8</td>
</tr>
<tr>
<td>3.1.f FCNS</td>
<td>8</td>
</tr>
<tr>
<td>3.1.g Device alias</td>
<td>8</td>
</tr>
<tr>
<td>3.1.h NPV and NPIV</td>
<td>8</td>
</tr>
<tr>
<td>3.1.i VSAN</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Implement FCoE Unified Fabric</td>
<td>9</td>
</tr>
<tr>
<td>3.3 Describe NFS and NAS concepts</td>
<td>10</td>
</tr>
<tr>
<td>3.4 Describe software updates and their impacts (Disruptive/nondisruptive and EPLD)</td>
<td>11</td>
</tr>
<tr>
<td>3.5 Implement infrastructure monitoring</td>
<td>11</td>
</tr>
<tr>
<td>4.0 Automation</td>
<td></td>
</tr>
<tr>
<td>4.1 Implement automation and scripting tools</td>
<td>16</td>
</tr>
<tr>
<td>4.1.a EEM</td>
<td>16</td>
</tr>
<tr>
<td>4.1.b Scheduler</td>
<td>16</td>
</tr>
<tr>
<td>4.1.c Bash Shell and Guest Shell for NX-OS</td>
<td>16</td>
</tr>
<tr>
<td>4.1.d REST API (NX-API, JSON, and XML encodings)</td>
<td>16</td>
</tr>
<tr>
<td>4.1.e On-box Python</td>
<td>17</td>
</tr>
<tr>
<td>4.2 Evaluate automation and orchestration technologies</td>
<td>17</td>
</tr>
<tr>
<td>4.2.a Ansible</td>
<td>17</td>
</tr>
<tr>
<td>4.2.b Python</td>
<td>17</td>
</tr>
<tr>
<td>4.2.c POAP</td>
<td>17</td>
</tr>
<tr>
<td>4.2.d Cisco Nexus Dashboard Fabric Controller</td>
<td>7</td>
</tr>
</tbody>
</table>
Each version of the exam can have topics that emphasize different functions or features, and some topics can be rather broad and generalized. The goal of this book is to provide the most comprehensive coverage to ensure that you are well prepared for the exam. Although some chapters might not address specific exam topics, they provide a foundation that is necessary for a clear understanding of important topics. Your short-term goal might be to pass this exam, but your long-term goal should be to become a qualified data center professional.

It is also important to understand that this book is a “static” reference, whereas the exam topics are dynamic. Cisco can and does change the topics covered on certification exams often.

This exam guide should not be your only reference when preparing for the certification exam. You can find a wealth of information available at Cisco.com that covers each topic in great detail. If you think that you need more detailed information on a specific topic, read the Cisco documentation that focuses on that topic.

Note that as data center technologies continue to develop, Cisco reserves the right to change the exam topics without notice. Although you can refer to the list of exam topics in Table I-1, always check Cisco.com to verify the actual list of topics to ensure that you are prepared before taking the exam. You can view the current exam topics on any current Cisco certification exam by visiting the Cisco.com website, choosing Menu, and Training & Events, then selecting from the Certifications list. Note also that, if needed, Cisco Press might post additional preparatory content on the web page associated with this book at http://www.ciscopress.com/title/9780138228088. It’s a good idea to check the website a couple of weeks before taking your exam to be sure that you have up-to-date content.
Taking the CCNP Data Center Core Exam

As with any Cisco certification exam, you should strive to be thoroughly prepared before taking the exam. There is no way to determine exactly what questions are on the exam, so the best way to prepare is to have a good working knowledge of all subjects covered on the exam. Schedule yourself for the exam and be sure to be rested and ready to focus when taking the exam.

The best place to find out the latest available Cisco training and certifications is under the Training & Events section at Cisco.com.

Tracking Your Status

You can track your certification progress by checking http://www.cisco.com/go/certifications/login. You must create an account the first time you log in to the site.

How to Prepare for an Exam

The best way to prepare for any certification exam is to use a combination of the preparation resources, labs, and practice tests. This guide has integrated some practice questions and sample scenarios to help you better prepare. If possible, get some hands-on experience with ACI, Nexus, and UCS equipment. There is no substitute for real-world experience; it is much easier to understand the designs, configurations, and concepts when you can actually work with a live data center network.

Cisco.com provides a wealth of information about Application Centric Infrastructure (ACI), Nexus switches, and Unified Computing System—Blade and Rack servers, and data center LAN technologies and features.

Assessing Exam Readiness

Exam candidates never really know whether they are adequately prepared for the exam until they have completed about 30 percent of the questions. At that point, if you are not prepared, it is too late. The best way to determine your readiness is to work through the “Do I Know This Already?” quizzes at the beginning of each chapter and review the foundation and key topics presented in each chapter. It is best to work your way through the entire book unless you can complete each subject without having to do any research or look up any answers.

Cisco Data Center Certifications in the Real World

Cisco is one of the most recognized names on the Internet. Cisco Certified data center specialists can bring quite a bit of knowledge to the table because of their deep understanding of data center technologies, standards, and networking devices. This is why the Cisco certification carries such high respect in the marketplace. Cisco certifications
demonstrate to potential employers and contract holders a certain professionalism, expertise, and dedication required to complete a difficult goal. If Cisco certifications were easy to obtain, everyone would have them.

Exam Registration

The 350-601 CCNP Data Center Core Exam is a computer-based exam, with around 100 to 110 multiple-choice, fill-in-the-blank, list-in-order, and simulation-based questions. You can take the exam at any Pearson VUE (http://www.pearsonvue.com) testing center. According to Cisco, the exam should last about 120 minutes. Be aware that when you register for the exam, you might be told to allow a certain amount of time to take the exam that is longer than the testing time indicated by the testing software when you begin. The reason for this discrepancy is that the testing center will want you to allow for some time to get settled and take the tutorial about the test engine.

Book Content Updates

Because Cisco occasionally updates exam topics without notice, Cisco Press might post additional preparatory content on the web page associated with this book at http://www.ciscopress.com/title/9780138228088. It is a good idea to check the website a couple of weeks before taking your exam to review any updated content that might be posted online. We also recommend that you periodically check back to this page on the Cisco Press website to view any errata or supporting book files that may be available.

Figure Credits

Figures 17-5 through 17-8: HashiCorp
CHAPTER 3

Implementing Data Center Overlay Protocols

The adoption of server virtualization has been increasing rapidly. Server virtualization provides flexibility and agility in provisioning and placement of computing workloads. However, network connectivity has not kept pace with such innovations in the computing environment, although it still offers a rigid approach to provisioning transport services.

As a solution, network overlays abstract the details of the physical network, making it much faster to connect virtual machines (VMs) and other devices. Rather than provision paths on physical devices, overlays encapsulate traffic using protocols such as Overlay Transport Virtualization (OTV) or Virtual Extensible LAN (VXLAN) across the physical network. These newer protocols allow operators to move beyond the limitations of VLANs, which support only 4096 virtual networks, so that they can better support multitenant services.

This chapter covers the following key topics:

Virtual Extensible LAN (VXLAN) Overview: This section discusses the Layer 2 VLAN extension to provide multitenant flexibility, high segment scalability, and Layer 2 spanning tree improvement, along with a configuration example.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz enables you to assess whether you should read this entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in doubt about your answers to these questions or your own assessment of your knowledge of the topics, read the entire chapter. Table 3-1 lists the major headings in this chapter and their corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Extensible LAN (VXLAN) Overview</td>
<td>1–3</td>
</tr>
</tbody>
</table>

CAUTION The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of the self-assessment. Giving yourself credit for an answer you correctly guess skews your self-assessment results and might provide you with a false sense of security.
1. In current data center networking architecture, which network layer is used to transmit VXLAN packets or other overlay packets?
 a. Overlay network
 b. SD-WAN
 c. Underlay network
 d. MPLS

2. How many available IDs can be assigned to a VXLAN at any given time?
 a. 4096
 b. 160,000
 c. 1 million
 d. 16 million

3. Which statement about VXLAN high availability is correct?
 a. For an anycast IP address, vPC VTEP switches can use the same VTEP IP address.
 b. For an anycast IP address, vPC VTEP switches must use the same secondary IP address on the loopback interface.
 c. Distributed anycast gateways must be connected with vPC.
 d. VTEP high availability will use unicast instead of multicast communications.

Foundation Topics

Virtual Extensible LAN (VXLAN) Overview

In partnership with other leading vendors, Cisco proposed the VXLAN standard to the Internet Engineering Task Force (IETF) as a solution to the data center network challenges posed by the traditional VLAN technology. The VXLAN standard provides for flexible workload placement and the higher scalability of Layer 2 segmentation that is required by modern application demands. VXLAN is an extension to the Layer 2 VLAN. It was designed to provide the same VLAN functionality with greater extensibility and flexibility. VXLAN offers the following benefits:

- **VLAN flexibility in multitenant segments**: It provides a solution to extend Layer 2 segments over the underlying network infrastructure so that tenant workload can be placed across physical pods in the data center.

- **Higher scalability**: VXLAN uses a 24-bit segment ID known as the VXLAN network identifier (VNID), which enables up to 16 million VXLAN segments to coexist in the same administrative domain.

- **Improved network utilization**: VXLAN solved Layer 2 STP limitations. VXLAN packets are transferred through the underlying network based on its Layer 3 header and can take complete advantage of Layer 3 routing, equal-cost multipath (ECMP) routing, and link aggregation protocols to use all available paths.
VXLAN Encapsulation and Packet Format

VXLAN is a solution to support a flexible, large-scale multitenant environment over a shared common physical infrastructure. The transport protocol over the physical data center network is IP plus UDP.

VXLAN defines a MAC-in-UDP encapsulation scheme where the original Layer 2 frame has a VXLAN header added and is then placed in a UDP-IP packet. With this MAC-in-UDP encapsulation, VXLAN tunnels the Layer 2 network over the Layer 3 network. The VXLAN packet format is shown in Figure 3-1.

![Figure 3-1 VXLAN Packet Format](image)

As shown in Figure 3-1, VXLAN introduces an 8-byte VXLAN header that consists of a 24-bit VNID and a few reserved bits. The VXLAN header together with the original Ethernet frame goes in the UDP payload. The 24-bit VNID is used to identify Layer 2 segments and to maintain Layer 2 isolation between the segments. With all 24 bits in VNID, VXLAN can support 16 million LAN segments.

VXLAN Tunnel Endpoint

VXLAN uses the VXLAN tunnel endpoint (VTEP) to map tenants’ end devices to VXLAN segments and to perform VXLAN encapsulation and decapsulation. Each VTEP function has two interfaces: one is a switch interface on the local LAN segment to support local endpoint communication, and the other is an IP interface to the transport IP network.

Infrastructure VLAN is a unique IP address that identifies the VTEP device on the transport IP network. The VTEP device uses this IP address to encapsulate Ethernet frames and transmits the encapsulated packets to the transport network through the IP interface.

A VTEP device also discovers the remote VTEPs for its VXLAN segments and learns remote MAC Address-to-VTEP mappings through its IP interface. The functional components of VTEPs and the logical topology that is created for Layer 2 connectivity across the transport IP network are shown in Figure 3-2.
The VXLAN segments are independent of the underlying network topology; conversely, the underlying IP network between VTEPs is independent of the VXLAN overlay. It routes the encapsulated packets based on the outer IP address header, which has the initiating VTEP as the source IP address and the terminating VTEP as the destination IP address.

Virtual Network Identifier

A virtual network identifier (VNI) is a value that identifies a specific virtual network in the data plane. It is typically a 24-bit value part of the VXLAN header, which can support up to 16 million individual network segments. (Valid VNI values are from 4096 to 16,777,215.) There are two main VNI scopes:

- **Network-wide scoped VNIs:** The same value is used to identify the specific Layer 3 virtual network across all network edge devices. This network scope is useful in environments such as within the data center where networks can be automatically provisioned by central orchestration systems.

 Having a uniform VNI per VPN is a simple approach, while also easing network operations (such as troubleshooting). It also means simplified requirements on network edge devices, both physical and virtual devices. A critical requirement for this type of approach is to have a very large number of network identifier values given the network-wide scope.

- **Locally assigned VNIs:** In an alternative approach supported as per RFC 4364, the identifier has local significance to the network edge device that advertises the route.
In this case, the virtual network scale impact is determined on a per-node basis versus a network basis.

When it is locally scoped and uses the same existing semantics as an MPLS VPN label, the same forwarding behaviors as specified in RFC 4364 can be employed. This scope thus allows a seamless stitching together of a VPN that spans both an IP-based network overlay and an MPLS VPN.

This situation can occur, for instance, at the data center edge where the overlay network feeds into an MPLS VPN. In this case, the identifier may be dynamically allocated by the advertising device.

It is important to support both cases and, in doing so, ensure that the scope of the identifier be clear and the values not conflict with each other.

VXLAN Control Plane

Two widely adopted control planes are used with VXLAN: the VXLAN Flood and Learn Multicast-Based Control Plane and the VXLAN MPBGP EVPN Control Plane.

VXLAN Flood and Learn Multicast-Based Control Plane

Cisco Nexus switches utilize existing Layer 2 flooding mechanisms and dynamic MAC address learning to:

- Transport broadcast, unknown unicast, and multicast (BUM) traffic
- Discover remote VTEPs
- Learn remote-host MAC addresses and MAC-to-VTEP mappings for each VXLAN segment

IP multicast is used to reduce the flooding scope of the set of hosts that are participating in the VXLAN segment. Each VXLAN segment, or VNID, is mapped to an IP multicast group in the transport IP network. Each VTEP device is independently configured and joins this multicast group as an IP host through the Internet Group Management Protocol (IGMP). The IGMP joins trigger Protocol Independent Multicast (PIM) joins and signaling through the transport network for the particular multicast group. The multicast distribution tree for this group is built through the transport network based on the locations of participating VTEPs. The multicast tunnel of a VXLAN segment through the underlying IP network is shown in Figure 3-3.

The multicast group shown in Figure 3-4 is used to transmit VXLAN broadcast, unknown unicast, and multicast traffic through the IP network, limiting Layer 2 flooding to those devices that have end systems participating in the same VXLAN segment. VTEPs communicate with one another through the flooded or multicast traffic in this multicast group.
Figure 3-3 VXLAN Multicast Group in Transport Network

Figure 3-4 VXLAN Multicast Control Plane
As an example, if End System A wants to talk to End System B, it does the following:

1. End System A generates an ARP request trying to discover the End System B MAC address.
2. When the ARP request arrives at SW1, it will look up its local table, and if an entry is not found, it will encapsulate the ARP request over VXLAN and send it over the multicast group configured for the specific VNI.
3. The multicast RP receives the packet, and it forwards a copy to every VTEP that has joined the multicast group.
4. Each VTEP receives and deencapsulates the packet VXLAN packet and learns the System A MAC address pointing to the remote VTEP address.
5. Each VTEP forwards the ARP request to its local destinations.
6. End System B generates the ARP reply. When SW2 VTEP2 receives it, it looks up its local table and finds an entry with the information that traffic destined to End System A 180 must be sent to VTEP1 address. VTEP2 encapsulates the ARP reply with a VXLAN header and unicasts it to VTEP1.
7. VTEP1 receives and deencapsulates the packet and delivers it to End System A.
8. When the MAC address information is learned, additional packets are fed to the corresponding VTEP address.

Key Topic

VXLAN MPBGP EVPN Control Plane

The EVPN overlay specifies adaptations to the BGP MPLS-based EVPN solution so that it is applied as a network virtualization overlay with VXLAN encapsulation where

- The PE node role described in BGP MPLS EVPN is equivalent to the VTEP/network virtualization edge (NVE) device.
- VTEP information is distributed via BGP.
- VTEPs use control plane learning/distribution via BGP for remote MAC addresses instead of data plane learning.
- Broadcast, unknown unicast, and multicast (BUM) data traffic is sent using a shared multicast tree.
- A BGP route reflector (RR) is used to reduce the full mesh of BGP sessions among VTEPs to a single BGP session between a VTEP and the RR.
- Route filtering and constrained route distribution are used to ensure that the control plane traffic for a given overlay is distributed only to the VTEPs that are in that overlay instance.
- The host (MAC) mobility mechanism ensures that all the VTEPs in the overlay instance know the specific VTEP associated with the MAC.
- Virtual network identifiers (VNIs) are globally unique within the overlay.
The EVPN overlay solution for VXLAN can also be adapted to enable it to be applied as a network virtualization overlay with VXLAN for Layer 3 traffic segmentation. The adaptations for Layer 3 VXLAN are similar to L2 VXLAN, except the following:

- VTEPs use control plane learning/distribution via BGP of IP addresses (instead of MAC addresses).
- The virtual routing and forwarding instances are mapped to the VNI.
- The inner destination MAC address in the VXLAN header does not belong to the host but to the receiving VTEP that does the routing of the VXLAN payload. This MAC address is distributed via the BGP attribute along with EVPN routes.

VXLAN Gateways

VXLAN gateways are used to connect VXLAN and classic VLAN segments to create a common forwarding domain so that tenant devices can reside in both environments. The types of VXLAN gateways are

- **Layer 2 Gateway:** A Layer 2 VXLAN gateway is a device that encapsulates a classical Ethernet (CE) frame into a VXLAN frame and decapsulates a VXLAN frame into a CE frame. A gateway device transparently provides VXLAN benefits to a device that does not support VXLAN; that device could be a physical host or a virtual machine. The physical hosts or VMs are completely unaware of the VXLAN encapsulation.

- **VXLAN Layer 3 Gateway:** Similar to traditional routing between different VLANs, a VXLAN router is required for communication between devices that are in different VXLAN segments. The VXLAN router translates frames from one VNI to another. Depending on the source and destination, this process might require decapsulation and re-encapsulation of a frame. The Cisco Nexus device supports all combinations of decapsulation, route, and encapsulation. The routing can also be done across native Layer 3 interfaces and VXLAN segments.

You can enable VXLAN routing at the aggregation layer or on Cisco Nexus device aggregation nodes. The spine forwards only IP-based traffic and ignores the encapsulated packets. To help scaling, a few leaf nodes (a pair of border leaves) perform routing between VNIs. A set of VNIs can be grouped into a virtual routing and forwarding (VRF) instance (tenant VRF) to enable routing among those VNIs. If routing must be enabled among a large number of VNIs, you might need to split the VNIs between several VXLAN routers. Each router is responsible for a set of VNIs and a respective subnet. Redundancy is achieved with FHRP.

VXLAN High Availability

For high availability, a pair of virtual port channel (vPC) switches can be used as a logical VTEP device sharing an anycast VTEP address (shown in Figure 3-5).
The vPC switches provide vPCs for redundant host connectivity while individually running Layer 3 protocols with the upstream devices in the underlay network. Both will join the multicast group for the same VXLAN VNI and use the same anycast VTEP address as the source to send VXLAN-encapsulated packets to the devices in the underlay network, including the multicast rendezvous point and the remote VTEP devices. The two vPC VTEP switches appear to be one logical VTEP entity.

vPC peers must have the following identical configurations:

- Consistent mapping of the VLAN to the virtual network segment (VN-segment)
- Consistent NVE binding to the same loopback secondary IP address (anycast VTEP address)
- Consistent VNI-to-group mapping

For the anycast IP address, vPC VTEP switches must use a secondary IP address on the loopback interface bound to the VXLAN NVE tunnel. The two vPC switches need to have the exact same secondary loopback IP address.

Both devices will advertise this anycast VTEP address on the underlay network so that the upstream devices learn the /32 route from both vPC VTEPs and can load-share VXLAN unicast-encapsulated traffic between them.
In the event of vPC peer-link failure, the vPC operational secondary switch will shut down its loopback interface bound to VXLAN NVE. This shutdown will cause the secondary vPC switch to withdraw the anycast VTEP address from its IGP advertisement so that the upstream devices in the underlay network start to send all traffic just to the primary vPC switch. The purpose of this process is to avoid a vPC active-active situation when the peer link is down. With this mechanism, the orphan devices connected to the secondary vPC switch will not be able to receive VXLAN traffic when the vPC peer link is down.

VXLAN Tenant Routed Multicast

Tenant Routed Multicast (TRM) brings the efficiency of multicast delivery to VXLAN overlays. It is based on standards-based next-gen control plane (ngMVPN) described in IETF RFCs 6513 and 6514. TRM enables the delivery of customer Layer 3 multicast traffic in a multitenant fabric, and this in an efficient and resilient manner.

While BGP EVPN provides a control plane for unicast routing, as shown in Figure 3-6, ngMVPN provides scalable multicast routing functionality. It follows an “always route” approach where every edge device (VTEP) with distributed IP Anycast Gateway for unicast becomes a designated router (DR) for multicast. Bridged multicast forwarding is present only on the edge devices (VTEP) where IGMP snooping optimizes the multicast forwarding to interested receivers. All other multicast traffic beyond local delivery is efficiently routed.

With TRM enabled, multicast forwarding in the underlay is leveraged to replicate VXLAN-encapsulated routed multicast traffic. A Default Multicast Distribution Tree (Default-MDT) is built per VRF. This is an addition to the existing multicast groups for Layer 2 VNI broadcast, unknown unicast, and Layer 2 multicast replication group. The individual multicast group addresses in the overlay are mapped to the respective underlay multicast address for replication and transport. The advantage of using a BGP-based approach is that TRM can operate as a fully distributed overlay rendezvous point (RP), with the RP presence on every edge device (VTEP).

A multicast-enabled data center fabric is typically part of an overall multicast network. Multicast sources, receivers, and even the multicast RP might reside inside the data center but might also be inside the campus or externally reachable via the WAN. TRM allows seamless integration with existing multicast networks. It can leverage multicast RPs external to the fabric. Furthermore, TRM allows for tenant-aware external connectivity using Layer 3 physical interfaces or subinterfaces.

VXLAN Configurations and Verifications

VXLAN requires a license. Table 3-2 shows the NX-OS feature license required for VXLAN. For more information, visit the Cisco NX-OS Licensing Guide.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Feature License</th>
<th>Feature Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 9000 Series</td>
<td>LAN_ENTERPRISE_SERVICES_PK</td>
<td>Cisco programmable fabric spine, leaf, or border leaf</td>
</tr>
</tbody>
</table>

Tables 3-3 through 3-6 show the most-used VXLAN configuration commands along with their purpose. For full commands, refer to the Nexus VXLAN Configuration Guide.
Figure 3-6: Tenant Routed Multicast (TRM)
Table 3-3 VXLAN Global-Level Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>feature nv overlay</code></td>
<td>Enables the VXLAN feature.</td>
</tr>
<tr>
<td><code>feature vn-segment-vlan-based</code></td>
<td>Configures the global mode for all VXLAN bridge domains.</td>
</tr>
<tr>
<td><code>vlan vlan-id</code></td>
<td>Specifies VLAN.</td>
</tr>
<tr>
<td><code>vn-segment vnid</code></td>
<td>Specifies VXLAN virtual network identifier (VNID).</td>
</tr>
<tr>
<td><code>bridge-domain domain</code></td>
<td>Enters the bridge domain configuration mode. It will create a bridge domain if it does not yet exist. Use from the global configuration mode.</td>
</tr>
<tr>
<td><code>dot1q vlan vni vni</code></td>
<td>Creates mapping between VLAN and VNI. Use from the encapsulation profile configuration mode.</td>
</tr>
<tr>
<td><code>encapsulation profile name_of_profile default</code></td>
<td>Applies an encapsulation profile to a service profile. Use from the service instance configuration mode.</td>
</tr>
<tr>
<td><code>encapsulation profile vni name_of_profile</code></td>
<td>Creates an encapsulation profile. Use from the global configuration mode.</td>
</tr>
<tr>
<td><code>service instance instance vni</code></td>
<td>Creates a service instance. Use from the interface configuration mode.</td>
</tr>
<tr>
<td><code>interface nve x</code></td>
<td>Creates a VXLAN overlay interface that terminates VXLAN tunnels.</td>
</tr>
<tr>
<td><code>mac address-table static mac-address vni vnid</code></td>
<td>Specifies the MAC address pointing to the remote VTEP.</td>
</tr>
<tr>
<td><code>interface nve x peer-ip ip-address</code></td>
<td>NOTE: Only 1 NVE interface is allowed on the switch.</td>
</tr>
<tr>
<td><code>ip igmp snooping vxlan</code></td>
<td>Enables IGMP snooping for VXLAN VLANs. You have to explicitly configure this command to enable snooping for VXLAN VLANs.</td>
</tr>
<tr>
<td><code>ip igmp snooping disable-nve-static-router-port</code></td>
<td>Configures IGMP snooping over VXLAN so that it does not include NVE as a static multicast router (mrouter) port using this global CLI command. The NVE interface for IGMP snooping over VXLAN is the mrouter port by default.</td>
</tr>
</tbody>
</table>

Table 3-4 Interface-Level Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switchport vlan mapping enable</code></td>
<td>Enables VLAN translation on the switch port. VLAN translation is disabled by default.</td>
</tr>
<tr>
<td><code>switchport vlan mapping vnid translated-vlan-id</code></td>
<td>Translates a VLAN to another VLAN.</td>
</tr>
<tr>
<td><code>switchport vlan mapping enable</code></td>
<td>The range for both the <code>vlan-id</code> and <code>translated-vlan-id</code> arguments is from 1 to 4094.</td>
</tr>
<tr>
<td><code>switchport vlan mapping enable</code></td>
<td>You can configure VLAN translation between the ingress (incoming) VLAN and a local (translated) VLAN on a port. For the traffic arriving on the interface where VLAN translation is enabled, the incoming VLAN is mapped to a translated VLAN that is VXLAN enabled.</td>
</tr>
</tbody>
</table>
Command | Purpose
--- | ---
switchport vlan mapping all | Removes all VLAN mappings configured on the interface.

Table 3-5 Network Virtual Interface (NVE) Config Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-interface src-if</td>
<td>The source interface must be a loopback interface that is configured on the switch with a valid /32 IP address. The transient devices in the transport network and the remote VTEPs must know this /32 IP address. This is accomplished by advertising it through a dynamic routing protocol in the transport network.</td>
</tr>
<tr>
<td>member vni vni</td>
<td>Associates VXLAN virtual network identifiers (VNIs) with the NVE interface.</td>
</tr>
<tr>
<td>mcast-group start-address [end-address]</td>
<td>Assigns a multicast group to the VNIs. NOTE: Used only for BUM traffic.</td>
</tr>
<tr>
<td>ingress-replication protocol bgp</td>
<td>Enables BGP EVPN with ingress replication for the VNI.</td>
</tr>
<tr>
<td>ingress-replication protocol static</td>
<td>Enables static ingress replication for the VNI.</td>
</tr>
<tr>
<td>peer-ip n.n.n.n</td>
<td>Enables peer IP for static ingress-replication protocol.</td>
</tr>
</tbody>
</table>

Table 3-6 VXLAN Global-Level Verification Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show tech-support vxlan [platform]</td>
<td>Displays related VXLAN tech-support information.</td>
</tr>
<tr>
<td>show bridge-domain</td>
<td>Shows the bridge domain.</td>
</tr>
<tr>
<td>show logging level nve</td>
<td>Displays the logging level.</td>
</tr>
<tr>
<td>show tech-support nve</td>
<td>Displays related NVE tech-support information.</td>
</tr>
<tr>
<td>show run interface nve x</td>
<td>Displays NVE overlay interface configuration.</td>
</tr>
<tr>
<td>show nve interface</td>
<td>Displays NVE overlay interface status.</td>
</tr>
<tr>
<td>show nve peers</td>
<td>Displays NVE peer status.</td>
</tr>
<tr>
<td>show nve peers peer_IP_address interface_ID counters</td>
<td>Displays per-NVE peer statistics.</td>
</tr>
<tr>
<td>clear nve peer-ip peer-ip-address</td>
<td>Clears stale NVE peers. Stale NVE peers are those that do not have MAC addresses learned behind them.</td>
</tr>
<tr>
<td>show nve vni</td>
<td>Displays VXLAN VNI status.</td>
</tr>
<tr>
<td>show nve vni ingress-replication</td>
<td>Displays the mapping of VNI to an ingress-replication peer list and uptime for each peer.</td>
</tr>
<tr>
<td>show nve vni vni_number counters</td>
<td>Displays per-VNI statistics.</td>
</tr>
<tr>
<td>show nve vxlan-params</td>
<td>Displays VXLAN parameters, such as VXLAN destination or UDP port.</td>
</tr>
</tbody>
</table>
Chapter 3: Implementing Data Center Overlay Protocols

Figure 3-7 shows the VXLAN network topology with configurations.

Figure 3-7 VXLAN Control Plane Topology
Example 3-1 shows the spine router (Spine-1 and Spine-2) OSPF and multicast routing configuration, VTEP (VTEP-1 and VTEP-3) multicast routing configuration, and multicast routing verification.

Example 3-1 PIM Multicast Configurations and Verifications

<table>
<thead>
<tr>
<th>Spine-1 Config</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spine-1(config)# feature pim</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config)# interface loopback1</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config-if)# ip address 192.168.0.100/32</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config-if)# ip router ospf 1 area 0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config)# ip pim rp-address 192.168.0.100</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config)# ip pim anycast-rp 192.168.0.100 192.168.0.6</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config)# ip pim anycast-rp 192.168.0.100 192.168.0.7</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config)# interface E1/1</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config)# interface E1/2</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config)# interface E1/3</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config)# interface loopback0</td>
<td></td>
</tr>
<tr>
<td>Spine-1(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>VTEP-1 PIM Config</td>
<td></td>
</tr>
<tr>
<td>VTEP-1(config)# feature pim</td>
<td></td>
</tr>
<tr>
<td>VTEP-1(config)# ip pim rp-address 192.168.0.100</td>
<td></td>
</tr>
<tr>
<td>VTEP-1(config)# interface E1/1</td>
<td></td>
</tr>
<tr>
<td>VTEP-1(config)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>VTEP-1(config)# interface E1/2</td>
<td></td>
</tr>
<tr>
<td>VTEP-1(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>VTEP-1(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
</tbody>
</table>
VTEP-1 (config)# interface loopback0
VTEP-1 (config-if)# ip pim sparse-mode
VTEP-1 (config)# interface loopback1
VTEP-1 (config-if)# ip pim sparse-mode

VTEP-3 PIM Config
VTEP-3(config)# feature pim
VTEP-3(config)# ip pim rp-address 192.168.0.100
VTEP-3(config)# interface E1/1
VTEP-3(config-if)# ip pim sparse-mode
VTEP-3(config)# interface E1/2
VTEP-3(config-if)# ip pim sparse-mode
VTEP-3(config)# interface loopback0
VTEP-3(config-if)# ip pim sparse-mode
VTEP-3(config)# interface loopback1
VTEP-3(config-if)# ip pim sparse-mode

Spine 1 Verifications
Spine-1# show ip pim neighbor
PIM Neighbor Status for VRF "default"

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>Interface</th>
<th>Uptime</th>
<th>Expires</th>
<th>DR</th>
<th>Bidir-</th>
<th>BFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.22</td>
<td>Ethernet1/1</td>
<td>00:02:21</td>
<td>00:01:23</td>
<td>1</td>
<td>yes</td>
<td>n/a</td>
</tr>
<tr>
<td>10.0.0.26</td>
<td>Ethernet1/2</td>
<td>00:01:50</td>
<td>00:01:20</td>
<td>1</td>
<td>yes</td>
<td>n/a</td>
</tr>
<tr>
<td>10.0.0.30</td>
<td>Ethernet1/3</td>
<td>00:00:37</td>
<td>00:01:38</td>
<td>1</td>
<td>yes</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Spine-1# show ip pim rp
PIM RP Status Information for VRF "default"
BSR disabled
Auto-RP disabled
BSR RP Candidate policy: None
BSR RP policy: None
Auto-RP Announce policy: None
Auto-RP Discovery policy: None
Anycast-RP 192.168.0.100 members:
 192.168.0.6* 192.168.0.7
RP: 192.168.0.100*, (0),
 uptime: 00:04:29 priority: 255,
 RP-source: (local),
 group ranges:
 224.0.0.0/4

Spine 2 Verifications
Spine-2# show ip pim neighbor
PIM Neighbor Status for VRF "default"

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>Interface</th>
<th>Uptime</th>
<th>Expires</th>
<th>DR</th>
<th>Bidir-</th>
<th>BFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.128.6</td>
<td>Ethernet1/1</td>
<td>00:02:21</td>
<td>00:01:23</td>
<td>1</td>
<td>yes</td>
<td>n/a</td>
</tr>
<tr>
<td>10.0.128.10</td>
<td>Ethernet1/2</td>
<td>00:01:50</td>
<td>00:01:20</td>
<td>1</td>
<td>yes</td>
<td>n/a</td>
</tr>
<tr>
<td>10.0.128.14</td>
<td>Ethernet1/3</td>
<td>00:00:37</td>
<td>00:01:38</td>
<td>1</td>
<td>yes</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Spine-2# `show ip pim rp`

<table>
<thead>
<tr>
<th>PIM RP Status Information for VRF "default"</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSR disabled</td>
</tr>
<tr>
<td>Auto-RP disabled</td>
</tr>
<tr>
<td>BSR RP Candidate policy: None</td>
</tr>
<tr>
<td>BSR RP policy: None</td>
</tr>
<tr>
<td>Auto-RP Announce policy: None</td>
</tr>
<tr>
<td>Auto-RP Discovery policy: None</td>
</tr>
<tr>
<td>Anycast-RP 192.168.0.100 members:</td>
</tr>
<tr>
<td>192.168.0.6 192.168.0.7*</td>
</tr>
<tr>
<td>RP: 192.168.0.100*, (0),</td>
</tr>
<tr>
<td>uptime: 00:04:16 priority: 255,</td>
</tr>
<tr>
<td>RP-source: (local),</td>
</tr>
<tr>
<td>group ranges:</td>
</tr>
<tr>
<td>224.0.0.0/4</td>
</tr>
</tbody>
</table>

VTEP-1 Verifications

VTEP-1# `show ip pim neighbor`

<table>
<thead>
<tr>
<th>PIM Neighbor Status for VRF "default"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10.0.0.21</td>
</tr>
<tr>
<td>10.0.128.5</td>
</tr>
</tbody>
</table>

VTEP-1# `show ip pim rp`

<table>
<thead>
<tr>
<th>PIM RP Status Information for VRF "default"</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSR disabled</td>
</tr>
<tr>
<td>Auto-RP disabled</td>
</tr>
<tr>
<td>BSR RP Candidate policy: None</td>
</tr>
<tr>
<td>BSR RP policy: None</td>
</tr>
<tr>
<td>Auto-RP Announce policy: None</td>
</tr>
<tr>
<td>Auto-RP Discovery policy: None</td>
</tr>
<tr>
<td>RP: 192.168.0.100, (0),</td>
</tr>
<tr>
<td>uptime: 00:03:53 priority: 255,</td>
</tr>
<tr>
<td>RP-source: (local),</td>
</tr>
<tr>
<td>group ranges:</td>
</tr>
<tr>
<td>224.0.0.0/4</td>
</tr>
</tbody>
</table>

VTEP-3 Verifications

VTEP-3# `show ip pim neighbor`

<table>
<thead>
<tr>
<th>PIM Neighbor Status for VRF "default"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10.0.0.29</td>
</tr>
<tr>
<td>10.0.128.13</td>
</tr>
</tbody>
</table>
Example 3-2 shows the VTEP (VTEP-1 and VTEP-3) VXLAN and VXLAN Network Virtual Interface (NVE) configuration and status verification.

Example 3-2 VXLAN Configurations and Verifications

VTEP-1 Config

VTEP-1(config)# feature vn-segment-vlan-based
VTEP-1(config)# feature vn overlay
VTEP-1(config)# vlan 10
VTEP-1(config-vlan)# vn-segment 160010
VTEP-1(config)# vlan 20
VTEP-1(config-vlan)# vn-segment 160020
VTEP-1(config)# interface nve1
VTEP-1 (config-if)# source-interface loopback1
VTEP-1 (config-if)# member vni 160010 mcast-group 231.1.1.1
VTEP-1 (config-if)# member vni 160020 mcast-group 231.1.1.1
VTEP-1 (config-if)# no shutdown

VTEP-3 Config

VTEP-3(config)# feature vn-segment-vlan-based
VTEP-3(config)# feature vn overlay
VTEP-3(config)# vlan 10
VTEP-3(config-vlan)# vn-segment 160010
VTEP-3(config)# vlan 20
VTEP-3(config-vlan)# vn-segment 160020
VTEP-3(config)# interface nve1
VTEP-3(config-if)# source-interface loopback1
VTEP-3(config-if)# member vni 160010 mcast-group 231.1.1.1
VTEP-3(config-if)# member vni 160020 mcast-group 231.1.1.1
VTEP-3(config-if)# no shutdown

VTEP-1 Verifications

VTEP-1# show nve vni
Codes: CP - Control Plane DP - Data Plane
 UC - Unconfigured SA - Suppress ARP
 SU - Suppress Unknown Unicast

<table>
<thead>
<tr>
<th>Interface</th>
<th>VNI</th>
<th>Multicast-group</th>
<th>State</th>
<th>Mode</th>
<th>Type</th>
<th>[BD/VRP]</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>nve1</td>
<td>160010</td>
<td>231.1.1.1</td>
<td>Up</td>
<td>DP</td>
<td>L2</td>
<td>[10]</td>
<td></td>
</tr>
<tr>
<td>nve1</td>
<td>160020</td>
<td>231.1.1.1</td>
<td>Up</td>
<td>DP</td>
<td>L2</td>
<td>[20]</td>
<td></td>
</tr>
</tbody>
</table>

VTEP-1# show vxlan

<table>
<thead>
<tr>
<th>VLAN</th>
<th>VN-Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>160010</td>
</tr>
<tr>
<td>20</td>
<td>160020</td>
</tr>
</tbody>
</table>

VTEP-1# ping 10.10.10.3

PING 10.10.10.3 (10.10.10.3) : 56 data bytes
64 bytes from 10.10.10.3: icmp_seq=0 ttl=254 time=8.114 ms
64 bytes from 10.10.10.3: icmp_seq=1 ttl=254 time=5.641 ms
64 bytes from 10.10.10.3: icmp_seq=2 ttl=254 time=6.213 ms
64 bytes from 10.10.10.3: icmp_seq=3 ttl=254 time=6.119 ms

VTEP-1# show nve peers

<table>
<thead>
<tr>
<th>Interface</th>
<th>Peer-IP</th>
<th>State</th>
<th>LearnType</th>
<th>Uptime</th>
<th>Router-Mac</th>
</tr>
</thead>
<tbody>
<tr>
<td>nve1</td>
<td>192.168.0.110</td>
<td>Up</td>
<td>DP</td>
<td>00:09:08</td>
<td>n/a</td>
</tr>
</tbody>
</table>

VTEP-1# show ip mroute

IP Multicast Routing Table for VRF "default"
(*, 231.1.1.1/32), uptime: 00:10:38, nve ip pim
Incoming interface: Ethernet1/1, RPF nbr: 10.0.0.29
Outgoing interface list: (count: 1)
 nve1, uptime: 00:10:38, nve
(192.168.0.18/32, 231.1.1.1/32), uptime: 00:02:34, ip mrib pim
Incoming interface: Ethernet1/2, RPF nbr: 10.0.128.13
Outgoing interface list: (count: 1)
 nve1, uptime: 00:02:34, mrib
(*, 232.0.0.0/8), uptime: 00:17:03, pim ip
Incoming interface: Null, RPF nbr: 0.0.0.0
Outgoing interface list: (count: 0)

VTEP-3 Verifications

VTEP-3# show nve vni

<table>
<thead>
<tr>
<th>Interface</th>
<th>VNI</th>
<th>Multicast-group</th>
<th>State</th>
<th>Mode</th>
<th>Type</th>
<th>[BD/VRP]</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>nve1</td>
<td>160010</td>
<td>231.1.1.1</td>
<td>Up</td>
<td>DP</td>
<td>L2</td>
<td>[10]</td>
<td></td>
</tr>
<tr>
<td>nve1</td>
<td>160020</td>
<td>231.1.1.1</td>
<td>Up</td>
<td>DP</td>
<td>L2</td>
<td>[20]</td>
<td></td>
</tr>
</tbody>
</table>
VTEP-3# show vxlan
Vlan VN-Segment
---- -----------
 10 160010
 20 160020
VTEP-3# ping 10.10.10.1
PING 10.10.10.1 (10.10.10.1) : 56 data bytes
64 bytes from 10.10.10.1: icmp_seq=0 ttl=254 time=7.212 ms
64 bytes from 10.10.10.1: icmp_seq=1 ttl=254 time=6.243 ms
64 bytes from 10.10.10.1: icmp_seq=2 ttl=254 time=5.268 ms
64 bytes from 10.10.10.1: icmp_seq=3 ttl=254 time=6.397 ms
VTEP-3# show nve peers
Interface Peer-IP State LearnType Uptime Router-Mac
--------- --------------- ----- --------- -------- -----------------
nve1 192.168.0.18 Up DP 00:09:08 n/a
VTEP-3# show ip mroute
IP Multicast Routing Table for VRF "default"
(*, 231.1.1.1/32), uptime: 00:10:38, nve ip pim
 Incoming interface: Ethernet1/1, RPF nbr: 10.0.0.29
 Outgoing interface list: (count: 1)
 nve1, uptime: 00:10:38, nve
(192.168.0.18/32, 231.1.1.1/32), uptime: 00:02:34, ip mrib pim
 Incoming interface: Ethernet1/2, RPF nbr: 10.0.128.13
 Outgoing interface list: (count: 1)
 nve1, uptime: 00:02:34, mrib
(192.168.0.110/32, 231.1.1.1/32), uptime: 00:10:38, nve mrib ip pim
 Incoming interface: loopback1, RPF nbr: 192.168.0.110
 Outgoing interface list: (count: 1)
 Ethernet1/2, uptime: 00:09:39, pim
(*, 232.0.0.0/8), uptime: 00:17:03, pim ip
 Incoming interface: Null, RPF nbr: 0.0.0.0
 Outgoing interface list: (count: 0)

Exam Preparation Tasks

As mentioned in the Introduction, you have a couple of choices for exam preparation: the exercises here, Chapter 21, “Final Preparation,” and the exam simulation questions in the Pearson Test Prep software online.

Review All Key Topics

Review the most important topics in the chapter, noted with the key topic icon in the outer margin of the page. Table 3-7 lists a reference to these key topics and the page numbers on which each is found.
Table 3-7 Key Topics for Chapter 3

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>VXLAN Encapsulation and Packet Format</td>
<td>152</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>VXLAN Packet Format</td>
<td>152</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>VXLAN Tunnel Endpoint (VTEP)</td>
<td>153</td>
</tr>
<tr>
<td>Section</td>
<td>Virtual Network Identifier (VNI)</td>
<td>153</td>
</tr>
<tr>
<td>Section</td>
<td>VXLAN Control Plane</td>
<td>154</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>VXLAN Multicast Group in Transport Network</td>
<td>155</td>
</tr>
<tr>
<td>Figure 3-4</td>
<td>VXLAN Multicast Control Plane</td>
<td>155</td>
</tr>
<tr>
<td>Section</td>
<td>VXLAN MPBGP EVPN Control Plane</td>
<td>156</td>
</tr>
</tbody>
</table>

Define Key Terms

Define the following key terms from this chapter, and check your answers in the Glossary.

- Address Resolution Protocol (ARP); broadcast, unknown unicast, and multicast (BUM);
- Cisco Nexus; Cisco NX-OS; equal-cost multipath (ECMP); Ethernet VPN (EVPN);
- Internet Group Management Protocol (IGMP); local-area network (LAN); Media Access Control (MAC); Protocol Independent Multicast (PIM); User Datagram Protocol (UDP);
- virtual LAN (VLAN); virtual port channels (vPCs); virtual private network (VPN); virtual routing and forwarding (VRF); wide-area network (WAN)

References

Cisco Nexus 9000 Series NX-OS VXLAN Configuration Guide, Release 10.3(x):

Relevant CiscoLive Presentations: https://ciscolive.com

A Summary of Cisco VXLAN Control Planes: Multicast, Unicast, MP-BGP EVPN:
This page intentionally left blank
AAA model, 801
accounting, 801, 900
authentication, 801, 803–804, 899
authorization, 801, 803–804, 899
computer security, 875–876
configuring AAA service options, 802–803
default parameter settings, 804
global commands, 804–806
local AAA services, 911–912
locking user accounts, 806
NX-OS configurations, 804–807
passphrase commands, 806
RADIUS, 801–802
remote AAA services, 802, 901
servers
distribution, 913–914
 groups, 900
 monitoring, 900–901
storage security, 898
accounting, 900
authentication, 899, 912–913
authorization, 899, 912–913
local AAA services, 911–912
remote AAA services, 901
server distribution, 913–914
server groups, 900
server monitoring, 900–901
service configuration, 900
TACACS+ 801–802
verification commands, 807
ABR, OSPF verification, 18–22
access
Cisco ACI
 in-band management access, 214
 out-of-band management access, 214–215
fabric access policies, Cisco ACI, 190–195
Guest Shell, 743–744
PTP, 933–934
RBAC, 807–809
Cisco NX-OS configurations, 811–815
user accounts, 914–919
accounting
AAA model, 801
storage security, 900
action statements, 733, 734–735
active zone sets, 407–409
addressing
 FC, 371–372
 FCoE, 447–448
adjacency, OSPF, 7
Admin Console page, ND GUI, 343–344
Administrative pages, ND GUI, 348
AEP, Cisco ACI, 207–208
AG (Application Gateways), 631
All-Flash configuration, Cisco HyperFlex, 714–715
Ansible
authentication, 766
Cisco NX-OS example, 767–768
CLI
prompt, 766
tools, 767
components, 765–766
configuration files, 766
important concepts, 766
inventory files, 765
Jinja templates, 766
modules, 765
playbooks, 765–766
Cisco NX-OS example, 767–768
workflows using playbooks, 764–765
plays, 766
roles, 766
variable files, 766
variables, 766
workflows using playbooks, 764–765
Anywhere, Cisco HyperFlex, 713
API (Application Programming Interface)
CLI command API, Python, 771–772
NX-API
Cisco NX-API Developer Sandbox, 759–760
error codes, 758–759
Requests/Responses elements, 757–759
Requests/Responses in JSON, 757
Requests/Responses in XML, 756–757
REST API, 752–753
authentication, 753–754
Responses, 754–755
APIC (Application Policy Infrastructure Controllers), 176–179, 184–187
application profiles, Cisco ACI, 206–207
areas, OSPF, 10–12
ARP synchronization, vPC, 131
AS 65100, BGP configurations, 33
ASM (Any-Source Multicast), 51
attacks, man-in-the-middle, 817
authentication
AAA model, 801, 803–804, 875–876, 912–913
Ansible, 766
Cisco UCS Manager, multiple authentication services configuration, 892–894
keychain authentication, 868
Cisco NX-OS configurations, 868–870
commands, 869–870
key selection, 871–872
OSPF, 13
RADIUS, 888–892
REST API, 753–754
storage security, 899
TACACS+, 888–892
two-factor authentication, Cisco UCS Manager, 879
VRRP, 77
authorization
AAA model, 801, 803–804, 876, 896–912
dev-ops role authority, displaying, 740–741
network-admin roles, displaying, 740–741
storage security, 899
Auto Install, firmware upgrades, 680–687
automation

Ansible

authentication, 766
Cisco NX-OS example, 767–768
CLI prompt, 766
CLI tools, 767
components, 765–766
configuration files, 766
important concepts, 766
inventory files, 765
Jinja templates, 766
modules, 765
playbooks, 765–766, 767–768
plays, 766
roles, 766
variable files, 766
variables, 766
workflows using playbooks, 764–765

benefits, 730
Cisco HyperFlex, 708–709

EEM

action statements, 733, 734–735
configuring, 735–736
event statements, 733, 734
monitoring module powerdowns, 736
overview, 733
policies, 733–734
verifying configurations, 736

POAP, 777–778
configuration scripts, 778–779
DHCP discovery phase, 781–782
limitations, 778
network requirements, 778
post-installation reload phase, 782
power-up phase, 779
processes (overview), 779–780
script execution phase, 782
switch configurations, 782–783
USB discovery phase, 779–780
verification commands, 783

PowerShell, 789
installing, 789–795
listing UCS PowerShell cmdlets, 793–795
UCS PowerShell Library installations, 790–791
versions of, 789–790, 791–793

Python, 768–769
Cisco NX-OS, Python packages, 769–771
CLI command API, 771–772
interactive mode, 772–773
noninteractive mode, 773–775
UCS Manager Python SDK, 775–777

Scheduler

backups, 739
configuring, 737–740
displaying jobs/schedules, 739–740
job definitions, 736
overview, 736–737
prerequisites, 737
timetable definitions, 736
verifying configurations, 739–740

Terraform, 783
commands, 786–789
components, 784–786
concept, 784
workflows, 784

Autozone, 410
availability, LAZ and Cisco HyperFlex data platforms, 726–727
backups
Cisco UCS configuration management, 661–670
configuring, 663–665
creating, 661–663
import backups, 668–670
NX-OS, 272
policies, 666–668
Scheduler configurations, 739
status, 665–666
bandwidth, port channels, 118
Bash Shell, 740
displaying
 dev-ops role authority, 740–741
 network-admin role authority, 740–741
enabling, 741–742
feature RPM, 742
patch RPM, 742–743
running, 741–742
BB_credits, 372
BDR, OSPF, 12–13
BFD (Bidirectional Forwarding Detection), 37
configuring, 38–42
default parameter settings, 38–39
failure detection, 38
global commands, 39–40
interface commands, 40
neighbor relationships, 37–38
network topologies, 40–41
routing commands, 40
verification commands, 40
verifying configurations, 40–42
BGP (Border Gateway Protocol), 24–25
 AS 65100 configurations, 33
clear commands, 32–33
configuring, 30–37
default parameter settings, 30
feature-based licenses, 30
global commands, 31
interface configurations, 34
multiprotocol BGP, 29–30
network topologies, 33
path selection, 26–29
peering, 25–26
routing commands, 31–32
verification commands, 32–33
verifying configurations, 34–37
Bidir (Bidirectional shared trees), 51–52
blade chassis FEX, FI connections, 545–546
blade servers, Cisco UCS, 536–537
blocking duplicate frames, vPC, 129–131
boot sequences, NX-OS, 255–256
BPDU Filtering, 95, 96
BPDU Guard, 95, 96
Bridge Assurance, 95–96
bridge domains, Cisco ACI, 200–202
budgeting time, exam preparation, 932
Call Home
Cisco UCS Manager system monitoring, 636–637
infrastructure monitoring, 521–522
centralized management, Cisco HyperFlex, 709–710
CFS (Cisco Fabric Services), 380–381
 CFSoFC, 382–384
 CFSoIP, 382–384
 fabric lock, 382
 features, 381–382
merges, 384
regions, 384–385
channel code matrix, port channels, 119
chapter-ending review tools, 935
checkpoints, NX-OS, 272–274
Cisco ACI (Application Centric Infrastructure)
access
 in-band management access, 214
 out-of-band management access, 214–215
AEP, 207–208
APIC, 176–179, 184–187
application profiles, 206–207
architectural building blocks, 176
benefits, 174–175
bridge domains, 200–202
components, 175–176
configuring
 APIC, 184–187
 initial setup, 182–187
 LAB configurations, 221–223
contracts, 208–209
 creating, 230–233
 filters, 213, 230–233
 taboo contracts, 209–210
 vzAny rule, 210–212
design best practices, 221
descriptor groups, 201–203
fabric
 access policies, 190–195
 building, 224–227
 building blocks, 195–196
 discovery, 182, 187–189
 loop detection, 220
 overview, 179
 traffic load balancing, 219–220
traffic storms, 219
upgrading, 189–190
filters, creating, 230–233
initial setup, 182–187
LAB configurations, 221–223
leaf switches, 179–182
management tenants, 213
microsegmentations, 207
multitier topologies, 179–180
overview, 174–176
policy identification/enforcement, 218
policy models, 197–198
SCVMM integration, 204–205
spine switches, 179–182
tenants, 198–200
 creating, 227–230
 intersubnet tenant traffic, 217–218
 management tenants, 213
three-tier applications, 233–235
vCenter integration, 235–238
Virtual Edge, 206
VMM domains, 203–204
VMware overlays, 206
VMware vCenter integration, 205
VRF, 200
VXLAN, 215–216
vzAny rule, 210–212
Cisco ACI Contracts, 852–853
applying, 855–856
components, 851–852
configuring, 853–854
creating, 854–855
exporting between networks, 858–859
inter-private network contracts
 communication, 858–859
Inter-Tenant Contracts, 857–858
microsegmentation, 860–867
modifying, 855
multiple contracts unidirectional single filters, 860
removing, 855
single contract bidirectional reverse filters, 859
single contract unidirectional with multiple filters, 859
verifying, 855
VRF Contracts, 856–857
Cisco AVPair attribute, 878
Cisco Certification Exam Tutorial, types of questions, 935–939
Cisco, fiscal year and months example, 943
Cisco HyperFlex, 702, 704
All-Flash configuration, 714–715
All-NVMe, 715–716
Anywhere, 713
automation, 708–709
benefits, 707–712
centralized management, 709–710
configuring, 705–706
data platforms, 716
 cluster interfaces, 720
 cluster tolerated failures, 719
datastores, 724–725
disk management, 721–724
HA, 718–719
LAB clusters, 716–717
LAZ, 726–727
local encryption keys, 721
Native Snapshots, 719–720
Ready Clones, 719
SED, 720–721
server disk types, 722–723
storage clusters, 717
system clusters, 725–727
Dynamic Data Distribution, 711–712
edges, 712–714
flexibility, 715
hardware, 715
HCI, 704
hybrid models, 714–715
hyperconvergence, 704
independent resource scaling, 710–711
infrastructures, 705, 706–707
interconnections, 705
invisible cloud witness services, 713–714
IO Visor, 707
latency, 711–712
multinode edges, 713
resource optimization, 710–711
SATA RAS, 715–716
unified management, 709–710
VAAI, 707
VM density, 711–712
Cisco Intersight, 648
benefits, 648–649
dashboards, 650
features, 648–649
infrastructure, 647
invisible cloud witness services, 713–714
licensing, 652–656
management as a service, 648–649
supported software, 650–652
telemetry data collection, 650
Cisco MDS 9100 series multilayer fabric switches, 362–365
Cisco MDS 9200 series multiservice switches, 361–362
Cisco MDS 9300 series multilayer fabric switches, 360–361
Cisco MDS 9700 series multilayer directors, 356–360
Cisco MDS NX-OS Setup Utility, 490–498
Cisco NX-API Developer Sandbox, 759–760
Cisco NX-OS
Ansible, 767–768
Bash Shell, 740
- displaying dev-ops role authority, 740–741
- displaying network-admin role authority, 740–741
- enabling, 741–742
- feature RPM, 742
- patch RPM, 742–743
- running, 741–742
CoPP configurations, 844–851
DAI configurations, 819–827
DHCP snooping, 827–831
Guest Shell, 743
- access, 743–744
- capabilities, 744–746
- displaying Ethernet 1/47 interface counters, 745
dohost command, 745
guestshell destroy command, 747
guestshell disable command, 747
guestshell enable command, 747
installing Python packages, 746
managing, 746–748
resource limits, 744
running Python in Guest Shell, 745–746
show guestshell detail command, 747–748
keychain authentication, 868–870
port security, 832–837
Python packages, 769–771
RBAC configurations, 811–815
rules, 809–810
user roles, 809–810
Cisco UCS (Unified Computing System), 530
5108 Blade Server Chassis, 536
architecture, 532–534
blade servers, 536–537
chassis discovery, 577
Cisco UCS Mini, 539–540
Cisco X-Series system, 555–556
components, 534–535
configuration management, 660–661
- backups, 661–670
- system restore, 670–672
configuring, 557–564
- FI, GUI configurations, 561–562
- initial setup, 578–583
connectivity, 534–535
fabric failover for Ethernet, 569–570
fabric infrastructure, 539
- Cisco UCS 6300 Series fabric interconnect, 543–544
- Cisco UCS 6454 fabric interconnect, 541–543
- Cisco UCS 6536 fabric interconnect, 540–541
FEX, 544–550, 577
FI, 544–550
- cluster verifications, 563–564
- configuring, 565–567
- connectivity, 565–567
- Ethernet switching mode, 570–577
- fabric failover for Ethernet, 569–570
- GUI configurations, 561–562
- IPv4 initialization, 559–560, 563
- IPv6 initialization, 560–561, 563
port modes, 567–569
vNIC, 569–570

firmware
infrastructure installations, 688–691
server upgrades, 691–699
updates, 672–679
upgrades through Auto Install, 680–687
version terminology, 679

flexibility, 533–534
high availability, 533
identity pools, 591–596
initial setup, 557–564, 578–583
IP pools, 593–595
MAC pools, 593
managing, 557–564
network management, VLAN, 584–591
QoS, 608–610
rack servers, 537–538, 577
SAN, connectivity, 611–616, 624–625
scalability, 533
servers
pools, 596
profiles, 599–602
service profiles, 596–599, 602–607
software updates, 672–679
storage, 611
storage servers, 537–539
UUID pools, 591–593
virtualization, 550–555
vNIC, 569–570
VSAN, 616–621
WWN pools, 621–624

Cisco UCS Manager
AAA model, 875–876
Cisco AVPair attribute example, 878
LDAP, 877
groups, 879–888
nested LDAP, 879
providers, 879–888
user accounts, 880
multiple authentication services
configuration, 894
RADIUS, 876, 877, 888–892
remote user role policies, 892–894
Session Timeout Period, 879
system monitoring, 630
AG, 631
Call Home, 636–637
database health, 638
DME, 631
events, 632–634
hardware, 638
logs, 632–634
NetFlow, 638–640
northbound interfaces, 631–632
policies, 634–640
Smart Call Home, 636–637
SNMP, 636
traffic monitoring, 640–647
TACACS+, 877–878, 888–894
two-factor authentication, 879
Web Session Refresh Period, 879
Cisco UCS S-Series storage servers, 483–484
clear commands, BGP, 32–33
clear-text passwords, 809

CLI (Command-Line Interface)
Ansible
prompt, 766
tools, 767
modular QoS CLI, 842–844
Python command API, 771–772
clocks
- PTP, 281–282, 283–284
- watching, exam preparation, 932

cloud computing
- benefits, 243
- characteristics, 243–244
- community clouds, 250
- defined, 242–244
- hybrid clouds, 249–250
- IaaS, 246–248
- PaaS, 246
- private clouds, 248
- public clouds, 248–249
- SaaS, 245

clusters
Cisco HyperFlex data platforms
- cluster interfaces, 720
- LAB clusters, 716–717
- storage clusters, 717
- system clusters, 725–727
- tolerated failures, 719
Cisco (UCS FI verification, 563–564
ND cluster nodes, 339–341
storage clusters
- Cisco HyperFlex data platforms, 717
- compute nodes, 717
- converged nodes, 717
- datastores, 717
- drives, 717
- system clusters, Cisco HyperFlex data platforms, 725–727
- tolerated failures, Cisco HyperFlex data platforms, 719
CNA (Converged Network Adapters), 436–437
- collapsed-core topologies, FC, 365

AAA model
- global commands, 804–806
- locking user accounts, 806
- passphrase commands, 806
- verification commands, 807

BFD
- global commands, 39–40
- interface commands, 40
- routing commands, 40
- verification commands, 40

BGP
- clear commands, 32–33
- global commands, 31
- routing commands, 31–32
- verification commands, 32–33

FCoE, verification commands, 466
FHS, port security, 836–837
HSRP
- global commands, 80
- interface commands, 80
- verification commands, 82
keychain authentication, 869–870
multicast routing
- global commands, 58–59
- interface commands, 59–61
NTP
- global commands, 276–278
- verification commands, 278

OSPF
- global commands, 14
- interface commands, 15
- process clear commands, 15–16
- routing commands, 14–15

port channels
- global commands, 134–135
- interface commands, 135
- verification commands, 137
PTP
 global commands, 282
 interface commands, 283
SAN port channels, verification commands, 400–401
SNMP
 global commands, 288–289
 specific notation commands, 291
 verification commands, 291–292
STP
 global commands, 105
 interface commands, 106–107
 verification commands, 108
Terraform, 786–789
verification commands, PTP, 283
vPC
 domain commands, 136
 global commands, 134–135
 interface commands, 135
 verification commands, 137
VRRP
 global commands, 79–86
 interface commands, 80
 verification commands, 82
VSAN, 392–393
VXLAN
 global commands, 159–161
 interface commands, 161–162
 NVE config commands, 162
 verification commands, 162
community clouds, 250
compute nodes, storage clusters, 717
computer security
 AAA model, 875–876
 Cisco AVPair attribute example, 878
 LDAP, 877
 groups, 879–888
 nested LDAP, 879
 providers, 879–888
 user accounts, 880
 multiple authentication services configuration, 892–894
 RADIUS, 876, 877, 888–892
 remote user role policies, 892–894
 TACACS+, 877–878, 888–894
 two-factor authentication, 879
configuration consistency, vPC, 128–129
configuration files, Ansible, 766
configuration scripts, POAP, 778–779
configuring
 AAA model
 NX-OS configurations, 804–807
 service options, 802–803
 AAA services, storage security, 900
 ACI Contracts, 853–854
 All-Flash configuration, Cisco HyperFlex, 714–715
 backups, 663–665
 BFD, 38–42
 BGP, 30–37
 Cisco ACI
 APIC, 184–187
 initial setup, 182–187
 LAB configurations, 221–223
 Cisco HyperFlex, 705–706, 714–715
 Cisco NX-OS
 DAI configurations, 819–827
 keychain authentication, 868–870
 port security, 832–837
 RBAC configurations, 811–815
 Cisco UCS, 557–564, 660–661
 backups, 661–670
 FI configurations, 561–562, 565–567
configuring

initial setup, 578–583
system restore, 670–672
device alias, 422–423
EEM, 735–736
FCoE, 469–474
 Nexus 5000 switches, 458–459
 Nexus 7000 switches, 456–458
 Nexus 9000 switches, 459–461
HSRP, 79–86
local encryption keys, 721
multicast routing, 56–69
named VLAN, 589–590
NTP, 279–280
NX-OS, 271
 basic management, 256–259
 saves/backups, 272
OSPF, 13–24
PIM, 164–167
port channels, 132–146
port security, 921–924
PTP, 283
RBAC, user accounts, 918–919
SAN port channels, 400–403
Scheduler, 737–740
SNMP, 292
STP, 102–117
switches, POAP configurations, 782–783
vPC, 132–146
VRRP, 79–86
VSAN, 391–394
VXLAN, 159–169
zoning, 414–417
consistency checks, vPC, 129
contracts, Cisco ACI, 208–209
 creating, 230–233
 filters, 213
taboo contracts, 209–210
vzAny rule, 210–212
control plane topologies, VXLAN, 159–161
converged nodes, storage clusters, 717
converting to UCS Manager Python SDK, 777
CoPP (Control Plane Policing), 837–839
 Cisco NX-OS configurations, 844–851
 classification, 840–844
 control plane packets, 839–840
 creating, 850–851
 modifying, 851
 modular QoS CLI, 842–844
 Nexus 5000, 844
 Nexus 7000 comparisons, 843–844
 Nexus 9000 comparisons, 842–843
 rate control, 840–841
core-edge topologies, FC, 366
CRUD operations, UCS Manager Python SDK, 776
customizing exams, 934–935

D

DAI (Dynamic ARP Inspection), 816, 817–819
 Cisco NX-OS configurations, 819–827
 DHCP snooping, 827–831
 man-in-the-middle attacks, 817
data platforms, Cisco HyperFlex, 716
 clusters
 interfaces, 720
 LAB clusters, 716–717
 storage clusters, 717
 system clusters, 725–727
tolerated failures, 719
datastores, 724–725
disk management, 721–724
HA, 718–719
LAZ, 726–727
local encryption keys, 721
Native Snapshots, 719–720
Ready Clones, 719
SED, 720–721
server disk types, 722–723
database health, Cisco UCS Manager
system monitoring, 638
datastores
Cisco HyperFlex data platforms, 724–725
storage clusters, 717
DCBX (Data Center Bridging Exchange), 440–442
deleting
LDAP providers, 885
named VLAN, 590–591
device alias, 418
configuring, 422–423
distributions, 420–421
features, 419
modes, 419–420
verifying configurations, 422–423
zone alias comparisons, 421–422
device registration, switched fabric initialization and FC, 378–380
dev-ops roles, displaying authority, 740–741
DHCP (Dynamic Host Configuration Protocol)
discovery phase, POAP, 781–782
snooping, 827–831
direct-attached topologies, FCoE, 452–453
disk management, Cisco HyperFlex data platforms, 721–724
displaying
dev-ops role authority, 740–741
Ethernet 1/47 interface counters with Guest Shell, 745
jobs/schedules in Scheduler, 739–740
disruptive downgrades, MDS switches, 513–515
disruptive upgrades, MDS switches, 505–507
DITKA? questions, 940
DME (Data Management Engine), 631
dohost command, 745
domains
ID, principal switch selection and FC, 375–377
vPC, 124, 136
downgrading MDS switches
disruptive downgrades, 513–515
nondisruptive downgrades, 508–512
software, 498–500
downlink connectivity, Cisco UCS FI, 567
DPVM (Dynamic Port VSAN Membership), 388–389
DR, OSPF, 12–13
drag-and-drop questions, 937
drives
SED, Cisco HyperFlex data platforms, 720–721
storage clusters, 717
dual-control plane, vPC, 126
duplicate frame prevention, vPC, 129–131
Dynamic Data Distribution, Cisco HyperFlex, 711–712

E
ear plugs, exam preparation, 932
edge ports, STP, 94
edge-core-edge topologies, FC, 367–368

edges, Cisco HyperFlex, 712–714

EEM (Embedded Event Manager), 522
 action statements, 733, 734–735
 configuring, 735–736
 event statements, 733, 734
 monitoring module powerdowns, 736
 overview, 733
 policies, 733–734
 verifying configurations, 736

enabling Bash Shell, 741–742

encapsulation, VXLAN, 151–152

encryption
 local encryption keys, configuring, 721
 SED, Cisco HyperFlex data platforms, 720–721

endpoint groups, Cisco ACI, 201–203

end-to-end automation, Cisco
 HyperFlex, 708–709

enhanced zoning, 412–413

ENodes, FCoE, 445–447

EPLD (Electrical Programmable Logical Devices)
 MDS 9000 series switches, upgrades, 515–521
 upgrading, 269–271

error codes, NX-API, 758–759

Ethernet
 1/47 interface counters, displaying with Guest Shell, 745
 Ethernet switching mode, Cisco UCS FI, 570–577
 fabric failover for Ethernet, high availability vNIC, 569–570
 FCoE, 434
 addressing, 447–448
 benefits, 451
 CNA, 436–437
 configuring, 469–474
 DCBX, 440–442
 direct-attached topologies, 452–453
 ENodes, 445–447
 ETS, 439–440
 FCF, 445–447
 FEX topologies, 453–454, 461–463
 FIP, 448–451
 forwarding, 447–448
 FPMA, 447
 frame format, 442–444
 IEEE 802.1 standard, 438
 implementing, 455
 multi-hop topologies, 454–455
 Nexus 5000 switch configurations, 458–459
 Nexus 7000 switch configurations, 456–458
 Nexus 9000 switch configurations, 459–461
 NPV, 463–465
 overview, 436–438
 PFC, 438–439
 ports, 445–447
 remote-attached topologies, 454
 single-hop topologies, 451–454
 T11 standard, 438
 verification commands, 466
 verifying, 466–474
 VFC, 444–445
 traffic monitoring, 641–642

ETS (Enhanced Transmission Selection), 439–440

events
 monitoring, Cisco UCS Manager, 632–634
 statements, 733, 734
EVPN control plane, VXLAN, 156–157

exams

Cisco fiscal year and months example, 943
customizing, 934–935
news on releases, 944
preparing for, 932
 budgeting time, 932
 chapter-ending review tools, 935
Cisco Certification Exam Tutorial questions, 935–939
clock watching, 932
customizing exams, 934–935
DITKA? questions, 940
drag-and-drop questions, 937
ear plugs, 932
fill-in-the-blank questions, 937
final reviews, 940
getting rest, 932
multiple-choice, multiple-answer questions, 936
multiple-choice, single answer questions, 936
PTP, 933–935
simlet questions, 939
simulation questions, 938
study plans, 940
study trackers, 932
taking notes, 933
testlet questions, 938–939
travel time, 932
study plans, 943–944
updates, 942–943, 944
exporting contracts between networks, 858–859
extensions, STP, 94–95

F

fabric

binding, 926–929
CFS, 380–381
 CFSoFC, 382–384
 CFSoIP, 382–384
 fabric lock, 382
 features, 381–382
 merges, 384
 regions, 384–385
Cisco ACI
 access policies, 190–195
 building, 224–227
 building blocks, 195–196
 fabric discovery, 182, 187–189
 loop detection, 220
 overview, 179
 traffic load balancing, 219–220
 traffic storms, 219
 upgrading, 189–190
Cisco MDS 9100 series multilayer fabric switches, 362–365
Cisco MDS 9300 series multilayer fabric switches, 360–361
Cisco UCS, 539
 Cisco UCS 6300 Series fabric interconnect, 543–544
 Cisco UCS 6454 fabric interconnect, 541–543
 Cisco UCS 6536 fabric interconnect, 540–541
fabric failover for Ethernet, high availability vNIC, 569–570
FLOGI, 378–380
FPMA, 447
MDS switches
 Cisco MDS NX-OS Setup Utility, 490–498
disruptive downgrades, 513–515
disruptive upgrades, 505–507
nondisruptive downgrades, 508–512
nondisruptive upgrades, 500–505
upgrading/downgrading software, 498–500
NDFC, 325–326
features/benefits, 326–331
GUI, 331–335
switched fabric initialization, FC
device registration, 378–380
domain ID, 375–377
fabric reconfiguration, 377
FCID, 377
FCNS databases, 378–380
FLOGI, 378–380
overview, 373–374
PLOGI, 378
principal switch selection, 374–377
PRLI, 378

failure detection, BFD, 38
fault-tolerant links, vPC, 124
FC (Fibre Channel)
addressing, 371–372
basics, 365
BB_credits, 372
CFS, 380–381
CFSoFC, 382–384
CFSoIP, 382–384
fabric lock, 382
features, 381–382
merges, 384
regions, 384–385
Cisco MDS 9100 series multilayer fabric switches, 362–365
Cisco MDS 9200 series multiservice switches, 361–362
Cisco MDS 9300 series multilayer fabric switches, 360–361
Cisco MDS 9700 series multilayer directors, 356–360
collapsed-core topologies, 365
core-edge topologies, 366
device alias, 418
configuring, 422–423
distributions, 420–421
features, 419
modes, 419–420
verifying configurations, 422–423
zone alias comparisons, 421–422
edge-core-edge topologies, 367–368

FCID, 371–372, 377
flow control, 372
NPIV, 424–431
NPV, 424–431
ports, 368–370
SAN port channels, 396
configuring, 400–403
load balancing, 398–399
modes, 399–400
trunking, 396–397
types of, 396–398
verification commands, 400–401
verifying configurations, 400–403
switched fabric initialization
device registration, 378–380
domain ID, 375–377
fabric reconfiguration, 377
FCID, 377
FCNS databases, 378–380
FLOGI, 378–380
overview, 373–374
PLOGI, 378
PRLI, 378
principal switch selection, 374–377
topologies, 365–368
traffic monitoring, 642–647
VSAN, 386
 advantages of, 388
 attributes, 387–388
 commands, 392–393
 configuring, 391–394
DPVM, 388–389
features, 386–387
ID, 387
names, 388
states, 387–388
switches, 388
trunking, 389–394
verifying configurations, 391–394
zoning comparisons, 406
zone alias, device alias comparisons, 421–422
zoning, 404
 active zone sets, 407–409
Autozone, 410
 configuring, 414–417
enforcement, 406–407
enhanced zoning, 412–413
features, 404–406
full zone sets, 407–409
hard zoning, 407
merges, 410–411
smart zoning, 411–412
verifying configurations, 414–417
VSAN comparisons, 406
FCF (Fibre Channel Forwarders), 445–447
FCID (Fibre Channel Identification), 371–372, 377
FCNS databases, 378–380
FCoE (Fibre Channel over Ethernet), 434
addressing, 447–448
benefits, 451
CNA, 436–437
configuring, 469–474
 Nexus 5000 switches, 458–459
 Nexus 7000 switches, 456–458
 Nexus 9000 switches, 459–461
DCBX, 440–442
direct-attached topologies, 452–453
ENodes, 445–447
ETS, 439–440
FCF, 445–447
FEX topologies, 453–454, 461–463
FIP, 448–451
forwarding, 447–448
FPMA, 447
frame format, 442–444
IEEE 802.1 standard, 438
implementing, 455
multi-hop topologies, 454–455
NPV, 463–465
overview, 436–438
PFC, 438–439
ports, 445–447
remote-attached topologies, 454
single-hop topologies, 451–454
T11 standard, 438
verification commands, 466
verifying, 466–474
VFC, 444–445
feature RPM, managing with Bash Shell, 742
feature-based licenses
 BGP, 30
 multicast routing, 57–58
 OSPF, 14
 VXLAN, 159
FEX (FabricExtenders)
blade chassis FEX, FI connections, 545–546
Cisco UCS, 544–550, 577
port channel mode, 547–548
topologies, FCoE, 453–454, 461–463
virtual links, 548

FHS (First-Hop Security)
DAI, 816, 817–819
Cisco NX-OS configurations, 819–827
DHCP snooping, 827–831
man-in-the-middle attacks, 817
features, 815–816
port security, 832–837

FI (Fabric Interconnects)
blade chassis FEX connections, 545–546
Cisco UCS, 544–550
cluster verifications, 563–564
connectivity, 565–567
Ethernet switching mode, 570–577
fabric failover for Ethernet, 569–570
FI configurations, 565–567
GUI configurations, 561–562
IPv4 initialization, 559–560, 563
IPv6 initialization, 560–561, 563
port modes, 567–569
vNIC, 569–570
system restore, 671–672
files, NFS, 479–480
fill-in-the-blank questions, 937
filters, Cisco ACI contracts, 213, 230–233
final reviews, exam preparation, 940
FIP (FCoE Initialization Protocol), 448–451

firmware
infrastructure installations, 688–691
server upgrades, 691–699
updates, Cisco UCS, 672–679
upgrades
server upgrades, 691–699
through Auto Install, 680–687
version terminology, 679
fiscal year and months example, Cisco, 943

flexibility
Cisco HyperFlex, 715
Cisco UCS, 533–534
FLOGI (Fabric Login), 378–380
Flood and Learn Multicast-based control plane, VXLAN, 154–156
flow control, FC, 372
FPMA (Fabric-Provided MAC Addresses), 447
full zone sets, 407–409

G
gateways
AG, 631
VXLAN, 157
global commands
AAA model, 804–806
BFD, 39–40
BGP, 31
FHS, port security, 836–837
HSRP, 80
multicast routing, 58–59
NTP, 276–278
OSPF, 14
port channels, 134–135
PTP, 282
SNMP, 288–289
STP, 105
vPC, 134–135
VRRP, 79–86
VXLAN, 159–161
Guest Shell, 743
 access, 743–744
capabilities, 744–746
displaying Ethernet 1/47 interface counters, 745
dohost command, 745
guestshell destroy command, 747
guestshell disable command, 747
guestshell enable command, 747
managing, 746–748
Python
 installing packages, 746
 running in Guest Shell, 745–746
resource limits, 744
show guestshell detail command, 747–748
GUI (Graphical User Interfaces)
Cisco UCS FI configurations, 561–562
ND
 Admin Console page, 343–344
 Administrative pages, 348
 Infrastructure pages, 348
 One View page, 343
 Operations pages, 347–348
 overview, 342–348
 Overview page, 344
 Services page, 345–346
 Sites page, 345
 System Resources pages, 346–347
NDFC, 331–335
NDI, 320–323

H

HA, Cisco HyperFlex data platforms, 718–719
hard zoning, 407
hardware
 Cisco HyperFlex, 715
 Cisco UCS Manager system monitoring, 638
HashiCorp Terraform, 783
 commands, 786–789
 components, 784–786
 concept, 784
 workflows, 784
HCI (HyperConverged Infrastructure), 704
hello packets, 7
high availability
 Cisco UCS, 533
 vN, 569–570
 VXLAN, 157–159
HSRP (Hot Standby Router Protocol), 69–72
 configuring, 79–86
 global commands, 79–86
 interface commands, 80
 load sharing, 72
 network topologies, 70–71, 82–83
 verification commands, 82
 verifying configurations, 79–86
 vPC gateways, 131
HX Data Platform, 716
 Clusters
 interfaces, 720
tolerated failures, 719
datastores, 724–725
disk management, 721–724
 HA, 718–719
LAB clusters, 716–717
LAZ, 726–727
local encryption keys, 721
Native Snapshots, 719–720
Ready Clones, 719
SED, 720–721
server disk types, 722–723
storage clusters, 717
system clusters, 725–727
hybrid clouds, 249–250

IaaS (Infrastructure as a Service), 246–248
identity pools, Cisco UCS, 91–596
IEEE 802.1 FCoE standard, 438
IGMP (Internet Group Management Protocol), 43–46
default parameter settings, 56
interface commands, 59–61
switch IGMP snooping, 46
images, NX-OS, 254
import backups, 668–670
in-band management access, Cisco ACI, 214
independent resource scaling, Cisco HyperFlex, 710–711
infrastructure monitoring, 284, 521
Call Home, 521–522
EEM, 522
RMON, 523
SPAN, 523–528
system messages, 521
Infrastructure pages, ND GUI, 348
installing
PowerShell, 789–795
Python packages, 746
UCS PowerShell Library, 790–791
VIB
 IO Visor, 707
 VAAI, 707
interactive mode, Python, 772–773
interface commands
BFD, 40
HSRP, 80–82
multicast routing, 59–61
OSPF, 15
port channels, 135
PTP, 283
STP, 106–107
VPC, 135
VRRP, 80
VXLAN, 161–162
interface configurations
BGP, 34
OSPF, 17–18
inter-private network contracts communication, 858–859
intersubnet tenant traffic, Cisco ACI, 217–218
Inter-Tenant Contracts, 857–858
inventory files, Ansible, 765
invisible cloud witness services, Cisco HyperFlex, 713–714
IO Visor, 707
IP pools, Cisco UCS, 593–595
IPv4, Cisco UCS FI initialization, 559–560, 563
IPv6 (Internet Protocol version 6)
 Cisco UCS FI initialization, 560–561, 563
 First Hop Redundancy, VRRP, 77–79
ISSU, NX-OS, 263–265
J

Jinja templates, Ansible, 766
Job, Scheduler
 definitions, 736
displaying, 739–740
JSON (JavaScript Object Notation), 751–752, 757

K

keychain authentication, 868
 Cisco NX-OS configurations, 868–870
 commands, 869–870
 key selection, 871–872

L

LAB clusters, Cisco HyperFlex data platforms, 716–717
latency, Cisco HyperFlex, 711–712
LAZ, Cisco HyperFlex data platforms, 726–727
LDAP (Lightweight Directory Access Protocol)
 Cisco UCS Manager, 877
groups, 879–888
MDS switches, 909–911
nested LDAP, 879
providers, 879–888
storage security, 907–911
user accounts, 880
leaf switches, Cisco ACI, 179–182
licensing, Cisco Intersight, 652–656
lifecycle management, NX-OS software, 263
link modes, port channels, 119
listing UCS PowerShell cmdlets, 793–795
load balancing
 Cisco ACI fabric traffic, 219–220
 port channels, 120–122
 SAN port channels, 398–399
 VSAN, 388
load sharing
 HSRP, 72
 VRRP, 75–76
local AAA services, 911–912
local encryption keys, configuring, 721
locking
 up valuables, exam preparation, 932–933
 user accounts, AAA model commands, 806
logins
 FLOGI, 378–380
 PLOGI, 378
 PRLI, 378
logs
 Cisco UCS Manager system monitoring, 632–634
 system message logging, NX-OS, 284–285
loop detection, Cisco ACI fabric, 220
Loop Guard, 95, 96–97
LSA (Link-State Advertisements), 7–10
MAC (Media Access Control)
 addresses, FPMA, 447
 pools, Cisco UCS, 593
management access, Cisco ACI, 214–215
management tenants, 213
managing
 Cisco HyperFlex
centralized management, 709–710
disk management, 721–724
flexibility, 715
unified management, 709–710
Cisco UCS, 557–564, 660–661
backups, 661–670
networks, VLAN, 584–591
system restore, 670–672
feature RPM with Bash Shell, 742
Guest Shell, 746–748
networks, SNMP, 286
Nexus consoles, 254–255
out-of-band management
access, Cisco ACI, 214–215
Cisco MDS NX-OS Setup Utility, 492–496
patch RPM with Bash Shell, 742–743
software
Cisco MDS NX-OS Setup Utility, 490–498
lifecycles, NX-OS, 263
MDS switch upgrades/downgrades, 498–500
time management, networks, 274–275
NTP, 275–280
PTP, 280–284
man-in-the-middle attacks, 817
MDS switches
9000 series switches, EPLD upgrades, 515–521
9100 series multilayer fabric switches, 362–365
9200 series multiservice switches, 361–362
9300 series multilayer fabric switches, 360–361
9700 series multilayer directors, 356–360
Cisco MDS NX-OS Setup Utility, 490–498
disruptive downgrades, 513–515
disruptive upgrades, 505–507
LDAP, 909–911
nondisruptive downgrades, 508–512
nondisruptive upgrades, 500–505
NX-OS Setup Utility, 490–498
RADIUS, 902–904
RBAC, 918–919
TACACS+, 905–907
upgrading/downgrading software, 498–500
verifying NX-OS version, 496–497
MDT (Multicast Distribution Trees), 47–49
member ports, vPC, 124
merges
CFS, 384
zoning, 410–411
MIB, SNMP, 289–291
microsegmentation, Cisco ACI, 207, 860–867
MLD (Multicast Listener Directory), 46–47
modular QoS CLI, CoPP, 842–844
modules
Ansible, 765
monitoring powerdowns, 736
monitoring
events, Cisco UCS Manager, 632–634
infrastructure monitoring, 284, 521
Call Home, 521–522
EEM, 522
RMON, 523
SPAN, 523–528
system messages, 521
logs, Cisco UCS Manager, 632–634
module powerdowns, 736
NetFlow, Cisco UCS Manager system monitoring, 638–640
network infrastructures, 284
RMON, 523
servers, AAA, 900–901
system monitoring, Cisco UCS Manager, 630
 AG, 631
 Call Home, 636–637
database health, 638
DME, 631, 638–640
events, 632–634
hardware, 638
logs, 632–634
northbound interfaces, 631–632
policies, 634–640
Smart Call Home, 636–637
SNMP, 636
traffic monitoring, 640–647
traffic monitoring, 640–641
 Ethernet, 641–642
 FC, 642–647
MPBGP EVPN control plane, VXLAN, 156–157
multicast forwarding, 55–56
multicast routing, 42–43
 configuring, 56–69
default parameter settings, 56–57
feature-based licenses, 57–58
global commands, 58–59
IGMP, 43–46
 default parameter settings, 56
 interface commands, 59–61
interface commands, 59–61
MDT, 47–49
MLD, 46–47
network topologies, 61–62
PIM, 49–51
 ASM, 51
 Bidir, 51–52
 configuring, 164–167
default parameter settings, 56–57
designated routers/forwarders, 54–55
distribution modes, 58
RP, 53–54
SSM, 52–53
 verifying, 164–167
RPF, 55–56
switch IGMP snooping, 46
TRM, 159
 verifying configurations, 61–69
multi-hop topologies, FCoE, 454–455
multinode edges, Cisco HyperFlex, 713
multiple contracts unidirectional single filters, 860
multiple-choice, multiple-answer questions, 936
multiple-choice, single answer questions, 936
multiprotocol BGP, 29–30
multitier topologies, Cisco ACI, 179–180

N

named VLAN, 586–589
 configuring, 589–590
deleting, 590–591
named VSAN, 616–618
NAS (Network-Attached Storage), 481–482
 benefits, 483
Cisco UCS S-Series storage servers, 483–484
Native Snapshots, Cisco HyperFlex data platforms, 719–720
ND (Nexus Dashboard), 316–317
benefits, 317–318
cluster nodes, 339–341
external networks, 341–342
GUI
Admin Console page, 343–344
Administrative pages, 348
Infrastructure pages, 348
One View page, 343
Operations pages, 347–348
overview, 342–348
Overview page, 344
Services page, 345–346
Sites page, 345
System Resources pages, 346–347
NDDB, 335–337
NDFC, 325–326
features/benefits, 326–331
GUI, 331–335
NDI, 318–323
NDO, 323–324
platforms, 337–339
virtual form factors, 339
NDDB (Nexus Dashboard Data Broker), 335–337
NDFC (Nexus Dashboard Fabric Controller), 325–326
features/benefits, 326–331
GUI, 331–335
NDI (Nexus Dashboard Insights), 318–323
NDO (Nexus Dashboard Orchestrator), 323–324
neighbor relationships, BFD, 37–38
nested LDAP, Cisco UCS Manager, 879
NetFlow, 293–298, 638–640
network-admin roles, displaying authority, 740–741
Network Assurance Engine, 310–312
networks
ACI Contracts, exporting between networks, 858–859
Cisco UCS, VLAN, 584–591
CNA, 436–437
infrastructure monitoring, 284, 521
Call Home, 521–522
EEM, 522
RMON, 523
SPAN, 523–528
system messages, 521
inter-private network contracts communication, 858–859
monitoring infrastructures, 284
ND external networks, 341–342
POAP, requirements, 778
ports, STP, 94
RMON, 523
SNMP, 286
configuring, 292
global commands, 288–289
MIB, 289–291
security, 287–288
specific notation commands, 291
traps, 286–287
verification commands, 291–292
time management, 274–275
NTP, 275–280
PTP, 280–284
topologies
BFD, 40–41
BGP, 33
HSRP, 82–83
multicast routing, 61–62
OSPF, 16
port channels, 137–138
networks, security

STP, 108
VRRP, 74, 82–83

VSAN, 386
 advantages of, 388
 attributes, 387–388
 commands, 392–393
 configuring, 391–394
 DPVM, 388–389
 features, 386–387
 ID, 387
 names, 388
 states, 387–388
 switches, 388
 trunking, 389–394
 verifying configurations, 391–394
 zoning comparisons, 406

inter-private network contracts
 communication, 858–859
Inter-Tenant Contracts,
 857–858
microsegmentation, 860–867
modifying, 855
multiple contracts unidirectional
 single filters, 860
removing, 855
single contract bidirectional
 reverse filters, 859
single contract unidirectional
 with multiple filters, 859
verifying, 855
VRF Contracts, 856–857

CoPP, 837–839
Cisco NX-OS configurations,
 844–851
classification, 840–844
control plane packets, 839–840
creating, 850–851
modifying, 851
modular QoS CLI, 842–844
Nexus 5000, 844
Nexus 7000 comparisons,
 843–844
Nexus 9000 comparisons,
 842–843
rate control, 840–841

FHS
 DAI, 816–827
 features, 815–816
keychain authentication, 868
 Cisco NX-OS configurations,
 868–870
 commands, 869–870
 key selection, 871–872
NX-OS configurations, 804–807
RBAC, 807–809, 811–815
news on exam releases, 944

Nexus
console management, 254–255
ND, 316–317
benefits, 317–318
cluster nodes, 339–341
external networks, 341–342
GUI, 342–348
NDDB, 335–337
NDFC, 325–335
NDI, 318–323
NDO, 323–324
platforms, 337–339
virtual form factors, 339
NDDB, 335–337
NDFC, 325–326
features/benefits, 326–331
GUI, 331–335
NDI, 318–323
NDO, 323–324
NX-OS
boot sequences, 255–256
checkpoints, 272–274
configuring, 271–274
configuring basic management, 256–259
images, 254
ISSU, 263–265
NetFlow, 293–298
NTP, 275–280
PLD upgrades, 269–271
PTP, 280–284
rollbacks, 272–274
saves/backups, 272
Smart Call Home, 292–293
SNMP, 286–292
software lifecycle management, 263
SPAN, 298–306
streaming telemetry, 306–309
system message logging, 284–285
time management, 274–284
upgrade/downgrade procedures, 265–269
routing support, 5–6
switches, POAP configurations, 259–263
Nexus 5000 switches
CoPP comparisons, 844
FCoE configurations, 458–459
Nexus 7000 switches
CoPP comparisons, 843–844
FCoE configurations, 456–458
Nexus 9000 switches
CoPP comparisons, 842–843
FCoE configurations, 459–461
leaf switches, 179–182
spine switches, Cisco ACI, 179–182
Nexus 9300 series, 181–182
Nexus 9500 series, 181, 264
Nexus CoPP (Control Plane Policing), 837–839
Cisco NX-OS configurations, 844–851
classification, 840–844
control plane packets, 839–840
creating, 850–851
modifying, 851
modular QoS CLI, 842–844
Nexus 5000, 844
Nexus 7000 comparisons, 843–844
Nexus 9000 comparisons, 842–843
rate control, 840–841
Nexus DAI (Dynamic ARP Inspection), 816, 817–819
Cisco NX-OS configurations, 819–827
DHCP snooping, 827–831
man-in-the-middle attacks, 817
Nexus FHS (First-Hop Security)
- DAI, 816, 817–819
 - *Cisco NX-OS configurations*, 819–827
- DHCP snooping, 827–831
 - *man-in-the-middle attacks*, 817
- features, 815–816
- port security, 832–837

NFS (Network File Systems), 479–480

NIC (Network Interface Cards), vNIC and high availability, 569–570

nondisruptive downgrades, MDS switches, 508–512

nondisruptive upgrades, MDS switches, 500–505

noninteractive mode, Python, 773–775

non-vPC ports, 124

normal ports, STP, 94

northbound interfaces, 631–632

note taking, exam preparation, 933

NPIV (N Port Identifier Virtualization), 424–431

NPV (N Port Virtualization), 424–431

NTP (Network Time Protocol), 275
 - configuring, 279–280
 - default parameter settings, 275–276
 - global commands, 276–278
 - verification commands, 278

numeric usernames, 808

NVE config commands, VXLAN, 162

NX-API
- Cisco NX-API Developer Sandbox, 759–760
 - error codes, 758–759
 - Requests/Responses
 - elements, 757–759
 - in JSON, 757
 - in XML, 756–757

NX-OS
- AAA model configurations, 804–807
- boot sequences, 255–256
- checkpoints, 272–274
- configuring, 271
 - *basic management*, 256–259
 - saves/backups, 272
- images, 254
- NetFlow, 293–298
- PLD, upgrading, 269–271
- rollbacks, 272–274
- Smart Call Home, 292–293
- SNMP, 286
 - configuring, 292
 - global commands, 288–289
 - MIB, 289–291
 - security, 287–288
 - specific notation commands, 291
 - traps, 286–287
 - verification commands, 291–292
- software
 - ISSU, 263–265
 - lifecycle management, 263
 - upgrade/downgrade procedures, 265–269
- SPAN, 298–306
- streaming telemetry, 306–309
- system message logging, 284–285
- time management, 274–275
 - NTP, 275–280
 - PTP, 280–284

O

One View page, ND GUI, 343

Operations pages, ND GUI, 347–348

optimizing Cisco HyperFlex resources, 710–711
orchestration

Ansible
- authentication, 766
- Cisco NX-OS example, 767–768
- CLI prompt, 766
- CLI tools, 767
- components, 765–766
- configuration files, 766
- important concepts, 766
- inventory files, 765
- Jinja templates, 766
- modules, 765
- playbooks, 765–766, 767–768
- plays, 766
- roles, 766
- variable files, 766
- variables, 766
- workflows using playbooks, 764–765

POAP, 777–778
- configuration scripts, 778–779
- DHCP discovery phase, 781–782
- limitations, 778
- network requirements, 778
- post-installation reload phase, 782
- power-up phase, 779
- processes (overview), 779–780
- script execution phase, 782
- switch configurations, 782–783
- USB discovery phase, 779–780
- verification commands, 783

PowerShell, 789
- installing, 789–795
- listing UCS PowerShell cmdlets, 793–795
 UCS PowerShell Library installations, 790–791
- versions of, 789–790, 791–793

Python, 768–769
- Cisco NX-OS, Python packages, 769–771
- CLI command API, 771–772
- interactive mode, 772–773
- noninteractive mode, 773–775
- UCS Manager Python SDK, 775–777

Terraform, 783
- commands, 786–789
- components, 784–786
- concept, 784
- workflows, 784

orphaned ports, vPC, 124

OSPF (Open Shortest Path First), 6–7
- ABR verification, 18–22
- adjacency, 7
- areas, 10–12
- authentication, 13
- BDR, 12–13
- configuring, 13–24
- DR, 12–13
- feature-based licenses, 14
- global commands, 14
- hello packets, 7
- interface commands, 15
- interface configurations, 17–18
- LSA, 7–10
- network topology, 16
- OSPFv2 and OSPF3 comparisons, 7
- process clear commands, 15–16
- router configuration, 22–24
- routing commands, 14–15
- verifying configurations, 15–16
- virtual links, 12

out-of-band management
- access, Cisco ACI, 214–215
Cisco MDS NX-OS Setup Utility, 492–496
overlay protocols, VXLAN
configuring, 159–169
control plane topologies, 159–161
encapsulation, 151–152
EVPN control plane, 156–157
feature-based licenses, 159
Flood and Learn Multicast-based control plane, 154–156
gateways, 157
global commands, 159–161
high availability, 157–159
interface commands, 161–162
MPBGP EVPN control plane, 156–157
NVE config commands, 162
overview, 151–152
packet formats, 151–152
TRM, 159
verification commands, 162
verifying configurations, 164–169
VNI, 153–154
VTEP, 152–153
Overview page, ND GUI, 344

P

PaaS (Platform as a Service), 246
packet formats, VXLAN, 151–152
passphrase commands, AAA model, 806
passwords
 clear-text passwords, 809
 strong passwords, 808–809
patch RPM, managing with Bash Shell, 742–743
peer gateways, vPC, 131–132
peer links, vPC, 124
peer switches, vPC, 124
peering, BGP, 25–26
peer-keepalives, vPC, 124
PFC (Priority-based Flow Control), 438–439
PIM (Protocol Independent Multicast), 49–51
 ASM, 51
 Bidir, 51–52
 configuring, 164–167
 default parameter settings, 56–57
 designated routers/forwarders, 54–55
 distribution modes, 58
 RP, 53–54
 SSM, 52–53
 verifying, 164–167
Pip Python Package Manager, installing
 Python packages with Guest Shell, 746
playbooks, Ansible, 765–766
 Cisco NX-OS example, 767–768
 workflows using playbooks, 764–765
plays, Ansible, 766
PLD (Programmable Logical Devices), 269–271
PLOGI (Port Login), 378
POAP (PowerOn Auto Provisioning), 777–778
 configuration scripts, 778–779
 DHCP discovery phase, 781–782
 limitations, 778
 network requirements, 778
 Nexus switches, 259–263
 post-installation reload phase, 782
 power-up phase, 779
 processes (overview), 779–780
 script execution phase, 782
 switch configurations, 782–783
 USB discovery phase, 779–780
 verification commands, 783
policies
backups, 666–668
Cisco ACI
 policy identification/enforcement, 218
 policy models, 197–198
Cisco UCS Manager system monitoring, 634–640
EEM, 733–734
port channels, 117–118, 119–120
 bandwidth, 118
 benefits, 118
 channel code matrix, 119
 configuring, 132–146
 default parameter settings, 132–133
 FEX, 547–548
 global commands, 134–135
 interface commands, 135
 link modes, 119
 load balancing, 120–122
 network topologies, 137–138
 redundancy, 118
SAN port channels, 396
 configuring, 400–403
 load balancing, 398–399
 modes, 399–400
 trunking, 396–397
 types of, 396–398
 verification commands, 400–401
 verifying configurations, 400–403
STP, 118
 verification commands, 137
ports
Cisco UCS FI port modes, 567–569
DPVM, 388–389
FC ports, 368–370
FCoE, 445–447
member ports, vPC, 124
NPIV, 424–431
NPV, 424–431
PLOGI, 378
security, 832–837, 919–921
 configuring, 921–924
 fabric binding comparison, 928–929
 verifying, 924–926
SPAN, 298–306, 523–526
 configuring, 526
 remote SPAN, 526–528
STP ports
 edge ports, 94
 network ports, 94
 normal ports, 94
vPC
 non-vPC ports, 124
 orphaned ports, 124
post-installation reload phase, POAP, 782
PowerShell, 789
 installing, 789–795
 listing UCS PowerShell cmdlets, 793–795
 UCS PowerShell Library installations, 790–791
 versions of, 789–790, 791–793
power-up phase, POAP, 779
preparing for exams, 932
 chapter-ending review tools, 935
 customizing exams, 934–935
 DITKA? questions, 940
 drag-and-drop questions, 937
 ear plugs, 932
 fill-in-the-blank questions, 937
 final reviews, 940
 getting rest, 932
questions

multiple-choice, multiple-answer questions, 936
multiple-choice, single answer questions, 936
PTP
access, 933–934
Cisco Certification Exam Tutorial questions, 935–939
customizing exams, 934–935
Premium Edition, 935
updating exams, 935
simlet questions, 939
simulation questions, 938
study plans, 940
study trackers, 932
taking notes, 933
testlet questions, 938–939
time
budgeting, 932
clock watching, 932
clock watching, 932
trade time, 932
primary roles, vPC, 127–128
private clouds, 248
PRLI (Process Login), 378
process clear commands, OSPF, 15–16
PTP (Pearson Test Prep)
access, 933–934
customizing exams, 934–935
Premium Edition, 935
updating exams, 935
PTP (Precision Time Protocol), 280
clocks, 281–282, 283–284
configuring, 283
default parameter settings, 282
global commands, 282
interface commands, 283
verification commands, 283
public clouds, 248–249
Python, 768–769
Cisco NX-OS, Python packages, 769–771
CLI command API, 771–772
Guest Shell, running Python in, 745–746
installing packages with Guest Shell, 746
interactive mode, 772–773
noninteractive mode, 773–775
Pip Python Package Manager, installing Python packages with
Guest Shell, 746
UCS Manager Python SDK, 775–777
converting to, 777
CRUD operations, 776
Q
QoS (Quality of Service)
Cisco UCS, 608–610
modular QoS CLI, CoPP, 842–844
questions
Cisco Certification Exam Tutorial, 935–939
DITKA? questions, 940
drag-and-drop questions, 937
fill-in-the-blank questions, 937
multiple-choice, multiple-answer questions, 936
multiple-choice, single answer questions, 936
simlet questions, 939
simulation questions, 938
testlet questions, 938–939
rack servers, Cisco UCS, 537–538, 577
RADIUS, 801–802
 authentication, 888–892
 Cisco UCS Manager, 876, 877, 888–892
 MDS switches, 902–904
 storage security, 902–904
 TACACS+ mergers, 914
Rapid PVST+, 98–105
rate control, CoPP, 840–841
RBAC (Role-Based Access Control), 807–809
 Cisco NX-OS configurations, 811–815
 MDS switches, 918–919
 user accounts, 914
 roles, 915, 917
 rules, 915–917
 sample configuration, 918–919
Ready Clones, Cisco HyperFlex data platforms, 719
redundancy, port channels, 118
regions, CFS, 384–385
registering devices, switched fabric initialization and FC, 378–380
remote AAA services, 802, 901
remote-attached topologies, FCoE, 454
remote SPAN, 526–528
remote users, Cisco UCS Manager role policies, 892–894
removing ACI Contracts, 855
Requests, NX-API
 elements, 757–759
 in JSON, 757
 in XML, 756–757
reserved FDIC, 372
resources
 limits, Guest Shell, 744
 optimization, Cisco HyperFlex, 710–711
 scaling, Cisco HyperFlex, 710–711
Responses
 NX-API
 elements, 757–759
 in JSON, 757
 in XML, 756–757
 REST API, 754–755
rest, exam preparation, 932
REST API, 752–753
 authentication, 753–754
 Responses, 754–755
RMON (Remote Network Monitoring), 523
roles
 Ansible, 766
 Cisco NX-OS, user roles, 809–810
 RBAC, 807–809, 915, 917
rollbacks, NX-OS, 272–274
Root Guard, 95, 97
routing
 BFD, 37
 configuring, 38–42
 default parameter settings, 38–39
 failure detection, 38
 global commands, 39–40
 interface commands, 40
 neighbor relationships, 37–38
 network topologies, 40–41
 routing commands, 40
 verification commands, 40
 verifying configurations, 40–42
 BGP, 24–25
 AS 65100 configurations, 33
 clear commands, 32–33
 configuring, 30–37
 default parameter settings, 30
feature-based licenses, 30
global commands, 31
interface configurations, 34
multiprotocol BGP, 29–30
network topologies, 33
path selection, 26–29
peering, 25–26
routing commands, 31–32
verification commands, 32–33
verifying configurations, 34–37
HSRP, 69–72
configuring, 79–86
global commands, 79–86
interface commands, 80
load sharing, 72
network topologies, 70–71, 82–83
verification commands, 82
verifying configurations, 79–86
multicast routing, 42–43
configuring, 56–69
default parameter settings, 56–57
feature-based licenses, 57–58
global commands, 58–59
IGMP, 43–46, 56, 59–61
interface commands, 59–61
MDT, 47–49
MLD, 46–47
network topologies, 61–62
PIM, 49–55, 56–61, 164–167
RPF, 55–56
switch IGMP snooping, 46
TRM, 159
verifying, 62–69
verifying configurations, 61–69
Nexus support, 5–6
OSPF, 6–7
ABR verification, 18–22
adjacency, 7
areas, 10–12
authentication, 13
BDR, 12–13
configuring, 13–24
DR, 12–13
feature-based licenses, 14
global commands, 14
hello packets, 7
interface commands, 15
interface configurations, 17–18
LSA, 7–10
network topology, 16
OSPFv2 and OSPF3 comparisons, 7
process clear commands, 15–16
router configuration, 22–24
routing commands, 14–15
verifying configurations, 15–16
virtual links, 12
VRRP, 73, 74
authentication, 77
benefits, 75
configuring, 79–86
global commands, 79–86
groups, 75
interface commands, 80
IPv6 First Hop Redundancy, 77–79
load sharing, 75–76
network topologies, 74, 82–83
operation, 73–75
router priority/preemption, 76–77
tracking, 77
verification commands, 82
verifying configurations, 79–86
RP, PIM, 53–54
RPF (Reverse Path Forwarding), 55–56
RPM, managing with Bash Shell
 feature RPM, 742
 patch RPM, 742–743
rules
 Cisco NX-OS, 809–810
 RBAC, user accounts, 915–917
running
 Bash Shell, 741–742
 Python in Guest Shell, 745–746

S

SaaS (Software as a Service), 245
SAN (Storage Area Networks)
 Cisco UCS, connectivity, 611–616, 624–625
 port channels, 396
 configuring, 400–403
 load balancing, 398–399
 modes, 399–400
 trunking, 396–397
 types of, 396–398
 verification commands, 400–401
 verifying configurations, 400–403
SATA RAS, Cisco HyperFlex, 715–716
saves/backups, NX-OS, 272
scalability, Cisco UCS, 533
Scheduler
 backups, 739
 configuring, 737–740
 displaying jobs/schedules, 739–740
 job definitions, 736
 overview, 736–737
 prerequisites, 737
 timetable definitions, 736
 verifying configurations, 739–740

scripting
 Bash Shell, enabling, 741–742
 EEM, monitoring module
 powerdowns, 736
 execution phase, POAP, 782
 Guest Shell
 displaying Ethernet 1/47
 interface counters, 745
 dohost command, 745
 guestshell destroy command, 747
 guestshell disable command, 747
 guestshell enable command, 747
 installing Python packages, 746
 sshow guestshell detail command, 747–748
JSON, 751–752, 757
NX-API
 Cisco NX-API Developer
 Sandbox, 759–760
 error codes, 758–759
 Requests/Responses elements, 757–759
 Requests/Responses in JSON, 757
 Requests/Responses in XML, 756–757
POAP, 777–778
 configuration scripts, 778–779
 DHCP discovery phase, 781–782
 limitations, 778
 network requirements, 778
 post-installation reload phase, 782
 power-up phase, 779
 processes (overview), 779–780
 script execution phase, 782
 switch configurations, 782–783
 USB discovery phase, 779–780
 verification commands, 783
Python, 768–769
Cisco NX-OS, Python packages, 769–771
CLI command API, 771–772
interactive mode, 772–773
noninteractive mode, 773–775
UCS Manager Python SDK, 775–777
REST API, 752–753
authentication, 753–754
Responses, 754–755
Scheduler
backups, 739
displaying jobs/schedules, 739–740
setup scripts, Cisco MDS NX-OS
Setup Utility, 490–491
XML, 748–749
Requests/Responses and REST API, 756–757
structure example, 749–750
syntax, 750–751
SCVMM, Cisco ACI integration, 204–205
secondary roles, vPC, 127–128
security
Cisco UCS Manager
AAA model, 875–876
Cisco AVPair attribute example, 878
LDAP, 877
LDAP providers/groups, 879–888
multiple authentication services configuration, 892–894
RADIUS, 876, 877, 888–892
remote user role policies, 892–894
TACACS+877–878, 888–894
two-factor authentication, 879
Web Session Refresh Period, 879
clear-text passwords, 809
computer security
AAA model, 875–876
Cisco AVPair attribute example, 878
LDAP, 877
LDAP providers/groups, 879–888
multiple authentication services configuration, 892–894
RADIUS, 876, 877, 888–892
remote user role policies, 892–894
TACACS+877–878, 888–894
two-factor authentication, 879
encryption
local encryption keys, 721
SED, 720–721
FHS
DAI, 816–827
features, 815–816
locking up valuables, exam preparation, 932–933
network security
AAA model, 801–807
ACI Contracts, 851–867
CoPP, 837–851
FHS, 815–837
Keychain Authentication, 868–872
RBAC, 807–815
passwords
clear-text passwords, 809
strong passwords, 808–809
ports, 832–837
ports, security, 919–921
<table>
<thead>
<tr>
<th>security</th>
<th>Cisco Intersight management as a service, 648–649</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuring, 921–924</td>
<td>IaaS, 246–248</td>
</tr>
<tr>
<td>fabric binding comparison, 928–929</td>
<td>PaaS, 246</td>
</tr>
<tr>
<td>verifying, 924–926</td>
<td>profiles, Cisco UCS, 596–599, 602–607</td>
</tr>
<tr>
<td>SED, Cisco HyperFlex data platforms, 720–721</td>
<td>SaaS, 245</td>
</tr>
<tr>
<td>SNMP, 287–288</td>
<td>Services page, ND GUI, 345–346</td>
</tr>
<tr>
<td>storage security</td>
<td>Session Timeout Period, Cisco UCS Manager, 879</td>
</tr>
<tr>
<td>AAA model, 898–901</td>
<td>setup scripts, Cisco MDS NX-OS Setup Utility, 490–491</td>
</tr>
<tr>
<td>fabric binding, 926–929</td>
<td>shells</td>
</tr>
<tr>
<td>LDAP, 907–911</td>
<td>Bash Shell, 740</td>
</tr>
<tr>
<td>port security, 919–926</td>
<td>displaying dev-ops role authority, 740–741</td>
</tr>
<tr>
<td>RADIUS, 902–904, 914</td>
<td>displaying network-admin role authority, 740–741</td>
</tr>
<tr>
<td>RBAC, 914–919</td>
<td>enabling, 741–742</td>
</tr>
<tr>
<td>TACACS+, 904–907, 914</td>
<td>feature RPM, 742</td>
</tr>
<tr>
<td>strong passwords, 808–809</td>
<td>patch RPM, 742–743</td>
</tr>
<tr>
<td>SED, Cisco HyperFlex data platforms, 720–721</td>
<td>running, 741–742</td>
</tr>
<tr>
<td>servers</td>
<td>Guest Shell, 743</td>
</tr>
<tr>
<td>Cisco HyperFlex disk types, 722–723</td>
<td>access, 743–744</td>
</tr>
<tr>
<td>Cisco UCS</td>
<td>capabilities, 744–746</td>
</tr>
<tr>
<td>5108 Blade Server Chassis, 536</td>
<td>displaying Ethernet 1/47 interface counters, 745</td>
</tr>
<tr>
<td>blade servers, 536–537</td>
<td>dohost command, 745</td>
</tr>
<tr>
<td>Cisco UCS Mini, 539–540</td>
<td>guestshell destroy command, 747</td>
</tr>
<tr>
<td>pools, 596</td>
<td>guestshell disable command, 747</td>
</tr>
<tr>
<td>profiles, 599–602</td>
<td>guestshell enable command, 747</td>
</tr>
<tr>
<td>rack servers, 537–538, 577</td>
<td>installing Python packages, 746</td>
</tr>
<tr>
<td>storage servers, 537–539</td>
<td>managing, 746–748</td>
</tr>
<tr>
<td>firmware upgrades, 691–699</td>
<td>resource limits, 744</td>
</tr>
<tr>
<td>monitoring, AAA, 900–901</td>
<td>running Python in Guest Shell, 745–746</td>
</tr>
<tr>
<td>services</td>
<td>show guestshell detail command, 747–748</td>
</tr>
<tr>
<td>CFS, 380–381</td>
<td>show guestshell detail command, 747–748</td>
</tr>
<tr>
<td>CFSoFC, 382–384</td>
<td>guestshell destroy command, 747</td>
</tr>
<tr>
<td>CFSoIP, 382–384</td>
<td>guestshell disable command, 747</td>
</tr>
<tr>
<td>fabric lock, 382</td>
<td>guestshell enable command, 747</td>
</tr>
<tr>
<td>features, 381–382</td>
<td>installing Python packages, 746</td>
</tr>
<tr>
<td>merges, 384</td>
<td>managing, 746–748</td>
</tr>
<tr>
<td>regions, 384–385</td>
<td>resource limits, 744</td>
</tr>
<tr>
<td>running Python in Guest Shell, 745–746</td>
<td>show guestshell detail command, 747–748</td>
</tr>
</tbody>
</table>
simlet questions, 939
simulation questions, 938
single contract bidirectional reverse filters, 859
single contract unidirectional with multiple filters, 859
single-hop topologies, FCoE, 451–454
Sites page, ND GUI, 345
Smart Call Home, 292–293, 636–637
smart zoning, 411–412
snapshots, Cisco HyperFlex data platforms, 719–720
SNMP (Simple Network Management Protocol), 286
Cisco UCS Manager system monitoring, 636
configuring, 292
global commands, 288–289
MIB, 289–291
security, 287–288
specific notation commands, 291
traps, 286–287
verification commands, 291–292
software
Cisco Intersight supported software, 650–652
EPLD, upgrading, 269–271
managing
Cisco MDS NX-OS Setup Utility, 490–498
MDS switch upgrades/downgrades, 496–497
MDS switches, upgrading/downgrading software, 498–500
NX-OS
ISSU, 263–265
lifecycle management, 263
upgrade/downgrade procedures, 265–269
PLD, upgrading, 269–271
updates, Cisco UCS, 672–679
SPAN (Switched Port Analyzers), 298–306, 523–526
configuring, 526
remote SPAN, 526–528
special characters in usernames, 808
specific notation commands, SNMP, 291
spine switches, Cisco ACI, 179–182
SSM (Source-Specific Multicast), 52–53
storage
Cisco UCS, 611
S-Series storage servers, 483–484
storage servers, 537–539
datastores, Cisco HyperFlex data platforms, 724–725
NAS, 481–482
benefits, 483
Cisco UCS S-Series storage servers, 483–484
VSAN, 386
advantages of, 388
attributes, 387–388
commands, 392–393
configuring, 391–394
DPVM, 388–389
features, 386–387
ID, 387
names, 388
states, 387–388
switches, 388
trunking, 389–394
verifying configurations, 391–394
zoning comparisons, 406
storage clusters
Cisco HyperFlex data platforms, 717
compute nodes, 717
converged nodes, 717
datastores, 717
drives, 717

storage security
AAA model, 898
 accounting, 900
 authentication, 899, 912–913
 authorization, 899, 912–913
 local AAA services, 911–912
 remote AAA services, 901
 server distribution, 913–914
 server groups, 900
 server monitoring, 900–901
 service configuration, 900
fabric binding, 926–929
LDAP, 907–911
port security, 919–921
 configuring, 921–924
 fabric binding comparison, 928–929
 verifying, 924–926
RADIUS, 902–904, 914
RBAC, 914–919
TACACS+, 904–907, 914

STP (Spanning Tree Protocol), 93
BPDU Filtering, 95, 96
BPDU Guard, 95, 96
Bridge Assurance, 95–96
 configuring, 102–117
edge ports, 94
extension default settings, 102
extensions (overview), 94–95
global commands, 105
interface commands, 106–107
Loop Guard, 95, 96–97
network ports, 94
network topologies, 108
normal ports, 94
port channels, 118
Rapid PVST+, 98–105
Root Guard, 95, 97
topologies, 93–94, 108
UDLD, 97–98, 102–105
verification commands, 108
validating configurations, 109–117
streaming telemetry, NX-OS, 306–309
strong passwords, 808–809
structure example, XML, 749–750
study plans, exams, 940, 943–944
study trackers, 932
switched fabric initialization, FC
device registration, 378–380
domain ID, 375–377
fabric reconfiguration, 377
FCID, 377
FCNS databases, 378–380
FLOGI, 378–380
overview, 373–374
PLOGI, 378
principal switch selection, 374–377
PRLI, 378
switches
Cisco MDS
FCoE configurations
 Nexus 5000 switches, 458–459
 Nexus 7000 switches, 456–458
 Nexus 9000 switches, 459–461
IGMP snooping, 46
leaf switches, Cisco ACI, 179–182
MDS switches
 9000 series switches, EPLD
 upgrades, 515–521
9100 series multilayer fabric switches, 362–365
9200 series multiservice switches, 361–362
9300 series multilayer fabric switches, 360–361
disruptive downgrades, 513–515
disruptive upgrades, 505–507
nondisruptive downgrades, 508–512
nondisruptive upgrades, 500–505
NX-OS Setup Utility, 490–498
upgrading/downgrading software, 498–500
verifying NX-OS version, 496–497
peer switches, vPC, 124
POAP configurations, 259–263, 782–783
port security, 919–921
configuring, 921–924
fabric binding comparison, 928–929
verifying, 924–926
spine switches, Cisco ACI, 179–182
VSAN, 388
switching protocols
port channels, 117–118, 119–120
bandwidth, 118
benefits, 118
channel code matrix, 119
configuring, 132–146
default parameter settings, 132–133
global commands, 134–135
interface commands, 135
link modes, 119
load balancing, 120–122
network topologies, 137–138
redundancy, 118
STP, 118
verification commands, 137
vPC, 134–135
STP, 93
BPDU Filtering, 95, 96
BPDU Guard, 95, 96
Bridge Assurance, 95–96
configuring, 102–117
edge ports, 94
extension default settings, 102
extensions (overview), 94–95
global commands, 105
interface commands, 106–107
Loop Guard, 95, 96–97
network ports, 94
network topologies, 108
normal ports, 94
port channels, 118
Rapid PVST+, 98–102
Root Guard, 95, 97
topologies, 93–94, 108
UDLD, 97–98, 102–105
verification commands, 108
verifying configurations, 109–117
vPC, 122
ARP synchronization, 131
components, 124–125
configuration consistency, 128–129
configuring, 132–146
consistency checks, 129
domain commands, 136
domains, 124
dual-control plane, 126
duplicate frame prevention, 129–131
fault-tolerant links, 124
HSRP gateways, 131
implementing, 133–134
interface commands, 135
member ports, 124
non-vPC ports, 124
orphaned ports, 124
peer gateways, 131–132
peer links, 124
peer switches, 124
peer-keepalives, 124
primary roles, 127–128
secondary roles, 127–128
topologies, 122–123
traffic flows, 125–126
verification commands, 137

syntax, XML, 750–751

system clusters, Cisco HyperFlex data platforms, 725–727

system messages
infrastructure monitoring, 521
logging, NX-OS, 284–285

system monitoring, Cisco UCS Manager, 630
AG, 631
Call Home, 636–637
database health, 638
DME, 631
events, 632–634
hardware, 638
logs, 632–634
NetFlow, 638–640
northbound interfaces, 631–632
policies, 634–640
Smart Call Home, 636–637
SNMP, 636
traffic monitoring, 640–647

System Resources pages, ND GUI, 346–347

system restore, Cisco UCS configuration management, 670–672

T

T11 FCoE standard, 438
taboo contracts, 209–210

TACACS+801–802
authentication, 888–892
Cisco UCS Manager, 876, 888–892
MDS switches, 905–907
RADIUS mergers, 914
remote user role policies, 892–894
storage security, 904–907, 914
telemetry data collection, Cisco Intersight, 650
tenants
ACI Contracts, 857–858
Cisco ACI, 198–200
creating, 227–230
intersubnet tenant traffic, 217–218
management tenants, 213
intersubnet tenant traffic, 217–218
management tenants, 213

Terraform, 783
commands, 786–789
components, 784–786
concept, 784
workflows, 784
testlet questions, 938–939

three-tier Cisco ACI applications, 233–235
time
exam preparation
budgeting time, 932
clock watching, 932
tavel time, 932
management, networks, 274–275
NTP, 275–280
PTP, 280–284
timetable definitions, Scheduler, 736
topologies
FC, 365–368
FCoE
direct-attached topologies, 452–453
FEX topologies, 453–454, 461–463
multi-hop topologies, 454–455
remote-attached topologies, 454
single-hop topologies, 451–454
multitier topologies, Cisco ACI, 179–180
network topologies
BFD, 40–41
BGP, 33
HSRP, 70–71, 82–83
multicast routing, 61–62
OSPF, 16
port channels, 137–138
STP, 108
VRRP, 74, 82–83
STP, 93–94, 108
vPC, 122–123
VXLAN control plane, 163
tracking, VRRP, 77
traffic flows, vPC, 125–126
traffic load balancing, Cisco ACI fabric, 219–220
traffic monitoring
Cisco UCS Manager system monitoring, 640–641
Ethernet, 641–642
FC, 642–647
traffic storms, Cisco ACI fabric, 219
traps, SNMP, 286–287
travel time, exam preparation, 932
TRM (Tenant Routed Multicast), 159
trunking
SAN port channels, 396–397
VSAN, 389–394
two-factor authentication, Cisco UCS Manager, 879

UCS Manager Python SDK, 775–777
converting to, 777
CRUD operations, 776
UCS PowerShell cmdlets, listing, 793–795
UCS PowerShell Library, installing, 790–791
UDLD (Unidirectional Link Detection), 97–98, 102–105
unified management, Cisco HyperFlex, 709–710
updates
exams, 935, 942–943, 944
firmware, Cisco UCS, 672–679
software, Cisco UCS, 672–679
upgrading
EPLD, 269–271
fabric, Cisco ACI, 189–190
firmware, through Auto Install, 680–687
MDS 9000 series switches, EPLD upgrades, 515–521
MDS switches
disruptive upgrades, 505–507
nondisruptive upgrades, 500–505
software, 498–500
Nexus 9500 series, 264
uplink connectivity, Cisco UCS FI, 567
USB discovery phase, POAP, 779–780
user accounts
 LDAP, 880
 locking commands, AAA model, 806
 numeric usernames, 808
 RBAC, 914
 roles, 915, 917
 rules, 915–917
 sample configuration, 918–919
 special characters in usernames, 808
usernames
 numeric usernames, 808
 special characters in usernames, 808
UUID pools, Cisco UCS, 591–593

V

VAAI (vStorage API for Array Installation), 707
valuables (exam preparation), locking up, 932–933
variables, Ansible, 766
vCenter, Cisco ACI integration, 235–238
verification commands
 FCoE, 466
 HSRP, 82
 NTP, 278
 port channels, 137
 PTP, 283
 SAN port channels, 400–403
 SNMP, 291–292
 STP, 108
 vPC, 137
 VRRP, 82
 VXLAN, 162
verifying
 AAA verification commands, 807
 ACI Contracts, 855
 BFD, 40–42
 BGP configurations, 34–37
 Cisco UCS FI, cluster verifications, 563–564
device alias configurations, 422–423
EEM configurations, 736
FCoE, 466–474
HSRP, 79–86
multicast routing, 62–69
multicast routing configurations, 61–69
NX-OS version, MDS switches, 496–497
OSPF configurations, 15–16
PIM, 164–167
POAP verification commands, 783
port security, 924–926
SAN port channel configurations, 400–403
Scheduler configurations, 739–740
STP configurations, 109–117
VRRP configurations, 79–86
VSAN configurations, 391–394
VXLAN configurations, 164–169
zoning configurations, 414–417
VFC (Virtual Fibre Channel), 444–445
VIB (vSphere Installation Bundles)
 IO Visor, 707
 VAAI, 707
VIC (Virtual Interface Cards), 552–555
Virtual Edge, Cisco ACI, 206
virtual links
 FEX, 548
 OSPF, 12
virtualization
Cisco UCS, 550–555
NPIV, 424–431
NPV, 424–431
VLAN (Virtual LAN)
Cisco UCS network management, 584–591
named VLAN, 586–589
 configuring, 589–590
 deleting, 590–591
VM, Cisco HyperFlex, VM density, 711–712
VMM, Cisco ACI VMM domains, 203–204
VMware overlays, Cisco ACI integration, 206
VMware vCenter, Cisco ACI integration, 205
VNI (Virtual Network Identifiers), 153–154
vNIC, high availability, 569–570
vPC (Virtual Port Channels), 122
 ARP synchronization, 131
 components, 124–125
 configuration consistency, 128–129
 configuring, 132–146
 consistency checks, 129
 domain commands, 136
 domains, 124
 dual-control plane, 126
 duplicate frame prevention, 129–131
 fault-tolerant links, 124
 global commands, 134–135
 HSRP gateways, 131
 implementing, 133–134
 interface commands, 135
 non-vPC ports, 124
 orphaned ports, 124
 peer gateways, 131–132
 peer links, 124
 peer switches, 124
 peer-keepalives, 124
 primary roles, 127–128
 secondary roles, 127–128
 topologies, 122–123
 traffic flows, 125–126
 verification commands, 137
 vPC ports, member ports, 124
VRF (Virtual Routing and Forwarding)
Cisco ACI, 200
 Contracts, 856–857
VRRP (Virtual Router Redundancy Protocol), 73, 74
 authentication, 77
 benefits, 75
 configuring, 79–86
 global commands, 79–86
 groups, 75
 interface commands, 80
 IPv6 First Hop Redundancy, 77–79
 load sharing, 75–76
 network topologies, 74, 82–83
 operation, 73–75
 router priority/preemption, 76–77
 tracking, 77
 verification commands, 82
 verifying configurations, 79–86
VSAN (Virtual Storage-Area Networks), 386
 advantages of, 388
 attributes, 387–388
 Cisco UCS, 616–621
 commands, 392–393
 configuring, 391–394
 DPVM, 388–389
features, 386–387
ID, 387
named VSAN, 616–618
names, 388
states, 387–388
switches, 388
trunking, 389–394
verifying configurations, 391–394
zone sets, 618–621
zones, 618–621
zoning comparisons, 406
VTEP (VXLAN Tunnel Endpoints), 152–153
VXLAN (Virtual Extensible LAN)
 Cisco ACI, 215–216
 configuring, 159–169
 control plane topologies, 159–161
 encapsulation, 151–152
 EVPN control plane, 156–157
 feature-based licenses, 159
 Flood and Learn Multicast-based
 control plane, 154–156
 gateways, 157
 global commands, 159–161
 high availability, 157–159
 interface commands, 161–162
 MPBGP EVPN control plane, 156–157
 NVE config commands, 162
 overview, 151–152
 packet formats, 151–152
 TRM, 159
 verification commands, 162
 verifying configurations, 164–169
 VNI, 153–154
 VTEP, 152–153
vzAny rule, 210–212

W

Web Session Refresh Period, Cisco UCS Manager, 879
workflows
 Ansible, 764–765
 Terraform, 784
 WWN pools, Cisco UCS, 621–624

X

XML (Extensible Markup Language), 748–749
 Requests/Responses and REST API, 756–757
 structure example, 749–750
 syntax, 750–751

Y - Z

zone alias, device alias comparisons, 421–422
zone sets, VSAN, 618–621
zones, VSAN, 618–621
zoning, 404
 active zone sets, 407–409
 Autozone, 410
 configuring, 414–417
 enforcement, 406–407
 enhanced zoning, 412–413
 features, 404–406
 full zone sets, 407–409
 hard zoning, 407
 merges, 410–411
 smart zoning, 411–412
 verifying configurations, 414–417
 VSAN comparisons, 406