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INTRODUCTION TO DATA
STRUCTURES

Programming is all about taking data and manipulating it in all sorts of
interesting ways. Now, depending on what we are doing, our data needs to
be represented in a form that makes it easy for us to actually use. This form
is better known as a data structure. As we will see shortly, data structures
give the data we are dealing with a heavy dose of organization and scaf-
folding. This makes manipulating our data easier and (often) more efficient.

In the following sections, we find out how that is possible!

Onward!
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Right Tool for the Right Job

To better understand the importance of data structures, let’s look at an example.
Here is the setup. We have a bunch of tools and related gadgets (Figure 1-1).

-----
.. L
. "

That’s a lot
of tools!

FIGURE 1-1

Tools, tools, tools

What we want to do is store these tools for easy access later. One solution is to
simply throw all of the tools in a giant cardboard box and call it a day (Figure 1-2).

L
4 4

4
i:-gla - ® /\
y ’/‘

‘s
I‘

FIGURE 1-2

Tools, meet box!
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If we want to find a particular tool, we can rummage through our box to find what
we are looking for. If what we are looking for happens to be buried deep in the
bottom of our box, that's cool. With enough rummaging (Figure 1-3)—and possi-
bly shaking the box a few times—we will eventually succeed.

| approve of
rummaging through
things!

FIGURE 1-3

A rummager!

Now, there is a different approach we can take. Instead of throwing things into
a box, we could store them in something that allows for better organization. We
could store all of these tools in a toolbox (Figure 1-4).
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FIGURE 1-4

Our metaphorical toolbox

A toolbox is like the Marie Kondo of the DIY world, with its neat compartments
and organized bliss. Sure, it might take a smidge more effort to stow things away
initially, but that's the price we pay for future tool-hunting convenience. No more
digging through the toolbox like a raccoon on a midnight snack raid.

We have just seen two ways to solve our problem of storing our tools. If we had to
summarize both approaches, it would look as follows:

e Storing Tools in a Cardboard Box
e Adding items is very fast. We just drop them in there. Life is good.

* Finding items is slow. If what we are looking for happens to be at the top,
we can easily access it. If what we are looking for happens to be at the bot-
tom, we'll have to rummage through almost all of the items.

® Removing items is slow as well. It has the same challenges as finding items.
Things at the top can be removed easily. Things at the bottom may require
some extra wiggling and untangling to safely get out.

e Storing Tools in a Toolbox

e Adding items to our box is slow. There are different compartments for differ-
ent tools, so we need to ensure the right tool goes into the right location.

* Finding items is fast. We go to the appropriate compartment and pick the
tool from there.
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® Removing items is fast as well. Because the tools are organized in a good
location, we can retrieve them without any fuss.

What we can see is that both our cardboard box and toolbox are good for some
situations and bad for other situations. There is no universally right answer. If all
we care about is storing our tools and never really looking at them again, stashing
them in a cardboard box is the right choice. If we will be frequently accessing our
tools, storing them in the toolbox is more appropriate.

Back to Data Structures

When it comes to programming and computers, deciding which data structure to
use is similar to deciding whether to store our tools in a cardboard box or a tool-
box. Every data structure we will encounter is good for some situations and bad
for other situations (Figure 1-5).

Phew! Just what we

[ needed right now!

FIGURE 1-5

A good fit in this case
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Knowing which data structure to use and when is an important part of being
an effective developer, and the data structures we need to deeply familiarize
ourselves with are

Arrays

Linked lists

Stacks

Queues

Introduction to trees

Binary trees

Binary search trees

Heap data structure

Hashtable (aka hashmap or dictionary)

Trie (aka prefix tree)

Conclusion

Over the next many chapters, we'll learn more about what each data structure is
good at and, more important, what types of operations each is not very good at.
By the end of it, you and | will have created a mental map connecting the right
data structure to the right programming situation we are trying to address.

SOME ADDITIONAL RESOURCES

? Ask a question: https://forum.kirupa.com

~ Errors/Known issues: https://bit.ly/algorithms_errata

< Source repository: https://bit.ly/algorithms_source


https://forum.kirupa.com
https://bit.ly/algorithms_errata
https://bit.ly/algorithms_source

Numbers

B

2n space, mergesort, 379

A

accessing items in arrays,
24, 31

active numbers, insertion sort,
347
acyclic graphs, 188-189
adding
items
to arrays, 19-21, 31
to hashtables
(dictionaries), 146-147
nodes
to binary search trees,
93-97, 103
to linked lists, 38-39

arrays, 17, 32-33

accessing items in arrays,
24, 31

adding items, 19-21, 31

defined, 18

deleting items, 21-22, 32

heaps as, 126-132

implementing, 24-25

inserting items into arrays,
19-21, 31

memory, 26-30

performance, 30-31

searching for items, 22-23,
32

autocomplete
example of, 155-156
tries (prefix trees), 169

balanced binary trees, 85, 116

BFS (Breadth-First Searches),
281-283, 308
coding, 300-306
implementing, 306-307
JavaScript, 300-306
memory complexity,
307-308
overview, 284
performance, 307-308
runtime complexity, 307
walkthrough, 293-298
when to use, 298-300

bidirectional graphs, 185

Big-O notation, 7, 11, 15
complexity graphs, 12-14
constants, 9-10
examples, 8-10
input graphs, 12-14
linear relationships, 11-12
linearly, scaling, 8-9
O(1)—Constant

Complexity, 13
O(2/n)—Exponential
Complexity, 14
odd/even numbers, 8-9
O(log n)—Logarithmic
Complexity, 13
O(n log n)—Linearithmic
Complexity, 14
O(n"2)—Quadratic
Complexity, 14
O(n!)—Factorial
Complexity, 14
O(n)—Linear Complexity,
13-14

Index

upper bound scenarios, 11
worst-case scenarios, 11

Big-Omega notation, 14
Big-Theta notation, 14

binary searches, 32, 243, 257

coding, 250-253

dividing operations,
247-250

iteration, 250-251

JavaScript, 250-253

middle elements, 245-246,
252-253

operations, 244

recursive operations, 251

runtime, 254-257

sorted items, 244

walkthrough, 252-253

binary search trees, 93, 112
coding, 103-109
defined, 91-92
example of, 91-92
implementing, 103-109
JavaScript, 103-109
memory, 110-111
nodes

adding, 93-97, 103
leaf nodes, 97-98
removing, 97-103
single child nodes,
99-100
two children nodes,
101-103
performance, 110-111
binary trees, 79, 259-260

balanced binary trees, 85,
116



388 BINARY TREES

breadth-first traversals, 279
implementing, 270,
274-276
node exploration,
270-271
performance, 278
walkthrough, 260-265
coding, 86-89
complete binary trees,
83-84
defined, 80
degenerate binary trees, 85
depth-first traversals, 279
implementing, 270,
276-278
node exploration,
272-273
performance, 278
stack behaviors, 273
walkthrough, 265-270
example of, 80
full binary trees, 82-83
implementing, 86-89
JavaScript, 86-89
nodes, 86, 89
perfect binary trees, 84-85
rules, 80-82
variants, 82-85

breadth-first traversals, binary
trees, 279

implementing, 270, 274-276

node exploration, 270-271
performance, 278
walkthrough, 260-265

bubblesort, 325
coding, 333
JavaScript, 333-334

memory, 324, 334, 353, 369,

382
performance, 324, 334
speed, 353, 369, 382
walkthrough, 326-332

C

child nodes, 71-73

single child nodes, 99-100
two children nodes, 101-103

circular linked lists, 42-43
coding

arrays, implementing, 24-25
BFS, 300-306
binary search, 250-253
binary search trees, 103-109
binary tree traversals,
273-274
breadth-first traversals,
274-276
depth-first traversals,
276-278
binary trees, 86-89
breadth-first traversals,
274-276
bubblesort, 333
depth-first traversals,
276-278
DFS, 300-306
Fibonacci sequences
calculating, 207-208
iteration, 215-216
recursive operations,
209-212
graphs, 192-196
hashtables (dictionaries),
148-150
heaps, 126-132
insertion sort, 349-351
JavaScript, 229-232
linear search, 238-239
linked lists, 44-51
mergesort, 380-381
queues, 64-66
quicksort, 319-322
recursion
function calls, 202
terminating conditions,
203-205
selection sort, 366-369
stacks, 56-58
tries (prefix trees), 173-179

complexity graphs, Big-O
notation, 12-14

connected trees, graphs,
188-189

connecting nodes, 70-71

Constant Complexity O(1), 13
constants, Big-O notation, 9-10
cycles/cyclic graphs, 187-188

D

dags (directed acyclic graphs),
188-189

data structures, 1
importance of, 2-5
toolbox metaphor, 4-5
types of, 5-6

degenerate binary trees, 85

deleting
items
from arrays, 21-22, 32
from tries (prefix trees),
165-167
nodes from linked lists,
39-40

depth-first traversals, 279
implementing, 270,
276-278
node exploration, 272-273
performance, 278
stack behaviors, 273
walkthrough, 265-270

depth/height of nodes, 75-76
dequeue (deletion), 66

DFS (Depth-First Searches),
281-283, 308

coding, 300-306
implementing, 306-307
JavaScript, 300-306
memory complexity, 307
overview, 283
performance, 307

collisions, hashtables
(dictionaries), 150-151

complete binary trees, 83-84

runtime complexity, 307
walkthrough, 285-291
when to use, 298-300

cache performance, queues, 67

calculating Fibonacci
sequences, 217-218



dictionaries (hashtables), 137,
153

adding items, 146-147
coding, 148-150
collisions, 150-151
defined, 145-146
hashing functions, 142-145
implementing, 148-150
JavaScript, 148-150
memory, 151-153
performance, 151-153
reading items, 147-148
robot example, 138-142

digraphs (directional graphs),
187

divide-and-conquer algorithms
mergesort, 372
quicksort, 309

dividing operations, binary
search, 247-250

doubly linked lists, 42

dynamic memory allocation,
queues, 67

E

finding

items in tries (prefix trees),
162-165
values in linked lists, 36-37

full binary trees, 82-83
function calls

expense of, 212-213
recursive function calls, 202

G

HEAPS 389

JavaScript, 192-196

nodes, 184-185, 190-191
relationships, 187
unconnected trees, 188-189
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root nodes, 122-126,
132-133



390 HEAPS

performance, 132-134

properties of, 115

as task organizers, 134-135
heapsort

memory, 324, 334, 353, 369,

381
performance, 324, 334
speed, 353, 369, 381

height/depth of nodes, 75-76

input graphs, Big-O notation,
12-14
inserting items into arrays,
19-21, 31
insertion sort, 335-336
active numbers, 347
coding, 349-351
implementing, 349-351
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walkthrough, 336-348
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recursion
function calls, 202
terminating conditions,
203-205
selection sort, 366-369
stacks, 56-58
Towers of Hanoi, 229-232
tries (prefix trees), 173-179

K-L

linked lists, 35, 52
circular linked lists, 42-43
coding, 44-51
defined, 36
doubly linked lists, 42
finding values, 36-37
implementing, 44-51
JavaScript, 44-51
nodes, 36-37
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JavaScript
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(dictionaries), 138-142
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runtime
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linear search, 239
queues, 66-67
stacks, 59

S

searches
BFS, 281-283, 308
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performance, 324, 334
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implementing, 56-58
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