A Practical Introduction to Data Structures
and Algorithms in JavaScript

Algorithms

BEGINNER'S

No experience necessary!

’_D Kirupa Chinnathambi

FREE SAMPLE CHAPTER | @ © ©

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138222291
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138222291
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138222291

Absolute Beginner'’s
Guide to Algorithms

A Practical Introduction to
Data Structures and Algorithms
in JavaScript

ABSOLUTE

g ’”‘\""‘/

Kirupa Chinnathambi

©

Pearson

Absolute Beginner’s Guide to Algorithms

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2023947403
Copyright © 2024 Pearson Education, Inc.
Hoboken, NJ

Cover image: Rozdesign/Shutterstock

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

ISBN-13: 978-0-13-822229-1
ISBN-10: 0-13-822229-0

$PrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity,
Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not
limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual
orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the
potential to deliver opportunities that improve lives and enable economic mobil-
ity. As we work with authors to create content for every product and service, we
acknowledge our responsibility to demonstrate inclusivity and incorporate
diverse scholarship so that everyone can achieve their potential through learn-
ing. As the world’s leading learning company, we have a duty to help drive
change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

* Everyone has an equitable and lifelong opportunity to succeed through
learning.

e Our educational products and services are inclusive and represent the rich
diversity of learners.

* Our educational content accurately reflects the histories and experiences

of the learners we serve.

* Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you
about any concerns or needs with this Pearson product so that we can investi-
gate and address them.

* Please contact us with concerns about any potential bias at https://www.
pearson.com/report-bias.html.

Register your copy of Absolute Beginner's Guide to Algorithms on the
InformlIT site for convenient access to updates and/or corrections as they
become available. To start the registration process, go to informit.com/register
and log in or create an account. Enter the product ISBN (9780138222291)
and click Submit. Look on the Registered Products tab for an Access Bonus
Content link next to this product, and follow that link to access any available
bonus materials. If you would like to be notified of exclusive offers on new
editions and updates, please check the box to receive email from us.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html
http://informit.com/register

Figure Credits
FM — Chapter 25: Cute Little Chicks, Rozdesign/Shutterstock

Chapter 1: Portrait of adorable raccoon isolated on white background,
sonsedskaya/123RF

Chapter 2: Happy smiley emoji Vector, MaxxGraphic/Shutterstock
FIG04-13, FIG23-01: Cassius Marcellus Coolidge
FIG05-01, FIG09-23, FIG14-04, FIG16-18, FIG19-26, FIG19-27: Microsoft

FIGO7-01: Used with permission from Randall Munroe (xcdc) granted by The
Gernert Company

Chapter 7, 10, FIG15-01: chick hitching out of an egg, Shahena z/Shutterstock
FIG10-01: Atlassian

FIG10-29: Notion Labs, Inc.

FIG12-24: Apple, Inc.

FIG12-25: The New York Times Company

FIG12-01, FIG12-22, FIG12-23: Google, Inc.

FIG25-01: Winsor McCay

Contents at a Glance

Part |

o NOUtT A WDN -

— o o
W N = O

Part Il

14
15
16
17
18
19
20
21
22
23
24
25
26

Data Structures

Introduction to Data Structuresccc.coovvvieiviiieeeeiee e 1
Big-O Notation and Complexity Analysis..........ccccoiviiiiiiiiiiniiiinnn 7
AATTAYS e 17
LINKEA LISTS. uvviieeeieiiiee e 35
SHACKS 1ttt e 53
QUEBUES . ..ttt ettt a e e e e e e e e e e e e e e e e 61
LIS USSP 69
BINAry TrEES ittt 79
BiNary SEarch TreEScciiiiiieiiii ettt 91
HEEPS ..o 113
Hashtable (aka Hashmap or Dictionary)...........cccoeccoveiniiinecicnnns 137
Trie (aka Prefix Tree) e 155
Graphs ..o 183
Algorithms

Introduction t0 RECUISIONccviiiiiiiiiciieeeee e 199
Fibonacci and Going Beyond Recursionccoccocvviiviincincnennnns 207
Towers Of HanOi......oooviiiiiii e 221
Search Algorithms and Linear Search..........ccccoccvivininiicncncien. 235
Faster Searching with Binary Search............c.cccocii, 243
Binary Tree Traversalccooiiiiiiiiiiiiiie e 259
Depth-First Search (DFS) and Breadth-First Search (BFS) 281
QUICKSOIT . 309
BUBDBIESOI. ... 325
INSEIION SOM.iiiiiiiiiiiiie e 335
SeleCtioN SOM . .cuiii e 355
IMEIGESOIT. .. 371
CONCIUSION 1ttt et 383

vi

Table of Contents

| Data Structures

1

Introduction to Data Structuresccccevvvueeciiiinncciniineccnnnneecennnnneees 1
Right Tool for the Right Job ... 2
Back to Data STrUCTUIES ..o 5
CONCIUSION .o 6
Some Additional ReSOUrces ... 6
Big-O Notation and Complexity Analysisccccceovvvvmereeieeriiiiiieiiiiinnennees 7
It's Example Time ..., 8
It's Big-O Notation Time! ... 11
CONCIUSION oo 15
Some Additional Resources ... 15
N = T 17
WHat IS @N AITaY? oo 18
Adding an [TeM .o 19
Deleting an [tem ... 21
Searching for an Item ... 22
Accessing an Item ... 24
Array Implementation / Use Cases ... 24
Arrays and MemOTY ... 26
Performance Considerations ... 30
ACCESS o 31
[NSEItION L 31
Del@tioN oo 32
SEAMCNING ..o 32
CONCIUSION ..o 32
Some Additional Resources ... 33
Linked LiStScciiviiiuiiiiiiiiiiiiiiiiiiciiinieecinnneecsnnneee s sesaneeesssasneesessanee 35
Meet the Linked List ... 36
Finding a Value ... 36
AdAiNg NOGES ..o 38

Deleting @ Node ... 39

vii

Linked List: Time and Space Complexity ... 40
Deeper Look at the Running Time ..., 41
Space ComMPIexity ... 41

Linked List Variations ... 41
Singly Linked List ... 42
Doubly Linked List ... 42
Circular Linked List . 42
SKIP LISt 44

IMPIEMENTATION ... 44

CONCIUSION 52

Some Additional Resources ... 52

1] = Yot <= J U PURNN 53

Meet the Stack ... 54

A JavaScript Implementation ... 56

Stacks: Time and Space Complexity ... 58
Runtime Performance ... 59
Memory Performance ... 59

CONCIUSION o 59

Some Additional Resources ... 60

QUUEUES eeeuiiieueiireeeienneeeeneeeteneeseaneseennsesensesesnsssssnsesessssesnssssensesssnsssssnnsssnnnns 61

Meet the QUEUE ..o 62

A JavaScript Implementation ... 64

Queues: Time and Space Complexity ... 66
Runtime Performance ... 66
Memory Performance ... 67

CONCIUSION 67

Some Additional Resources ... 68

TrEES eetenieienieeeueeieneeerneeteneeeerneeerenseeesssseenssssensesesnssesnsssssnnsesnnsessnnssssnnnns 69

Trees 1O 70

Height and Depth ... 75

CONCIUSION 77

Some Additional ReSOUICES ... 77

viii

10

1

Binary Tre@S ...cvvviiiiiiiiiiiiiiiiiiiiiiiitcnnnrcnc s 79
Meet the Binary Tree ... 80
Rules Explained ... 80
Binary Tree Variants ... 82
What about Adding, Removing, and Finding Nodes? ... 86
A Simple Binary Tree Implementation ... 86
CONCIUSION .o 89
Some Additional Resources ... 89
Binary Search Treeseeeeiiiiiiiiiiiiiiieetteeee e nrereeeee e e e s e e senee 91
It's Just a Data Structure ... 93
Adding NOES ..o 93
Removing NOGES ... 97
Implementing a Binary Search Tree ... 103
Performance and Memory Characteristics ... 110
CONCIUSION .o 112
Some Additional Resources ...l 112
o 1= T=T o =S 113
Meet the Heap ... 114
Common Heap Operations ... 116
Heap Implementation ... 126
Heaps as Arrays ... 127
The Code i 128
Performance Characteristics ..., 132
Removing the Root Node ... 132
INserting an [tem ... 133
Performance SUMMary ... 134
CONCIUSION .o 134
Some Additional Resources ... 135
Hashtable (aka Hashmap or Dictionary)cccccevvuiiiiiinneiiiininnccnnnnnnnne 137
A Very Efficient RObOt ... 138

From Robots to Hashing Functions ... 142

12

13

From Hashing Functions to Hashtables ... 145
Adding Items to Our Hashtable ... 146
Reading Items from Our Hashtable ... 147

JavaScript Implementation/Usage ... 148

Dealing with ColliSions ... 150

Performance and Memory ... 151

CONCIUSION .o 153

Some Additional Resources ... 154

Trie (aka PrefiX Tr@@) .uvuviieeiiieiieeiiiieriieerieeerteeereeersseeessseesssseessssessens 155

What Is @ Trie? o 156
Inserting Words ... 157
Finding [tems .. 162
Deleting [tems ... 165

Diving Deeper into Tries ... 167

Many More Examples Abound! ...l 172

Implementation Time ... 173

PerformanCe ... 179

CONCIUSION oo 181

Some Additional Resources ... 181

LCT=T] 1 =3P RPPPPPTTP 183

What Is @ Graph? ... 184

Graph Implementation ... 190
Representing Nodes ... 190
The Code i 192

CONCIUSION .o 196

Some Additional Resources ... 197

Il Algorithms

14

Introduction tO RECUISION ...ccveeiiiiiiiiiiiieiieieeieiceeeteeerieeereeeerneeeenneeesnnenns 199
Our Giant Cookie Problem ... 200

Recursion in Programming ... 202

15

16

17

Recursive Function Call ... 202

Terminating Condition ... 203
CONCIUSION . 206
Some Additional Resources ... 206
Fibonacci and Going Beyond Recursionccccccvveiiviniiiiuiinnnecinnecnnn. 207
Recursively Solving the Fibonacci Sequence ... 209
Recursion with Memoization ... 213
Taking an Iteration-Based Approach ... 215
Going Deeper on the Speed ... 217
CONCIUSION .o 218
Some Additional Resources ... 219
Towers of Hanoicccoiieeeiiiiiiiiiiiiieteeneeee et aeee e s 221
How Towers of Hanoi Is Played ... 222
The Single Disk Case ... 223
[t's Two Disk Time ..o 224
Three DiSKS ..o 225
The AlgOrithm .o 228
The Code SolUtioN ..o 229
Check Out the Recursiveness! ... 231
[t's Math TIME .o 232
CONCIUSION e 234
Some Additional ReSOUrces ... 234
Search Algorithms and Linear Searchccccoccceiiiiiniiiiiiiiiniiiiiinneccnnnn. 235
Linear Search ... 236

Linear Search at Work ... 236

JavaScript Implementation ...l 238

Runtime Characteristics ... 239
CONCIUSION .o 241

Some Additional Resources ... 241

18

19

20

Xi

Faster Searching with Binary Searchccccccoeviiviiininiinniiinnniniineennn. 243
Binary Search in Action ... 244
Sorted Items Only, Please ... 244
Dealing with the Middle Element ... 245
Dividing FT Ve 247
The JavaScript Implementation ... 250
lterative Approach ...l 250
Recursive APProach ... 251
Example of the Code at Work ... 252
Runtime Performance ... 254
CONCIUSION 257
Some Additional Resources ... 257
Binary Tree Traversalccccoovveiiiiiiiiiiiiiiiiicinietccecnteeesceereesesnnees 259
Breadth-First Traversal ... 260
Depth-First Traversal ... 265
Implementing Our Traversal Approaches ... 270
Node Exploration in the Breadth-First Approach ... 270
Node Exploration in the Depth-First Approach ... 272
Looking at the Code ... 273
Performance of Our Traversal Approaches ... 278
CONCIUSION 279
Some Additional Resources ... 279
Depth-First Search (DFS) and Breadth-First Search (BFS) 281
A Tale of Two Exploration Approaches ... 282
Depth-First Search Overview ... 283
Breadth-First Search Overview ... 284
Yes, They Are Different! ... 284
[t's Example TIMe .. 285
Exploring with DFS .o 285
Exploring with BFS .. 293
When to Use DFS? When to Use BFS? ... 298
A JavaScript Implementation ... 300
Using the Code ... 305

Implementation Detail ... 306

Xii

21

22

23

Performance Details ... 307
CONCIUSION .o 308
Some Additional Resources ... 308
QUICKSOIT ceiiieiiiiiiiiiiitiiiietee ittt et e s aabe e s s aaaeessnne 309
A Look at How Quicksort Works ... 310

A Simple LoOK ..o 310
Another Simple Look ... 314
It's Implementation Time ... 319
Performance Characteristics ... 322

Time Complexity ... 323

Space Complexity ... 323

Stability . 323
CONCIUSION .o 323
Some Additional Resources ... 324
[210Y o] 1=T-1) o N 325
How Bubblesort Works ... 326
Walkthrough ..o, 329
The Code oo 333
CONCIUSION oo 333
Some Additional ReSOUrCeSs ... 334
INSErtion SOrt ...ccccoiiiiiiiiiiiiiiiiiii e 335
How Insertion Sort Works ... 336
One More Example ..., 347
Algorithm Overview and Implementation ... 349
Performance Analysis ... 351
CONCIUSION oo 353

Some Additional Resources ... 353

24

25

26

xiii

Selection SOrtcociiiiiiiiiiiiiiiii s 355
Selection Sort Walkthrough ... 356
Algorithm Deep Dive ... 364
The JavaScript Implementation ... 366
CONCIUSION .o 369
Some Additional Resources ... 369
1Y =T e 1= 1T o RNt 371
How Mergesort Works ... 372
Mergesort: The Algorithm Details ... 379
Looking at the Code ... 380
CONCIUSION .o 381
Some Additional RESOUrCes ... 382
CONCIUSION ceiiiiiiiiiiiiiitiiitte ettt re e s aaae e s saaa e e 383

Xiv

Acknowledgments

As | found out, getting a book like this out the door is no small feat. It involves a
bunch of people in front of (and behind) the camera who work tirelessly to turn
my ramblings into the beautiful pages that you are about to see. To everyone at
Pearson who made this possible, thank you!

With that said, there are a few people I'd like to explicitly call out. First, I'd like to
thank Kim Spenceley for making this book possible, Chris Zahn for meticulously
ensuring everything is human-readable, Carol Lallier for her excellent copyediting,
and Loretta Yates for helping make the connections that made all of this happen
years ago. The technical content of this book has been reviewed in great detail by
my long-time collaborators Cheng Lou and Ashwin Raghav.

Lastly, I'd like to thank my parents for having always encouraged me to pursue
creative hobbies like painting, writing, playing video games, and writing code.
| wouldn't be half the rugged indoorsman | am today without their support ©

Dedication

To my wife, Meenal

(For her support and timely insights throughout this book!)

About the Author

Kirupa Chinnathambi has spent most of his life teaching others to love web
development as much as he does. He founded KIRUPA, one of the Web’s most
popular free web development education resources, serving 210,000+ registered
members. Now a product manager at Google, he has authored several books,
including Learning React. He holds a B.S. in computer science from MIT.

XV

Tech Editors

Cheng Lou is a software engineer who has worked on various projects, such as
ReactJS, Meta Messenger and ReScript. He's been passionate about graphics and
general programming since the early Flash days, and is eager to keep its spirit
alive.

Personal site: chenglou.me
Twitter / X: twitter.com/_chenglou

Aswhin Raghav serves as the Engineering lead for Project IDX at Google. He's
also to blame for those pesky Firebase APls. He's been building software and
software teams for two decades at Twitter, Zynga, Thoughtworks, and Intel. He
considers himself a specialist at building developer tools and facing the wrath of
unhappy developers around the world. He lives with his wife and two kids.

Personal site: ashwinraghav.me

Twitter / X: twitter.com/ashwinraghav

http://twitter.com/
http://twitter.com/ashwinraghav

This page intentionally left blank

INTRODUCTION TO DATA
STRUCTURES

Programming is all about taking data and manipulating it in all sorts of
interesting ways. Now, depending on what we are doing, our data needs to
be represented in a form that makes it easy for us to actually use. This form
is better known as a data structure. As we will see shortly, data structures
give the data we are dealing with a heavy dose of organization and scaf-
folding. This makes manipulating our data easier and (often) more efficient.

In the following sections, we find out how that is possible!

Onward!

2 ABSOLUTE BEGINNER'’S GUIDE TO ALGORITHMS

Right Tool for the Right Job

To better understand the importance of data structures, let’s look at an example.
Here is the setup. We have a bunch of tools and related gadgets (Figure 1-1).

.. L
. "

That’s a lot
of tools!

FIGURE 1-1

Tools, tools, tools

What we want to do is store these tools for easy access later. One solution is to
simply throw all of the tools in a giant cardboard box and call it a day (Figure 1-2).

L
4 4

4
i:-gla - ® /\
y ’/‘

‘s
I‘

FIGURE 1-2

Tools, meet box!

CHAPTER 1 INTRODUCTION TO DATA STRUCTURES 3

If we want to find a particular tool, we can rummage through our box to find what
we are looking for. If what we are looking for happens to be buried deep in the
bottom of our box, that's cool. With enough rummaging (Figure 1-3)—and possi-
bly shaking the box a few times—we will eventually succeed.

| approve of
rummaging through
things!

FIGURE 1-3

A rummager!

Now, there is a different approach we can take. Instead of throwing things into
a box, we could store them in something that allows for better organization. We
could store all of these tools in a toolbox (Figure 1-4).

4 ABSOLUTE BEGINNER'’S GUIDE TO ALGORITHMS

FIGURE 1-4

Our metaphorical toolbox

A toolbox is like the Marie Kondo of the DIY world, with its neat compartments
and organized bliss. Sure, it might take a smidge more effort to stow things away
initially, but that's the price we pay for future tool-hunting convenience. No more
digging through the toolbox like a raccoon on a midnight snack raid.

We have just seen two ways to solve our problem of storing our tools. If we had to
summarize both approaches, it would look as follows:

e Storing Tools in a Cardboard Box
e Adding items is very fast. We just drop them in there. Life is good.

* Finding items is slow. If what we are looking for happens to be at the top,
we can easily access it. If what we are looking for happens to be at the bot-
tom, we'll have to rummage through almost all of the items.

® Removing items is slow as well. It has the same challenges as finding items.
Things at the top can be removed easily. Things at the bottom may require
some extra wiggling and untangling to safely get out.

e Storing Tools in a Toolbox

e Adding items to our box is slow. There are different compartments for differ-
ent tools, so we need to ensure the right tool goes into the right location.

* Finding items is fast. We go to the appropriate compartment and pick the
tool from there.

CHAPTER 1 INTRODUCTION TO DATA STRUCTURES 5

® Removing items is fast as well. Because the tools are organized in a good
location, we can retrieve them without any fuss.

What we can see is that both our cardboard box and toolbox are good for some
situations and bad for other situations. There is no universally right answer. If all
we care about is storing our tools and never really looking at them again, stashing
them in a cardboard box is the right choice. If we will be frequently accessing our
tools, storing them in the toolbox is more appropriate.

Back to Data Structures

When it comes to programming and computers, deciding which data structure to
use is similar to deciding whether to store our tools in a cardboard box or a tool-
box. Every data structure we will encounter is good for some situations and bad
for other situations (Figure 1-5).

Phew! Just what we

[needed right now!

FIGURE 1-5

A good fit in this case

6 ABSOLUTE BEGINNER’S GUIDE TO ALGORITHMS

Knowing which data structure to use and when is an important part of being
an effective developer, and the data structures we need to deeply familiarize
ourselves with are

Arrays

Linked lists

Stacks

Queues

Introduction to trees

Binary trees

Binary search trees

Heap data structure

Hashtable (aka hashmap or dictionary)

Trie (aka prefix tree)

Conclusion

Over the next many chapters, we'll learn more about what each data structure is
good at and, more important, what types of operations each is not very good at.
By the end of it, you and | will have created a mental map connecting the right
data structure to the right programming situation we are trying to address.

SOME ADDITIONAL RESOURCES

? Ask a question: https://forum.kirupa.com

~ Errors/Known issues: https://bit.ly/algorithms_errata

< Source repository: https://bit.ly/algorithms_source

https://forum.kirupa.com
https://bit.ly/algorithms_errata
https://bit.ly/algorithms_source

Numbers

B

2n space, mergesort, 379

A

accessing items in arrays,
24, 31

active numbers, insertion sort,
347
acyclic graphs, 188-189
adding
items
to arrays, 19-21, 31
to hashtables
(dictionaries), 146-147
nodes
to binary search trees,
93-97, 103
to linked lists, 38-39

arrays, 17, 32-33

accessing items in arrays,
24, 31

adding items, 19-21, 31

defined, 18

deleting items, 21-22, 32

heaps as, 126-132

implementing, 24-25

inserting items into arrays,
19-21, 31

memory, 26-30

performance, 30-31

searching for items, 22-23,
32

autocomplete
example of, 155-156
tries (prefix trees), 169

balanced binary trees, 85, 116

BFS (Breadth-First Searches),
281-283, 308
coding, 300-306
implementing, 306-307
JavaScript, 300-306
memory complexity,
307-308
overview, 284
performance, 307-308
runtime complexity, 307
walkthrough, 293-298
when to use, 298-300

bidirectional graphs, 185

Big-O notation, 7, 11, 15
complexity graphs, 12-14
constants, 9-10
examples, 8-10
input graphs, 12-14
linear relationships, 11-12
linearly, scaling, 8-9
O(1)—Constant

Complexity, 13
O(2/n)—Exponential
Complexity, 14
odd/even numbers, 8-9
O(log n)—Logarithmic
Complexity, 13
O(n log n)—Linearithmic
Complexity, 14
O(n"2)—Quadratic
Complexity, 14
O(n!)—Factorial
Complexity, 14
O(n)—Linear Complexity,
13-14

Index

upper bound scenarios, 11
worst-case scenarios, 11

Big-Omega notation, 14
Big-Theta notation, 14

binary searches, 32, 243, 257

coding, 250-253

dividing operations,
247-250

iteration, 250-251

JavaScript, 250-253

middle elements, 245-246,
252-253

operations, 244

recursive operations, 251

runtime, 254-257

sorted items, 244

walkthrough, 252-253

binary search trees, 93, 112
coding, 103-109
defined, 91-92
example of, 91-92
implementing, 103-109
JavaScript, 103-109
memory, 110-111
nodes

adding, 93-97, 103
leaf nodes, 97-98
removing, 97-103
single child nodes,
99-100
two children nodes,
101-103
performance, 110-111
binary trees, 79, 259-260

balanced binary trees, 85,
116

388 BINARY TREES

breadth-first traversals, 279
implementing, 270,
274-276
node exploration,
270-271
performance, 278
walkthrough, 260-265
coding, 86-89
complete binary trees,
83-84
defined, 80
degenerate binary trees, 85
depth-first traversals, 279
implementing, 270,
276-278
node exploration,
272-273
performance, 278
stack behaviors, 273
walkthrough, 265-270
example of, 80
full binary trees, 82-83
implementing, 86-89
JavaScript, 86-89
nodes, 86, 89
perfect binary trees, 84-85
rules, 80-82
variants, 82-85

breadth-first traversals, binary
trees, 279

implementing, 270, 274-276

node exploration, 270-271
performance, 278
walkthrough, 260-265

bubblesort, 325
coding, 333
JavaScript, 333-334

memory, 324, 334, 353, 369,

382
performance, 324, 334
speed, 353, 369, 382
walkthrough, 326-332

C

child nodes, 71-73

single child nodes, 99-100
two children nodes, 101-103

circular linked lists, 42-43
coding

arrays, implementing, 24-25
BFS, 300-306
binary search, 250-253
binary search trees, 103-109
binary tree traversals,
273-274
breadth-first traversals,
274-276
depth-first traversals,
276-278
binary trees, 86-89
breadth-first traversals,
274-276
bubblesort, 333
depth-first traversals,
276-278
DFS, 300-306
Fibonacci sequences
calculating, 207-208
iteration, 215-216
recursive operations,
209-212
graphs, 192-196
hashtables (dictionaries),
148-150
heaps, 126-132
insertion sort, 349-351
JavaScript, 229-232
linear search, 238-239
linked lists, 44-51
mergesort, 380-381
queues, 64-66
quicksort, 319-322
recursion
function calls, 202
terminating conditions,
203-205
selection sort, 366-369
stacks, 56-58
tries (prefix trees), 173-179

complexity graphs, Big-O
notation, 12-14

connected trees, graphs,
188-189

connecting nodes, 70-71

Constant Complexity O(1), 13
constants, Big-O notation, 9-10
cycles/cyclic graphs, 187-188

D

dags (directed acyclic graphs),
188-189

data structures, 1
importance of, 2-5
toolbox metaphor, 4-5
types of, 5-6

degenerate binary trees, 85

deleting
items
from arrays, 21-22, 32
from tries (prefix trees),
165-167
nodes from linked lists,
39-40

depth-first traversals, 279
implementing, 270,
276-278
node exploration, 272-273
performance, 278
stack behaviors, 273
walkthrough, 265-270

depth/height of nodes, 75-76
dequeue (deletion), 66

DFS (Depth-First Searches),
281-283, 308

coding, 300-306
implementing, 306-307
JavaScript, 300-306
memory complexity, 307
overview, 283
performance, 307

collisions, hashtables
(dictionaries), 150-151

complete binary trees, 83-84

runtime complexity, 307
walkthrough, 285-291
when to use, 298-300

cache performance, queues, 67

calculating Fibonacci
sequences, 217-218

dictionaries (hashtables), 137,
153

adding items, 146-147
coding, 148-150
collisions, 150-151
defined, 145-146
hashing functions, 142-145
implementing, 148-150
JavaScript, 148-150
memory, 151-153
performance, 151-153
reading items, 147-148
robot example, 138-142

digraphs (directional graphs),
187

divide-and-conquer algorithms
mergesort, 372
quicksort, 309

dividing operations, binary
search, 247-250

doubly linked lists, 42

dynamic memory allocation,
queues, 67

E

finding

items in tries (prefix trees),
162-165
values in linked lists, 36-37

full binary trees, 82-83
function calls

expense of, 212-213
recursive function calls, 202

G

HEAPS 389

JavaScript, 192-196

nodes, 184-185, 190-191
relationships, 187
unconnected trees, 188-189
undirected graphs, 185-186

H

edges, 70-71, 185
enqueue (insertion), 66

even/odd numbers, Big-O
notation, 8-9

Exponential Complexity
O(27n), 14

F

Factorial Complexity O(n!), 14

Fibonacci sequences, 218-219

calculating, 207-208,
217-218

function calls, expense of,
212-213

iteration, 215-216, 217-218

memoization, 213-215, 218

recursively solving, 209-212

FIFO (First In, First Out), 62

giant cookie example,

recursion, 200-202

global linear searches, 240-241
graphs, 183, 196

acyclic graphs, 188-189

BFS, 281-283, 308
coding, 300-306
implementing, 306-307
JavaScript, 300-306
memory complexity,

307-308

overview, 284
performance, 307-308
runtime complexity, 307
walkthrough, 293-298
when to use, 298-300

bidirectional graphs, 185

coding, 192-196

connected trees, 188-189

cycles/cyclic graphs,

187-188

dags, 188-189

defined, 184-189

DFS, 281-283, 308
coding, 300-306
implementing, 306-307
JavaScript, 300-306
memory complexity, 307
overview, 283
performance, 307
runtime complexity, 307
walkthrough, 285-291
when to use, 298-300

digraphs, 187

edges, 185

example of, 184-189

implementing, 190, 192-196

Hanoi, Towers of, 221, 234

algorithm, 228-229

calculating number of
moves, 232-234

coding, 229-232

JavaScript, 229-232

playing, 222-223

recursive operations,
231-232

single disk game play, 223

three disk game play,
225-228

two disk game play, 224-225

hashtables (dictionaries), 137,

153
adding items, 146-147
coding, 148-150
collisions, 150-151
defined, 145-146
hashing functions, 142-145
implementing, 148-150
JavaScript, 148-150
memory, 151-153
performance, 151-153
reading items, 147-148
robot example, 138-142

heaps, 113-114, 134-135

as arrays, 126-132
coding, 126-132
defined, 114-116
example of, 114-116
implementing, 126-132
inserting items, 133-134
JavaScript, 126-132
mini-heaps, 115
nodes
inserting, 116-121
removing, 122-126,
132-133
root nodes, 122-126,
132-133

390 HEAPS

performance, 132-134

properties of, 115

as task organizers, 134-135
heapsort

memory, 324, 334, 353, 369,

381
performance, 324, 334
speed, 353, 369, 381

height/depth of nodes, 75-76

input graphs, Big-O notation,
12-14
inserting items into arrays,
19-21, 31
insertion sort, 335-336
active numbers, 347
coding, 349-351
implementing, 349-351
JavaScript, 349-351
memory, 324, 334, 353, 369,
382
performance, 324, 334,
351-352
speed, 353, 369, 382
walkthrough, 336-348

IP routing, tries (prefix trees),
170-171

iteration
binary search, 250-251
Fibonacci sequences,
215-216, 217-218

J

breadth-first traversals,
274-276
bubblesort, 333
depth-first traversals, 276-278
DFS, 300-306
Fibonacci sequences
calculating, 207-208
iteration, 215-216
recursive operations,
209-212
graphs, 192-196
hashtables (dictionaries),
148-150
heaps, 126-132
insertion sort, 349-351
linear search, 238-239
linked lists, 44-51
mergesort, 380-381
queues, 64-66
quicksort, 319-322
recursion
function calls, 202
terminating conditions,
203-205
selection sort, 366-369
stacks, 56-58
Towers of Hanoi, 229-232
tries (prefix trees), 173-179

K-L

linked lists, 35, 52
circular linked lists, 42-43
coding, 44-51
defined, 36
doubly linked lists, 42
finding values, 36-37
implementing, 44-51
JavaScript, 44-51
nodes, 36-37
adding, 38-39
deleting, 39-40
unreachable nodes, 40
performance, 41
singly linked lists, 42
skip lists, 44
space complexity, 41
time complexity, 41
variations, 41-44

Logarithmic Complexity
O(log n), 13

M

JavaScript
arrays, implementing, 24-25
BFS, 300-306
binary searches, 250-253
binary search trees, 103-109
binary tree traversals,
273-274
breadth-first traversals,
274-276
depth-first traversals,
276-278
binary trees, 86-89

leaf nodes, 74, 97-98
LIFO (Last In, First Out), 55
Linear Complexity O(n), 13-14

linear relationships, Big-O
notation, 11-12

linear searches, 32, 235-236,
241
coding, 238-239
global linear searches,
240-241
implementing, 238-239
JavaScript, 238-239
runtime, 239
walkthrough, 236-238

Linearithmic Complexity O(n
log n), 14

linearly scaling, Big-O notation,
8-9

maps

BFS, 281-283, 308
coding, 300-306
implementing, 306-307
JavaScript, 300-306
memory complexity,

307-308

overview, 284
performance, 307-308
runtime complexity, 307
walkthrough, 293-298
when to use, 298-300

DFS, 281-283, 308
coding, 300-306
implementing, 306-307
JavaScript, 300-306
memory complexity, 307
overview, 283
performance, 307
runtime complexity, 307
walkthrough, 285-291
when to use, 298-300

memoization, Fibonacci
sequences, 213-215, 218
memory
arrays, 26-30
BFS, 307-308

binary search trees,
110-111

bubblesort, 324, 334, 353,
369, 382

DFS, 307

hashtables (dictionaries),
151-153

heapsort, 324, 334, 353,
369, 381

insertion sort, 324, 334, 353,
369, 382

memory overhead, queues,
67

mergesort, 324, 334, 353,
369, 381

queues, 67

quicksort, 324, 334, 353,
369, 381

selection sort, 324, 334, 353,
369, 382

stacks, 59

timsort, 324, 334, 353, 369,
382

mergesort, 371-372

2n space, 379

coding, 380-381

divide-and-conquer
algorithms, 372

JavaScript, 380-381

memory, 324, 334, 353, 369,
381

operations, 379-380

performance, 324, 334

speed, 353, 369, 381

stable sorts, 379-380

tree depth, 371-372

walkthrough, 372-379

middle elements, binary search,
245-246, 252-253

mini-heaps, 115

N

network routing tables, tries
(prefix trees), 170-171
nodes
binary search trees
adding nodes, 93-97, 103
removing nodes, 97-103

binary trees, 86, 89
child nodes, 71-73
single child nodes,
99-100
two children nodes,
101-103
connecting, 70-71
deleting, 39-40
edges, 70-71
graphs, 184-185, 190-191
heaps
inserting items, 133-134
inserting nodes, 116-121
removing nodes,
122-126, 132-133
height/depth, 75-76
leaf nodes, 74, 97-98
linked lists, 36-37, 38-39
parent nodes, 72-73
root nodes, 74, 122-126,
132-133
sibling nodes, 73
single child nodes, 99-100
traversing, 37
breadth-first traversals,
270-271
depth-first traversals,
272-273
trees, 70-74
two children nodes, 101-103
unreachable nodes, 40

0)

PREFIX TREES (TRIES) 391

P

O(1)—Constant Complexity, 13

O(2/n)—Exponential
Complexity, 14

odd/even numbers, Big-O
notation, 8-9

O(log n)—Logarithmic
Complexity, 13

O(n log n)—Linearithmic
Complexity, 14

O(n"2)—Quadratic Complexity,
14

O(n!)—Factorial Complexity, 14
O(n)—Linear Complexity, 13-14

parent nodes, 72-73

peek operations
queues, 66
stacks, 59

perfect binary trees, 84-85

performance
arrays, 30-31
BFS, 307-308
binary search trees, 110-111
breadth-first traversals, 278
bubblesort, 324, 334
depth-first traversals, 278
DFS, 307
hashtables (dictionaries),
151-153
heaps, 132-134
heapsort, 324, 334
insertion sort, 324, 334,
351-352
linked lists, 41
mergesort, 324, 334
queues, 66
caches, 67
memory, 67
runtime, 66-67
quicksort, 322, 324, 334
selection sort, 324, 334
space, 30-31
stacks, 58
memory, 59
runtime, 59
timsort, 324, 334
tries (prefix trees), 179-181

pop operations, stacks, 59

predictive text, tries (prefix
trees), 169

prefix trees (tries), 155-156,
167-169, 172-173, 181

autocomplete, 169
coding, 173-179
defined, 156-157
deleting items, 165-167
finding items, 162-165
implementing, 173-179
inserting words, 157-162
IP routing, 170-171

392 PREFIX TREES (TRIES)

JavaScript, 173-179

network routing tables,
170-171

performance, 179-181

predictive text, 169

spell checking/correction, 170

word games/puzzles,
171-172

push operations, stacks, 59

puzzles/word games, tries
(prefix trees), 171-172

Q

R

Quadratic Complexity
O(n"2), 14

queues, 61, 67-68
cache performance, 67
coding, 64-66
defined, 62-63
dequeue (deletion), 66
dynamic memory allocation,
67
enqueue (insertion), 66
FIFO, 62
JavaScript, 64-66
memory overhead, 67
peek operations, 66
performance, 66
caches, 67
memory, 67
runtime, 66-67
searches, 66-67
space complexity, 66—67
time complexity, 66-67

quicksort

coding, 319-322

divide-and-conquer
algorithms, 309, 323-324

implementing, 319-322

JavaScript, 319-322

memory, 324, 334, 353, 369,
381

performance, 322, 324, 334

space complexity, 323

speed, 353, 369, 381

stability, 323

time complexity, 323

walkthrough, 310-319

reading items from hashtables
(dictionaries), 147-148

recursion, 199, 206
coding
function calls, 202
terminating conditions,
203-205
function calls, 202
giant cookie example,
200-202
JavaScript
function calls, 202
terminating conditions,
203-205
terminating conditions,
203-205

recursive operations
binary search, 251
Fibonacci sequences,
209-212
Towers of Hanoi, 231-232

Redo/Undo, 53
relationships, graphs, 187

removing nodes
from binary search trees,
97-103
from heaps, 122-126

robot example, hashtables
(dictionaries), 138-142

root nodes, 74, 122-126,
132-133

routing tables, tries (prefix
trees), 170-171

runtime
BFS, 307
binary search, 254-257
DFS, 307
linear search, 239
queues, 66-67
stacks, 59

S

searches
BFS, 281-283, 308
coding, 300-306

implementing, 306-307
JavaScript, 300-306
memory complexity,
307-308
overview, 284
performance, 307-308
runtime complexity, 307
walkthrough, 293-298
when to use, 298-300
binary searches, 32, 243,
257
coding, 250-253
dividing operations,
247-250
iteration, 250-251
JavaScript, 250-253
middle elements,
245-246, 252-253
operations, 244
recursive operations,
251
runtime, 254-257
sorted items, 244
walkthrough, 252-253
DFS, 281-283, 308
coding, 300-306
implementing, 306-307
JavaScript, 300-306
memory complexity, 307
overview, 283
performance, 307
runtime complexity, 307
walkthrough, 285-291
when to use, 298-300
global linear searches,
240-241
item searches in arrays,
22-23, 32
linear searches, 32, 235-236,
241
coding, 238-239
global linear searches,
240-241
implementing, 238-239
JavaScript, 238-239
runtime, 239
walkthrough, 236-238
queues, 66-67
search/contains operations,
stacks, 59

selection sort, 355
coding, 366-369
implementing, 366-369
JavaScript, 366-369

memory, 324, 334, 353, 369,

382
performance, 324, 334
sorted regions, 355-356
speed, 353, 369, 382
walkthrough, 356-366

sibling nodes, 73

single child nodes, 99-100
singly linked lists, 42

skip lists, 44

sorted regions, selection sort,
355-356

sorting algorithms
bubblesort, 325
coding, 333
JavaScript, 333-334
memory, 324, 334, 353,
369, 382
performance, 324, 334
speed, 353, 369, 382
walkthrough, 326-332
heapsort
memory, 324, 334, 353,
369, 381
performance, 324, 334
speed, 353, 369, 381
insertion sort, 335-336
active numbers, 347
coding, 349-351
implementing, 349-351
JavaScript, 349-351
memory, 324, 334, 353,
369, 382
performance, 324, 334,
351-352
speed, 353, 369, 382
walkthrough, 336-348
mergesort, 371-372
2n space, 379
coding, 380-381
divide-and-conquer
algorithms, 372
JavaScript, 380-381
memory, 324, 334, 353,
369, 381

operations, 379-380
performance, 324, 334
speed, 353, 369, 381
stable sorts, 379-380
tree depth, 371-372
walkthrough, 372-379
quicksort
coding, 319-322
divide-and-conquer
algorithms, 309, 323-324
implementing, 319-322
JavaScript, 319-322
memory, 324, 334, 353,
369, 381
performance, 322, 324,
334
space complexity, 323
speed, 353, 369, 381
stability, 323
time complexity, 323
walkthrough, 310-319
selection sort, 355
coding, 366-369
implementing, 366-369
JavaScript, 366-369
memory, 324, 334, 353,
369, 382
performance, 324, 334
sorted regions, 355-356
speed, 353, 369, 382
walkthrough, 356-366
timsort
memory, 324, 334, 353,
369, 382
performance, 324, 334
speed, 353, 369, 382

space complexity

linked lists, 41
queues, 66-67
quicksort, 323
stacks, 58-59

space, performance, 30-31
speeds

bubblesort, 353, 369, 382
heapsort, 353, 369, 381
insertion sort, 353, 369, 382
mergesort, 353, 369, 381
quicksort, 353, 369, 381
selection sort, 353, 369, 382
timsort, 353, 369, 382

TOWERS OF HANOI

393

spell checking/correction, tries

(prefix trees), 170
stability, quicksort, 323

stable sorts, mergesort,
379-380

stacks, 53-54, 59
behaviors, depth-first
traversals, 273
coding, 56-58
defined, 54-55
implementing, 56-58
JavaScript, 56-58
LIFO, 55
peek operations, 59
performance, 58
memory, 59
runtime, 59
pop operations, 59
push operations, 59
search/contains operatio
59
space complexity, 58-59
time complexity, 58-59
Undo/Redo, 53

T

ns,

task boards, 113-114

task organizers, heaps as,
134-135

terminating conditions,
recursion, 203-205
time complexity
linked lists, 41
queues, 66-67
quicksort, 323
stacks, 58-59

timsort

memory, 324, 334, 353, 369,

382
performance, 324, 334
speed, 353, 369, 382
toolbox metaphor, data
structures, 4-5
Towers of Hanoi, 221, 234
algorithm, 228-229

calculating number of
moves, 232-234

394 TOWERS OF HANOI

coding, 229-232

JavaScript, 229-232

playing, 222-223

recursive operations,
231-232

single disk game play, 223

three disk game play,
225-228

two disk game play,
224-225

traversals, binary tree, 259-260
breadth-first traversals, 279
implementing, 270,
274-276
node exploration,
260-265
performance, 278
walkthrough, 260-265
depth-first traversals, 279
implementing, 270,
276-278
node exploration,
272-273
performance, 278
stack behaviors, 273
walkthrough, 265-270

traversing nodes, 37
breadth-first traversals,
270-271
depth-first traversals,
272-273

trees, 69-70

binary search trees, 93, 112

adding nodes, 93-97,
103

coding, 103-109
defined, 91-92
example of, 91-92
implementing, 103-109
JavaScript, 103-109

leaf nodes, 97-98
memory, 110-111
performance, 110-111
removing nodes,
97-103
single child nodes,
99-100
two children nodes,
101-103
binary trees, 79
balanced binary trees,
85, 116
coding, 86-89
complete binary trees,
83-84
defined, 80
degenerate binary trees,
85
example of, 80
full binary trees, 82-83
implementing, 86-89
JavaScript, 86-89
nodes, 86, 89
perfect binary trees,
84-85
rules, 80-82
variants, 82-85
connected trees, 188-189
defined, 70-74
depth, mergesort, 379
edges, 70-71
examples, 70-74
nodes, 70-71
child nodes, 71-73
edges, 70-71
height/depth, 75-76
leaf nodes, 74
parent nodes, 72-73
root nodes, 74
sibling nodes, 73
unconnected trees, 188-189

tries (prefix trees), 155-156,
167-169, 172-173, 181
autocomplete, 169
coding, 173-179
defined, 156-157
deleting items, 165-167
finding items, 162-165
implementing, 173-179
inserting words, 157-162
IP routing, 170-171
JavaScript, 173-179
network routing tables,
170-171
performance, 179-181
predictive text, 169
spell checking/correction,
170
word games/puzzles,
171172

two children nodes, 101-103

u-Vv

unconnected trees, graphs,
188-189

undirected graphs, 185-186
Undo/Redo, 53
unreachable nodes, 40

upper bound scenarios, Big-O
notation, 11

W-X-Y-Z2

word games/puzzles, tries
(prefix trees), 171-172

worst-case scenarios, Big-O
notation, 11

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Part I: Data Structures
	1 Introduction to Data Structures
	Right Tool for the Right Job
	Back to Data Structures
	Conclusion
	Some Additional Resources

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

