Companion Website and Pearson Test Prep Access Code

Access interactive study tools on this book's companion website, including practice test software, review exercises, a Key Term flash card application, a study planner, and more!

To access the companion website, simply follow these steps:

1. Go to ciscopress.com/register.
3. Answer the security question to validate your purchase.
4. Go to your account page.
5. Click on the Registered Products tab.

When you register your book, your Pearson Test Prep practice test access code will automatically be populated in your account under the Registered Products tab. You will need this code to access the practice test that comes with this book. You can redeem the code at PearsonTestPrep.com. Simply choose Pearson IT Certification as your product group and log in to the site with the same credentials you used to register your book. Click the Activate New Product button and enter the access code. More detailed instructions on how to redeem your access code for both the online and desktop versions can be found on the companion website.

If you have any issues accessing the companion website or obtaining your Pearson Test Prep practice test access code, you can contact our support team by going to pearsonitp.echelp.org.
CCNP and CCIE Security Core
SCOR 350-701

OMAR SANTOS
Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Vice President, IT Professional: Mark Taub
Director, ITP Product Management: Brett Bartow
Technical Editor: John Stuppi
Designer: Chuti Prasertsith
Composition: codeMantra
Indexer: Erika Millen
Proofreader: Donna E. Mulder

Copy Editors: Bart Reed and Chuck Hutchinson
Alliances Manager, Cisco Press: Jaci Featherly; James Risler
Executive Editor: James Manly
Managing Editor: Sandra Schroeder
Development Editor: Christopher A. Cleveland
Senior Project Editor: Mandie Frank
Editorial Assistant: Cindy Teeters
Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world’s leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

- Everyone has an equitable and lifelong opportunity to succeed through learning
- Our educational products and services are inclusive and represent the rich diversity of learners
- Our educational content accurately reflects the histories and experiences of the learners we serve
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.
Credits

Figure 1-4: United States Department of Defense
Figure 1-6: Webgoat SQL Injection
Figure 1-1, Figure 1-2: OffSec Services Limited
Figure 3-27-Figure 3-30: Python Software Foundation
Figure 9-11: Amazon Web Services
Figure 9-14-Figure 9-16: Docker Inc
Figure 9-19-Figure 9-21: Google Inc
Figure 10-2: Apple Inc
About the Author

Omar Santos is a cybersecurity thought leader with a passion for driving industry-wide initiatives to enhance the security of critical infrastructures. Omar is the lead of the DEF CON Red Team Village, the chair of the Common Security Advisory Framework (CSAF) technical committee, and board member of the OASIS Open standards organization. Omar's collaborative efforts extend to numerous organizations, including the Forum of Incident Response and Security Teams (FIRST) and the Industry Consortium for Advancement of Security on the Internet (ICASI).

Omar is a renowned expert in ethical hacking, vulnerability research, incident response, and AI security. He employs his deep understanding of these disciplines to help organizations stay ahead of emerging threats. His dedication to cybersecurity has made a significant impact on businesses, academic institutions, law enforcement agencies, and other entities striving to bolster their security measures. Omar is currently leading several Artificial Intelligence (AI) security research efforts at the Cisco Security and Trust Organization (STO).

With over twenty books, video courses, white papers, and technical articles under his belt, Omar's expertise is widely recognized and respected. As a principal engineer at Cisco's Product Security Incident Response Team (PSIRT), Omar not only leads engineers and incident managers in investigating and resolving cybersecurity vulnerabilities, but also actively mentors the next generation of security professionals. You can follow Omar on Twitter @santosomar.
About the Technical Reviewer

John Stuppi, CCIE No. 11154, is a Technical Leader in the Security & Trust Organization (S&TO) at Cisco where he consults Cisco customers on protecting their networks against existing and emerging cyber security threats, risks, and vulnerabilities. Current projects include working with newly acquired entities to integrate them into Cisco’s PSIRT Vulnerability Management processes and advising some of Cisco’s most strategic customers on vulnerability management and risk assessment. John has presented multiple times on various network security topics at Cisco Live, Black Hat, as well as other customer-facing cyber security conferences. John is also the co-author of the CCNA Security 210-260 Official Cert Guide published by Cisco Press. Additionally, John has contributed to the Cisco Security Portal through the publication of white papers, Security Blog posts, and Cyber Risk Report articles. Prior to joining Cisco, John worked as a network engineer for JPMorgan and then as a network security engineer at Time, Inc., with both positions based in New York City. John is also a CISSP (#25525) and holds AWS Cloud Practitioner and Information Systems Security (INFOSEC) Professional Certifications. In addition, John has a BSEE from Lehigh University and an MBA from Rutgers University. John splits his time between Eatontown, New Jersey and Clemson, South Carolina with his wife, son, daughter, and his dog.
Dedication

I would like to dedicate this book to my lovely wife, Jeannette, and my two beautiful children, Hannah and Derek, who have inspired and supported me throughout the development of this book.
Acknowledgments

I would like to thank the technical editor and my good friend, John Stuppi, for his time and technical expertise.

I would like to thank the Cisco Press team, especially James Manly and Christopher Cleveland, for their patience, guidance, and consideration.

Finally, I would like to thank Cisco and the Cisco Product Security Incident Response Team (PSIRT), Security and Trust Organization for enabling me to constantly learn and achieve many goals throughout all these years.
Contents at a Glance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xxxi</td>
</tr>
<tr>
<td>Chapter 1 Cybersecurity Fundamentals</td>
<td>2</td>
</tr>
<tr>
<td>Chapter 2 Cryptography</td>
<td>80</td>
</tr>
<tr>
<td>Chapter 3 Software-Defined Networking Security and Network Programmability</td>
<td>110</td>
</tr>
<tr>
<td>Chapter 4 Authentication, Authorization, Accounting (AAA) and Identity Management</td>
<td>156</td>
</tr>
<tr>
<td>Chapter 5 Network Visibility and Segmentation</td>
<td>232</td>
</tr>
<tr>
<td>Chapter 6 Infrastructure Security</td>
<td>316</td>
</tr>
<tr>
<td>Chapter 7 Cisco Secure Firewall</td>
<td>410</td>
</tr>
<tr>
<td>Chapter 8 Virtual Private Networks (VPNs)</td>
<td>490</td>
</tr>
<tr>
<td>Chapter 9 Securing the Cloud</td>
<td>578</td>
</tr>
<tr>
<td>Chapter 10 Content Security</td>
<td>638</td>
</tr>
<tr>
<td>Chapter 11 Endpoint Protection and Detection</td>
<td>672</td>
</tr>
<tr>
<td>Chapter 12 Final Preparation</td>
<td>696</td>
</tr>
<tr>
<td>Chapter 13 [CCNP and CCIE Security Core SCOR (350-701) Exam Updates]</td>
<td>698</td>
</tr>
<tr>
<td>Appendix A Answers to the “Do I Know This Already?” Quizzes and Q&A Sections</td>
<td>702</td>
</tr>
<tr>
<td>Glossary</td>
<td>714</td>
</tr>
<tr>
<td>Index</td>
<td>732</td>
</tr>
</tbody>
</table>

Online Element

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B</td>
<td>Study Planner</td>
</tr>
</tbody>
</table>
Contents

Introduction xxxi

Chapter 1 Cybersecurity Fundamentals 2
“Do I Know This Already?” Quiz 3
Foundation Topics 6

Introduction to Cybersecurity 6
 Cybersecurity vs. Information Security (InfoSec) 6
 The NIST Cybersecurity Framework 7
 Additional NIST Guidance and Documents 7
 The International Organization for Standardization (ISO) 8
Defining What Are Threats, Vulnerabilities, and Exploits 8
 What Is a Threat? 8
 What Is a Vulnerability? 9
 What Is an Exploit? 10
Risk, Assets, Threats, and Vulnerabilities 12
Defining Threat Actors 13
Understanding What Threat Intelligence Is 14
Viruses and Worms 16
Types and Transmission Methods 16
Malware Payloads 17
Trojans 18
 Trojan Types 18
 Trojan Ports and Communication Methods 19
 Trojan Goals 20
 Trojan Infection Mechanisms 21
Effects of Trojans 22
Distributing Malware 22
Ransomware 23
Covert Communication 24
Keyloggers 26
Spyware 27
Analyzing Malware 28
Static Analysis 28
Dynamic Analysis 29
Common Software and Hardware Vulnerabilities 31
 Injection Vulnerabilities 31
 SQL Injection 31
 HTML Injection 33
 Command Injection 33
 Authentication-based Vulnerabilities 33
 Credential Brute-Force Attacks and Password Cracking 34
 Session Hijacking 35
 Default Credentials 35
 Insecure Direct Object Reference Vulnerabilities 35
 Cross-site Scripting (XSS) 36
 Cross-site Request Forgery 38
 Server-side Request Forgery 38
 Cookie Manipulation Attacks 39
 Race Conditions 39
 Unprotected APIs 39
 Typical Attacks Against Artificial Intelligence (AI) and Machine Learning 40
 Return-to-LibC Attacks and Buffer Overflows 41
 OWASP Top 10 42
 Security Vulnerabilities in Open-Source Software 42
Confidentiality, Integrity, and Availability 43
 What Is Confidentiality? 43
 What Is Integrity? 45
 What Is Availability? 46
 Talking About Availability, What Is a Denial-of-Service (DoS) Attack? 46
Access Control Management 48
Cloud Security Threats 50
 Cloud Computing Issues and Concerns 51
 Cloud Computing Attacks 53
 Cloud Computing Security 53
IoT Security Threats 54
 IoT Protocols 56
 Hacking IoT Implementations 57
An Introduction to Digital Forensics and Incident Response 58
 ISO/IEC 27002:2013 and NIST Incident Response Guidance 58
 What Is an Incident? 59
Contents

False Positives, False Negatives, True Positives, and True Negatives 60
Incident Severity Levels 60
How Are Incidents Reported? 61
What Is an Incident Response Program? 62
The Incident Response Plan 62
The Incident Response Process 63
Tabletop Exercises and Playbooks 65
Information Sharing and Coordination 66
Computer Security Incident Response Teams 67
Product Security Incident Response Teams (PSIRTs) 69
The Common Vulnerability Scoring System (CVSS) 69
The Stakeholder-Specific Vulnerability Categorization (SSVC) 73
National CSIRTs and Computer Emergency Response Teams (CERTs) 74
Coordination Centers 74
Incident Response Providers and Managed Security Service Providers (MSSPs) 75
Key Incident Management Personnel 75
Summary 76
Exam Preparation Tasks 76
Review All Key Topics 76
Define Key Terms 78
Review Questions 78
Chapter 2 Cryptography 80
“Do I Know This Already?” Quiz 80
Foundation Topics 82
Introduction to Cryptography 82
 Ciphers 82
 Keys 83
 Block and Stream Ciphers 84
Symmetric and Asymmetric Algorithms 84
Hashes 86
Hashed Message Authentication Code 89
Digital Signatures 90
Key Management 92
Next-Generation Encryption Protocols 92
IPsec 93
Post-Quantum Cryptography 93
SSL and TLS 95
Fundamentals of PKI 97
Public and Private Key Pairs 97
More About Keys and Digital Certificates 97
Certificate Authorities 98
Root Certificates 99
Identity Certificates 101
X.500 and X.509v3 101
Authenticating and Enrolling with the CA 102
Public Key Cryptography Standards 103
Simple Certificate Enrollment Protocol 103
Revoking Digital Certificates 103
Digital Certificates in Practice 104
PKI Topologies 105
Single Root CA 105
Hierarchical CA with Subordinate CAs 105
Cross-Certifying CAs 106
Exam Preparation Tasks 106
Review All Key Topics 106
Define Key Terms 107
Review Questions 107

Chapter 3 Software-Defined Networking Security and Network Programmability 110
“Do I Know This Already?” Quiz 110
Foundation Topics 112
Software-Defined Networking (SDN) and SDN Security 112
Traditional Networking Planes 113
So What’s Different with SDN? 114
Introduction to the Cisco ACI Solution 114
VXLAN and Network Overlays 116
Micro-Segmentation 118
Open-Source Initiatives 120
More About Network Function Virtualization 121
NFV MANO 123
Contiv 123
Introduction to Network Programmability 136
Modern Programming Languages and Tools 137
DevNet 140
Getting Started with APIs 140
REST APIs 141
Using Network Device APIs 145
YANG Models 145
NETCONF 147
RESTCONF 149
OpenConfig and gNMI 151
Exam Preparation Tasks 151
Review All Key Topics 151
Define Key Terms 152
Review Questions 152

Chapter 4 Authentication, Authorization, Accounting (AAA) and Identity Management 156
“Do I Know This Already?” Quiz 157
Foundation Topics 160
Introduction to Authentication, Authorization, and Accounting 160
The Principle of Least Privilege and Separation of Duties 161
Authentication 162
Authentication by Knowledge 162
Authentication by Ownership or Possession 164
Authentication by Characteristic 164
Multifactor Authentication 165
Duo Security 166
Zero Trust and BeyondCorp 169
Single Sign-On 171
JWT 173
SSO and Federated Identity Elements 174
Authorization 177
 Mandatory Access Control (MAC) 177
 Discretionary Access Control (DAC) 178
 Role-Based Access Control (RBAC) 178
 Rule-Based Access Control 178
 Attribute-Based Access Control 179
Accounting 179
Infrastructure Access Controls 179
 Access Control Mechanisms 179
AAA Protocols 182
 RADIUS 182
 TACACS+ 184
 Diameter 186
 802.1X 188
Network Access Control List and Firewalling 190
 VLAN ACLs 191
 Security Group–Based ACL 191
 Downloadable ACL 191
Cisco Identity Services Engine (ISE) 192
 Cisco Platform Exchange Grid (pxGrid) 193
 Cisco ISE Context and Identity Services 195
 Cisco ISE Profiling Services 195
 Cisco ISE Identity Services 198
 Cisco ISE Authorization Rules 199
 Cisco TrustSec 201
 Posture Assessment 203
 Change of Authorization (CoA) 204
Configuring TACACS+ Access 207
Configuring RADIUS Authentication 213
 Configuring 802.1X Authentication 215
Additional Cisco ISE Design Tips 222
Chapter 5 Network Visibility and Segmentation 232

“Do I Know This Already?” Quiz 233

Foundation Topics 236

Introduction to Network Visibility 236

NetFlow 237

 The Network as a Sensor and as an Enforcer 238
 What Is a Flow? 238
 NetFlow for Network Security and Visibility 241
 NetFlow for Anomaly Detection and DDoS Attack Mitigation 241
 Data Leak Detection and Prevention 243
 Incident Response, Threat Hunting, and Network Security Forensics 243
 Traffic Engineering and Network Planning 248
 NetFlow Versions 249

IP Flow Information Export (IPFIX) 249

 IPFIX Architecture 251
 Understanding IPFIX Mediators 251
 IPFIX Templates 252
 Option Templates 253
 Understanding the Stream Control Transmission Protocol (SCTP) 254
 Exploring Application Visibility and Control and NetFlow 254
 Application Recognition 254
 Metrics Collection and Exporting 255

NetFlow Deployment Scenarios 255

 NetFlow Deployment Scenario: User Access Layer 256
 NetFlow Deployment Scenario: Wireless LAN 256
 NetFlow Deployment Scenario: Internet Edge 258
 NetFlow Deployment Scenario: Data Center 259
 NetFlow Deployment Scenario: NetFlow in Site-to-Site and Remote VPNs 261

Cisco Secure Network Analytics and Cisco Secure Cloud Analytics 263

 Cisco Secure Cloud Analytics 264
On-Premises Monitoring with Cisco Secure Cloud Analytics 267
Cisco Secure Cloud Analytics Integration with Meraki and Cisco Umbrella 268
Exploring the Cisco Secure Network Analytics Dashboard 268
Threat Hunting with Cisco Secure Network Analytics 270
Cisco Cognitive Intelligence and Cisco Encrypted Traffic Analytics (ETA) 274
What Is Cisco ETA? 274
What Is Cisco Cognitive Intelligence? 274
NetFlow Collection Considerations and Best Practices 279
Determining the Flows per Second and Scalability 280
Configuring NetFlow in Cisco IOS and Cisco IOS-XE 280
Simultaneous Application Tracking 281
Flexible NetFlow Records 282
Flexible NetFlow Key Fields 282
Flexible NetFlow Non-Key Fields 284
NetFlow Predefined Records 285
User-Defined Records 286
Flow Monitors 286
Flow Exporters 286
Flow Samplers 286
Flexible NetFlow Configuration 286
Configure a Flow Record 287
Configure a Flow Monitor for IPv4 or IPv6 289
Configure a Flow Exporter for the Flow Monitor 291
Apply a Flow Monitor to an Interface 293
Flexible NetFlow IPFIX Export Format 294
Configuring NetFlow in NX-OS 295
Introduction to Network Segmentation 296
Data-Driven Segmentation 297
Application-Based Segmentation 299
Micro-Segmentation with Cisco ACI 301
Segmentation with Cisco ISE 302
The Scalable Group Tag Exchange Protocol (SXP) 303
SGT Assignment and Deployment 306
Initially Deploying 802.1X and/or TrustSec in Monitor Mode 306
Active Policy Enforcement 306
Cisco ISE TrustSec and Cisco ACI Integration 310
Chapter 6 **Infrastructure Security** 316

“Do I Know This Already?” Quiz 317

Foundation Topics 320

Securing Layer 2 Technologies 320

VLAN and Trunking Fundamentals 320

What Is a VLAN? 321

Trunking with 802.1Q 323

Let’s Follow the Frame, Step by Step 325

What Is the Native VLAN on a Trunk? 326

So, What Do You Want to Be? (Asks the Port) 326

Understanding Inter-VLAN Routing 326

What Is the Challenge of Only Using Physical Interfaces? 326

Using Virtual “Sub” Interfaces 326

Spanning Tree Fundamentals 328

The Solution to the Layer 2 Loop 328

STP Is Wary of New Ports 331

Improving the Time Until Forwarding 332

Common Layer 2 Threats and How to Mitigate Them 333

Do Not Allow Negotiations 334

Layer 2 Security Toolkit 334

BPDU Guard 335

Root Guard 336

Port Security 336

CDP and LLDP 338

DHCP Snooping 339

Dynamic ARP Inspection 341

Network Foundation Protection 343

The Importance of the Network Infrastructure 343

The Network Foundation Protection Framework 344

Interdependence 344

Implementing NFP 344
Understanding and Securing the Management Plane 345
 Best Practices for Securing the Management Plane 345
Understanding the Control Plane 347
 Best Practices for Securing the Control Plane 347
Understanding and Securing the Data Plane 348
 Best Practices for Protecting the Data Plane 349
 Additional Data Plane Protection Mechanisms 349

Securing Management Traffic 350
 NETCONF and RESTCONF vs. SNMP 350
Beyond the Console Cable 353
 Management Plane Best Practices 354
Password Recommendations 356
Using AAA to Verify Users 357
Router Access Authentication 357
The AAA Method List 358
Role-Based Access Control 359
Custom Privilege Levels 359
Limiting the Administrator by Assigning a View 359
Encrypted Management Protocols 359
Using Logging Files 360
Understanding NTP 361
Protecting Cisco IOS, Cisco IOS-XE, Cisco IOS-XR, and Cisco NX-OS Files 362
Implementing Security Measures to Protect the Management Plane 362
Implementing Strong Passwords 362
User Authentication with AAA 364
Using the CLI to Troubleshoot AAA for Cisco Routers 369
RBAC Privilege Level/Parser View 371
Implementing Parser Views 374
SSH and HTTPS 375
Implementing Logging Features 378
 Configuring Syslog Support 378
Configuring NTP 379
Securing the Network Infrastructure Device Image and Configuration Files 380
Securing the Data Plane in IPv6 381
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding and Configuring IPv6</td>
<td>381</td>
</tr>
<tr>
<td>The Format of an IPv6 Address</td>
<td>383</td>
</tr>
<tr>
<td>Understanding the Shortcuts</td>
<td>383</td>
</tr>
<tr>
<td>Did We Get an Extra Address?</td>
<td>383</td>
</tr>
<tr>
<td>IPv6 Address Types</td>
<td>384</td>
</tr>
<tr>
<td>Configuring IPv6 Routing</td>
<td>386</td>
</tr>
<tr>
<td>Moving to IPv6</td>
<td>388</td>
</tr>
<tr>
<td>Developing a Security Plan for IPv6</td>
<td>388</td>
</tr>
<tr>
<td>Best Practices Common to Both IPv4 and IPv6</td>
<td>388</td>
</tr>
<tr>
<td>Threats Common to Both IPv4 and IPv6</td>
<td>389</td>
</tr>
<tr>
<td>The Focus on IPv6 Security</td>
<td>390</td>
</tr>
<tr>
<td>New Potential Risks with IPv6</td>
<td>391</td>
</tr>
<tr>
<td>IPv6 Best Practices</td>
<td>393</td>
</tr>
<tr>
<td>IPv6 Access Control Lists</td>
<td>394</td>
</tr>
<tr>
<td>Securing Routing Protocols and the Control Plane</td>
<td>395</td>
</tr>
<tr>
<td>Minimizing the Impact of Control Plane Traffic on the CPU</td>
<td>395</td>
</tr>
<tr>
<td>Details about CoPP</td>
<td>397</td>
</tr>
<tr>
<td>Details about CPPr</td>
<td>399</td>
</tr>
<tr>
<td>Securing Routing Protocols</td>
<td>399</td>
</tr>
<tr>
<td>Implementing Routing Update Authentication on OSPF</td>
<td>400</td>
</tr>
<tr>
<td>Implementing Routing Update Authentication on EIGRP</td>
<td>401</td>
</tr>
<tr>
<td>Implementing Routing Update Authentication on RIP</td>
<td>401</td>
</tr>
<tr>
<td>Implementing Routing Update Authentication on BGP</td>
<td>402</td>
</tr>
<tr>
<td>Exam Preparation Tasks</td>
<td>404</td>
</tr>
<tr>
<td>Review All Key Topics</td>
<td>404</td>
</tr>
<tr>
<td>Define Key Terms</td>
<td>405</td>
</tr>
<tr>
<td>Review Questions</td>
<td>405</td>
</tr>
</tbody>
</table>

Chapter 7 **Cisco Secure Firewall** 410

“Do I Know This Already?” Quiz 410

Foundation Topics 413

Introduction to Cisco Secure Firewall 413

Cisco Firewall History and Legacy 413

Introducing the Cisco ASA 414

The Cisco ASA FirePOWER Module 414

Cisco Secure Firewall: Formerly known as Cisco Firepower Threat Defense (FTD) 415
Cisco Secure Firewall 415
Cisco Secure Firewall Migration Tool 415
Cisco Secure Firewall Threat Defense Virtual 416
Cisco Secure Firewall Cloud Native 417
Cisco Secure Firewall ISA3000 418
Cisco Secure WAF and Bot Protection 419
SD-WAN, Firewall Capabilities, and the Cisco Integrated Services Routers (ISRs) 419
Introduction to Cisco Secure Intrusion Prevention (NGIPS) 421
Surveying the Cisco Secure Firewall Management Center (FMC) 423
Cisco SecureX 426
Exploring the Cisco Firepower Device Manager (FDM) 429
Cisco Defense Orchestrator 433
Comparing Network Security Solutions That Provide Firewall Capabilities 435
Deployment Modes of Network Security Solutions and Architectures That Provide Firewall Capabilities 437
Routed vs. Transparent Firewalls 437
Security Contexts 438
Single-Mode Transparent Firewalls 439
Surveying the Cisco Secure Firewall Deployment Modes 441
Cisco Secure Firewall Interface Modes 442
Inline Pair 445
Inline Pair with Tap 445
Passive Mode 446
Passive with ERSPAN Mode 447
Additional Cisco Secure Firewall Deployment Design Considerations 447
High Availability and Clustering 448
Clustering 450
Implementing Access Control 452
Implementing Access Control Lists in Cisco ASA 452
Cisco ASA Application Inspection 458
To-the-Box Traffic Filtering in the Cisco ASA 459
Object Grouping and Other ACL Features 460
Standard ACLs 461
Time-Based ACLs 461
ICMP Filtering in the Cisco ASA 462
Chapter 8 Virtual Private Networks (VPNs) 490

“Do I Know This Already?” Quiz 490

Foundation Topics 494

Virtual Private Network (VPN) Fundamentals 494

An Overview of IPsec 496

IKEv1 Phase 1 496

IKEv1 Phase 2 498

NAT Traversal (NAT-T) 501

IKEv2 501

SSL VPNs 503

Cisco Secure Client Mobility 504

Deploying and Configuring Site-to-Site VPNs in Cisco Routers 506

Traditional Site-to-Site VPNs in Cisco IOS and Cisco IOS-XE Devices 506

Tunnel Interfaces 508

GRE over IPsec 508

More About Tunnel Interfaces 510

Multipoint GRE (mGRE) Tunnels 512

DMVPN 512

GETVPN 515

FlexVPN 518
Debug and Show Commands to Verify and Troubleshoot IPsec Tunnels 522

Configuring Site-to-Site VPNs in Cisco ASA Firewalls 528

Step 1: Enable ISAKMP in the Cisco ASA 529
Step 2: Create the ISAKMP Policy 529
Step 3: Set Up the Tunnel Groups 530
Step 4: Define the IPsec Policy 531
Step 5: Create the Crypto Map in the Cisco ASA 532
Step 6: Configure Traffic Filtering (Optional) 534
Step 7: Bypass NAT (Optional) 534
Step 8: Enable Perfect Forward Secrecy (Optional) 535
Additional Attributes in Cisco Site-to-Site VPN Configurations 535

Configuring Remote-Access VPNs in the Cisco ASA 537
Configuring IPsec Remote-Access VPN in the Cisco ASA 538

Configuring Clientless Remote Access SSL VPNs in the Cisco ASA 540
Cisco ASA Remote-Access VPN Design Considerations 541
Pre-SSL VPN Configuration Steps 542
Understanding the Remote-Access VPN Attributes and Policy Inheritance Model 544

Configuring Clientless SSL VPN Group Policies 544
Configuring the Tunnel Group for Clientless SSL VPN 545
Configuring User Authentication for Clientless SSL VPN 546
Enabling Clientless SSL VPN 548
Configuring WebType ACLs 549
Configuring Application Access in Clientless SSL VPNs 550

Configuring Client-Based Remote-Access SSL VPNs in the Cisco ASA 551

Setting Up Tunnel and Group Policies 552
Deploying the Cisco Secure Client 553
Understanding Split Tunneling 554
Understanding DTLS 555

Configuring Remote-Access VPNs in Cisco Secure Firewall 556
Using the Remote Access VPN Policy Wizard 557
Troubleshooting Cisco Secure Firewall Remote-Access VPN Implementations 566

Configuring Site-to-Site VPNs in the Cisco Secure Firewall 567
Cisco SD-WAN 569
Exam Preparation Tasks 573
Review All Key Topics 573
Define Key Terms 574
Review Questions 575

Chapter 9 Securing the Cloud 578

“Do I Know This Already?” Quiz 579

Foundation Topics 581
What Is Cloud and What Are the Cloud Service Models? 581
DevOps, Continuous Integration (CI), Continuous Delivery (CD), and DevSecOps 583
The Waterfall Development Methodology 583
The Agile Methodology 583
DevOps 586
CI/CD Pipelines 588
The Serverless Buzzword 589
Container Orchestration 592
A Quick Introduction to Containers and Docker 592
Kubernetes 597
Microservices and Micro-Segmentation 602
DevSecOps 603

Describing the Customer vs. Provider Security Responsibility for the Different Cloud Service Models 605
Patch Management in the Cloud 607
Security Assessment in the Cloud and Questions to Ask Your Cloud Service Provider 607

Cisco Umbrella 608
The Cisco Umbrella Architecture 609
Secure Internet Gateway 610
Cisco Umbrella Investigate 612

Cisco Secure Email Threat Defense 614
Forged Email Detection 614
Sender Policy Framework 615
Email Encryption 615
Cisco Secure Email Threat Defense for Office 365 615

Cisco Attack Surface Management (Formerly Cisco Secure Cloud Insights) 616
Cisco Secure Cloud Analytics 618
Chapter 10 Content Security 638

“Do I Know This Already?” Quiz 638

Foundation Topics 641

Content Security Fundamentals 641

Cisco Secure Web Appliance 642

The Cisco Secure Web Appliance Proxy 643
Cisco Secure Web Appliance in Explicit Forward Mode 644
Cisco Secure Web Appliance in Transparent Mode 646
Configuring WCCP in a Cisco ASA to Redirect Web Traffic to a Cisco Secure Web Appliance 647
Configuring WCCP on a Cisco Switch 649
Configuring the Cisco Secure Web Appliance to Accept WCCP Redirection 650
Traffic Redirection with Policy-Based Routing 651
Cisco Secure Web Appliance Security Services 652
Deploying Web Proxy IP Spoofing 653
Configuring Policies in the Cisco Secure Web Appliance 653
Cisco Secure Web Appliance Reports 655
Cisco Secure Email 658

Reviewing a Few Email Concepts 658
Cisco Secure Email Deployment 659
Chapter 13 CCNP and CCIE Security Core SCOR (350-701) Exam Updates 698
 The Purpose of This Chapter 698
 About Possible Exam Updates 698
 Impact on You and Your Study Plan 699
 News about the Next Exam Release 700
 Updated Technical Content 700

Appendix A Answers to the “Do I Know This Already?” Quizzes and Q&A Sections 702
 Glossary 714
 Index 732

Online Element
Appendix B Study Planner
Introduction

The Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam is the required “core” exam for the CCNP Security and CCIE Security certifications. If you pass the SCOR 350-701 exam, you also obtain the Cisco Certified Specialist–Security Core Certification. This exam covers core security technologies, including cybersecurity fundamentals, network security, cloud security, identity management, secure network access, endpoint protection and detection, and visibility and enforcement.

The Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) is a 120-minute exam.

TIP You can review the exam blueprint from Cisco’s website at https://learningnetwork.cisco.com/s/scor-exam-topics.

This book gives you the foundation and covers the topics necessary to start your CCNP Security or CCIE Security journey.

The CCNP Security Certification

The CCNP Security certification is one of the industry’s most respected certifications. In order for you to earn the CCNP Security certification, you must pass two exams: the SCOR exam covered in this book (which covers core security technologies) and one security concentration exam of your choice, so you can customize your certification to your technical area of focus.

TIP The SCOR core exam is also the qualifying exam for the CCIE Security certification. Passing this exam is the first step toward earning both of these certifications.

The following are the CCNP Security concentration exams:

- Securing Networks with Cisco Firepower (SNCF 300-710)
- Implementing and Configuring Cisco Identity Services Engine (SISE 300-715)
- Securing Email with Cisco Email Security Appliance (SESA 300-720)
- Securing the Web with Cisco Web Security Appliance (SWSA 300-725)
- Implementing Secure Solutions with Virtual Private Networks (SVPN 300-730)
- Automating Cisco Security Solutions (SAUTO 300-735)

TIP CCNP Security now includes automation and programmability to help you scale your security infrastructure. If you pass the Developing Applications Using Cisco Core Platforms and APIs v1.0 (DEVCOR 350-901) exam, the SCOR exam, and the Automating Cisco Security Solutions (SAUTO 300-735) exam, you will achieve the CCNP Security and DevNet Professional certifications with only three exams. Every exam earns an individual Specialist certification, allowing you to get recognized for each of your accomplishments, instead of waiting until you pass all the exams.
There are no formal prerequisites for CCNP Security. In other words, you do not have to pass the CCNA Security or any other certifications in order to take CCNP-level exams. The same goes for the CCIE exams. On the other hand, CCNP candidates often have three to five years of experience in IT and cybersecurity.

Cisco considers ideal candidates to be those that possess the following:

- Knowledge of implementing and operating core security technologies
- Understanding of cloud security
- Hands-on experience with Cisco Secure Firewalls, intrusion prevention systems (IPSs), and other network infrastructure devices
- Understanding of content security, endpoint protection and detection, and secure network access, visibility, and enforcement
- Understanding of cybersecurity concepts with hands-on experience in implementing security controls

The CCIE Security Certification

The CCIE Security certification is one of the most admired and elite certifications in the industry. The CCIE Security program prepares you to be a recognized technical leader. In order to earn the CCIE Security certification, you must pass the SCOR 350-701 exam and an 8-hour, hands-on lab exam. The lab exam covers very complex network security scenarios. These scenarios range from designing through deploying, operating, and optimizing security solutions.

Cisco considers ideal candidates to be those who possess the following:

- Extensive hands-on experience with Cisco’s security portfolio
- Experience deploying Cisco Secure Firewalls and IPS devices
- Experience with cloud security solutions
- Deep understanding of secure connectivity and segmentation solutions
- Hands-on experience with infrastructure device hardening and infrastructure security
- Configuring and troubleshooting identity management, information exchange, and access control
- Deep understanding of advanced threat protection and content security

The Exam Objectives (Domains)

The Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam is broken down into six major domains. The contents of this book cover each of the domains and the subtopics included in them, as illustrated in the following descriptions.
The Exam Objectives (Domains) xxxiii

The following table breaks down each of the domains represented in the exam.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Percentage of Representation in Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Security Concepts</td>
<td>25%</td>
</tr>
<tr>
<td>2: Network Security</td>
<td>20%</td>
</tr>
<tr>
<td>3: Securing the Cloud</td>
<td>15%</td>
</tr>
<tr>
<td>4: Content Security</td>
<td>15%</td>
</tr>
<tr>
<td>5: Endpoint Protection and Detection</td>
<td>10%</td>
</tr>
<tr>
<td>6: Secure Network Access, Visibility, and Enforcement</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Here are the details of each domain:

Domain 1: Monitoring and Reporting: This domain is covered in Chapters 1, 2, 3, and 8.

1. Explain common threats against on-premises and cloud environments
 1.1a On-premises: viruses, trojans, DoS/DDoS attacks, phishing, rootkits, man-in-the-middle attacks, SQL injection, cross-site scripting, malware
 1.1b Cloud: data breaches, insecure APIs, DoS/DDoS, compromised credentials

1.2 Compare common security vulnerabilities such as software bugs, weak and/or hard-coded passwords, SQL injection, missing encryption, buffer overflow, path traversal, cross-site scripting/forgery

1.3 Describe functions of the cryptography components such as hashing, encryption, PKI, SSL, IPsec, NAT-T IPv4 for IPsec, pre-shared key, and certificate-based authorization

1.4 Compare site-to-site VPN and remote access VPN deployment types such as sVTI, IPsec, Cryptomap, DMVPN, FLEXVPN, including high availability considerations, and AnyConnect

1.5 Describe security intelligence authoring, sharing, and consumption

1.6 Explain the role of the endpoint in protecting humans from phishing and social engineering attacks

1.7 Explain northbound and southbound APIs in the SDN architecture

1.8 Explain DNAC APIs for network provisioning, optimization, monitoring, and troubleshooting

1.9 Interpret basic Python scripts used to call Cisco Security appliances APIs

Domain 2: Network Security: This domain is covered primarily in Chapters 5, 6, and 7.

2.1 Compare network security solutions that provide intrusion prevention and firewall capabilities

2.2 Describe deployment models of network security solutions and architectures that provide intrusion prevention and firewall capabilities

2.3 Describe the components, capabilities, and benefits of NetFlow and Flexible NetFlow records
2.4 Configure and verify network infrastructure security methods (router, switch, wireless)
 2.4.a Layer 2 methods (network segmentation using VLANs; Layer 2 and port security; DHCP snooping; Dynamic ARP inspection; storm control; PVLANs to segregate network traffic; and defenses against MAC, ARP, VLAN hopping, STP, and DHCP rogue attacks)
 2.4.b Device hardening of network infrastructure security devices (control plane, data plane, and management plane)

2.5 Implement segmentation, access control policies, AVC, URL filtering, and malware protection

2.6 Implement management options for network security solutions such as intrusion prevention and perimeter security (single vs. multidevice manager, in-band vs. out-of-band, CDP, DNS, SCP, SFTP, and DHCP security and risks)

2.7 Configure AAA for device and network access (authentication and authorization, TACACS+, RADIUS and RADIUS flows, accounting, and dACL)

2.8 Configure secure network management of perimeter security and infrastructure devices such as SNMPv3, NETCONF, RESTCONF, APIs, secure syslog, and NTP with authentication

2.9 Configure and verify site-to-site VPN and remote access VPN
 2.9.a Site-to-site VPN utilizing Cisco routers and IOS
 2.9.b Remote-access VPN using Cisco AnyConnect Secure Mobility client
 2.9.c Debug commands to view IPsec tunnel establishment and troubleshooting

Domain 3: Securing the Cloud: This domain is covered primarily in Chapter 9.

3.1 Identify security solutions for cloud environments
 3.1.a Public, private, hybrid, and community clouds
 3.1.b Cloud service models: SaaS, PaaS, and IaaS (NIST 800-145)

3.2 Compare the customer vs. provider security responsibility for the different cloud service models
 3.2.a Patch management in the cloud
 3.2.b Security assessment in the cloud
 3.2.c Cloud-delivered security solutions such as firewall, management, proxy, security intelligence, and CASB

3.3 Describe the concept of DevSecOps (CI/CD pipeline, container orchestration, and security)

3.4 Implement application and data security in cloud environments

3.5 Identify security capabilities, deployment models, and policy management to secure the cloud

3.6 Configure cloud logging and monitoring methodologies

3.7 Describe application and workload security concepts
Domain 4: Content Security: This domain is covered primarily in Chapter 10.

4.1 Implement traffic redirection and capture methods
4.2 Describe web proxy identity and authentication, including transparent user identification
4.3 Compare the components, capabilities, and benefits of local and cloud-based email and web solutions (ESA, CES, WSA)
4.4 Configure and verify web and email security deployment methods to protect on-premises and remote users (inbound and outbound controls and policy management)
4.5 Configure and verify email security features such as SPAM filtering, antimalware filtering, DLP, blacklisting, and email encryption
4.6 Configure and verify secure Internet gateway and web security features such as blacklisting, URL filtering, malware scanning, URL categorization, web application filtering, and TLS decryption
4.7 Describe the components, capabilities, and benefits of Cisco Umbrella
4.8 Configure and verify web security controls on Cisco Umbrella (identities, URL content settings, destination lists, and reporting)

Domain 5: Endpoint Protection and Detection: This domain is covered primarily in Chapter 11.

5.1 Compare Endpoint Protection Platforms (EPPs) and Endpoint Detection & Response (EDR) solutions
5.2 Explain antimalware, retrospective security, Indicator of Compromise (IOC), antivirus, dynamic file analysis, and endpoint-sourced telemetry
5.3 Configure and verify outbreak control and quarantines to limit infection
5.4 Describe justifications for endpoint-based security
5.5 Describe the value of endpoint device management and asset inventory such as MDM
5.6 Describe the uses and importance of a multifactor authentication (MFA) strategy
5.7 Describe endpoint posture assessment solutions to ensure endpoint security
5.8 Explain the importance of an endpoint patching strategy

Domain 6: Secure Network Access, Visibility, and Enforcement: This domain is covered primarily in Chapters 4 and 5.

6.1 Describe identity management and secure network access concepts such as guest services, profiling, posture assessment, and BYOD
6.2 Configure and verify network access device functionality such as 802.1X, MAB, and WebAuth
6.3 Describe network access with CoA
6.4 Describe the benefits of device compliance and application control
6.5 Explain exfiltration techniques (DNS tunneling, HTTPS, email, FTP/SSH/SCP/SFTP, ICMP, Messenger, IRC, and NTP)
6.6 Describe the benefits of network telemetry

6.7 Describe the components, capabilities, and benefits of these security products and solutions:
 6.7.a Cisco Secure Network Analytics
 6.7.b Cisco Stealthwatch Cloud
 6.7.c Cisco pxGrid
 6.7.d Cisco Umbrella Investigate
 6.7.e Cisco Cognitive Threat Analytics
 6.7.f Cisco Encrypted Traffic Analytics
 6.7.g Cisco AnyConnect Network Visibility Module (NVM)

Steps to Pass the SCOR Exam

There are no prerequisites for the SCOR exam. However, students must have an understanding of networking and cybersecurity concepts.

Signing Up for the Exam

The steps required to sign up for the Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam:

2. Once you have logged in, make sure that “Test Candidate” from the drop-down menu is selected.
3. Click on the Shop Available Exams button.
4. Select the Schedule exam button under the exam you wish to take.
5. Verify your information and continue throughout the next few screens.
6. On the Enter payment and billing page, click on Add Voucher or Promo Code button if applicable. Enter the voucher number or promo/discount code in the field below and click the Apply button.
7. Continue through the next two screens to finish scheduling your exam.

Facts About the Exam

The exam is a computer-based test. The exam consists of multiple-choice questions only. You must bring a government-issued identification card. No other forms of ID will be accepted. You can take the exam at a Pearson Vue center or online via the OnVUE platform. Visit the OnVUE page for your exam program: https://home.pearsonvue.com/Test-takers/OnVUE-online-proctoring/View-all.aspx.

Once there, navigate to the FAQs section of the page, where you’ll find helpful information on everything from scheduling your exam to system requirements, testing policies, and more.

TIP Refer to the Cisco Certification site at https://cisco.com/go/certifications for more information regarding this, and other, Cisco certifications.
About the CCNP and CCIE Security Core SCOR 350-701 Official Cert Guide

This book maps directly to the topic areas of the SCOR exam and uses a number of features to help you understand the topics and prepare for the exam.

Objectives and Methods

This book uses several key methodologies to help you discover the exam topics that need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. This book does not try to help you pass the exam only by memorization; it seeks to help you to truly learn and understand the topics. This book is designed to help you pass the Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam by using the following methods:

- Helping you discover which exam topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions on the companion website

Book Features

To help you customize your study time using this book, the core chapters have several features that help you make the best use of your time:

- Foundation Topics: These are the core sections of each chapter. They explain the concepts for the topics in that chapter.

- Exam Preparation Tasks: After the “Foundation Topics” section of each chapter, the “Exam Preparation Tasks” section lists a series of study activities that you should do at the end of the chapter:

 - Review All Key Topics: The Key Topic icon appears next to the most important items in the “Foundation Topics” section of the chapter. The Review All Key Topics activity lists the key topics from the chapter, along with their page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic, so you should review these.

 - Define Key Terms: Although the Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam may be unlikely to ask a question such as “Define this term,” the exam does require that you learn and know a lot of cybersecurity terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your answer to the glossary at the end of the book.
Review Questions: Confirm that you understand the content you just covered by answering these questions and reading the answer explanations.

Web-based practice exam: The companion website includes the Pearson Cert Practice Test engine, which allows you to take practice exam questions. Use it to prepare with a sample exam and to pinpoint topics where you need more study.

How This Book Is Organized
This book contains 11 core chapters—Chapters 1 through 11. Chapter 12 includes preparation tips and suggestions for how to approach the exam. Each core chapter covers a subset of the topics on the Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam. The core chapters map to the SCOR topic areas and cover the concepts and technologies you will encounter on the exam.

The Companion Website for Online Content Review
All the electronic review elements, as well as other electronic components of the book, exist on this book’s companion website.

To access the companion website, which gives you access to the electronic content with this book, start by establishing a login at www.ciscopress.com and registering your book.

To do so, simply go to www.ciscopress.com/register and enter the ISBN of the print book: 97801382221263. After you have registered your book, go to your account page and click the Registered Products tab. From there, click the Access Bonus Content link to get access to the book’s companion website.

Note that if you buy the Premium Edition eBook and Practice Test version of this book from Cisco Press, your book will automatically be registered on your account page. Simply go to your account page, click the Registered Products tab, and select Access Bonus Content to access the book’s companion website.

Please note that many of our companion content files can be very large, especially image and video files.

If you are unable to locate the files for this title by following the steps above, please visit www.pearsonITcertification.com/contact and select the Site Problems/Comments option. Our customer service representatives will assist you.

How to Access the Pearson Test Prep (PTP) App
You have two options for installing and using the Pearson Test Prep application: a web app and a desktop app. To use the Pearson Test Prep application, start by finding the registration code that comes with the book. You can find the code in these ways:

Print book or bookseller eBook versions: You can get your access code by registering the print ISBN (97801382221263) on ciscopress.com/register. Make sure to use the print book ISBN regardless of whether you purchased an eBook or the print book. Once you register the book, your access code will be populated on your account page under the Registered Products tab. Instructions for how to redeem the code are available on the book’s companion website by clicking the Access Bonus Content link.
Premium Edition: If you purchase the Premium Edition eBook and Practice Test directly from the Cisco Press website, the code will be populated on your account page after purchase. Just log in at ciscopress.com, click Account to see details of your account, and click the digital purchases tab.

NOTE After you register your book, your code can always be found in your account under the Registered Products tab.

Once you have the access code, to find instructions about both the PTP web app and the desktop app, follow these steps:

1. **Step 1.** Open this book’s companion website, as shown earlier in this Introduction under the heading “The Companion Website for Online Content Review.”
2. **Step 2.** Click the *Practice Exams* button.
3. **Step 3.** Follow the instructions listed there both for installing the desktop app and for using the web app.

Note that if you want to use the web app only at this point, just navigate to pearsonetest-prep.com, log in using the same credentials used to register your book or purchase the Premium Edition, and register this book’s practice tests using the registration code you just found. The process should take only a couple of minutes.

Customizing Your Exams

Once you are in the exam settings screen, you can choose to take exams in one of three modes:

- **Study mode:** Allows you to fully customize your exams and review answers as you are taking the exam. This is typically the mode you would use first to assess your knowledge and identify information gaps.

- **Practice Exam mode:** Locks certain customization options, as it is presenting a realistic exam experience. Use this mode when you are preparing to test your exam readiness.

- **Flash Card mode:** Strips out the answers and presents you with only the question stem. This mode is great for late-stage preparation when you really want to challenge yourself to provide answers without the benefit of seeing multiple-choice options. This mode does not provide the detailed score reports that the other two modes do, so you should not use it if you are trying to identify knowledge gaps.

In addition to these three modes, you will be able to select the source of your questions. You can choose to take exams that cover all of the chapters or you can narrow your selection to just a single chapter or the chapters that make up specific parts in the book. All chapters are selected by default. If you want to narrow your focus to individual chapters, simply deselect all the chapters and then select only those on which you wish to focus in the Objectives area.
You can also select the exam banks on which to focus. Each exam bank comes complete with a full exam of questions that cover topics in every chapter. The two exams printed in the book are available to you as well as two additional exams of unique questions. You can have the test engine serve up exams from all four banks or just from one individual bank by selecting the desired banks in the exam bank area.

There are several other customizations you can make to your exam from the exam settings screen, such as the time of the exam, the number of questions served up, whether to randomize questions and answers, whether to show the number of correct answers for multiple-answer questions, and whether to serve up only specific types of questions. You can also create custom test banks by selecting only questions that you have marked or questions on which you have added notes.

Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should always have access to the latest version of the software as well as the exam data. If you are using the Windows desktop version, every time you launch the software while connected to the Internet, it checks if there are any updates to your exam data and automatically downloads any changes that were made since the last time you used the software.

Sometimes, due to many factors, the exam data may not fully download when you activate your exam. If you find that figures or exhibits are missing, you may need to manually update your exams. To update a particular exam you have already activated and downloaded, simply click the **Tools** tab and click the **Update Products** button. Again, this is only an issue with the desktop Windows application.

If you wish to check for updates to the Pearson Test Prep exam engine software, Windows desktop version, simply click the **Tools** tab and click the **Update Application** button. This ensures that you are running the latest version of the software engine.
CHAPTER 3

Software-Defined Networking Security and Network Programmability

This chapter covers the following topics:

- Software-Defined Networking (SDN) and SDN Security
- Network Programmability

This chapter starts with an introduction to SDN and different SDN security concepts, such as centralized policy management and micro-segmentation. This chapter also introduces SDN solutions such as Cisco ACI and modern networking environments such as Cisco DNA. You will also learn what network overlays are and what they are trying to solve.

The second part of this chapter provides an overview of network programmability and how networks are being managed using modern application programming interfaces (APIs) and other functions. This chapter also includes dozens of references that are available to enhance your learning.

The following SCOR 350-701 exam objectives are covered in this chapter:

- Domain 1: Security Concepts
 - 1.7 Explain northbound and southbound APIs in the SDN architecture
 - 1.8 Explain DNA Center (DNAC) APIs for network provisioning, optimization, monitoring, and troubleshooting

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read this entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in doubt about your answers to these questions or your own assessment of your knowledge of the topics, read the entire chapter. Table 3-1 lists the major headings in this chapter and their corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes and Q&A Sections.”

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software-Defined Networking (SDN) and SDN Security</td>
<td>1–5</td>
</tr>
<tr>
<td>Introduction to Network Programmability</td>
<td>6–10</td>
</tr>
</tbody>
</table>
CAUTION The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of the self-assessment. Giving yourself credit for an answer you incorrectly guess skews your self-assessment results and might provide you with a false sense of security.

1. Which of the following are the three different “planes” in traditional networking?
 a. The management, control, and data planes
 b. The authorization, authentication, and accountability planes
 c. The authentication, control, and data planes
 d. None of these answers are correct.

2. Which of the following is true about Cisco ACI?
 a. Spine nodes interconnect leaf devices, and they can also be used to establish connections from a Cisco ACI pod to an IP network or interconnect multiple Cisco ACI pods.
 b. Leaf switches provide the Virtual Extensible LAN (VXLAN) tunnel endpoint (VTEP) function.
 c. The APIC manages the distributed policy repository responsible for the definition and deployment of the policy-based configuration of the Cisco ACI infrastructure.
 d. All of these answers are correct.

3. Which of the following is used to create network overlays?
 a. SDN-Lane
 b. VXLAN
 c. VXWAN
 d. None of these answers are correct.

4. Which of the following is an identifier or a tag that represents a logical segment?
 a. VXLAN Network Identifier (VNID)
 b. VXLAN Segment Identifier (VSID)
 c. ACI Network Identifier (ANID)
 d. Application Policy Infrastructure Controller (APIC)

5. Which of the following is network traffic between servers (virtual servers or physical servers), containers, and so on?
 a. East-west traffic
 b. North-south traffic
 c. Micro-segmentation
 d. Network overlays
6. Which of the following is an HTTP status code message range related to successful HTTP transactions?
 a. Messages in the 100 range
 b. Messages in the 200 range
 c. Messages in the 400 range
 d. Messages in the 500 range

7. Which of the following is a Python package that can be used to interact with REST APIs?
 a. argparse
 b. requests
 c. rest_api_pkg
 d. None of these answers are correct.

8. Which of the following is a type of API that exclusively uses XML?
 a. APIC
 b. REST
 c. SOAP
 d. GraphQL

9. Which of the following is a modern framework of API documentation and is now the basis of the OpenAPI Specification (OAS)?
 a. SOAP
 b. REST
 c. Swagger
 d. WSDL

10. Which of the following can be used to retrieve a network device configuration?
 a. RESTCONF
 b. NETCONF
 c. SNMP
 d. All of these answers are correct.

Foundation Topics

Software-Defined Networking (SDN) and SDN Security

In the last decade there have been several shifts in networking technologies. Some of these changes are due to the demand of modern applications in very diverse environments and the cloud. This complexity introduces risks, including network configuration errors that can cause significant downtime and network security challenges.

Subsequently, networking functions such as routing, optimization, and security have also changed. The next generation of hardware and software components in enterprise networks must support both the rapid introduction and the rapid evolution of new technologies and solutions. Network infrastructure solutions must keep pace with the business environment and support modern capabilities that help drive simplification within the network.
These elements have fueled the creation of software-defined networking (SDN). SDN was originally created to decouple control from the forwarding functions in networking equipment. This is done to use software to centrally manage and “program” the hardware and virtual networking appliances to perform forwarding.

Traditional Networking Planes

In traditional networking, there are three different “planes” or elements that allow network devices to operate: the management, control, and data planes. Figure 3-1 shows a high-level explanation of each of the planes in traditional networking.

<table>
<thead>
<tr>
<th>Management Plane</th>
<th>Control Plane</th>
<th>Data Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Configuration and monitoring</td>
<td>• Layer 2 protocols and control</td>
<td>• Institutes how data is forwarded inside the hardware from interface to interface</td>
</tr>
<tr>
<td>• Typically done via the traditional CLI or GUI</td>
<td>• Layer 3 protocols (e.g., OSPF, RIP, BGP, etc.)</td>
<td></td>
</tr>
<tr>
<td>• Each vendor has its proprietary way to configure its devices</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-1 *The Management, Control, and Data Planes*

The control plane has always been separated from the data plane. There was no central brain (or controller) that controlled the configuration and forwarding. Let’s take a look at the example shown in Figure 3-2. Routers, switches, and firewalls were managed by the command-line interface (CLI), graphical user interfaces (GUIs), and custom Tcl scripts. For instance, the firewalls were managed by the Adaptive Security Device Manager (ASDM), while the routers were managed by the CLI.

Figure 3-2 *Traditional Network Management Solutions*

Each device in Figure 3-2 has its “own brain” and does not really exchange any intelligent information with the rest of the devices.
So What’s Different with SDN?

SDN introduced the notion of a centralized controller. The SDN controller has a global view of the network, and it uses a common management protocol to configure the network infrastructure devices. The SDN controller can also calculate reachability information from many systems in the network and pushes a set of flows inside the switches. The flows are used by the hardware to do the forwarding. Here you can see a clear transition from a distributed “semi-intelligent brain” approach to a “central and intelligent brain” approach.

TIP

An example of an open-source implementation of SDN controllers is the Open vSwitch (OVS) project using the OVS Database (OVSDB) management protocol and the OpenFlow protocol. Another example is the Cisco Application Policy Infrastructure Controller (Cisco APIC). Cisco APIC is the main architectural component and the brain of the Cisco Application Centric Infrastructure (ACI) solution. A great example of this is Cisco ACI, which is discussed in the next section of the chapter.

SDN changed a few things in the management, control, and data planes. However, the big change was in the control and data planes in software-based switches and routers (including virtual switches inside of hypervisors). For instance, the Open vSwitch project started some of these changes across the industry.

SDN provides numerous benefits in the management plane. These benefits are in both physical switches and virtual switches. SDN is now widely adopted in data centers. A great example of this is Cisco ACI.

Introduction to the Cisco ACI Solution

Cisco ACI provides the ability to automate setting networking policies and configurations in a very flexible and scalable way. Figure 3-3 illustrates the concept of a centralized policy and configuration management in the Cisco ACI solution.

The Cisco ACI scenario shown in Figure 3-3 uses a leaf-and-spine topology. Each leaf switch is connected to every spine switch in the network with no interconnection between leaf switches or spine switches.

The leaf switches have ports connected to traditional Ethernet devices (for example, servers, firewalls, routers, and so on). Leaf switches are typically deployed at the edge of the fabric. These leaf switches provide the Virtual Extensible LAN (VXLAN) tunnel endpoint (VTEP) function. VXLAN is a network virtualization technology that leverages an encapsulation technique (similar to VLANs) to encapsulate Layer 2 Ethernet frames within UDP packets (over UDP port 4789, by default).

NOTE

The section “VXLAN and Network Overlays,” later in the chapter, will discuss VXLAN and overlays in more detail.

In Cisco ACI, the IP address that represents the leaf VTEP is called the physical tunnel endpoint (PTEP). The leaf switches are responsible for routing or bridging tenant packets and for applying network policies.
Spine nodes interconnect leaf devices, and they can also be used to establish connections from a Cisco ACI pod to an IP network or to interconnect multiple Cisco ACI pods. Spine switches store all the endpoint-to-VTEP mapping entries. All leaf nodes connect to all spine nodes within a Cisco ACI pod. However, no direct connectivity is allowed between spine nodes or between leaf nodes.

NOTE All workloads in Cisco ACI connect to leaf switches. The leaf switches used in a Cisco ACI fabric are Top-of-the-Rack (ToR) switches. The acronym “ToR” here is not the same as “The Onion Router” (a solution used for anonymity and to access the “deep web”).

The APIC can be considered a policy and a topology manager. APIC manages the distributed policy repository responsible for the definition and deployment of the policy-based configuration of the Cisco ACI infrastructure. APIC also manages the topology and inventory information of all devices within the Cisco ACI pod.
The following are additional functions of the APIC:

- The APIC “observer” function monitors the health, state, and performance information of the Cisco ACI pod.
- The “boot director” function is in charge of the booting process and firmware updates of the spine switches, leaf switches, and the APIC components.
- The “appliance director” APIC function manages the formation and control of the APIC appliance cluster.
- The “virtual machine manager (VMM)” is an agent between the policy repository and a hypervisor. The VMM interacts with hypervisor management systems (for example, VMware vCenter).
- The “event manager” manages and stores all the events and faults initiated from the APIC and the Cisco ACI fabric nodes.
- The “appliance element” maintains the inventory and state of the local APIC appliance.

TIP

VXLAN and Network Overlays
Modern networks and data centers need to provide load balancing, better scalability, elasticity, and faster convergence. Many organizations use the overlay network model. Deploying an overlay network allows you to tunnel Layer 2 Ethernet packets with different encapsulations over a Layer 3 network. The overlay network uses “tunnels” to carry the traffic across the Layer 3 fabric. This solution also needs to allow the “underlay” to separate network flows between different “tenants” (administrative domains). The solution also needs to switch packets within the same Layer 2 broadcast domain, route traffic between Layer 3 broadcast domains, and provide IP separation, traditionally done via virtual routing and forwarding (VRF).

There have been multiple IP tunneling mechanisms introduced throughout the years. The following are a few examples of tunneling mechanisms:

- Virtual Extensible LAN (VXLAN)
- Network Virtualization using Generic Routing Encapsulation (NVGRE)
- Stateless Transport Tunneling (STT)
- Generic Network Virtualization Encapsulation (GENEVE)

All of the aforementioned tunneling protocols carry an Ethernet frame inside an IP frame. The main difference between them is in the type of the IP frame used. For instance, VXLAN uses UDP, and STT uses TCP.
The use of UDP in VXLAN enables routers to apply hashing algorithms on the outer UDP header to load balance network traffic. Network traffic that is riding the overlay network tunnels is load balanced over multiple links using equal-cost multi-path routing (ECMP). This introduces a better solution compared to traditional network designs. In traditional network designs, access switches connect to distribution switches. This causes redundant links to block due to spanning tree.

VXLAN uses an identifier or a tag that represents a logical segment that is called the VXLAN Network Identifier (VNID). The logical segment identified with the VNID is a Layer 2 broadcast domain that is tunneled over the VTEP tunnels.

Figure 3-4 shows an example of an overlay network that provides Layer 2 capabilities.

Figure 3-5 shows an example of an overlay network that provides Layer 3 routing capabilities.

Figure 3-6 illustrates the VXLAN frame format for your reference.
Micro-Segmentation

For decades, servers were assigned subnets and VLANs. Sounds pretty simple, right? Well, this introduced a lot of complexities because application segmentation and policies were physically restricted to the boundaries of the VLAN within the same data center (or even in “the campus”). In virtual environments, the problem became harder. Nowadays applications can move around between servers to balance loads for performance or high availability upon failures. They also can move between different data centers and even different cloud environments.

Traditional segmentation based on VLANs constrains you to maintain the policies of which application needs to talk to which application (and who can access such applications) in centralized firewalls. This is ineffective because most traffic in data centers is now “East-West” traffic. A lot of that traffic does not even hit the traditional firewall. In virtual environments, a lot of the traffic does not even leave the physical server.

Let’s define what people refer to as “East-West” traffic and “North-South” traffic. “East-West” traffic is network traffic between servers (virtual servers or physical servers, containers, and so on).

“North-South” traffic is network traffic flowing in and outside the data center. Figure 3-7 illustrates the concepts of “East-West” and “North-South” traffic.

Many vendors have created solutions where policies applied to applications are independent from the location or the network tied to the application.

For example, let’s suppose that you have different applications running in separate VMs and those applications also need to talk to a database (as shown in Figure 3-8).
You need to apply policies to restrict if application A needs or does not need to talk to application B, or which application should be able to talk to the database. These policies should not be bound by which VLAN or IP subnet the application belongs to and whether it is in the same rack or even in the same data center. Network traffic should not make multiple trips back and forth between the applications and centralized firewalls to enforce policies between VMs.

Containers make this a little harder because they move and change more often. Figure 3-9 illustrates a high-level representation of applications running inside of containers (for example, Docker containers).
The ability to enforce network segmentation in those environments is called “micro-segmentation.” Micro-segmentation is at the VM level or between containers regardless of a VLAN or a subnet. Micro-segmentation solutions need to be “application aware.” This means that the segmentation process starts and ends with the application itself.

Most micro-segmentation environments apply a “zero-trust model.” This model dictates that users cannot talk to applications, and applications cannot talk to other applications unless a defined set of policies permits them to do so.

Open-Source Initiatives

Several open-source projects are trying to provide micro-segmentation and other modern networking benefits. Examples include the following:

- Neutron from OpenStack
- Open vSwitch (OVS)
- Open Virtual Network (OVN)
- OpenDaylight (ODL)
- Open Platform for Network Function Virtualization (OPNFV)
- Contiv

The concept of SDN is very broad, and every open-source provider and commercial vendor takes it in a different direction. The networking component of OpenStack is called Neutron. Neutron is designed to provide “networking as a service” in private, public, and hybrid cloud environments. Other OpenStack components, such as Horizon (Web UI) and Nova (compute service), interact with Neutron using a set of APIs to configure the networking services. Neutron uses plug-ins to deliver advanced networking capabilities and allow third-party vendor integration. Neutron has two main components: the neutron server and a database that handles persistent storage and plug-ins to provide additional services. Additional information about Neutron and OpenStack can be found at https://docs.openstack.org/neutron/latest.

OVN was originally created by the folks behind Open vSwitch (OVS) for the purpose of bringing an open-source solution for virtual network environments and SDN. Open vSwitch is an open-source implementation of a multilayer virtual switch inside the hypervisor.

NOTE You can download Open vSwitch and access its documentation at https://www.openvswitch.org.
OVN is often used in OpenStack implementations with the use of OVS. You can also use OVN with the OpenFlow protocol. OpenStack Neutron uses OVS as the default “control plane.”

NOTE You can access different tutorials about OVN and OVS at http://docs.openvswitch.org/en/latest/tutorials/.

OpenDaylight (ODL) is another popular open-source project that is focused on the enhancement of SDN controllers to provide network services across multiple vendors. OpenDaylight participants also interact with the OpenStack Neutron project and attempt to solve the existing inefficiencies.

OpenDaylight interacts with Neutron via a northbound interface and manages multiple interfaces southbound, including the Open vSwitch Database Management Protocol (OVSDB) and OpenFlow.

TIP You can find more information about OpenDaylight at https://www.opendaylight.org. Cisco has several tutorials and additional information about OpenDaylight in DevNet at https://developer.cisco.com/site/opendaylight/.

So, what is a northbound and southbound API? In an SDN architecture, southbound APIs are used to communicate between the SDN controller and the switches and routers within the infrastructure. These APIs can be open or proprietary.

NOTE Cisco provides detailed information about the APIs supported in all platforms in DevNet (developer.cisco.com). DevNet will be discussed in detail later in this chapter.

Southbound APIs enable SDN controllers to dynamically make changes based on real-time demands and scalability needs. OpenFlow and Cisco OpFlex provide southbound API capabilities.

Northbound APIs (SDN northbound APIs) are typically RESTful APIs that are used to communicate between the SDN controller and the services and applications running over the network. Such northbound APIs can be used for the orchestration and automation of the network components to align with the needs of different applications via SDN network programmability. In short, northbound APIs are basically the link between the applications and the SDN controller. In modern environments, applications can tell the network devices (physical or virtual) what type of resources they need and, in turn, the SDN solution can provide the necessary resources to the application.

Cisco has the concept of intent-based networking. On different occasions, you may see northbound APIs referred to as “intent-based APIs.”

More About Network Function Virtualization

Network virtualization is used for logical groupings of nodes on a network. The nodes are abstracted from their physical locations so that VMs and any other assets can be managed as if they are all on the same physical segment of the network. This is not a new technology.
However, it is still one that is key in virtual environments where systems are created and moved despite their physical location.

Network Functions Virtualization (NFV) is a technology that addresses the virtualization of Layer 4 through Layer 7 services. These include load balancing and security capabilities such as firewall-related features. In short, with NFV, you convert certain types of network appliances into VMs. NFV was created to address the inefficiencies that were introduced by virtualization.

NFV allows you to create a virtual instance of a virtual node such as a firewall that can be deployed where it is needed, in a flexible way that’s similar to what you do with a traditional VM.

Open Platform for Network Function Virtualization (OPNFV) is an open-source solution for NFV services. It aims to be the base infrastructure layer for running virtual network functions. You can find detailed information about OPNFV at opnfv.org.

NFV nodes such as virtual routers and firewalls need an underlying infrastructure:

- A hypervisor to separate the virtual routers, switches, and firewalls from the underlying physical hardware. The hypervisor is the underlying virtualization platform that allows the physical server (system) to operate multiple VMs (including traditional VMs and network-based VMs).
- A virtual forwarder to connect individual instances.
- A network controller to control all of the virtual forwarders in the physical network.
- A VM manager to manage the different network-based VMs.

Figure 3-10 demonstrates the high-level components of the NFV architecture.
Several NFV infrastructure components have been created in open community efforts. On the other hand, traditionally, the actual integration has so far remained a “private” task. You’ve either had to do it yourself, outsource it, or buy a pre-integrated system from some vendor, keeping in mind that the systems integration undertaken is not a one-time task. OPNFV was created to change the NFV ongoing integration task from a private solution into an open community solution.

NFV MANO

NFV changes the way networks are managed. NFV management and network orchestration (MANO) is a framework and working group within the European Telecommunications Standards Institute (ETSI) Industry Specification Group for NFV (ETSI ISG NFV). NFV MANO is designed to provide flexible onboarding of network components. NFV MANO is divided into the three functional components listed in Figure 3-11.

<table>
<thead>
<tr>
<th>NFV Orchestrator</th>
<th>VNF Manager</th>
<th>Virtualized Infrastructure Manager (VIM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Onboards (orchestrates) new network services (NS) and virtual network function (VNF) packages.</td>
<td>• Oversees lifecycle management of VNF instances.</td>
<td>• Controls and manages the NFVI compute, storage, and network resources.</td>
</tr>
<tr>
<td>• The NFV Orchestrator is also responsible for the lifecycle management; global resource management; validation and authorization of network functions virtualization infrastructure (NFVI) resource requests.</td>
<td>• Coordinates configuration and event reporting between NFV infrastructure (NFVI) and Element/Network Management Systems.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-11 NFV MANO Functional Components

The NFV MANO architecture is integrated with open application program interfaces (APIs) in the existing systems. The MANO layer works with templates for standard VNFs. It allows implementers to pick and choose from existing NFV resources to deploy their platform or element.

Contiv

Contiv is an open-source project that allows you to deploy micro-segmentation policy-based services in container environments. It offers a higher level of networking abstraction for microservices by providing a policy framework. Contiv has built-in service discovery and service routing functions to allow you to scale out services.

NOTE You can download Contiv and access its documentation at https://contiv.io.

With Contiv you can assign an IP address to each container. This feature eliminates the need for host-based port NAT. Contiv can operate in different network environments such as traditional Layer 2 and Layer 3 networks, as well as overlay networks.

Contiv can be deployed with all major container orchestration platforms (or schedulers) such as Kubernetes and Docker Swarm. For instance, Kubernetes can provide compute resources to containers and then Contiv provides networking capabilities.
Contiv supports Layer 2, Layer 3 (BGP), VXLAN for overlay networks, and Cisco ACI mode. It also provides built-in east-west service load balancing and traffic isolation.

The Netmaster and Netplugin (Contiv host agent) are the two major components in Contiv. Figure 3-12 illustrates how the Netmaster and the Netplugin interact with all the underlying components of the Contiv solution.

Figure 3-12 Contiv Netmaster and Netplugin (Contiv Host Agent) Components

ThousandEyes Integration

ThousandEyes, the leading network intelligence Software as a Service (SaaS) platform, has taken its partnership with Cisco to the next level. The integration of ThousandEyes into the Cisco Nexus 9000 Series data center switches, powered by NX-OS/Data Center Network Manager (DCNM), and its integration into Cisco ACI fabrics, delivers a powerful combination of network visibility and control.

With the Cisco ThousandEyes Enterprise Agent (TEA), users can now monitor their network's performance from a global perspective, utilizing a range of tests to assess BGP routing, DNS resolution, browser response times, network pathing and connectivity, routing status, and VoIP streaming quality. This integration offers unparalleled insight and control to help organizations optimize their network performance. ThousandEyes provides numerous monitoring capabilities including the following:

- API Monitoring
- BGP Monitoring
- CDN Monitoring
- Customer Digital Experience
- DDoS Monitoring
- DNS Monitoring
- Enterprise Digital Experience
- Hybrid WAN Monitoring
- Network Device Monitoring
- Network Monitoring
- IaaS Monitoring
- ISP Monitoring
- Multi-cloud Monitoring
- SaaS Monitoring
- SD-WAN Monitoring
- VPN Monitoring
- Website Monitoring
- Wi-Fi and LAN Monitoring

Cisco Digital Network Architecture (DNA)

Cisco DNA is a solution created by Cisco that is often referred to as the “intent-based networking” solution. Cisco DNA provides automation and assurance services across campus networks, wide area networks (WANs), and branch networks. Cisco DNA is based on an open and extensible platform and provides the policy, automation, and analytics capabilities, as illustrated in Figure 3-13.

![Cisco DNA High-Level Architecture](Figure 3-13)

The heart of the Cisco DNA solution is Cisco DNA Center (DNAC). DNAC is a command-and-control element that provides centralized management via dashboards and APIs. Figure 3-14 shows one of the many dashboards of Cisco DNA Center (the Network Hierarchy dashboard).
Cisco DNA Center can be integrated with external network and security services such as the Cisco Identity Services Engine (ISE). Figure 3-15 shows how the Cisco ISE is configured as an authentication, authorization, and accounting (AAA) server in the Cisco DNA Center Network Settings screen.
Cisco DNA Policies

The following are the policies you can create in the Cisco DNA Center:

- Group-based access control policies
- IP-based access control policies
- Application access control policies
- Traffic copy policies

Figure 3-16 shows the Cisco DNA Center Policy Overview dashboard matrix visualization. Here, you can see the number of active policies based on the security groups, Cisco Identity Services Engine (ISE) profiles, and Cisco Secure Network Analytics (formerly known as Stealthwatch) host groups. Using the dashboard shown in Figure 3-16, you can create new policies.

Figure 3-16 Cisco DNA Center Policy Overview Dashboard

Figure 3-17 shows the policy analytics for the ISE profiles. Cisco DNA Center empowers you with intelligence and analytics to make informed decisions about your network. With its visual representation of communication between assets, you can easily create group-based policies, evaluate the effects of new access controls, and determine the precise protocols that should be included in your policies. This comprehensive solution provides you with a clear understanding of your network, enabling you to take control and optimize its performance.

Figure 3-18 shows the policy matrix. The matrix view enables you to have a comprehensive overview of all the source and destination policies and grasp the overall policy structure. You can view, create, and modify access control policies from the policy matrix view itself.
Figure 3-17 *Policy Analytics for the ISE Profiles in DNA Center*

Figure 3-18 *DNA Center Policy Matrix*

The matrix view has two components:

- **Source axis**: The vertical axis displays a list of all the source security groups.
- **Destination axis**: The horizontal axis presents a list of all the destination security groups.
By hovering over a cell, you can view the policy for a specific combination of source and destination security groups. The color of a cell represents the policy that is in effect, with the following color coding:

- Allow: Green
- Block: Red
- Custom: Gold
- Default: Gray

Cisco DNA Group-Based Access Control Policy

When you configure group-based access control policies, you need to integrate the Cisco ISE with Cisco DNA Center, as you learned previously in this chapter. In Cisco ISE, you configure the work process setting as “Single Matrix” so that there is only one policy matrix for all devices in the TrustSec network. You will learn more about Cisco TrustSec and Cisco ISE in Chapter 4, “Authentication, Authorization, Accounting (AAA) and Identity Management.”

Depending on your organization’s environment and access requirements, you can segregate your groups into different virtual networks to provide further segmentation.

After Cisco ISE is integrated in Cisco DNA Center, the scalable groups that exist in Cisco ISE are propagated to Cisco DNA Center. If a scalable group that you need does not exist, you can create it in Cisco ISE.

NOTE You can access Cisco ISE through the Cisco DNA Center interface to create scalable groups. After you have added a scalable group in Cisco ISE, it is synchronized with the Cisco DNA Center database so that you can use it in an access control policy. You cannot edit or delete scalable groups from Cisco DNA Center; you need to perform these tasks from Cisco ISE.

Cisco DNA Center has the concept of access control contracts. A contract specifies a set of rules that allow or deny network traffic based on such traffic matching particular protocols or ports. Figure 3-19 shows a new contract being created in Cisco DNA Center to allow SSH access (TCP port 22).

To create a contract, navigate to Policy > Group-Based Access Control > Access Contract and click Add Contract. The dialog box shown in Figure 3-19 will be displayed.

Figure 3-20 shows an example of how to create a group-based access control policy.

In Figure 3-20, an access control policy named omar_policy is configured to deny traffic from all users and related devices in the group called Guests to any user or device in the Finance group.
Figure 3-19 Adding a Cisco DNA Center Contract

Figure 3-20 Adding a Cisco DNA Center Group-Based Access Control Policy
Cisco DNA IP-Based Access Control Policy

You can also create IP-based access control policies in Cisco DNA Center. To create IP-based access control policies, navigate to Policy > IP Based Access Control > IP Based Access Control Policies, as shown in Figure 3-21.

![Cisco DNA Center IP-Based Access Control Policy](image)

Figure 3-21 Adding a Cisco DNA Center IP-Based Access Control Policy

In the example shown in Figure 3-21, a policy is configured to permit Omar’s PC to communicate with h4cker.org.

NOTE An IP network group named h4cker_website is already configured. To configure IP network groups, navigate to Policy > IP Based Access Control > IP Network Groups. These IP network groups can also be automatically populated from Cisco ISE.

You can also associate these policies to specific wireless SSIDs. The corp-net SSID is associated to the policy entry in Figure 3-21.

Cisco DNA Application Policies

Application policies can be configured in Cisco DNA Center to provide Quality of Service (QoS) capabilities. The following are the Application Policy components you can configure in Cisco DNA Center:

- Applications
- Application sets
Application policies

Queuing profiles

Applications in Cisco DNA Center are the software programs or network signaling protocols that are being used in your network.

NOTE Cisco DNA Center supports all of the applications in the Cisco Next Generation Network-Based Application Recognition (NBAR2) library.

Applications can be grouped into logical groups called *application sets*. These application sets can be assigned a business relevance within a policy.

You can also map applications to industry standard-based traffic classes, as defined in RFC 4594.

Cisco DNA Traffic Copy Policy

You can also use an Encapsulated Remote Switched Port Analyzer (ERSSPAN) configuration in Cisco DNA Center so that the IP traffic flow between two entities is copied to a given destination for monitoring or troubleshooting. In order for you to configure ERSPAN using Cisco DNA Center, you need to create a traffic copy policy that defines the source and destination of the traffic flow you want to copy. To configure a traffic copy policy, navigate to Policy > Traffic Copy > Traffic Copy Policies, as shown in Figure 3-22.

![Figure 3-22 Adding a Traffic Copy Policy](image-url)
You can also define a traffic copy contract that specifies the device and interface where the copy of the traffic is sent.

Cisco DNA Center Assurance Solution

The Cisco DNA Center Assurance solution allows you to get contextual visibility into network functions with historical, real-time, and predictive insights across users, devices, applications, and the network. The goal is to provide automation capabilities to reduce the time spent on network troubleshooting.

Figure 3-23 shows the Cisco DNA Center Assurance Overall Health dashboard.

![Cisco DNA Center Assurance Overall Health Dashboard](image)

Figure 3-23 The Cisco DNA Center Assurance Overall Health Dashboard

The Cisco DNA Center Assurance solution allows you to investigate different networkwide (global) issues, as shown in Figure 3-24.

The Cisco DNA Center Assurance solution also allows you to configure sensors to test the health of wireless networks. A wireless network includes access point (AP) radios, WLAN configurations, and wireless network services. Sensors can be dedicated or on-demand sensors. A dedicated sensor is when an AP is converted into a sensor, and it stays in sensor mode (is not used by wireless clients) unless it is manually converted back into AP mode. An on-demand sensor is when an AP is temporarily converted into a sensor to run tests. After the tests are complete, the sensor goes back to AP mode. Figure 3-25 shows statistics about wired and wireless clients.
Figure 3-24 The Cisco DNA Center Assurance Top 10 Issues Types

Figure 3-25 The Cisco DNA Center Wireless and Wired Client Statistics
Cisco DNA Center APIs

One of the key benefits of the Cisco DNA Center is the comprehensive available APIs (aka Intent APIs). The Intent APIs are northbound REST APIs that expose specific capabilities of the Cisco DNA Center platform. These APIs provide policy-based abstraction of business intent, allowing you to focus on an outcome to achieve instead of struggling with the mechanisms that implement that outcome. The APIs conform to the REST API architectural style and are simple, extensible, and secure to use.

Cisco DNA Center also has several integration APIs. These integration capabilities are part of westbound interfaces. Cisco DNA Center also allows administrators to manage their non-Cisco devices. Multivendor support comes to Cisco DNA Center through the use of an SDK that can be used to create device packages for third-party devices. A device package enables Cisco DNA Center to communicate with third-party devices by mapping Cisco DNA Center features to their southbound protocols.

TIP Cisco has very comprehensive documentation and tutorials about the Cisco DNA Center APIs at DevNet (https://developer.cisco.com/dnacenter).

Cisco DNA Center also has several events and notifications services that allow you to capture and forward Cisco DNA Assurance and Automation (SWIM) events to third-party applications via a webhook URL.

All Cisco DNA Center APIs conform to the REST API architectural styles.

NOTE A REST endpoint accepts and returns HTTPS messages that contain JavaScript Object Notation (JSON) documents. You can use any programming language to generate the messages and the JSON documents that contain the API methods. These APIs are governed by the Cisco DNA Center Role-Based Access Control (RBAC) rules and as a security measure require the user to authenticate successfully prior to using the API.

You can view information about all the Cisco DNA Center APIs by clicking the Platform tab and navigating to Developer Toolkit > APIs.

TIP All REST requests in Cisco DNA Center require authentication. The Authentication API generates a security token that encapsulates the privileges of an authenticated REST caller. All requested operations are authorized by Cisco DNA Center according to the access privileges associated with the security token that is sent in the request.

Cisco is always expanding the capabilities of the Cisco DNA Center APIs. Please study and refer to the following API documentation and tutorials for the most up-to-date capabilities: https://developer.cisco.com/docs/dna-center and https://developer.cisco.com/site/dna-center-rest-api.

Cisco DNA Security Solution

The Cisco DNA Security solution supports several other security products and operations that allow you to detect and contain cybersecurity threats. One of the components of the...
Cisco DNA Security solution is the Encrypted Traffic Analytics (ETA) solution. Cisco ETA allows you to detect security threats in encrypted traffic without decrypting the packets. It is able to do this by using machine learning and other capabilities. To use Encrypted Traffic Analytics, you need one of the following network devices along with Cisco Secure Network Analytics (formerly known as Stealthwatch):

- Catalyst 9000 switches
- ASR 1000 Series routers
- ISR 4000 Series routers
- CSR 1000V Series virtual routers
- ISR 1000 Series routers
- Catalyst 9800 Series wireless controllers

Cisco Secure Network Analytics provides network visibility and security analytics to rapidly detect and contain threats. You will learn more about the Cisco Secure Network Analytics solution in Chapter 5, “Network Visibility and Segmentation.”

As you learned in previous sections of this chapter, the Cisco TrustSec solution and Cisco ISE enable you to control networkwide access, enforce security policies, and help meet compliance requirements.

Cisco DNA Multivendor Support

Cisco DNA Center now allows customers to manage their non-Cisco devices. Multivendor support comes to Cisco DNA Center through the use of an SDK that can be used to create device packages for third-party devices. A device package enables Cisco DNA Center to communicate with third-party devices by mapping Cisco DNA Center features to their southbound protocols. Multivendor support capabilities are based on southbound interfaces. These interfaces interact directly with network devices by means of CLI, SNMP, or NETCONF.

NOTE Southbound interfaces are not exposed to the consumer. Instead, the consumer uses Intent APIs, which abstract the underlying complexity of the traditional network. The user of Intent APIs need not be concerned with the particular protocols that the southbound interfaces use to implement network intent on devices that Cisco DNA Center supports.

Introduction to Network Programmability

As you were able to see in previous sections of this chapter, learning to code and work with programmable infrastructures is very important in today’s environment. You saw the value of using APIs. Whether you have configured large networks in the past or are just getting started, you know that this probably involved a lot of clicking, typing, copying-and-pasting, and many repetitive tasks. Nowadays, modern APIs enable you to complete powerful tasks, reduce all the repetitive work, and save time.
Using APIs, you can make requests like the ones shown in Figure 3-26 in a very simple way.

Figure 3-26 Using Network Infrastructure Device APIs

Modern Programming Languages and Tools

Modern programming languages like JavaScript, Python, Go, Swift, and others are more flexible and easier to learn than their predecessors. You might wonder what programming language you should learn first. Python is one of the programming languages recommended to learn first—not only for network programmability, but for many other scenarios.

TIP Many different sites allow you to get started with Python. The following are several great resources to learn Python:

- Learn Python dot org: https://www.learnpython.org
- W3 Schools Python tutorials: https://www.w3schools.com/python/
- The Python Tutorial: https://docs.python.org/3/tutorial/

Combining programming capabilities with developer tools like Git (GitHub or GitLab repositories), package management systems, virtual environments, and integrated development environments (IDEs) allows you to create your own set of powerful tools and workflows.

Another amazing thing is the power of code reuse and online communities. In the past, when you wanted to create some program, you often had to start “from scratch.” For example, if you wanted to just make an HTTPS web request, you had to create code to open a TCP connection over port 443, perform the TLS negotiation, exchange and validate certificates, and format and interpret HTTP requests and responses.

Nowadays, you can just use open-source software in GitHub or simply use packages such as the Python requests package, as shown in Figure 3-27.

In Figure 3-27, the Python package called requests is installed using the package manager for Python called pip (https://pypi.org/project/pip). The requests library allows you to make HTTP/HTTPS requests in Python very easily.

Now that you have the requests package installed, you can start making HTTP requests, as shown in Figure 3-28.
Figure 3-27 Installing the Python Requests Package Using pip

Figure 3-28 Using the Python Requests Package

In Figure 3-28, the interactive Python shell (interpreter) is used to use (import) the requests package and send an HTTP GET request to the website at https://h4cker.org. The HTTP GET request is successful and the 200 message/response is shown.
Additional information about the Python interpreter can be found at https://docs.python.org/3/tutorial/interpreter.html and https://www.python-course.eu/python3_interactive.php.

TIP The W3 schools website has a very good explanation of the HTTP status code messages at https://www.w3schools.com/tags/ref_httpmessages.asp.

The HTTP status code messages can be in the following ranges:

- Messages in the 100 range are informational.
- Messages in the 200 range are related to successful transactions.
- Messages in the 300 range are related to HTTP redirections.
- Messages in the 400 range are related to client errors.
- Messages in the 500 range are related to server errors.

When HTTP servers and browsers communicate with each other, they perform interactions based on headers as well as body content. The HTTP Request has the following structure:

1. The METHOD, which in this example is an HTTP GET. However, the HTTP methods can be the following:
 - **GET**: Retrieves information from the server.
 - **HEAD**: Basically, this is the same as a GET, but it returns only HTTP headers and no document body.
 - **POST**: Sends data to the server (typically using HTML forms, API requests, and the like).
 - **TRACE**: Does a message loopback test along the path to the target resource.
 - **PUT**: Uploads a representation of the specified URI.
 - **DELETE**: Deletes the specified resource.
 - **OPTIONS**: Returns the HTTP methods that the server supports.
 - **CONNECT**: Converts the request connection to a transparent TCP/IP tunnel.

2. The URI and the path-to-resource field represent the path portion of the requested URL.

3. The request version-number field specifies the version of HTTP used by the client.

4. The user agent is Chrome in this example, and it was used to access the website. In the packet capture, you see the following:

   ```
   User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4)
   AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36
   ```

5. Next, you see several other fields like accept, accept-language, accept encoding, and others.

6. The server, after receiving this request, generates a response.
7. The server response has a three-digit status code and a brief human-readable explanation of the status code. Then below you see the text data (which is the HTML code coming back from the server and displaying the website contents).

TIP The requests Python package is used often to interact with APIs. You can obtain more information about the requests Python package at https://realpython.com/python-requests and https://developer.cisco.com/learning/labs/dne-intro-python-basics/introduction/.

DevNet

DevNet is a platform created by Cisco that has numerous resources for network and application developers. DevNet is an amazing resource that includes many tutorials, free video courses, sandboxes, learning paths, and sample code to interact with many APIs. You can access DevNet at developer.cisco.com.

If you are new to programming and network programmability, you can take advantage of the following DevNet tutorials and learning paths:

- **Introduction to Coding and APIs**: https://developer.cisco.com/startnow
- **DevNet GitHub Repositories**: https://github.com/CiscoDevNet
- **DevNet Developer Videos**: https://developer.cisco.com/video
- **DevNet Git Tutorials**: https://developer.cisco.com/learning/lab/git-intro/step/1
- **DevNet ACI Programmability**: https://developer.cisco.com/learning/tracks/aci-programmability
- **Build Applications with Cisco**: https://developer.cisco.com/learning/tracks/app-dev
- **IOS-XE Programmability**: https://developer.cisco.com/learning/tracks/iosxe-programmability
- **Network Programmability for Network Engineers**: https://developer.cisco.com/learning/tracks/netprog-eng

Getting Started with APIs

APIs are used everywhere these days. A large number of modern applications use some type of APIs because they make access available to other systems to interact with the application. There are few methods or technologies behind modern APIs:

- **Simple Object Access Protocol (SOAP)**: SOAP is a standards-based web services access protocol that was originally developed by Microsoft and has been used by numerous legacy applications for many years. SOAP exclusively uses XML to provide API services. XML-based specifications are governed by XML Schema Definition (XSD) documents. SOAP was originally created to replace older solutions such as
the Distributed Component Object Model (DCOM) and Common Object Request Broker Architecture (CORBA). You can find the latest SOAP specifications at https://www.w3.org/TR/soap.

- **Representational State Transfer (REST):** REST is an API standard that is easier to use than SOAP. It uses JSON instead of XML, and it uses standards like Swagger and the OpenAPI Specification (https://www.openapis.org) for ease of documentation and to help with adoption.

- **GraphQL and queryable APIs:** This is another query language for APIs that provides many developer tools. GraphQL is now used for many mobile applications and online dashboards. Many languages support GraphQL. You can learn more about GraphQL at https://graphql.org/code.

NOTE SOAP and REST share similarities over the HTTP protocol. SOAP limits itself to a stricter set of API messaging patterns than REST.

APIs often provide a roadmap describing the underlying implementation of an application. API documentation can provide a great level of detail that can be very valuable to security professionals. These types of documentation include the following:

- **Swagger (OpenAPI):** Swagger is a modern framework of API documentation and is now the basis of the OpenAPI Specification (OAS). Additional information about Swagger can be obtained at https://swagger.io. The OAS specification is available at https://github.com/OAI/OpenAPI-Specification.

- **Web Services Description Language (WSDL) documents:** WSDL is an XML-based language that is used to document the functionality of a web service. The WSDL specification can be accessed at https://www.w3.org/TR/wsdl20-primer.

- **Web Application Description Language (WADL) documents:** WADL is also an XML-based language for describing web applications. The WADL specification can be obtained from https://www.w3.org/Submission/wadl.

NOTE Most Cisco products and services use RESTful (REST) APIs.

REST APIs

Let’s take a look at a quick example of a REST API. There is a sample API you can use to perform several tests at https://deckofcardsapi.com. In Figure 3-29, the Linux `curl` utility is used to retrieve a “new deck of cards” from the Deck of Cards API. The API “shuffles” a deck of cards for you. The deck ID (deck_id) is `wkc12q20frlh` in this example.

NOTE The `python -m json.tool` command is used to invoke the json.tool Python module to “pretty print” the JSON output. You can obtain more information about the json.tool Python module at https://docs.python.org/3/library/json.html#module-json.tool.
Suppose that you want to draw a random card from the deck. Since you have the deck ID, you can easily use the command shown in Figure 3-30 to draw a random card.

Figure 3-29 Using curl to Obtain Information from an API

Figure 3-30 Using curl to Obtain Additional Information from the Deck of Cards API
You can see the response (in JSON), including the remaining number of cards and the card that was retrieved (the 9 of spades). Other information, such as the code, suit, value, and images of the card, is also included in the JSON output.

Example 3-1 shows a Python script that you can use to interact with the Deck of Cards API.

Example 3-1 Sample Python Script to Interact with the Deck of Cards API

```python
#!/usr/bin/python
import requests

deck_id = None

def create_deck():
    global deck_id
    deck_url = "https://deckofcardsapi.com/api/deck/new/"
    deck_response = requests.get(deck_url)
    deck_data = deck_response.json()
    deck_id = deck_data['deck_id']
    print("New deck created with ID: ", deck_id)

def shuffle_deck():
    shuffle_url = f"https://deckofcardsapi.com/api/deck/{deck_id}/shuffle/"
    requests.get(shuffle_url)
    print("Deck shuffled")

def draw_card():
    draw_url = f"https://deckofcardsapi.com/api/deck/{deck_id}/draw/?count=1"
    draw_response = requests.get(draw_url)
    draw_data = draw_response.json()
    if len(draw_data['cards']) > 0:
        card = draw_data['cards'][0]
        print("The card is a {} of {}".format(card['value'], card['suit']))
    else:
        print("No more cards in the deck")

def add_jokers():
    jokers_url = f"https://deckofcardsapi.com/api/deck/{deck_id}/jokers/?count=2"
    requests.get(jokers_url)
    print("Jokers added to the deck")

# Display the menu
while True:
    print("Omar's Example with the Deck of Cards API. Please select from the following menu:")
    print("1. Create a new deck")
    print("2. Shuffle the deck")
```
The script in Example 3-1 starts by importing the requests module, which is used to send HTTP requests to the Deck of Cards API. If you do not have the requests module installed, you can easily install it with the `pip3 install requests` command. The script defines a global variable called `deck_id`, which will store the ID of the deck that the user creates. It also defines four functions: `create_deck()`, `shuffle_deck()`, `draw_card()`, and `add_jokers()`. Each function corresponds to one of the actions that the user can select from the menu.

The `create_deck()` function sends an HTTP GET request to the API endpoint `https://deckofcardsapi.com/api/deck/new/` to create a new deck of cards. It then extracts the ID of the deck from the JSON response and saves it in the `deck_id` variable. The `shuffle_deck()` function sends an HTTP GET request to the API endpoint `https://deckofcardsapi.com/api/deck/{deck_id}/shuffle/` to shuffle the deck. The `draw_card()` function sends an HTTP GET request to the API endpoint `https://deckofcardsapi.com/api/deck/{deck_id}/draw/?count=1` to draw a single card from the deck. It extracts information about the card from the JSON response and prints it to the console. The `add_jokers()` function sends an HTTP GET request to the API endpoint `https://deckofcardsapi.com/api/deck/{deck_id}/jokers/?count=2` to add two jokers to the deck.

The script defines a menu that displays the available actions to the user and prompts the user to enter a choice. It uses a while loop to repeatedly display the menu to the user until the user chooses to quit. When the user selects an action from the menu, the script executes the appropriate function based on the user's choice. After sending the HTTP request, each function extracts information from the JSON response, if necessary, and prints a message to the console indicating that the action was completed. If the user enters an invalid choice, the script prints an error message to the console and displays the menu again.
NOTE The DevNet tutorial at the following link shows how to interact with this sample API using Postman: https://developer.cisco.com/learning/labs/dne-postman-code/using-postman-to-generate-python-code/.

Using Network Device APIs

Earlier in this chapter you learned that there are several API resources available in many Cisco solutions such as the Cisco DNA Center. The following are a few basic available API resources on the Cisco DNA Center Platform (10.1.1.1 is the IP address of the Cisco DNA Center):

- **https://10.1.1.1/api/system/v1/auth/token**: Used to get and encapsulate user identity and role information as a single value.
- **https://10.1.1.1/api/v1/network-device**: Used to get the list of the first 500 network devices sorted lexicographically based on host name.
- **https://10.1.1.1/api/v1/interface**: Used to get information about every interface on every network device.
- **https://10.1.1.1/api/v1/host**: Used to get the name of a host, the ID of the VLAN that the host uses, the IP address of the host, the MAC address of the host, the IP address of the network device to which the host is connected, and more.
- **https://10.1.1.1/api/v1/flow-analysis**: Used to trace a path between two IP addresses. The function will wait for analysis to complete, and return the results.

There are a dozen (or dozens?) more APIs that you can use and interact with Cisco DNA Center at https://developer.cisco.com/dnacenter. Many other Cisco products include APIs that can be used to integrate third-party applications, obtain information similar to the preceding examples, as well as change the configuration of the device, apply policies, and more. Many of those APIs are also documented in DevNet (developer.cisco.com).

Modern networking devices support programmable capabilities such as NETCONF, REST-CONF, and YANG models. The following sections provide details about these technologies.

YANG Models

YANG is an API contract language used in many networking devices. In other words, you can use YANG to write a specification for what the interface between a client and networking device (server) should be on a particular topic. YANG was originally defined in RFC 6020 (https://tools.ietf.org/html/rfc6020).

TIP A specification written in YANG is referred to as a “YANG module.” A collection (or set) of YANG modules is often called a “YANG model.”

A YANG model typically concentrates on the data that a client processes using standardized operations.
NOTE Keep in mind that in NETCONF and RESTCONF implementations, the YANG controller is the client and the network elements are the server. You will learn more about NETCONF and RESTCONF later in this chapter.

Figure 3-31 shows an example of a network management application (client) interacting with a router (server) using YANG as the API contract.

Figure 3-31 A Basic YANG Example

A YANG-based server (as shown in Figure 3-31) publishes a set of YANG modules, which taken together form the system's YANG model. The YANG modules specify what a client can do. The following are a few examples of what a client can do using different YANG models:

- **Configure**: For example, enabling a routing protocol or a particular interface.
- **Receive notifications**: An example of notifications can be repeated login failures, interface failures, and so on.
- **Monitor status**: For example, retrieving information about CPU and memory utilization, packet counters, and so on.
- **Invoke actions**: For instance, resetting packet counters, rebooting the system, and so on.

NOTE The YANG model of a device is often called a “schema” defining the structure and content of messages exchanged between the application and the device.

The YANG language provides flexibility and extensibility capabilities that are not present in other model languages. When you create new YANG modules, you can leverage the data hierarchies defined in other modules. YANG also permits new statements to be defined, allowing the language itself to be expanded in a consistent way.

NETCONF

NETCONF is defined in RFCs 6241 and 6242. NETCONF was created to overcome the challenges in legacy Simple Network Management Protocol (SNMP) implementations.

A NETCONF client typically has the role of a network management application. The NETCONF server is a managed network device (router, switch, and so on). You can also have intermediate systems (often called “controllers”) that control a particular aspect or domain. Controllers can act as a server to its managers and as a client to its networking devices, as shown in Figure 3-32.

In Figure 3-32, a node called a “Manager” manages a NETCONF server (router) and two “Controllers,” which are both a server for the Manager and a client for the other network devices (routers).

NOTE NETCONF was created before YANG. Other languages were used for NETCONF operations. On the other hand, YANG is the only language widely used for NETCONF nowadays.

NETCONF sessions established from a NETCONF client to a NETCONF server consist of a sequence of messages. Both parties send a “hello” message when they initially connect. All message exchanges are initiated by the NETCONF client. The hello message includes which NETCONF protocol version(s) the devices support. The server states which optional capabilities it supports.

NETCONF messages are either a remote procedure call (RPC) or an “rpc-reply.” Each RPC is a request from the client to the server to execute a given operation. The NETCONF rpc-reply is sent by the server when it has completed or failed to complete the request. Some NETCONF rpc-replies are short answers to a simple query, or just an OK that the order was...
executed. Some are long and may contain the entire device configuration or status. NET-CONF rpc-replies to subscriptions consist of a message that technically never ends. Other information of the rpc-reply is generated by the server. A NETCONF rpc-reply may also be a NETCONF rpc-error, indicating that the requested operation failed.

NETCONF messages are encoded in an XML-based structure defined by the NETCONF standard. The NETCONF communication is done over Secure Shell (SSH), but using a default TCP port 830. This can be configured to a different port.

SSH supports a subsystem concept. NETCONF has its own subsystem: netconf. Figure 3-33 shows how you can connect to a networking device (in this case, a CSR-1000v router configured with the hostname ios-xe-mgmt.cisco.com). The username of the router is root. You are also asked to provide a password. The router is configured for NETCONF over TCP port 10000.

Figure 3-33 Using the NETCONF SSH Subsystem

TIP DevNet has several sandboxes where you can practice these concepts and more at https://devnetsandbox.cisco.com.

An open-source Python library for NETCONF clients called ncclient is available on GitHub at https://github.com/ncclient/ncclient. You can install it using Python pip, as shown here:

 pip install ncclient

There are several sample scripts at the DevNet GitHub repositories that can help you get started at https://github.com/CiscoDevNet/python_code_samples_network.
RESTCONF

You already learned that REST is a type of modern API. Many network administrators wanted to have the capabilities of NETCONF over “REST.” This is why a REST-based variant of NETCONF was created. RESTCONF is now supported in many networking devices in the industry.

RESTCONF is defined in RFC 8040 and it follows the REST principles. However, not all REST-based APIs are compatible or even comparable to RESTCONF.

The RESTCONF interface is built around a small number of standardized requests (GET, PUT, POST, PATCH, and DELETE). Several of the REST principles are similar to NETCONF:

- The client-server model
- The layered system principle
- The first two uniform interface principles

One of the differences between RESTCONF and NETCONF is the stateless server principle. NETCONF is based on clients establishing a session to the server (which is not stateless). NETCONF clients frequently connect and then manipulate the candidate datastore with a number of edit-config operations. The NETCONF clients may also send a validation call to NETCONF servers. This is different in RESTCONF.

RESTCONF requires the server to keep some client state. Any request the RESTCONF client sends is acted upon by the server immediately. You cannot send any transactions that span multiple RESTCONF messages. Subsequently, some of the key features of NETCONF (including networkwide transactions) are not possible in RESTCONF.

Let’s take a look at a quick example of using RESTCONF. Example 3-2 shows a Python script that is used to obtain the details of all interfaces in a networking device using RESTCONF.

Example 3-2 Python Script to Retrieve Interface Details from a Networking Device Using RESTCONF

```python
#!/usr/bin/python
import requests
import sys

# disable warnings from SSL/TLS certificates
requests.packages.urllib3.disable_warnings()

# the IP address or hostname of the networking device
HOST = 'ios-xe-mgmt.cisco.com'

# use your user credentials to access the networking device
USER = 'root'
PASS = 'supersecretpassword'
```
create a main() method
def main():
 """Main method that retrieves the interface details from a
 networking device via RESTCONF."""

 # RESTCONF url of the networking device
 url="https://{h}:9443/restconf/data/ietf-interfaces:interfaces".format(h=HOST)

 # RESTCONF media types for REST API headers
 headers = {'Content-Type': 'application/yang-data+json',
 'Accept': 'application/yang-data+json'}

 # this statement performs a GET on the specified url
 response = requests.get(url, auth=(USER, PASS),
 headers=headers, verify=False)

 # print the json that is returned
 print(response.text)

if __name__ == '__main__':
sys.exit(main())

Figure 3-34 shows the output of the Python script, including the information of all the interfaces in that networking device (ios-xe-mgmt.cisco.com).

OpenConfig and gNMI

The OpenConfig consortium (https://github.com/openconfig) is a collaborative effort to provide vendor-neutral data models (in YANG) for network devices. OpenConfig uses the gRPC Network Management Interface (gNMI). The following GitHub repository includes detailed information about gNMI, as well as sample code (https://github.com/openconfig/gnmi).

NOTE The gRPC specification (https://grpc.io) is a modern Remote Procedure Call (RPC) framework. RPC allows a client to invoke operations (also called “procedures”) on a server. RPC includes an interface description language (IDL) used to state what procedures the server supports (including the input and output data from them). RPC also uses client libraries to call upon those procedures (supported in different programming languages). RPC uses a serialization, marshalling, and transport mechanism for the messages (generally called an RPC protocol).

The gNMI protocol is similar to NETCONF and RESTCONF. gNMI uses YANG models, but it can be used with other interface description languages (IDLs). The OpenConfig consortium defined several standard YANG models to go with the protocols. These YANG models describe many essential networking features such as interface configuration, routing protocols, QoS, Wi-Fi configurations, and more.

Exam Preparation Tasks

As mentioned in the section “Book Features” in the Introduction, you have a couple of choices for exam preparation: the exercises here, Chapter 12, “Final Preparation,” and the exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topic icon in the outer margin of the page. Table 3-2 lists these key topics and the page numbers on which each is found.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Traditional Networking Planes</td>
<td>113</td>
</tr>
<tr>
<td>Section</td>
<td>So What’s Different with SDN?</td>
<td>114</td>
</tr>
<tr>
<td>Section</td>
<td>Introduction to the Cisco ACI Solution</td>
<td>114</td>
</tr>
<tr>
<td>List</td>
<td>Understand the functions of the APIC</td>
<td>116</td>
</tr>
<tr>
<td>Section</td>
<td>VXLAN and Network Overlays</td>
<td>116</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Understand what is micro-segmentation</td>
<td>118</td>
</tr>
</tbody>
</table>
Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

- Representational State Transfer (REST)
- Simple Object Access Protocol (SOAP)
- Contiv
- Network Functions Virtualization (NFV)
- Neutron
- Open vSwitch
- OpenDaylight (ODL)
- YANG
- NETCONF
- RESTCONF

Review Questions

1. The RESTCONF interface is built around a small number of standardized requests. Which of the following are requests supported by RESTCONF?
 a. GET
 b. PUT
 c. PATCH
 d. All of these answers are correct.

2. NETCONF messages are encoded in a(n) _______ structure defined by the NETCONF standard.
 a. JSON
 b. XML
 c. OWASP
 d. RESTCONF
3. Which of the following is a Cisco resource where you can learn about network programmability and obtain sample code?
 a. APIC
 b. ACI
 c. DevNet
 d. NETCONF

4. A YANG-based server publishes a set of YANG modules, which taken together form the system's _________.
 a. YANG model
 b. NETCONF model
 c. RESTCONF model
 d. gRPC model

5. Which of the following HTTP methods sends data to the server typically used in HTML forms and API requests?
 a. POST
 b. GET
 c. TRACE
 d. PUT

6. Which of the following is a solution that allows you to detect security threats in encrypted traffic without decrypting the packets?
 a. ETA
 b. Cisco Secure Email (formerly known as ESA)
 c. Cisco Secure Web Appliance (formerly known as WSA)
 d. None of these answers are correct.

7. Which of the following is an open-source project that allows you to deploy micro-segmentation policy-based services in container environments?
 a. OVS
 b. Contiv
 c. ODL
 d. All of these answers are correct.

8. NFV nodes such as virtual routers and firewalls need which of the following components as an underlying infrastructure?
 a. A hypervisor
 b. A virtual forwarder to connect individual instances
 c. A network controller
 d. All of these answers are correct.

9. There have been multiple IP tunneling mechanisms introduced throughout the years. Which of the following are examples of IP tunneling mechanisms?
 a. VXLAN
 b. SST
 c. NVGRE
 d. All of these answers are correct.
10. Which of the following is true about SDN?

 a. SDN provides numerous benefits in the management plane. These benefits are in both physical switches and virtual switches.

 b. SDN changed a few things in the management, control, and data planes. However, the big change was in the control and data planes in software-based switches and routers (including virtual switches inside of hypervisors).

 c. SDN is now widely adopted in data centers.

 d. All of these answers are correct.
Symbols

3DES (Triple Digital Encryption Standard), 84, 86, 93, 496
5–9s, 46
6LoWPAN (Low Power Wireless Personal Area Networks), 56
100-500 status code messages, 139
802.1X, 198, 334
 802.1AB, 338–339
 802.1D, 328–332
 802.1Q, 323–326
 802.1w, 332
configuration, 213–222
monitor mode, 306
RADIUS, 213
roles in, 188–190

A

AAA (authentication, authorization, and accounting), 104, 346
802.1X. See 802.1X
AAA method lists, 358, 364–369
access control. See access control
accounting, 104, 179
authentication. See authentication
authorization. See authorization
Cisco Identity Services Engine. See Cisco ISE (Identity Services Engine)
Cisco pxGrid (Platform Exchange Grid), 193–195
Cisco TrustSec, 201–203, 306, 310–312
Diameter, 186–188
firewalls. See firewalls
infrastructure security. See infrastructure security
overview of, 160–161
principle of least privilege, 161
separation of duties, 161
aaa new-model command, 374
aaa type command, 358
ABAC (attribute-based access control), 179
absolute parameter, time-based ACLs (access control lists), 462
acceptable use policy (AUP), 642
access control, 178. See also ACLs (access control lists)
ACE (access control entry), 511, 533–534
ACM (access control matrix), 181
attribute-based, 179
Cisco DNA (Digital Network Architecture). See Cisco DNA (Digital Network Architecture)
Cisco Secure Firewall
 ACLs (access control lists) in Cisco ASA, 452–458
 Auto NAT (Network Address Translation), 469
 Cisco ASA application inspection, 458–459
 Cisco ASA through-the-box traffic filtering, 456
Cisco ASA to-the-box traffic filtering, 459–460
Cisco Firepower intrusion policies, 472–478
ICMP filtering in Cisco ASA, 462–463
NAT (Network Address Translation), 463–469
object grouping, 460–461
overview of, 452
PAT (Port Address Translation), 463–469
policies, 469–472
standard ACLs (access control lists), 461
time-based ACLs (access control lists), 461–462
cloud computing, 51
infrastructure, 179–182
management, 48–49
mandatory, 177
role-based, 135, 178, 354–355, 359
access point (AP) radios, 133
ACCESS-ACCEPT, 183–184
ACCESS-CHALLENGE, 183–184
access-group command, 460
access-list command, 461
ACCESS-REJECT, 183–184
ACCESS-REQUEST, 183–184
accounting, 104, 179
ACCOUNTING-REQUEST, 183
ACCOUNTING-RESPONSE, 183
ACE (access control entry), 511, 533–534
ACI (Application Centric Infrastructure). See Cisco ACI (Application Centric Infrastructure)
ACLs (access control lists)
Cisco ASA, 452–458, 533–534
Cisco Secure Web Appliance traffic redirection, 647
definition of, 179, 335
IPv6, 394–395
network, 190–191
dACLs (downloadable access control lists), 191
SGACLs (security group ACLs), 191
standard, 461
time-based, 461–462
VLAN, 191
WebType, 549–550
ACM (access control matrix), 181
Active Directory (AD) authentication, 101, 653
active policy enforcement, 306–310
Active-Standby failover, Cisco Secure Firewall, 448–450
Adaptive Security Device Manager (ASDM), 113, 414–415, 423
Adaptive Security Virtual Appliance (ASAv), 414
add_jokers() function, 144
Address Resolution Protocol (ARP), 320, 334, 341–343, 349, 390
address space layout randomization (ASLR), 42
addresses
IPv6
format of, 383–384
types of, 384–386
MAC, 336–338
spoofing/proxying, 60
ADM (Application Dependency Mapping), 622
admin-context command, 440
Advanced Encryption Standard (AES), 84, 86, 89, 93, 496
Advanced Malware Protection (AMP). See Cisco Secure Endpoint; Cisco Secure Malware Defense
Advanced Malware Protection dashboard, Cisco Secure Email, 663
Advanced Malware Protection Reputation dashboard, Cisco Secure Email, 663–666
Advanced Message Queueing Protocol (AMQP), 57
advanced persistent threat (APT), 20
adversarial examples, 41
advertising spyware, 27
AES (Advanced Encryption Standard), 84, 86, 89, 93, 496
AFL (American Fuzzy Lop), 605
agents, Cisco Secure Workload, 622
Aggregation Services Routers (ASRs), 238
Agile methodology, 583–586
AH (Authentication Header), 93, 500
AI (artificial intelligence) vulnerabilities, 40–41
algorithms. See ciphers
ALGs (application layer gateways), 258
all-nodes multicast addresses, 384
all-routers multicast addresses, 384
Amazon Elastic Kubernetes Service (Amazon EKS), 417
Amazon Shared Responsibility Model, 605
Amazon Web Services (AWS), 265, 417
American Fuzzy Lop (AFL), 605
AMP (Advanced Malware Protection). See Cisco Secure Endpoint; Cisco Secure Malware Defense
AMP Enabler, 688–689
AMQP (Advanced Message Queueing Protocol), 57
analytics
Cisco Secure Cloud Analytics, 242, 263–268, 618–619
Cisco Secure Network Analytics, 263–264
dashboard, 268–270
threat hunting with, 270–273
malware analysis
dynamic, 29–30
static, 28
anomaly detection, 241–243, 613
ANSWER, 187
antidetection routine, 18
antivirus scanning, 643
anycast addresses, 385
Anycast IP, 609
AnyConnect, 189, 204
AP (access point) radios, 133
Apache Mesos, 592
Apache mod_proxy module, 504
Apache Struts, 604
API attacks, 53
APIC (Application Policy Infrastructure Controller), 114–116
APIs (application programming interfaces), 140–141
Cisco DNA (Digital Network Architecture). See Cisco DNA (Digital Network Architecture) documentation, 141
gNMI (gRPC Network Management Interface), 151
NETCONF, 147–148
network device APIs, 145
northbound, 121, 135, 136
OpenConfig, 151
queryable, 141
REST APIs, 135, 141–144
RESTCONF, 149–151
southbound, 121, 136
technologies behind, 140–141
unprotected, 39–40
YANG models, 145
AppDynamics, 619–622
application access, 550–551
application awareness, 120
Application Centric Infrastructure. See Cisco ACI (Application Centric Infrastructure)
application control, Cisco Secure Endpoint, 683–684
Application Dependency Mapping (ADM), 622
application inspection, Cisco ASA, 458–459
application layer attacks, 389–390
application layer gateways (ALGs), 258
application policies, Cisco DNA, 131–132
Application Policy Infrastructure Controller (APIC), 114–116
application programming interfaces. See APIs (application programming interfaces)
application sets, 132
Application Visibility and Control (AVC), 254–255, 257, 642, 655
application vulnerabilities. See vulnerabilities
application-based segmentation, 299–301
APT (advanced persistent threat), 20
Argus, 251
armoring, ASCII, 42
ARP (Address Resolution Protocol), 320, 334, 341–343, 349, 390
artificial intelligence (AI) vulnerabilities, 40–41
ASA firewalls. See Cisco ASA
ASCII armoring, 42
ASDM (Adaptive Security Device Manager), 113, 414–415, 423
ASLR (address space layout randomization), 42
ASN(s) (autonomous system numbers), 613
ASRs (Aggregation Services Routers), 238
assets, definition of, 12–13
Assurance solution, Cisco DNA, 133, 135
asymmetric algorithms, 84–86
asymmetric key cryptography, 97
AsyncOS, 642
Attack Surface Management, 616–618
attacks. See malware; threats
attribute-based access control (ABAC), 179
attribute/value pairs (AVPs), 187
audits, cloud computing, 51, 607
AUP (acceptable use policy), 642
Aurora, 28
authentication, 104. See also AAA (authentication, authorization, and accounting); management traffic security
802.1X, 198, 334
802.1AB, 338–339
802.1D, 328–332
802.1Q, 323–326
802.1w, 332
Cisco ISE Identity Services, 198, 334
collection, 213–222
monitor mode, 306
RADIUS, 213
roles in, 188–190
Active Directory (AD), 101, 653
BeyondCorp, 169–171
CA(s) (certificate authorities), 102–103
authenticating and enrolling with, 91, 102–103
cross-certifying, 106
bierarchrical, 105–106
single root, 105
subordinate, 105–106
by characteristic, 164–165
Cisco Secure Web Appliance, 653–655
clientless remote-access VPNs, 546–548
Duo Security, 166–168
EAP (Extensible Authentication Protocol), 503, 519–520
federated identity, 172, 174–177
Flexible Authentication (Flex-Auth), 213
JWT (JSON Web Token), 173–174
key identification concepts, 162
keychain, 404
by knowledge, 162–164
MAB (MAC Authentication Bypass), 196, 213, 302, 305, 402–404
MD5, 87–88, 93, 400, 401–404, 497
MD5 (Message Digest 5), 87–88, 93, 497
 on BGP, 402–404
 on EIGRP, 401
 on OSPF, 400
 on RIP, 401–402
multifactor, 165, 357
multilayer, 165, 357
Open Authentication, 214
by ownership or possession, 164
passwordless, 175
plaintext, 401
pre-shared keys, 93, 497, 503
RADIUS, 357–358
 clientless remote-access VPNs in Cisco ASA, 547–548
 configuration, 213–215
 message exchange, 182–184
 TACACS+ versus, 185–186
router access, 357–358, 369–371
 on BGP, 402–404
 on EIGRP, 401
 on OSPF, 400
 on RIP, 401–402
secure issuance, 162
single-factor, 165, 357
site-to-site VPNs, 530
SSO (single sign-on), 171–173, 174–177
TACACS+ 357–358
 configuration, 207–212
 message exchange, 184
 RADIUS versus, 185–186
zero trust, 169–171
authentication display legacy command, 214
authentication display new-style command, 214
Authentication Header (AH), 93, 500
authentication servers, 802.1X, 188–190
authentication-based vulnerabilities
 authentication attacks, 53
 credential brute forcing, 34–35
 default credentials, 35
 Insecure Direct Object Reference vulnerabilities, 35–36
 overview of, 33–34
 password cracking, 34–35
 session hijacking, 35
authenticators, 189
authorization, 104. See also Cisco ISE (Identity Services Engine)
 attribute-based access control, 179
 CoA (change of authorization), 204–207
 custom privilege levels, 359, 371–373
 discretionary access controls, 178
 implicit deny, 177
 mandatory access controls, 177
 need to know, 161, 177
 overview of, 177
 parser views, 359, 374–375
 RBAC (role-based access control), 178, 354–355, 359
Auto NAT (Network Address Translation), 469
auto secure utility, 345
autoconfiguration, IPv6, 392
autonomous system numbers (ASNs), 613
availability, 46
AVC (Application Visibility and Control), 254–255, 257, 642, 655
AVPs (attribute/value pairs), 187
AWS (Amazon Web Services), 417, 590
Azure, 417

B

backdoors, 19
backlogs, 584
Balanced Security and Connectivity policy, 474
bandwidth management, 349
BCPs (business continuity plans), 52, 608
Beck, Ken, 586
BeyondCorp, 169–171
BFD (Bidirectional Forwarding Detection), 442
BGP (Border Gateway Protocol), 402–404, 468
Bidirectional Forwarding Detection (BFD), 442
BIKE, 95
BinText, 28
biometric systems, 164–165
BIOS infection, 16
black hat hackers, 14
Black Hole Exploit Kit, 28
BlackDuck Hub, 43
blacklists, Cisco Secure Endpoint, 681–682
BLAKE2, 88, 93
BLE (Bluetooth Low Energy), 56
blind SQL injection, 33
Block & Allow Lists, Cisco Secure Endpoint, 681–682
block ciphers, 84
blocklisting, 483–484
Blowfish, 84
Bluetooth Low Energy (BLE), 56
Bluetooth Smart, 56
bootset security, 380–381
Border Gateway Protocol (BGP), 402–404, 468
bot hosts/nets, 241, 414, 419
BPDU Guard, 334, 335–336
BPDUs (bridge protocol data units), 328
bridge virtual interface (BVI), 438, 441
bring-your-own-device (BYOD), 192
browser vulnerabilities, 22
brute-force attacks, 354
buffer overflows, 41–42
bugs, 392
Build Applications with Cisco tutorial, 140
Build Database From Signature Set button (Cisco Secure Endpoint), 680–681
BVI (bridge virtual interface), 438, 441
BYOD (bring-your-own-device), 192

C

C3PL (Cisco Common Classification Policy Language), 213, 214–215
cables, console, 353–354
cache
cache poisoning, 341
NetFlow, 240
CAM (Content-Addressable Memory), 336, 349, 390
capability tables, 180–181
Capability-Exchange-Answer (CEA), 187
Capability-Exchange-Request (CER), 187
capital expenditure (CapEx), 50
CAPWAP (Control and Provisioning of Wireless Access Points), 257
Carnegie Mellon University, SEI (Software Engineering Institute), 73
CAAs (certificate authorities), 98
authenticating and enrolling with, 91, 102–103
cross-certifying, 106
hierarchical, 105–106
single root, 105
subordinate, 105–106
CASBs (cloud access security brokers), 643
CASE (Cisco Context Adaptive Scanning Engine), 613
cat Linux command, 86
CBAC (Context-Based Access Control), 435
CBWFQ (class-based weighted fair Queueing), 255
CCNA Community, 700
CD (continuous delivery), 583, 588–589
CDO (Cisco Defense Orchestrator), 433–435
CDP (Cisco Discovery Protocol), 338–339
CEA (Capability-Exchange-Answer), 187
CEF (Cisco Express Forwarding), 348
cellular communication, 57
CER (Capability-Exchange-Request), 187
certification authorities. See CAs (certificate authorities)
certificate revocation list (CRL), 95
certificate revocation lists (CRLs), 104
certificates
digital

\textit{enrollment}, 91, 542–544
\textit{identity certificates}, 101

\textit{revoking}, 103–104
\textit{root certificates}, 99–100

identity, 101
root, 99–100

Certification Roadmap, 699
CERTs (Computer Emergency Response Teams), 74
chain of custody, 61
change of authorization (CoA), 204–207
characteristic, authentication by, 164–165
Check Point, 415–416
Chrysler Comprehensive Compensation System (C3), 586
CI (Concern Index), 273
CI (continuous integration), 583, 588–589
CIA triad, 43–46
CIDR (classless interdomain routing), 682
CIP (Common Industrial Protocol), 419
cipher digit streams, 84
ciphers
asymmetric algorithms, 84–86
block, 84
cryptographic, 34
definition of, 82–83
in IKE (Internet Key Exchange), 496
stream, 84
symmetric algorithms, 84–86
ciphertext streams, 84
CISA (Cybersecurity and Infrastructure Security Agency), 73
Cisco ACI (Application Centric Infrastructure)
Cisco ACI Design Guide, 116
Cisco ISE (Identity Services Engine)
integration, 310–312
micro-segmentation, 301
overview of, 114–116
Cisco AMP (Advanced Malware Protection). See Cisco Secure Endpoint; Cisco Secure Malware Defense

Cisco AnyConnect, 189, 261
Cisco APIC (Application Policy Infrastructure Controller), 114–116
Cisco ASA, 182
 access control policies, 469–472
 ACLs (access control lists), 452–458
 application inspection, 458–459
 Auto NAT (Network Address Translation), 469
 client-based remote-access VPNs in
 Cisco Secure Client, 553–554
 DTLS (Datagram Transport Layer Security), 555–556
 overview of, 551
 split tunneling, 554–555
 tunnel and group policies, 552–553
 clientless remote-access VPNs in
 application access, 550–551
 attributes and policy inheritance model, 544
 clientless SSL VPNs, enabling, 548–549
 design considerations, 541–542
 group policies, 544–545
 pre-SSL VPN configuration, 542–544
 SSL VPN modes, 540–541
 tunnel groups, 545–546
 user authentication, 546–548
 WebType ACLs, 549–550
 deployment modes, 437–448
 features of, 414
 FirePOWER module, 414–415
 ICMP filtering in, 462–463
 IPsec remote-access VPNs in, 538–540
 NAT (Network Address Translation), 463–469
 object grouping, 460–461
 PAT (Port Address Translation), 463–469
 site-to-site VPNs in, 537–538
 advanced features, 535–537
 crypto maps, 532–534
 IPsec policy, 531–532
 ISAKMP, enabling, 528–529
 ISAKMP policy, 529–530
 NAT exempt policy, 534–535
 overview of, 528–529
 PFS (Perfect Forward Secrecy), 535
 traffic filtering, 534
 tunnel groups, 530–531
 standard ACLs (access control lists), 461
 through-the-box traffic filtering, 456
 time-based ACLs (access control lists), 461–462
 to-the-box traffic filtering, 459–460
 WCCP (Web Cache Communication Protocol) configuration, 647–648
Cisco ASAv (Adaptive Security Virtual Appliance), 414
Cisco ASR 1000 Series Aggregation Service Routers (ASR 1000s), 254
Cisco Async Operating System (AsyncOS), 642
Cisco Attack Surface Management, 616–618
Cisco AVC (Application Visibility and Control), 254–255, 257
Cisco CASE (Context Adaptive Scanning Engine), 613
Cisco Certification Roadmap, 699
Cisco Cognitive Intelligence, 274–279
Cisco Common Classification Policy Language (C3PL), 213, 214–215
Cisco Content SMA (Security Management Appliance), 641–642, 662–667
Cisco Defense Orchestrator (CDO), 433–435
Cisco Discovery Protocol (CDP), 338–339
Cisco DNA (Digital Network Architecture)
APIs (application programming interfaces), 135
Assurance solution, 133, 135
high-level architecture, 125–126
multivendor support, 136
network device APIs, 145
policies, 127–133
application, 131–132
Cisco DNA Center Policy Overview dashboard, 127–129
group-based access control, 129
IP-based access control, 131
traffic copy, 132–133
Security solution, 135–136
Cisco ETA (Encrypted Traffic Analytics), 135–136, 274
Cisco Express Forwarding (CEF), 348
Cisco FDM (Firepower Device Manager), 429–433
Cisco Feature Navigator, 258
Cisco Firepower intrusion policies
Cisco NGIPS preprocessors, 476–478
platform settings policy, 476
variables, 475–476
Cisco Firewall Management Center, 648
Cisco FTD (Firepower Threat Defense), 182, 415. See also Cisco Secure Firewall
access control policies in, 469–472
WCCP (Web Cache Communication Protocol) configuration, 648
Cisco Guide to Harden Cisco IOS Devices, 389
Cisco HyperFlex, 417
Cisco IOS/IOS-XE files, 362
NetFlow configuration, 280–294
configuration, 286–293
flow exporters, 286, 291–293
flow monitors, 286, 289–291, 293–294
flow records, 287–289
flow samplers, 286
IPFIX export format, 294
key fields, 282–284
non-key fields, 284–285
predefined records, 285
records, 282
simultaneous application tracking, 281–282
user-defined records, 286
site-to-site VPNs in, 506–508
Cisco ISE Community Resources site, 312
Cisco ISE (Identity Services Engine), 126, 549
accessing, 129
authorization rules, 198–199
benefits of, 192–193
Cisco Secure Network Analytics integration, 272
CoA (change of authorization), 204–207
context services, 195–198
deployment sizing, 224–225
design tips, 222–224
identity services, 198–199
network segmentation, 302–312
802.1X/TrustSec in monitor mode, 306
active policy enforcement, 306–310
Cisco ACI integration, 310–312
SGT assignment and deployment, 306
SXP (SGT Exchange Protocol), 303–305
posture assessment, 203–204
profiling services, 127, 195–198
Cisco ISR (Integrated Services Routers), 254
Cisco Meraki, 176, 268, 691–692
Cisco NBAR2 (Network-Based Application Recognition Version 2), 132, 254–255
Cisco NGIPSs (Next-Generation IPSs), 421–423, 476–478
Cisco NVM (Network Visibility Module), 262
Cisco NX-OS, 295–296, 362
Cisco pxGrid (Platform Exchange Grid), 193–195
Cisco QuantumFlow Processor, 258
Cisco Resilient Configuration, 380–381
Cisco routers, site-to-site VPNs in
DMVPN, 512–515
FlexVPN, 518–522
GETVPN, 512–518
GRE over IPsec, 508–510
multipoint GRE (mGRE) tunnels, 512
traditional site-to-site VPNs in Cisco IOS/Cisco IOS-XE, 506–508
troubleshooting, 522–528
tunnel interfaces, 506–508, 510–512
Cisco SD-WAN (Software-Defined Wide Area Network), 569–573
Cisco Secure Client, 189, 261, 504–505, 553–554
Cisco Secure Cloud Analytics, 242, 263–268, 618–619
Cisco Secure Cloud Insights. See Cisco Attack Surface Management
Cisco Secure Email
Cisco SenderBase, 660–661
dashboards, 662–663
deployment, 659–660
DKIM (Domain Keys Identified Mail), 662
DLP (data loss prevention), 661
email encryption, 615
e-mail protocols and concepts, 658–659
FED (Forged Email Detection), 614
listeners, 660
Malware Defense, 614
for Office 365, 615–616
RAT (recipient access table), 661
SMTP authentication and encryption, 661–662
SPF (Sender Policy Framework), 615
Cisco Secure Endpoint, 237, 238
AMP Enabler, 688–689
connectors, 687
engines, 689
exclusion sets, 684–686
high-level architecture, 676–677
Outbreak Control
application control, 683–684
custom detections, 677–681
IP blacklists and whitelists, 681–682
overview of, 675
policies, 687–688
reporting dashboards, 690–691
Cisco Secure Firewall, 238, 414–415, 435
access control
access control policies, 469–472
Auto NAT (Network Address Translation), 469
Cisco ASA ACLs (access control lists) in Cisco ASA, 452–458
Cisco ASA application inspection, 458–459
Cisco ASA to-the-box traffic filtering, 459–460
ICMP filtering in Cisco ASA, 462–463
NAT (Network Address Translation), 463–469
object grouping, 460–461
overview of, 452
PAT (Port Address Translation), 463–469
standard ACLs (access control lists), 461
time-based ACLs (access control lists), 461–462
bot protection, 419
CDO (Cisco Defense Orchestrator), 433–435
Cisco ASA. See Cisco ASA
Cisco Firepower intrusion policies
 access control policies, 472–475
 Cisco NGIPS preprocessors, 476–478
 platform settings policy, 476
 variables, 475–476
Cisco Secure Malware Analytics, 479–483
Cisco Secure Malware Defense
 overview of, 478–483
 Security Intelligence blocklisting, 483–484
 Security Intelligence updates, 484
Cisco SecureX, 426–429
Cloud Native solution, 417–418
clustering, 450–452
deployment modes, 415, 437–448
 design considerations, 447–448
 interface modes, 442–447
 overview of, 437
 routed versus transparent, 437–442
 security contexts, 438–439
FDM (Firepower Device Manager), 429–433
FMC (Firewall Management Center), 423–425
high availability, 448–450
history and legacy, 413–414
interface modes, 442–444
 inline pair, 445
 inline pair with tap, 445–446
 overview of, 442–444
 passive mode, 446–447
 passive with ERSPAN mode, 447
ISA3000, 418–419
ISRs (Integrated Services Routers), 419–421
Migration Tool, 415–416
network security solutions, comparison of, 435–436
NGIPS (Next-Generation IPS), 421–423
overview of, 190–191, 413
remote-access VPNs in, 557–566
 overview of, 556–557
 Remote Access VPN Policy Wizard, 557–566
 troubleshooting, 566–567
SD-WAN (Software-Defined Wide Area Network), 419–421
security zones, 431–432, 435
site-to-site VPNs in, 567–569
software updates, 484
Threat Defense Virtual, 416–417
WAFs (Web Application Firewalls), 419
WCCP (Web Cache Communication Protocol) configuration, 648
Zone-Based Firewall, 435
Cisco Secure Malware Analytics, 30, 276, 479–483
Cisco Secure Malware Defense, 674–675
overview of, 478–483
Security Intelligence blocklisting, 483–484
Security Intelligence updates, 484
Cisco Secure Network Analytics. See network analytics
Cisco Secure Web Appliance, 641–642
DLP (data loss prevention), 643, 655
explicit forward mode, 644–646
feature engines, 642–643
interface types, 644
overview of, 641–642
PBR (policy-based routing), 646, 651–652
policy configuration, 653–655
reports, 655–657
security services, 652
transparent mode, 646–647
WCCP (Web Cache Communication Protocol), 646–651
configuration in Cisco ASA, 647–648
configuration on Cisco Secure Web Appliance, 650–651
configuration on Cisco switches, 647–648
definition of, 646
transparent mode and, 646–647
as web proxy, 643–644, 653
Cisco Secure Workload, 622–626
ADM (Application Dependency Mapping), 622
agents, 622
definition of, 622
Forensics feature, 623
Security Dashboard, 623–626
Cisco SecureX, 426–429
Cisco SenderBase, 660–661
Cisco Stealthwatch. See Cisco Secure Network Analytics
Cisco Stealthwatch Cloud. See Cisco Secure Cloud Analytics
Cisco switches, WCCP configuration on, 649–650
Cisco Talos, 30, 264, 422, 472–473, 479, 484, 610–611, 614, 643
Cisco TEA (ThousandEyes Enterprise Agent), 124–125
Cisco TelePresence, 249
Cisco Threat Response, 693
Cisco TrustSec, 201–203, 306, 310–312
Cisco UCS (Unified Computing System), 419
Cisco Umbrella, 176
architecture, 609–610
Cisco Cognitive Intelligence integration, 276
Cisco Secure Cloud Analytics integration, 268
dashboard and reports, 611
Investigate, 610–611
overview of, 608–609
SIG (secure Internet gateway), 610–611
Cisco vAnalytics, 571–573
Cisco vManage, 571–573
Cisco Webex, 176, 588
Cisco WLCs (Wireless LAN Controllers), 254
Cisco Workload Optimization Manager, 620
Cisco XDR (eXtended Detection and Response), 627–632
Cisco YANG Suite, 351–353
Cisco-Maintained Exclusions, 684–686
ClamAV, 479, 680
class-based weighted fair Queueing (CBWFQ), 255
Classic McEliece, 95
classless interdomain routing (CIDR), 682
class-map command, 459
clear config crypto ikev2 policy command, 530

client-based remote-access VPNs
Cisco Secure Client, 553–554
DTLS (Datagram Transport Layer Security), 555–556
overview of, 551
split tunneling, 554–555
tunnel and group policies, 552–553

clientless remote-access VPNs (virtual private networks)
application access, 550–551
attributes and policy inheritance model, 544
clientless SSL VPNs, enabling, 548–549
design considerations, 541–542
group policies, 544–545
pre-SSL VPN configuration, 542–544
SSL VPN modes, 540–541
tunnel groups, 545–546
user authentication, 546–548
WebType ACLs, 549–550

clientless SSL VPNs (virtual private networks)
application access, 550–551
enabling, 548–549

cloud access security brokers (CASBs), 642

cloud computing
advantages of, 50
AppDynamics cloud monitoring, 619–622
CASBs (cloud access security brokers), 643
CD (continuous delivery), 583
characteristics of, 50
CI/CD pipelines, 583, 588–589
Cisco Attack Surface Management, 616–618
Cisco Secure Cloud Analytics, 242, 263–268, 618–619
Cisco Secure Email Threat Defense
email encryption, 615
FED (Forged Email Detection), 614
for Office 365, 615–616
overview of, 612–613
SPF (Sender Policy Framework), 615
Cisco Secure Firewall Cloud Native, 417–418
Cisco Secure Workload, 622–626
ADM (Application Dependency Mapping), 622
agents, 622
definition of, 622
Forensics feature, 623
Security Dashboard, 623–626
Cisco Umbrella, 176
architecture, 609–610
Cisco Cognitive Intelligence integration, 276
Cisco Secure Cloud Analytics integration, 268
dashboard and reports, 611
Investigate, 610–611, 612–613
overview of, 608–609
SIG (secure Internet gateway), 610–611
Cisco XDR (eXtended Detection and Response), 627–632
cloud security threats, 50–54
attacks, 53
cloud computing models, 50–52
security responsibilities, 53–54
cloud service models, 581–582
cloud-based proxy, 610
container orchestration
container images, 592
Docker, 592
configuration

Kubernetes, 597–602
overview of, 592
customer versus provider security responsibility, 605–606
definition of, 581–582
DevOps, 583, 586–587
DevSecOps, 603–605
Malware Analytics Cloud
application control, 683
Cisco Secure Endpoint, 678
historical view of malware activity, 677
IP blacklists and whitelists, 680–681
microservices and micro-segmentation, 602–603
models for, 50
patch management, 607
security assessment, 607–608
serverless, 589–591
Cloud Native Firewall (CNFW), 417–418
cloud service providers (CSPs), 605
Cloud WAF (Web Application Firewall), 419
cloud-based proxy, 610
clusters, 17, 450–452
CMZ (demilitarized zone), 643
CNAs (CVE Naming Authorities), 10
CNFW (Cloud Native Firewall), 417–418
CoA (change of authorization), 204–207
CoAP (Constrained Application Protocol), 57
Cognitive Intelligence, 274–279
cognitive threat analytics, Cisco Secure Web Appliance, 643
collection considerations, NetFlow, 280
collision resistance, 87
command injection, 33
command-line interface (CLI), 113
commands. See individual commands
Common Industrial Protocol (CIP), 419
Common Object Request Broker Architecture (CORBA), 40, 140–141
Common Security Advisory Framework (CSAF), 15
Common Vulnerabilities and Exposures (CVE), 10, 31, 624
Common Vulnerability Scoring System (CVSS), 69–73, 204
communication, covert, 24–26
community cloud, 582
Compromise Event Types list, 690
Computer Emergency Response Teams (CERTs), 74
Computer Security Division (CSD), 7
Concern Index (CI), 273
Conficker, 28
confidentiality, 12–13, 43–45
configuration. See also deployments
AAA (authentication, authorization, and accounting), See AAA (authentication, authorization, and accounting)
Cisco ACI (Application Centric Infrastructure), 114–116
Cisco Secure Email
Cisco SenderBase, 660–661
deployment, 659–660
DKIM (Domain Keys Identified Mail), 662
DLP (data loss prevention), 661
email protocols and concepts, 658–659
listeners, 660
overview of, 641–642, 655–657, 658
RAT (recipient access table), 661
SMTP authentication and encryption, 661–662
Cisco Secure Web Appliance
explicit forward mode, 644–646
interface types, 644
configuration

policies, 653–655
reports, 655–657
transparent mode, 646–647
WCCP (Web Cache Communication Protocol) redirection, 646–651
as web proxy, 643–644
web proxy IP spoofing, 653

client-based remote-access VPNs in Cisco ASA
Cisco Secure Client, 553–554
DTLS (Datagram Transport Layer Security), 555–556
overview of, 551
split tunneling, 554–555
tunnel and group policies, 552–553

clientless remote-access VPNs in Cisco ASA
application access, 550–551
attributes and policy inheritance model, 544
clientless SSL VPNs, enabling, 548–549
design considerations, 541–542
group policies, 544–545
pre-SSL VPN configuration, 542–544
SSL VPN modes, 540–541
tunnel groups, 545–546
user authentication, 546–548
WebType ACLs, 549–550

clientless SSL VPNs
application access, 550–551
enabling, 548–549

Docker images, 592–596
IP blacklists and whitelists, 681–682
IPsec remote-access VPNs in Cisco ASA, 538–540
IPv6 security

ACLs (access control lists), 394–395
address format, 383–384
address types, 384–386
best practices, 388–389, 393–394
IPv4 versus, 381–382
moving to IPv6, 388
risks, 391–392
routing and routing protocols, 386–388
security plans, 388
threats, 389–391

Kubernetes, 598–602

Layer 2 threat mitigation
best practices, 333–334
BPDU Guard, 335–336
CDP (Cisco Discovery Protocol), 338–339
DHCP snooping, 339–341
dynamic ARP inspection, 341–343
LLDP (Link Layer Discovery Protocol), 338–339
negotiations, preventing, 334
overview of, 334–335
port security, 336–338
Root Guard, 336

logging, 360–361, 378–379
management traffic security
best practices, 354–356
Cisco IOS and Cisco NX-OS files, 362
cable, 353–354
definition of, 350
NETCONF (Network Configuration Protocol), 350–353
NTP (Network Time Protocol), 379–380
NTP (Network Time Protocol), overview of, 361
password recommendations, 354, 356–357, 362–364
RESTCONF (RESTful Network Configuration Protocol), 350–353
SNMP (Simple Network Management Protocol), 350–353
user authentication, 354, 357
NetFlow. See NetFlow
remote-access VPNs in Cisco Secure Firewall
 overview of, 556–557
 Remote Access VPN Policy Wizard, 557–566
troubleshooting, 566–567
site-to-site VPNs in Cisco ASA, 537–538
 advanced features, 535–537
 crypto maps, 532–534
 IPsec policy, 531–532
 ISAKMP enabling, 528–529
 ISAKMP policy, 529–530
 NAT exempt policy, 534–535
 overview of, 528–529
 PFS (Perfect Forward Secrecy), 535
 traffic filtering, 534
 tunnel groups, 530–531
site-to-site VPNs in Cisco routers
 DMVPN, 512–515
 FlexVPN, 518–522
 GETVPN, 512–518
 GRE over IPsec, 508–510
 multipoint GRE (mGRE) tunnels, 512
traditional site-to-site VPNs in Cisco IOS/Cisco IOS-XE, 506–508
troubleshooting, 522–528
tunnel interfaces, 506–508, 510–512
site-to-site VPNs in Cisco Secure Firewall, 567–569
vulnerabilities in, 9
WCCP (Web Cache Communication Protocol)
 in Cisco ASA, 647–648
 on Cisco Secure Web Appliance, 650–651
 on Cisco switches, 649–650
configure terminal command, 290
CONNECT method, 139
Connectivity Over Security policy, 474
connectors
 Cisco Secure Endpoint, 687
 Cisco Secure Workload, 624
console cable, 353–354
constant special ID lists (CSIDL), 685
Constrained Application Protocol (CoAP), 57
consumers, Cisco Secure Workload, 624
container orchestration
 container images, 592
 Docker, 592
 Kubernetes, 597–602
overview of, 592
container registries, 592
content security
 AsyncOS, 642
 Cisco Content SMA (Security Management Appliance), 641–642, 662–667
Cisco Secure Email
 Cisco SenderBase, 660–661
dashboards, 662–663
deployment, 659–660
DLP (data loss prevention), 661
email protocols and concepts, 658–659
listeners, 660
overview of, 641–642, 658
RAT (recipient access table), 661
SMTP authentication and encryption, 661–662
Cisco Secure Web Appliance, 642
DLP (data loss prevention), 643, 655
explicit forward mode, 644–646
feature engines, 642–643
interface types, 644
overview of, 641–642
PBR (policy-based routing), 646, 651–652
policy configuration, 653–655
reports, 655–657
security services, 652
transparent mode, 646–647
WCCP (Web Cache Communication Protocol), 646–651
as web proxy, 643–644, 653
overview of, 641–642
Content-Addressable Memory (CAM), 336, 349, 390
content-dependent access control, 182
context services, Cisco ISE (Identity Services Engine), 195–198
Context-Based Access Control (CBAC), 435
continuous delivery (CD), 583
continuous integration (CI), 583, 588–589
Contiv, 120, 123–124, 602–603
contracts, Cisco DNA (Digital Network Architecture), 129
Control And Provisioning of Wireless Access Points (CAPWAP), 257
Control Plane Policing (CoPP), 347, 397–399
Control Plane Protection (CPPr), 348, 399
control plane security, 113
best practices, 347–348
CoPP (Control Plane Policing), 347, 397–399
CPPr (Control Plane Protection), 348, 399
overview of, 344–345, 395
process-switched traffic, 395–397
routing protocols, 399–400
on BGP, 402–404
on EIGRP, 401
on OSPF, 400
on RIP, 401–402
controllers, SDN (software-defined networking), 114
control-plane keyword, 460
co-occurrence model, 610
cookies
Cisco Secure Web Appliance, 654
cookie manipulation attacks, 39
coordination centers, 74–75
CoPP (Control Plane Policing), 347, 397–399
CORBA (Common Object Request Broker Architecture), 40, 140–141
corp-net SSID, 131
covert channels, 25
covert communication, 24–26
CPPr (Control Plane Protection), 348, 399
Create IP List button (Cisco Secure Endpoint), 682
create_deck() function, 144
credential brute forcing, 34–35
credentials, default, 35
CRLs (certificate revocation lists), 95, 104
cross-certification, 106
crossover error rate (CER), 165
cross-site request forgery (CSRF), 38
cross-site scripting (XSS), 33, 36–38, 53
cryptanalysis, 82
Cryptcat, 26
crypters, 23
crypto ca authenticate command, 542
crypto ca import command, 543
crypto ikev1 enable outside command, 529
crypto maps, 506
 IPsec remote-access VPNs in Cisco ASA, 539
 site-to-site VPNs in Cisco ASA firewalls, 532–534
cryptocurrency wallets, 20
Cryptographic Suite for Algebraic Lattices (CRYSTALS), 94
cryptography
 cipher digit streams, 84
ciphers
 asymmetric algorithms, 84–86
 block, 84
 cryptographic, 34
 definition of, 82–83
 in IKE (Internet Key Exchange), 496
 stream, 84
 symmetric algorithms, 84–86
ciphertext streams, 84
CyberChef, 89
definition of, 82
hashes
 AES-256, 89
 BLAKE2, 88, 93
 example of, 86–87
 HMAC, 89
 MD5, 87–88, 93, 400–404, 497
 SHA, 93
 SHA-1, 88
 SHA-2, 88
 SHA-3, 88
 SHA-256, 678–680
 SHA-384, 89
 SHA512 checksum, 86
 Whirlpool, 88, 93
IPsec, 93
 key management, 83–84, 92
NGE (next-generation encryption), 92–93
PKI (public key infrastructure)
 asymmetric key cryptography, 97
 CAs (certificate authorities), 91, 98, 102–106
 definition of, 97
 digital certificates, 103–105
 digital signatures, 90–91, 97–98, 503
 identity certificate, 101
 PGP (Pretty Good Privacy), 97
 public and private key pairs, 85, 97, 98
 public key cryptography, 97
 root certificates, 99–100
 standards, 103
 topologies, 105–106
 X.500, 101–102
 X.509v3, 101–102
post-quantum, 93–95
SSL (Secure Sockets Layer), 95–96
symmetric algorithms, 84–86
TLS (Transport Layer Security), 95–96
cryptology, 82
CRYSTALS (Cryptographic Suite for Algebraic Lattices), 94
CSAF (Common Security Advisory Framework), 15
CSD (Computer Security Division), 7
CSIDL (constant special ID lists), 685
CSIRTs (computer security incident response teams), 67–69, 74
CSPs (cloud service providers), 605
CSRF (cross-site request forgery), 38
cts role-based enforcement command, 306

cts role-based enforcement vlan-list command, 306
curl command, 141–143
custom detections, Cisco Secure Endpoint Outbreak Control, 677–681
custom feeds, 484
custom privilege levels, 359, 371–373
customer security responsibility, cloud computing, 605–606
CVE (Common Vulnerabilities and Exposures), 10, 31
CVE Naming Authorities (CNAs), 10
CVSS (Common Vulnerability Scoring System), 69–73, 204, 624
CyberChef, 89
cybersecurity
 information security versus, 6–7
 overview of, 6
 standards, 7–8
Cybersecurity and Infrastructure Security Agency (CISA), 73

D

DAC (Dynamic Authorization Client), 205
dACLs (downloadable access control lists), 191
DACs (discretionary access controls), 49, 178
DAI (dynamic ARP inspection), 334, 341–343, 349, 390
dark web, 10
DAS (Dynamic Authorization Server), 205
dashboards
 Cisco DNA (Digital Network Architecture), 127–129
 Cisco Secure Cloud Analytics, 242
Cisco Secure Email, 662–663
Cisco Secure Endpoint, 690–691
Cisco Secure Network Analytics, 268–270
Cisco Secure Workload, 623–626
Cisco Umbrella, 611
Cognitive Intelligence, 274–279
DAST (dynamic application security testing), 604–605
Data Center Network Manager (DCNM), 124
data centers, NetFlow deployment on, 259–261
data classification, cloud computing, 52
Data Distribution Protocol (DDP), 57
data leak detection and prevention, NetFlow, 243
data loss prevention (DLP)
 Cisco Secure Email, 661
 Cisco Secure Web Appliance, 643, 655
data plane security, 113
 best practices, 348–349
 in IPv6
 ACLs (access control lists), 394–395
 best practices, 388–389, 393–394
 focus on, 390–391
 IPv4 versus, 381–382
 IPv6 address format, 383–384
 IPv6 address types, 384–386
 moving to IPv6, 388
 risks, 391–392
 routing and routing protocols, 386–388
 security plans, 388
 threats, 389–390
 overview of, 344–345
data-driven segmentation, 297–299
Datagram Transport Layer Security (DTLS), 555–556, 566
data-hiding Trojans, 19
DCE/RPC preprocessor, 476
DCNM (Data Center Network Manager), 124
DCOM (Distributed Component Object Model), 40, 140–141
DDoS (distributed denial-of-service) attacks, 13, 53, 241–243
DDP (Data Distribution Protocol), 57
Dead Peer Detection (DPD), 501
debug aaa accounting command, 369–371
debug aaa authentication command, 369–371
debug aaa authorization command, 369–371
debug crypto ikev2 command, 525–527
debug crypto ikev2 internal command, 525–527
debug crypto ipsec command, 525–527
debug crypto isakmp command, 525–527
debug feature command, 566
debug radius authentication command, 525–527
debug webvpn condition command, 566
debugging. See also troubleshooting
 AAA (authentication, authorization, and accounting), 369–371
 site-to-site VPNs in Cisco routers, 522–528
 TACACS+210–212
Deck of Cards API, 141–144
deep packet inspection (DPI), 254, 420
deep web, 10
default allow, 48
default credentials, 35
default deny, 48
default gateways, site-to-site VPNs, 536
DELAY quarantine, 661
DELETE method, 139
demilitarized zone (DMZ), 643
denial-of-service attacks. See DoS (denial-of-service) attacks
Department of Homeland Security (DHS), 74
deployments. See also configuration
 Cisco Secure Firewall, 437–448
 design considerations, 447–448
 interface modes, 442–447
 overview of, 437
 routed versus transparent, 437–442
 security contexts, 438–439
 Kubernetes, 598–602
 NetFlow, 255–262
 data center, 259–261
 Internet edge, 258–259
 site-to-site and remote VPNs, 261–262
 user access layer, 256
 wireless LAN, 256–257
DES (Digital Encryption Standard), 84, 93, 496
design considerations
 Cisco ISE (Identity Services Engine), 222–224
 clientless remote-access VPNs in Cisco ASA, 541–542
designated ports, 331
destination command, 291
destination SGT (DGT), 202
development methodologies
 Agile, 583–586
 Scrum, 584–585
 waterfall, 583
device flow correlation (DFC), 681
device hardening, 389
device image security, 380–381
Device-Watchdog-Answer (DWA), 187
Device-Watchdog-Request (DWR), 187
DevNet, 135, 140
DevNet ACI Programmability tutorial, 140
DevNet Developer Videos tutorial, 140
DevNet Git Tutorials tutorial, 140
DevNet GitHub Repositories tutorial, 140
DevOps, 583, 586–587
DevSecOps, 603–605
DFC (device flow correlation), 681
DFIR (digital forensics and incident response)
 EDR (Endpoint Detection and Response), 676
false positives/false negatives, 60
incident response
 CERTs (Computer Emergency Response Teams), 74
 coordination centers, 74–75
 CSIRTs (computer security incident response teams), 67–69, 74
 CVSS (Common Vulnerability Scoring System), 69–73
definition of, 62
 forensic evidence, 61–62
 incident response process, 63–65
 information sharing and coordination, 66
IRPs (incident response plans), 62–63
key incident management personnel, 75–76
PSIRTs (product security incident response teams), 69
SSVC (Stakeholder-Specific Vulnerability Categorization), 73
tabletop exercises and playbooks, 65–66
incidents
examples of, 59–60
reporting, 61–62
severity levels, 60
ISO/IEC 27002:2013, 58–59
NIST (National Institute of Standards and Technology) guidelines for, 58–59
true positives/true negatives, 60
DGT (destination SGT), 202
DH. See Diffie-Hellman (DH)
DHCP (Dynamic Host Configuration Protocol), 385, 414, 437
DHCP snooping, 334, 339–341, 349
DHCPv6, 391
DHS (Department of Homeland Security), 74
Diameter, 186–188
dictionary attack, 354
differentiated services code point (DSCP), 239
Diffie-Hellman (DH), 86, 93
 IKEv1 Phase 1 negotiation, 496–498
 IKEv1 Phase 2 negotiation, 499
 IKEv2, 530
 PFS (Perfect Forward Secrecy), 535
dig command, 658
digest, 87
digital certificates
 enrollment, 91, 542–544
 identity certificates, 101
 in practice, 104–105
 revoking, 103–104
 root certificates, 99–100
Digital Encryption Standard (DES), 84, 496
digital forensics and incident response. See DFIR (digital forensics and incident response)
Digital Network Architecture. See Cisco DNA (Digital Network Architecture)
Digital Signature Algorithm (DSA), 86, 93
digital signatures, 90–91, 97–98, 503
Dilithium, 94
disaster recovery, cloud computing, 52
Disconnect-Peer-Answer (DPA), 187
Disconnect-Peer-Request (DPR), 187
Disconnect-Request, 206
discretionary access controls (DACs), 49, 178
Distributed Component Object Model (DCOM), 40, 140–141
distributed denial-of-service attacks. See DDoS (distributed denial-of-service) attacks
Distributed Network Protocol (DNP3), 418
distribution of malware, 22–23
DKIM (Domain Keys Identified Mail), 615, 662
DLP (data loss prevention)
Cisco Secure Email, 661
Cisco Secure Web Appliance, 643, 655
DLP Incident Summary dashboard, Cisco Secure Email, 667
DMARC (Domain-based Message Authentication, Reporting, and Conformance), 615
DMVPN (Dynamic Multipoint VPN), 262, 498, 512–515
DNA (Digital Network Architecture). See Cisco DNA (Digital Network Architecture)
DNP3 (Distributed Network Protocol), 418
DNS (Domain Name System)
covert communication, 25–26
DNS attacks, 53
DNS preprocessor, 476
Docker, 592
docker images command, 593, 596
docker ps command, 594
docker run mypython command, 596
docker search command, 594
Docker Swarm, 123, 592
Dockerfiles, 595–596
Document Object Model (DOM), 37
documentation
APIs (application programming interfaces), 141
Docker, 597
ISO (International Organization for Standardization), 8
DOM (Document Object Model), 37
domain and IP reputation scores, 613
domain co-occurrences, 613
Domain Keys Identified Mail (DKIM), 662
Domain Name System. See DNS (Domain Name System)
Domain-based Message Authentication, Reporting, and Conformance (DMARC), 615
DomainKeys Identified Mail (DKIM), 615
downloadable access control lists (dACLs), 191
downloading
Cisco Secure Endpoint connectors, 687
Contiv, 123, 602
DPA (Disconnect-Peer-Answer), 187
DPD (Dead Peer Detection), 501
DPI (deep packet inspection), 254, 420
DPR (Disconnect-Peer-Request), 187
DR/BCP (disaster recovery/business continuity plan), 52, 608
droppers, 23, 27
DSA (Digital Signature Algorithm), 86
DSCPs (differentiated services code points), 239
DTLS (Datagram Transport Layer Security), 555–556, 566

dual stacks, 392
due diligence, 52, 608
Duo Security, 166–168, 357
duties, separation of, 161
dVTI (dynamic VTI), 512
DWA (Device-Watchdog-Answer), 187
DWR (Device-Watchdog-Request), 187
dynamic analysis, malware, 29–30
dynamic application security testing (DAST), 604–605
dynamic ARP inspection (DAI), 334, 341–343, 349, 390
Dynamic Authorization Client (DAC), 205
Dynamic Authorization Server (DAS), 205
Dynamic Host Configuration Protocol (DHCP), 385, 414, 437
Dynamic Multipoint VPN (DMVPN), 262, 498, 512–515
dynamic NAT (Network Address Translation), 463–469
dynamic tunnel interfaces, 511–512
dynamic VTI (VTI), 512

ECMP (equal-cost multi-path routing), 117
EDR (Endpoint Detection and Response), 676
EEPGs (External Endpoint Groups), 310
EER (equal error rate), 165
EIGRP (Enhanced Interior Gateway Routing Protocol), 248, 347, 401, 414
Elastic Kubernetes Service (EKS), 417
Elastic Search, 246
electrostatic discharge (ESD), 62
ELGamal, 86
ELK stack, 246
Elliptic Curve Cryptography (ECC), 86, 93
e-mail
Cisco Secure Email
Cisco SenderBase, 660–661
dashboards, 662–663
deployment, 659–660
DKIM (Domain Keys Identified Mail), 662
DLP (data loss prevention), 661
e-mail protocols and concepts, 658–659
listeners, 660
overview of, 641–642, 658
RAT (recipient access table), 661
SMTP authentication and encryption, 661–662
Cisco Secure Email Threat Defense
e-mail encryption, 615
FED (Forged Email Detection), 614
for Office 365, 615–616
overview of, 610–611
SPF (Sender Policy Framework), 615
Trojan infection on, 21
enable command, 289, 359
enable password command, 358
Encapsulated Remote Switched Port Analyzer (ERSPAN), 132
Encapsulating Security Payload (ESP), 93, 447, 500, 536
enclave networks, 296
encrypted management protocols, 355, 359–360, 375–378
Encrypted Traffic Analytics (ETA), 135–136, 274
encryption. See cryptography
end command, 290
endpoint (EP) configuration, 310
Endpoint Detection and Response (EDR), 676
endpoint groups (EPGs), 301
endpoint protection and detection
Cisco Secure Endpoint
 AMP Enabler, 688–689
 connectors, 687
 engines, 689
 exclusion sets, 684–686
 high-level architecture, 676–677
 Outbreak Control, 677–683
 overview of, 675
 policies, 687–688
 reporting dashboards, 690–691
Cisco Secure Firewall Malware Defense, 674–675
Cisco Threat Response, 693
EDR (Endpoint Detection and Response), 676
EPP (Endpoint Protection Platform), 676
ETDR (Endpoint Threat Detection and Response), 676
Endpoint Protection Platform (EPP), 676
Endpoint Threat Detection and Response (ETDR), 676
endpoints
 PTEP (physical tunnel endpoint), 114
 VTEP (VXLAN tunnel endpoint), 114
enforcers, networks as, 238
ingines, Cisco Secure Endpoint, 689
Enhanced Interior Gateway Routing Protocol (EIGRP), 248, 347, 401, 414
enhanced local mode, NetFlow, 257
enrollment terminal subcommand, 543
environment-data download, 305
EP (endpoint) configuration, 310
EP (Extreme Programming), 586
EPGs (endpoint groups), 301
EPP (Endpoint Protection Platform), 676
equal error rate (EER), 165
equal-cost multi-path routing (ECMP), 117
ERSPAN (Encapsulated Remote SPAN), 132, 447
ESD (electrostatic discharge), 62
ESP (Encapsulating Security Payload), 93, 447, 500, 536
ETA (Encrypted Traffic Analytics), 135–136, 274
ETDR (Endpoint Threat Detection and Response), 676
EtherType ACLs (access control lists), 456
ethical hackers, 13–14
Ethos, 480–481, 689
ETSI (European Telecommunications Standards Institute), 123
Evan's Debugger (edb), 28
evasion techniques, IDSs (intrusion detection systems), 60
events, definition of, 59
evidence, forensic, 61–62
exam, SCOR 350–701
 exam updates, 698–700
 final review and study, 696–697
 hand-on preparation activities, 696
 Pearson Test Prep software, 697
exclusion sets, Cisco Secure Endpoint, 684–686
EXEC shell, 357–358
explicit forward mode, Cisco Secure Web Appliance, 644–646
Exploit Database, 10
exploits
definition of, 10–11
zero-day, 10
export-protocol command, 291
export-protocol ipfix command, 294
extended ACLs (access control lists), 455
eXtended Detection and Response (XDR), 426–427, 618, 627–632
Extensible Access Control Markup Language (XACML), 179
Extensible Authentication Protocol (EAP), 189, 503, 519–520
Extensible Messaging and Presence Protocol (XMPP), 57, 193
Extension exclusion type, 684
External Endpoint Groups (EEPGs), 310
Extreme Programming (EP), 586

Facebook Connect, 172
factors, 165
failover, Cisco Secure Firewall, 448–450
FakeNet, 29–30
false acceptance errors (FAR), 165
false positives/false negatives, 60
false rejection errors (FRR), 165
FAR (false acceptance errors), 165
Faraday cage, 62
fast flux, 610
fast infection, 17
FCM (FXOS Firepower Chassis Manager), 432

FDM (Firepower Device Manager), 429–433
feature netflow command, 295
FED (Forged Email Detection), 614
Federal Information Processing Standards (FIPS), 7
Federal Information Security Management Act (FISMA), 59
Federally Funded Research and Development Center (FFRDC), 10
federated identity, 174–177
federation providers, 174
feedback loop, DevOps, 587
FFRDC (Federally Funded Research and Development Center), 10
file infection, 16
file reputation, 643, 675
file retrospection, 478–483, 643, 666, 675
file sandboxing, 478–483, 643, 675
File Transfer Protocol (FTP), 476, 647–648, 650
Filter-ID, 205
filtering
EDR (Endpoint Detection and Response), 676
ports, 399
Financial Services Information Sharing and Analysis Center (FS-ISAC), 66
Findsecbugs, 604
FIPS (Federal Information Processing Standards), 7
FireAMP. See Cisco Secure Endpoint
Firepower Device Manager (FDM), 429–433
Firepower eXtensible Operating System (FXOS), 432
Firepower Management Center. See FMC (Firewall Management Center)
FirePOWER module, 414–415
Firepower Threat Defense (FTD), 182, 415, 648. See also Cisco Secure Firewall

Firewall Management Center (FMC), 414–415, 423–425

firewalls, 349
FIRST website, 72
five-tuple, 238–239
Flame, 17
FlexConfig objects, 648
Flexible Authentication (Flex-Auth), 213
Flexible NetFlow, 280–294
configuration, 286–293
flow exporters, 286, 291–293, 295
flow samplers, 286
IPFIX export format, 294
key fields, 282–284
non-key fields, 284–285
records, 282
 flow records, 287–289, 295
 predefined records, 285
 user-defined records, 286
simultaneous application tracking, 281–282

FlexNet Code Insight, 43
FlexVPN, 262, 511, 518–522
flow, definition of, 238–241
flow anomaly detection, 305
flow de-duplication, 305
flow exporter command, 291
flow exporters, 286, 291–293, 295
flow licenses, 264
flow monitor command, 290
Flow Observation, 624
flow records, 287–289, 295
flow samplers, 286
Flow Search page, Cisco Secure Workload, 624
flow stitching, 305
FlowCollector, 263
FlowReplicator, 264
flows per second, 279–280
FlowSensors, 238, 246, 260–261, 264
FMC (Firewall Management Center), 414–415, 423–425
fog computing, 54–56
Forensics, Cisco Secure Workload, 623–626
Forensics Scores, 623
forests, 174
Forged Email Detection (FED), 614
Fortinet, 415–416
FQDNs (fully qualified domain names), 98
fragmentation, 60, 396, 536
frames, VXLAN (Virtual Extensible LAN), 116–117
freeware, Trojan infection on, 22
FRR (false rejection errors), 165
FS-ISAC (Financial Services Information Sharing and Analysis Center), 66
FTD (Firepower Threat Defense), 182, 415, 648. See also Cisco Secure Firewall
FTP (File Transfer Protocol), 476, 647–648, 650
full tunnel client mode, 540–541
fully qualified domain names (FQDNs), 98
fuzzing, 604–605
FXOS (Firepower eXtensible Operating System), 432
FXOS Firepower Chassis Manager (FCM), 432
Galois/Counter Mode (GCM), 93
GCKS (group controller or key server), 516
GCM (Galois/Counter Mode), 93
GCP. See Google Cloud Platform (GCP)
GDOI (Group Domain of Interpretation), 515–516
General Packet Radio Service (GPRS), 477
Generic Network Virtualization Encapsulation (GENEVE), 116
Generic Routing Encapsulation. See GRE (Generic Routing Encapsulation)
GENEVE (Generic Network Virtualization Encapsulation), 116
geolocation, 484, 613, 614
GET method, 139
GETVPN (Group Encrypted Transport VPN), 512–518
Ghidra, 28
GitHub, 10
GKE (Google Kubernetes Engine), 599
gNMI (gRPC Network Management Interface), 151, 352–353
Go, 137
Google Cloud Platform (GCP), 417
GKE (Google Kubernetes Engine), 599
GPC Flow Logs, 265
Google Kubernetes Engine (GKE), 599
government threat actors, 13
GPOs (Group Policy Objects), 645
GPRS (General Packet Radio Service), 477
graphical user interfaces (GUIs), 113
GraphQL, 40, 141
gray hat hackers, 14
Graylog, 246
GRE (Generic Routing Encapsulation), 262, 494
Diffie-Hellman, 511
GRE over IPsec, 508–510, 511
multipoint GRE (mGRE) tunnels, 512
group controller or key server (GCKS), 516
Group Domain of Interpretation (GDOI), 515–516
Group Encrypted Transport VPN (GETVPN), 512–518
group policies, 129, 544–545
Group Policy Objects (GPOs), 645
groups, Cisco Secure Endpoint, 687
gRPC Network Management Interface (gNMI), 151, 352–353
GTP (GPRS Tunneling Protocol), 477
guest networks, 297
GUIs (graphical user interfaces), 113
hackerrepo.org repository, 16
hackers, 13
hacktivists, 13
hands-on exam preparation activities, 696
hardening, device, 389
hardware vulnerabilities. See vulnerabilities
HashCorp Nomad, 592
Hashed Message Authentication Code (HMAC), 89
hashes, 530
AES-256, 89
BLAKE2, 88, 93
example of, 86–87
group policies, 87–88
HMAC, 89
MD5, 87–88, 93, 497
on BGP, 402–404
on EIGRP, 401
on OSPF, 400
on RIP, 401–402
SHA, 93
SHA-1, 88
SHA-2, 88
SHA-3, 88
SHA-256, 678–680
SHA-384, 89
SHA512 checksum, 86
Whirlpool, 88, 93
HEAD method, 139
hierarchical CAs (certificate authorities), 105–106
hierarchical PKI topology, 105
high availability, 448–450
high-level architecture, Cisco Secure Endpoint, 676–677
hijacking, session, 35, 53
HMAC (Hashed Message Authentication Code), 89
hop-by-hop extension headers, 391–392
Horizon, 120
host sub-interface, 348
HQC, 95
HTML injection, 33
HTTP (Hypertext Transfer Protocol)
Cisco Secure Web Appliance traffic redirection, 647–648, 650
HTTP preprocessor, 476
methods, 139
status codes, 139
HTTPS (HTTP Secure), 104, 355
Cisco Secure Endpoint, 677
HTTPS proxy, 655
for IPv4/IPv6, 389
SSL (Secure Sockets Layer) VPNs, 95, 504
hub-and-spokes configuration, DMVPN, 514–515
hybrid cloud, 582
HyperFlex, 417
IaaS (Infrastructure as a Service)
customer versus provider security responsibility, 605–606
definition of, 50–51, 582
ICMP (Internet Control Message Protocol), 25–26, 349, 395, 462–463
icmp command, 462
ICMPv6, 392
IDA Pro, 28
IDE (intrusion detection systems), 420
IDEA (International Data Encryption Algorithm), 84
identification, 162
identity certificate, 101
identity providers (IdPs), 174
Identity Services Engine. See Cisco ISE (Identity Services Engine)
IDLs (interface description languages), 151
IdPs (identity providers), 174
IDSs (intrusion detection systems), 420, 472
IEC61850, 419
IEPGs (Internal Endpoint Groups), 310
IKE (Internet Key Exchange), 93
IKEv1 Phase 1 negotiation, 496–498
IKEv1 Phase 2 negotiation, 498–501
IKEv2, 501–503
IM (instant messaging), Trojan infection on, 21
images, container, 592
IMAP (Internet Message Access Protocol), 477, 658
Immunet AV, 479
impersonated mobile apps, 22
implicit deny, 177
in-band management, 356
in-band SQL injection, 33
incident response
CERTs (Computer Emergency Response Teams), 74
coordination centers, 74–75
CSIRTs (computer security incident response teams), 67–69, 74
CVSS (Common Vulnerability Scoring System), 69–73
definition of, 62
forensic evidence, 61–62
incident response process, 63–65
information sharing and coordination, 66
IRPs (incident response plans), 62–63
key incident management personnel, 75–76
NetFlow, 243–248
PSIRTs (product security incident response teams), 69
SSVC (Stakeholder-Specific Vulnerability Categorization), 73
tabletop exercises and playbooks, 65–66
incidents
examples of, 59–60
reporting, 61–62
severity levels, 60
indicators of compromise (IoCs), 14, 480–481
infection routine, 18
inferential SQL injection, 33
information security (InfoSec), cybersecurity versus, 6–7
information sharing and coordination, 66
Information Technology Laboratory (ITL) bulletins, 7–8
infrastructure access controls, 179–182
Infrastructure as a Service (IaaS)
customer versus provider security responsibility, 605–606
definition of, 50–51, 582
infrastructure security, 344–345
control plane security
CoPP (Control Plane Policing), 347, 397–399
CPPr (Control Plane Protection), 348, 399
process-switched traffic, 395–397
routing protocols, 399–400
routing update authentication on BGP, 402–404
routing update authentication on EIGRP, 401
routing update authentication on OSPF, 400
routing update authentication on RIP, 401–402
IPv6 security
ACLs (access control lists), 394–395
best practices, 388–389, 393–394
focus on, 390–391
IPv4 versus, 381–382
IPv6 address format, 383–384
IPv6 address types, 384–386
moving to IPv6, 388
risks, 391–392
routing and routing protocols, 386–388
security plans, 388
threats, 389–390
Layer 2 technology security
importance of, 320
VLANs (virtual LANs) and trunking, 320–331
Layer 2 threat mitigation. See also 802.1X; ACLs (access control lists)
best practices, 333–334
BPDU Guard, 334, 335–336
CDP (Cisco Discovery Protocol), 338–339
DAI (dynamic ARP inspection), 334, 341–343, 349, 390
DHCP snooping, 334, 339–341, 349
dynamic ARP inspection, 334, 341–343, 349
LLDP (Link Layer Discovery Protocol), 338–339
negotiations, preventing, 334
overview of, 334–335
port security, 334, 336–338, 349
Root Guard, 334, 336
logging, 360–361, 378–379
management traffic security
AAA method lists, 358, 364–369
best practices, 354–356
Cisco IOS and Cisco NX-OS files, 362
console cable, 353–354
custom privilege levels, 359, 371–373
definition of, 350
encrypted management protocols, 359–360
HTTPS (HTTP Secure), 359–360, 375–378
logging, 360–361, 378–379
NETCONF (Network Configuration Protocol), 350–353
NTP (Network Time Protocol), 361, 379–380
parser views, 359, 374–375
password recommendations, 354, 356–357, 362–364
RBAC (role-based access control), 359
RESTCONF (RESTful Network Configuration Protocol), 350–353
router access authentication, 357–358, 369–371
SNMP (Simple Network Management Protocol), 350–353
SSH (Secure Shell), 359–360, 375–378
user authentication, 354, 357
network infrastructure device image, 380–381
NFP (Network Foundation Protection) framework
data plane security, 344–345, 348–349. See also IP (Internet Protocol)
implementation of, 344–345
management plane security, 344–347
overview of, 343–344
Initial Contact, 501
injection vulnerabilities
command injection, 33
examples of, 31
HTML injection, 33
SQL injection, 31–33, 53
inline pair interfaces (Cisco Secure Firewall), 445
inline pair with tap interfaces (Cisco Secure Firewall), 445–446
Insecure Direct Object Reference vulnerabilities, 35–36
INSTEON, 56
Integrated Services Routers (ISRs), 238, 254, 419–421
integrity, 45–46
intent-based (northbound) APIs, 121, 135, 136
interagency reports (NIST), 7
inter-BVI communication, 444
interface description languages (IDLs), 151
interface modes, Cisco Secure Firewall, 442–444
inline pair, 445
inline pair with tap, 445–446
overview of, 442–444
passive mode, 446–447
passive with ERSPAN mode, 447
interface types, Cisco Secure Web Appliance, 644
interface Virtual-Access command, 511
intermediate cache, NetFlow, 240
Internal Endpoint Groups (IEPGs), 310
International Data Encryption Algorithm (IDEA), 84
International Organization for Standardization. See ISO (International Organization for Standardization)
Internet Control Message Protocol (ICMP), 25–26, 349, 395, 462–463
Internet edge, NetFlow deployment on, 258–259
Internet Key Exchange. See IKE (Internet Key Exchange)
Internet Message Access Protocol (IMAP), 477, 658
Internet Protocol. See IP (Internet Protocol)
Internet Protocol Flow Information Export. See IPFIX (Internet Protocol Flow Information Export)
Internet Protocol Security. See IPsec (Internet Protocol Security) VPNs
Internet Relay Chat (IRC), Trojan infection on, 21
interpreters, Python, 138
inter-VLAN routing, 326–327
Intra-Site Automatic Tunnel Addressing Protocol (ISATAP), 281
Introduction to Coding and APIs tutorial, 140
intrusion detection systems (IDS), 420, 472
intrusion prevention systems (IPSs), 349, 472
Investigate, Cisco Umbrella, 610–611
IoCs (indicators of compromise), 14, 480–481
IOS/IOS-XE. See Cisco IOS/IOS-XE
IoT (Internet of Things)
protocols, 56–57
security challenges and considerations, 54–57
tools and methods for hacking, 57
IP (Internet Protocol)
accounting, 241
Anycast IP, 609
Block & Allow Lists, 681–682
cov covert communication, 25–26
golocation, 613
IP Source Guard, 334, 349
IP-based access control policies, 131
IPv4
best practices, 388–389
flow monitors, 289–291
IPv6 versus, 381–382
threats, 389–390
IPv6 security, 25–26
ACLs (access control lists), 394–395
address format, 383–384
address types, 384–386
best practices, 388–389, 393–394
flow monitors, 289–291
focus on, 390–391
IPv4 versus, 381–382
IPv6 address format, 383–384
IPv6 address types, 384–386
moving to IPv6, 388
Ironport. See Cisco Secure Email; Cisco Secure Web Appliance
IRPs (incident response plans), 62–63
ISA3000 firewall, 418–419
ISAKMP, 528–530
ISATAP (Intra-Site Automatic Tunnel Addressing Protocol), 281
ISE (Identity Services Engine). See Cisco ISE (Identity Services Engine)
ISO (International Organization for Standardization), 8. See also DFIR (digital forensics and incident response)
CSIRT (computer security incident response team) resources, 68–69
ISO/IEC 27000 series, 8
ISRs (Integrated Services Routers), 238, 254, 419–421
issuers, digital certificates, 99, 101
ITL (Information Technology Laboratory) bulletins, 7–8

J

JavaScript, 137
JIT (just-in-time) manufacturing, 586
JRE (Java Runtime Environment), 550–551
JSON (JavaScript Object Notation), 135
JWT (JSON Web Token), 173–174

K

Kadacoda website, 599
Kanban, 586
Katacoda, 595
KEM (key-encapsulation mechanism), 94
Kerberos, 174, 358, 654
key fields, Flexible NetFlow, 282–284
key incident management personnel, 75–76
keychain authentication, 404
key-encapsulation mechanism (KEM), 94
KeyGhost, 27
keyloggers, 26–27
keys, cryptographic, 83–84. See also
PKI (public key infrastructure)
GETVPN, 517
key management, 92, 93
key pairs, 85, 97
pre-shared keys, 93, 497, 503
keyspace, 92
Kibana, 246
Kind 19 option (TCP), 403
knowledge, authentication by, 162–164
krb5, 358
krb5-telnet, 358
kubectl version command, 598
kubeadm, 599
kubectl get nodes command, 599, 601
Kubernetes, 123, 419, 592, 597–602
Kyber, 94

L

L2F (Layer 2 Forwarding), 494, 537
L2TP (Layer 2 Tunneling Protocol), 494
Lambda (AWS), 590
Lancope, 263
languages, 137–140
LANs (local area networks), 116–117
Layer 2 broadcast domains. See VLANs
(virtual LANs)
Layer 2 Forwarding (L2F), 494, 537
Layer 2 technologies, securing
importance of, 320
VLANs (virtual LANs)
creation of, 321–323
dynamism, 326–327
example of, 320–321
inter-VLAN routing, 326–327
STP (Spanning Tree Protocol), 328–332
trunking, 323–326
Layer 2 threats, mitigating. See also
802.1X; ACLs (access control lists)
best practices, 333–334
BPDU Guard, 334, 335–336
CDP (Cisco Discovery Protocol), 338–339
DAI (dynamic ARP inspection), 334,
341–343, 349, 390
dynamic ARP inspection, 334, 341–343,
349
DHCP snooping, 334, 339–341, 349
inter-VLAN routing, 326–327
LLDP (Link Layer Discovery Protocol),
338–339
negotiations, preventing, 334
overview of, 334–335
port security, 334, 336–338, 349
Root Guard, 334, 336
Layer 2 Tunneling Protocol (L2TP), 494
LDAP (Lightweight Directory Access
Protocol), 101, 653
leaf-and-spine topology, 114
Lean management philosophy, 585
Learn Python.org, 137
least privilege, principle of, 48, 161
liability, cloud computing, 52, 608
libraries, NBAR2 (Next Generation
Network-Based Application
Recognition), 132
licenses, flow, 264
Lightweight Access Point Protocol
(LWAPP), 257
Lightweight Directory Access Protocol
(LDAP), 101, 653
line password, 358
Link Layer Discovery Protocol (LLDP),
338–339
link-local addresses, 384
Linux commands
malware, 765

cat, 86
curl, 141–143
dig, 658
md5sum, 87
shasum, 87
verify md5, 86
listeners, Cisco Secure Email, 660
lists, AAA method lists, 358, 364–369
LLDP (Link Layer Discovery Protocol), 338–339
local keyword, 358
local username database, 358
logging, 360–361
management plane best practices, 355
NEL (NetFlow Event Logging), 258
NSEL (NetFlow Secure Event Logging), 261
syslog, 245–246
configuration, 378–379
severity levels, 360–361
logical tunnel interfaces, 510–511
Login Password Retry Lockout feature, 354
Logstash, 246
Long Range Wide Area Network (LoRaWAN), 56
Low Power Wireless Personal Area Networks (6LoWPAN), 56
Low Rate Wireless Personal Area Networks (LRWPAN), 56
low-bandwidth attack, 60
LWAPP (Lightweight Access Point Protocol), 257

M

MAB (MAC Authentication Bypass), 196, 213, 302, 305
MAC addresses, 336–338
machine learning, 40–41
macro infection, 16
MACs (mandatory access controls), 49, 177
mail. See email
mail delivery agents (MDAs), 658
mail exchanger (MX), 658–659
mail flow policies, 662
Mail Flow Summary dashboard, Cisco Secure Email, 663
mail submission agents (MSAs), 658
mail transfer agents (MTAs), 658
mail user agents (MUAs), 658
malware
analysis of
dynamic, 29–30
static, 28
cover covert communication, 24–26
distribution of, 22–23
keyloggers, 26–27
Malware Analytics Cloud
application control, 683
Cisco Secure Endpoint, 678
historical view of malware activity, 677
IP blacklists and whitelists, 680–681
payloads, 17–18
ransomware, 23–24
spyware, 16, 27–28
Trojans
communication methods, 19
definition of, 18
effects of, 22
goals of, 20–21
infection mechanisms, 21–22
ports, 19
types of, 18–19
viruses
characteristics of, 16
malware payloads, 17–18
polymorphic, 16–17
transmission methods, 16–17
types of, 16–17
worms, 16
Malware Analytics, 479–483
Malware Analytics Cloud
application control, 683
Cisco Secure Endpoint, 678
historical view of malware activity, 677
IP blacklists and whitelists, 680–681
overview of, 675
Malware Defense
overview of, 478–483
Security Intelligence blocklisting, 483–484
Security Intelligence updates, 484
Malware Threats report, Cisco Secure Web Appliance, 656
Management Access feature, site-to-site VPNs, 536
management and network orchestration (MANO), 123
management plane, 113. See also management traffic security
best practices, 344–347
overview of, 344–345
management traffic security, 362
AAA method lists, 358, 364–369
best practices, 354–356
Cisco IOS and Cisco NX-OS files, 362
console cable, 353–354
custom privilege levels, 359, 371–373
definition of, 350
encrypted management protocols, 359–360
HTTPS (HTTP Secure), 359–360, 375–378
logging, 360–361, 378–379
NETCONF (Network Configuration Protocol), 350–353
NTP (Network Time Protocol), 361, 379–380
benefits of, 361
configuration, 379–380
overview of, 361
parser views, 359, 374–375
password recommendations, 354, 356–357, 362–364
RBAC (role-based access control), 359
RESTCONF (RESTful Network Configuration Protocol), 350–353
router access authentication, 357–358, 369–371
SNMP (Simple Network Management Protocol), 350–353
SSH (Secure Shell), 359–360, 375–378
user authentication, 354, 357
management-access command, 533–534
mandatory access controls (MACs), 49, 177
“Manifesto for Agile Software Development, The” 584
man-in-the-browser attacks, 35
man-in-the-middle attacks, 35, 390
MANO (management and network orchestration), 123
master boot record infection, 16
masters, Kubernetes, 597
Maximum Detection policy, 474
maximum transmission unit (MTU), 393, 536
McAfee, 643
MD5 (Message Digest 5), 87–88, 93, 497
on BGP, 402–404
on EIGRP, 401
on OSPF, 400
on RIP, 401–402
md5sum Linux command, 87
MDA (Multi-Domain Authentication), 214
MDAs (mail delivery agents), 658
mediators, IPFIX (Internet Protocol Flow Information Export), 251–252
membership inference attacks, 41
memory cards, 164
Meraki, 176, 268, 691–692
Mesos, 592
Message Digest 5. See MD5 (Message Digest 5)
message-digest keyword, 400
messages
 RADIUS, 182–184
 TACACS+, 184
metering process (MP), 251
metrics
 Cisco AVC (Application Visibility and Control), 255
 CVSS (Common Vulnerability Scoring System), 69–73
MFA (multifactor authentication), 34, 165, 357
MGF (Multi Gigabit Fabric), 419
micro-segmentation, 602–603
 with Cisco ACI, 301
SDN (software-defined networking), 118–120
Microsoft Account, 172
Microsoft Active Directory, 101
Microsoft Azure, 417
Microsoft GPOs (Group Policy Objects), 645
Microsoft SCVMM (System Center Virtual Machine Manager), 301
Migration Tool, Cisco Secure Firewall, 415–416
misconfiguration vulnerabilities, 9
MITRE ATT&CK, 10, 21, 43, 271
ML (machine learning), 40–41
MMTF (multimode transparent firewall), 441
MnT (Monitoring and Troubleshooting) node, 304
mobile apps, Trojan infection on, 22
Mobile IPv4 Application, 186
mod_proxy module, 504
Modbus, 419
model inversion attack, 41
model stealing attacks, 41
models, cloud computing, 50–51
Modular Policy Framework (MPF), 458
monitor mode, 802.1X/TrustSec, 306
monitoring
 best practices, 355
 cloud computing, 619–622
Monitoring and Troubleshooting (MnT) node, 304
MP (metering process), 251
MPF (Modular Policy Framework), 458
MPLS (Multiprotocol Label Switching), 262, 494, 515, 570
MQTT, 57
MSAs (mail submission agents), 658
MTAs (mail transfer agents), 658
MTU (maximum transmission unit), 393, 536
MUAs (mail user agents), 658
Multi Gigabit Fabric (MGF), 419
multicast addresses, 385
Multicast Rekeying, 516
Multi-Domain Authentication (MDA), 214
multifactor authentication (MFA), 34, 165, 357
multilayer authentication, 165, 357
multimode transparent firewall (MMTF), 441
multipartite, 17
Multiple Authentication (Multi-Auth) modes, 214
multipoint GRE (mGRE) tunnels, 512
Multiprotocol Label Switching (MPLS), 262, 494, 515, 570
multi-SA dVTI, 512
multitenancy, 174
multivendor support, Cisco DNA, 136
Mutiny Fuzzing Framework, 604
MX (mail exchanger), 658–659

nameif command, 437, 457
NAS (Network Access Server), 205
NAS-Filter-Rule, 205
NAT (Network Address Translation) in Cisco ASA, 414, 458, 463–469
NAT exempt policy, 534–535, 540
NAT-T (NAT traversal), 499, 501, 536
nat command, 534–535
National Institute of Standards and Technology. See NIST (National Institute of Standards and Technology)
National Vulnerability Database (NVD), 31, 43
native VLANs (virtual LANs) on trunks, 326
NAT-T (NAT traversal), 499, 501, 536
NAT-Transparency-aware DMVPN, 514
natural disasters, 12
NBAR2 (Next Generation Network-Based Application Recognition), 132, 254–255, 280–281
NBMA (Non-Broadcast Multiple Access), 512
NDP (Network Discovery Protocol), 391
need to know, 48, 161, 177
negatives, false/true, 60
neighbor cache resource starvation, 391
NEL (NetFlow Event Logging), 258
Nessus, 42
NETCONF (Network Configuration Protocol), 147–148, 350–353
NetFlow, 618
anomaly detection, 241–243
AVC (Application Visibility and Control), 254–255
benefits of, 237–238
cache, 240
collection considerations and best practices, 279–280
configuration in Cisco IOS and Cisco IOS-XE, 280–294
configuration, 286–293
flow exporters, 286, 291–293
flow monitors, 286, 289–291, 293–294
flow records, 287–289
flow samplers, 286
IPFIX export format, 294
key fields, 282–284
non-key fields, 284–285
predefined records, 285
records, 282
simultaneous application tracking, 281–282
user-defined records, 286
configuration in NX-OS, 295–296
data leak detection and prevention, 243
DDoS attack mitigation, 241–243
deployment, 239, 255–262
data center, 259–261
Internet edge, 258–259
site-to-site and remote VPNs, 261–262
user access layer, 256
wireless LAN, 256–257
five-tuple, 238–239
flow, 238–241, 279–280
incident response, 243–248
IP Accounting versus, 241
NEL (NetFlow Event Logging), 258
network security forensics, 243–248
NSEL (NetFlow Secure Event Logging), 261
PDUs (protocol data units), 239
scalability, 279–280
security and visibility with, 241
threat hunting with, 243–248
traffic engineering and network planning, 248–249
versions of, 249
netflow-v5 keyword, 291
Netmaster, Contiv, 124
Netplugin, Contiv, 124
Network Access Server Application, 186
Network Access Server (NAS), 205
network ACLs (access control lists), 190–191
Network Address Translation. See NAT (Network Address Translation)
network analytics, 127, 263–264
Cisco Cognitive Intelligence, 274–279
Cisco ETA (Encrypted Traffic Analytics), 274–279
dashboard, 268–270
FlowSensors, 238, 246, 260–261, 264
NetFlow. See NetFlow
network segmentation
 application-based, 299–301
 with Cisco ISE, 302–312
data-driven, 297–299
 micro-segmentation with Cisco ACI, 301
types of, 296–297
threat hunting with, 270–273
Network Configuration Protocol (NETCONF), 147–148, 350–353
network device APIs (application programming interfaces), 145
Network Discovery Protocol (NDP), 391
Network Foundation Protection. See NFP (Network Foundation Protection) framework
Network Function Virtualization. See NFV (Network Function Virtualization)
network infrastructure, See infrastructure security
network overlays, 116–117
network programmability
 APIs (application programming interfaces), 140–141
documentation, 141
gNMI (gRPC Network Management Interface), 151
NETCONF, 147–148
network device APIs, 145
northbound, 121, 136
OpenConfig, 151
queryable, 141
REST APIs, 135, 141–144
RESTCONF, 149–151
southbound, 121, 136
technologies behind, 140–141
YANG models, 145–146
DevNet, 140
importance of, 136–137
programming languages and tools, 137–140
Network Programmability Basics Video Course, 140
Network Programmability for Network Engineers tutorial, 140
network security solutions, comparison of, 435–436
network segmentation
 application-based, 299–301
 with Cisco ISE, 302–312
802.1X/TrustSec in monitor mode, 306
active policy enforcement, 306–310
Cisco ACI integration, 310–312
SGT assignment and deployment, 306
SXP (SGT Exchange Protocol), 303–305
data-driven, 297–299
micro-segmentation with Cisco ACI, 301
types of, 296–297
Network Time Protocol. See NTP (Network Time Protocol)
network virtualization
GENEVE (Generic Network Virtualization Encapsulation), 116
NFV (Network Function Virtualization)
ar...
Next-Generation IPS (NGIPS), 421–423, 476–478
Nexus 1000V, 260–261
NFP (Network Foundation Protection) framework, 343–344
control plane security
 best practices, 347–348
 CoPP (Control Plane Policing), 347, 397–399
 CPPr (Control Plane Protection), 348, 399
overview of, 344–345, 395
process-switched traffic, 395–397
routing protocols, 399–400
routing update authentication on BGP, 402–404
routing update authentication on EIGRP, 401
routing update authentication on OSPF, 400
routing update authentication on RIP, 401–402
data plane security. See also IP (Internet Protocol)
 best practices, 348–349
overview of, 344–345
implementation of, 344–345
management plane, 113, 344–347. See also management traffic security
 best practices, 344–347
overview of, 344–345
NFV (Network Function Virtualization) architecture, 121–123
NFV MANO, 123
NGE (next-generation encryption), 92–93
NGFW (next-generation firewalls), 435
NGIPs (Next-Generation IPSs), 421–423, 476–478
NHRP (Next Hop Resolution Protocol), 512, 513
NIST (National Institute of Standards and Technology), 93–94
cybersecurity framework, 7
DFIR (digital forensics and incident response) guidelines, 58–59
interagency reports, 7
NVD (National Vulnerability Database), 43
Special Publication 500–292, 51, 582
Special Publication 800–52 Revision 2, 95
Special Publication 800–61, 59
Special Publication 800–61 Revision 2, 62–65, 244
Special Publication 800–63B, 163
Special Publication 800–145, 50
No Rules Active policy, 474
no shutdown command, 386
no sysopt connection permit-vpn command, 534
nodes, Kubernetes, 597
no-execute (NX), 41
Nomad, 592
Non-Broadcast Multiple Access (NBMA), 512
nondesignated ports, 331
non-key fields, Flexible NetFlow, 284–285
nonpublic personal information (NPPI), 44
normal cache, NetFlow, 240
northbound APIs (application programming interfaces), 121, 135, 136
North-South traffic, 118, 259
NPPI (nonpublic personal information), 44
NSEL (NetFlow Secure Event Logging), 261
NTLMSSP, 654
Ntopng, 251
NTP (Network Time Protocol), 47, 100
 benefits of, 361
 best practices, 346, 355
 configuration, 379–380
 for IPv4/IPv6, 389
 overview of, 361
NULL bytes, 42
NVD (National Vulnerability Database), 31, 43
NVGRE (Network Virtualization using Generic Routing Encapsulation), 116
NVM (Network Visibility Module), 262
NX (no-execute), 41
OAS (OpenAPI Specification), 40, 141
OAuth, 174
object capability, 177
object grouping, Cisco ASA, 460–461
OCI (Open Container Initiative), 593
OCSP (Online Certificate Status Protocol), 95, 104, 655
ODL (OpenDaylight), 120–121
Offensive Security, Exploit Database, 10
Office 365, Cisco Secure Email Threat Defense, 615–616
offline brute-force attacks, 34
Ohno, Taiichi, 586
OllyDbg, 28
one-time pad (OTP), 84
one-time password (OTP), 84, 164
The Onion Router, 115
online brute-force attacks, 34
Online Certificate Status Protocol (OCSP), 95, 104, 655
on-path cryptographic attacks, 53
on-premises WAF (Web Application Firewall), 419
OOB (out-of-band), 346, 355
Open Authentication, 214
Open Command and Control (OpenC2), 15
Open Container Initiative (OCI), 593
Open DevSecOps GitHub organization, 603
Open Indicators of Compromise (OpenIOC), 15
Open Platform for Network Function Virtualization (OPNFV), 120–121, 122
open shortest path first (OSPF), 248, 347, 400, 414, 535
Open Virtual Network (OVN), 120–121
Open vSwitch Database Management Protocol (OVSDB), 121
Open vSwitch (OVS), 114, 120
Open Web Application Security Project (OWASP), 42
OpenAPI Specification (OAS), 40, 141
OpenC2 (Open Command and Control), 15
OpenConfig, 151
OpenDaylight (ODL), 120–121
OpenDNS, 609
OpenFlow, 114
OpenID, 172, 174
OpenIOC (Open Indicators of Compromise), 15
open-source initiatives
 Contiv, 123–124
 IPFIX (Internet Protocol Flow Information Export), 250–251
 SDN (software-defined networking), 120–121
 vulnerabilities, 42–43
OpenStack Neutron, 120
OPNFV (Open Platform for Network Function Virtualization), 120–121, 122
option templates, IPFIX, 253–254
OPTIONS method, 139
Oracle Cloud, 417
Organizationally Unique Identifier (OUI), 29
organized crime groups, 13
OSPF (open shortest path first), 248, 347, 400, 414, 535
OTP (one-time password), 84, 164
OUI (Organizationally Unique Identifier), 28
Outbreak Control, Cisco Secure Endpoint
application control, 683–684
custom detections, 677–681
IP blacklists and whitelists, 681–682
out-of-band management, 164, 346, 355
out-of-band SQL injection, 33
outsourcing, 75
overlays, 116–117
OVN (Open Virtual Network), 120–121
OVS (Open vSwitch), 114, 120
OVSDB (OVS Database), 114, 121
OWASP (Open Web Application Security Project), 42, 603
ownership, authentication by, 164

P

P2P (peer-to-peer networks), Trojan infection on, 21
PaaS (Platform as a Service)
customer versus provider security responsibility, 605–606
definition of, 50–51, 582
PAC (proxy auto-configuration) files, 645
packages, Python, 137
packers, 23
packet amplification attacks, 392
packet captures, 245–246, 604
pads, 84
Palo Alto Networks, 415–416
PAN (Primary Administration Node), 223, 304
parser views, 359, 374–375
Parsing JSON using Python tutorial, 140
passive DNA database, Cisco Umbrella, 612
passive mode (Cisco Secure Firewall), 446–447
passive with ERSPAN mode (Cisco Secure Firewall), 447
PassiveID, 302, 305
pass-thru, IPsec, 499
passwordless authentication, 175
passwords
cracking, 34–35
guidelines for, 354, 356–357, 362–364
Login Password Retry Lockout feature, 354
OTP (one-time password), 84, 164
PAT (Port Address Translation), 463–469
patch management, 607–608
Path exclusion type, 684
pattern change evasion, 60
payloads, malware, 17–18
payment card information (PCI), 44
PBR (policy-based routing), 646, 651–652
PCI (payment card information), 44
PCIe (Peripheral Component Interconnect Express), 419
PDU (protocol data units), 239
Peach, 605
Pearson Test Prep software, 697
peer-to-peer networks (P2P), Trojan infection on, 21
PeP (policy enforcement point), 189
Perfect Forward Secrecy (PFS), 533, 535
periodic parameter, time-based ACLs (access control lists), 462
Peripheral Component Interconnect Express (PCIe), 419
permanent cache, NetFlow, 240
persistent cookies, Cisco Secure Web Appliance, 654
persistent XSS attacks, 37
personal identification number (PIN), 162
personally identifiable information (PII), 12–13, 44
personas, 304
Per-VLAN Spanning Tree Plus (PVST+), 331
PFS (Perfect Forward Secrecy), 533, 535
PGP (Pretty Good Privacy), 97
physical tunnel endpoint (PTEP), 114
PII (personally identifiable information), 12–13, 44
PIN (personal identification number), 162
ping command, 25
pip package (Python), 137
pip3 install requests command, 144
p-ipaddress ip_address command, 567
pipelines, CI/CD, 588–589
PKCS (Public Key Cryptography Standard), 86, 103
PKI (public key infrastructure), 99–100, 497
asymmetric key cryptography, 97
CAs (certificate authorities), 98
 authenticating and enrolling with, 91, 102–103
cross-certifying, 106
digital certificate enrollment with, 91
bierarchical, 105–106
single root, 105
subordinate, 105–106
definition of, 97
digital certificates
 identity certificate, 101
in practice, 104–105
revoking, 103–104
root certificates, 99–100
digital signatures, 90–91, 97–98, 503
PGP (Pretty Good Privacy), 97
public and private key pairs, 85, 97
public key cryptography, 97
standards, 103
topologies, 105–106
X.500, 101–102
X.509v3, 101–102
plaintext authentication, 401
planes, networking, 113
plans
 DR/BCP (disaster recovery/business continuity plan), 52, 608
 incident response, 62–63
Platform as a Service (PaaS)
 customer versus provider security responsibility, 605–606
definition of, 50–51, 582
Platform Exchange Grid. See pxGrid (Platform Exchange Grid)
platform settings policy, Cisco Secure Firewall, 476
playbooks, incident response, 65–66
POC (proof-of-concept) exploits, 10
pods, Kubernetes, 597
Point-to-Point Tunneling Protocol (PPTP), 494, 537
poison apple attacks, 20
policies
 active policy enforcement, 306–310
Cisco DNA (Digital Network Architecture)
 application, 131–132
Cisco DNA Center Policy Overview dashboard, 127–129
group-based access control, 129
IP-based access control, 131
traffic copy, 132–133
Cisco Firepower
Cisco NGIPS preprocessors, 476–478
platform settings policy, 476
variables, 475–476
Cisco ISE (Identity Services Engine), 199–201, 306–310
Cisco Secure Email Threat Defense, 615, 661–662
Cisco Secure Endpoint, 687–688
Cisco Secure Firewall, 469–472
Cisco Secure Web Appliance, 653–655
client-based remote-access VPNs, 552–553
clientless remote-access VPNs
 group policies, 544–545
 policy inheritance model, 544
FlexConfig, 648
IPsec remote-access VPNs in Cisco ASA, 539
mail flow, 662
PBR (policy-based routing), 651–652
site-to-site VPNs
 IPsec policy, 531–532
 NAT exempt policy, 534–535
SOCKS, 645–646
policy enforcement point (PeP), 189
Policy Service Nodes (PSNs), 223, 304
policy-based routing (PBR), 646, 651–652
policy-map command, 459
polyalphabetic ciphers, 83
polymorphic viruses, 17
POP (Post Office Protocol), 477, 658
Port Address Translation (PAT), 463–469
ports
 filtering, 399
 security, 334, 336–338, 349
SPAN (Switch Port Analyzer), 256
STP (Spanning Tree Protocol) port states, 331
TAPs (Test Access Ports), 256
TCP (Transmission Control Protocol)
 port 443, 452, 503, 677
 port 830, 148
 port 32137, 677
Trojans, 19
UDP (User Datagram Protocol)
 port 123, 361, 380
 port 500, 498, 536
 port 3799, 206
 port 4500, 499, 536
positives, false/true, 60
possession, authentication by, 164
POST method, 139
Post Office Protocol (POP), 477, 658
Post Quantum project website, 95
Postman, 145
post-quantum cryptography, 93–95
posture assessment, Cisco ISE (Identity Services Engine), 203–204
PPTP (Point-to-Point Tunneling Protocol), 494, 537
Preboot Execution Environments (PXEs), 214
predefined records, Flexible NetFlow, 285
predictive IP space monitoring model, 285
preparation for SCOR 350–701 exam
 final review and study, 696–697
 hand-on preparation activities, 696
preprocessors, 17
preprocessors, NGIPSs, 421–423, 476–478
pre-shared keys (PSK), 93, 497, 503
pre-shared-key command, 531
Pretty Good Privacy (PGP), 97
Primary Administration Node (PAN), 223, 304
principle of least privilege, 48, 161
private cloud, 582
private key pairs, 85, 97
privilege levels, custom, 359, 371–373
Proactive Controls, OWASP, 603
process-switched traffic, 395–397
product security incident response teams (PSIRTs), 69
profiles
Cisco ISE (Identity Services Engine), 127, 195–198
Cisco Secure Client, 566
programmability, network. See network programmability
programming languages, 137–140
proof-of-concept (POC) exploits, 10
protocol data units (PDUs), 239
providers, Cisco Secure Workload, 624
proxies
Cisco Secure Web Appliance, 643–644, 653
cloud-based, 610
HTTPS proxy, 655
reverse, 504
proxy auto-configuration (PAC) files, 645
proxy Trojans, 19
PR-SCTP (Stream Control Transmission Protocol), 254
PSIRTs (product security incident response teams), 69
PSK (pre-shared key) authentication, 93, 497, 503
PSNs (Policy Service Nodes), 223, 304
PTEP (physical tunnel endpoint), 114
public cloud, 582
public key cryptography, 97
Public Key Cryptography Standards (PKCS), 86, 103
public key infrastructure. See PKI (public key infrastructure)
push protocols, 250
PUT method, 139
PVST+ (Per-VLAN Spanning Tree Plus), 331
PXEs (Preboot Execution Environments), 214
pxGrid (Platform Exchange Grid), 191
Python, 137–140, 149–151
Python Tutorial, 137

Q
QoS (quality of service), 131, 249
Qualys, 42
QuantumFlow Processor, 258
queryable APIs, 141
queue thresholding, 399

R
RaaS (Ransomware as a Service), 24
race conditions, 39
radio frequency identification (RFID), 257
RADIUS, 357–358
clientless remote-access VPNs in Cisco ASA, 547–548
configuration, 213–215
message exchange, 182–184
TACACS+ versus, 185–186
ransomware, 23–24
Ransomware as a Service (RaaS), 24
Rapid Spanning Tree, 332
Rat, 23
RAT (recipient access table), 661
RAIs (remote-access Trojans), 19
RBAC (role-based access control), 49, 135, 178, 345–346, 354–355, 359
recipient access table (RAT), 661
Recorded Future, 43
reflected XSS attacks, 36–37
registries, container, 592
regulatory requirements, cloud computing, 51
Remote Access VPN Policy Wizard, 557–566
Remote Authentication Dial-In User Service (RADIUS), 182–184, 185–186
remote procedure call (RPC), 147–148
remote-access Trojans (RATs), 19
remote-access VPNs (virtual private networks), 570
Cisco SD-WAN RA, 569–573
in Cisco Secure Firewall, 554–555
overview of, 556–557
Remote Access VPN Policy Wizard, 557–566
troubleshooting, 566–567
client-based
Cisco Secure Client, 553–554
DTLS (Datagram Transport Layer Security), 555–556
overview of, 551
split tunneling, 554–555
tunnel and group policies, 552–553
clientless
application access, 550–551
attributes and policy inheritance model, 544
clientless SSL VPNs, enabling, 548–549
design considerations, 541–542
group policies, 544–545
pre-SSL VPN configuration, 542–544
SSL VPN modes, 540–541
tunnel groups, 545–546
user authentication, 546–548
WebType ACLs, 549–550
examples of, 494–496
IPsec, 538–540
NetFlow deployment on, 261–262
reports and reporting
Cisco Secure Endpoint, 690–691
Cisco Secure Web Appliance, 655–657
Cisco Umbrella, 611
incidents, 61–62
representational state transfer (REST), 40, 135, 141–144
REQUEST, 187
requests package (Python), 137
Resource Reservation Protocol (RSVP), 395
response, incident. See incident response
REST (representational state transfer), 40, 135, 141–144
RESTCONF, 149–151, 350–353
return-to-libc, 41–42
reverse proxy, 504
reverse route injection (RRI), 535
revoking digital certificates, 103–104
RFCs (requests for comments)
RFC 2409, 496
RFC 2784, 508–509
RFC 2865, 182, 186
RFC 2866, 182, 186
RFC 2890, 508–509
RFC 3740, 510
RFC 4303, 500
RFC 5103, 249
RFC 5176.205
RFC 5996, 496, 501
RFC 6020, 145
RFC 6241, 147
RFC 6242, 147
RFCs (requests for comments)

RFC 6347, 555–556
RFC 6407, 510, 516
RFC 6526, 254
RFC 7011, 249
RFC 7015, 249
RFC 7155, 187
RFC 8040, 149

RFID (radio frequency identification), 257

RIP (Routing Information Protocol), 248, 401–402, 414

Risk
IPv6 security, 391–392
RMF (risk management framework), 12–13
role-based access control (RBAC), 49, 135, 178, 345–346, 354–355, 359
root certificates, 99–100
Root Guard, 334, 336
root ports, 331
routed firewalls, 437–442
router access authentication, 357–358, 369–371
router-on-a-stick, 326–327
Routing Information Protocol (RIP), 248, 401–402, 414

routing protocol security, 399–400
routing update authentication
 on BGP, 402–404
 on EIGRP, 401
 on OSPF, 400
 on RIP, 401–402
RPC (Remote Procedure Call), 147–148
RRI (reverse route injection), 535
RSA algorithm, 86
rsa-signatures, 91
RSVP (Resource Reservation Protocol), 395
rule-based access control, 178

S

SaaS (Software as a Service), 174, 297
customer versus provider security responsibility, 605–606
definition of, 51, 582
ThousandEyes, 124–125
same-security-traffic permit inter-interface command, 437
SAML (Security Assertion Markup Language), 166, 172–173, 175, 546–547
SAN (Secondary Administration Node), 223
sandboxing, 30, 478–483, 643, 675
SASE (secure access service edge), 570
SAST (static application security testing), 604–605
SCADA (supervisory control and data acquisition), 477
scalability, NetFlow, 279–280
SCEP (Simple Certificate Enrollment Protocol), 103

SCOR 350–701 exam
exam updates, 698–700
final review and study, 696–697
hand-on preparation activities, 696
Pearson Test Prep software, 697

script kiddies, 13
Scrum, 584–585
SCTP (Stream Control Transmission Protocol), 250, 254
SCVMM (Microsoft System Center Virtual Machine Manager), 301
SDLC (system development life cycle), 51, 72–73, 582, 603
SDN (software-defined networking)
 Cisco ACI (Application Centric Infrastructure)
 Cisco ACI Design Guide, 116
Cisco ISE (Identity Services Engine) integration, 310–312
micro-segmentation, 301
overview of, 114–116
Cisco DNA (Digital Network Architecture). See Cisco DNA (Digital Network Architecture)
controllers, 114
micro-segmentation, 118–120
network overlays, 116–117
NFV (Network Function Virtualization)
arquitecture, 121–123
NFV MANO, 123
open-source initiatives, 120–121, 123–124
overview of, 112–113
ThousandEyes integration, 124–125
traditional networking compared to, 113
VXLAN (Virtual Extensible LAN), 116–117
SD-WANs (Software-Defined Wide Area Networks), 419–421, 569–573
search routine, 18
searchsploit, 11
Secondary Administration Node (SAN), 223
Secondary MNT (S-MNT), 223
SecretCorp, 438
secure access service edge (SASE), 570
secure development life cycle (SDL), 72–73
Secure Hash Algorithm. See SHA (Secure Hash Algorithm)
secure issuance, 162
Secure Shell, 355, 359–360, 375–378
for IPv4/IPv6, 389
port 22, 26
port 443, 26
preprocessor, 477
Secure Sockets Layer. See SSL (Secure Sockets Layer)
Secure/Multipurpose Internet Mail Extensions (S/MIME), 615
SecureX, 426–429
Security Assertion Markup Language (SAML), 166, 172–173, 175, 546–547
security contexts, Cisco Secure Firewall, 438–439
Security Dashboard, Cisco Secure Workload, 623–626
security group ACL (SGACL), 192
security group tags (SGTs), 192, 198, 201–203, 302
security group-based ACLs (SGACLs), 191
Security Information and Event Management (SIEM), 426–427, 627
Security Intelligence
blocklisting, 483–484
updates, 484
security labels, 177
Security Management Appliance.
See Cisco Content SMA (Security Management Appliance)
security operations center (SOC), 632
Security Orchestration, Automation, and Response (SOAR), 426–427, 627
Security over Connectivity policy, 474
security parameter index (SPI), 498
Security solution, Cisco DNA, 135–136
security zones, 431–432, 435
security-software disablers, 19
segmentation
application-based, 299–301
with Cisco ISE, 302–312
802.1X/TrustSec in monitor mode, 306
active policy enforcement, 306–310
Cisco ACI integration, 310–312
show monitor event-trace crypto ikev2 error all command, 528
show monitor event-trace crypto ipsec command, 528
show monitor event-trace crypto pki error all command, 528
show monitor event-trace crypto pki event all command, 528
show monitor event-trace crypto pki event internal all command, 528
show monitor event-trace dmvpn command, 528
show monitor event-trace gdoi command, 528
show policy-map control-plane command, 397–399
show run all sysopt command, 534
show running-config flow exporter command, 292
show running-config flow monitor command, 291
show running-config flow record command, 289
show vlan brief command, 322
show vlan id command, 322
side-channel attacks, 53
SIEM (Security Information and Event Management), 426–427, 627
SIG (secure Internet gateway), 610–611
signatures
ClamAV, 680
digital, 90–91, 97–98
Significant Compromise Artifacts list, 690
Simple Certificate Enrollment Protocol (SCEP), 103
Simple Mail Transfer Protocol (SMTP), 477, 661–662
Simple Object Access Protocol (SOAP), 140–141
simultaneous application tracking,
Flexible NetFlow, 281–282
single root CAs (certificate authorities), 105
single sign-on (SSO), 171–173, 174–177, 653–654
single-factor authentication, 357
single-mode transparent firewall (SMTF), 439–441
SIP preprocessor, 477
site-to-site VPNs (virtual private networks)
in Cisco ASA, 537–538
advanced features, 535–537
crypto maps, 532–534
IPsec policy, 531–532
ISAKMP, enabling, 528–529
ISAKMP policy, 529–530
NAT exempt policy, 534–535
overview of, 528–529
PFS (Perfect Forward Secrecy), 535
traffic filtering, 534
tunnel groups, 530–531
in Cisco routers
DMVPN, 512–515
FlexVPN, 518–522
GETVPN, 512–518
GRE over IPsec, 508–510
multipoint GRE (mGRE) tunnels, 512
traditional site-to-site VPNs in Cisco IOS/Cisco IOS-XE, 506–508
troubleshooting, 522–528
tunnel interfaces, 506–508, 510–512
in Cisco Secure Firewall, 567–569
examples of, 494–496
NetFlow deployment on, 261–262
sizing Cisco ISE (Identity Services Engine) deployments, 224–225
SKEYID, 498
SLA (service level agreement), 52, 608
Slack, 588
Slot0, 419
SMA (Security Management Appliance), 641–642, 662–667
smart tunnels, 551
smartcards, 164
SMC (Stealthwatch Management Console), 276
S/MIME (Secure/Multipurpose Internet Mail Extensions), 615
S-MNT (Secondary MNT), 223
SMS messages, Trojan infection on, 22
SMSTF (single-mode transparent firewall), 439–441
SMTP (Simple Mail Transfer Protocol), 477, 661–662
sniffing, 390
SNMP (Simple Network Management Protocol), 242, 350–353, 360
snooping, DHCP, 334, 339–341, 349
Snort, 422, 479, 484
SOAP (Simple Object Access Protocol), 40, 140–141
SOAR (Security Orchestration, Automation, and Response), 426–427, 627
social identity providers (social IdPs), 175
SOCKS proxy configurations, 645–646
Softflowd, 250
Software as a Service (SaaS), 174, 297
customer versus provider security responsibility, 605–606
definition of, 51, 582
software development life cycle (SDLC), 586
Software Engineering Institute (SEI), 27, 73, 74–75
software vulnerabilities. See vulnerabilities
software-defined networking. See SDN (software-defined networking)
Software-Defined Wide Area Networks. See SD-WANs (Software-Defined Wide Area Networks)
software/hardware vulnerabilities. See vulnerabilities
solicited-node multicast addresses, 385
SonarQube, 604
Sophos, 643
SOPs (standard operating procedures), 63
SourceClear, 43
SourceFire, 675
southbound APIs (application programming interfaces), 121, 136
SPAN (Switched Port Analyzer), 246, 256
Spanning Tree Protocol (STP), 328–332, 390
sparse infection, 17
SPD (Selective Packet Discard), 348
Spero, 480–481, 689
SPF (Sender Policy Framework), 615
SPI (security parameter index), 498
split tunneling, 554–555
Splunk, 246
spoofing, 349, 390, 653
Spring-MCV, 604
sprints, 585
spyware, 16, 27–28
SQL injection, 31–33, 53
SRUs (Snort rules updates), 484
SSH (Secure Shell), 355, 359–360, 375–378
for IPv4/IPv6, 389
port 22, 26
port 443, 26
preprocessor, 477
SSL (Secure Sockets Layer), 95–96, 104, 261, 494
clientless SSL VPNs, 548–549, 550–551
application access, 550–551
enabling, 548–549
preprocessors, 477
VPNs (virtual private networks), 503–504
SSO (single sign-on), 171–173, 174–177, 653–654
SSRF (server-side request forgery), 38
SSVC (Stakeholder-Specific Vulnerability Categorization), 73
Standalone mode, Cisco Secure Client, 553
standard ACLs (access control lists), 455, 461
standard keyword, 461
standard operating procedures (SOPs), 63
Stateless Transport Tunneling (STT), 116
state-sponsored threat actors, 13
static analysis, malware, 28
static application security testing (SAST), 604–605
static NAT (Network Address Translation), 463–469
static VTI (sVTI), 512
status codes, HTTP (Hypertext Transfer Protocol), 139
Stealth AnyConnect, 204
Stealthwatch. See Cisco Secure Network Analytics
Stealthwatch Management Console (SMC), 276
STIX (Structured Threat Information eXpression), 15, 481
stored DOM-based attacks, 39
stored XSS attacks, 37
storm control, 335
STP (Spanning Tree Protocol), 328–332, 390
strcpy() function, 42
stream ciphers, 84
Stream Control Transmission Protocol (SCTP), 250, 254
strong passwords, 354, 356–357, 362–364
Structured Threat Information eXpression (STIX), 15, 481
STT (Stateless Transport Tunneling), 116
study plan
exam updates and, 698–700
final review and study, 696–697
hand-on preparation activities, 696
Pearson Test Prep software, 697
Stuxnet, 28
subjects, 161
subordinate CAs (certificate authorities), 105–106
substitution, 83
Sun RPC preprocessor, 477
supervisory control and data acquisition (SCADA), 477
supplicants, 188
surveillance spyware, 27
sVTI (static VTI), 512
Swagger (OpenAPI), 40, 141
Swift, 137
SWIM (Software Image Management), 135
Switched Port Analyzer (SPAN), 246, 256
SXP (SGT Exchange Protocol), 302, 303–305
symmetric algorithms, 84–86
Synopsys Protecode, 43
TACACS+ 357–358
configuration, 207–212
message exchange, 184
RADIUS versus, 185–186
TACXII (Trusted Automated eXchange of Indicator Information), 15
Talos, 264, 422, 472–473, 479, 484, 610–611, 614, 643
TAN (transaction authorization number), 19
Tapestry, 604
TAPs (Test Access Portss), 246, 256
Tar, 23
TAXII (Trusted Automated eXchange of Indicator Information), 481
TCAM (Ternary Content-Addressable Memory), 511
TCP (Transmission Control Protocol), 250
cover covert communication, 25–26
port 443, 452, 503, 677
port 830, 148
port 32137, 677
TCP Intercept, 349
TCSEC (Trusted Computer System Evaluation Criteria), 24
TDN (trusted network detection), 262
TE (traffic engineering), 248–249
TEA (ThousandEyes Enterprise Agent), 124–125
teams, CSIRTs (computer security incident response teams), 67–69, 74
Telnet preprocessor, 476
templates, 250, 252–253
temporal agents, 203
Teredo, 281
Terminal Access Controller Access Control System Plus. See TACACS+
terminal monitor command, 360
Ternary Content-Addressable Memory (TCAM) tables, 511
terrorist groups, 13
test aaa command, 371
Test Access Ports (TAPs), 246, 256
TETRA, 689
Tetration. See Cisco Secure Workload thin clients, 540
ThousandEyes, 124–125
threat actors, 13–14
threat analytics, Cisco Secure Web Appliance, 643
threat blocking, 676
Threat Defense Virtual (Cisco Secure Firewall), 416–417
threat detection preprocessors, 478
Threat exclusion type, 684
Threat Grid, 276, 612
threat hunting, 243–248, 270–273
threat intelligence, 14–16
Threat Response. See incident response
Threat Response dashboard (SecureX), 427–429
Threat-Centric Network Access Control (TC-NAC), 204
ThreatGRID, 478
threats. See also malware
access control management, 48–49
application layer attacks, 389–390
bot hosts/nets, 241, 414, 419
brute-force attack, 354
CAM table overflow attacks, 336
cloud computing, 50–54
attacks, 53
cloud computing models, 50–51
issues and concerns, 51–52
security responsibilities, 53–54
DDoS (distributed denial-of-service) attacks, 13, 53, 241–243
definition of, 8–9, 12–13
dictionary attacks, 354
IoT (Internet of Things), 54–57
protocols, 56–57
security challenges and considerations, 54–56
tools and methods for backing, 57
IPv4/IPv6, 389–390
Layer 2 threat mitigation. See also 802.1X; ACLs (access control lists)
best practices, 333–334
BPDUs, 334, 335–336
CDP (Cisco Discovery Protocol), 338–339
DHCP snooping, 334, 339–341, 349
dynamic ARP inspection, 334, 341–343, 349
LLDP (Link Layer Discovery Protocol), 338–339
negotiations, preventing, 334
overview of, 334–335
port security, 334, 336–338, 349
Root Guard, 334, 336
man-in-the-middle attacks, 390
threat actors, 13–14
threat intelligence, 14
to-the-box traffic filtering, 456
traffic copy policies, Cisco DNA, 132–133
traffic engineering (TE), 248–249
to-the-box traffic filtering, 459–460
Toyota Production System, 585
TRANSMIT method, 139
transmission
Trojans, 20–21
viruses, 16–17
Transmission Control Protocol. See TCP (Transmission Control Protocol)
transparent firewalls, 437–442
transparent mode, Cisco Secure Web Appliance, 646–647
Transport Layer Security (TLS), 55, 95–96, 104, 503
transport mode (IPsec), 500
transport udp command, 291
transposition, 83
trigger routine, 18
Triple Digital Encryption Standard (3DES), 84, 86, 93, 496
Trojans
communication methods, 19
definition of, 18
effects of, 22
goals of, 20–21
infection mechanisms, 20–21
ports, 19
types of, 18–19
troubleshooting. See also debugging
AAA (authentication, authorization, and accounting), 369–371
remote-access VPNs in Cisco Secure Firewall, 566–567
site-to-site VPNs in Cisco routers, 522–528
TACACS+210–212
true positives/true negatives, 60
trunking, 323–326
Trusted Automated eXchange of Indicator Information (TAXII), 15, 481
Trusted Computer System Evaluation Criteria (TCSEC), 24
trusted network detection (TDN), 262
trusted networks, 296
TrustSec, 201–203, 306, 310–312
TTL (Time-to-Live), 392, 396
tunnel mode command, 511
tunnel mode gre multipoint command, 512
tunnel mode, IPsec, 500
tunnels, 116, 392
 client-based remote-access VPNs, 552–553
 clientless remote-access VPNs, 545–546
IPv6, 25–26
site-to-site VPNs, 506–508, 510–512, 530–531
STT (Stateless Transport Tunneling), 116
UDP (User Datagram Protocol), 26
tutorials
 DevNet, 140
 Python, 137
Twofish, 84
type of service (ToS) byte, 239

UCS (Unified Computing System), 419
UDP (User Datagram Protocol), 250, 291, 346
 covert communication, 25–26
 port 123, 361, 380
 port 500, 498, 536
 port 3799, 206
 port 4500, 499, 536
Umbrella, 176
 architecture, 609–610
 Cisco Cognitive Intelligence integration, 276
 dashboard and reports, 611
 Investigate, 610–611
 overview of, 608–609
 SIG (secure Internet gateway), 610–611
undebug all command, 369
unicast addresses, 385
Unicast Reverse Path Forwarding (Unicast RPF), 396
Unified Computing System (UCS), 419
unprotected APIs (application programming interfaces), 39–40
untrusted networks, 297
updates
 Cisco Secure Firewall, 484
 SCOR 350–701 exam, 698–700
 Security Intelligence, 484
uptime, 46
UPX, 28
URL Categories report, Cisco Secure Web Appliance, 657
USB key drops, 20
US-CERT, 10
uSeg EPG, 301
user access layer, NetFlow deployment on, 256
User Datagram Protocol. See UDP (User Datagram Protocol)
user-defined records, Flexible NetFlow, 286
Users report, Cisco Secure Web Appliance, 655

V

VACLs (VLAN ACLs), 191
validity dates, digital certificates, 100
vAnalytics, 571–573
vCenter, 301
VDB (vulnerability database), 484
VDI (Virtual Desktop Infrastructure), 301
verify md5 Linux command, 86
VERIS community database, 162
VEX (Vulnerability Exploitability eXchange), 15
views, parser, 359, 374–375
Virtual Desktop Infrastructure (VDI), 301
Virtual Extensible LAN. See VXLAN (Virtual Extensible LAN)
virtual firewalls, 416–417
virtual LANs. See VLANs (virtual LANs)
virtual machine manager (VMM), 116
virtual machines (VMs), 193
virtual routing and forwarding (VRF), 116
virtualization, network. See also VPNs (virtual private networks)
GENEVE (Generic Network Virtualization Encapsulation), 116
NFV (Network Function Virtualization)
architecture, 121–123
NFV MANO, 123
OPNFV (Open Platform for Network Function Virtualization), 122
NVGRE (Network Virtualization using Generic Routing Encapsulation), 116
STT (Stateless Transport Tunneling), 116
VDI (Virtual Desktop Infrastructure), 301
virtual firewalls, 416–417
VLANs (virtual LANs)
creation of, 321–323
eample of, 320–321
inter-VLAN routing, 326–327
STP (Spanning Tree Protocol), 328–332
trunking, 323–326
VMM (virtual machine manager), 116
VMs (virtual machines), 193
VRF (virtual routing and forwarding), 116
VTIs (Virtual Tunnel Interfaces), 511
VXLAN (Virtual Extensible LAN), 116
network overlays and, 116–117
VNIDs (VXLAN Network Identifiers), 117
VTEP (VXLAN tunnel endpoint), 114
Virtual-Tunnel Interface (VTI), 511
viruses
characteristics of, 16
malware payloads, 17–18
polymorphic, 17
transmision methods, 16–17
types of, 16–17
visibility. See network visibility
VLAN ACLs (VACLs), 191
VLANs (virtual LANs)
creation of, 321–323
example of, 320–321
inter-VLAN routing, 326–327
STP (Spanning Tree Protocol), 328–332
trunking, 323–326
vManage, 571–573
VMM (virtual machine manager), 116
VMs (virtual machines), 193
VNIDs (VXLAN Network Identifiers), 117
VoIP (voice over IP), 249
VPC Flow Logs, 265
VPNs (virtual private networks)
Cisco SD-WAN (Software-Defined Wide Area Network), 569–573
Cisco Secure Client Secure Mobility, 504–505
client-based remote-access
Cisco Secure Client, 553–554
DTLS (Datagram Transport Layer Security), 555–556
overview of, 551
split tunneling, 554–555
tunnel and group policies, 552–553
clientless remote-access
application access, 550–551
attributes and policy inheritance model, 544
clientless SSL VPNs, enabling, 548–549
design considerations, 541–542
group policies, 544–545
pre-SSL VPN configuration, 542–544
SSL VPN modes, 540–541
tunnel groups, 545–546
user authentication, 546–548
WebType ACLs, 549–550
clientless SSL
application access, 550–551
enabling, 548–549
FlexVPN, 511
IPsec (Internet Protocol Security), 538–540
IKE (Internet Key Exchange), 496–500, 501–503
IPsec pass-through, 499
IPsec policy, 531–532
NAT-T (NAT traversal), 501
NetFlow deployment on, 261–262
protocols, 494
remote-access, 494–496
overview of, 556–557
Remote Access VPN Policy Wizard, 557–566
troubleshooting, 566–567
site-to-site in Cisco ASA, 537–538
advanced features, 535–537
crypto maps, 531–532
design examples of, 494–496
ISAKMP, enabling, 529
ISAKMP policy, 529–530
NAT exempt policy, 534–535
overview of, 528–529
PFS (Perfect Forward Secrecy), 535
traffic filtering, 534
tunnel groups, 530–531
site-to-site in Cisco routers
DMVPN, 512–515
FlexVPN, 518–522
GETVPN, 512–518
GRE over IPsec, 508–510
multipoint GRE (mGRE) tunnels, 512
traditional site-to-site VPNs in Cisco IOS/Cisco IOS-XE, 506–508
troubleshooting, 522–528
tunnel interfaces, 506–508, 510–512
site-to-site in Cisco Secure Firewall, 567–569
SSL (Secure Sockets Layer), 503–504
VRF (virtual routing and forwarding), 116
VSAs (vendor-specific attributes), 549
VTEP (VXLAN tunnel endpoint), 114
VTI (Virtual-Tunnel Interface), 511
vty lines, 360
VulnDB, 43
vulnerabilities. See also attacks; malware
artificial intelligence and machine learning, 40–41
authentication-based, 33–36
buffer overflows, 41–42
cookie manipulation attacks, 39
CSRF (cross-site request forgery), 38
CVE (Common Vulnerabilities and Exposures), 10, 31
definition of, 9–10, 12–13
injection, 31–33
open-source software, 42–43
OWASP (Open Web Application Security Project), 42
race conditions, 39
return-to-libc, 41–42
SSRF (server-side request forgery), 38
unprotected APIs, 39–40
XSS (cross-site scripting), 33, 36–38, 53
vulnerability database (VDB), 484
Vulnerability Exploitability eXchange (VEX), 15
VXLAN (Virtual Extensible LAN), 116

network overlays and, 116–117
VNIDs (VXLAN Network Identifiers), 117
VTEP (VXLAN tunnel endpoint), 114

W

W3 Schools Python tutorials, 137
WADL (Web Application Description Language), 40, 141
WAFs (Web Application Firewalls), 419
waterfall development methodology, 583
watering holes, 22
WCCP (Web Cache Communication Protocol), 646–651
configuration in Cisco ASA, 647–648
configuration on Cisco Secure Web Appliance, 650–651
configuration on Cisco switches, 647–648
definition of, 646
transparent mode and, 646–647
weather risk, 12
Web Application Description Language (WADL), 40, 141
Web Application Firewalls (WAFs), 419
web filtering, 642
web identity, 175
web proxies, 653
Web Proxy Auto-Discovery (WPAD), 645
Web Reputation engine, 642
Web Services Description Language (WSDL), 40, 141
Web Sites report, 655
Web-enabled mode, Cisco Secure Client, 553
Webex, 176
Webroot, 643
Webtype ACLs (access control lists), 456, 549–550
webvpn keyword, 544
weighted random early detection (WRED), 255
WEP (Wired Equivalent Privacy), 34
Whirlpool, 88, 93
white hat hackers, 13–14
whitelists, Cisco Secure Endpoint, 681–682
WhiteSource, 43
Wi-Fi, 56
Wildcard exclusion type, 684
Windows identity, 175
WinZip, 23
Wired Equivalent Privacy (WEP), 34
wired keyloggers, 27
wireless keyloggers, 27
wireless networks, 133
WLANs (wireless LANs), NetFlow deployment on, 256–257
WLCs (Wireless LAN Controllers), 254
Workload Optimization Manager, 619–626
worms, 16
WPAD (Web Proxy Auto-Discovery), 645
wrappers, 23
WRED (weighted random early detection), 255
WSDL (Web Services Description Language), 40, 141
WS-Federation, 175

X

X.500, 101–102
X.509v3, 101–102
XACML (Extensible Access Control Markup Language), 179
XDR (xTended Detection and Response), 426–427, 618, 627–632
XMPP (Extensible Messaging and Presence Protocol), 57, 193
XSD (XML Schema Definition), 40, 140–141
XSRF (cross-site request forgery), 38
XSS (cross-site scripting), 33, 36–38, 53

Y

YAF (Yet Another Flowmeter), 250
YANG, 145, 351–353

Z

zero trust, 120, 169–171
zero-day exploits, 10
Zeus, 19
Zigbee, 56
zombies, 241
Zone-Based Firewall (ZBFW), 182, 435–436
Z-Wave, 56