CCNP Enterprise Advanced Routing ENARSI 300-410 Official Cert Guide

Companion Website and Pearson Test Prep Access Code

Access interactive study tools on this book's companion website, including practice test software, review exercises, video training, Key Term flash card application, a study planner, and more!

To access the companion website, simply follow these steps:

1. Go to ciscopress.com/register.
3. Answer the security question to validate your purchase.
4. Go to your account page.
5. Click on the Registered Products tab.

When you register your book, your Pearson Test Prep practice test access code will automatically be populated with the book listing under the Registered Products tab. You will need this code to access the practice test that comes with this book. You can redeem the code at PearsonTestPrep.com. Simply choose Pearson IT Certification as your product group and log into the site with the same credentials you used to register your book. Click the Activate New Product button and enter the access code. More detailed instructions on how to redeem your access code for both the online and desktop versions can be found on the companion website.

If you have any issues accessing the companion website or obtaining your Pearson Test Prep practice test access code, you can contact our support team by going to pearsonitp.echelp.org.
This page intentionally left blank
Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions, custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Vice President, IT Professional: Mark Taub
Alliances Manager, Cisco Press: Jaci Featherly; James Risler
Director, ITP Product Management: Brett Bartow
Managing Editor: Sandra Schroeder
Development Editor: Ellie C. Bru
Senior Project Editor: Mandie Frank
Copy Editor: Kitty Wilson

Technical Editor: Hector Mendoza, Jr
Editorial Assistant: Cindy Teeters
Designer: Chuti Prasertsith
Composition: Codemantra
Indexer: Erika Millen
Proofreader: Barbara Mack
Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world’s leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

- Everyone has an equitable and lifelong opportunity to succeed through learning
- Our educational products and services are inclusive and represent the rich diversity of learners
- Our educational content accurately reflects the histories and experiences of the learners we serve
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.
About the Authors

Raymond Lacoste has dedicated his career to developing the skills of those interested in IT. In 2001, he began to mentor hundreds of IT professionals pursuing their Cisco certification dreams. This role led to teaching Cisco courses full time. Raymond is currently a master instructor for Cisco Enterprise Routing and Switching, AWS, ITIL, and CyberSecurity at StormWind Studios. Raymond treats all technologies as an escape room, working to uncover every mystery in the protocols he works with. Along this journey, Raymond has passed more than 120 exams, and his office wall includes certificates from Microsoft, Cisco, ISC2, ITIL, AWS, and CompTIA. If you were visualizing Raymond's office, you'd probably expect the usual network equipment, certifications, and awards. Those certainly take up space, but they aren't his pride and joy. Most impressive, at least to Raymond, is his gemstone and mineral collection; once he starts talking about it, he just can't stop. Who doesn't get excited by a wondrous barite specimen in a pyrite matrix? Raymond presently resides with his wife and two children in eastern Canada, where they experience many adventures together.

Brad Edgeworth, CCIE No. 31574 (R&S and SP), is an SD-WAN technical solutions architect at Cisco Systems. Brad is a distinguished speaker at Cisco Live, where he has presented on various topics. Before joining Cisco, Brad worked as a network architect and consultant for various Fortune 500 companies. Brad's expertise is based on enterprise and service provider environments, with an emphasis on architectural and operational simplicity. Brad holds a bachelor of arts degree in computer systems management from St. Edward's University in Austin, Texas. Brad can be found on Twitter as @BradEdgeworth.
About the Technical Reviewer

Hector Mendoza, Jr., CCIE No. 10687 (R&S, SP, and Security), has spent the past 14 years at Cisco Systems and is currently a solutions integration architect supporting large SP customers. Prior to this proactive role in CX, he spent nearly a decade providing reactive support in High Touch Technical Services in the Security Group, where he provided escalation support for some of the largest customers for Cisco. A four-time Cisco Live speaker and an Alpha reviewer of Cisco Security courseware, Hector is a huge advocate of continuing education and knowledge sharing. Hector has a passion for technology, enjoys solving complex problems, and loves working with customers. In his spare time, he tech reviews his esteemed colleagues’ Cisco Press books.
Dedications

Raymond Lacoste:
This book (just like the first edition) is dedicated to my wife, Melanie, who has dedicated her life to making me a better person, which is the hardest job in the world. Thank you, Melanie, for being the most amazing wife and mother in the world.

Brad Edgeworth:
This book is dedicated to my daughter, Teagan. Hopefully you'll want to learn what is written inside of this text. Until then, enjoy your youth.
Acknowledgments

Raymond Lacoste:
As with the first edition of this book, a huge thank you goes out to Brad for joining me on this writing adventure. Putting our knowledge together to create this work of art was the best decision. Thank you so much for sharing this with me.

Thank you to my wife and children, for allowing me to avoid many family adventures while this book was being developed and supporting me though the entire process. Love you guys!

Finally, thank you to the entire team at Cisco Press, as well as their families and friends, who work extremely hard to produce high-quality training material.

Brad Edgeworth:
To Raymond and Brett, thanks for letting me write this book. I am privileged to be able to share my knowledge with others, and I’m grateful. To the rest of the Cisco Press team, thanks for taking my block of stone and turning it into a work of art.

To the technical editor: Hector, thank you for the time and expertise.

Many people within Cisco have shared their knowledge with me and taken a chance on me with various projects over the years. For that I’m forever indebted.
Contents at a Glance

Introduction xxxv

Chapter 1 IPv4/IPv6 Addressing and Routing Review 2
Chapter 2 EIGRP 72
Chapter 3 Advanced EIGRP 106
Chapter 4 Troubleshooting EIGRP for IPv4 138
Chapter 5 EIGRPv6 188
Chapter 6 OSPF 222
Chapter 7 Advanced OSPF 260
Chapter 8 Troubleshooting OSPFv2 314
Chapter 9 OSPFv3 370
Chapter 10 Troubleshooting OSPFv3 392
Chapter 11 BGP 426
Chapter 12 Advanced BGP 480
Chapter 13 BGP Path Selection 524
Chapter 14 Troubleshooting BGP 556
Chapter 15 Route Maps and Conditional Forwarding 620
Chapter 16 Route Redistribution 648
Chapter 17 Troubleshooting Redistribution 674
Chapter 18 VRF, MPLS, and MPLS Layer 3 VPNs 724
Chapter 19 DMVPN Tunnels 766
Chapter 20 Securing DMVPN Tunnels 820
Chapter 21 Troubleshooting ACLs and Prefix Lists 842
Chapter 22 Infrastructure Security 866
Chapter 23 Device Management and Management Tools Troubleshooting 890
Chapter 24 Final Preparation 944
Contents

Introduction xxxv

Chapter 1 IPv4/IPv6 Addressing and Routing Review 2

“Do I Know This Already?” Quiz 3

Foundation Topics 7

IPv4 Addressing 7

- IPv4 Addressing Issues 7
- Determining IP Addresses Within a Subnet 10

DHCP for IPv4 11

- Reviewing DHCP Operations 11
- Potential DHCP Troubleshooting Issues 16
- DHCP Troubleshooting Commands 17

IPv6 Addressing 19

- IPv6 Addressing Review 19
- EUI-64 20

IPv6 SLAAC, Stateful DHCPv6, and Stateless DHCPv6 22

- SLAAC 22
- Stateful DHCPv6 27
- Stateless DHCPv6 28
- DHCPv6 Operation 29
- DHCPv6 Relay Agents 30

Packet-Forwarding Process 31

- Reviewing the Layer 3 Packet-Forwarding Process 31
- Troubleshooting the Packet-Forwarding Process 35

Administrative Distance 38

- Data Structures and the Routing Table 39
- Sources of Routing Information 39

Static Routes 41

- IPv4 Static Routes 42
- IPv6 Static Routes 46

Trouble Tickets 48

- IPv4 Addressing and Addressing Technologies Trouble Tickets 48
- Trouble Ticket 1-1 48
- Trouble Ticket 1-2 50
IPv6 Addressing Trouble Tickets | 53
Trouble Ticket 1-3 | 54
Trouble Ticket 1-4 | 57
Static Routing Trouble Tickets | 61
Trouble Ticket 1-5 | 61
Trouble Ticket 1-6 | 64
Exam Preparation Tasks | 66
Review All Key Topics | 66
Define Key Terms | 68
Use the Command Reference to Check Your Memory | 68

Chapter 2 EIGRP 72

“Do I Know This Already?” Quiz 72
Foundation Topics 74
EIGRP Fundamentals 74
Autonomous Systems 75
EIGRP Terminology 75
Topology Table 76
EIGRP Neighbors 77

Inter-Router Communication 78
Forming EIGRP Neighbors 79
EIGRP Configuration Modes 80
Classic Configuration Mode 80
EIGRP Named Mode 80
EIGRP Network Statement 81
Sample Topology and Configuration 83
Confirming Interfaces 84
Verifying EIGRP Neighbor Adjacencies 85
Displaying Installed EIGRP Routes 86
Router ID 87
Passive Interfaces 88
Authentication 91

Keychain Configuration 92

Enabling Authentication on the Interface 92
Path Metric Calculation 94
Wide Metrics 96
Metric Backward Compatibility 98
Chapter 3 Advanced EIGRP 106

“Do I Know This Already?” Quiz 106
Foundation Topics 108
Failure Detection and Timers 108
 Convergence 109
 Stuck in Active 112
Route Summarization 114
 Interface-Specific Summarization 114
 Summary Discard Routes 116
 Summarization Metrics 117
 Automatic Summarization 118
WAN Considerations 119
 EIGRP Stub Router 119
 Stub Site Functions 121
 IP Bandwidth Percentage 125
 Split Horizon 126
Route Manipulation 129
 Route Filtering 129
 Traffic Steering with EIGRP Offset Lists 132
References in This Chapter 135
Exam Preparation Tasks 135
Review All Key Topics 135
Define Key Terms 136
Use the Command Reference to Check Your Memory 136

Chapter 4 Troubleshooting EIGRP for IPv4 138

“Do I Know This Already?” Quiz 138
Foundation Topics 141
Troubleshooting EIGRP for IPv4 Neighbor Adjacencies 141
Interface Is Down 142
Mismatched Autonomous System Numbers 142
Incorrect Network Statement 144
Mismatched K Values 145
Passive Interface 146
Different Subnets 148
Authentication 148
ACLs 150
Timers 151
Troubleshooting EIGRP for IPv4 Routes 151
Bad or Missing network Command 152
Better Source of Information 154
Route Filtering 157
Stub Configuration 158
Interface Is Shut Down 160
Split Horizon 161
Troubleshooting Miscellaneous EIGRP for IPv4 Issues 162
Feasible Successors 162
Discontiguous Networks and Autosummarization 165
Route Summarization 167
Load Balancing 168
EIGRP for IPv4 Trouble Tickets 169
Trouble Ticket 4-1 169
Trouble Ticket 4-2 177
Trouble Ticket 4-3 180
Exam Preparation Tasks 184
Review All Key Topics 184
Define Key Terms 185
Use the Command Reference to Check Your Memory 185

Chapter 5 EIGRPv6 188
“Do I Know This Already?” Quiz 188
Foundation Topics 191
EIGRPv6 Fundamentals 191
EIGRPv6 Inter-Router Communication 191
EIGRPv6 Configuration 191
EIGRPv6 Classic Mode Configuration 191
EIGRPv6 Named Mode Configuration 192
EIGRPv6 Verification 193
IPv6 Route Summarization 195
Default Route Advertising 196
Route Filtering 197
Troubleshooting EIGRPv6 Neighbor Issues 197
 Interface Is Down 198
 Mismatched Autonomous System Numbers 198
 Mismatched K Values 198
 Passive Interfaces 198
 Mismatched Authentication 199
 Timers 200
 Interface Not Participating in Routing Process 200
ACLs 201
Troubleshooting EIGRPv6 Routes 201
 Interface Not Participating in the Routing Process 201
 Better Source of Information 201
 Route Filtering 201
 Stub Configuration 202
 Split Horizon 203
Troubleshooting Named EIGRP 204
EIGRPv6 and Named EIGRP Trouble Tickets 209
 Trouble Ticket 5-1 209
 Trouble Ticket 5-2 213
Exam Preparation Tasks 218
Review All Key Topics 218
Define Key Terms 219
Use the Command Reference to Check Your Memory 219

Chapter 6 OSPF 222
“Do I Know This Already?” Quiz 222
Foundation Topics 225
OSPF Fundamentals 225
 Areas 226
 Inter-Router Communication 228
 Router ID 229
OSPF Hello Packets 229
Neighbors 230
Requirements for Neighbor Adjacency 230
OSPF Configuration 232
 OSPF Network Statement 232
 Interface-Specific Configuration 233
 Passive Interfaces 233
 Sample Topology and Configuration 233
 Confirmation of Interfaces 235
 Verification of OSPF Neighbor Adjacencies 237
 Viewing OSPF Installed Routes 238
 External OSPF Routes 240
 Default Route Advertisement 241
The Designated Router and Backup Designated Router 242
 Designated Router Elections 244
 DR and BDR Placement 245
OSPF Network Types 246
 Broadcast 247
 Nonbroadcast 247
 Point-to-Point Networks 248
 Point-to-Multipoint Networks 249
 Loopback Networks 253
Failure Detection 254
 Hello Timer 255
 Dead Interval Timer 255
 Verifying OSPF Timers 255
Authentication 255
References in This Chapter 257
Exam Preparation Tasks 258
 Review All Key Topics 258
 Define Key Terms 258
 Use the Command Reference to Check Your Memory 258

Chapter 7 Advanced OSPF 260
 “Do I Know This Already?” Quiz 260
 Foundation Topics 262
 Link-State Advertisements 262
 LSA Sequences 264
Contents xix

LSA Age and Flooding 264
LSA Types 264
LSA Type 1: Router Link 264
LSA Type 2: Network Link 269
LSA Type 3: Summary Link 271
LSA Type 5: External Routes 277
LSA Type 4: ASBR Summary 279
LSA Type 7: NSSA External Summary 281
LSA Type Summary 283

OSPF Stubby Areas 284
 Stub Areas 284
 Totally Stubby Areas 287
 Not-So-Stubby Areas 289
 Totally NSSAs 292
OSPF Path Selection 294
 Link Costs 295
 Intra-area Routes 295
 Inter-area Routes 296
 External Route Selection 297
 E1 and N1 External Routes 297
 E2 and N2 External Routes 297
 Equal-Cost Multipathing 298
Summarization of Routes 298
 Summarization Fundamentals 299
 Inter-area Summarization 301
 Configuration of Inter-area Summarization 301
 External Summarization 303
Discontiguous Network 305
Virtual Links 307
References in This Chapter 310
Exam Preparation Tasks 310
Review All Key Topics 310
Define Key Terms 311
Use the Command Reference to Check Your Memory 311

Chapter 8 Troubleshooting OSPFv2 314
"Do I Know This Already?" Quiz 314
Foundation Topics 317
Troubleshooting OSPFv2 Neighbor Adjacencies 317
 Interface Is Down 319
 Interface Not Running the OSPF Process 319
 Mismatched Timers 321
 Mismatched Area Numbers 322
 Mismatched Area Type 323
 Different Subnets 324
 Passive Interface 325
 Mismatched Authentication Information 326
 ACLs 327
 MTU Mismatch 328
 Duplicate Router IDs 330
 Mismatched Network Types 330
Troubleshooting OSPFv2 Routes 332
 Interface Not Running the OSPF Process 333
 Better Source of Information 334
 Route Filtering 337
 Stub Area Configuration 339
 Interface Is Shut Down 341
 Wrong Designated Router Elected 341
 Duplicate Router IDs 344
Troubleshooting Miscellaneous OSPFv2 Issues 346
 Tracking OSPF Advertisements Through a Network 346
 Route Summarization 348
 Discontiguous Areas 350
 Load Balancing 352
 Default Route 353
OSPFv2 Trouble Tickets 353
 Trouble Ticket 8-1 353
 Trouble Ticket 8-2 361
 Trouble Ticket 8-3 364
Exam Preparation Tasks 366
 Review All Key Topics 366
 Define Key Terms 367
 Use the Command Reference to Check Your Memory 367
Chapter 9 OSPFv3 370
“Do I Know This Already?” Quiz 370
Foundation Topics 371
OSPFv3 Fundamentals 371
 OSPFv3 Link-State Advertisement 372
 OSPFv3 Communication 373
OSPFv3 Configuration 374
 OSPFv3 Verification 377
 The Passive Interface 378
 IPv6 Route Summarization 379
 Network Type 380
 OSPFv3 Authentication 381
 OSPFv3 Link-Local Forwarding 383
OSPFv3 LSA Flooding Scope 384
References in This Chapter 390
Exam Preparation Tasks 390
Review All Key Topics 390
Define Key Terms 391
Use the Command Reference to Check Your Memory 391

Chapter 10 Troubleshooting OSPFv3 392
“Do I Know This Already?” Quiz 392
Foundation Topics 394
Troubleshooting OSPFv3 for IPv6 394
 OSPFv3 Troubleshooting Commands 395
OSPFv3 Trouble Tickets 401
 Trouble Ticket 10-1 401
 Trouble Ticket 10-2 404
Troubleshooting OSPFv3 Address Families 408
OSPFv3 AF Trouble Ticket 418
 Trouble Ticket 10-3 419
Exam Preparation Tasks 423
Review All Key Topics 423
Define Key Terms 424
Use the Command Reference to Check Your Memory 424

Chapter 11 BGP 426
“Do I Know This Already?” Quiz 426
Foundation Topics 428
BGP Fundamentals 428
 Autonomous System Numbers (ASNs) 428
BGP Sessions 429
Path Attributes 429
Loop Prevention 430
Address Families 430
Inter-Router Communication 430
BGP Messages 431
BGP Neighbor States 432
Basic BGP Configuration 435
 Verification of BGP Sessions 437
 Route Advertisement 440
 Receiving and Viewing Routes 443
Understanding BGP Session Types and Behaviors 448
 iBGP 448
 iBGP Full Mesh Requirement 450
 Peering Using Loopback Addresses 451
 eBGP 453
 eBGP and iBGP Topologies 454
 Next-Hop Manipulation 456
 iBGP Scalability Enhancements 457
 Route Reflectors 457
 Confederations 462
Multiprotocol BGP for IPv6 465
 IPv6 Configuration 466
 IPv6 over IPv4 471
References in This Chapter 475
Exam Preparation Tasks 476
Review All Key Topics 476
Define Key Terms 477
Use the Command Reference to Check Your Memory 477

Chapter 12 Advanced BGP 480
“Do I Know This Already?” Quiz 480
Foundation Topics 482
Route Summarization 482
 Aggregate Addresses 482
 The Atomic Aggregate Attribute 488
Chapter 13 BGP Path Selection 524

“Do I Know This Already?” Quiz 524

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Topics</td>
<td>526</td>
</tr>
<tr>
<td>Understanding BGP Path Selection</td>
<td>526</td>
</tr>
<tr>
<td>BGP Best Path</td>
<td>527</td>
</tr>
<tr>
<td>Weight</td>
<td>528</td>
</tr>
<tr>
<td>Local Preference</td>
<td>532</td>
</tr>
<tr>
<td>Phase I: Initial BGP Edge Route Processing</td>
<td>535</td>
</tr>
<tr>
<td>Phase II: BGP Edge Evaluation of Multiple Paths</td>
<td>536</td>
</tr>
<tr>
<td>Phase III: Final BGP Processing State</td>
<td>538</td>
</tr>
</tbody>
</table>
Locally Originated in the Network or Aggregate Advertisement 538
Accumulated Interior Gateway Protocol (AIGP) 539
Shortest AS_Path 540
Origin Type 542
Multi-Exit Discriminator 545
Missing MED Behavior 548
Always Compare MED 549
BGP Deterministic MED 549
eBGP over iBGP 550
Lowest IGP Metric 551
Prefer the Oldest EBGP Session 551
Router ID 551
Minimum Cluster List Length 552
Lowest Neighbor Address 552
BGP Multipath 553
Exam Preparation Tasks 554
Review All Key Topics 554
Define Key Terms 554
Use the Command Reference to Check Your Memory 554

Chapter 14 Troubleshooting BGP 556
“Do I Know This Already?” Quiz 557
Foundation Topics 559
Troubleshooting BGP Neighbor Adjacencies 559
 Interface Is Down 561
 Layer 3 Connectivity Is Broken 561
 Path to the Neighbor Is Through the Default Route 562
 Neighbor Does Not Have a Route to the Local Router 563
 Incorrect neighbor Statement 564
 BGP Packets Sourced from the Wrong IP Address 564
 ACLs 566
 The TTL of the BGP Packet Expires 568
 Mismatched Authentication 570
 Misconfigured Peer Groups 570
 Timers 572
Troubleshooting BGP Routes 573
Chapter 15 Route Maps and Conditional Forwarding 620

“Do I Know This Already?” Quiz 620

Foundation Topics 622

Conditional Matching 622

Access Control Lists (ACLs) 622

Standard ACLs 622

Extended ACLs 623

Prefix Matching 624

Prefix Lists 626

IPv6 Prefix Lists 627

Route Maps 627

Conditional Matching 629

Complex Matching 630

Optional Actions 631

Continue 631

Conditional Forwarding of Packets 632
Chapter 16 Route Redistribution 648

“Do I Know This Already?” Quiz 648

Foundation Topics 650

Redistribution Overview 650

Redistribution Is Not Transitive 651
Sequential Protocol Redistribution 653
Routes Must Exist in the RIB 653
Seed Metrics 655

Protocol-Specific Configuration 656
Source-Specific Behaviors 657
Connected Networks 657
BGP 657
Destination-Specific Behaviors 658
EIGRP 658
EIGRP-to-EIGRP Redistribution 661
OSPF 663
OSPF-to-OSPF Redistribution 666
OSPF Forwarding Address 667
BGP 670

Reference in This Chapter 672
Exam Preparation Tasks 672
Review All Key Topics 672
Define Key Terms 673
Use the Command Reference to Check Your Memory 673
Chapter 17 Troubleshooting Redistribution 674

“Do I Know This Already?” Quiz 674

Foundation Topics 677

Troubleshooting Advanced Redistribution Issues 677
 Troubleshooting Suboptimal Routing Caused by Redistribution 678
 Troubleshooting Routing Loops Caused by Redistribution 679
Troubleshooting IPv4 and IPv6 Redistribution 687
 Route Redistribution Review 687
Troubleshooting Redistribution into EIGRP 689
Troubleshooting Redistribution into OSPF 694
Troubleshooting Redistribution into BGP 699
Troubleshooting Redistribution with Route Maps 702

Redistribution Trouble Tickets 702
 Trouble Ticket 17-1 703
 Trouble Ticket 17-2 708
 Trouble Ticket 17-3 711
 Trouble Ticket 17-4 717

Exam Preparation Tasks 721
Review All Key Topics 722
Define Key Terms 722
Command Reference to Check Your Memory 723

Chapter 18 VRF, MPLS, and MPLS Layer 3 VPNs 724

“Do I Know This Already?” Quiz 724

Foundation Topics 727

Implementing and Verifying VRF-Lite 727
 VRF-Lite Overview 728
 Creating and Verifying VRF Instances 728
An Introduction to MPLS Operations 747
 MPLS Lib and LFIB 748
 Label Switching Routers 748
Forwarding Equivalence Class (FEC) 749
 Label-Switched Path 749
Labels 750
 Label Distribution Protocol 751
 Label Switching 752
Penultimate-Hop Popping 753
MPLS LDP Features 754
MPLS Traffic Engineering 755
An Introduction to MPLS Layer 3 VPNs 755
MPLS Layer 3 VPNs 756
MPLS Layer 3 VPNv4 Addresses, RDs, and RTs 757
MPLS Layer 3 VPN Label Stack 759
Reference in This Chapter 762
Exam Preparation Tasks 762
Review All Key Topics 762
Define Key Terms 763
Use the Command Reference to Check Your Memory 763

Chapter 19 DMVPN Tunnels 766
“Do I Know This Already?” Quiz 766
Foundation Topics 769
Generic Routing Encapsulation (GRE) Tunnels 769
GRE Tunnel Configuration 769
GRE Sample Configuration 771
Next Hop Resolution Protocol (NHRP) 774
Dynamic Multipoint VPN (DMVPN) 776
Phase 1: Spoke-to-Hub 777
Phase 2: Spoke-to-Spoke 777
Phase 3: Hierarchical Tree Spoke-to-Spoke 777
DMVPN Phase Comparison 777
DMVPN Configuration 779
DMVPN Hub Configuration 780
DMVPN Spoke Configuration for DMVPN Phase 1 (Point-to-Point) 782
Viewing DMVPN Tunnel Status 784
Viewing the NHRP Cache 787
DMVPN Configuration for Phase 3 DMVPN (Multipoint) 792
IP NHRP Authentication 794
Unique IP NHRP Registration 794
Spoke-to-Spoke Communication 795
Forming Spoke-to-Spoke Tunnels 796
NHRP Routing Table Manipulation 800
NHRP Routing Table Manipulation with Summarization 802
Chapter 20 Securing DMVPN Tunnels 820

“Do I Know This Already?” Quiz 820

Foundation Topics 821
Elements of Secure Transport 821
IPsec Fundamentals 823
 Security Protocols 824
 Authentication Header 824
 Encapsulating Security Payload (ESP) 824
 Key Management 825
 Security Associations 825
 ESP Modes 825
 DMVPN Without IPsec 826
 DMVPN with IPsec in Transport Mode 826
 DMVPN with IPsec in Tunnel Mode 827
IPsec Tunnel Protection 827
 Pre-Shared Key Authentication 827
 IKEv2 Keyring 828
 IKEv2 Profile 829
 IPsec Transform Set 831
 IPsec Profile 832
 Encrypting the Tunnel Interface 833
IPsec Packet Replay Protection 833
Dead Peer Detection 834
NAT Keepalives 834
Complete IPsec DMVPN Configuration with Pre-Shared Authentication 835
Verifying Encryption on DMVPN Tunnels 836
IKEv2 Protection 838
References in This Chapter 839
Exam Preparation Tasks 840
Review All Key Topics 840
Define Key Terms 840
Use the Command Reference to Check Your Memory 840

Chapter 21 Troubleshooting ACLs and Prefix Lists 842
“Do I Know This Already?” Quiz 842
Foundation Topics 845
Troubleshooting IPv4 ACLs 845
 Reading an IPv4 ACL 846
 Using an IPv4 ACL for Filtering 848
 Using a Time-Based IPv4 ACL 848
Troubleshooting IPv6 ACLs 850
 Reading an IPv6 ACL 850
 Using an IPv6 ACL for Filtering 851
Troubleshooting Prefix Lists 852
 Reading a Prefix List 853
 Prefix List Processing 854
Trouble Tickets 855
 Trouble Ticket 21-1: IPv4 ACL Trouble Ticket 855
 Trouble Ticket 21-2: IPv6 ACL Trouble Ticket 858
 Trouble Ticket 21-3: Prefix List Trouble Ticket 861
Exam Preparation Tasks 863
Review All Key Topics 863
Define Key Terms 864
Use the Command Reference to Check Your Memory 864

Chapter 22 Infrastructure Security 866
“Do I Know This Already?” Quiz 866
Foundation Topics 869
Chapter 23 Device Management and Management Tools

Troubleshooting 890

“Do I Know This Already?” Quiz 890

Foundation Topics 893

Device Management Troubleshooting 893
 Console Access Troubleshooting 893
 vty Access Troubleshooting 894
 Telnet 895
 SSH 897
 Password Encryption Levels 898
 Remote Transfer Troubleshooting 899
 TFTP 899
 HTTP(S) 900
 FTP 901
 SCP 902
Management Tools Troubleshooting 903
 Syslog Troubleshooting 904
 SNMP Troubleshooting 906
Cisco IOS IP SLA Troubleshooting 910
Object Tracking Troubleshooting 917
NetFlow and Flexible NetFlow Troubleshooting 919
Bidirectional Forwarding Detection (BFD) 927
Cisco DNA Center Assurance 929

Exam Preparation Tasks 939
Review All Key Topics 939
Define Key Terms 940
Use the Command Reference to Check Your Memory 940

Chapter 24 Final Preparation 944
Advice About the Exam Event 944
 Think About Your Time Budget Versus Numbers of Questions 944
 A Suggested Time-Check Method 945
 Miscellaneous Pre-Exam Suggestions 946
Exam-Day Advice 946
 Reserve the Hour After the Exam in Case You Fail 947
Take Practice Exams 948
 Advice on How to Answer Exam Questions 949
Assessing Whether You Are Ready to Pass (and the Fallacy of Exam Scores) 950
 Study Suggestions After Failing to Pass 951
Other Study Tasks 952
 Final Thoughts 953

Chapter 25 ENARSI 300-410 Exam Updates 954
The Purpose of This Chapter 954
 About Possible Exam Updates 954
 Impact on You and Your Study Plan 955
News About the Next Exam Release 956
Updated Technical Content 956
Appendix A Answers to the “Do I Know This Already?” Quiz Questions 958

Glossary 972

Index 990

Online Elements

Appendix B Command Reference Exercises
Appendix C Command Reference Exercises Answer Key
Appendix D Study Planner
Icons Used in This Book

- ASA Firewall
- LAN Segment
- Serial
- Switched Circuit
- Radio Tower
- Routing Domain
- Router
- Workgroup Switch Color/Subdued
- Web Server
- Workstation (Sun)
- Optical Cross-Connect
- File/Application Server

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ([[]]) indicate a required choice within an optional element.
Introduction

Congratulations! If you are reading this Introduction, then you have probably decided to obtain your Cisco CCNP Enterprise certification. Obtaining a Cisco certification will ensure that you have a solid understanding of common industry protocols along with Cisco's device architecture and configuration. Cisco has a high market share of routers and switches, with a global footprint.

Professional certifications have been an important part of the computing industry for many years and will continue to become more important. Many reasons exist for these certifications, but the most popularly cited reason is credibility. All other considerations held equal, a certified employee/consultant/job candidate is considered more valuable than one who is not certified.

Cisco provides three primary levels of certifications: Cisco Certified Network Associate (CCNA), Cisco Certified Network Professional (CCNP), and Cisco Certified Internetwork Expert (CCIE). Cisco announced changes to all three levels of certification in February 2020 and those changes still apply to the most recent exam updates. The announcement included many changes, but these are the most notable:

- The exams now include additional topics, such as programming.
- The CCNA certification is not a prerequisite for obtaining the CCNP certification. CCNA specializations are not offered anymore.
- The exams test a candidate's ability to configure and troubleshoot network devices as well as to answer multiple-choice questions.
- The CCNP is obtained by taking and passing a Core exam and a Concentration exam, such as the Implementing Cisco Enterprise Advanced Routing and Services (ENARSI).

So, if you are a CCNP Enterprise candidate you need to take and pass the CCNP and CCIE Enterprise Core ENCOR v1.1 350-401 examination. Then you need to take and pass one of the following Concentration exams to obtain your CCNP Enterprise:

- 300-410 ENARSI to obtain Implementing Cisco Enterprise Advanced Routing and Services
- 300-415 ENSDWI to obtain Implementing Cisco SD-WAN Solutions
- 300-420 ENSLD to obtain Designing Cisco Enterprise Networks
- 300-425 ENWLSD to obtain Designing Cisco Enterprise Wireless Networks
- 300-430 ENWLSI to obtain Implementing Cisco Enterprise Wireless Networks
- 300-435 ENAUTO to obtain Automating Cisco Enterprise Solutions
- 300-440 ENCC to obtain Designing and Implementing Cloud Connectivity
Goals and Methods

The most important and somewhat obvious goal of this book is to help you pass the CCNP Implementing Cisco Enterprise Advanced Routing and Services (ENARSI) 300-410 exam. In fact, if the primary objective of this book were different, then the book's title would be misleading; however, the methods used in this book to help you pass the exam are designed to also make you much more knowledgeable about how to do your job.

One key methodology used in this book is to help you discover the exam topics that you need to review in more depth, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. This book does not try to help you pass by memorization but helps you truly learn and understand the topics. The ENARSI 300-410 exam covers foundation topics in the CCNP certification, and the knowledge contained within is vitally important for a truly skilled routing/switching engineer or specialist. This book would do you a disservice if it didn't attempt to help you learn the material. To that end, the book will help you pass the exam by:

■ Helping you discover which test topics you have not mastered
■ Providing explanations and information to fill in your knowledge gaps
■ Supplying exercises and scenarios that enhance your ability to recall and deduce the answers to test questions
■ Providing practice exercises on the topics and the testing process via test questions on the companion website

Who Should Read This Book?

This book is not designed to be a general networking topics book, although it can be used for that purpose. This book is intended to tremendously increase your chances of passing the ENARSI 300-410 exam. Although other objectives can be achieved from using this book, the book is written with one goal in mind: to help you pass the exam.

So why should you want to pass the ENARSI 300-410 exam? Because it's one of the milestones toward getting the CCNP Enterprise certification, which is no small feat. What would getting the CCNP Enterprise certification mean to you? A raise, a promotion, recognition? How about enhancing your resume? Demonstrating that you are serious about continuing the learning process and that you're not content to rest on your laurels? Pleasing your reseller-employer, who needs more certified employees for a higher discount from Cisco? You might have one of these reasons for getting the CCNP Enterprise certification or one of many others.

Strategies for Exam Preparation

The strategy you use for taking the ENARSI 300-410 exam might be slightly different from strategies used by other readers, depending on the skills, knowledge, and experience you have already obtained. For instance, if you have attended the CCNP
Implementing Cisco Enterprise Advanced Routing and Services (ENARSI) 300-410 course, you might take a different approach than someone who has learned routing through on-the-job training.

Regardless of the strategy you use or the background you have, this book is designed to help you get to the point where you can pass the exam with the least amount of time required. For instance, there is no need for you to practice or read about IP addressing and subnetting if you fully understand it already. However, many people like to make sure that they truly know a topic and thus read over material that they already know. Several book features will help you gain the confidence you need to be convinced that you know some material already and to also help you know what topics you need to study more.

The Companion Website for Online Content Review
All the electronic review elements, as well as other electronic components of the book, exist on this book’s companion website.

How to Access the Companion Website
To access the companion website, which gives you access to the electronic content with this book, start by establishing a login at www.ciscopress.com and registering your book. To do so, simply go to ciscopress.com/register and enter the ISBN of the print book: 9780138217525. After you have registered your book, go to your account page and click the Registered Products tab. From there, click the Access Bonus Content link to get access to the book’s companion website.

Note that if you buy the Premium Edition eBook and Practice Test version of this book from Cisco Press, your book will automatically be registered on your account page. Simply go to your account page, click the Registered Products tab, and select Access Bonus Content to access the book’s companion website.

How to Access the Pearson Test Prep (PTP) App
You have two options for installing and using the Pearson Test Prep application: a web app and a desktop app. To use the Pearson Test Prep application, start by finding the registration code that comes with the book. You can find the code in these ways:

- You can get your access code by registering the print ISBN (9780138217525) on ciscopress.com/register. Make sure to use the print book ISBN regardless of whether you purchased an eBook or the print book. Once you register the book, your access code will be populated on your account page under the Registered Products tab. Instructions for how to redeem the code are available on the book’s companion website by clicking the Access Bonus Content link.

- Premium Edition: If you purchase the Premium Edition eBook and Practice Test directly from the Cisco Press website, the code will be populated on your account page after purchase. Just log in at ciscopress.com click Account to see details of your account, and click the digital purchases tab.
NOTE After you register your book, your code can always be found in your account under the Registered Products tab.

Once you have the access code, to find instructions about both the PTP web app and the desktop app, follow these steps:

Step 1. Open this book’s companion website, as shown earlier in this Introduction under the heading “How to Access the Companion Website.”

Step 2. Click the Practice Exams button.

Step 3. Follow the instructions listed there both for installing the desktop app and for using the web app.

Note that if you want to use the web app only at this point, just navigate to pearsonatestprep.com, log in using the same credentials used to register your book or purchase the Premium Edition, and register this book’s practice tests using the registration code you just found. The process should take only a couple of minutes.

How This Book Is Organized

Although this book could be read cover-to-cover, it is designed to be flexible and allow you to easily move between chapters and sections of chapters to cover just the material that you need more work with. If you intend to read the entire book, the order in the book is an excellent sequence to use.

The chapters cover the following topics:

- Chapter 1, “IPv4/IPv6 Addressing and Routing Review”: This chapter provides a review of IPv4 and IPv6 addressing, DHCP, and routing, as well as details about how to troubleshoot these topics.

- Chapter 2, “EIGRP”: This chapter explains the underlying mechanics of the EIGRP routing protocol, the path metric calculations, and how to configure EIGRP.

- Chapter 3, “Advanced EIGRP”: This chapter explains a variety of advanced concepts, such as failure detection, network summarization, router filtering, and techniques to optimize WAN sites.

- Chapter 4, “Troubleshooting EIGRP for IPv4”: This chapter focuses on how to troubleshoot EIGRP neighbor adjacency issues as well as EIGRP route issues.

- Chapter 5, “EIGRPv6”: This chapter explains how EIGRP advertises IPv6 networks and guides you through configuring, verifying, and troubleshooting EIGRPv6.

- Chapter 6, “OSPF”: This chapter explains the core concepts of OSPF, the exchange of routes, OSPF network types, failure detection, and OSPF authentication.

- Chapter 7, “Advanced OSPF”: This chapter expands on Chapter 6 by explaining the OSPF database and how it builds the topology. It also explains OSPF path selection, router summarization, and techniques to optimize an OSPF environment.
- Chapter 8, “Troubleshooting OSPFv2”: This chapter explores how to troubleshoot OSPFv2 neighbor adjacency issues as well as route issues.

- Chapter 9, “OSPFv3”: This chapter explains how the OSPF protocol has changed to accommodate support of the IPv6 protocol.

- Chapter 10, “Troubleshooting OSPFv3”: This chapter explains how to troubleshoot issues that may arise with OSPFv3.

- Chapter 11, “BGP”: This chapter explains the core concepts of BGP, its path attributes, and configuration for IPv4 and IPv6 network prefixes.

- Chapter 12, “Advanced BGP”: This chapter expands on Chapter 11 by explaining BGP communities and configuration techniques for routers with lots of BGP peerings.

- Chapter 13, “BGP Path Selection”: This chapter explains the BGP path selection process, how BGP identifies the best BGP path, and methods for load balancing across equal paths.

- Chapter 14, “Troubleshooting BGP”: This chapter explores how you can identify and troubleshoot issues related to BGP neighbor adjacencies, BGP routes, and BGP path selection. It also covers MP-BGP (BGP for IPv6).

- Chapter 15, “Route Maps and Conditional Forwarding”: This chapter explains route maps, concepts for selecting a network prefix, and how packets can be conditionally forwarded out different interfaces for certain network traffic.

- Chapter 16, “Route Redistribution”: This chapter explains the rules of redistribution, configuration for route redistribution, and behaviors of redistribution based on the source or destination routing protocol.

- Chapter 17, “Troubleshooting Redistribution”: This chapter focuses on how to troubleshoot issues related to redistribution, including configuration issues, suboptimal routing issues, and routing loop issues.

- Chapter 18, “VRF, MPLS, and MPLS Layer 3 VPNs”: This chapter explores how to configure and verify VRF and introduces MPLS operations and MPLS Layer 3 VPNs.

- Chapter 19, “DMVPN Tunnels”: This chapter covers GRE tunnels, NHRP, DMVPN, and techniques to optimize a DMVPN deployment.

- Chapter 20, “Securing DMVPN Tunnels”: This chapter explains the importance of securing network traffic on the WAN and techniques for deploying IPsec tunnel protection for DMVPN tunnels.

- Chapter 21, “Troubleshooting ACLs and Prefix Lists”: This chapter shows how to troubleshoot issues related to IPv4 and IPv6 access control lists and prefix lists.

- Chapter 22, “Infrastructure Security”: This chapter covers how to troubleshoot AAA issues, uRPF issues, and CoPP issues. In addition, it introduces various IPv6 first-hop security features.
Chapter 23, “Device Management and Management Tools Troubleshooting”: This chapter explores how to troubleshoot issues that you might experience with local or remote access, remote transfers, syslog, SNMP, IP SLA, Object Tracking, NetFlow, and Flexible NetFlow. In addition, it introduces the troubleshooting options available with Cisco DNA Center Assurance.

Chapter 24, “Final Preparation”: This chapter provides tips and strategies for studying for the ENARSI 300-410 exam.

Chapter 25, “ENARSI 300-410 Exam Updates”: This chapter provides information about how book updates will be handled if and when Cisco decides to make changes to the ENARSI 300-410 exam.

Certification Exam Topics and This Book

The questions for each certification exam are a closely guarded secret. However, we do know which topics you must know to successfully complete the ENARSI 300-410 v1.1 exam. Cisco publishes them as an exam blueprint. Table I-1 lists the exam topics from the blueprint along with references to the book chapters that cover each topic. These are the same topics you should be proficient in when working with enterprise technologies in the real world.

Table I-1 Enterprise Core Topics and Chapter References

<table>
<thead>
<tr>
<th>Implementing Cisco Enterprise Advanced Routing (ENARSI) (300-410) Exam Topic</th>
<th>Chapter(s) in Which Topic Is Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Layer 3 Technologies</td>
<td></td>
</tr>
<tr>
<td>1.1 Troubleshoot administrative distance (all routing protocols)</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Troubleshoot route map for any routing protocol (attributes, tagging, filtering)</td>
<td>17</td>
</tr>
<tr>
<td>1.3 Troubleshoot loop prevention mechanisms (filtering, tagging, split horizon, route poisoning)</td>
<td>17</td>
</tr>
<tr>
<td>1.4 Troubleshoot redistribution between any routing protocols or routing sources</td>
<td>16, 17</td>
</tr>
<tr>
<td>1.5 Troubleshoot manual and auto-summarization with any routing protocol</td>
<td>3, 4, 5, 7, 8, 9, 10, 12</td>
</tr>
<tr>
<td>1.6 Configure and verify policy-based routing</td>
<td>15</td>
</tr>
<tr>
<td>1.7 Configure and verify VRF-Lite</td>
<td>18</td>
</tr>
<tr>
<td>1.8 Describe Bidirectional Forwarding Detection</td>
<td>23</td>
</tr>
<tr>
<td>1.9 Troubleshoot EIGRP (classic and named mode; VRF and global)</td>
<td>4, 5</td>
</tr>
<tr>
<td>1.9.a Address families (IPv4, IPv6)</td>
<td>2, 3, 4, 5</td>
</tr>
<tr>
<td>1.9.b Neighbor relationship and authentication</td>
<td>2, 4, 5</td>
</tr>
<tr>
<td>1.9.c Loop-free path selections (RD, FD, FC, successor, feasible successor, stuck in active)</td>
<td>3, 4</td>
</tr>
<tr>
<td>1.9.d Stubs</td>
<td>4</td>
</tr>
<tr>
<td>Implementing Cisco Enterprise Advanced Routing (ENARSI) (300-410) Exam Topic</td>
<td>Chapter(s) in Which Topic Is Covered</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.9.e Load balancing (equal and unequal cost)</td>
<td>2</td>
</tr>
<tr>
<td>1.9.f Metrics</td>
<td>2</td>
</tr>
<tr>
<td>1.10 Troubleshoot OSPF (v2/v3)</td>
<td>6, 7, 8, 9, 10</td>
</tr>
<tr>
<td>1.10.a Address families (IPv4, IPv6)</td>
<td>8, 10</td>
</tr>
<tr>
<td>1.10.b Neighbor relationship and authentication</td>
<td>6, 8, 10</td>
</tr>
<tr>
<td>1.10.c Network types, area types, and router types</td>
<td>8, 10</td>
</tr>
<tr>
<td>1.10.c (i) Point-to-point, multipoint, broadcast, nonbroadcast</td>
<td>6, 8, 10</td>
</tr>
<tr>
<td>1.10.c (ii) Area type: backbone, normal, transit, stub, NSSA, totally stub</td>
<td>7, 8, 10</td>
</tr>
<tr>
<td>1.10.c (iii) Internal router, backbone router, ABR, ASBR</td>
<td>6, 8, 10</td>
</tr>
<tr>
<td>1.10.c (iv) Virtual link</td>
<td>7, 8</td>
</tr>
<tr>
<td>1.10.d Path preference</td>
<td>7</td>
</tr>
<tr>
<td>1.11 Troubleshoot BGP (Internal and External, unicast, and VRF-Lite)</td>
<td>11, 12, 13, 14</td>
</tr>
<tr>
<td>1.11.a Address families (IPv4, IPv6)</td>
<td>10, 14</td>
</tr>
<tr>
<td>1.11.b Neighbor relationship and authentication (next-hop, mulithop, 4-byte AS, private AS, route refresh, synchronization, operation, peer group, states and timers)</td>
<td>10, 14</td>
</tr>
<tr>
<td>1.11.c Path preference (attributes and best-path)</td>
<td>13, 14</td>
</tr>
<tr>
<td>1.11.d Route reflector (excluding multiple route reflectors, confederations, dynamic peer)</td>
<td>10</td>
</tr>
<tr>
<td>1.11.e Policies (inbound/outbound filtering, path manipulation)</td>
<td>11, 14</td>
</tr>
<tr>
<td>2.0 VPN Technologies</td>
<td></td>
</tr>
<tr>
<td>2.1 Describe MPLS operations (LSR, LDP, label switching, LSP)</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Describe MPLS Layer 3 VPN</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Configure and verify DMVPN (single hub)</td>
<td>19, 20</td>
</tr>
<tr>
<td>2.3.a GRE/mGRE</td>
<td>19</td>
</tr>
<tr>
<td>2.3.b NHRP</td>
<td>19</td>
</tr>
<tr>
<td>2.3.c IPsec</td>
<td>20</td>
</tr>
<tr>
<td>2.3.d Dynamic neighbor</td>
<td>19</td>
</tr>
<tr>
<td>2.3.e Spoke-to-spoke</td>
<td>19</td>
</tr>
<tr>
<td>3.0 Infrastructure Security</td>
<td></td>
</tr>
<tr>
<td>3.1 Troubleshoot device security using IOS AAA (TACACS+, RADIUS, local database)</td>
<td>22</td>
</tr>
<tr>
<td>3.2 Troubleshoot router security features</td>
<td>21, 22</td>
</tr>
<tr>
<td>3.2.a IPv4 access control lists (standard, extended, time-based)</td>
<td>21</td>
</tr>
<tr>
<td>3.2.b IPv6 traffic filter</td>
<td>21</td>
</tr>
<tr>
<td>3.2.c Unicast reverse path forwarding (uRPF)</td>
<td>22</td>
</tr>
</tbody>
</table>
Each version of the exam can have topics that emphasize different functions or features, and some topics can be rather broad and generalized. The goal of this book is to provide the most comprehensive coverage to ensure that you are well prepared for the exam. Although some chapters might not address specific exam topics, they provide a foundation that is necessary for a clear understanding of important topics.

It is also important to understand that this book is a “static” reference, whereas the exam topics are dynamic. Cisco can and does change the topics covered on certification exams often.

This exam guide should not be your only reference when preparing for the certification exam. You can find a wealth of information at Cisco.com that covers each topic in great detail. If you think that you need more detailed information on a specific topic, read the Cisco documentation that focuses on that topic.

Note that as technologies continue to evolve, Cisco reserves the right to change the exam topics without notice. Although you can refer to the list of exam topics in Table I-1, always check Cisco.com to verify the actual list of topics to ensure that you are prepared before taking the exam. You can view the current exam topics on any current Cisco certification exam by visiting https://www.cisco.com/c/en/us/training-events/training-certifications/next-level-certifications.html. In addition, you should keep up to date on future exam changes by using the Cisco Certification Road Map at https://learningnetwork.
cisco.com/s/cisco-certification-roadmaps. Also note that, if needed, Cisco Press might post additional preparatory content on the web page associated with this book: http://www.ciscopress.com/title/9780138217525. It’s a good idea to check the website a couple weeks before taking your exam to be sure that you have up-to-date content.

Learning in a Lab Environment

This book is an excellent self-study resource for learning the technologies. However, reading is not enough, and any network engineer can tell you that you must implement a technology to fully understand it. We encourage you to re-create the topologies and technologies and follow the examples in this book.

A variety of resources are available for practicing the concepts in this book. Look online for the following:

- **Cisco VIRL** (Virtual Internet Routing Lab) provides a scalable, extensible network design and simulation environment. For more information about VIRL, see https://learningnetwork.cisco.com/s/virl.

- **Cisco dCloud** provides a huge catalog of demos, training, and sandboxes for every Cisco architecture. It offers customizable environments and is free. For more information, see https://dcloud.cisco.com.

- **Cisco Devnet** provides many resources on programming and programmability, along with free labs. For more information, see https://developer.cisco.com.
CHAPTER 2

EIGRP

This chapter covers the following topics:

- **EIGRP Fundamentals**: This section explains how EIGRP establishes a neighborship with other routers and how routes are exchanged with other routers.
- **EIGRP Configuration Modes**: This section defines the two methods of configuring EIGRP with a baseline configuration.
- **Path Metric Calculation**: This section explains how EIGRP calculates the path metric to identify the best and alternate loop-free paths.

Enhanced Interior Gateway Routing Protocol (EIGRP) is an enhanced distance vector routing protocol commonly found in enterprise networks. EIGRP is a derivative of Interior Gateway Routing Protocol (IGRP) but includes support for variable-length subnet masking (VLSM) and metrics capable of supporting higher-speed interfaces. Initially, EIGRP was a Cisco proprietary protocol, but it was released to the Internet Engineering Task Force (IETF) through RFC 7868, which was ratified in May 2016.

This chapter explains the underlying mechanics of the EIGRP routing protocol and the path metric calculations, and it demonstrates how to configure EIGRP on a router. This is the first of several chapters in the book that discuss EIGRP:

- **Chapter 2, “EIGRP”**: This chapter describes the fundamental concepts of EIGRP.
- **Chapter 3, “Advanced EIGRP”**: This chapter describes EIGRP’s failure detection mechanisms and techniques to optimize the operations of the routing protocol. It also includes topics such as route filtering and traffic manipulation.
- **Chapter 4, “Troubleshooting EIGRP for IPv4”**: This chapter reviews common problems with the routing protocols and the methodology to troubleshoot EIGRP from an IPv4 perspective.
- **Chapter 5, “EIGRPv6”**: This chapter demonstrates how IPv4 EIGRP concepts carry over to IPv6 and the methods used to troubleshoot common problems.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read this entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in doubt about your answers to these questions or your own assessment of your knowledge of the topics, read the entire chapter. Table 2-1 lists the major headings in this chapter and their corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers to the ‘Do I Know This Already?’ Quiz Questions.”
Table 2-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIGRP Fundamentals</td>
<td>1–6</td>
</tr>
<tr>
<td>EIGRP Configuration Modes</td>
<td>7–9</td>
</tr>
<tr>
<td>Path Metric Calculation</td>
<td>10</td>
</tr>
</tbody>
</table>

CAUTION The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of self-assessment. Giving yourself credit for an answer that you correctly guess skews your self-assessment results and might provide you with a false sense of security.

1. EIGRP uses protocol number ____ for inter-router communication.
 - a. 87
 - b. 88
 - c. 89
 - d. 90

2. How many packet types does EIGRP use for inter-router communication?
 - a. Three
 - b. Four
 - c. Five
 - d. Six
 - e. Seven

3. Which of the following are not required to match in order to form an EIGRP adjacency?
 - a. Metric K values
 - b. Primary subnet
 - c. Hello and hold timers
 - d. Authentication parameters

4. What is an EIGRP successor?
 - a. The next-hop router for the path with the lowest path metric for a destination prefix
 - b. The path with the lowest metric for a destination prefix
 - c. The router selected to maintain the EIGRP adjacencies for a broadcast network
 - d. A route that satisfies the feasibility condition where the reported distance is less than the feasible distance
5. What attributes does the EIGRP topology table contain? (Choose all that apply.)
 a. Destination network prefix
 b. Hop count
 c. Total path delay
 d. Maximum path bandwidth
 e. List of EIGRP neighbors

6. What destination addresses does EIGRP use when feasible? (Choose two.)
 a. IP address 224.0.0.9
 b. IP address 224.0.0.10
 c. IP address 224.0.0.8
 d. MAC address 01:00:5E:00:00:0A
 e. MAC address 0C:15:C0:00:00:01

7. Which of the following techniques can be used to initialize the EIGRP process? (Choose two.)
 a. Use the interface command `ip eigrp as-number ipv4 unicast`.
 b. Use the global configuration command `router eigrp as-number`.
 c. Use the global configuration command `router eigrp process-name`.
 d. Use the interface command `router eigrp as-number`.

8. True or false: The EIGRP router ID (RID) must be configured for EIGRP to be able to establish neighborship.
 a. True
 b. False

9. True or false: When using MD5 authentication between EIGRP routers, the keychain sequence numbers used on the routers can be different, as long as the password is the same.
 a. True
 b. False

10. Which value can be modified on a router to manipulate the path taken by EIGRP but does not have an impact on other routing protocols, like OSPF?
 a. Interface bandwidth
 b. Interface MTU
 c. Interface delay
 d. Interface priority

Foundation Topics

EIGRP Fundamentals

EIGRP overcomes the deficiencies of other distance vector routing protocols, such as Routing Information Protocol (RIP), with features such as unequal-cost load balancing, support for networks 255 hops away, and rapid convergence features. EIGRP uses a diffusing update...
algorithm \((DUAL)\) to identify network paths and provides for fast convergence using precalculated loop-free backup paths. Most distance vector routing protocols use hop count as the metric for routing decisions. However, a route-selection algorithm that uses only hop count for path selection does not take into account link speed and total delay. EIGRP adds logic to the route-selection algorithm to use factors other than hop count alone.

Autonomous Systems

A router can run multiple EIGRP processes. Each process operates under the context of an autonomous system, which represents a common routing domain. Routers within the same domain use the same metric calculation formula and exchange routes only with members of the same autonomous system (AS). Do not confuse an EIGRP autonomous system with a Border Gateway Protocol (BGP) autonomous system.

In Figure 2-1, EIGRP AS 100 consists of R1, R2, R3, and R4, and EIGRP AS 200 consists of R3, R5, and R6. Each EIGRP process correlates to a specific autonomous system and maintains an independent EIGRP topology table. R1 does not have knowledge of routes from AS 200 because it is different from its own autonomous system, AS 100. R3 is able to participate in both autonomous systems and, by default, does not transfer routes learned from one autonomous system into a different autonomous system.

![Figure 2-1 EIGRP Autonomous Systems](image)

EIGRP uses protocol-dependent modules (PDMs) to support multiple network protocols, such as IPv4, IPv6, AppleTalk, and IPX. EIGRP is written so that the PDM is responsible for the functions to handle the route selection criteria for each communication protocol. In theory, new PDMs can be written as new communication protocols are created. Current implementations of EIGRP support only IPv4 and IPv6.

EIGRP Terminology

This section explains some of the core concepts of EIGRP, along with the path selection process. Figure 2-2 is a reference topology for this section, showing R1 calculating the best path and alternative loop-free paths to the 10.4.4.0/24 network. A value in parentheses represents the link’s calculated metric for a segment based on bandwidth and delay.
Table 2-2 defines important terms related to EIGRP and correlates them to Figure 2-2.

Table 2-2 EIGRP Terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successor route</td>
<td>The route with the lowest path metric to reach a destination. The successor route for R1 to reach 10.4.4.0/24 on R4 is R1→R3→R4.</td>
</tr>
<tr>
<td>Successor</td>
<td>The first next-hop router for the successor route. R1's successor for 10.4.4.0/24 is R3.</td>
</tr>
<tr>
<td>Feasible distance (FD)</td>
<td>The metric value for the lowest path metric to reach a destination. The feasible distance is calculated locally using the formula shown in the “Path Metric Calculation” section, later in this chapter. The FD calculated by R1 for the 10.4.4.0/24 destination network is 3328 (that is, 256 + 256 + 2816).</td>
</tr>
<tr>
<td>Reported distance (RD)</td>
<td>Distance reported by a router to reach a destination. The reported distance value is the feasible distance for the advertising router. R3 advertises the 10.4.4.0/24 destination network to R1 and R2 with an RD of 3072. R4 advertises the 10.4.4.0/24 destination network to R1, R2, and R3 with an RD of 2816.</td>
</tr>
<tr>
<td>Feasibility condition</td>
<td>For a route to be considered a backup route, the RD received for that route must be less than the FD calculated locally. This logic guarantees a loop-free path.</td>
</tr>
<tr>
<td>Feasible successor</td>
<td>A route that satisfies the feasibility condition is maintained as a backup route. The feasibility condition ensures that the backup route is loop free. The route R1→R4 is the feasible successor because the RD of 2816 is lower than the FD of 3328 for the R1→R3→R4 path.</td>
</tr>
</tbody>
</table>

Topology Table

EIGRP contains a topology table, which makes it different from a true distance vector routing protocol. EIGRP’s topology table is a vital component of DUAL and contains information to identify loop-free backup routes. The topology table contains all the network prefixes advertised within an EIGRP autonomous system. Each entry in the table contains the following:
Network prefix

EIGRP neighbors that have advertised that prefix

Metrics from each neighbor (reported distance and hop count)

Values used for calculating the metric (load, reliability, total delay, and minimum bandwidth)

The command `show ip eigrp topology [all-links]` provides the topology table. By default, only the successor and feasible successor routes are displayed, but the optional `all-links` keyword shows the paths that did not pass the feasibility condition.

Figure 2-3 shows the topology table for R1 from Figure 2-2. This section focuses on the 10.4.4.0/24 network when explaining the topology table.

```
R1#show ip eigrp topology
EIGRP-IPv4 Topology Table for AS (100)/ID(192.168.1.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply, r - reply Status, s - sia Status

P 10.12.1.0/24, 1 successors, FD is 2816
   via Connected, GigabitEthernet0/3
P 10.13.1.0/24, 1 successors, FD is 2816
   via Connected, GigabitEthernet0/1
P 10.14.1.0/24, 1 successors, FD is 5120
   via Connected, GigabitEthernet0/2
P 10.23.1.0/24, 1 successors, FD is 3072
   via 10.13.1.3 (3072/2816), GigabitEthernet0/1
   via 10.12.1.2 (5376/2816), GigabitEthernet0/3
P 10.34.1.0/24, 1 successors, FD is 3072
   via 10.13.1.3 (3072/2816), GigabitEthernet0/1
   via 10.14.1.4 (5376/2816), GigabitEthernet0/2
P 10.24.1.0/24, 1 successors, FD is 5376
   via 10.12.1.2 (5376/5120), GigabitEthernet0/3
   via 10.14.1.4 (7680/5120), GigabitEthernet0/2
P 10.4.4.0/24, 1 successors, FD is 3328
   via 10.13.1.3 (3328/3072), GigabitEthernet0/1
   via 10.14.1.4 (5376/2816), GigabitEthernet0/2
```

Figure 2-3 EIGRP Topology Output

Examine the 10.4.4.0/24 prefix and notice that R1 calculates an FD of 3328 for the successor route. The successor (upstream router) advertises the successor route with an RD of 3072. The second path entry has a metric of 5376 and has an RD of 2816. Because 2816 is less than 3328, the second entry passes the feasibility condition, which means the second entry is classified as the feasible successor for the 10.4.4.0/24 prefix.

The 10.4.4.0/24 route is passive (P), which means the topology is stable. During a topology change, routes go into an active (A) state when computing a new path.

EIGRP Neighbors

Unlike a number of routing protocols—such as Routing Information Protocol (RIP), Open Shortest Path First (OSPF), and Intermediate System-to-Intermediate System (IS-IS)—EIGRP does not rely on periodic advertisement of all the network prefixes in an autonomous
system. EIGRP neighbors exchange the entire routing table when forming an adjacency, and they advertise incremental updates only as topology changes occur within a network. The neighbor adjacency table is vital for tracking neighbor status and the updates sent to each neighbor.

Inter-Router Communication

EIGRP uses five different packet types to communicate with other routers, as shown in Table 2-3. EIGRP uses IP protocol number (88) and uses multicast packets where possible; it uses unicast packets when necessary. Communication between routers is done with multicast using the group address 224.0.0.10 or the MAC address 01:00:5e:00:00:0a when possible.

Table 2-3 EIGRP Packet Types

<table>
<thead>
<tr>
<th>Opcode Value</th>
<th>Packet Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Update</td>
<td>Used to transmit routing and reachability information with other EIGRP neighbors</td>
</tr>
<tr>
<td>2</td>
<td>Request</td>
<td>Used to get specific information from one or more neighbors</td>
</tr>
<tr>
<td>3</td>
<td>Query</td>
<td>Sent out to search for another path during convergence</td>
</tr>
<tr>
<td>4</td>
<td>Reply</td>
<td>Sent in response to a query packet</td>
</tr>
<tr>
<td>5</td>
<td>Hello</td>
<td>Used for discovery of EIGRP neighbors and for detecting when a neighbor is no longer available</td>
</tr>
</tbody>
</table>

NOTE EIGRP uses multicast packets to reduce bandwidth consumed on a link; that is, it uses one packet to reach multiple devices. While broadcast packets are used in the same general way, all nodes on a network segment process broadcast packets, whereas with multicast, only nodes listening for the particular multicast group process the multicast packets.

EIGRP uses Reliable Transport Protocol (RTP) to ensure that packets are delivered in order and to ensure that routers receive specific packets. A sequence number is included in each EIGRP packet. The sequence value zero does not require a response from the receiving EIGRP router; all other values require an ACK packet that includes the original sequence number.

Ensuring that packets are received makes the transport method reliable. All update, query, and reply packets are deemed reliable, and hello and ACK packets do not require acknowledgment and could be unreliable.

If the originating router does not receive an ACK packet from the neighbor before the retransmit timeout expires, it notifies the non-acknowledging router to stop processing its multicast packets. The originating router sends all traffic by unicast until the neighbor is fully synchronized. Upon complete synchronization, the originating router notifies the destination router to start processing multicast packets again. All unicast packets require acknowledgment. EIGRP retries up to 16 times for each packet that requires confirmation, and it resets the neighbor relationship when the neighbor reaches the retry limit of 16.
In the context of EIGRP, do not confuse RTP with the Real-Time Transport Protocol (RTP), which is used for carrying audio or video over an IP network. EIGRP’s RTP allows for confirmation of packets while supporting multicast. Other protocols that require reliable connection-oriented communication, such as TCP, cannot use multicast addressing.

Forming EIGRP Neighbors

Unlike other distance vector routing protocols, EIGRP requires a neighbor relationship to form before routes are processed and added to the Routing Information Base (RIB). Upon hearing an EIGRP hello packet, a router attempts to become the neighbor of the other router. The following parameters must match for the two routers to become neighbors:

- Metric formula K values
- Primary subnet matches
- Autonomous system number (ASN) matches
- Authentication parameters

Figure 2-4 shows the process EIGRP uses for forming neighbor adjacencies.
EIGRP Configuration Modes

This section describes the two methods of EIGRP configuration: classic mode and named mode.

Classic Configuration Mode

With classic EIGRP configuration mode, most of the configuration takes place in the EIGRP process, but some settings are configured under the interface configuration submode. This can add complexity for deployment and troubleshooting as users must scroll back and forth between the EIGRP process and individual network interfaces. Some of the settings that are set individually are hello advertisement interval, split-horizon, authentication, and summary route advertisements.

Classic configuration requires the initialization of the routing process with the global configuration command `router eigrp as-number` to identify the ASN and initialize the EIGRP process. The second step is to identify the network interfaces with the command `network ip-address [wildcard-mask]`. The `network` statement is explained in the following sections.

EIGRP Named Mode

EIGRP named mode configuration was released to overcome some of the difficulties network engineers have with classic EIGRP autonomous system configuration, including scattered configurations and unclear scope of commands.

EIGRP named configuration provides the following benefits:

- All the EIGRP configuration occurs in one location.
- It supports current EIGRP features and future developments.
- It supports multiple address families (including virtual routing and forwarding [VRF] instances). EIGRP named configuration is also known as multi-address family configuration mode.
- Commands are clear in terms of the scope of their configuration.

EIGRP named mode provides a hierarchical configuration and stores settings in three subsections:

- **Address Family**: This submode contains settings that are relevant to the global EIGRP AS operations, such as selection of network interfaces, EIGRP K values, logging settings, and stub settings.

- **Interface**: This submode contains settings that are relevant to the interface, such as hello advertisement interval, split-horizon, authentication, and summary route advertisements. In actuality, there are two methods of the EIGRP interface section's configuration. Commands can be assigned to a specific interface or to a default interface, in which case those settings are placed on all EIGRP-enabled interfaces. If there is a conflict between the default interface and a specific interface, the specific interface takes priority over the default interface.
Chapter 2: EIGRP

- **Topology**: This submode contains settings regarding the EIGRP topology database and how routes are presented to the router’s RIB. This section also contains route redistribution and administrative distance settings.

EIGRP named configuration makes it possible to run multiple instances under the same EIGRP process. The process for enabling EIGRP interfaces on a specific instance is as follows:

Step 1. Initialize the EIGRP process by using the command `router eigrp process-name`. (If a number is used for `process-name`, the number does not correlate to the autonomous system number.)

Step 2. Initialize the EIGRP instance for the appropriate address family with the command `address-family {IPv4 | IPv6} {unicast | vrf vrf-name} autonomous-system as-number`.

Step 3. Enable EIGRP on interfaces by using the command `network network wildcard-mask`.

EIGRP Network Statement

Both configuration modes use a `network` statement to identify the interfaces that EIGRP will use. The `network` statement uses a wildcard mask, which allows the configuration to be as specific or ambiguous as necessary.

NOTE The two styles of EIGRP configuration are independent. Using the configuration options from classic EIGRP autonomous system configuration does not modify settings on a router running EIGRP named configuration.

The syntax for the `network` statement, which exists under the EIGRP process, is `network ip-address [wildcard-mask]`. The optional `wildcard-mask` can be omitted to enable interfaces that fall within the classful boundaries for that `network` statement.

A common misconception is that the `network` statement adds prefixes to the EIGRP topology table. In reality, the `network` statement identifies the interface to enable EIGRP on, and it adds the interface’s connected network to the EIGRP topology table. EIGRP then advertises the topology table to other routers in the EIGRP autonomous system.

EIGRP does not add an interface’s secondary connected network to the topology table. For secondary connected networks to be installed in the EIGRP routing table, they must be redistributed into the EIGRP process. Chapter 16, “Route Redistribution,” provides additional coverage of route redistribution.

To help illustrate the concept of the wildcard mask, Table 2-4 provides a set of IP addresses and interfaces for a router. The following examples provide configurations to match specific scenarios.
<table>
<thead>
<tr>
<th>Router Interface</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet 0/0</td>
<td>10.0.0.10/24</td>
</tr>
<tr>
<td>Gigabit Ethernet 0/1</td>
<td>10.10.10.10/24</td>
</tr>
<tr>
<td>Gigabit Ethernet 0/2</td>
<td>192.0.0.10/24</td>
</tr>
<tr>
<td>Gigabit Ethernet 0/3</td>
<td>192.10.0.10/24</td>
</tr>
</tbody>
</table>

The configuration in Example 2-1 enables EIGRP only on interfaces that explicitly match the IP addresses in Table 2-4.

Example 2-1
EIGRP Configuration with Explicit IP Addresses

```bash
router eigrp 1
    network 10.0.0.10 0.0.0.0
    network 10.0.10.10 0.0.0.0
    network 192.0.0.10 0.0.0.0
    network 192.10.0.10 0.0.0.0
```

Example 2-2 shows the EIGRP configuration using `network` statements that match the subnets used in Table 2-4. Setting the last octet of the IP address to 0 and changing the wildcard mask to 255 cause the `network` statements to match all IP addresses within the /24 network range.

Example 2-2
EIGRP Configuration with an Explicit Subnet

```bash
router eigrp 1
    network 10.0.0.0 0.0.0.255
    network 10.0.10.0 0.0.0.255
    network 192.0.0.0 0.0.0.255
    network 192.10.0.0 0.0.0.255
```

The following snippet shows the EIGRP configuration using `network` statements for interfaces that are within the 10.0.0.0/8 or 192.0.0.0/8 network ranges:

```bash
router eigrp 1
    network 10.0.0.0 255.255.255.255
    network 192.0.0.0 255.255.255.255
```

The following snippet shows the configuration to enable all interfaces with EIGRP:

```bash
router eigrp 1
    network 0.0.0.0 255.255.255.255
```

NOTE
A key topic with wildcard `network` statements is that large ranges simplify configuration; however, they may possibly enable EIGRP on interfaces where not intended.
Sample Topology and Configuration

Figure 2-5 shows a sample topology for demonstrating EIGRP configuration in classic mode for R1 and named mode for R2.

R1 and R2 enable EIGRP on all of their interfaces. R1 configures EIGRP using multiple specific network interface addresses, and R2 enables EIGRP on all network interfaces with one command. Example 2-3 provides the configuration that is applied to R1 and R2.

Example 2-3 Sample EIGRP Configuration

<table>
<thead>
<tr>
<th>R1 (Classic Configuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 192.168.1.1 255.255.255.255</td>
</tr>
<tr>
<td>!</td>
</tr>
<tr>
<td>interface GigabitEthernet0/1</td>
</tr>
<tr>
<td>ip address 10.12.1.1 255.255.255.0</td>
</tr>
<tr>
<td>!</td>
</tr>
<tr>
<td>interface GigabitEthernet0/2</td>
</tr>
<tr>
<td>ip address 10.11.1.1 255.255.255.0</td>
</tr>
<tr>
<td>!</td>
</tr>
<tr>
<td>router eigrp 100</td>
</tr>
<tr>
<td>network 10.11.1.0 0.0.0.0</td>
</tr>
<tr>
<td>network 10.12.1.0 0.0.0.0</td>
</tr>
<tr>
<td>network 192.168.1.0 0.0.0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R2 (Named Mode Configuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 192.168.2.2 255.255.255.255</td>
</tr>
<tr>
<td>!</td>
</tr>
<tr>
<td>interface GigabitEthernet0/1</td>
</tr>
<tr>
<td>ip address 10.12.1.2 255.255.255.0</td>
</tr>
<tr>
<td>!</td>
</tr>
<tr>
<td>interface GigabitEthernet0/2</td>
</tr>
<tr>
<td>ip address 10.22.2.2 255.255.255.0</td>
</tr>
<tr>
<td>!</td>
</tr>
<tr>
<td>router eigrp EIGRP-NAMED</td>
</tr>
<tr>
<td>address-family ipv4 unicast autonomous-system 100</td>
</tr>
<tr>
<td>network 0.0.0.0 255.255.255.255</td>
</tr>
</tbody>
</table>
As mentioned earlier, EIGRP named mode has three configuration submodes. The configuration in Example 2-3 uses only the EIGRP address-family submode section, which uses the `network` statement. The EIGRP topology base submode is created automatically with the command `topology base` and exited with the command `exit-af-topology`. Settings for the topology submode are listed between those two commands.

Example 2-4 demonstrates the slight difference in how the configuration is stored on the router between EIGRP classic and named mode configurations.

Example 2-4 Comparison of EIGRP Configuration Mode Structures

```
R1# show run | section router eigrp
router eigrp 100
network 10.11.11.1 0.0.0.0
network 10.12.1.1 0.0.0.0
network 192.168.1.1 0.0.0.0

R2# show run | section router eigrp
router eigrp EIGRP-NAMED
!
address-family ipv4 unicast autonomous-system 100
!
topology base
exit-af-topology
network 0.0.0.0
exit-address-family
```

NOTE The EIGRP interface submode configurations contain the command `af-interface interface-id` or `af-interface default`, with any specific commands listed immediately. The EIGRP interface submode configuration is exited with the command `exit-af-interface`. This is demonstrated later in this chapter.

Confirming Interfaces

Upon configuring EIGRP, it is a good practice to verify that only the intended interfaces are running EIGRP. The command `show ip eigrp interfaces [[interface-id [detail] | detail]]` shows active EIGRP interfaces. Appending the optional `detail` keyword provides additional information, such as authentication, EIGRP timers, split horizon, and various packet counts.

Example 2-5 demonstrates R1's non-detailed EIGRP interface and R2's detailed information for the Gi0/1 interface.

Example 2-5 Verifying EIGRP Interfaces

```
R1# show ip eigrp interfaces
EIGRP-IPv4 Interfaces for AS(100)

<table>
<thead>
<tr>
<th>Xmit Queue</th>
<th>PeerQ</th>
<th>Mean</th>
<th>Pacing Time</th>
<th>Multicast</th>
<th>Pending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Peers</td>
<td>Un/Reliable</td>
<td>Un/Reliable</td>
<td>SRTT</td>
<td>Un/Reliable</td>
</tr>
<tr>
<td>Gi0/2</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
<td>0</td>
<td>0/0</td>
</tr>
</tbody>
</table>
```
Table 2-5 provides a brief explanation to the key fields shown with the EIGRP interfaces.

Table 2-5 EIGRP Interface Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interfaces running EIGRP.</td>
</tr>
<tr>
<td>Peers</td>
<td>Number of peers detected on the interface.</td>
</tr>
<tr>
<td>Xmt Queue Un/Reliable</td>
<td>Number of unreliable/reliable packets remaining in the transmit queue. The value zero is an indication of a stable network.</td>
</tr>
<tr>
<td>Mean SRTT</td>
<td>Average time for a packet to be sent to a neighbor and a reply from that neighbor to be received, in milliseconds.</td>
</tr>
<tr>
<td>Multicast Flow Timer</td>
<td>Maximum time (seconds) that the router sent multicast packets.</td>
</tr>
<tr>
<td>Pending Routes</td>
<td>Number of routes in the transmit queue that need to be sent.</td>
</tr>
</tbody>
</table>

Verifying EIGRP Neighbor Adjacencies

Each EIGRP process maintains a table of neighbors to ensure that they are alive and processing updates properly. If EIGRP didn't keep track of neighbor states, an autonomous system could contain incorrect data and could potentially route traffic improperly. EIGRP must form a neighbor relationship before a router advertises update packets containing network prefixes.

The command `show ip eigrp neighbors [interface-id]` displays the EIGRP neighbors for a router. Example 2-6 shows the EIGRP neighbor information obtained using this command.
Example 2-6 EIGRP Neighbor Confirmation

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
<th>Hold Uptime</th>
<th>SRTT (ms)</th>
<th>RTO</th>
<th>Q</th>
<th>Seq Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.12.1.2</td>
<td>Gi0/1</td>
<td>13 00:18:31</td>
<td>10</td>
<td>100</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2-6 provides a brief explanation of the key fields shown in Example 2-6.

Table 2-6 EIGRP Neighbor Columns

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>IP address of the EIGRP neighbor</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface the neighbor was detected on</td>
</tr>
<tr>
<td>Holdtime</td>
<td>Time left to receive a packet from this neighbor to ensure that it is still alive</td>
</tr>
<tr>
<td>SRTT</td>
<td>Time for a packet to be sent to a neighbor and a reply to be received from that neighbor, in milliseconds</td>
</tr>
<tr>
<td>RTO</td>
<td>Timeout for retransmission (waiting for ACK)</td>
</tr>
<tr>
<td>Q Cnt</td>
<td>Number of packets (update/query/reply) in queue for sending</td>
</tr>
<tr>
<td>Seq Num</td>
<td>Sequence number that was last received from this router</td>
</tr>
</tbody>
</table>

Displaying Installed EIGRP Routes

You can see EIGRP routes that are installed into the RIB by using the command `show ip route eigrp`. EIGRP routes that originate within the autonomous system have an administrative distance (AD) of 90 and are indicated in the routing table with a D. Routes that originate from outside the autonomous system are external EIGRP routes. External EIGRP routes have an AD of 170 and are indicated in the routing table with D EX. Placing external EIGRP routes into the RIB with a higher AD acts as a loop-prevention mechanism.

Example 2-7 displays the EIGRP routes from the sample topology in Figure 2-5. The metric for the selected route is the second number in brackets.

Example 2-7 EIGRP Routes for R1 and R2

```text
R1 # show ip route eigrp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1/2 - IS-IS level-1/2
I - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHOP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Table 2-6:...
```
Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
D 10.22.22.0/24 [90/3072] via 10.12.1.2, 00:19:25, GigabitEthernet0/1
D 192.168.2.0/32 is subnetted, 1 subnets
D 192.168.2.2 [90/2848] via 10.12.1.2, 00:19:25, GigabitEthernet0/1

R2# show ip route eigrp
! Output omitted for brevity
Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks
D 10.11.11.0/24 [90/15360] via 10.12.1.1, 00:20:34, GigabitEthernet0/1
D 192.168.1.0/32 is subnetted, 1 subnets
D 192.168.1.1 [90/2570240] via 10.12.1.1, 00:20:34, GigabitEthernet0/1

NOTE The metrics for R2’s routes are different from the metrics from R1’s routes. This is because R1’s classic EIGRP mode uses classic metrics, and R2’s named mode uses wide metrics by default. This topic is explained in depth in the “Path Metric Calculation” section, later in this chapter.

Router ID

The router ID (RID) is a 32-bit number that uniquely identifies an EIGRP router and is used as a loop-prevention mechanism. The RID can be set dynamically, which is the default, or manually.

The algorithm for dynamically choosing the EIGRP RID uses the highest IPv4 address of any up loopback interfaces. If there are not any up loopback interfaces, the highest IPv4 address of any active up physical interfaces becomes the RID when the EIGRP process initializes.

IPv4 addresses are commonly used for the RID because they are 32 bits and are maintained in dotted-decimal format. You use the command `eigrp router-id router-id` to set the RID, as demonstrated in Example 2-8, for both classic and named mode configurations.

Example 2-8 Static Configuration of EIGRP Router ID

R1(config)# router eigrp 100
R1(config-router)# eigrp router-id 192.168.1.1

R2(config)# router eigrp EIGRP-NAMED
R2(config-router)# address-family ipv4 unicast autonomous-system 100
R2(config-router-af)# eigrp router-id 192.168.2.2
Passive Interfaces

Some network topologies must advertise a network segment into EIGRP but need to prevent neighbors from forming adjacencies with other routers on that segment. This might be the case, for example, when advertising access layer networks in a campus topology. In such a scenario, you need to put the EIGRP interface in a passive state. Passive EIGRP interfaces do not send out or process EIGRP hellos, which prevents EIGRP from forming adjacencies on those interfaces.

To configure an EIGRP interface as passive, you use the command `passive-interface interface-id` under the EIGRP process for classic configuration. Another option is to configure all interfaces as passive by default with the command `passive-interface default` and then use the command `no passive-interface interface-id` to allow an interface to process EIGRP packets, preempting the global `passive interface` default configuration.

Example 2-9 demonstrates making R1's Gi0/2 interface passive and also the alternative option of making all interfaces passive but setting Gi0/1 as non-passive.

Example 2-9 Passive EIGRP Interfaces for Classic Configuration

```plaintext
R1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)# router eigrp 100
R1(config-router)# passive-interface gi0/2
```

```plaintext
R1(config-router)# passive-interface default
```

```plaintext
04:22:52.031: %DUAL-5-NBRCHANGE: EIGRP-IPv4 100: Neighbor 10.12.1.2 (GigabitEthernet0/1) is down: interface passive
```

```plaintext
R1(config-router)# no passive-interface gi0/1
```

```plaintext
*May 10 04:22:56.179: %DUAL-5-NBRCHANGE: EIGRP-IPv4 100: Neighbor 10.12.1.2 (GigabitEthernet0/1) is up: new adjacency
```

For a named mode configuration, you place the `passive-interface` state on `af-interface default` for all EIGRP interfaces or on a specific interface with the `af-interface interface-id` section. Example 2-10 shows how to set the Gi0/2 interface as passive while allowing the Gi0/1 interface to be active, using both configuration strategies.

Example 2-10 Passive EIGRP Interfaces for Named Mode Configuration

```plaintext
R2# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)# router eigrp EIGRP-NAMED
R2(config-router)# address-family ipv4 unicast autonomous-system 100
R2(config-router-af)# af-interface gi0/2
R2(config-router-af)# passive-interface gi0/2
```

```plaintext
R2(config-router-af)# passive-interface
```

```plaintext
R2(config-router-af)# address-family ipv4 unicast autonomous-system 100
```
Example 2-11 shows what the named mode configuration looks like with some settings (that is, `passive-interface` and `no passive-interface`) placed under the `af-interface default` and `af-interface interface-id` settings.

Example 2-11 Viewing the EIGRP Interface Settings with Named Mode

```
R2# show run | section router eigrp
router eigrp EIGRP-NAMED
  !
  address-family ipv4 unicast autonomous-system 100
  !
  af-interface default
   passive-interface
   exit-af-interface
  !
  af-interface GigabitEthernet0/1
   no passive-interface
   exit-af-interface
  !
  topology base
  exit-af-topology
  network 0.0.0.0
  exit-address-family
```

A passive interface does not appear in the output of the command `show ip eigrp interfaces` even though it was enabled. Connected networks for passive interfaces are still added to the EIGRP topology table so that they are advertised to neighbors.

Example 2-12 shows that the Gi0/2 interface on R1 no longer appears; compare this to Example 2-5, where it does exist.

Example 2-12 `show ip eigrp interfaces` Output

```
R1# show ip eigrp interfaces
EIGRP-IPv4 Interfaces for AS(100)

+----------------+----------------+-----------------+-----------------+----------------+-----------------+-----------------+----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
<table>
<thead>
<tr>
<th>Interface</th>
<th>Peers</th>
<th>Xmit Queue</th>
<th>PeerQ</th>
<th>Un/Reliable</th>
<th>Mean</th>
<th>Facing Time</th>
<th>Multicast</th>
<th>Pending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/1</td>
<td>1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>9</td>
<td>0/0</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>
+----------------+-------+------------+-------+-------------+------|-------------|-----------|---------|
```
To accelerate troubleshooting of passive interfaces, as well as other settings, use the command `show ip protocols`, which provides a lot of valuable information about all the routing protocols. With EIGRP, it displays the EIGRP process identifier, the ASN, K values that are used for path calculation, RID, neighbors, AD settings, and all the passive interfaces.

Example 2-13 provides sample output for both classic and named mode instances on R1 and R2.

Example 2-13 show ip protocols Output

```
R1# show ip protocols
! Output omitted for brevity
Routing Protocol is "eigrp 100"
   Outgoing update filter list for all interfaces is not set
   Incoming update filter list for all interfaces is not set
   Default networks flagged in outgoing updates
   Default networks accepted from incoming updates
   EIGRP-IPv4 Protocol for AS(100)
      Metric weight K1=1, K2=0, K3=1, K4=0, K5=0
      Soft SIA disabled
      NSF-aware route hold timer is 240
      Router-ID: 192.168.1.1
      Topology : 0 (base)
      Active Timer: 3 min
      Distance: internal 90 external 170
      Maximum path: 4
      Maximum hopcount 100
      Maximum metric variance 1

      Automatic Summarization: disabled
      Maximum path: 4
      Routing for Networks:
      10.11.11.1/32
      10.12.1.1/32
      192.168.1.1/32
      Passive Interface(s):
      GigabitEthernet0/2
      Loopback0
      Routing Information Sources:
      Gateway         Distance      Last Update
      10.12.1.2             90      00:21:35
      Distance: internal 90 external 170

R2# show ip protocols
! Output omitted for brevity
Routing Protocol is "eigrp 100"
```
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Default networks flagged in outgoing updates
Default networks accepted from incoming updates

EIGRP-IPv4 VR(EIGRP-NAMED) Address-Family Protocol for AS(100)
- Metric weight K1=1, K2=0, K3=1, K4=0, K5=0 K6=0
- Metric rib-scale 128
- Metric version 64bit
- Soft SIA disabled
- NSF-aware route hold timer is 240
- **Router-ID: 192.168.2.2**
- **Topology : 0 (base)**
 - Active Timer: 3 min
 - Distance: internal 90 external 170
 - Maximum path: 4
 - Maximum hopcount 100
 - Maximum metric variance 1
 - Total Prefix Count: 5
 - Total Redist Count: 0

- **Automatic Summarization: disabled**
- **Maximum path: 4**
- **Routing for Networks:**
 - 0.0.0.0

- **Passive Interface(s):**
 - GigabitEthernet0/2
 - Loopback0

- **Routing Information Sources:**

<table>
<thead>
<tr>
<th>Gateway</th>
<th>Distance</th>
<th>Last Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.12.1.1</td>
<td>90</td>
<td>00:24:26</td>
</tr>
</tbody>
</table>

- Distance: internal 90 external 170

Key Topic

Authentication is a mechanism for ensuring that only authorized routers are eligible to become EIGRP neighbors. It is possible for someone to add a router to a network and introduce invalid routes accidentally or maliciously. Authentication prevents such scenarios from happening. A precomputed password hash is included with all EIGRP packets, and the receiving router decrypts the hash. If the passwords do not match for a packet, the router discards the packet.

EIGRP encrypts the password by using Message Digest 5 (MD5) authentication and the keychain function. The hash consists of the key number and a password. EIGRP authentication encrypts just the password rather than the entire EIGRP packet.
To configure EIGRP authentication, you need to create a keychain and then enable EIGRP authentication on the interface. The following sections explain the steps.

Keychain Configuration

Keychain creation is accomplished with the following steps:

1. **Step 1.** Create the keychain by using the command `key chain key-chain-name`.
2. **Step 2.** Identify the key sequence by using the command `key key-number`, where `key-number` can be anything from 0 to 2147483647.
3. **Step 3.** Specify the preshared password by using the command `key-string password`.

Enabling Authentication on the Interface

When using classic configuration, authentication must be enabled on the interface under the interface configuration submode. The following commands are used in the interface configuration submode:

- `ip authentication key-chain eigrp as-number key-chain-name`
- `ip authentication mode eigrp as-number md5`

The named mode configuration places the configurations under the EIGRP interface submode, under `af-interface default` or `af-interface interface-id`. Named mode configuration supports MD5 or Hashed Message Authentication Code-Secure Hash Algorithm-256 (HMAC-SHA-256) authentication. MD5 authentication involves the following commands:

- `authentication key-chain eigrp key-chain-name`
- `authentication mode md5`

HMAC-SHA-256 authentication involves the command `authentication mode hmac-sha-256 md5 password`.

Example 2-14 demonstrates MD5 configuration on R1 with classic EIGRP configuration and on R2 with named mode configuration. Remember that the hash is computed using the key sequence number and key string, which must match on the two nodes.
Example 2-14 Configuring EIGRP Authentication

R1(config)# key chain EIGRPKEY
R1(config-keychain)# key 2
R1(config-keychain-key)# key-string CISCO
R1(config)# interface gi0/1
R1(config-if)# ip authentication mode eigrp 100 md5
R1(config-if)# ip authentication key-chain eigrp 100 EIGRPKEY

R2(config)# key chain EIGRPKEY
R2(config-keychain)# key 2
R2(config-keychain-key)# key-string CISCO
R2(config-keychain-key)# router eigrp EIGRP-NAMED
R2(config-router)# address-family ipv4 unicast autonomous-system 100
R2(config-router-af)# af-interface default
R2(config-router-af-interface)# authentication mode md5
R2(config-router-af-interface)# authentication key-chain EIGRPKEY

The command `show key chain` provides verification of the keychain. Example 2-15 shows that each key sequence provides the lifetime and password.

Example 2-15 Verifying Keychain Settings

R1# show key chain
Key-chain EIGRPKEY:
 key 2 -- text "CISCO"
 accept lifetime (always valid) - (always valid) [valid now]
 send lifetime (always valid) - (always valid) [valid now]

The EIGRP interface detail view provides verification of EIGRP authentication on a specific interface. Example 2-16 shows detailed EIGRP interface output.

Example 2-16 Verifying EIGRP Authentication

R1# show ip eigrp interface detail
EIGRP-IPv4 Interfaces for AS(100)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Peers</th>
<th>Un/Reliable</th>
<th>Un/Reliable</th>
<th>SRRT</th>
<th>Un/Reliable</th>
<th>Flow Timer</th>
<th>Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/1</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
<td>0</td>
<td>0/0</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

Hello-interval is 5, Hold-time is 15
Split-horizon is enabled
Next xmit serial <none>
Packetized sent/expedited: 10/1
Hello’s sent/expedited: 673/12
Path Metric Calculation

Metric calculation is a critical component for any routing protocol. EIGRP uses multiple factors to calculate the metric for a path. Metric calculation uses bandwidth and delay by default but can include interface load and reliability, too. Figure 2-6 shows the EIGRP classic metric formula.

\[
\text{Metric} = 256 \times \left[\left(\frac{K_1 \times \text{BW} + K_2 \times \text{BW}}{256 - \text{Load}} + K_3 \times \text{Delay} \right) \times \frac{K_5}{K_4 + \text{Reliability}} \right]
\]

Figure 2-6 EIGRP Metric Formula

EIGRP uses K values to define which factors the formula uses and the impact associated with a factor when calculating the metric. A common misconception is that the K values directly apply to bandwidth, load, delay, or reliability; this is not accurate. For example, \(K_1\) and \(K_2\) both reference bandwidth (BW).

BW represents the slowest link in the path, scaled to a 10 Gbps link (10^7). Link speed correlates to the configured interface bandwidth on an interface and is measured in kilobits per second (Kbps). Delay is the total measure of delay in the path, measured in tens of microseconds (\(\mu\)s).

Taking these definitions into consideration, look at the formula for classic EIGRP metrics in Figure 2-7.

\[
\text{Metric} = 256 \times \left[\left(\frac{10^7}{\text{Min. Bandwidth}} + \frac{K_2 \times \text{Min. Bandwidth}}{256 - \text{Load}} + \frac{K_3 \times \text{Total Delay}}{10} \right) \times \frac{K_5}{K_4 + \text{Reliability}} \right]
\]

Figure 2-7 EIGRP Classic Metric Formula with Definitions

NOTE RFC 7868 states that if \(K_2 = 0\), then the reliability quotient is defined to be 1. This is not demonstrated in Figure 2-7 but is shown in the simpler formula in Figure 2-8.

By default, \(K_1\) and \(K_3\) each has a value of 1, and \(K_2\), \(K_4\), and \(K_5\) are all set to 0. Figure 2-8 places default K values into the formula and shows a streamlined version of the formula.

Key Topic The EIGRP update packet includes path attributes associated with each prefix. The EIGRP path attributes can include hop count, cumulative delay, minimum bandwidth link speed, and RD. The attributes are updated each hop along the way, allowing each router to independently identify the shortest path.
Chapter 2: EIGRP

Figure 2-8 *EIGRP Classic Metric Formula with Default K Values*

Figure 2-9 shows the information in the EIGRP update packets for the 10.1.0.0/24 network propagating through the autonomous system. Notice that the hop count increments, minimum bandwidth decreases, total delay increases, and the RD changes with each EIGRP update.

Table 2-7 *Default EIGRP Interface Metrics for Classic Metrics*

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>Link Speed (Kbps)</th>
<th>Delay</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial</td>
<td>64</td>
<td>20,000 µs</td>
<td>40,512,000</td>
</tr>
<tr>
<td>T1</td>
<td>1544</td>
<td>20,000 µs</td>
<td>2,170,031</td>
</tr>
<tr>
<td>Ethernet</td>
<td>10,000</td>
<td>1000 µs</td>
<td>281,600</td>
</tr>
<tr>
<td>FastEthernet</td>
<td>100,000</td>
<td>100 µs</td>
<td>28,160</td>
</tr>
<tr>
<td>GigabitEthernet</td>
<td>1,000,000</td>
<td>10 µs</td>
<td>2816</td>
</tr>
<tr>
<td>TenGigabitEthernet</td>
<td>10,000,000</td>
<td>10 µs</td>
<td>512</td>
</tr>
</tbody>
</table>

Using the topology from Figure 2-2, the metrics from R1 and R2 for the 10.4.4.0/24 network are calculated using the formula in Figure 2-10. The link speed for both routers is 1 Gbps,
and the total delay is 30 µs (10 µs for the 10.4.4.0/24 link, 10 µs for the 10.34.1.0/24 link, and 10 µs for the 10.13.1.0/24 link).

\[
\text{Metric} = 256 \times \left(\frac{10^7}{1,000,000} + \frac{30}{10} \right) = 3,328
\]

Figure 2-10 Calculating EIGRP Metrics with Default K Values

If you are unsure of the EIGRP metrics, you can query the parameters for the formula directly from EIGRP’s topology table by using the command `show ip eigrp topology network/prefix-length`.

Example 2-17 shows R1’s topology table output for the 10.4.4.0/24 network. Notice that the output includes the successor route, any feasible successor paths, and the EIGRP state for the prefix. Each path contains the EIGRP attributes minimum bandwidth, total delay, interface reliability, load, and hop count.

Example 2-17 EIGRP Topology for a Specific Prefix

```
R1# show ip eigrp topology 10.4.4.0/24
! Output omitted for brevity
EIGRP-IPv4 Topology Entry for AS(100)/ID(10.14.1.1) for 10.4.4.0/24
  State is Passive, Query origin flag is 1, 1 Successor(s), FD is 3328
  Descriptor Blocks:
    10.13.1.3 (GigabitEthernet0/1), from 10.13.1.3, Send flag is 0x0
      Composite metric is (3328/3072), route is Internal
      Vector metric:
        Minimum bandwidth is 1000000 Kbit
        Total delay is 30 microseconds
        Reliability is 252/255
        Load is 1/255
        Minimum MTU is 1500
        Hop count is 2
        Originating router is 10.34.1.4
  10.14.1.4 (GigabitEthernet0/2), from 10.14.1.4, Send flag is 0x0
    Composite metric is (5376/2816), route is Internal
    Vector metric:
      Minimum bandwidth is 1000000 Kbit
      Total delay is 110 microseconds
      Reliability is 255/255
      Load is 1/255
      Minimum MTU is 1500
      Hop count is 1
      Originating router is 10.34.1.4
```

Wide Metrics

The original EIGRP specifications measured delay in 10-microsecond (µs) units and bandwidth in kilobits per second, which did not scale well with higher-speed interfaces. In
Table 2-7, notice that the delay is the same for the GigabitEthernet and TenGigabitEthernet interfaces.

Example 2-18 provides some metric calculations for common LAN interface speeds. Notice that there is not a differentiation between an 11 Gbps interface and a 20 Gbps interface. The composite metric stays at 256, despite the different bandwidth rates.

Example 2-18 Metric Calculation for Common LAN Interface Speeds

<table>
<thead>
<tr>
<th>Interface</th>
<th>Scaled Bandwidth</th>
<th>Scaled Delay</th>
<th>Composite Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet</td>
<td>$10,000,000 / 1,000,000$</td>
<td>$10 / 10$</td>
<td>$10 + 1 * 256 = 2816$</td>
</tr>
<tr>
<td>10 GigabitEthernet</td>
<td>$10,000,000 / 10,000,000$</td>
<td>$10 / 10$</td>
<td>$1 + 1 * 256 = 512$</td>
</tr>
<tr>
<td>11 GigabitEthernet</td>
<td>$10,000,000 / 11,000,000$</td>
<td>$10 / 10$</td>
<td>$0 + 1 * 256 = 256$</td>
</tr>
<tr>
<td>20 GigabitEthernet</td>
<td>$10,000,000 / 20,000,000$</td>
<td>$10 / 10$</td>
<td>$0 + 1 * 256 = 256$</td>
</tr>
</tbody>
</table>

EIGRP includes support for a second set of metrics, known as *wide metrics*, that addresses the issue of scalability with higher-capacity interfaces. Just as EIGRP scaled by 256 to accommodate IGRP, EIGRP wide metrics scale by 65,536 to accommodate higher-speed links. This provides support for interface speeds up to 655 Tbps ($65,536 \times 10^7$) without any scalability issues.

Figure 2-11 shows the explicit EIGRP wide metrics formula. Notice that an additional K value (K_f) is included that adds an extended attribute to measure jitter, energy, or other future attributes.

Key Topic

\[
\text{Wide Metric} = 65,536 \times \left[\left(K_f \times \frac{\text{BW}}{256} + K_2 \times \frac{\text{Latency}}{256} + K_3 \times \text{Extended} \right) \times \frac{K_5}{K_4 + \text{Reliability}} \right]
\]

Figure 2-11 EIGRP Wide Metrics Formula

Latency is the total interface delay measured in picoseconds (10^{12}) instead of in microseconds (10^6). Figure 2-12 shows an updated formula that takes into account the conversions in latency and scalability.
The interface delay varies from router to router, depending on the following logic:

- If the interface’s delay was specifically set, the value is converted to picoseconds. Interface delay is always configured in tens of microseconds and is multiplied by 10^7 for picosecond conversion.
- If the interface’s bandwidth was specifically set, the interface delay is configured using the classic default delay, converted to picoseconds. The configured bandwidth is not considered when determining the interface delay. If delay was configured, this step is ignored.
- If the interface supports speeds of 1 Gbps or less and does not contain bandwidth or delay configuration, the delay is the classic default delay, converted to picoseconds.
- If the interface supports speeds over 1 Gbps and does not contain bandwidth or delay configuration, the interface delay is calculated by 10^13/interface bandwidth.

The EIGRP classic metrics exist only with EIGRP classic configuration, and EIGRP wide metrics exist only in EIGRP named mode. The metric style used by a router is identified with the command `show ip protocols`. If a K_6 metric is present, the router is using wide-style metrics.

Example 2-19 shows the commands to verify the operational mode of EIGRP on R1 and R2. It shows that R1 does not have a K_6 metric and is using EIGRP classic metrics. R2 has a K_6 metric and is using EIGRP wide metrics.

Example 2-19 Verifying EIGRP Metric Style

| R1# show ip protocols | include AS|K |
|----------------------|-----------|
| EIGRP-IPv4 Protocol for AS(100) |
| Metric weight K1=1, K2=0, K3=1, K4=0, K5=0 |
| R2# show ip protocols | include AS|K |
|----------------------|-----------|
| EIGRP-IPv4 VR(EIGRP-NAMED) Address-Family Protocol for AS(100) |
| Metric weight K1=1, K2=0, K3=1, K4=0, K5=0 **K6=0** |

Metric Backward Compatibility

EIGRP wide metrics were designed with backward compatibility in mind. EIGRP wide metrics set K_1 and K_3 to a value of 1 and set K_2, K_4, K_5, and K_6 to 0, which allows backward compatibility because the K value metrics match with classic metrics. As long as K_1 through K_5 are the same and K_6 is not set, the two metric styles allow adjacency between routers.

EIGRP is able to detect when peering with a router is using classic metrics, and it *unscales* the metric by using the formula in Figure 2-13.
Unscaled Bandwidth = \(\frac{\text{EIGRP Bandwidth} \cdot \text{EIGRP Classic Scale}}{\text{Scaled Bandwidth}} \)

Figure 2-13 Formula for Calculating Unscaled EIGRP Metrics

This conversion results in loss of clarity if routes pass through a mixture of classic metric and wide metric devices. An end result of this intended behavior is that paths learned from wide metric peers always look better than paths learned from classic peers. Using a mixture of classic metric and wide metric devices could lead to suboptimal routing, so it is best to keep all devices operating with the same metric style.

Interface Delay Settings

If you do not remember the delay values from Table 2-7, you can query the values dynamically by using the command `show interface interface-id`. The output displays the EIGRP interface delay, in microseconds, after the DLY field. Example 2-20 provides sample output of the command on R1 and R2. The output shows that both interfaces have a delay of 10 µs.

Example 2-20 Verifying EIGRP Interface Delay

```
R1# show interfaces gigabitEthernet 0/1 | i DLY
MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
```

```
R2# show interfaces gigabitEthernet 0/1 | i DLY
MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
```

EIGRP delay is set on an interface-by-interface basis, allowing for manipulation of traffic patterns flowing through a specific interface on a router. Delay is configured with the interface parameter command `delay tens-of-microseconds` under the interface.

Example 2-21 demonstrates the modification of the delay on R1 to 100, increasing the delay to 1000 µs on the link between R1 and R2. To ensure consistent routing, modify the delay on R2's Gi0/1 interface as well. Afterward, you can verify the change.

Example 2-21 Configuring Interface Delay

```
R1# configure terminal
R1(config)# interface gi0/1
R1(config-if)# delay 100
R1(config-if)# do show interface Gigabit0/1 | i DLY
MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 1000 usec,
```

NOTE Bandwidth modification with the interface parameter command `bandwidth bandwidth` has a similar effect on the metric calculation formula but can impact other routing protocols, such as OSPF, at the same time. Modifying the interface delay only impacts EIGRP.
Custom K Values

If the default metric calculations are insufficient, you can change them to modify the path metric formula. K values for the path metric formula are set with the command `metric weights TOS K1 K2 K3 K4 K5 [K6]` under the EIGRP process. TOS always has a value of 0, and K6 is used for named mode configurations.

To ensure consistent routing logic in an EIGRP autonomous system, the K values must match between EIGRP neighbors to form an adjacency and exchange routes. The K values are included as part of the EIGRP hello packet. The K values are displayed with the `show ip protocols` command, as demonstrated with the sample topology in Example 2-13. Notice that both routers are using the default K values, with R1 using classic metrics and R2 using wide metrics.

Load Balancing

EIGRP allows multiple successor routes (with the same metric) to be installed into the RIB. Installing multiple paths into the RIB for the same prefix is called *equal-cost multipathing* (ECMP). At the time of this writing, the default maximum ECMP setting is four routes. You change the default ECMP setting with the command `maximum-paths maximum-paths` under the EIGRP process in classic mode and under the topology base submode in named mode.

Example 2-22 shows the configuration for changing the maximum paths on R1 and R2 so that classic and named mode configurations are visible.

Example 2-22 Changing the EIGRP Maximum Paths

```
R1# show run | section router eigrp
router eigrp 100
maximum-paths 6
network 0.0.0.0

R2# show run | section router eigrp
router eigrp EIGRP-NAMED
  !
  address-family ipv4 unicast autonomous-system 100
  !
  topology base
  maximum-paths 6
  exit-af-topology
  network 0.0.0.0
  eigrp router-id 192.168.2.2
  exit-address-family
```

EIGRP supports unequal-cost load balancing, which allows installation of both successor routes and feasible successors into the EIGRP RIB. To use unequal-cost load balancing with EIGRP, change EIGRP's *variance multiplier*. The EIGRP *variance value* is the feasible distance (FD) for a route multiplied by the EIGRP variance multiplier. Any feasible successor's FD with a metric below the EIGRP variance value is installed into the RIB. EIGRP installs...
multiple routes where the FD for the routes is less than the EIGRP variance value up to the maximum number of ECMP routes, as discussed earlier.

Dividing the feasible successor metric by the successor route metric provides the variance multiplier. The variance multiplier is a whole number, and any remainders should always round up.

Using the topology shown in Figure 2-2 and output from the EIGRP topology table in Figure 2-3, the minimum EIGRP variance multiplier can be calculated so that the direct path from R1 to R4 can be installed into the RIB. The FD for the successor route is 3328, and the FD for the feasible successor is 5376. The formula provides a value of about 1.6 and is always rounded up to the nearest whole number to provide an EIGRP variance multiplier of 2. Figure 2-14 shows the calculation.

\[
\frac{\text{Feasible Successor FD}}{\text{Successor Route FD}} \leq \| \text{Variance Multiplier} \| \\
\frac{5376}{3328} \leq 1.6 \\
2 = \text{Variance Multiplier}
\]

Figure 2-14 EIGRP Variance Multiplier Formula

The command `variance multiplier` configures the variance multiplier under the EIGRP process for classic configuration and under the topology base submode in named mode. Example 2-23 provides a sample configuration for each configuration mode.

Example 2-23 Configuring EIGRP Variance

<table>
<thead>
<tr>
<th>R1 (Classic Configuration)</th>
<th>R1 (Named Mode Configuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>router eigrp 100</td>
<td>router eigrp EIGRP-NAMED</td>
</tr>
<tr>
<td>variance 2</td>
<td>!</td>
</tr>
<tr>
<td>network 0.0.0.0</td>
<td>address-family ipv4 unicast autonomous-system 100</td>
</tr>
</tbody>
</table>

! topology base

<table>
<thead>
<tr>
<th>variance 2</th>
<th>exit-af-topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit-address-family</td>
<td>network 0.0.0.0</td>
</tr>
</tbody>
</table>
Example 2-24 shows how to verify that both paths were installed into the RIB. Notice that the metrics for the paths are different. One path metric is 3328, and the other path metric is 5376. To see the traffic load-balancing ratios, you use the command `show ip route network`, as demonstrated in the second output. The load-balancing traffic share is highlighted.

Example 2-24 Verifying Unequal-Cost Load Balancing

```
R1# show ip route eigrp | begin Gateway
Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 10 subnets, 2 masks
D 10.4.4.0/24 [90/5376] via 10.14.1.4, 00:00:03, GigabitEthernet0/2
    [90/3328] via 10.13.1.3, 00:00:03, GigabitEthernet0/1

R1# show ip route 10.4.4.0
Routing entry for 10.4.4.0/24
Known via "eigrp 100", distance 90, metric 3328, type internal
Redistributing via eigrp 100
Last update from 10.13.1.3 on GigabitEthernet0/1, 00:00:35 ago
Routing Descriptor Blocks:
  * 10.14.1.4, from 10.14.1.4, 00:00:35 ago, via GigabitEthernet0/2
    Route metric is 5376, traffic share count is 149
    Total delay is 110 microseconds, minimum bandwidth is 1000000 Kbit
    Reliability 255/255, minimum MTU 1500 bytes
    Loading 1/255, Hops 1

  10.13.1.3, from 10.13.1.3, 00:00:35 ago, via GigabitEthernet0/1
    Route metric is 3328, traffic share count is 240
    Total delay is 30 microseconds, minimum bandwidth is 1000000 Kbit
    Reliability 254/255, minimum MTU 1500 bytes
    Loading 1/255, Hops 2
```

References in This Chapter

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the Introduction, you have a couple choices for exam preparation: the exercises here, Chapter 24, “Final Preparation,” and the exam simulation questions in the Pearson Test Prep software.
Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topic icon in the outer margin of the page. Table 2-8 lists these key topics and the page number on which each is found.

Table 2-8 Key Topics

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paragraph</td>
<td>EIGRP terminology</td>
<td>76</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Topology table</td>
<td>76</td>
</tr>
<tr>
<td>Table 2-3</td>
<td>EIGRP packet types</td>
<td>78</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Forming EIGRP neighbors</td>
<td>79</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Classic configuration mode</td>
<td>80</td>
</tr>
<tr>
<td>Paragraph</td>
<td>EIGRP named mode</td>
<td>80</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Passive interfaces</td>
<td>88</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Authentication</td>
<td>91</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Path metric calculation</td>
<td>94</td>
</tr>
<tr>
<td>Paragraph</td>
<td>EIGRP attribute propagation</td>
<td>94</td>
</tr>
<tr>
<td>Figure 2-11</td>
<td>EIGRP wide metrics formula</td>
<td>97</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Custom K values</td>
<td>100</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Unequal-cost load balancing</td>
<td>100</td>
</tr>
</tbody>
</table>

Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

- autonomous system (AS)
- successor route
- successor
- feasible distance
- reported distance
- feasibility condition
- feasible successor
- topology table
- classic EIGRP configuration mode
- EIGRP named mode configuration
- passive interface
- K values
- wide metrics
- variance value

Use the Command Reference to Check Your Memory

The ENARSI 300-410 exam focuses on the practical, hands-on skills that networking professionals use. Therefore, you should be able to identify the commands needed to configure, verify, and troubleshoot the topics covered in this chapter.

This section includes the most important configuration and verification commands covered in this chapter. It might not be necessary to memorize the complete syntax of every command, but you should be able to remember the basic keywords that are needed.

To test your memory of the commands in Table 2-9, go to the companion website and download Appendix B, “Command Reference Exercises.” Fill in the missing commands in the tables based on each command description. You can check your work by downloading Appendix C, “Command Reference Exercise Answer Key,” from the companion website.
Table 2-9 Command Reference

<table>
<thead>
<tr>
<th>Task</th>
<th>Command Syntax</th>
</tr>
</thead>
</table>
| Initialize EIGRP in a classic configuration. | `router eigrp as-number`
| | `network network wildcard-mask` |
| Initialize EIGRP in a named mode configuration. | `router eigrp process-name`
| | `address-family [ipv4 | ipv6] [unicast | vrf vrf-name] autonomous-system as-number`
| | `network network wildcard-mask` |
| Define the EIGRP router ID. | `eigrp router-id router-id` |
| Configure an EIGRP-enabled interface to prevent neighbor adjacencies. | Classic: (EIGRP process)
| | `passive-interface interface-id`
| | Named mode: `af-interface {default | interface-id}`
| | `passive-interface` |
| Configure a keychain for EIGRP MD5 authentication. | `key chain key-chain-name`
| | `key key-number`
| | `key-string password` |
| Configure MD5 authentication for an EIGRP interface. | Classic: (EIGRP process)
| | `ip authentication key-chain eigrp as-number`
| | `key-chain-name`
| | `ip authentication mode eigrp as-number md5`
| | Named mode: `af-interface {default | interface-id}`
| | `authentication key-chain eigrp key-chain-name`
| | `authentication mode md5` |
| Configure SHA authentication for EIGRP named mode interfaces. | Named mode: `af-interface {default | interface-id}`
| | `authentication mode hmac-sha-256 password` | | |
| Modify the interface delay for an interface. | `delay tens-of-microseconds` |
| Modify the EIGRP K values. | `metric weights TOS K_1 K_2 K_3 K_4 K_5 [K_6]` |
| Modify the default number of EIGRP maximum paths that can be installed into the RIB. | `maximum-paths maximum-paths` |
| Modify the EIGRP variance multiplier for unequal-cost load balancing.| `variance multiplier` |
| Display the EIGRP-enabled interfaces. | `show ip eigrp interface [interface-id | detail | detail]` |
| Display the EIGRP topology table. | `show ip eigrp topology [all-links]` |
| Display the configured EIGRP keychains and passwords. | `show key chain` |
| Display the IP routing protocol information configured on the router.| `show ip protocols` |
Symbols

* (asterisk), 497, 503, 507
> (best-path symbol), 454
[] (brackets), 497, 500–501
^ (caret), 497, 499–500
[^] (caret in brackets), 497, 501
$ (dollar sign), 497, 500
- (hyphen), 497, 501
() (parentheses), 497, 502
. (period), 497, 502
| (pipe), 497, 502
+ (plus sign), 497, 502
? (question mark), 497, 503
_ (underscore), 497, 498–499

2-Way state
OSPF (Open Shortest Path First), 230
OSPFv2 (Open Shortest Path First version 2), 318

A

AAA (authentication, authorization, and accounting)
definition of, 866. See also authentication
troubleshooting
 authentication, 871–873
 authorization, 873–874
 verification of configuration, 869–871

aaa authentication login VTY_ACCESS
 group RADIUSMETHOD local
 command, 870
aaa authorization console command, 874
aaa authorization exec command, 873
aaa group server radius
 RADIUSMETHOD command, 870
aaa group server tacacs+
 TACACSMETHOD command, 870
aaa new-model command, 869, 871
ABRs (area border routers), 227, 264, 395, 695–696
acacs server TACSRV1 command, 870
access control lists. See ACLs (access control lists)
access-class command, 848
access-list command, 623
accounting, 869. See also AAA
 (authentication, authorization, and accounting)
Accumulated Interior Gateway Protocol (AIGP), 539–540, 588
ACEs (access control entries), 622
Acknowledgment packets (EIGRPv6), 191
ACL-ALLOW, 495
ACLs (access control lists)
 AS_Path, 503–505
 BGP (Border Gateway Protocol), 566–567
 components of, 622
CoPP (Control Plane Policing), 876–878
extended, 623–625
IPv4
 importance of, 845
 packet filtering with, 848
 reading, 846–847
 time-based, 848–850
 trouble ticket, 845, 855–857
IPv6
 importance of, 850
 packet filtering with, 851–852
 reading, 850–851
 trouble ticket, 858–861
MPLS (Multiprotocol Label Switching), 754
named ACL configuration mode, 857
OSPFv2 (Open Shortest Path First version 2), 327–328
standard, 622–623
troubleshooting, 150–151, 201
Active state (BGP), 434
AD (administrative distance), 38–41
BGP (Border Gateway Protocol), 154, 448, 580–582
data structures and routing table, 39
EIGRP (Enhanced Interior Gateway Routing Protocol), 86, 682–683
OSPF (Open Shortest Path First), 238
sources of routing information, 39–41
Adaptive Security Appliance (ASA), 822
additive keyword, 515
address command, 828
address families, troubleshooting
 BGP (Border Gateway Protocol), 430, 593
 OSPFv3 (Open Shortest Path First version 3)
default-information originate command, 422
IPv4
 sample configuration, 408–410
 show ip protocols command, 410–411
 show ip route ospfv3 command, 418
 show ipv6 protocols command, 410–411
 show ipv6 route command, 420
 show ipv6 route ospf command, 418
 show ospfv3 command, 411–413
 show ospfv3 database command, 415–418
 show ospfv3 interface brief command, 413
 show ospfv3 interface command, 413–414
 show ospfv3 ipv6 command, 421
 show ospfv3 neighbor command, 414
 show run | section router ospfv3 command, 422
 trouble ticket, 419–423
address family identifier (AFI), 430
Address Resolution Protocol. See ARP (Address Resolution Protocol)
address-family [ipv4 | ipv6] [unicast | multicast] command, 81, 374, 442, 728
address-family [ipv4 | ipv6] vrf command, 741, 746
address-family command, 436, 730, 809
address-family ipv6 autonomous-system command, 192
address-family ipv6 command, 813
addressing
BGP (Border Gateway Protocol)
 aggregate addresses, 482–488
 aggregation with suppression, 485–488
 atomic aggregate attribute, 488–489
VRF-Lite configuration, 746
forwarding addresses, 667–670
IPv4. See IPv4 (Internet Protocol version 4)
IPv6. See IPv6 (Internet Protocol version 6)
loopback addresses, 451–453
MAC (media access control), 43–44
OSPF (Open Shortest Path First), 745–746
VPNv4, 757–759
adjacency tables, 35
Adj-RIB-in table, 440
Adj-RIB-out table, 440, 447
administrative distance. See AD (administrative distance)
ADV Router field (OSPF LSDB), 265
Advanced Encryption Standard (AES), 831
ADVERTISE message, 29, 30
advertisement tracking, 346–348
Advertising Router field
 Type 3 LSA (summary LSA), 275
 Type 5 LSA (external LSA), 279
 Type 7 LSA (NSSA external LSA), 283
AES (Advanced Encryption Standard), 831
AFI (address family identifier), 430
af-interface command, 88, 89, 125, 128, 192
af-interface default command, 84, 89, 92, 108, 125, 128, 192
AFs. See address families, troubleshooting
AGE field (OSPF LSDB), 265
aggregate addresses (BGP), 482–488
aggregate-address command, 482, 485, 489–490, 492, 573
aggregation, route. See route aggregation
AH (Authentication Header), 381
AI Analytics, Cisco DNA Center Assurance, 937–938
AIGP (Accumulated Interior Gateway Protocol), 539–540, 588
all keyword, 456
AllDRouters, 228, 373
AllSPFRouters, 228, 373
always-compare-med feature, 549
any keyword, 829
Any Transport over MPLS (AToM), 751
APIPA (Automatic Private IP Addressing) address, 15–16
area area-id authentication message-digest command, 255
area area-id nssa [default-information-originate] command, 290
area area-id nssa no-summary command, 293
area area-id range command, 301
area area-id stub command, 286, 409
area area-id stub no-summary command, 288
area area-id virtual-link command, 307–308
area border routers (ABRs), 227, 264, 395, 695–696
area flooding scope, 384
area ID, 227
area numbers, mismatched, 322–323
area range command, 349
area types, mismatched, 323–324
areas, OSPF, 226–227
ARP (Address Resolution Protocol), 248
cache, 32–33, 43–46
proxy, 44–46
AS (Sub-AS) peering, 550
AS confederations
configuration, 462–465
definition of, 462
topology, 462
AS field (BGP), 438
AS_CONFED_SEQUENCE, 464, 540
AS_Path filtering, 430, 497–505
AS_Path ACLs, 503–505
AS_Path length, 540–542
overview of, 497
regular expressions
asterisk (*), 497, 503
BGP table for regex queries, 498
brackets ([]), 497, 500–501
caret (^), 497, 499–500
caret in brackets (^[)], 497, 501
dollar sign ($), 497, 500
hyphen (-), 497, 501
parentheses (), 497, 502
period (.), 497, 502
pipe (|), 497, 502
plus sign (+), 497, 502
question mark (?), 497, 503
regex reference topology, 497
table of, 497–503
underscore (_), 497, 498–499
AS_SET, 489–491
ASA (Adaptive Security Appliance), 822
ASBRs (autonomous system boundary routers), 240, 277, 279–281, 347, 372, 395, 678–679
AS-external LSAs (link-state advertisements), 373
ASNs (autonomous number systems), 428–429, 591
ASs (autonomous systems), 428
assessing exam readiness, C25.0122-C25.0136
asterisk (*), 497, 503, 507
ATM, 247
AToM (Any Transport over MPLS), 751
atomic aggregate attribute, 488–489
Attempt state (OSPF), 230, 318
authentication. See also AAA
(authentication, authorization, and accounting)
BGP (Border Gateway Protocol), 570
certificate-based, 824
definition of, 869
HMAC-SHA-256 (Hashed Message Authentication Code-Secure Hash Algorithm-256), 92
IP NHRP, 794–795
MD5 (Message Digest 5), 91, 255–256, 326, 570
NHRP (Next Hop Resolution Protocol), 776
null, 326
origin, 824
OSPF (Open Shortest Path First), 253–254, 255–257
OSPFv2 (Open Shortest Path First version 2), 326–327
autonomous system boundary routers (ASBRs), 240, 277, 347, 372, 395, 678–679

autonomous system flooding scope, 384

autonomous system numbers, 142–143, 191, 198

autonomous systems (ASs), 75, 428, 526

autosummarization, 165–168

auto-summary command, 118

B

backbone area, 227, 273

backup designated routers. See BDRs (backup designated routers)

backward compatibility, EIGRP (Enhanced Interior Gateway Routing Protocol) metrics, 98–99

bandwidth

EIGRP (Enhanced Interior Gateway Routing Protocol), 125–126

path metric calculation and, 94–96

bandwidth command, 781, 783

bandwidth-percent command, 125

BDRs (backup designated routers)

OSPF (Open Shortest Path First)
concept of, 242–243

elections, 244–245

placement, 245–246

OSPFv2 (Open Shortest Path First version 2), 341–344

OSPFv3 (Open Shortest Path First version 3), 373

best-path algorithm, BGP, 87

AS_Path length, 540–542

AIGP (Accumulated Interior Gateway Protocol), 539–540

OSPFv3 (Open Shortest Path First version 3), 381–383

plaintext, 255, 326

pre-shared key, 824, 827–836

complete IPsec DMVPN configuration, 834

DPD (Dead Peer Protection), 834

IKEv2, 828–830, 838–839

IPsec packet replay protection, 833–834

IPsec profiles, 832–833

IPsec transform set, 831–832

NAT (Network Address Translation) keepalives, 834

tunnel interface encryption, 833

SHA (Secure Hash Algorithm), 831

troubleshooting, 873–874

verification of, 836–838

authentication headers, 381, 824

authentication local {pre-share | rsa-sig} command, 829

authentication mode hmac-sha-256 command, 92

authentication remote {pre-share | rsa-sig} command, 829

authorization, 869–871. See also AAA (authentication, authorization, and accounting)

authorization exec default command, 874

autoconfiguration, MPLS (Multiprotocol Label Switching), 755

auto-cost reference-bandwidth command, 295

Automatic Private IP Addressing (APIPA) address, 15–16

automatic route summarization (EIGRP), 118

autonomous number systems (ASNs), 428–429
best-path decision-making process, 588–591

eBGP versus iBGP, 550

local preference, 532–538

 bgp default local-preference command, 532
 BGP edge evaluation of multiple paths, 536–538
 BGP tables after local preference modification, 534–535
 configuration, 533–534
 final BGP processing state, 538
 set local-preference command, 532
 topology, 533

locally originated route, 538

lowest IGP metric, 551

lowest neighbor address, 552

MED (multi-exit discriminator)

 always-compare-med feature, 549
 BGP deterministic MED, 549–550
 configuration, 542–545
 missing MED behavior, 548–549

minimum cluster list length, 552

oldest (established) BGP session, 548

origin type, 542–545

overview of, 527–528

path attribute classifications, 528

 RID (router ID), 551

weight, 528–532

bestpath keyword, 531

best-path symbol (>, 454

best-path-reason keyword, 531

BFD (Bidirectional Forwarding Detection), 927–928

bfd interface command, 928

bfd interval command, 928

BGP (Border Gateway Protocol), 553

 AS Path attribute, 430

address families, 430, 593

ASNs (autonomous number systems), 428–429, 591

ASs (autonomous systems), 428

best-path algorithm

 AS_Path length, 540–542
 AIGP (Accumulated Interior Gateway Protocol), 539–540
 eBGP over iBGP, 550
 local preference, 532–538
 local route origination, 538
 lowest IGP metric, 551
 lowest neighbor address, 552
 MED (multi-exit discriminator), 545–550
 minimum cluster list length, 552
 oldest (established) BGP session, 548

Origin type, 542–545

overview of, 527–528

path attribute classifications, 528

 RID (router ID), 551

weight, 528–532

communities

 conditionally matching, 512–514
 enabling, 508
 extended, 508
 formats, 508
 local AS, 511–512
 new format, 508
 No_Advertise, 509–510
 No_Export, 510–511
 No_Export_SubConfed, 511–512

overview of, 507–508

private, 514–516
configuration
 example of, 436–437
 required components, 435
 route advertisement, 440–443
 route receiving and viewing, 443–448
 simple eBGP topology, 436–437
 steps for, 435–436
configuration scalability
 IOS XE peer groups, 517–518
 IOS XE peer templates, 518–519
connection collisions, 567
definition of, 426
eBGP (external BGP), 448
 AD (administrative distance), 580–582
 iBGP (internal BGP) compared to, 453–454
 next-hop manipulation, 456–457
 route verification, 580–582
 topologies, 454–455
ECMP (equal-cost multipathing), 553
FSM (finite-state machine), 432
iBGP (internal BGP), 429, 448–453
 AD (administrative distance), 448, 580–582
 benefits of, 448–450
 confederations, 462–465
 definition of, 448
 eBGP (external BGP) compared to, 453–454
 full mesh requirement, 450
 next-hop manipulation, 456–457
 peering using loopback addresses, 451–453
 prefix advertisement behavior, 449
 route reflectors, 457–461
split horizon, 579–580
topologies, 454–455
inter-router communication, 430–435
messages, 431–432
neighbor states, 432–435, 563
single- and multi-hop sessions, 430–431
loop prevention, 430
maximum prefix, 516–517
MP-BGP (Multiprotocol BGP)
 IPv6 configuration, 466–471
 IPv6 over IPv4, 471–475
topology, 465–466, 593
network selection, 623–625
PAs (path attributes), 429
path selection
 best-path decision-making process, 588–591
debug commands, 592–593
private autonomous systems numbers, 591
port numbers, 567
prefix attributes, 446
redistribution
 connected networks, 657
 nontransitive nature of, 651–652
overview of, 650–651
RIB (Routing Information Base) and, 653–655
seed metrics, 655–656, 688
sequential protocol redistribution, 653
source-specific behaviors, 657–658
trouble ticket: users in BGP autonomous system unable to access IPv4 resources, 717–721
troubleshooting, 699–702
route filtering and manipulation

AS_Path, 497–505
AS_Path ACLs, 503–505
BGP route processing logic, 493–494
clearing of BGP connections, 507
distribute list, 495–496, 586–587
overview of, 493–495
prefix list, 496
receiving and viewing, 443–448
reference BGP table, 494–495
regular expressions, 497–503
RIB (Routing Information Base) failures, verifying, 582
route advertisement, 440–443
route maps, 505–507
route refresh, 507
route summarization
aggregate addresses, 482–488
aggregation with suppression, 485–488
atomic aggregate attribute, 488–489
IPv6 summarization, 492–493
overview of, 482
route aggregation with AS_SET, 489–491
sessions
definition of, 429
summary fields, 438
verification of, 437–440
split-horizon rule, 579–580
synchronization, 450
tables and table fields, 440, 445
timers, 572–573
troubleshooting. See BGP (Border Gateway Protocol) troubleshooting

VRF-Lite configuration, 746

BGP (Border Gateway Protocol) troubleshooting

benefits of, 556
BGP for IPv6, 593–598
MP-BGP configuration, 594–598
MP-BGP topology, 593–594
MP-BGP (Multiprotocol BGP), 593–598
configuration, 594–598
MP-BGP topology, 593–594
neighbor adjacencies
ACLs (access control lists), 566–567
BGP packets sourced from wrong IP address, 564–566
incorrect neighbor statement, 564
interface is down, 561
Layer 3 connectivity is broken, 561–562
misconfigured peer groups, 570–571
mismatched authentication, 570
neighbor lacks route to local router, 563
neighbor verification, 559–560
overview of, 559–561
path to neighbor is through default route, 562–563
timers, 572–573
TTL (time to live) expiration, 568–570
path selection
best-path decision-making process, 588–591
debug commands, 592–593
private autonomous systems numbers, 591
routes

examining in routing table, 573–574
missing or bad network mask command, 575–576
next-hop router not reachable, 577–579
route filtering, 582–587
split-horizon rule, 579–580
trouble ticket: link between R1 and R3 not forwarding traffic to BGP AS 65501, 598–604
connectivity, verifying, 598–599
neighbor adjacency verification, 602–603
route confirmation, 603–604
route examination, 599–602
route verification, 602
trouble ticket: MP-BGP default route not being learned, 615–617
trouble ticket: traffic out of autonomous system flowing through R3 and across backup link, 610–614
trouble ticket: users in 10.1.1.0/26 and 10.1.1.64/26 unable to access resources at 10.1.5.5, 604–610
advertised routes, 607
BGP configuration on R1, 608
BGP filters, 607
BGP table, examining, 605–606
connectivity, verifying, 604
neighbor verification, 606
prefix lists, 607–609
route advertisement, 609–610
bgp always-compare-med command, 549
bgp bestpath med missing-as-worst command, 548
bgp confederation identifier command, 462
bgp confederation peers command, 464
bgp default local-preference command, 532
bgp deterministic-med command, 550
BGP MED attribute, 464
bgp redistribute-internal command, 658, 671, 699
bgp router-id command, 435
Bidirectional Forwarding Detection (BFD), 927–928
binding table, IPv6 First-Hop Security, 885
Border Gateway Protocol. See BGP (Border Gateway Protocol)
boundary routers, 678, 687
brackets ([]), 497, 500–501
“brain dumps” 952
branch routers. See spoke routers
Branch site, OSPFv3 trouble tickets
Branch receiving inter-area routes other than default route, 401–404
Branch users unable to access IPv6-enabled resources on Internet, 419–423
Branch users unable to access resources outside Branch office, 404–408
topology, 401
broadcast networks, 246, 247, 331

cache, NHRP (Next Hop Resolution Protocol), 787–791
examples of, 789–791
NHRP mapping entries, 788
NHRP message flags, 788–789
Cache format record command, 924
caret (^), 497, 499–500
caret in brackets ([^]), 497, 501
CE (customer edge) routers, 756
CEF (Cisco Express Forwarding), 34–35, 927
certificate-based authentication, 824
Checksum field (OSPF LSDB), 265
Cisco Adaptive Security Appliance (ASA), 822
Cisco Certification Roadmap, 955
Cisco dCloud, 952
Cisco Devnet, 952
Cisco DNA Center Assurance, 929–940
 accessing, 929
 AI Analytics, 937–938
 Client Health page, 933–934
 Command Runner, 938–940
 Device 360 and Client 360 pages, 933–937
 Issues and Events page, 938–939
 Network Health page, 931–932
 Network Time Travel, 937
 Overall Health page, 930–931
 overview of, 929
 Path Trace, 936–937
Cisco Express Forwarding (CEF), 34–35, 927
Cisco IOS IP SLA troubleshooting, 910–917
 debug ip sla trace 2 command, 916–917
 IP SLA icmp-echo probe configuration, 911
 IP SLA UDP-JITTER probe configuration, 911–912
 show ip sla application command, 912–913
 show ip sla configuration command, 913–914
 show ip sla responder command, 915–916
 show ip sla statistics command, 914–915
 source and responder topology, 910–911
Cisco Learning Network, 953
Cisco nondisclosure agreement (NDA), 948
Cisco VIRL (Virtual Internet Routing Lab), 952
class maps, 878–880
classic configuration mode (EIGRP), 80
classic EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 191–192
classic metric formula, EIGRP (Enhanced Interior Gateway Routing Protocol), 94–96
classless networks, troubleshooting, 708–711
clear bgp command, 507
clear bgp ipv4 unicast * soft out command, 609, 614
clear ip bgp command, 507
clear ip dhcp binding * command, 17
clear ip dhcp conflict * command, 17
clear ip nhrp command, 803
clear ip ospf process command, 330
clear line command, 895
Client 360 page, Cisco DNA Center Assurance, 933–937
Client Health page, Cisco DNA Center Assurance, 933–934
clients, DHCP (Dynamic Host Configuration Protocol) for IPv4, 14–15
Cluster List attribute (BGP), 461
cluster list length, 552
cluster-id attribute, 552
C-network, 755
collectors, NetFlow, 919
command af-interface command, 84
Command Runner, Cisco DNA Center Assurance, 938–940
communication
BGP (Border Gateway Protocol), 430–435
messages, 431–432
neighbor states, 432–435, 563
single- and multi-hop sessions, 430–431
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 191
OSPF (Open Shortest Path First), 228
OSPFV3 (Open Shortest Path First version 3), 373–374
communities, BGP (Border Gateway Protocol)
conditionally matching, 512–514
enabling, 508
extended, 508
formats, 508
local AS, 511–512
new format, 508
No_Advertise, 509–510
No_Exprot, 510–511
No_Export_SubConfed, 511–512
overview of, 507–508
private, 514–516
COMMUNITY-CHECK, 514
complex matching, 631–632
component routes
definition of, 114–115
route summarization
 automatic, 118
bierarchical nature of, 114
interface-specific, 114–116
metrics, 117
summary discard routes, 116–117
conditional forwarding
overview of, 634–635
PBR (policy-based routing)
 configuration, 635–637
 local, 637–639
trouble tickets: traffic routing from 10.1.4.0/24 to 10.1.10/24
topology, 639
trouble ticket 15–1, 639–643
trouble ticket 15–2, 643–645
trouble ticket 15–3, 645–646
conditional matching
ACLs (access control lists). See ACLs (access control lists) BGP (Border Gateway Protocol) communities, 512–514
prefix matching
 prefix lists, 627–628
 prefix match specifications, 625–627
route maps
 complex matching, 631–632
 components of, 628–629
 conditional match options, 629–631
 continue keyword, 634
 multiple conditional match conditions, 631
 optional actions, 632–634
 processing order, 628
confederation identifier, 462
confederations, iBGP (internal BGP), 462
configuration, 462–465
configuration. See also troubleshooting
AAA (authentication, authorization, and accounting)
 authentication, 871–873
 authorization, 873–874
 troubleshooting, 869–874
ACLs (access control lists). See ACLs (access control lists)
BFD (Bidirectional Forwarding Detection), 927–928
BGP (Border Gateway Protocol). See BGP (Border Gateway Protocol)
Cisco DNA Center Assurance
 accessing, 929
 Network Health page, 931–932
 Overall Health page, 930–931
 overview of, 929
Cisco IOS IP SLA
 debug ip sla trace 2 command, 916–917
 IP SLA icmp-echo probe configuration, 911–912
 IP SLA UDP-JITTER probe configuration, 911–912
 show ip sla application command, 912–913
 show ip sla configuration command, 913–914
 show ip sla responder command, 915–916
 show ip sla statistics command, 914–915
 source and responder topology, 911
class maps, 878–880
DMVPN (Dynamic Multipoint Virtual Private Network) tunnels
 front door VRF (FVRF), 809–810
on hub routers, 780–781
IP NHRP authentication, 794–795
overview of, 779–780
for phase 3 DMVPN (multipoint), 792–793
on spoke routers, 782–784
EIGRP (Enhanced Interior Gateway Routing Protocol)
 AD (administrative distance), 41, 154, 682–683
 authentication, 88–91
 classic configuration mode, 80
 failure detection and timers, 108–114
 installed routes, displaying, 86–87
 interfaces, 84–85
 IP bandwidth percentage, 125–126
 named configuration mode, 80–81
 neighbor adjacencies, 85–86
 network statement, 81–82, 144–145
 passive interfaces, 88–91
 RID (router ID), 87–88
 route filtering, 129–132
 route summarization, 114–118
 sample topology and configuration, 83–84
 split horizon, 126–129
 stub feature, 158–160
 stub routers, 119–121
 stub site functions, 121–125
 traffic steering with offset lists, 132–135
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6)
classic mode, 191–192
named mode, 192
verification of, 193–195
Flexible NetFlow, 923–927
GRE (Generic Routing Encapsulation) tunnels, 769–774
path verification, 774
routing table with GRE tunnel, 773–774
routing table without GRE tunnel, 770
sample configuration, 771–772
steps for, 770–771
topology, 769–770
tunnel parameters, 773
IPv4
AD (administrative distance), 38–41
APIPA (Automatic Private IP Addressing) address, 15–16
DHCP (Dynamic Host Configuration Protocol), 11–18
overview of, 2–3, 7
packet-forwarding process, 31–38
static routes, 42–46, 61–64
structure of, 7–10
subnets, 10–11
verification of, 9–10
IPv6
AD (administrative distance), 38–41
DHCPv6 messages, 29–30
DHCPv6 relay agents, 30–31
tunnel parameters, 773
example of, 19
IEEE EUI-64 standard, 20–22
IPv6 over IPv4, 471–475
IPv6 DMVPN (Dynamic Multipoint Virtual Private Network)
correlation of IPv4-to-IPv6 transport protocol commands, 812
display commands, 813
DMVPN tunnel technique and, 812
IPv6 DMVPN verification, 816–817
IPv6-over-IPv6 sample configuration, 813–815
tunneled protocol commands, 811–812
NetFlow, 919–923
Object Tracking, 917–919
OSPF (Open Shortest Path First)
confirmation of interfaces, 235–237
default route advertisement, 241–242
discontiguous networks, 305–306
distribute lists, 683–684
external OSPF routes, 240–241
installed routes, displaying, 238–239
interface columns, 237
interface-specific, 233
neighbor adjacencies, 237–238
network statement, 232–233, 234
network types, 246–254
overview of, 232
route tags, 684–686
sample topology and configuration, 233–235
stubby areas, 284–294, 339–340
virtual links, 307–309
OSPF (Open Shortest Path First) route summarization
textual summarization, 303–305
impact on SPF topology calculation, 299–301
inter-area summarization, 301–303
LSA reduction through area segmentation, 298–299
topology example with summarization, 300–301
OSPFv3 (Open Shortest Path First version 3)
address families. See address families, troubleshooting authentication, 381–383
IPv6 addressing, 375–376
IPv6 route summarization, 379–380
link-local forwarding, 383–384
network type, 380–381
process for, 374
topology, 374–375
verification of, 377–378
PBR (policy-based routing), 635–637, 638
policy maps, 880–882
redistribution
BGP topology and configuration, 670–672
commands, 656–657
EIGRP topology and configuration, 658–661
EIGRP-to-EIGRP mutual redistribution, 661–663
OSPF forwarding address, 667–670
OSPF topology and configuration, 663–666
OSPF-to-OSPF mutual redistribution, 666–667
protocol-specific, 656–657
SCP (Secure Copy Protocol), 902–903
SNMP (Simple Network Management Protocol), 906–910
static routes
IPv4, 42–46, 61–64
IPv6, 46–48, 64–66
stubby areas, 339–340
not-so-stubby-areas (NSSAs), 289–292
overview of, 284
stub areas, 284–287
totally not-so-stubby-areas (NSSAs), 292–294
totally stubby areas, 287–289
esyslog, 904–905
VRF-Lite
EIGRP configuration for multiple VRF instances, 741
EIGRP neighbors, 742–743
EIGRP routes in VRF routing table, 743–744
instance creation, 728–730
interface assignment, 730–731
interface IPv4 and IPv6 addresses, 733–734
interface participation in EIGRP processes, 741–742
IPv4 global routing table, 735
IPv4 VRF routing tables, 735–736
MP-BGPv4 address families for multiple VRF instances, 746
OSPFv3 address families for multiple VRF instances, 745–746
overview of, 728
RED VRF instance routing table, 741
route distinguishers, 746–747
route targets, 747
subinterfaces on R1, 732–733
VRF connectivity, 744–745
VRF instances on R1, 733–734
VRF instances on R2, 736–738
VRF instances on R3, 738–740
CONFIRM message, 30
Connect state (BGP), 433–434
connected network redistribution, 657
connection collisions (BGP), 567
ConnectRetry timer, 433
console access, troubleshooting, 893–894
continue keyword, 634
custom K values, EIGRP (Enhanced Interior Gateway Routing Protocol) metrics, 100
data availability, 822
data confidentiality, 822, 824
data integrity, 822, 824
data plane, 35
database description (DBD) packets, 228
database description packet (OSPFv3), 374
dBD (database description) packets, 228
dCloud, 952
dead interval timer, 255
Dead Peer Protection (DPD), 834
debug aaa authentication command, 873
debug aaa protocol local command, 873
debug eigrp packet command, 906
debug eigrp packet hello command, 906
debug eigrp packets command
 authentication, 150
 incorrect network statement, 145
 mismatched autonomous system numbers, 143
 passive interfaces, 146–147
debug ip bgp command, 592, 593
debug ip bgp updates command, 593
debug ip dhcp server events command, 18
debug ip dhcp server packet command, 18
debug ip http client all command, 901
debug ip nat translations command, 906
debug ip ospf adj command, 323, 327
debug ip ospf hello command, 321–322, 324
debug ip policy command, 638–639, 643
debug ip routing command, 592, 681
debug ip scp command, 903
debug ip sla command, 916–917
debug ipv6 ospf hello command, 406
debug ospfv3 command, 418
debug radius authentication command, 873
debugging, See troubleshooting

DECLINE message, 30
DECnet, 769
deep packet inspection (DPI), 754
default route advertisement
 EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 196
 OSPF (Open Shortest Path First), 241–242
 OSPFv2 (Open Shortest Path First version 2) troubleshooting, 353
default-information originate command, 241, 290, 353, 422, 422
default-metric command, 549, 658, 659, 679, 688, 706
delay, path metric calculation and, 94–96, 99–100
deny ipv6 any any log command, 850–851
deny statements, 130
deny tcp any any eq bgp command, 567
designated routers (DRs)
 OSPF (Open Shortest Path First)
 concept of, 242–243
 elections, 244–245
 placement, 245–246
 OSPFv2 (Open Shortest Path First version 2), 341–344
 OSPFv3 (Open Shortest Path First version 3), 373
Destination Guard, 887
destination protocols, 651
destination-specific redistribution behaviors
 EIGRP (Enhanced Interior Gateway Routing Protocol)
 EIGRP-to-EIGRP mutual redistribution, 661–663
topology and configuration, 658–661
OSPF (Open Shortest Path First)
 BGP topology and configuration, 670–672
 OSPF forwarding address, 667–670
 OSPF-to-OSP virtual redistribution, 666–667
topology and configuration, 663–666
Device 360 page, Cisco DNA Center Assurance, 933–937
device LSAs (link-state advertisements), 373
device management troubleshooting
 console access, 893–894
 overview of, 893
 remote transfer, 899–903
 FTP (File Transfer Protocol), 901–902
 HTTP (Hypertext Transfer Protocol), 900–901
 HTTPS (Hypertext Transfer Protocol over Secure Sockets Layer), 900–901
 SCP (Secure Copy Protocol), 902–903
 TFTP (Trivial File Transfer Protocol), 899–900
 vty access, 894–899
 password encryption levels, 898–899
 SSH (Secure Shell), 897–898
 Telnet, 895–897
Devnet, 952
DHCP (Dynamic Host Configuration Protocol) for IPv4, 2
 clients, 14–15
 DHCP-assigned IP addresses, verifying, 15–16
 DORA process, 11–12
 messages, 14
 purpose of, 11
 relay agents, 12–14
 servers, 15
 troubleshooting commands, 17–18
 troubleshooting issues, 16–17
dhcp option (ip address command), 14
DHCPACK message, 14
DHCPDECLINE message, 14
DHCPDISCOVER message, 12, 14, 15–16
DHCPINFORM message, 14
DHCPNAK message, 14
DHCPOFFER message, 12, 14
DHCPRREQUEST message, 12, 14
DHCPv6 (Dynamic Host Configuration Protocol version 6)
 DHCPv6 Guard, 886
 messages, 29–30
 relay agents, 30–31
 stateful, 27–28
 stateless, 28–29
Digital Subscriber Line (DSL), 11–12
Dijkstra’s shortest path first (SPF) algorithm, 225, 294, 314, 392. See also OSPF (Open Shortest Path First)
discard route, 116–117
discontiguous networks
 EIGRP (Enhanced Interior Gateway Routing Protocol), 165–167
 OSPF (Open Shortest Path First), 305–306
 OSPFv2 (Open Shortest Path First version 2), 350–352
DMVPN (Dynamic Multipoint Virtual Private Network) tunnels

- distance bgp command, 683
- distance command, 682, 683
- distance eigrp command, 682–683
- distance ospf command, 683
- distribute list filtering, 495–496, 586–587
- distribute-list command, 129–132
- distribute-list prefix-list command, 201–202
- distribution list filtering (EIGRP), 129–132
- divide-and-conquer method, 31
- DMVPN (Dynamic Multipoint Virtual Private Network) tunnel security. See also DMVPN (Dynamic Multipoint Virtual Private Network) tunnels
 - data availability, 822
 - data confidentiality, 822, 824
 - data integrity, 822, 824
 - ESP modes, 825–827
 - IKEv2 protection, 838–839
 - key management, 824
 - overview of, 821–823
 - perfect forward secrecy, 824
 - pre-shared key authentication, 827–836
 - complete IPsec DMVPN configuration, 834
 - DPD (Dead Peer Protection), 834
 - IKEv2 keyring, 828–829
 - IKEv2 profile, 829–830
 - IPsec packet replay protection, 833–834
 - IPsec profiles, 832–833
 - IPsec transform set, 831–832
 - NAT (Network Address Translation) keepalives, 834
 - tunnel interface encryption, 833
- SAs (security associations), 825
- secure transport, elements of, 821–823
- security protocols, 824
- verification of, 836–838
- DMVPN (Dynamic Multipoint Virtual Private Network) tunnels, 34, 862–863. See also DMVPN (Dynamic Multipoint Virtual Private Network) tunnel security
 - benefits of, 776–777
 - configuration
 - on hub routers, 780–781
 - IP NHRP authentication, 794–795
 - overview of, 779–780
 - for phase 3 DMVPN (multipoint), 792–793
 - on spoke routers, 782–784
 - default-metric command, 766
 - failure detection and high availability, 810–811
 - GRE (Generic Routing Encapsulation) configuration, 769–774
 - definition of, 769
 - mGRE (Multipoint GRE), 769
 - hub redundancy, 811
 - IPv6 DMVPN configuration
 - correlation of IPv4-to-IPv6 transport protocol commands, 812
 - display commands, 813
 - DMVPN tunnel technique and, 812
 - IPv6 DMVPN verification, 816–817
 - IPv6-over-IPv6 sample configuration, 813–815
 - tunneled protocol commands, 811–812
DMVPN (Dynamic Multipoint Virtual Private Network) tunnels

NHRP (Next Hop Resolution Protocol)
 * cache, viewing, 787–791
 * holdtime, 810
 * messages, 774–776
 * NHRP mapping with spoke-to-hub traffic, 798–800
 * NHSs (next-hop servers), 774–776
 * shortcuts, 777
 * timeout, 810–811
 * unique IP NHRP registration, 794–795

overlay networks, 806–810
 definition of, 769
 * front door VRF (FVRF), 808–810
 * outbound interface selection, 808
 * recursive routing problems, 806–807

phases of, 777–778
split horizon and, 128

spoke-to-spoke communication
 * initiation of traffic between spoke routers, 795
 * NHRP mapping with spoke-to-hub traffic, 798–800
 * NHRP routing table manipulation, 800–806
 * spoke-to-spoke tunnel formation, 796–800

tunnel status, viewing, 784–787

DNS lookup, 8
dollar sign ($), 497, 500
DORA process, 11–12

Down state
 * GRE (Generic Routing Encapsulation), 771
 * OSPF (Open Shortest Path First), 230
 * OSPFv2 (Open Shortest Path First version 2), 318
 * DPD (Dead Peer Protection), 834
 * DPI (deep packet inspection), 754
 * DROther, 237
 * DROthers, 237

DRs (designated routers)
 * OSPF (Open Shortest Path First)
 * concept of, 242–243
 * elections, 244–245
 * placement, 245–246
 * OSPFv2 (Open Shortest Path First version 2), 341–344
 * OSPFv3 (Open Shortest Path First version 3), 373

DSL (Digital Subscriber Line), 11–12
duplicate IP addresses, 17
duplicate router IDs, 330, 344–346

Dynamic Host Configuration Protocol (DHCP), 2

Dynamic Multipoint Virtual Private Network. See DMVPN (Dynamic Multipoint Virtual Private Network) tunnels

E

E1 external routes, OSPF (Open Shortest Path First), 297
E2 external routes, OSPF (Open Shortest Path First), 297–298
EAP (Extensible Authentication Protocol), 825
earplugs, 946
eBGP (external BGP), 448, 553. See also BGP (Border Gateway Protocol) troubleshooting
AD (administrative distance), 580–582 in BGP best-path algorithm, 550
iBGP (internal BGP) compared to, 453–454
multipath, 553
next-hop manipulation, 456–457
route verification, 580–582
topologies, 454–455
ECMP (equal-cost multipathing), 298, 553
definition of, 72
DUAL (diffusing update algorithm), 74–75
failure detection and timers, 108–109
configuration, 113–114
convergence, 109–112
hello timer, 108–109
hold timer, 108–109
SIA (stuck in active) queries, 112–114
GRE (Generic Routing Encapsulation)
configuration and, 771–773
hello packets, 108, 180–184
named mode, 771
neighbors, 77–79
forming, 79
inter-router communication, 78–79
packet types, 78
path metric calculation
classic metric formula, 94–96
custom K values, 100
interface delay settings, 99
load balancing, 100–102
metric backward compatibility, 98–99
wide metrics, 96–98
PDMs (protocol-dependent modules), 75
redistribution
classic metric formula, 94–96
custom K values, 100
interface delay settings, 99
load balancing, 100–102
metric backward compatibility, 98–99
wide metrics, 96–98
connected networks, 657
EIGRP-to-EIGRP mutual redistribution, 661–663
nontransitive nature of, 651–652
overview of, 650–651
RIB (Routing Information Base) and, 653–655
EIGRP (Enhanced Interior Gateway Routing Protocol) troubleshooting

- seed metrics, 655–656, 688
- sequential protocol redistribution, 653
- topology and configuration, 658–661
- troubleshooting, 689–694
- reverse routes
 - definition of, 127
 - split horizon, 126–129
- route manipulation
 - definition of, 129
 - route filtering, 129–132
 - traffic steering with offset lists, 132–135
- route summarization
 - automatic, 118
 - hierarchal nature of, 114
 - interface-specific, 114–116
 - metrics, 117
 - summary discard routes, 116–117
- terminology for, 75–76
- topology table, 76–77
- troubleshooting. See EIGRP (Enhanced Interior Gateway Routing Protocol) troubleshooting
- variance value/variance multiplier, 100–102
- VRF-Lite configuration
 - EIGRP configuration for multiple VRF instances, 741
 - EIGRP neighbors, 742–743
 - EIGRP routes in VRF routing table, 743–744
 - interface participation in EIGRP processes, 741–742
- WAN considerations
 - EIGRP stub routers, 119–121
- IP bandwidth percentage, 125–126
- split horizon, 126–129, 161–162
- stub site functions, 121–125

EIGRP (Enhanced Interior Gateway Routing Protocol) troubleshooting

- autosummarization, 165–168
- discontiguous networks, 165–167
- feasible successors, 161–162
- load balancing, 168–169
- neighbor adjacencies
 - ACLs (access control lists), 150–151
 - authentication, 148–150
 - different subnets, 148
 - incorrect network statement, 144–145
 - interface is down, 142
 - mismatched autonomous system numbers, 142–143
 - mismatched K values, 145–146
 - overview of, 141–151
 - passive interface feature, 146–148
 - timers, 151
- routes
 - bad or missing network command, 152–154
 - better source of information, 154–157
 - interface is shut down, 160
 - missing, 151–152
 - route filtering, 157–158
 - split horizon, 161–162
 - stub configuration, 158–160
- trouble tickets: users in 10.1.1.0/24 unable to access resources in 10.1.3.0/24, 169–184
 - trouble ticket 4–1, 169–176
trouble ticket 4–2, 177–180
trouble ticket 4–3, 180–184
trouble tickets: users unable to access resources outside their LAN, 215
eigrp router-id command, 87, 192, 192
eigrp stub command, 120–121, 158, 212–213
eigrp stub-site command, 124
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6)
classic, 191–192
configuration
 classic mode, 191–192
 named mode, 192
 verification of, 193–195
default route advertising, 196
definition of, 188
inter-router communication, 191
IPv6 route summarization, 195–196
named
 configuration, 192
 trouble ticket: users unable to access resources outside their LAN, 213–218
troubleshooting, 204–209
neighbor issues, troubleshooting
 ACLs (access control lists), 201
 interface not participating in routing process, 200
 IPv6 interface status, 198
 mismatched authentication, 199–200
 mismatched autonomous system numbers, 198
 mismatched K values, 198
 neighbor verification, 197–198
 passive interfaces, 198–199
 timers, 200
packet types, 191
route filtering, 197
route troubleshooting, 201–204
 AD (administrative distance) verification, 201
 interface not participating in routing process, 201
 route filtering, 201–202
 split horizon, 203–204
 stub configuration, 202–203
trouble ticket: users unable to access
 Internet, 209–213
 link-local address verification, 211
 neighbor adjacencies, 210–211
 ping command, 209–210
 route verification, 210
trouble ticket: users unable to access resources outside their LAN, 213–218
 configuration modification, 217
 configuration review, 215–217
 EIGRP-learned routes verification, 217
 IPv4 routing tables, 214–215
 learned IPv6 route verification, 211–212
 link-local address verification, 211
 neighbor adjacencies, 210–211
 ping command, 209–210, 213–218
 route filtering, 212–213
 route verification, 210, 213
elections, DR/BDR, 244–245
ENARSI 300–410 exam preparation.
 See exam preparation
ENARSI_BGP_FILTER, 613
ENARSI_IBGP_NEIGHBORS, 613
encapsulating interface, DMVPN (Dynamic Multipoint Virtual Private Network) hub configuration, 780
Encapsulating Security Payload (ESP), 381, 824, 825–827
encapsulation failure, 45
encapsulation overhead for tunnels, 771
encryption. See also IPsec, DMVPN
tunnel protection
AES (Advanced Encryption Standard), 831
IPsec
 authentication, 824
data availability, 822
data confidentiality, 822, 824
data integrity, 822, 824
 elements of, 821–823
 ESP modes, 825–827
IKEv2 protection, 838–839
 key management, 824, 825
 overview of, 821–823
 perfect forward secrecy, 824
 pre-shared key authentication, 827–836
SAs (security associations), 825
 security protocols, 824
SPI (Security Parameter Index), 381–382
 tunnel protection, 827–839
 verification of, 836–838
password encryption levels, 898–899
entropy label, 754
equal-cost multipathing (ECMP), 298, 553
error messages, NHRP (Next Hop Resolution Protocol), 775
ESP (Encapsulating Security Payload), 381, 824, 825–827
Established state (BGP), 435
eui-64 keyword, ipv6 address command, 21–22
EUI-64 standard, 20–22
exam preparation
 assessing exam readiness, C25.0122-C25.0136
 exam updates, 954–956
 exam-day advice, 956-C25.0083
failed attempts
 note-taking after, C25.0068-C25.0083
 study suggestions after, C25.0138-C25.0146
final thoughts on, C25.0163-C25.0165
practice exams
 exam scores, C25.0122-C25.0136
 tips for, C25.0085-C25.0120
pre-exam suggestions, 954–956
resources, 952–953
study tasks, C25.0148-C25.0161
Exchange state
OSPF (Open Shortest Path First), 230
OSPFv2 (Open Shortest Path First version 2), 319
exec command, 894
exec-timeout command, 894
exit-af-interface command, 84
exit-af-topology command, 84
explicit NULL label, 755
ExStart state
OSPF (Open Shortest Path First), 230
OSPFv2 (Open Shortest Path First version 2), 318
extended BGP (Border Gateway Protocol) communities, 508
extended IPv4 ACLs (access control lists), 846–847
Extensible Authentication Protocol (EAP), 825
Exterior Gateway Protocol (EGP), 556
eXternal BGP (Border Gateway Protocol) sessions. See eBGP (external BGP)
external LSAs (link-state advertisements), 277–279
external OSPF (Open Shortest Path First), 240–241
E1 and N1 external routes, 297
E2 and N2 external routes, 297–298
External Route Tag field
 Type 5 LSA (external LSA), 279
 Type 7 LSA (NSSA external LSA), 283
external summarization, OSPF (Open Shortest Path First), 303–305

failed exam attempts
 note-taking after, C25.0068-C25.0083
 study suggestions after, C25.0138-C25.0146
failure detection
 DMVPN (Dynamic Multipoint Virtual Private Network) tunnels, 810–811
 EIGRP (Enhanced Interior Gateway Routing Protocol)
 convergence, 109–112
 hello timer, 108–109
 hold timer, 108–109
 SIA (stuck in active) queries, 112–114
 OSPF (Open Shortest Path First), 254–255
FD (feasible distance), 76, 100–101, 109, 162–165
feasibility conditions, 76
feasible successors, 76, 162–165
FEC (forwarding equivalence class), 749
FIB (Forwarding Information Base), 35
File Transfer Protocol (FTP), 901–902
filtering of routes
 with ACLs (access control lists), 848
 BGP (Border Gateway Protocol), 582–587
 AS_Path, 497–505
 BGP route processing logic, 493–494
 clearing of BGP connections, 507
 distribute list, 495–496, 586–587
 overview of, 493–495
 prefix list, 496
 reference BGP table, 494–495
 regular expressions, 497–503
 route maps, 505–507
 EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 197, 201–202
 OSPFv2 (Open Shortest Path First version 2), 337–339
FILTERROUTES, 519
finite-state machine (FSM), 432
First-Hop Security (IPv6), 885–887
 binding table, 885
definition of, 866
 Destination Guard, 887
 DHCPv6 Guard, 886
 IPv6 snooping, 886
 Prefix Guard, 887
 RA (router advertisement) Guard, 886
 Source Guard, 887
Flexible NetFlow troubleshooting, 923–927
floating static routes, 918–919
flooding
 LSA (link-state advertisement), 264
 OSPF (Open Shortest Path First), 264–265, 277
 OSPFv3 (Open Shortest Path First version 3) configuration, 384–390
flow, definition of, 919
flow cache, 919
flow monitors, 924–927
flow records, 923–924
forward transit NHS record, 775
forwarding address, OSPF (Open Shortest Path First), 667–670
forwarding equivalence class (FEC), 749
Forwarding Information Base (FIB), 35
forwarding process, 31–38. See also conditional forwarding
 basic routing, 31–35
 basic routing topology, 31–32
 troubleshooting, 35–38
 show adjacency detail command, 38
 show ip arp command, 37
 show ip cef command, 37
 show ip cef exact-route command, 37
 show ip nbrp command, 38
 show ip route command, 35–36
Frame Relay, 128, 247–248
FSM (finite-state machine), 432
FTP (File Transfer Protocol), 901–902
full mesh requirement, iBGP (internal BGP), 450
Full state
 OSPF (Open Shortest Path First), 230
OSPFv2 (Open Shortest Path First version 2), 319
FVRF (front door VRF), 808–810. See also VRF (virtual routing and forwarding)
 configuration, 809–810
 definition of, 808
 static routes, 810
Gateway command, 130
global OSPFv3 settings, 395–396
GRE (Generic Routing Encapsulation) tunnels, 766, 826–827
 configuration, 769–774
 path verification, 774
 routing table with GRE tunnel, 773–774
 routing table without GRE tunnel, 770
 sample configuration, 771–772
 steps for, 770–771
 topology, 769–770
 tunnel parameters, 773
 definition of, 769
 mGRE (Multipoint GRE), 769
 groups, peer, 517–518, 570–571
Hairpinning, 792
hashed message authentication code (HMAC), 898
Hashed Message Authentication Code-Secure Hash Algorithm-256 (HMAC-SHA-256), 92
HDLC (High-Level Data Link Control), 34
headers, authentication, 824
headquarters/data center routers. See hub routers
Hello packets
 EIGRP (Enhanced Interior Gateway Routing Protocol), 78, 180–184
 EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 191
 OSPF (Open Shortest Path First), 228, 229
 OSPFv3 (Open Shortest Path First version 3), 374
 Hello timer, 108–109, 255
 hello-interval command, 108
 hierarchical tree spoke-to-spoke phase, DMVPN, 777
 high availability, 810–811
 High-Level Data Link Control (HDLC), 34
 high-order bit count, 624
 high-order bit pattern, 624
 HMAC (hashed message authentication code), 898
 HMAC-SHA-256 (Hashed Message Authentication Code-Secure Hash Algorithm-256), 92
 Hold timer, 108–109
 holdtime (NHRP), 810
 hold-time command, 108
 hostname command, 897
 hosts, SNMP (Simple Network Management Protocol), 910
 how ospfv3 interface brief command, 377–378
 how policy-map command, 882
 HTTP (Hypertext Transfer Protocol), 900–901
 HTTPS (Hypertext Transfer Protocol over Secure Sockets Layer), 900–901
 hub redundancy, 811
 hub routers, 780–781
 hub-and-spoke topology, 126–129
 Hypertext Transfer Protocol (HTTP), 900–901
 Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS), 900–901
 hyphen (-), 497, 501

IANA (Internet Assigned Numbers Authority), 228, 429
iBGP (internal BGP), 429, 448–453. See also BGP (Border Gateway Protocol) troubleshooting
 AD (administrative distance), 448, 580–582
 benefits of, 448–450
 in BGP best-path algorithm, 550
 confederations
 confederation identifier, 462
 configuration, 462–465
 definition of, 462
 topology, 462
 definition of, 448
 eBGP (external BGP) compared to, 453–454
 full mesh requirement, 450
 multipath, 553
 next-hop manipulation, 456–457
 peering using loopback addresses, 451–453
 prefix advertisement behavior, 449
 route reflectors
 configuration, 459–461
 loop prevention, 461
 route reflector clients, 457
split horizon, 579–580
topologies, 454–455
ICMP (Internet Control Message Protocol), 32–33, 847
identity local address command, 829
Idle state (BGP), 433, 563
IEEE EUI-64 standard, 20–22
IETF (Internet Engineering Task Force), 72
IGP (Interior Gateway Protocol), 222, 551, 688
igp-metric keyword, 539
IGRP (Interior Gateway Routing Protocol), 72
IKE (Internet Key Exchange), 825
IKEv2 (Internet Key Exchange version 2), 838–839
DMVPN (Dynamic Multipoint Virtual Private Network) tunnel security, 838–839
keyring, 828–829
profiles, 829–830
implicit deny, 846
implicit deny any
IPv4 ACLs (access control lists), 846
IPv6 ACLs (access control lists), 850
prefix list processing, 854, 862
implicit message flag (NHRP), 788
implicit NULL label, 754–755
inbound label binding filtering, 754
include-connected keyword, 690, 695, 715
INFORMATION-REQUEST message, 30
infrastructure security
AAA (authentication, authorization, and accounting) troubleshooting, 866
CoPP (Control Plane Policing)
ACL (access control list) configuration, 876–878
class map configuration, 878–880
definition of, 866
overview of, 875–876, 885
policy map configuration, 880–882
service policy applied to control plane interface, 883–885
IPv6 First-Hop Security, 885–887
troubleshooting, 869–874
uRPF (Unicast Reverse Path Forwarding)
definition of, 866
troubleshooting, 874–875
ingress LSRs (label switching routers), 748–749
inherit peer-policy command, 519
inherit peer-session command, 519
Init state
OSPF (Open Shortest Path First), 230
OSPFv2 (Open Shortest Path First version 2), 318
InQ field (BGP), 438
installed routes, displaying
EIGRP (Enhanced Interior Gateway Routing Protocol), 86–87
OSPF (Open Shortest Path First), 238–239
instances, VRF (virtual routing and forwarding). See VRF-Lite configuration
inter-area router LSAs (link-state advertisements), 372, 373, 373
inter-area routes, 238, 296, 301–303
interface delay settings, EIGRP (Enhanced Interior Gateway Routing Protocol) metrics, 99
Interface field (EIGRP), 85
interface status
BGP (Border Gateway Protocol), 561
EIGRP (Enhanced Interior Gateway Routing Protocol), 84–85, 142
OSPF (Open Shortest Path First), 245
OSPFv2 (Open Shortest Path First version 2), 319
interface tunnel command, 770, 780, 782, 792
interface-specific configuration
EIGRP (Enhanced Interior Gateway Routing Protocol), 114–116
OSPF (Open Shortest Path First), 233
Interior Gateway Protocol (IGP), 222, 688
Interior Gateway Routing Protocol (IGRP), 72
intermediate LSRs (label switching routers), 748–749
internal BGP (Border Gateway Protocol). See iBGP (internal BGP)
Internet Assigned Numbers Authority (IANA), 228, 429
Internet Control Message Protocol. See ICMP (Internet Control Message Protocol)
Internet Engineering Task Force (IETF), 72
Internet Key Exchange. See IKE (Internet Key Exchange); IKEv2 (Internet Key Exchange version 2)
inter-router communication
BGP (Border Gateway Protocol), 430–435
messages, 431–432
neighbor states, 432–435, 563
single- and multi-hop sessions, 430–431
EIGRP (Enhanced Interior Gateway Routing Protocol), 78–79
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 191
OSPF (Open Shortest Path First), 228
intra-area routes, 238, 295–296
intra-area-prefix LSAs (link-state advertisements), 373
IOS XE peer groups, 517–518
IOS XE peer templates, 518–519
ip access-group command, 848
ip access-list extended command, 623
ip access-list standard command, 622
ip address command, 14, 770, 780, 782, 809
ip as-path access-list command, 504
ip bandwidth-percent eigrp command, 125
ip bgp summary command, 438
ip bgp-community new-format command, 508
ip cef command, 927
ip community-list command, 513
ip default next-hop command, 641
ip dhcp excluded-address command, 15
ip dhcp pool command, 15
ip flow egress command, 921
ip flow ingress command, 919, 921
ip flow monitor command, 926
ip flow-cache entries command, 922–923
ip flow-cache timeout active command, 922–923
ip flow-cache timeout inactive command, 922–923
ip flow-export destination command, 920, 921
ip flow-export source command, 919, 921
ip flow-export version [5 | 9] command, 921
ip ftp client password command, 902
ip ftp client username command, 902
ip ftp source-interface command, 902
ip hello-interval eigrp command, 108
ip helper-address command, 12, 13, 52
ip hold-time eigrp command, 108
ip http client password command, 901
ip http client source-interface command, 901
ip http client username command, 901
ip local policy command, 637
ip low monitor command, 926
ip mtu command, 771, 781, 783, 792
ip next-hop command, 642
ip nhrp authentication command, 794
ip nhrp holdtime command, 810
ip nhrp map command, 783
ip nhrp map multicast command, 783
ip nhrp map multicast dynamic command, 781
ip nhrp network-id command, 781, 782, 792
ip nhrp nhs command, 782–783, 792
ip nhrp redirect command, 781, 792, 797
ip nhrp registration no-unique command, 795
ip nhrp registration timeout command, 811
ip nhrp shortcut command, 792
ip ospf area command, 366
ip ospf authentication command, 255
ip ospf authentication message-digest command, 255–256
ip ospf authentication-key command, 255
ip ospf command, 233, 319–320
ip ospf cost command, 295
ip ospf hello-interval command, 255, 359
ip ospf message-digest-key command, 255–256
ip ospf mtu-ignore command, 330
ip ospf network broadcast command, 247
ip ospf network non-broadcast command, 247
ip ospf network point-to-point command, 249
ip ospf priority command, 246
ip policy route-map command, 646
ip prefix-list command, 609, 627
ip radius source-interface command, 873
ip route command, 42
ip route vrf command, 810
ip scp server enable command, 903
IP SLA (Internet Protocol Service Level Agreement) troubleshooting
deb ip sla trace 2 command, 916–917
IP SLA icmp-echo probe configuration, 911
IP SLA UDP-JITTER probe configuration, 911–912
show ip sla application command, 912–913
show ip sla configuration command, 913–914
show ip sla responder command, 915–916
show ip sla statistics command, 914–915
source and responder topology, 910–911
ip ssh version {1 | 2} command, 897
ip summary-address command, 115
IPv4 (Internet Protocol version 4) 1019

- ip tacacs source-interface command, 873
- ip tcp adjust-mss command, 781, 783, 792
- ip tftp source-interface command, 900
- ip verify notification threshold command, 875
- ip verify unicast reverse-path command, 875
- ip verify unicast source reachable-via command, 874–875
- ip vrf command, 728–729, 734
- ip vrf forwarding command, 730–731, 870
- ipconfig /all command, 20–21, 22–23
- ipconfig command
 - IPv4 addressing, 9–10, 11, 49–50, 51–52
 - IPv6 addressing, 19–20, 26, 54–55, 58
- IPsec, DMVPN tunnel protection
- packet filtering with, 848
- reading, 846–847
- time-based, 848–850
- trouble ticket, 855–857
- AD (administrative distance), 38–41
 - data structures and routing table, 39
 - sources of routing information, 39–41
- APIPA (Automatic Private IP Addressing) address, 15–16
- authentication headers, 824
- BGP packets sourced from wrong IP address, 564–566
determining within subnet, 10–11
- DHCP (Dynamic Host Configuration Protocol)
 - clients, 14–15
 - DHCP-assigned IP addresses, verifying, 15–16
 - DORA process, 11–12
 - messages, 14
 - purpose of, 11
 - relay agents, 12–14
 - servers, 15
 - troubleshooting commands, 17–18
 - troubleshooting issues, 16–17
- EIGRP for. See EIGRP (Enhanced Interior Gateway Routing Protocol)
- IP bandwidth percentage, 125–126
- IPv6 over IPv4, 471–475
- NHRP (Next Hop Resolution Protocol), 794–795
 - overview of, 2–3, 7
- packet-forwarding process, 31–38
 - basic routing, 31–35
 - basic routing topology, 31–32
 - troubleshooting, 35–38

IPv4 (Internet Protocol version 4) 1019

- AD (administrative distance), 38–41
 - data structures and routing table, 39
 - sources of routing information, 39–41
- APIPA (Automatic Private IP Addressing) address, 15–16
- authentication headers, 824
- BGP packets sourced from wrong IP address, 564–566
determining within subnet, 10–11
- DHCP (Dynamic Host Configuration Protocol)
 - clients, 14–15
 - DHCP-assigned IP addresses, verifying, 15–16
 - DORA process, 11–12
 - messages, 14
 - purpose of, 11
 - relay agents, 12–14
 - servers, 15
 - troubleshooting commands, 17–18
 - troubleshooting issues, 16–17
- EIGRP for. See EIGRP (Enhanced Interior Gateway Routing Protocol)
- IP bandwidth percentage, 125–126
- IPv6 over IPv4, 471–475
- NHRP (Next Hop Resolution Protocol), 794–795
 - overview of, 2–3, 7
- packet-forwarding process, 31–38
 - basic routing, 31–35
 - basic routing topology, 31–32
 - troubleshooting, 35–38
prefix lists, 627
 processing, 854–855
 purpose of, 852
 reading, 853–854
 trouble ticket, 861–863
redistribution
 into BGP, 699–702
 into EIGRP, 689–694
 into OSPF, 694–699
 with route maps, 702
route redistribution review, 687–689
trouble ticket: users in IPv4 Branch unable to access resources outside Branch office, 703–707
trouble ticket: users unable to access resources in classless network, 708–711
troubleshooting targets for, 689
trouble tickets
 IPv4 static routes, 61–64
 PC1 not able to access resources on 192.0.2.1, 48–53
topology, 48
users in IPv4 Branch unable to access resources outside Branch office, 703–707
users unable to access resources in classless network, 708–711
unique IP NHRP registration, 794–795
verification of, 9–10
VRF-Lite configuration, 733–734
 IPv4 global routing table, 735
 IPv4 VRF routing tables, 735–736
IPv6 (Internet Protocol version 6). See also EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6)
ACLS (access control lists)
 importance of, 850
 packet filtering with, 851–852
 reading, 850–851
 trouble ticket, 858–861
AD (administrative distance), 38–41
data structures and routing table, 39
 sources of routing information, 39–41
BGP (Border Gateway Protocol)
troubleshooting
 MP-BGP configuration, 594–598
 MP-BGP topology, 593–594
DHCPv6 messages, 29–30
DHCPv6 relay agents, 30–31
DMVPN (Dynamic Multipoint Virtual Private Network) configuration
correlation of IPv4-to-IPv6 transport protocol commands, 812
display commands, 813
DMVPN tunnel technique and, 812
IPv6 DMVPN verification, 816–817
IPv6-over-IPv6 sample configuration, 813–815
tunneled protocol commands, 811–812
example of, 19
First-Hop Security, 866, 885–887
 binding table, 885
 Destination Guard, 887
 DHCPv6 Guard, 886
 IPv6 snooping, 886
Prefix Guard, 887
RA (router advertisement)
 Guard, 886
Source Guard, 887
IEEE EUI-64 standard, 20–22
interface verification, 198
IPv6-over-IPv6, 813–815
link-local addresses, 23
MP-BGP (Multiprotocol BGP)
 configuration, 594–598
 IPv6 configuration, 466–471
 IPv6 over IPv4, 471–475
 MP-BGP topology, 593–594
 topology, 465–466
neighbor discovery messages, 886
OSPFv3 (Open Shortest Path First version 3) configuration
 authentication, 381–383
 IPv6 addressing, 375–376
 IPv6 route summarization, 379–380
 link-local forwarding, 383–384
 network type, 380–381
 process for, 374
 topology, 374–375
 verification of, 377–378
OSPFv3 (Open Shortest Path First version 3) troubleshooting
 debug ipv6 ospf hello command, 406
 overview of, 394–395
 show cdp neighbors detail command, 406
 show ipv6 interface command, 400
 show ipv6 ospf command, 395–396, 402–403
 show ipv6 ospf database command, 398–399
 show ipv6 ospf interface brief command, 396, 405–406
 show ipv6 ospf interface command, 397, 406–407
 show ipv6 ospf neighbor command, 397, 405
 show ipv6 protocols command, 395
 show ipv6 route command, 405
 show ipv6 route ospf command, 399–400, 401–402, 404
 trouble ticket: Branch receiving inter-area routes other than default, 401–404
 trouble ticket: Branch users unable to access resources outside Branch office, 404–408
overview of, 3, 19–20
packet-forwarding process, 31–38
 basic routing, 31–35
 basic routing topology, 31–32
 troubleshooting, 35–38
prefix lists, 627–628
 processing, 854–855
 purpose of, 852
 reading, 853–854
 trouble ticket, 861–863
redistribution
 into BGP, 699–702
 into EIGRP, 689–694
 into OSPF, 694–699
 with route maps, 702
 route redistribution review, 687–689
 trouble ticket: IPv6 users unable to access resources, 711–717
 trouble ticket: users in BGP autonomous system unable to access IPv4 resources, 717–721
troubleshooting targets for, 689
route summarization, 195–196, 492–493
SLAAC (stateless address autoconfiguration), 22–27
snooping, 886
stateful DHCPv6, 27–28
stateless DHCPv6, 28–29
static routes, 46–48, 64–66
trouble tickets
Branch receiving inter-area routes other than default, 401–404
Branch users unable to access resources outside Branch office, 404–408
IPv6 users unable to access resources, 711–717
PC1 not able to access resources on 2001:db8:d::1, 54–61
users in BGP autonomous system unable to access IPv4 resources, 717–721
verification of, 19–20
VRF-Lite configuration, 733–734
ipv6 access-class command, 851
ipv6 address autoconfig command, 23
ipv6 address command, 21–22, 59, 60, 782, 809
ipv6 cef command, 927
ipv6 dhcp guard attach-policy command, 886
ipv6 dhcp relay destination command, 31
ipv6 dhcp server command, 27
ipv6 eigrp command, 192
ipv6 mtu command, 811
ipv6 nd other-config-flag command, 28–29
ipv6 nd ra suppress all command, 56
ipv6 nd raguard attach-policy command, 886
ipv6 nhlp authentication command, 812
ipv6 nhlp holdtime command, 812
ipv6 nhlp network-id command, 811
ipv6 nhlp nhs command, 811
ipv6 nhlp redirect command, 811
ipv6 nhlp registration no-unique command, 812
ipv6 nhlp registration timeout command, 812
ipv6 nhlp shortcut command, 811
ipv6 ospf command, 376
ipv6 prefix-list command, 628
ipv6 route command, 46, 65–66
ipv6 route vrf command, 812
ipv6 router eigrp command, 192
ipv6 router ospf command, 376
ipv6 summary-address eigrp command, 195
ipv6 tcp adjust-mss command, 811
ipv6 traffic-filter command, 851
ipv6 unicast-routing command, 374
Issues and Events page, Cisco DNA Center Assurance, 938–939

J–K

K values, 145–146, 198
keepalive command, 771
keepalives, 771, 834
key chain command, 92
key command, 92
key management, 825
keychains, 92
keyring local command, 829
keyrings, 828–829
key-string command, 92

L

L2VPN (Layer 2 Virtual Private Network), split horizon and, 128
label bindings, 750
Label Distribution Protocol (LDP), 750, 751–752, 753, 754–755, 759
Label Forwarding Information Base (LFIB), 748
Label Information Base (LIB), 748, 753
label stack, MPLS Layer 3 VPNs, 759–761
label switching, 752–753. See also MPLS (Multiprotocol Label Switching)
label switching routers (LSRs), 748–749
label-switched path (LSP), 749
latency, 97
Layer 2 Virtual Private Network (L2VPN), 128
Layer 3 packet-forwarding process
basic routing, 31–35
data structures, 35
troubleshooting, 561–562
 show adjacency detail command, 38
 show ip arp command, 37
 show ip cef command, 37
 show ip cef exact-route command, 37
 show ip nhrp command, 38
 show ip route command, 35–36
Layer 3-to-Layer 2 mapping table, 34
LDP (Label Distribution Protocol), 750, 751–752, 753, 754–755, 759
leak-map option, summary-address command, 115
learned IPv6 route verification, 211–212
level 5 encryption, 898–899
level 7 encryption, 898–899
level 8 encryption, 898–899
LFIB (Label Forwarding Information Base), 748
LIB (Label Information Base), 748, 753
link costs, OSPF (Open Shortest Path First), 295
Link Count field (OSPF LSDB), 265
Link ID field
OSPF LSDB, 265
 Type 3 LSA (summary LSA), 275
 Type 5 LSA (external LSA), 279
 Type 7 LSA (NSSA external LSA), 283
link LSAs (link-state advertisements), 373
link-local addresses, 23, 211
link-local flooding scope, 384
link-local forwarding, 383–384
link-state acknowledgment packets, 228, 374
link-state advertisement. See LSA (link-state advertisement)
link-state database. See LSDB (link-state database)
link-state request (LSR) packets, 228, 374
link-state update (LSU) packets, 228, 374
lists
 access control. See ACLs (access control lists)
 distribute, 495–496, 586–587
distribution, 129–132
offset, 132–135
prefix, 496
IPv4, 627
IPv6, 627–628
processing, 854–855
purpose of, 852
reading, 853–854
trouble ticket, 861–863
load balancing
EIGRP (Enhanced Interior Gateway Routing Protocol), 100–102, 168–169
OSPFv2 (Open Shortest Path First version 2), 352–353
Loading state
OSPF (Open Shortest Path First), 230
OSPFv2 (Open Shortest Path First version 2), 319
local AS BGP community, 511–512
local PBR (policy-based routing), 637–639
local preference, in BGP best-path algorithm, 532–538, 588
bgp default local-preference command, 532
BGP edge evaluation of multiple paths, 536–538
BGP tables after local preference modification, 534–535
configuration, 533–534
final BGP processing state, 538
set local-preference command, 532
 topology, 533
local route origination, 538
LOCAL_PREF attribute, 464
locally originated route, in BGP best-path algorithm, 538
LocPrf field (BGP), 445
Loc-RIB table, 440
log keyword, 877, 895
logging buffered command, 904
logging synchronous command, 894, 896
login authentication command, 871, 872, 894, 895, 897
login command, 895, 897
login local command, 895, 897
log-input keyword, 877
longer-prefixes option (show ip route command), 36
lookup, DNS, 8
loop prevention
BGP (Border Gateway Protocol), 430
route reflectors, 461
loopback addresses, 451–453, 565
loopback interfaces, MPLS (Multiprotocol Label Switching), 752
loopback networks, 246, 253–254
loops, routing. See routing loops caused by redistribution, troubleshooting
loose mode, uRPF (Unicast Reverse Path Forwarding), 874
lowest IGP metric, 551
LSA (link-state advertisement)
LSDB (link-state database), 262–263, 372, 387–390
displaying, 398–399
fields, 265
verification of, 415–418
OSPF (Open Shortest Path First), 225
ABRs (area border routers), 264
age and flooding, 264
overview of, 262–264
reference topology, 264
sequences, 264
summary of types of, 283
Type 1 LSA (router LSA), 264–269
Type 2 LSA (network LSA), 269–271
Type 3 LSA (summary LSA), 271–276
Type 4 LSA (ASBR summary LSA), 279–281
Type 5 LSA (external LSA), 277–279, 679
Type 7 LSA (NSSA external LSA), 281–283
OSPFv2 (Open Shortest Path First version 2), 346–348
OSPFv3 (Open Shortest Path First version 3), 372–373
flooding scope, 384–390
Options field, 386
types of, 372–373
verification of, 398–399
viewing, 385–387
LSDB (link-state database), 262–263, 372, 387–390
displaying, 398–399
fields, 265
verification of, 415–418
LSP (label-switched path), 749
LSR (link-state request) packets, 228, 374
LSRs (label switching routers), 748–749
LSU (link-state update) packets, 228, 374

MAC (media access control) addresses, 43–44
management tools troubleshooting
BFD (Bidirectional Forwarding Detection), 927–928
Cisco DNA Center Assurance

accessing, 929
AI Analytics, 937–938
Client Health page, 933–934
Command Runner, 938–940
Device 360 and Client 360 pages, 933–937
Issues and Events page, 938–939
Network Health page, 931–932
Network Time Travel, 937
Overall Health page, 930–931
overview of, 929
Path Trace, 936–937
Cisco IOS IP SLA
debug ip sla trace 2 command, 916–917
IP SLA icmp-echo probe configuration, 911
IP SLA UDP-JITTER probe configuration, 911–912
show ip sla application command, 912–913
show ip sla configuration command, 913–914
show ip sla responder command, 915–916
show ip sla statistics command, 914–915
source and responder topology, 910–911
Flexible NetFlow, 923–927
NetFlow, 919–924
Object Tracking, 917–919
SNMP (Simple Network Management Protocol), 906–910
syslog, 904–906
maps, route. See route maps
match command, 635, 690, 878–879
match fvrf command, 829
match identity remote address command, 829
match interface command, 656
match route-type command, 656
matching, conditional. See conditional matching
maximum paths, 168–169
maximum prefix, BGP (Border Gateway Protocol), 516–517
maximum segment size (MSS), 781
maximum transmission unit (MTU), 117, 328–330, 658, 771
maximum-paths command, 100, 168, 298, 553
maximum-paths ibgp command, 757
max-in-negotiation-sa keyword, 838
max-sa keyword, 838
MD5 (Message Digest 5), 91, 255–256, 326, 570
Mean SRTT field (EIGRP), 85
MED (multi-exit discriminator), 438, 588
always-compare-med feature, 549
BGP deterministic MED, 549–550
configuration, 542–545
missing MED behavior, 548–549
Message Digest 5 (MD5), 91, 255–256, 326, 570
messages
BGP (Border Gateway Protocol), 431–432
DHCP (Dynamic Host Configuration Protocol) for IPv4, 14
DHCPv6 (Dynamic Host Configuration Protocol version 6), 29–30
NHRP (Next Hop Resolution Protocol), 774–776
message extensions, 775
redirect, 777
types of, 775
Metric field (BGP), 445
Type 3 LSA (summary LSA), 275
Type 5 LSA (external LSA), 279
Type 7 LSA (NSSA external LSA), 283
metric keyword, 664, 690, 694, 699, 706
Metric Type field (BGP), 279
metric weights command, 100
metrics, EIGRP (Enhanced Interior Gateway Routing Protocol)
classic metric formula, 94–96
custom K values, 100
interface delay settings, 99
load balancing, 100–102
metric backward compatibility, 98–99
redistribution troubleshooting and, 678–679
route summarization, 117
wide metrics, 96–98
metric-type keyword, 241, 664, 694
mGRE (Multipoint GRE), 769
minimum hold time, 572
mismatched area numbers, 322–323
mismatched area type, 323–324
mismatched authentication, 199–200, 570
mismatched autonomous system numbers, 142–143, 198
mismatched K values, 145–146, 198
mismatched timers, 321–322
missing MED behavior, 548–549
mode \{transport \| tunnel\} command, 832
modes, ESP (Encapsulating Security Payload), 825–827
MP-BGP (Multiprotocol BGP)
IPv6 configuration, 466–471
IPv6 over IPv4, 471–475
topology, 465–466, 593
troubleshooting
 MP-BGP configuration, 594–598
 MP-BGP topology, 593–594
MP-BGPv4 address families, 746
MP-IBGP (Multiprotocol-Interior Border Gateway Protocol), 757
MPLS (Multiprotocol Label Switching), 747, 752–753, 754
FEC (forwarding equivalence class), 749
label placement and format, 749–750
LDP (Label Distribution Protocol), 751–752, 754–755
LFIB (Label Forwarding Information Base), 748
LIB (Label Information Base), 748
LSP (label-switched path), 749
LSRs (label switching routers), 748–749
MPLS Layer 3 VPNs
 architecture, 756–757
 CE (customer edge) routers, 756
 label stack, 759–761
 PE (provider edge) routers, 756
 RD (route distinguishers), 757–759
 RTs (route targets), 757–759
 VPNv4 addresses, 757–759
PHP (penultimate-hop popping), 753–754
TE (Traffic Engineering), 755
mpls ldp neighbor command, 751
mpls ldp router-id command, 752
MsgRcvd field (BGP), 438
MsgSent field (BGP), 438
MSS (maximum segment size), 781
MTU (maximum transmission unit), 117, 328–330, 658, 771
multi-address family configuration mode (EIGRP), 80–81
Multicast Flow Timer field (EIGRP), 85
multi-exit discriminator. See MED (multi-exit discriminator)
multi-hop sessions, BGP (Border Gateway Protocol), 430–431
multipath BGP (Border Gateway Protocol), 553
multiple-exit discriminator (MED), 438
Multipoint Frame Relay networks, 34
Multipoint GRE (mGRE), 769
multipoint redistribution
 routing loops, 679–686
distribute list to control OSPF routes, 683–684
EIGRP AD configuration, 682–683
route tags, 684–686
routing topology, 679–680
sample scenario for, 679–682
suboptimal routing, 678–679
multiprocess redistribution, 666–667
Multiprotocol BGP. See MP-BGP (Multiprotocol BGP)
Multiprotocol Label Switching. See MPLS (Multiprotocol Label Switching)
Multiprotocol-Interior Border Gateway Protocol (MP-IBGP), 757
mutual redistribution, 650–651, 661–663

N

NA (neighbor advertisement), 850
named configuration mode, 80–81, 857
named EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 771
configuration, 192
trouble ticket: users unable to access resources outside their LAN, 213–218
 configuration modification, 217
 configuration review, 215–217
EIGRP-learned routes verification, 217
interfaces and IPv4 addresses, 215
IPv4 routing tables, 214–215
 ping command, 213–218
troubleshooting, 204–209
NAT (Network Address Translation), 776, 825, 834, 845
NBMA (nonbroadcast multi-access), 247, 331, 372
NDP (Neighbor Discovery Protocol), 850
neighbor 2001:DB8::2 activate command, 616
neighbor 2001:DB8::2 remote-as 65502 command, 616
neighbor addresses, 552
neighbor adjacencies, troubleshooting
BGP (Border Gateway Protocol), 602–603
 ACLs (access control lists), 566–567
 BGP packets sourced from wrong IP address, 564–566
 incorrect neighbor statement, 564
 interface is down, 561
Layer 3 connectivity is broken, 561–562
misconfigured peer groups, 570–571
mismatched authentication, 570
neighbor lacks route to local router, 563
neighbor verification, 559–560
overview of, 559–561
path to neighbor is through default route, 562–563
timers, 572–573
TTL (time to live) expiration, 568–570
EIGRP (Enhanced Interior Gateway Routing Protocol), 141–151
 ACLs (access control lists), 150–151
 authentication, 148–150
 different subnets, 148
 incorrect network statement, 144–145
 interface is down, 142
 mismatched autonomous system numbers, 142–143
 mismatched K values, 145–146
 overview of, 141–151
 passive interface feature, 146–148
 timers, 151
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 210–211
OSPF (Open Shortest Path First), 230–232, 237–238
OSPFv2 (Open Shortest Path First version 2)
 ACLs (access control lists), 327–328
 adjacency states, 318–319
 different subnets, 324–325
duplicate router IDs, 330
neighbor ip-address update-source interface-id command

interface is down, 319
interface not running OSPF process, 319–321
mismatched area numbers, 322–323
mismatched area type, 323–324
mismatched authentication information, 326–327
mismatched network types, 330–332
mismatched timers, 321–322
MTU mismatch, 328–330
neighbor verification, 317
overview of, 317–319
passive interfaces, 325–326
neighbor advertisement (NA), 850
Neighbor Discovery Protocol (NDP), 850
Neighbor field (BGP), 438
neighbor group-name peer-group command, 518
neighbor ID. See RID (router ID)
neighbor ip-address activate command, 594
neighbor ip-address distribute-list command, 586
neighbor ip-address ebgp-multihop [TTL] command, 569
neighbor ip-address filter-list command, 586
neighbor ip-address next-hop-self command, 578
neighbor ip-address peer-group command, 571
neighbor ip-address prefix-list command, 586
neighbor ip-address remote-as as-number command, 564, 565
neighbor ip-address remove-private-as command, 591
neighbor ip-address route-map command, 586
neighbor ip-address transport connection-mode {active | passive} command, 567
neighbor ip-address update-source command, 565
neighbor ip-address activate command, 436
neighbor ip-address aigp command, 539
neighbor ip-address distribute-list {acl-number | acl-name} [in | out] command, 495
neighbor ip-address filter-list acl-number [in | out] command, 504
neighbor ip-address maximum-prefix prefix-count [warning-percentage] [restart time] [warning-only] command, 516
neighbor ip-address next-hop-self [all] command, 456
neighbor ip-address password password command, 436
neighbor ip-address prefix-list prefix-list-name [in | out] command, 496
neighbor ip-address remote-as as-number command, 435
neighbor ip-address route-map route-map-name [in | out] command, 505
neighbor ip-address route-reflector-client command, 459
neighbor ip-address send-community [standard | extended | both] command, 508
neighbor ip-address timers keepalive holdtime [minimum-holdtime] command, 436
neighbor ip-address update-source interface-id command, 435–436, 452
neighbor ip-address weight weight command, 529
neighbor ipv6_address activate command, 596
neighbor ipv6_address remote-as command, 596
neighbor remote-as command, 564, 565–566, 603
neighbor solicitation (NS), 850
neighbor states, 268, 432–435, 563
NetFlow, 919–924
Network Address Translation. See NAT (Network Address Translation)
network area command, 366
network command, 317
 EIGRP (Enhanced Interior Gateway Routing Protocol), 152–154, 160
 OSPFv2 (Open Shortest Path First version 2), 319–320
Network field (BGP), 445
Network Health page, Cisco DNA Center Assurance, 931–932
network layer reachability information (NLRI), 430, 524
network LSAs (link-state advertisements), 269–271, 373
network mask command, 440, 573, 575–576, 605–606
Network Mask field
 Type 3 LSA (summary LSA), 275
 Type 5 LSA (external LSA), 279
 Type 7 LSA (NSSA external LSA), 283
network selection, BGP (Border Gateway Protocol), 623–625
network statement, 80–82, 84, 234
 BGP (Border Gateway Protocol), 440–441
 MP-BGP (Multiprotocol BGP), 467
 OSPF (Open Shortest Path First), 232–233
 troubleshooting, 144–145
Network Time Protocol (NTP), 27, 905
Network Time Travel, Cisco DNA Center Assurance, 937
network types
 OSPF (Open Shortest Path First)
 broadcast, 246, 247
 loopback, 246, 253–254
 nonbroadcast, 246, 247–248
 overview of, 246
 point-to-multipoint, 246–253
 point-to-point, 246, 248–249
 OSPFv2 troubleshooting, 330–332
 OSPFv3 (Open Shortest Path First version 3), 380–381
networks
 discontiguous, 165–167, 305–306
 overlay, 806–810
 definition of, 769
 front door VRF (FVRF), 808–810
 outbound interface selection, 808
 recursive routing problems, 806–807
 point-to-point, 269
 stub, 269
 transit, 268
Next Hop field (BGP), 445
Next Hop Resolution Protocol. See NHRP (Next Hop Resolution Protocol)
next-hop manipulation, 577–579
next-hop override routing table, 801–802
next-hop router, 577–579
next-hop servers (NHSs), 774
next-hop-self feature, 456
nho message flag (NHRP), 789
nhop message flag (NHRP), 789
NHRP (Next Hop Resolution Protocol)
cache, viewing, 787–791
examples of, 789–791
NHRP mapping entries, 788
NHRP message flags, 788–789
holdtime, 810
IP NHRP authentication, 794–795
messages, 774–776
message extensions, 775
redirect, 777
types of, 775
NHRP mapping with spoke-to-hub traffic, 798–800
NHRP routing table manipulation, 800–806
example of, 800–801
next-hop override routing table, 801–802
with summarization, 802–806
NHSs (next-hop servers), 774
shortcuts, 777
timeout, 810–811
unique IP NHRP registration, 794–795
NHSs (next-hop servers), 774
NLRI (network layer reachability information), 430, 524
no auto-summary command, 118, 165–166
no bgp default ipv4-unicast command, 436–437
no eigrp stub command, 212–213
no exec command, 894
no exec-timeout command, 894
no ip helper-address 172.16.1.100 command, 52
no ip ospf hello-interval 11 command, 359
no ip split-horizon command, 162
no ip split-horizon eigrp command, 128, 162
no ipv6 address 2001:db8:a:a::1/60 command, 60
no ipv6 nd ra suppress all command, 56
no ipv6 ospf network non-broadcast command, 408
no neighbor 2001:DB8::2 activate command, 616
no passive-interface command, 88–89, 217, 233, 378
no service timestamps command, 905
no shutdown command, 750
no split-horizon command, 128
No_Advertise BGP community, 509–510
No_Export BGP community, 510–511
No_Export_SubConfed BGP community, 511–512
nonbroadcast multi-access (NBMA), 38, 247, 331, 372
nonbroadcast networks, 246, 247–248
nondisclosure agreement (NDA), 948
normal-time questions, 945
no-summary keyword, 288, 293
NOTIFICATION messages (BGP), 432
not-so-stubby-areas. See NSSAs (not-so-stubby-areas)
NS (neighbor solicitation), 850
NSSA external LSAs (link-state advertisements), 281–283
nssa-only option, 694
NSSAs (not-so-stubby-areas), 289–292, 373, 395
NTP (Network Time Protocol), 27, 905
NULL
authentication, 326
explicit/implicit, 754–755
object identifiers (OIDs), 908
Object Tracking
 floating static routes, 918–919
 troubleshooting, 917–918
offset lists, 132–135
offset-list command, 132
OIDs (object identifiers), 908
OPEN messages (BGP), 431–432
Open Shortest Path First. See OSPF (Open Shortest Path First)
OpenConfirm state (BGP), 434
OpenSent state (BGP), 434
optional transitive BGP path attributes, 429, 528
Options field, OSPFv3 LSAs, 386
origin authentication, 824
origin type, BGP (Border Gateway Protocol), 542–545
Originator attribute (BGP), 461
OSI model, Layer 3 packet-forwarding process
 basic routing, 32–35
 basic routing topology, 31
data structures, 35
troubleshooting, 35–38
OSPF (Open Shortest Path First), 373.
 See also OSPFv2 (Open Shortest Path First version 2); OSPFv3 (Open Shortest Path First version 3)
ABRs (area border routers), 227
areas, 226–227
ASBRs (autonomous system boundary routers), 240, 277, 279–281, 347, 372, 395, 678–679
authentication, 253–254, 255–257
confirmation of interfaces, 235–237
default route advertisement, 241–242
distribute lists, 683–684
external OSPF routes, 240–241
installed routes, displaying, 238–239
interface columns, 237
interface-specific, 233
neighbor adjacencies, 237–238
network statement, 232–233, 234
network types, 246–254
overview of, 232
route tags, 684–686
sample topology and configuration, 233–235
definition of, 222
discontiguous networks, 305–306
distribute lists, 683–684
DR (designated router)/BDR (backup designated router)
 concept of, 242–243
elections, 244–245
 interface priority, 245
 placement, 245–246
failure detection and timers, 254–255
Hello packets, 229
inter-router communication, 228
LSA (link-state advertisement), 225
 ABRs (area border routers), 264
 age and flooding, 264
 LSDB (link-state database), 262–263, 265
 overview of, 262–264
 reference topology, 264
 sequences, 264
 summary of types of, 283
Type 1 LSA (router LSA), 264–269
Type 2 LSA (network LSA), 269–271
Type 3 LSA (summary LSA), 271–276
Type 4 LSA (ASBR summary LSA), 279–281
Type 5 LSA (external LSA), 277–279
Type 7 LSA (NSSA external LSA), 281–283
neighbor adjacencies
debbuging, 231–232
forming, 231
neighbor adjacencies, 237–238
requirements for, 230–231
neighbor states, 230
network types
broadcast, 246, 247
loopback, 246, 253–254
nonbroadcast, 246, 247–248
overview of, 246
point-to-multipoint, 246–253
point-to-point, 246, 248–249
packet types, 228
path selection
ECMP (equal-cost multipath), 298
external routes, 297–298
inter-area routes, 296
intra-area routes, 295–296
link costs, 295
overview of, 294–295
redistribution
BGP topology and configuration, 670–672
connected networks, 657
nontransitive nature of, 651–652
OSPF forwarding address, 667–670
OSPF-to-OSPF mutual redistribution, 666–667
overview of, 650–651
RIB (Routing Information Base) and, 653–655
seed metrics, 655–656, 688
sequential protocol redistribution, 653
topology and configuration, 663–666
troubleshooting, 694–699
RID (router ID), 229
route tags, 684–686
SPF trees, 225–226
stubby areas
not-so-stubby-areas, 289–292
overview of, 284
stub areas, 284–287
totally not-so-stubby-areas, 292–294
totally stubby areas, 287–289
summarization of routes
external summarization, 303–305
impact on SPF topology calculation, 299–301
inter-area summarization, 301–303
LSA reduction through area segmentation, 298–299
topology example with summarization, 300–301
virtual links, 307–309
VLSM (variable-length subnet masking), 222
VRF-Lite configuration, 745–746
OSPFv2 (Open Shortest Path First version 2)
advertisement tracking, 346–348
default routes, 353
discontiguous areas, 350–352
DRs (designated routers), 341–344
load balancing, 352–353
LSA (link-state advertisement), 346–348
neighbor adjacencies, troubleshooting
 ACLs (access control lists), 327–328
 adjacency states, 318–319
different subnets, 324–325
duplicate router IDs, 330
interface is down, 319
interface not running OSPF process, 319–321
mismatched area numbers, 322–323
mismatched area type, 323–324
mismatched authentication information, 326–327
mismatched network types, 330–332
mismatched timers, 321–322
MTU mismatch, 328–330
neighbor verification, 317
overview of, 317–319
passive interfaces, 325–326
OSPFv3 compared to, 371–372
route summarization, 348–350
route troubleshooting
 better source of information, 334–337
duplicate router IDs, 344–346
interface not running OSPF process, 333–334
overview of, 332–333
route filtering, 337–339
stub area configuration, 339–340
wrong designated router elected, 341–344
stub areas, 339–340
transit areas, 350
trouble ticket: routers R1 and R2 not forming neighbor adjacency, 364–366
trouble ticket: users in 10.1.1.0/24 not able to access resources in 192.168.1.0/24
ticket 8–1, 353–361
ticket 8–2, 361–364
virtual links, 350–352
OSPFv3 (Open Shortest Path First version 3), 420
address families troubleshooting
debug ospfv3 command, 418
default-information originate command, 422
sample configuration, 408–410
show ip protocols command, 410–411
show ip route ospfv3 command, 418
show ipv6 protocols command, 410–411
show ipv6 route command, 420
show ipv6 route ospf command, 418
show ospfv3 command, 411–413
show ospfv3 database command, 415–418
show ospfv3 interface brief command, 413
show ospfv3 interface command, 413–414
show ospfv3 ipv6 command, 421
show ospfv3 neighbor command, 414
show run | section router ospfv3 command, 422
trouble ticket: Branch users unable to access IPv6-enabled resources on Internet, 419–423
communication and packet types, 373–374
configuration
authentication, 381–383
IPv6 addressing, 375–376
IPv6 route summarization, 379–380
link-local forwarding, 383–384
network type, 380–381
process for, 374
topology, 374–375
verification of, 377–378
interface tunnel command, 409
LSA (link-state advertisement), 372–373
flooding scope, 384–390
Options field, 386
types of, 372–373
verification of, 398–399
viewing, 385–387
OSPFv2 compared to, 371–372
OSPFv3 for IPv6 troubleshooting
debug ipv6 ospf bello command, 406
overview of, 394–395
show cdp neighbors detail command, 406
show ipv6 interface command, 400
show ipv6 ospf command, 395–396, 402–403
show ipv6 ospf database command, 398–399
show ipv6 ospf interface brief command, 396, 405–406
show ipv6 ospf interface command, 397, 406–407
show ipv6 ospf neighbor command, 397, 405
show ipv6 protocols command, 395
show ipv6 route command, 405
show ipv6 route ospf command, 399–400, 401–402, 404
topology, 401
trouble ticket: Branch receiving inter-area routes other than default, 401–404
trouble ticket: Branch users unable to access resources outside Branch office, 404–408
overview of, 370
route verification, 399–400, 420
ospfv3 authentication command, 381
ospfv3 command, 745
ospfv3 encryption command, 381
ospfv3 network {point-to-point | point-to-multipoint broadcast | nonbroadcast} command, 380
outbound interface selection, 808
OutQ field (BGP), 438
Overall Health page, Cisco DNA Center Assurance, 930–931
overlay networks, 724, 806–810. See also VPNs (virtual private networks)
definition of, 769
front door VRF (FVRF)
configuration, 809–810
definition of, 808
static routes, 810
outbound interface selection, 808
recursive routing problems, 806–807

P

P2P (point-to-point) networks, 246, 248–249, 269, 331, 771
packet replay protection, IPsec, 833–834
packet types
EIGRP (Enhanced Interior Gateway Routing Protocol), 78, 108
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 191
OSPF (Open Shortest Path First), 228
OSPFv3 (Open Shortest Path First version 3), 373–374
packet-forwarding process, 31–38
basic routing, 31–35
basic routing topology, 31–32
troubleshooting, 35–38
 show adjacency detail command, 38
 show ip arp command, 37
 show ip cef command, 37
 show ip cef exact-route command, 37
 show ip nbhp command, 38
 show ip route command, 35–36
parentheses (), 497, 502
PAs (path attributes), 429, 524
passive interfaces
EIGRP (Enhanced Interior Gateway Routing Protocol), 88–91, 146–148
OSPFv2 (Open Shortest Path First version 2), 325–326
troubleshooting, 198–199
passive-interface command, 88–91, 217, 233, 378
passive-interface default command, 88–89, 233, 378
password encryption levels, 898–899
PAT (Port Address Translation), 845
Path and Origin field (BGP), 445
path attributes (PAs), 429, 524
path metric calculation, EIGRP (Enhanced Interior Gateway Routing Protocol)
classic metric formula, 94–96
custom K values, 100
interface delay settings, 99
load balancing, 100–102
metric backward compatibility, 98–99
wide metrics, 96–98
path selection
BGP (Border Gateway Protocol)
 best-path decision-making process, 588–591
debuge commands, 592–593
private autonomous systems numbers, 591
with longest match, 526–527
OSPF (Open Shortest Path First)
 ECMP (equal-cost multipathing), 298
 external routes, 297–298
 inter-area routes, 296
 intra-area routes, 295–296
 link costs, 295
 overview of, 294–295
Path Trace, Cisco DNA Center Assurance, 936–937
path vector routing protocols, 430. See also BGP (Border Gateway Protocol)
path verification, GRE (Generic Routing Encapsulation) tunnels, 774
payload, ESP (Encapsulating Security Payload), 824
PBR (policy-based routing)
configuration, 635–637, 638
local, 637–639
overview of, 634–635
PDMs (protocol-dependent modules), 75, 188
PE (provider edge) routers, 756
Pearson IT Certification Practice Test (PCPT) exam software, 948–949
exam scores, C25.0122-C25.0136
tips for, C25.0085-C25.0120
peer command, 828
peer groups, 517–518, 570–571
peer templates, 518–519
peer-group command, 518
Peers field (EIGRP), 85
Pending Routes field (EIGRP), 85
penultimate-hop popping (PHP), 753–754
perfect forward secrecy, 824
period (.), 497, 502
periodic rekey, 824
permit statements, 130
phases, DMVPN (Dynamic Multipoint Virtual Private Network) tunnels, 777–778
PHP (penultimate-hop popping), 753–754
PID (process ID), 395
ping command
BGP (Border Gateway Protocol) troubleshooting, 561, 562, 577, 598–599, 604, 610
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 209–210, 213–218
FTP (File Transfer Protocol), 901
HTTP (Hypertext Transfer Protocol), 900
IPv6 (Internet Protocol version 6) troubleshooting, 26–27, 54, 57–58, 60–61, 473, 858
OSPFv2 (Open Shortest Path First version 2) troubleshooting, 354, 361, 364
OSPFv3 (Open Shortest Path First version 3) troubleshooting, 404, 408, 419–420, 422–423
redistribution troubleshooting, 711, 712, 717
static routing troubleshooting, 61–62, 64
VRF-Lite configuration, 740
vty access troubleshooting, 895
ping vrf command, 744–745
pipe (|), 497, 502
placement, DR/BDR, 245–246
plaintext authentication, 255, 326
plus sign (+), 497, 502
P-network, 755
point-to-multipoint networks, 246–253, 331
point-to-point (P2P) networks, 246, 248–249, 269, 331, 771
policies, PBR (policy-based routing)
configuration, 635–637
local, 637–639
overview of, 634–635
policy maps, 880–882
Port Address Translation (PAT), 845
port numbers, 430, 567, 847, 896, 898
PPP (Point-to-Point Protocol), 34
practice exams
“brain dumps” 952
PCPT (Pearson IT Certification Practice Test) exam software
exam scores, C25.0122-C25.0136

tips for, C25.0085-C25.0120

pre-exam suggestions
miscellaneous suggestions, 955–956
time-check methods, 954–955
prefix advertisement behavior, 449
prefix attributes, 446
Prefix Guard, 887
prefix keyword, 131
prefix lists
filtering, 496
IPv4, 627
IPv6, 627–628
processing, 854–855
purpose of, 852
reading, 853–854
trouble ticket: R1 not learning routes, 861–863
prefix list review, 862–863
route verification, 862–863
topology, 861
trouble ticket: users in 10.1.1.0/26 and 10.1.1.64/26 network unable to access resources at 10.1.5.5, 607–609

prefix matching
prefix lists, 627–628
prefix match specifications, 625–627

preparation, exam. See exam preparation
pre-shared key authentication, 824
complete IPsec DMVPN configuration, 834
DPD (Dead Peer Protection), 834
IKEv2 keyring, 828–829
IKEv2 profile, 829–830
IPsec packet replay protection, 833–834
IPsec profiles, 832–833
IPsec transform set, 831–832
NAT (Network Address Translation) keepalives, 834
tunnel interface encryption, 833
pre-shared-key command, 828
private autonomous systems numbers, 591
private BGP (Border Gateway Protocol) communities, 514–516
probe state, 811
process ID (PID), 395
profiles
IKEv2, 829–830
IPsec, 832–833
protocol-dependent modules (PDMs), 75, 188
proxy ARP (Address Resolution Protocol), 44–46
purge messages (NHRP), 775

Q

QoS (quality of service), 622
DMVPN (Dynamic Multipoint Virtual Private Network) hub configuration, 780
MPLS (Multiprotocol Label Switching), 755

Query packets
EIGRP (Enhanced Interior Gateway Routing Protocol), 78
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 191

question mark (?), 497, 503
redundancy, DMVPN (Dynamic Multipoint Virtual Private Network) 1039

R

RA (router advertisement) Guard, 886
RADIUS server, 869–874
radius server RADDRV1 command, 870
RAs (Router Advertisements), 23–24
RD (reported distance), 76, 109, 163
RD (route distinguishers)
 MPLS Layer 3 VPNs, 757–759
 VRF-Lite configuration, 746–747
rd command, 746–747, 758
Real-Time Transport Protocol (RTP), 79
REBIND message, 30
RECONFIGURE message, 30
records, flow, 923–924
recursive routing problems, 806–807
redirect messages (NHRP), 775, 777
redistribute command, 353, 573, 656, 658, 664, 679, 688, 720
redistribution
 commands, 656–657
 destination protocols, 651
 destination-specific behaviors
 BGP topology and configuration, 670–672
 EIGRP topology and configuration, 658–661
 OSPF forwarding address, 667–670
 OSPF topology and configuration, 663–666
 OSPF-to-OSPF mutual redistribution, 666–667
 mutual, 650–651, 661–663
 need for, 674
 nontransitive nature of, 651–652
 overview of, 650–651
 protocol-specific configuration,
 656–657
 RIB (Routing Information Base) and,
 653–655
 seed metrics for, 655–656, 688
 sequential protocol, 653
 source protocols, 651
 source-specific behaviors
 BGP (Border Gateway Protocol), 657–658
 connected networks, 657
 troubleshooting. See redistribution troubleshooting
 redistribution command, 702
 redistribution troubleshooting, 684–686
 IPv4 and IPv6 redistribution
 into BGP, 699–702
 into EIGRP, 689–694
 into OSPF, 694–699
 route redistribution review, 687–689
 troubleshooting targets for, 689
 with route maps, 702
 routing loops, 679–686
 suboptimal routing, 678–679
 trouble ticket: IPv6 users unable to access resources, 711–717
 trouble ticket: users in BGP autonomous system unable to access IPv4 resources, 717–721
 trouble ticket: users in IPv4 Branch unable to access resources outside Branch office, 703–707
 trouble ticket: users unable to access resources in classless network, 708–711
redundancy, DMVPN (Dynamic Multipoint Virtual Private Network), 811
regex. See regular expressions
registration messages (NHS), 775
regular expressions
asterisk (*), 497, 503
BGP table for regex queries, 498
brackets ([]), 497, 500–501
caret (^), 497, 499–500
caret in brackets ([^]), 497, 501
dollar sign ($), 497, 500
hyphen (-), 497, 501
parentheses (), 497, 502
period (.), 497, 502
pipe (|), 497, 502
plus sign (+), 497, 502
question mark (?), 497, 503
regex reference topology, 497
table of, 497
underscore (_), 497, 498–499
relay agents (DHCP), 12–14, 30–31
RELAY-FORW message, 30
RELAY-REPL message, 30
RELEASE message, 30
Reliable Transport Protocol (RTP), 78
remote transfer troubleshooting
FTP (File Transfer Protocol), 901–902
HTTP (Hypertext Transfer Protocol), 900–901
HTTPS (Hypertext Transfer Protocol over Secure Sockets Layer), 900–901
SCP (Secure Copy Protocol), 902–903
TFTP (Trivial File Transfer Protocol), 899–900
remote-as statement, 454
RENEW message, 30
replay detection, 824, 833–834
REPLY message, 30
Reply packets
EIGRP (Enhanced Interior Gateway Routing Protocol), 78
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 191
reported distance (RD), 76, 109, 163
REQUEST message, 30
Request packets (EIGRP), 78
resolution messages (NHRP), 775
Resource Reservation Protocol (RSVP), 755
responder address, NHRP (Next Hop Resolution Protocol), 775
reverse routes, 126–129
reverse transit NHS record, 775
RFCs (requests for comments)
RFC 1930, 429
RFC 1966, 457, 461
RFC 2328, 247
RFC 2332, 774
RFC 2858, 430
RFC 4271, 450
RFC 4306, 825
RFC 5340, 372
RFC 6996, 429
RFC 7300, 429
RFC 7868, 72
RIB (Routing Information Base), 238
failures, verifying, 582
NHRP routing table manipulation,
example of, 800–801
next-hop override routing table, 801–802
with summarization, 802–806
redistribution and, 653–655
route summarization, 486–488
rib message flag (NHRP), 788
RID (router ID), 374
BGP (Border Gateway Protocol), 435, 551
EIGRP (Enhanced Interior Gateway Routing Protocol), 87–88
OSPF (Open Shortest Path First), 229
OSPFv2 (Open Shortest Path First version 2), 330, 344–346
verification of, 395
RIP (Routing Information Protocol), 40, 125
route advertisement, 440–443, 609–610
route aggregation, 489–491
route distinguishers (RD), 746–747, 757–759
route filtering
with ACLs (access control lists), 848
BGP (Border Gateway Protocol), 582–587
AS_Path, 497–505
BGP route processing logic, 493–494
clearing of BGP connections, 507
distribute list, 495–496, 586–587
overview of, 493–495
prefix list, 496
reference BGP table, 494–495
regular expressions, 497–503
route maps, 505–507
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 197, 201–202
OSPFv2 (Open Shortest Path First version 2), 337–339
route manipulation, EIGRP (Enhanced Interior Gateway Routing Protocol)
definition of, 129
route filtering, 129–132
traffic steering with offset lists, 132–135
route maps, 505–507
complex matching, 631–632
components of, 628–629
conditional match options, 629–631
continue keyword, 634
multiple conditional match conditions, 631
optional actions, 632–634
processing order, 628
redistribution troubleshooting with, 702
trouble tickets: traffic routing from 10.1.4.0/24 to 10.1.1.0/24
topology, 639
trouble ticket 15–1, 639–643
trouble ticket 15–2, 643–645
trouble ticket 15–3, 645–646
route redistribution. See redistribution
route reflectors, iBGP (internal BGP) sessions, 457–461
configuration, 459–461
loop prevention, 461
route reflector clients, 457
route refresh, 507
route summarization
BGP (Border Gateway Protocol)
aggregate addresses, 482–488
aggregation with suppression, 485–488
atomic aggregate attribute, 488–489
IPv6 summarization, 492–493
overview of, 482
route aggregation with AS_SET, 489–491
EIGRP (Enhanced Interior Gateway Routing Protocol)
- automatic, 118
- hierarchical nature of, 114
- interface-specific, 114–116
- metrics, 117
- summary discard routes, 116–117

OSPF (Open Shortest Path First)
- external summarization, 303–305
- impact on SPF topology calculation, 299–301
- inter-area summarization, 301–303
- LSA reduction through area segmentation, 298–299
- topology example with summarization, 300–301

OSPFv2 (Open Shortest Path First version 2)
- better source of information, 334–337
- interface not running OSPF process, 333–334
- overview of, 332–333

route-map keyword, 628, 635, 689, 690, 699

Router Advertisements (RAs), 23–24

router bgp command, 435, 462

router eigrp command, 80, 81, 142, 192, 741

router ID (RID). See RID (router ID)

router LSAs (link-state advertisements), 264–269
- flooding, 264–265
- generic OSPF LSA output for, 265
- examining, 266–268
- neighbor states for, 268
- topology, 266
- visualization of, 268–270

router message flag (NHRP), 788

router ospf command, 235, 745

router ospfv3 command, 374

Router Solicitation (RS) message, 23

router-id command, 229, 330, 374

route-target export command, 747, 759

route-target import command, 747, 759

Routing Information Base. See RIB (Routing Information Base)

Routing Information Protocol (RIP), 40, 125, 238

routing information sources
AD (administrative distance) and, 39–41
EIGRP (Enhanced Interior Gateway Routing Protocol), 154–157
OSPFv2 (Open Shortest Path First version 2), 334–337
routing loops caused by redistribution, troubleshooting, 679–686
distribute list to control OSPF routes, 683–684
EIGRP AD manipulation, 682–683
route tags, 684–686
routing topology, 679–680
sample scenario for, 679–682
routing tables
BGP (Border Gateway Protocol), 440
aggregation, 483–485
examining routes in, 573–574
reference BGP table, 494–495
suppression, 485–488
data structures and, 39
without GRE tunnel, 770
with GRE tunnel, 773–774
IP, 32–35
NHRP (Next Hop Resolution Protocol), 800–806
next-hop override routing table, 801–802
routing tables, showing, 800–801
with summarization, 802–806
VRF-Lite
EIGRP routes in VRF routing table, 743–744
IPv4 global routing table, 735
IPv4 VRF routing tables, 735–736
RED VRF instance routing table, 741
RRs (route reflectors), 457–461
RS (Router Solicitation) message, 23
RSVP (Resource Reservation Protocol), 755
RTP (Real-Time Transport Protocol), 79
RTP (Reliable Transport Protocol), 78
RTs (route targets), 757–759
S
SAFI (subsequent address family identifier), 430
SAs (security associations), 825, 837–838
scalability, BGP (Border Gateway Protocol)
iBGP (internal BGP) sessions, 457–461, 462–465
IOS XE peer groups, 517–518
IOS XE peer templates, 518–519
scores, exam, C25.0122-C25.0136
SCP (Secure Copy Protocol), 902–903
Secure Hash Algorithm (SHA), 831
Secure Shell (SSH), 897–898
secure transport, IPsec, 821–823
security association database (SADB), 833
security associations (SAs), 825, 837–838
Security Parameter Index (SPI), 381–382
seed metrics, 655–656, 678–679, 688
Seq # field (OSPF LSDB), 265
sequences, LSA (link-state advertisement), 264
sequential protocol redistribution, 653
server-private name command, 870
servers, DHCP (Dynamic Host Configuration Protocol) for IPv4, 15
service dhcp command, 13
service password-encryption command, 898–899
service policy, 883–885
service timestamps [debug | log]
 [datetime | uptime] command, 905
service-level agreements (SLAs), 755
sessions. See eBGP (external BGP);
iBGP (internal BGP)
set aigp-metric command, 539
set as-path prepend command, 540, 632, 656
set commands, 630–634, 635
set community command, 514
set community local-as command, 511
set community no-advertise command, 509
set community no-export command, 510
set ikev2-profile command, 832
set ip next-hop command, 632, 656
as-set keywords set keyword,
 aggregate-address command, 489–490
set local-preference command, 532, 632–633, 656
set metric command, 546, 633, 657, 659
set origin command, 543, 633, 657
set tag command, 633
set transform-set command, 832
set weight command, 529, 631, 657
SHA (Secure Hash Algorithm), 831
shared keyword, 833
shortcuts, NHRP (Next Hop Resolution Protocol), 777
shortest path first (SPF) algorithm,
 225, 294, 314, 392. See also OSPF
 (Open Shortest Path First)
show [ip | ipv6] access-list command, 702
show [ip | ipv6] prefix-list command, 702
show access-list command, 338, 646, 885
show access-lists command, 150–151, 158, 327–328, 846, 877–878
show adjacency detail command, 38
show bgp afi safi community command, 513
show bgp afi safi community local-as command, 512
show bgp afi safi community
 no-advertise command, 509
show bgp afi safi community
 no-export, 511
show bgp afi safi detail command, 513
show bgp afi safi neighbors ip-address command, 438–440
show bgp afi safi regexp regexp-pattern command, 497
show bgp afi safi summary command, 437
show bgp all command, 701
show bgp command, 443, 445, 446, 447, 531
show bgp ipv4 unicast command,
 444–445, 453, 454, 536, 537–538, 544, 573, 574, 577, 580–583,
show bgp ipv4 unicast neighbors | i
 prefix command, 607–608
show bgp ipv4 unicast neighbors
 | include BGP command, 568, 717–718
show bgp ipv4 unicast neighbors
 command, 559, 567, 587, 721
show bgp ipv4 unicast neighbors
 ip_address advertised-routes
 command, 583–585, 600–601, 607, 609
show bgp ipv4 unicast neighbors
 ip_address routes command, 583–584, 599–600, 602
show bgp ipv4 unicast regexp .
 command, 503
show bgp ipv4 unicast regexp [4–8]0
 command, 501
show bgp ipv4 unicast regexp ^[0–9]+([0–9]+)?$ command, 503
show bgp ipv4 unicast regexp ^[13]00
 [^3–8] command, 501
show bgp ipv4 unicast regexp ^300
 command, 499–500
show bgp ipv4 unicast regexp _.$
 command, 502
show bgp ipv4 unicast regexp _4(5|0)$
 command, 502
show bgp ipv4 unicast regexp _40$
 command, 500
show bgp ipv4 unicast regexp _100$
 command, 499
show bgp ipv4 unicast regexp 1[14]
 command, 501
show bgp ipv4 unicast regexp
 (10)+[^(100)] command, 502
show bgp ipv4 unicast rib-failure
 command, 582
show bgp ipv4 unicast summary
show bgp ipv6 unicast | begin Network
 command, 473, 475
show bgp ipv6 unicast command, 469–470, 595–596, 615, 616–617
show bgp ipv6 unicast neighbors
 command, 468
show bgp ipv6 unicast summary
 command, 468–469, 472, 594, 597–598, 616
show cdp neighbors command, 142,
 172, 319, 357, 365
show cdp neighbors detail command,
 406, 703
show cef interface command, 875
show class-map command, 880, 885
show clock command, 849–850, 905
show crypto ikev2 profile command,
 830
show crypto ikev2 stats command, 839
show crypto ipsec sa | include spi
 command, 381–382
show crypto ipsec sa command, 837
show debug condition command, 906
show dmvpn command, 785–786
show dmvpn detail command, 785,
 786–787, 813, 816, 836, 837
show eigrp address-family ipv4
 interfaces command, 206, 215
show eigrp address-family ipv4
 interfaces detail command, 206–207
show eigrp address-family ipv4
 neighbors command, 207, 215
show eigrp address-family ipv4
 topology command, 208–209
show eigrp address-family ipv6
 interfaces command, 206
show eigrp address-family ipv6
 neighbors command, 207
show eigrp address-family ipv6
 topology command, 208–209
show eigrp protocols command,
 205–206
show flash command, 899–900
show flow exporter command, 926
show flow interface command, 926
show flow monitor command,
 923–925, 926
show flow monitor name command,
 924–925
show flow record command, 923–924
show interface command, 99, 148
show interface tunnel command, 773
show ip access-list command, 586–587
show ip access-lists command, 856–857
show ip arp command, 37, 43–46
show ip bgp command, 573
show ip bgp neighbors command, 559
show ip bgp summary command, 559
show ip cache flow command, 920, 923
show ip cef command, 37, 927
show ip cef exact-route command, 37
show ip dhcp binding command, 17
show ip dhcp conflict command, 17
show ip eigrp interface detail command, 93
show ip eigrp interfaces command, 84, 89, 144, 154, 171, 172, 175, 178
show ip eigrp interfaces detail command, 84, 109, 126, 148–150, 151, 162
show ip eigrp neighbors command, 85, 141, 171, 173, 174, 182, 703
show ip eigrp neighbors detail command, 160
show ip eigrp topology active command, 112–113
show ip eigrp topology all-links command, 100, 163–164
show ip eigrp topology command, 110, 112, 691
EIGRP (Enhanced Interior Gateway Routing Protocol) troubleshooting, 154–155, 162–165, 182
path metric calculation, 96
route redistribution, 655, 660, 662, 705, 706–707
show ip eigrp vrf command, 741–743
show ip flow export command, 921–922
show ip flow interface command, 921
show ip http client all command, 900
show ip interface brief command, 142, 172, 179, 215, 319, 561, 708
show ip interface command, 9–10, 45, 148, 848
OSPFv2 (Open Shortest Path First version 2), 327–328
show ip nat translations command, 906
show ip nhrp command, 38, 787, 789–790
show ip ospf command, 326, 340, 348–349
show ip ospf database asbr-summary command, 280–281
show ip ospf database command, 264, 265
OSPFv2 (Open Shortest Path First version 2), 335, 338–339, 356–357
redistribution troubleshooting, 710–711
route redistribution, 695–696, 709
show ip ospf database external command, 277–278, 664–665, 668, 669
show ip ospf database network command, 271
show ip ospf database nssa-external command, 282–283
show ip ospf database router command, 266–268, 335–336, 362–363
show ip ospf database summary command, 274–275
show ip ospf interface brief command, 236, 245, 319–320, 322–323, 329, 357, 365
show ip ospf interface command, 235–236, 248–255, 321
DR (designated router) verification, 342–344
mismatched area numbers, 322
mismatched authentication information, 326–327
mismatched network types, 331–332
trouble ticket, 357–359
show ip ospf neighbor command, 237–238, 317, 328, 351, 355, 357, 364
show ip ospf virtual-links command, 308–309, 352
show ip policy command, 639, 641, 646
show ip prefix-list command, 158, 182–183, 608, 609, 853, 862–863
show ip protocols command, 98, 100, 114, 206, 410–411, 690
BGP (Border Gateway Protocol) troubleshooting, 585–587, 607
EIGRP (Enhanced Interior Gateway Routing Protocol) troubleshooting
bad or missing network command, 153
discontiguous networks and automsummarization, 166–167
incorrect network statement, 144–145
load balancing, 168–169
mismatched autonomous system numbers, 142–143
mismatched K values, 145–146
passive interfaces, 89–91, 146–147
route filtering, 158
route summarization, 167–168
stub configuration, 159–160
OSPFv2 (Open Shortest Path First version 2) troubleshooting, 320
duplicate router IDs, 330, 344–346
interface not running OSPF process, 320, 333–334
load balancing, 352–353
mismatched area type, 323–324
passive interfaces, 325–326
route filtering, 337–338
trouble tickets, 355
prefix list trouble ticket, 862
redistribution troubleshooting, 695, 700–701, 704–705, 718–719, 720–721
show ip rip database command, 654
show ip route bgp command, 447, 574
show ip route command, 43, 116, 214–215, 640
AD (administrative distance) verification, 41
BGP (Border Gateway Protocol) troubleshooting, 561, 562, 601, 604, 611
NHRP (Next Hop Resolution Protocol), 790–791
OSPF (Open Shortest Path First), 296, 298
OSPFv2 (Open Shortest Path First version 2), 354, 356, 360, 363–364
packet-forwarding process troubleshooting, 35–37
PBR (policy-based routing), 637
prefix list trouble ticket, 862
static routing, 62–66
unequal-cost load balancing, 102
VRF-Lite configuration, 734
show ip route next-hop-override command, 801–802
show ip route ospf command, 238–239, 241, 302, 303, 304–305, 309, 334, 363, 667
show ip route ospfv3 command, 418
show ip route static command, 42
show ip route vrf command, 734–736, 738–739, 739–741, 743–744
show ip sla application command, 912–913
show ip sla configuration command, 913–914
show ip sla responder command, 915–916
show ip sla statistics command, 914–915
show ip ssh command, 897, 898
show ip vrf command, 730, 731–732
show ip vrf interfaces command, 733–734
show ipv6 access-list command, 851, 860–861
show ipv6 cef command, 927
show ipv6 dhcp binding command, 28
show ipv6 dhcp interface command, 28
show ipv6 dhcp pool command, 28
show ipv6 eigrp interfaces command, 193, 200, 201
show ipv6 eigrp interfaces detail command, 199, 200, 203
show ipv6 eigrp neighbors command, 193, 197–198, 210–211
show ipv6 eigrp neighbors detail command, 202–203
show ipv6 eigrp topology command, 209–210, 693, 713–714, 715–716
show ipv6 interface brief command, 198, 210–211
show ipv6 neighbors command, 47
show ipv6 nhrp [brief | detail] command, 813
show ipv6 nhrp nhs [detail] command, 813
show ipv6 nhrp traffic command, 813
show ipv6 ospf command, 395–396, 402–403
show ipv6 ospf database command, 398–399, 697–698
show ipv6 ospf interface brief command, 396, 405–406, 715
show ipv6 ospf interface command, 397, 406–407
show ipv6 ospf neighbor command, 397, 405
show ipv6 prefix-list command, 201–202, 853
show ipv6 route bgp command, 471
show ipv6 route command, 201, 405

BGP (Border Gateway Protocol) troubleshooting, 615
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 213
OSPFv3 (Open Shortest Path First version 3) troubleshooting, 420
show tcp brief command

redistribution troubleshooting, 693–694, 698–699, 712, 714, 716
VRF-Lite configuration, 734
show ipv6 route eigrp command, 193, 196
show ipv6 route ospf command, 378, 399–400, 401–402, 404, 418
show ipv6 route static command, 47
show key chain command, 93, 199
show line vty command, 895
show logging command, 904–905
show mpls ldp bindings command, 753
show ospfv3 command, 411–413
show ospfv3 database command, 388–390, 415–418
show ospfv3 database link [self-originate] command, 388
show ospfv3 database network [self-originate] command, 387–388
show ospfv3 database router command, 385
show ospfv3 interface brief command, 413
show ospfv3 interface command, 377, 379, 382–383, 413–414
show ospfv3 ipv6 command, 421
show ospfv3 ipv6 neighbor command, 377
show ospfv3 neighbor command, 414
show policy-map command, 885
show policy-map control-plane [input | output] command, 883–885
show route-map command, 613–614, 642
EIGRP (Enhanced Interior Gateway Routing Protocol), 158
OSPFv2 (Open Shortest Path First version 2), 338
PBR (policy-based routing), 641, 644
show run | include ip route command, 63, 364
show run | include ipv6 route command, 65
show run | include ipv6 unicast-routing command, 25
show run | s router bgp command, 569
show run | section ipv6 router eigrp command, 201–202, 212
show run | section ipv6 router ospf command, 402
show run | section router bgp command, 565–566, 608, 612–613, 616, 720
show run | section router eigrp command, 145, 158, 172, 179, 706, 710
show run | section router ospf command, 353, 365, 710
show run | section router ospfv3 command, 422
show run interface command, 52, 56, 59–60, 407–408
EIGRP (Enhanced Interior Gateway Routing Protocol), 148–150
OSPFv2 (Open Shortest Path First version 2), 329, 359
show running-config | section router eigrp command, 215–216
show running-config flow record command, 923–924
show running-config interface command, 324, 326
show snmp host command, 910
show snmp mib ifmib ifindex detail command, 909
show snmp user command, 909
show snmp view command, 910
show ssh command, 898
show tcp brief all command, 564
show tcp brief command, 433
show time-range AFTERHOURS command, 849
show track command, 917–918
show users command, 895
show version command, 897
show vrf command, 730, 731–732
show vrf ipv4 unicast interfaces command, 733–734, 737–738, 739–740
show vrf ipv6 unicast interfaces command, 733–734
SIA (stuck in active) queries, 112–114
Simple Network Management Protocol (SNMP), 906–910
single-hop sessions, 430–431
SLAAC (stateless address autoconfiguration), 22–27
SLAs (service-level agreements), 755
SNA (Systems Network Architecture), 769
SNMP (Simple Network Management Protocol), 906–910
snmp trap ip verify drop-rate command, 875
snmp-server host command, 907, 908
snmp-server ifindex persist command, 907, 909
soft keyword, 507
SOLICIT message, 29, 30
source and responder topology, Cisco IOS IP SLA, 910–911
Source Guard, 887
source protocols, redistribution, 651
source-specific redistribution behaviors, 657–658
Spanning Tree Protocol (STP), 15–16
SPF (shortest path first) algorithm, 225, 294, 314. See also OSPF (Open Shortest Path First)
SPF trees (SPTs), 225–226
SPI (Security Parameter Index), 381–382
split horizon, 203–204
BGP (Border Gateway Protocol), 579–580
spoke routers, 782–784
spoke-to-hub phase, 777
spoke-to-spoke communication, DMVPN tunnels, 777
initiation of traffic between spoke routers, 795
NHRP routing table manipulation
next-hop override routing table, 801–802
routing tables, showing, 800–801 with summarization, 802–806
spoke-to-spoke tunnel formation, 796–800
spot-the-difference troubleshooting, 142–143
SPTs (SPF trees), 225–226
SSH (Secure Shell), 897–898
standard ACLs (access control lists), 622–623
standard IPv4 ACLs (access control lists), 846
stateful DHCPv6, 27–28
stateless address autoconfiguration (SLAAC), 22–27
stateless DHCPv6, 28–29
State/PfxRcd field (BGP), 438
states
BGP (Border Gateway Protocol), 432–435, 563
OSPF (Open Shortest Path First) neighbors, 230
OSPFv2 (Open Shortest Path First version 2), 318–319
TCP (Transmission Control Protocol) sessions, 564
static routes, 3
 front door VRF (FVRF), 810
IPv4, 42–46, 61–64
IPv6, 46–48, 64–66
status, of DMVPN (Dynamic Multipoint Virtual Private Network) tunnels, 784–787
steering traffic, with EIGRP offset lists, 132–135
STP (Spanning Tree Protocol), 15–16
strict mode, uRPF (Unicast Reverse Path Forwarding), 874
stub configuration
 EIGRP (Enhanced Interior Gateway Routing Protocol), 158–160
 EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 202–203
stub networks, 269
stub routers
 configuration, 119–121
 stub site functions, 121–125
stubby areas, 395
 OSPF (Open Shortest Path First), 284–287
 not-so-stubby-areas (NSSAs), 289–292
 overview of, 284
 stub areas, 284–287
 totally not-so-stubby-areas (NSSAs), 292–294
 totally stubby areas, 287–289
 OSPFv2 (Open Shortest Path First version 2), 339–340
stub-site wan-interface command, 124
stuck in active (SIA) queries, 112–114
study plan
 assessing exam readiness, C25.0122-C25.0136
 exam updates, 954–956
 exam-day advice, 956-C25.0083
 failed attempts
 note-taking after, C25.0068-C25.0083
 study suggestions after, C25.0138-C25.0146
 final thoughts on, C25.0163-C25.0165
 practice exams
 exam scores, C25.0122-C25.0136
 tips for, C25.0085-C25.0120
 pre-exam suggestions, 956
 miscellaneous suggestions, 955–956
 time-check methods, 954–955
 resources, 952–953
 study tasks, C25.0148-C25.0161
subinterfaces, VRF-Lite configuration, 732–733
subnet masks, 10–11
subnets
 determining IPv4 addresses in, 10–11
 EIGRP (Enhanced Interior Gateway Routing Protocol), 148
 IPv4 (Internet Protocol version 4), 10–11
 OSPFv2 (Open Shortest Path First version 2), 324–325
subnets keyword, 664, 694–695
suboptimal routing caused by redistribution, 678–679
subsequent address family identifier (SAFI), 430
successors, 76
summarization of routes. See route summarization
summary discard routes, 116–117

summary LSAs (link-state advertisements), 271–276
- conceptual diagram, 273
- examining, 274–275
- fields, 275
- generic OSPF LSA output for, 273–274
- visualization of, 275–276

summary-address command, 115–116, 349

summary-metric command, 117

summary-only keyword, 485

suppression, aggregation with, 485–488

synchronization, BGP (Border Gateway Protocol), 450

syslog, 807, 904–906

Systems Network Architecture (SNA), 769

tables, routing. See routing tables

TACACS+ server, 869–874

tag keyword, 664

tagged routes, 684–686

TblVer field (BGP), 438

TCAM (Ternary Content Addressable Memory), 886

TCP (Transmission Control Protocol)
- port numbers, 430, 566, 847, 896, 898
- session state, 564

TE (Traffic Engineering), 755

Telnet
- IPv4 ACL (access control list) trouble ticket, 855–856, 857
- IPv6 ACL (access control list) trouble ticket, 858–859, 861
- vty access troubleshooting, 895–897
- template peer-policy command, 519
- template peer-session command, 518–519
- TEMPLA TE-CHILD-POLICY, 519
- TEMPLA TE-P ARENT-POLICY, 519
- templates, IOS XE peer templates, 518–519
- terminal monitor command, 896, 904
- terminal no monitor command, 896
- Ternary Content Addressable Memory (TCAM), 886
- test aaa command, 872
- TFTP (Trivial File Transfer Protocol), 27, 899–900
- time to live (TTL), 750, 774
eBGP (external BGP), 453
- packet-forwarding process, 32–33
- TTL expired in transit, 361–362
- time-based IPv4 ACLs (access control lists), 848–850
- time-burner questions, 945
- time-check methods, 954–955
- time-exceeded message, 32–33
- timeout (NHRP), 810–811
- timers
 - BGP (Border Gateway Protocol), 572–573
 - EIGRP (Enhanced Interior Gateway Routing Protocol)
 - configuration, 113–114
 - convergence, 109–112
 - hello timer, 108–109
 - hold timer, 108–109
 - SIA (stuck in active) queries, 112–114
 - timers, 108–109
 - troubleshooting, 151, 200
- NetFlow, 923
OSPF (Open Shortest Path First), 254–255
OSPFv2 (Open Shortest Path First version 2), 321–322
timers active-time command, 113
topology
BFD (Bidirectional Forwarding Detection), 466
BGP (Border Gateway Protocol)
 confederations, 462
eBGP (external BGP), 454–455
iBGP (internal BGP), 454–455
IPv6 sample topology, 492
Local AS community, 511–512
local preference, 533
MP-BGP (Multiprotocol BGP), 465–466, 593–594
No_Advertise community, 509
No_Export community, 510
path selection, 543
regular expressions, 497
route summarization, 482–483
simple eBGP topology, 436–437
EIGRP (Enhanced Interior Gateway Routing Protocol)
 convergence, 109–112
distribution list filtering, 130
offset list, 132–133
route summarization, 114
sample topology and configuration, 83–84
SIA (stuck in active) queries, 112–114
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 208–209
GRE (Generic Routing Encapsulation) tunnels, 769–770
IPv4 (Internet Protocol version 4), 31–32
ACL (access control list), 855
trouble tickets, 48
IPv6 (Internet Protocol version 6), 858
MP-BGP (Multiprotocol BGP), 593
OSPF (Open Shortest Path First)
 broadcast networks, 247
default route, 241–242
loopback networks, 253–254
LSA (link-state advertisement), 264
nonbroadcast networks, 247–248
point-to-multipoint networks, 249–253
point-to-point (P2P) networks, 248–249
sample topology and configuration, 233–235
topology example with summarization, 300–301
Type 1 LSA (router LSA), 266
OSPFv3 (Open Shortest Path First version 3), 374–375, 401
PBR (policy-based routing) trouble tickets, 639
prefix list trouble ticket, 861
redistribution
 BGP, 670–672
 EIGRP, 658–661
 EIGRP-to-EIGRP, 661–663
 OSPF, 663–667
routing loops caused by redistribution, 679–680
suboptimal routing caused by redistribution, 678
route verification, 862–863
topology base command, 84, 118
topology table, EIGRP (Enhanced Interior Gateway Routing Protocol), 76–77
totally not-so-stubby-areas (NSSAs), 292–294, 395
totally stubby areas, 287–289, 395
traceroute command
BGP (Border Gateway Protocol), 605, 610, 614
NHRP (Next Hop Resolution Protocol), 791
OSPFv2 (Open Shortest Path First version 2), 362
OSPFv3 (Open Shortest Path First version 3), 420
PBR (policy-based routing), 635
redistribution troubleshooting, 678, 707
static routing trouble tickets, 64–65, 66
Traffic Engineering (TE), 755
traffic steering, 132–135
transform set (IPsec), 831–832
transit areas, 350
transit branch routing, 119–121
transit networks, 268
Transmission Control Protocol. See TCP (Transmission Control Protocol)
transport input command, 895
transport input ssh command, 897
transport mode (ESP), 825, 826–827
transport output ssh command, 898
transport output telnet command, 896
Trivial File Transfer Protocol (TFTP), 27, 899–900
trouble tickets. See also troubleshooting
BGP (Border Gateway Protocol)
link between R1 and R3 not forwarding traffic to BGP AS 65501, 598–604
MP-BGP default route not being learned, 615–617
traffic out of autonomous system flowing through R3 and across backup link, 610–614
users in 10.1.1.0/26 and 10.1.1.64/26 unable to access resources at 10.1.5.5, 604–610
conditional forwarding
topology, 639
trouble tickets, 639–646
EIGRP (Enhanced Interior Gateway Routing Protocol), 169–176, 177–184
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 209–218
IPv4 (Internet Protocol version 4)
PC1 not able to access resources on 192.0.2.1, 48–53
static routes, 61–64
topology, 48
users in IPv4 Branch unable to access resources outside Branch office, 703–707
users unable to access resources in classless network, 708–711
IPv4 ACL (access control list), 855–857
failed Telnet and successful ping, 855–856
named ACL configuration mode, 857
packet match verification, 857
successful Telnet connection, 857
topology, 855
verification of ACL configuration, 856–857
IPv6 (Internet Protocol version 6)
 Branch receiving inter-area routes other than default, 401–404
 Branch users unable to access resources outside Branch office, 404–408
 IPv6 users unable to access resources, 711–717
 PC1 not able to access resources on 2001:db8:d::1, 54–61
 users in BGP autonomous system unable to access IPv4 resources, 717–721
IPv6 ACL (access control list), 858–861
 ENARSI IPv6 ACL on R1, 860–861
 failed Telnet and successful ping, 858–859
 successful Telnet connection, 861
topology, 858
 verification of ACL configuration, 859–860
OSPFv2 (Open Shortest Path First version 2)
 routers R1 and R2 not forming neighbor adjacency, 364–366
 users in 10.1.1.0/24 not able to access resources in 192.168.1.0/24, 353–364
OSPFv3 (Open Shortest Path First version 3)
 Branch receiving inter-area routes other than default, 401–404
 Branch users unable to access resources outside Branch office, 404–408
 topology, 401
prefix list review, 862–863
topology, 862–863
topology, 861
troubleshooting, See also trouble tickets
AAA (authentication, authorization, and accounting), 869–874
BGP (Border Gateway Protocol)
 ACLs (access control lists), 566–567
 BGP packets sourced from wrong IP address, 564–566
 incorrect neighbor statement, 564
 interface is down, 561
 Layer 3 connectivity is broken, 561–562
 misconfigured peer groups, 570–571
 mismatched authentication, 570
 neighbor lacks route to local router, 563
 neighbor verification, 559–560
 overview of, 559–560
 path to neighbor is through default route, 562–563
timers, 572–573
TTL (time to live) expiration, 568–570
Cisco IOS IP SLA, 916–917
CoPP (Control Plane Policing)
 ACL (access control list) configuration, 876–878
 class map configuration, 878–880
 overview of, 875–876, 885
 policy map configuration, 880–882
 service policy applied to control plane interface, 883–885
device management
 console access, 893–894
 overview of, 893
 vty access, 894–899
DHCP (Dynamic Host Configuration Protocol) for IPv4, 16–18
DMVPN (Dynamic Multipoint Virtual Private Network) tunnels
 front door VRF (FVRF), 808–810
 outbound interface selection, 808
EIGRP (Enhanced Interior Gateway Routing Protocol)
 autosummarization, 165–168
 better source of information, 154–157
 discontiguous networks, 165–167
 feasible successors, 162–165
 interface is shut down, 160
 load balancing, 168–169
 neighbor adjacencies, 141–151
 neighbor issues, 197–201
 overview of, 151–152
 route filtering, 157–158
 routes, 151–162, 201–204
 split horizon, 161–162
 stub configuration, 158–160
trouble tickets, 169–176, 177–184
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6)
 named EIGRPv6, 204–209
 trouble ticket: users unable to access Internet, 209–213
 trouble ticket: users unable to access resources outside their LAN, 213–218
IPv4 (Internet Protocol version 4)
 IPv4 static routes, 61–64
 PC1 not able to access resources on 192.0.2.1, 48–53
 trouble tickets topology, 48
IPv4 ACLs (access control lists), 846–847
 importance of, 845
 packet filtering, 848
 time-based, 848–850
 trouble ticket, 855–857
IPv6 (Internet Protocol version 6), 64–66
 trouble ticket 1–3: PC1 not able to access resources on 2001:db8:d::1, 54–57
 trouble ticket 1–4: PC1 not able to access resources on 2001:db8:d::1, 57–61
IPv6 ACLs (access control lists)
 importance of, 850
 packet filtering, 851–852
 reading, 850–851
 trouble ticket, 858–861
local PBR (policy-based routing), 638–639
management tools
 BFD (Bidirectional Forwarding Detection), 927–928
Cisco DNA Center Assurance, 929–940
Cisco IOS IP SLA, 910–917
Flexible NetFlow, 923–927
NetFlow, 919–924
Object Tracking, 917–919
SNMP (Simple Network Management Protocol), 906–910
syslog, 904–906
OSPF (Open Shortest Path First), 231–232
OSPFv2 (Open Shortest Path First version 2)
ACLs (access control lists), 327–328
adjacency states, 318–319
advertisement tracking, 346–348
better source of information, 334–337
default routes, 353
different subnets, 324–325
discontiguous areas, 350–352
duplicate router IDs, 330, 344–346
interface is down, 319
interface not running OSPF process, 319–321, 333–334
load balancing, 352–353
mismatched area numbers, 322–323
mismatched area types, 323–324
mismatched authentication information, 326–327
mismatched network types, 330–332
mismatched timers, 321–322
MTU mismatch, 328–330
neighbor verification, 317
overview of, 317–319, 332–333
passive interfaces, 325–326
route filtering, 337–339
route summarization, 348–350
stub area configuration, 339–340
trouble ticket: routers R1 and R2 not forming neighbor adjacency, 364–366
trouble ticket: users in 10.1.1.0/24 not able to access resources in 192.168.1.0/24, 353–364
wrong designated router elected, 341–344
OSPFv3 (Open Shortest Path First version 3)
debug ipv6 ospf hello command, 406
debug ospfv3 command, 418
default-information originate command, 422
overview of, 394–395
sample configuration, 408–410
show cdp neighbors detail command, 406
show ip protocols command, 410–411
show ip route ospfv3 command, 418
show ipv6 interface command, 400
show ipv6 ospf command, 395–396, 402–403
show ipv6 ospf database command, 398–399
show ipv6 ospf interface brief command, 396, 405–406
show ipv6 ospf interface command, 397, 406–407
show ipv6 ospf neighbor command, 397, 405
troubleshooting

show ipv6 protocols command, 395, 410–411
show ipv6 route command, 405, 420
show ipv6 route ospf command, 399–400, 401–402, 404, 418
show ospfv3 command, 411–413
show ospfv3 database command, 415–418
show ospfv3 interface brief command, 413
show ospfv3 interface command, 413–414
show ospfv3 ipv6 command, 421
show ospfv3 neighbor command, 414
show run | section router ospfv3 command, 422

topology, 401

trouble ticket: Branch receiving inter-area routes other than default, 401–404

trouble ticket: Branch users unable to access IPv6-enabled resources on Internet, 419–423

trouble ticket: Branch users unable to access resources outside Branch office, 404–408

overlay networks, 806–810

packet-forwarding process, 35–38

prefix lists, 852
 * processing, 854–855
 * reading, 853–854
 * trouble ticket, 861–863

redistribution
 * into EIGRP, 689–694
 * into OSPF, 694–699
 * with route maps, 702

route redistribution review, 687–689

routing loops, 679–686

suboptimal routing, 678–679

trouble ticket: IPv6 users unable to access resources, 711–717

trouble ticket: users in BGP autonomous system unable to access IPv4 resources, 717–721

trouble ticket: users in IPv4 Branch unable to access resources outside Branch office, 703–707

trouble ticket: users unable to access resources in classless network, 708–711

troubleshooting targets for, 689

route maps
 * topology, 639
 * trouble tickets, 639–646

uRPF (Unicast Reverse Path Forwarding), 874–875

TTL (time to live), 750, 774

eBGP (external BGP), 453

packet-forwarding process, 32–33

TTL expired in transit, 361–362, 568–570

tunnel destination command, 770, 782

tunnel key command, 781, 782, 792

tunnel keys, 782, 792

tunnel mode (ESP), 825, 827

tunnel mode gre multipoint command, 780, 792

tunnel mode gre multipoint ipv6 command, 812, 813

tunnel protection ipsec profile profile-name [shared] command, 833

tunnel source command, 770, 780, 782, 792
virtual links

See DMVPN (Dynamic Multipoint Virtual Private Network) tunnels; GRE (Generic Routing Encapsulation) tunnels

Type 1 LSA (router LSA), 264–269
flooding, 264–265
generic OSPF LSA output for, 265
examining, 266–268
neighbor states for, 268
topology, 266
visualization of, 268–270

Type 2 LSA (network LSA), 269–271

Type 3 LSA (summary LSA), 271–276
conceptual diagram, 273
examining, 274–275
fields, 275
generic OSPF LSA output for, 273–274
visualization of, 275–276

Type 4 LSA (ASBR summary LSA), 279–281

Type 5 LSA (external LSA), 277–279, 679

Type 7 LSA (NSSA external LSA), 281–283

Un/Reliable field (EIGRP), 85
up state, GRE (Generic Routing Encapsulation), 771

Update packets
BGP (Border Gateway Protocol), 431, 432
EIGRP (Enhanced Interior Gateway Routing Protocol), 78
EIGRPv6 (Enhanced Interior Gateway Routing Protocol version 6), 191
updates, exam, 954–956
impact on study plan, 955–956
news about, 956
schedule for, 954–955

Up/Down field (BGP), 438
uRPF (Unicast Reverse Path Forwarding), 866, 874–875
used message flag (NHRP), 788
User Datagram Protocol. See UDP (User Datagram Protocol)
username admin password 0 letmein command, 869–870

variable-length subnet masking (VLSM), 72, 222
variance, 168–169
variance command, 168
variance multiplier, 100–102
variance value, 100–102
vendor private extension (NHRP), 776
views, SNMP (Simple Network Management Protocol), 910
VIRL (Virtual Internet Routing Lab), 952
Virtual Internet Routing Lab (VIRL), 952
virtual links
OSPF (Open Shortest Path First), 307–309
OSPFv2, 350–352
virtual routing and forwarding. See VRF (virtual routing and forwarding)
VLANs, 15–16
VLSM (variable-length subnet masking), 72, 222
VPNs (virtual private networks), 119
definition of, 724
labels, 759
MPLS Layer 3 VPNs
architecture, 756–757
CE (customer edge) routers, 756
label stack, 759–761
PE (provider edge) routers, 756
RD (route distinguishers), 757–759
RTs (route targets), 757–759
VPNv4 addresses, 757–759
VPNv4 addresses, 757–759
VRF (virtual routing and forwarding). See also VRF-Lite configuration
definition of, 727
front door VRF (FVRF), 808–810
configuration, 809–810
definition of, 808
static routes, 810
vrf definition command, 728, 734, 809
vrf forwarding command, 730–731, 809
VRF mode, uRPF (Unicast Reverse Path Forwarding), 874
VRF-Lite configuration
connections, verifying, 740
EIGRP configuration for multiple VRF instances, 741
EIGRP neighbors, 742–743
EIGRP routes in VRF routing table, 743–744
instance creation, 728–730
interface assignment, 730–731
interface IPv4 and IPv6 addresses, 733–734
interface participation in EIGRP processes, 741–742
IPv4 global routing table, 735
IPv4 VRF routing tables, 735–736
MP-BGPv4 address families for multiple VRF instances, 746
OSPFv3 address families for multiple VRF instances, 745–746
overview of, 728
RED VRF instance routing table, 741
route distinguishers, 746–747
route targets, 747
subinterfaces on R1, 732–733
VRF connectivity, 744–745
VRF instances on R1, 733–734
VRF instances on R2, 736–738
VRF instances on R3, 738–740
vty access troubleshooting, 894–899
password encryption levels, 898–899
SSH (Secure Shell), 897–898
Telnet, 895–897

W

WANs (wide area networks), EIGRP for
IP bandwidth percentage, 125–126
split horizon, 126–129, 161–162
stub routers, 119–121
stub site functions, 121–125
warning percentage, 516
warning-only keyword, 516
weight, best-path decision-making process, 528–532, 588
Weight field (BGP), 445
well-known BGP (Border Gateway Protocol) communities
conditionally matching, 512–514
local AS, 511–512
No_Advertise, 509–510
No_Export, 510–511
No_Export_SubConfed, 511–512
private, 514–516
well-known discretionary path attributes, 429, 528
well-known mandatory path attributes, 429, 528
wide metrics, EIGRP (Enhanced Interior Gateway Routing Protocol), 96–98

X-Y-Z

X.25, 247
Xmt Queue field (EIGRP), 85