BUILDING A CAREER IN CYBERSECURITY

THE STRATEGY AND SKILLS YOU NEED TO SUCCEED

YURI DIOGENES

Foreword by MERAV BAHAT, CEO and Co-Founder of Dazz

FREE SAMPLE CHAPTER
BUILDING A CAREER IN CYBERSECURITY
BUILDING A CAREER IN CYBERSECURITY
The Strategy and Skills You Need to Succeed

YURI DIOGENES

✈Addison-Wesley

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi
Mexico City • São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2023939921

Copyright © 2024 Pearson Education, Inc.

Cover image: M-vector/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-10: 0-13-821451-4

ScoutAutomatedPrintCode
Figure Credits

Figures 1.3, 1.4: Cyberseek US
Figure 1.5: Glassdoor, Inc
Figure 2.1: Bleeping Computer LLC
Figure 2.4: Keith Bell/Shutterstock
Figures 3.4-3.7: Wireshark Foundation
Figure 4.4: X Corp.
Figure 5.1: Net Vector/Shutterstock
Figure 5.2: zieusin/Shutterstock
Figure 5.3: tkemot/Shutterstock
Figure 6.4: iQoncept/Shutterstock
Figure 7.1: rostislavasedlacek/123RF
Figure 7.2: Panchenko Vladimir/Shutterstock
Figure 7.3b: Illustration Forest/Shutterstock
Figure 8.1: elnur/123RF
Figure 8.3: kasahasa/Shutterstock
Figures 9.2-9.4: Indeed
This page intentionally left blank
Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world’s leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

- Everyone has an equitable and lifelong opportunity to succeed through learning.
- Our educational products and services are inclusive and represent the rich diversity of learners.
- Our educational content accurately reflects the histories and experiences of the learners we serve.
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

- Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.
Dedication

I dedicate this book to all my students that are always asking me questions with the intent to learn more about cybersecurity and be a better professional.
CONTENTS AT A GLANCE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xiv</td>
</tr>
<tr>
<td>Introduction</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
<tr>
<td>About the Author</td>
<td>xvii</td>
</tr>
<tr>
<td>I Starting Your Career in Cybersecurity</td>
<td></td>
</tr>
<tr>
<td>1 The Cybersecurity Universe</td>
<td>3</td>
</tr>
<tr>
<td>2 Establishing a Plan</td>
<td>25</td>
</tr>
<tr>
<td>3 Building Your Lab</td>
<td>45</td>
</tr>
<tr>
<td>4 Networking</td>
<td>65</td>
</tr>
<tr>
<td>5 Interview</td>
<td>83</td>
</tr>
<tr>
<td>II On the Job</td>
<td></td>
</tr>
<tr>
<td>6 Your Employer Is Your Customer</td>
<td>99</td>
</tr>
<tr>
<td>7 Dealing with Obstacles</td>
<td>111</td>
</tr>
<tr>
<td>8 Growing in Your Career as a Remote Worker</td>
<td>127</td>
</tr>
<tr>
<td>9 What's Next in Your Career?</td>
<td>139</td>
</tr>
<tr>
<td>10 Owning a Cybersecurity Business</td>
<td>149</td>
</tr>
<tr>
<td>Index</td>
<td>161</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xiv</td>
</tr>
<tr>
<td>Introduction</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
<tr>
<td>About the Author</td>
<td>xvii</td>
</tr>
<tr>
<td>I STARTING YOUR CAREER IN CYBERSECURITY</td>
<td>1</td>
</tr>
<tr>
<td>1 The Cybersecurity Universe</td>
<td>3</td>
</tr>
<tr>
<td>Cybersecurity Careers</td>
<td>4</td>
</tr>
<tr>
<td>Cybersecurity Roles and Responsibilities</td>
<td>5</td>
</tr>
<tr>
<td>Cybersecurity Jobs</td>
<td>8</td>
</tr>
<tr>
<td>Cybersecurity Skills</td>
<td>12</td>
</tr>
<tr>
<td>Navigating the Industry</td>
<td>17</td>
</tr>
<tr>
<td>Summary</td>
<td>23</td>
</tr>
<tr>
<td>2 Establishing a Plan</td>
<td>25</td>
</tr>
<tr>
<td>Explore Your Current Skills</td>
<td>26</td>
</tr>
<tr>
<td>Create Your Plan</td>
<td>30</td>
</tr>
<tr>
<td>Organizing Your Plan</td>
<td>32</td>
</tr>
<tr>
<td>Cybersecurity Certifications</td>
<td>34</td>
</tr>
<tr>
<td>Foundational Security Certifications</td>
<td>36</td>
</tr>
<tr>
<td>Cybersecurity Analyst and Security Practitioners Certifications</td>
<td>40</td>
</tr>
<tr>
<td>Specializations</td>
<td>42</td>
</tr>
<tr>
<td>Vendor-Specific Certifications</td>
<td>43</td>
</tr>
<tr>
<td>Summary</td>
<td>44</td>
</tr>
<tr>
<td>3 Building Your Lab</td>
<td>45</td>
</tr>
<tr>
<td>Lab Requirements</td>
<td>46</td>
</tr>
<tr>
<td>Creating Your Lab</td>
<td>49</td>
</tr>
<tr>
<td>Scenario 1—Operating Systems Process</td>
<td>49</td>
</tr>
<tr>
<td>Scenario 2—Network Traffic Analysis</td>
<td>52</td>
</tr>
<tr>
<td>Scenario 3—Cloud Security Posture Management</td>
<td>56</td>
</tr>
<tr>
<td>Scenario 4—Multi-Cloud Security</td>
<td>57</td>
</tr>
<tr>
<td>Scenario 5—Regulatory Compliance</td>
<td>57</td>
</tr>
<tr>
<td>Scenario 6—Attack Simulation</td>
<td>57</td>
</tr>
<tr>
<td>Scenario 7—Security Information and Event Management</td>
<td>58</td>
</tr>
<tr>
<td>Scenario 8—Threat Hunting</td>
<td>59</td>
</tr>
<tr>
<td>Scenario 9—Threat Intelligence</td>
<td>59</td>
</tr>
<tr>
<td>Self-Assessment</td>
<td>60</td>
</tr>
<tr>
<td>Summary</td>
<td>63</td>
</tr>
</tbody>
</table>

4 Networking .. 65

Networking in Cybersecurity ... 66
Look Inward ... 69
Online Presence .. 73
LinkedIn .. 74
YouTube .. 75
Twitter ... 76
Searching for a Job .. 77
Summary ... 82

5 Interview .. 83

Technical and soft skills ... 84
Interview process .. 84
Initial triage ... 85
Prepare for the interview ... 85
Formal interview rounds .. 88
Interview questions .. 90
Final decision .. 93
Summary ... 95

II ON THE JOB ... 97

6 Your Employer Is Your Customer 99

Cybersecurity Goes Beyond Technology 100
Organizational Structure .. 102
Responsibilities and Expectations 103
Mapping Your Responsibilities 104
Plan to Conquer .. 105
Table of Contents

10 Owning a Cybersecurity Business

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowing More about the Guest Authors</td>
<td>150</td>
</tr>
<tr>
<td>Stepping Stones to Flying Solo</td>
<td>152</td>
</tr>
<tr>
<td>Paula Januszkiewicz’s Keys to Entrepreneurial Success</td>
<td>153</td>
</tr>
<tr>
<td>Key Elements for Success</td>
<td>154</td>
</tr>
<tr>
<td>Common Pitfalls and Challenges</td>
<td>156</td>
</tr>
<tr>
<td>David Kennedy: Starting from the Ground Up</td>
<td>158</td>
</tr>
<tr>
<td>Final Considerations</td>
<td>160</td>
</tr>
<tr>
<td>Summary</td>
<td>160</td>
</tr>
<tr>
<td>Index</td>
<td>161</td>
</tr>
</tbody>
</table>
Foreword

We live in a world where cybersecurity events are daily, front-page news — zero-day vulnerabilities in software supply chains, stolen credentials, attacks on hospitals, gas pipeline shut-downs, and school ransomware events. As we’ve become a more digital and connected global economy, the number of attacks has increased with no sign of slowing down. The need for people working in cybersecurity has never been more acute.

While my background as a cybersecurity leader is more traditional, coming from both military and engineering, I actually began my career in information technology. However, early on, I realized the huge potential of the cybersecurity industry, fell in love with the mission, and developed a great passion for the domain. There is no one path to the field. In fact, there are many ways to get started, whether your background is in engineering, education, law, criminal justice, marketing, sales, finance, or human resources.

You could be part of a technology startup like Dazz, which builds innovative products and services to help organizations discover, reduce, and fix security risks. For women, in particular, who have low representation in cyber, I encourage you to join startups in their early stages, when most of the learning takes place.

Alternatively, you could be a practitioner and get hands-on with technology or intelligence as a cybercrime investigator, ethical hacker, red team tester, researcher, security architect, or information security leader inside a company, school, hospital, or government.

Whichever path you take, you’ll stretch and grow, learn new things, and gain fulfillment knowing you are working for the greater good of society.

You are in good hands with my friend and colleague, Yuri Diogenes, on how to begin your journey. There is high demand for skilled cybersecurity professionals, which is only expected to grow in the coming years. I encourage you to join us and experience one of the most rewarding careers you could embark upon.

Merav Bahat
Co-founder and CEO
Dazz
Introduction

Coming from a background in information technology, and more specifically, computer networks, the migration to cybersecurity was very smooth because I had a good foundation in two critical areas: operating systems and networking. However, I didn't understand the options available in this field or what gaps I needed to fulfill before applying for a cybersecurity-related position. I had no idea where to start. To this day, I believe I spent too much time focusing on the wrong things, and my cybersecurity career took a little longer to take off. In addition to my personal experience entering this field back in 2006, I keep seeing a trend among my university students who frequently ask for guidance on either improving in this field (if they are already in cybersecurity) or how to migrate from a different area to cybersecurity. These trends not only match my own experience but also match common questions brought to me by my mentees at work.

Based on these experiences, I decided to start this project, and when I was writing the table of contents for the book, I also reflected on the areas I took for granted but were critical in my career growth, such as soft skills. I decided to frame the book so that it is not only about cybersecurity per se but how to be a complete cybersecurity professional who can add value to the business, both from a technology and overall package perspective. As a manager in my company, I see many candidates hired because they were complete candidates — soft skills, attitude, mindset, and technical abilities — not because they had the best technology resumes.

My experience as a cybersecurity professional, university professor, and manager has allowed me to share different dimensions of what it takes to build a solid career in cybersecurity. However, I wanted to ensure that I had the right team to be part of this project, so I invited Nicholas DiCola, VP of Zero Networks and my former manager at Microsoft, to be the technical reviewer for the book. Nicholas has a lot of experience in this field, and throughout this project, he gave me extra tips to include in the book. I also invited Merav Bahat, co-founder and CEO of Dazz, a cloud security startup, to assist. I worked with Merav at Microsoft, where she was directly responsible for my career growth to the next level. I also wanted to incorporate some entrepreneurship vision to show that you can start your own cybersecurity business, so I invited Paula Januszkiewicz and David Kennedy to lend their perspectives. Paula and David are two great cybersecurity professionals with their own cybersecurity businesses.

I hope that the hours we invested in this book are valuable to you and you can finish this book with a good plan of action to pursue your cybersecurity career and become a better professional.

Good luck!

Yuri Diogenes
Register your copy of *Building a Career in Cybersecurity* on the InformIT site for convenient access to updates and/or corrections as they become available. To start the registration process, go to informit.com/register and log in or create an account. Enter the product ISBN (9780138214517) and click Submit. Look on the Registered Products tab for an Access Bonus Content link next to this product, and follow that link to access any available bonus materials. If you would like to be notified of exclusive offers on new editions and updates, please check the box to receive email from us.
Acknowledgments

I would like to thank my wife and daughters for their endless support; my great God for giving me strength and guiding my path on each step of the way. Thanks to my mother, for always emphasizing to me the importance of education and study. To my coworkers and former managers that contributed to my career progress, especially Cyndee Young, Rebecca Halla, and Sonia Wadhwa.

I want to thank my friend Nicholas DiCola for the great work reviewing this book, friendship, and guidance over the years. Thanks to Merav Bahat for writing the foreword of this book and for her inspiring career and leadership. Thanks to my friends Paula Januszkiewicz and David Kennedy for your amazing contributions to Chapter 10. Thanks for bringing your vision and valuable insights. I truly appreciate it.

Thanks to Pearson’s team, especially Loretta Yates and Rick Kughen, for another amazing partnership.

About the Author

Yuri Diogenes has a master of science in cybersecurity intelligence and forensics investigation from UTICA College and is working on his Ph.D. in cybersecurity leadership from Capitol Technology University. Yuri has been working at Microsoft since 2006 and is a principal PM manager for the Customer Experience Engineering Defender for Cloud team, where he manages a global team of product managers focusing on cloud security posture management and workload protection. Yuri has published more than 30 books, mostly about information security and Microsoft technologies. Yuri is also a professor at EC-Council University, where he teaches in the cybersecurity bachelor’s program. Yuri also has an MBA and many IT/Security industry certifications, such as CISSP, MITRE ATT&CK Cyber Threat Intelligence Certified, E|CND, E|CEH, E|CSA, E|CHFI, CompTIA Security+, CySA+, Network+, CASP, and CyberSec First Responder. You can follow Yuri on Twitter at @yuridiogenes.
This page intentionally left blank
Building Your Lab

“Knowledge is of no value unless you put it into practice.”

–Anton Chekhov
Now you know what you want. You have identified the cybersecurity area you want to work in, identified your current gaps, and established a plan. As part of this plan, you should have added time to ramp up with the technology areas in which you need to improve.

However, you can read about these technologies all day long, but if you don’t do hands-on practice, your knowledge will be limited, which might affect you while interviewing. When you don’t have hands-on experience in a subject, it’s hard to feel confident that you can actually implement the things you just learned about in theory.

With the number of online resources we have nowadays, it’s easier to create your own lab to implement scenarios that will help you gain more experience. This chapter will assist you in creating a lab and suggest some scenarios you can use to put things into practice.

Lab Requirements

While different cybersecurity jobs will require different skills, the goal here is to ensure that you have a good foundational understanding of technologies that can be utilized across different cybersecurity job roles. Building this foundational lab allows you to continue adding new scenarios to learn different skills.

To create this foundational lab, you need to cover some core scenarios, and based on these scenarios, you will have the minimum requirements for this lab. Table 3.1 highlights what’s covered in each of the scenarios in the lab I’m proposing:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Level</th>
<th>Minimum requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand operating system processes and threads</td>
<td>Basic (100)</td>
<td>One virtual machine (VM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windows operating system (OS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process Monitor by Sysinternals</td>
</tr>
<tr>
<td>Understanding the communication between two hosts in the same TCP/IP subnet</td>
<td>Basic (100)</td>
<td>Two virtual machines (VMs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Windows OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wireshark</td>
</tr>
<tr>
<td>Cloud security posture management</td>
<td>Intermediate (200)</td>
<td>Azure subscription</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microsoft Defender for Cloud</td>
</tr>
<tr>
<td>Scenario</td>
<td>Level</td>
<td>Minimum requirements</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Multicloud security posture management | Intermediate (200) | Azure subscription
AWS account
GCP project
Microsoft Defender for Cloud |
| Understanding regulatory and compliance standards | Intermediate (200) | Azure subscription
Microsoft Defender for Cloud |
| Simulating and detecting attacks on Windows and Linux | Advanced (300) | Azure subscription
Linux OS Microsoft Defender for Servers
Four virtual machines (VMs)
Windows OS |
| Implementing a cloud-based security information and event management (SIEM) | Advanced (300) | Azure subscription
Microsoft Sentinel |
| Threat hunting | Advanced (300) | Azure subscription
Microsoft Defender for Cloud
Microsoft Sentinel |
| Gathering threat intelligence | Advanced (300) | Azure subscription
Microsoft Sentinel
MITRE ATT&CK Framework |

Note

While you can use other tools for these scenarios, most enterprise-level security tools require a license, and trial versions of the Microsoft products shown in Table 3.1 are available. These allow you to learn without having to pay for the software. One alternative for an open-source lab is https://labs.fedoraproject.org/en/security/.
One important thing to mention about Table 3.1 is that the suggested minimum requirements are based on the material I cover in this chapter. However, nothing stops you from adding other elements to this scenario. For example, in implementing a cloud-based security information and event management (SIEM) scenario, the minimum requirement is to use a Microsoft SIEM solution called Microsoft Sentinel. However, you can build your own lab to use another solution, such as Splunk.

While thinking about potential additions to each scenario, consider whether those additions will cost money. My intent is to help you build a free lab to practice. Remember that once you start deploying these solutions, your clock starts, and you need to finish everything in a specific time frame since some of these solutions are free only during a trial period. That’s why it is so important to clearly define everything you want to test and practice during this ramp-up phase. Figure 3.1 has an example of how you can plan your trial usage, assuming a 30-day trial (which is the case for most of the products used in this lab):

![Figure 3.1 Roadmap to conclude the lab](image)

The diagram shown in Figure 3.1 has four major phases:

- **You are here:** This is where you are right now, reading this chapter and defining which scenarios you want to implement. For example, if you are already an IT professional migrating to cybersecurity, you might not need to implement scenarios 1 and 2.

- **Trial starts:** Once you have enumerated which scenarios you want to implement, then you can start deploying the products, which usually entails starting the trial period for that product and also for the platform (in this case, Azure).

- **Trial ends:** Add the ending date on your calendar, and add a calendar reminder at least 10 days before the trial expires. Some of these products will require you to supply a credit card number when you sign up for a trial. While they don’t charge you upfront if you go over the 30 days, they will start charging for the next cycle. So, make sure
to cancel your subscription before the 30th day of use. This 10-day reminder prompts you to evaluate what you have done so far and whether anything is missing. If you’ve already implemented all scenarios and are ready to move on, just cancel the subscription.

- **Reflections:** After everything is done, you should pause for a day and reflect on the lessons learned. A good way to practice what you’ve learned is to write a report with your observations about each scenario. This report should contain more than just copy-and-pasted material from articles you read to help you with the lab. Instead, it should include your thoughts about what you have learned and whether you believe there are still some areas you need to continue improving as you move forward. This report will also help you to prioritize the areas you need to improve and the areas where you already feel confident.

The following sections will go over each scenario. Some scenarios will have less-detailed explanations because they’re already very well documented on the websites I reference in this chapter.

Creating Your Lab

The first step to creating your own lab is to select the cloud platform you will use to deploy your lab. This chapter will use the Azure platform to deploy the lab. However, for scenarios one and two, you can use your personal computer to perform the required tasks. Here are a couple of things to remember when reading these scenarios:

- If you already have experience performing the tasks for scenarios one and two, you can skip to scenario three.

- The explanation provided in this chapter won’t go into deep technical details about each element covered in the scenarios. The intent here is for you to gain familiarity with the terminologies, gain some hands-on experience, and use it as a foundation to get started. You must be diligent and look for other sources of information regarding the technologies covered in each scenario. Some resources tailored to each scenario are available at yuridiogenes.us.

Scenario 1—Operating Systems Process

A deep understanding of operating systems is critical for any cybersecurity professional. You can access a curated list of online resources and books I recommend to
learn more about operating systems by visiting yuridiogenes.us. There, you will find a section dedicated to this book where you can see the references per chapter.

For this first scenario, you can use your own computer if you have Windows 10 or 11 installed. Once you confirm the Windows version, follow these steps:

1. Download Process Monitor from the Systeinternals website and store it in a folder named Temp on the C: drive. (If you don’t already have a Temp folder, create it and extract the files there.)

2. Before launching Procmom.exe, make sure to close all open applications.

3. Once you do that, double-click Procmom.exe.

5. If the User Account Control window pops up, click Yes, and you should see a dashboard like the one shown in Figure 3.2.

![Figure 3.2 Process Monitor](image)

This dashboard can be overwhelming at first, but you need to understand why you are here in the first place. When a program is executed, a process is created. Each process has a name, which is represented in the Process Name column in the Process Monitor dashboard. Each process receives a unique identifier (ID) shown in the PID column. (PID means process ID.)

Figure 3.2 shows an example of the Explorer.exe process, which appears multiple times, meaning multiple operations are happening. The operation’s name that appears in the Operation column might be the same, but the path may vary. For example, the Explorer.EXE process may be querying multiple registry keys. The Result column is important because it shows the result of the operation done by
the process in the path shown in the Path column. To better understand this, do a simple test:

1. In the **Process Monitor**, click **Filter** and then click the **Filter** option.
2. Select **Process Name**.
3. In the name field, type **notepad.exe** and click the **Add** button.
4. Click the **OK** button.
5. Once the filtering is finished, click the Windows Start icon, type **notepad.exe**, and press **Enter**.
6. Now review the number of things that happened just by executing notepad.exe.
7. The **Process Monitor** window will be empty, and after you execute the previous step, you will notice the process and a thread being created, as shown in Figure 3.3.

![Figure 3.3](image)

Figure 3.3 Events generated by executing notepad.exe

A process can create one or more threads, the basic unit the OS will use to allocate processor time. Why should you care about this information? Because when you are investigating a computer that is apparently compromised, you will use tools like Process Monitor to identify suspicious activities performed by a potentially malicious process.

Tip

Before moving to scenario 2, perform some extra tests. For example, in the **Process Monitor**, create a filter for excel.exe, open Microsoft Excel, type some formulas, and save the file in the c:\temp folder. Now go to
the Process Monitor and try to find the exact moment the file was saved. Right-click each operation and open its Properties to explore available information.

Note

You can learn more about processes and threads at https://bit.ly/cybercareerch3link2.

Note

Read this blog post to learn how Process Monitor can be used to investigate malicious activity: https://bit.ly/cybercareerch3link3.

Scenario 2—Network Traffic Analysis

Another foundational scenario you need to be familiar with is capturing and interpreting network traffic. Having a good understanding of how traffic flows between hosts is imperative for security professionals. While many tools are available to capture network traffic, the most common is Wireshark. This tool will enable your computer to listen to all network traffic and capture all frames for later analysis. Wireshark can also be used for network forensics and to identify malicious activities.

Note

You can perform the steps below on your home computer, just like in scenario 1. To get started with this experiment, make sure to download and install Wireshark from www.wireshark.org. After that, follow the steps below:

1. Open Wireshark.
2. On the first screen, you should see the available network interfaces. For example, you will see multiple options if you have an Ethernet connection (cable) connected to your computer and a WiFi connection. For
this example, we will select **Ethernet**. (This option requires a cable connection to your computer.)

3. Right-click **Ethernet** and then click **Start Capture**.

4. At this point, you should see a lot of traffic on the screen.

5. Open your browser and go to **www.pearson.com**.

6. Go back to Wireshark, click the **Capture** menu, and then click **Stop**.

Now that you have captured the traffic, let’s make some sense of it. In a TCP/IP network, when you try to access a domain by providing the domain name, such as **www.pearson.com**, the next step is to identify who owns that domain (in other words, identify the IP address). To do that, your local computer will consult the Domain Name Service (DNS) to resolve that name. Using Wireshark, you can create a filter to see exactly when this happened. Type `dns.qry.name == “www.pearson.com”` to filter DNS queries for **www.pearson.com**, as shown in Figure 3.4, and then press **Enter**.

Figure 3.4 Creating filters in Wireshark

Notice that two packets appeared, one with the DNS query and the other with the DNS response. While the source and destination IP address from Figure 3.4 may vary according to your computer’s network subnet, the point is that you were able to find exactly the moment that the name gets resolved. Now, let’s see what a packet looks like. Click the first packet (DNS query), and you should see the different layers of information, as shown in Figure 3.5.

| Frame 942: 75 bytes on wire (600 bits), 7:
| Ethernet II, Src: HP_5e:0e:9e (a8:b1:3b:5):
| Internet Protocol Version 4, Src: 192.168:
| User Datagram Protocol, Src Port: 53968, 1
| Domain Name System (query) |
These layers are explained below:

- The first layer on top contains information related to the frame itself.
- The second layer (Ethernet II) has the data-link layer, such as the computer’s physical address, also known as Media Access Control (MAC) address. This address is unique for each network device.
- The third layer contains information about the network protocol in use, which in this case is the Internet Protocol (IP). Expanding this layer will show your computer’s IP address and your DNS server’s destination access.
- The fourth layer has information about the transport protocol in use, which, in this case, is the User Datagram Protocol (UDP). You will also find the source port (which will vary on each connection) and the destination port, which, in this case, is 53 (DNS service).
- The last layer contains information about the application, which, in this case, is DNS.

If you expand the transport and application layers, you should have a full visualization of the information you need for this exercise, as shown in Figure 3.6.

![Figure 3.6 Analyzing a DNS query](image)
Repeat the same process for the second packet, the DNS response. In the response, you will see that the information is a bit different. Instead of having a section for queries, you will see a section for answers, as shown in Figure 3.7.

Figure 3.7 Analyzing the DNS answer

While this is a very simple analysis, it gives you an idea of the importance of understanding network traffic communication, protocols, and the use of Wireshark. New cybersecurity professionals who skip the foundational basics of computer networks have difficulty understanding how things work behind the scenes, impacting their capability to evolve in their field. For this reason, it is imperative to learn computer networks if you are going to work with cybersecurity.

Tip

Before moving to scenario 3, perform some extra tests. For example, clear the DNS filter, type SSL, and analyze the SSL traffic. Review the Client Hello and Server Hello packets.

Note

For more information about SSL handshake, see https://bit.ly/cybercareerch3link6.
Scenario 3—Cloud Security Posture Management

If you plan to work in cybersecurity, you must learn about cloud computing. Once you learn about cloud computing, you will quickly understand why one of the challenges organizations face nowadays is ensuring they have visibility and control over all workloads provisioned in their cloud environment. In addition, most attacks against cloud workloads are successfully accomplished because of customer misconfiguration, mismanagement, and mistakes. You need a cloud security posture management (CSPM) solution to ensure your cloud environment is more secure.

Note
Read this paper from NIST to learn the basics about Cloud Computing: https://bit.ly/cybercareech3link7.

Microsoft Defender for Cloud is the CSPM solution we will use in this scenario. Since this is a very mature product, there are many resources available that you can use to ramp up on this technology. The team that I manage at Microsoft created a Defender for Cloud Public Lab to help customers to learn more about the product, so for this scenario, follow the steps below:

2. Perform the steps from the following modules:
 - **Module 1:** In this module, you will provision your Azure environment using an Azure trial subscription.
 - **Module 2:** In this module, you will learn more about Defender for Cloud and how it helps to manage the security posture of your cloud environment.

Note
You can watch the Defender for Cloud in the Field show that I host to learn more about this product. Visit https://aka.ms/MDFCInTheField to watch all episodes.

After finishing these modules, you will have an environment ready for your 30 days trial. This means that now is the time to add the reminder on your calendar to ensure you cancel the subscription before the 30 days. Also, at this point, you must diligently perform all tests you need in this environment before the trial expires.
Scenario 4—Multi-Cloud Security

The “Flexera 2022 State of the Cloud Report” revealed that a multi-cloud approach is still the de facto standard among 89 percent of the organizations surveyed. This means you’re very likely to find a job in the cybersecurity field that requires you to know the main cloud providers—Microsoft (Azure), Amazon (AWS), and Google (GCP). Security posture management across multiple cloud providers can be even more challenging, and that’s why the CSPM solution must be able to provide visibility and control across clouds.

Defender for Cloud has this capability, and you can test it in the same lab environment that you started during scenario 3. To do that, go to https://aka.ms/MDFCLabs and complete modules 10 (GCP) and 11 (AWS). These modules will enable you to connect to each cloud provider and allow the information to flow to the Defender for Cloud dashboard.

> Note

Scenario 5—Regulatory Compliance

As you look for cybersecurity jobs, you must be mindful of the industry you will be working in. For example, if you are going to be a cybersecurity analyst in a hospital (health industry), you might need to know the regulatory standards required for that industry. You don’t need to be an expert, but you should know what this means for the workloads you protect. Some of these workloads might need to comply with the Health Insurance Portability and Accountability Act (HIPAA).

The cloud security posture management platform needs to provide awareness of your workload’s security state. It needs to also provide security recommendations to help improve those workloads’ security posture by tailoring the hardening according to the industry standard, which, in this case, is HIPAA (Health Insurance Portability and Accountability Act of 1996).

To practice that, you will use the same lab from scenarios 3 and 4, but now you will follow the steps from Module 4.

Scenario 6—Attack Simulation

Many organizations adopt the red and blue teams strategy to better understand how threat actors operate and exploit vulnerabilities:
• **Red team** The red team is responsible for constantly attacking its own platform to identify breaches before the threat actors do it.

• **Blue team** The blue team is composed of defenders—cybersecurity professionals with relevant skills to ensure the environment is more secure. The blue team will also incorporate feedback from the red team to improve their security controls and reduce the likelihood of compromise.

If you are planning to work in this area within the cybersecurity field, this scenario is very important for you. Here are the labs you should perform to practice attack simulation:

• **Attack simulation for Windows** Visit http://bit.ly/cybercareerch3link10 and follow the steps to execute attacks against a Windows system and see how Defender for Cloud detects those attacks. Notice that the attacker and target VMs can be provisioned in the same environment you created in scenario 3.

• **Attack simulation for Linux** Visit https://bit.ly/cybercareerch3link11 and follow the steps to execute attacks against a Linux system. You can also provision the Linux VM in the same environment you created in scenario 3.

Scenario 7—Security Information and Event Management

Cybersecurity professionals who work on security operations (SOC) teams need to be familiar with the use of security information and event management (SIEM) systems. The goal of a SIEM solution is to aggregate data coming from different data sources, correlate this data, and enable security teams to consume this data for different purposes, including security investigation, incident response, and threat hunting.

Microsoft Sentinel is a cloud-based SIEM platform that operates on top of Azure but can ingest data coming from other cloud providers or on-premises resources. To practice hands-on activities in Microsoft Sentinel, visit https://aka.ms/MSSentinelLab and execute the steps from the following modules:

• **Module 1:** In this module, you will provision Microsoft Sentinel. You should use the Azure subscription trial you started in scenario 3.

• **Module 2:** In this module, you will start collecting data from different services.

• **Module 3:** In this module, you will create analytics rules and incidents.
• **Module 4**: In this module, you will learn more about incident management.

This is a long lab, so reserve enough time to perform it and review the terminologies you are unfamiliar with by visiting Microsoft Sentinel documentation at http://aka.ms/SentinelDocs.

Scenario 8—Threat Hunting

Threat hunting is a relatively new discipline that usually belongs to the security operations (SOC) team. Threat hunters usually perform a proactive investigation to identify indications of compromise (IOC) or indication of attack (IOA).

If you plan to work in the Security Operations Team, learning how to perform threat hunting is important. This expands your reach and adds an extra skill to your portfolio. Follow the steps below to practice different approaches for threat hunting (use the same Azure subscription that you used in previous scenarios for both tasks below):

1. Visit https://aka.ms/MSSentinelLab and execute the steps from Module 5.

2. This module will go over the steps on how to perform threat hunting using Microsoft Sentinel capabilities.

3. After you finish this module, visit https://bit.ly/cybercareerch3link14 and execute the steps from there. This article will go over the steps to perform threat hunting using Defender for Cloud.

Note

Scenario 9—Threat Intelligence

The use of threat intelligence has expanded over the years, and nowadays, most large organizations already understand that they must have this capability available. Threat intelligence gives context and actionable insights on attacks (active and old ones), as well as potential threats to the environment. This information is critical for decision-makers and security teams to use and be better prepared to deal with threat actors.
The MITRE ATT&CK® framework is “a curated knowledge base and model for cyber adversary behavior, reflecting the various phases of an adversary’s attack lifecycle and the platforms they are known to target.” You can leverage this knowledge base to better understand how adversaries operate, which can be beneficial in many scenarios, including when you need to enrich your threat intelligence. Follow the steps below to learn how to navigate through the MITRE ATT&CK framework:

2. Click the Search button and type ipconfig. Wait until the results appear. Click the ipconfig, Software S0100 link.

3. The ipconfig page supplies the details about this command, the mapping for the technique, and the groups (adversaries) used by this command. Notice that the technique in which this command is used is mapped to System Network Configuration Discovery.

4. Click this technique (T1016) to see that this is a subtechnique from Discovery. This means that in the discovery phase, the adversary is still trying to understand the environment. In other words, the threat actor is still at the beginning of their mission.

5. The MITRE ATT&CK framework is highly utilized in many products, including Microsoft Sentinel and Microsoft Defender for Cloud. To practice using threat intelligence in a SIEM platform, visit https://aka.ms/MSSentinelLab and complete the steps from Module 7.

Note

The definition for MITRE ATT&CK above is from the MITRE ATT&CK: Design and Philosophy ebook, which can be downloaded at https://bit.ly/cybercareerch3link15.

Tip

Before considering this scenario completed, spend more time navigating https://attack.mitre.org. For example, search for Cobalt Strike. When you open the Cobalt Strike page, look for System Network Configuration Discovery and then read the description about how Cobalt Strike uses this subtechnique.

Self-Assessment

I know this chapter has a lot of information to digest, and you must be tired by now. But, if you think about it, you just had a major tour across different
cybersecurity areas and the opportunity to practice many things and learn many new technologies.

Since this chapter was created using the 30-day Azure subscription, it is important for you to use at least 20 days to do all scenarios and have 9 days spare to review exercises that you have identified as needing more attention.

After you finish implementing all scenarios, reviewing all concepts, and taking notes, use Table 3.2 to perform a self-assessment per scenario. Notice that the entries in the **Completion** and **Observations** columns for scenarios 1 and 2 are only examples. The rest of the table is blank, so you can write your own observations.

Table 3.2 Self-assessment per scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Completion</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand operating system processes and threads</td>
<td>100 percent</td>
<td>I feel comfortable with this topic. Still need to dig more to understand threads, but I have a good idea of how things work.</td>
</tr>
<tr>
<td>Understanding the communication between two hosts in the same TCP/IP subnet</td>
<td>90 percent</td>
<td>I really liked this one. I feel like I can work all day long reading network packages. While I felt passionate about this topic, I still have a lot to learn because my background is not in computers. Need to do more computer network training.</td>
</tr>
</tbody>
</table>

Cloud Security Posture Management

Multicloud Security Posture Management

Understanding regulatory and compliance standards

Simulating and detecting attacks on Windows and Linux

Implementing a cloud-based Security information and event management (SIEM)

Threat hunting
In Table 3.2, in the first two examples for the first two scenarios, the goal of the **Completion** column is to track how far you went on that scenario. Remember that while scenarios 1 and 2 are straightforward, others are more complex and will take longer. Ideally, you should finish everything, but you own your agenda, and if you don’t have time to finish everything, the only requirement is to be honest with yourself and take notes to document your level of completion.

Another important column in this table is the **Observations**. The examples provided for scenarios 1 and 2 are some of the things that you can add. I advise you to write down which scenarios you were more excited and passionate about. This is when you will discover what triggers and motivates you and what you believe would be a good investment of your time to learn more. These nine scenarios cover different areas of cybersecurity, from the very basic level to the most advanced. Being exposed to all these tools and guided labs during the 30-day trial is an excellent way to identify which area you would like to work in the future.

1:1 WITH THE AUTHOR: BEING PASSIONATE IS AN IMPORTANT STEP FOR CAREER PROGRESS

Over the years, many professionals have reached out to me to ask how they could make progress in their careers. Some mistakenly assumed that because everyone was going one way, they also needed to go that direction. You can drive your career based on what is hot at the moment if that’s what makes you happy.
Unfortunately, most people choose their direction based on money. I understand that being financially stable and well-compensated for your work is important, but it’s not everything. You can earn a lot of money, but if you feel miserable at work, your life will be miserable. At some point, you will realize that the money was not worth it.

On June 12, 2005, during the Stanford University commencement address, Steve Jobs said: “The only way to be truly satisfied is to do what you believe is great work, and the only way to do great work is to love what you do. If you haven’t found it yet, keep looking, and don’t settle. As with all matters of the heart, you’ll know when you find it. And like any great relationship, it just gets better and better as the years roll on. So keep looking, don’t settle.”

This quote from Steve Jobs is perfect! It summarizes everything when it comes to a career. I hope you are migrating to cybersecurity because you feel passionate about it. And if you are not passionate yet, maybe all the scenarios you performed during this lab will give you something to think about and explore further.

I’ve seen many professionals who rose to the top because they were extremely passionate about what they did. At the same time, I’ve seen professionals change careers because they were not happy where they were. I remember talking to a friend who became a Judo Sensei after decades in the IT field. He told me that IT, for him, was a career that he liked, but he was never passionate about it. He was always passionate about martial arts, Judo in particular. He said that once he changed his career, he took a financial downgrade and had to readjust all his finances to break even. However, he said he was never happier, and his life changed completely. He doesn’t regret the change. As a matter of fact, his only regret is that he didn’t make the change earlier. He is still earning less money, but as I said earlier in this chapter, money isn’t everything.

In summary: while there are plenty of opportunities in the cybersecurity field, you still need to decide your area of focus. Choose wisely when selecting where you will invest more time. Don’t be driven only by the financial aspects, particularly if you are changing careers, as this is a great opportunity to reset and start over. Find your “why” and be passionate. If you do those things, your career will change for the better.

Summary

This chapter taught you how to create your cybersecurity lab based on nine scenarios. You learned about operating systems processes and threads, basic network communication, cloud security posture management, multicloud security, regulatory compliance, attack simulation, SIEM, threat hunting, and threat intelligence. In the next chapter, you will learn the importance of networking in the cybersecurity field, how to stay connected with the community, and how to leverage LinkedIn.
CEH (Certified Ethical Hacker), 39
certification, 34

CCT (Certified Cybersecurity Technician), 41–42
CISSP, 37
versus college degree, 35
CompTIA CySA+, 40–41
CompTIA Security+, 35, 38–39
Cyber and IT Security Foundation certification, 37–38
ECSS (EC-Council Certified Security Specialist), 39–40
ISACA (Information Systems Auditing & Control Association), 36
MCP (Microsoft Certified Professional), 35
specializations, 42–43
SSCP (Systems Security Certified Practitioner), 41
vendor-specific, 43–44
changing careers, 3–4, 47
chat, 131
ChatGPT, 144
cloud security
architecture, 6
multi-, 57
posture management, 56
coachability, 15
Cobalt Strike, 46
collaboration, 15–16, 107, 134
commands, ipconfig, 60
communication/
communicating
bad news, 107–108
influencing others, 132–133
remote worker, 131
skills, 39
compliance, regulatory, 57
CompTIA
CySA+ certification, 40–41
Newsletter, 30
Security+ certification, 35, 38–39
Conficker, 101
confirmation bias, 116
consulting, 152–153, 158
continuing education, 157
COVID-19 pandemic, 128, 135
CQUARE/CQUARE Academy, 150, 153–154
Cracking the PM Interview, 21
creative thinking, 107, 134–135
critical thinking, 15
cSO (chief security officer), 5
curiosity, 155
Cyber Seek Heatmap, 17–19
cybersecurity, 4, 17–19
analyst, 9
bias
cconfirmation, 116
implicit, 115–116
reducing, 116–117
careers, 4
certification. See certification
consulting, 152–153, 158
diversity, 100–101
job/s, 8–12
basic qualifications, 10
in big tech, 19–20
marketing, 21
product development, 21
product engineering, 21
product support, 21
requirements, 9–12
research, 21
responsibilities and expectations, 103–104
tenure, 12
titles, 8–10
obstacles, 112–114
penetration testing, 152
professionals, 100
roles and responsibilities, 5–8
running a business
common pitfalls and challenges, 156–157
key elements for success, 154–156
skills
adjusting, 117–119
assessment, 26–30
interviewing, 11–12
soft, 14–17
technical, 12–14
specializations, 5–8
42–43
terminal, 27
threat intelligence, 6
WLB (work-life balance).
See WLB (work-life balance)
workforce gap, 4
Cybersecurity Workforce Study 2022, 4
daily tasks, 124–125
dashboards, 108
data security, 6
Deep Instinct, "Voice of SecOps
Report 2022", 112–113
dependence, 16, 107
DevOps, 6
diet and exercise, 122
Diogenes, Y.

Azure Security Center in the
Field, 135–136
Enterprise Mobility Suite
Managing BYOD and
Company-Owned
Devices, 73
Overcome podcast, 112, 121

Ready, Set, Achieve!: A
Guide to Taking Charge
of Your Life Creating
Balance, and Achieving
Your Goals, 30, 120
Windows Server 2012
Security from End to Edge
and Beyond: Architecting,
Designing, Planning,
and Deploying Windows
Server 2012 Security
Solutions, 72
direct questions, 92
directory services, 28
discipline, 154
discovery phase, threat
intelligence, 60
diversity, 100–101
DMZ (demilitarized zone), 28
DNS (Domain Name Service),
query filter, 53
Global Workplace Analytics, 128–129
gratitude, 114
growth mindset, 15

Hackers for Change, 70
Heuer, R. J., Psychology of Intelligence Analysis, 116
HIPAA (Health Insurance Portability and Accountability Act), 57
Holiday, R., The Obstacle Is the Way: The Timeless Art of Turning Trials into Triumph, 112
hybrid work, 130

IKE (Internet Key Exchange), 28
Ikigai, 140
implicit bias, 115–116
incident response, 120
inclusivity, 15
Information System Security Association International, 67
infrastructure and endpoint security, 7
interviewing, 11–12, 16–17, 66
final decision, 93
formal rounds, 88
initial triage, 27
interviewer angles, 88–89
making a good impression, 86–87
note-taking, 90
power of enthusiasm, 87
preparation, 85–87
pre-triage process, 84
questions, 90
about previous experience, 92–93
direct, 92
fictitious scenario, 93
scenario-based, 91
technical, 88–89
IP (Internet Protocol), 54
ipconfig command, 60
IPsec, 28
ISACA (Information Systems Auditing & Control Association), cybersecurity fundamentals certification, 36
ISC2 (International Information System Security Certification Consortium)
CISSP certification, 37
SSCP certification, 41

Januszkievicz, P., 150, 153–154
job/s, 8–12, 27. See also interviewing; planning, career; remote work/er advancement/promotion, 119, 140, 142–143
considerations, 141–142
Ikigai, 140
intermediate position, 143–144
upcoming opportunities, 144–148
competencies, 88
cybersecurity
basic qualifications, 10
big tech, 19–20
mapping your responsibilities, 104–105
marketing, 21
obstacles, 112–114
product development, 21
product engineering, 21
product support, 21
requirements, 9–12
research, 21
responsibilities and expectations, 103–104
stress, 113
tenure, 12
titles, 8–12
interviewing, 11–12, 16–17, 66. See also interviewing
final decision, 93
initial triage, 85
making a good impression, 86–87
of enthusiasm, 87
preparation, 85–87
pre-triage process, 84
lateral movement, 103
searching. See also
network/ing
Cyber Seek Heatmap,
17–19
LinkedIn, 79–81
phases, 94–95
progress timeline, 77–78
updating your resume,
78–79
Jobs, S., 8, 63, 108
Journal of Applied
Psychology, 8

K-L
Kennedy, D., 121, 151, 158–160
"Metasploit: The
Penetration Testers
Guide", 152
lab
creating, 49
open-source, 46
operating systems process,
49–52
requirements, 46–49
scenarios
attack simulation, 57–58
cloud security posture
management, 56
multi-cloud security, 57
network traffic analysis,
52–55
regulatory compliance, 57
self-assessment, 60–62
SIEM (security
information and event
management), 58–59
threat hunting, 59
threat intelligence, 59–60
Windows Process
Monitor, 50–52
lateral movement, 103
leadership, 107
leveraging your skills,
108–109
LinkedIn, 9, 74–75, 79–81, 123
Linux, attack simulation, 58
listening, active, 133

M
MAC (Media Access Control)
address, 54
manager, feedback, 104
mapping your responsibilities,
104–105
marketing, 21
master’s degree, 72–73
MCP (Microsoft Certified
Professional), 35
meetings, online, 131, 132
mental health, WLB (work-life
balance), 121, 123
Meta, 129
Microsoft Defender for Cloud,
56, 57, 135–136
Microsoft Outlook, tasks,
124–125
Microsoft Planner, 32–34
Microsoft Security Copilot, 145
Microsoft Sentinel, 58–59
Miller, J., Ready, Set, Achieve: A
Guide to Taking Charge of
Your Life Creating Balance,
and Achieving Your
Goals, 30
mindset
entrepreneur, 106–108
of not taking things
personally, 114–115
MITRE ATT&CK
framework, 60
motivation, 154
multi-cloud security, 57

N
network/ing, 66. See also
interviewing
finding inward
opportunities, 70–71
online events and
communities, 67, 69–70
online presence, 73–74
LinkedIn, 74–75
Twitter, 76–77
security, 5
forensics, 52
traffic analysis, 52–55
VPN (virtual private
network), 27–28
security conferences,
66–67, 68–69
volunteering, 70, 71
newsletter, CompTIA, 30
NIST (National Institute of
Standards and Technology), 38
note-taking
interview, 90
post-deployment, 106

O
online events and
communities, 67
online meetings, 131, 132
online presence, 73–74
LinkedIn, 74–75
perception, 137
Twitter, 76–77
YouTube, 75–76
open-source lab, 46
operating systems
Linux, attack simulation, 58
Windows
attack simulation, 58
Process Monitor, 50–52
operational hygiene, 104
organizational structure, 102–103
Overcome podcast, 112
overthinking, 71
Ozkaya, E., 68

P
penetration testing, 152
physical exercise, 122
planning, career. See also
network/ing
evaluating the options,
143–144
explore your current skill,
26–30
Ikigai, 140
organizing your plan, 32–34
overthinking, 71
ramp-up phase, 105
self-assessment, 142–143
SMART Goals, 30–32
upcoming opportunities,
144–148
PoC (Proof of Concept), 106
podcasts
Overcome, 112, 121
We Hack Health, 121
posture management, 7
“The Potentially Large Effects of Artificial Intelligence on Economic Growth”, 144
preparing for an interview, 85–87
problem-solving skills, 133
Process Monitor, 50–52
processes, 50–51
product development, 21
product engineering, 21
product management, 19
product support, 21
promotion
considerations, 141–142
Ikigai, 140
self-assessment, 142–143
PTES (Penetration Testing Execution Standard), 152
Q
questions, interview, 90
about previous experience, 92–93
direct, 92
fictitious scenario, 93
scenario-based, 91
R
ramp-up phase, 105
Rapid7’s impact by OpenSSL Buffer Overflow
Vulnerability, 29
red team, 7, 58
reducing bias, 116–117
regulatory compliance, 57
remote work/er, 128
creativity, 134–135
growth of, 128–129
influencing others, 132–133
online communication, 131
soliciting feedback, 133–134
time management, 135
transparency, 136–137
report, lab scenario, 49
requirements, lab, 46–49
research, 21, 85–86
responsibilities
adjusting, 117–119
cybersecurity job, 103–104
mapping, 104–105
resume, 11–12
certification versus college degree, 35
updating, 78–79
Robertson, D., How to Think Like a Roman Emperor: The Stoic Philosophy of Marcus Aurelius, 112
roles and responsibilities, cybersecurity, 5–8
RTO (return-to-office) mandate, 130
S
scenario-based questions, 91
scenarios, lab, 46–49
attack simulation, 57–58
cloud security posture management, 56
multi-cloud security, 57
network traffic analysis, 52–55
operating systems process, 49–52
regulatory compliance, 57
self-assessment, 60–62
SIEM (security information and event management), 58–59
threat hunting, 59
threat intelligence, 59–60
Scripting Guy blog, 73
security conferences, 66–67
self-assessment
career advancement, 142–143
lab, 60–62
technical skills, 12–14
Seneca, 113–114
Senior Engineer–AI Security Engineer, 146
Shinder, T., Windows Server 2012 Security from End to Edge and Beyond: Architecting, Designing, Planning, and Deploying
Windows Server 2012 Security Solutions, 72
SIEM (security information and event management), 46, 58–59
skills
adjusting, 117–119
AI-related, 145–148
assessment, 26–30, 142–143
critical thinking, 15
interviewing, 11–12
leverage, 108–109
mapping your responsibilities, 104–105
organization, 154–155
problem-solving, 133
soft, 14–17, 84
technical, 12–14, 84
sleep, 123
SMART Goals, 30–32, 114
SOC (security operations center), 6, 59, 112
soft skills, 14–17, 84
specializations
certification, 42–43
cybersecurity, 5–8
penetration testing, 152
SSCP (Systems Security Certified Practitioner) certification, 41
State of Remote Work 2020, 128
stoicism, 112, 113–115
stress, 113, 118–119, 135
success, key elements for, 154, 159–160
curiosity, 155
discipline, 154
facing challenges, 155
giving back to the community, 155
motivation, 154
organization, 154–155
teamwork, 156
Swider, B., 86
tasks

daily, 124–125
plan-creation exercise, 105–106
teams and teamwork
diversity, 100–101
lateral movement, 103
organizational structure, 102–103
success and, 156
virtual, 114
technical skills, 12–14, 84
technical writing, 72
terminology, 27
threads, 51
threat hunting, 59
threat intelligence, 6, 59–60
discovery phase, 60
MITRE ATT&CK framework, 60
time management
daily tasks, 124–125
recommendations, 125
remote worker, 135
weekly goals, 124
tools
communication, 131
Cyber Seek Heatmap, 17–19
lab, 47–48
Microsoft Planner, 32–34
Wireshark, network traffic analysis, 52–55
training, 157
transparency, 136–137, 157
TrustedSec, 121, 158
tunnel vision, 120
Twitter, 76–77, 151
UDP (User Datagram Protocol), 54
Uleman, J., 86
unconscious bias, 115–116
updating your resume, 78–79
vendor-specific certification, 43–44
virtual team, 114
“Voice of SecOps Report 2022”, 112–113
volunteering, 70, 71
VPN (virtual private network), 27–28
vulnerability assessment, 104

We Hack Health podcast, 121
weekly goals, 124
Windows
attack simulation, 58
Process Monitor, 50–52
Wireshark, network traffic analysis, 52–55
WLB (work-life balance), 119.

See also time management
burnout, 121
diet and exercise, 122
establishing a baseline, 122
mental health, 123
promotion, 140–142
sleep, 123
time management, 124–125
tunnel vision, 120

YouTube, 75–76

Zuckerberg, M., 129