
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138172183
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138172183
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138172183

Effective Python
Third Edition

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

Effective Python
125 SPECIFIC WAYS TO WRITE BETTER PYTHON

Third Edition

Brett Slatkin

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419. Please contact us with concerns about any potential bias
at pearson.com/report-bias.html.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2024945552

Copyright © 2025 Pearson Education, Inc.

Hoboken, NJ

Cover image: Victoria Moloman/Shutterstock

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

ISBN-13: 978-0-13-817218-3

ISBN-10: 0-13-817218-8

$PrintCode

mailto:corpsales@pearsoned.com
mailto:corpsales@pearsoned.com
http://pearson.com/report-bias.html
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

To our family

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

Contents at a Glance

Preface	 xvii

Acknowledgments	 xxiii

About the Author	 xxv

Chapter 1:  Pythonic Thinking	 1

Chapter 2:  Strings and Slicing	 41

Chapter 3:  Loops and Iterators	 77

Chapter 4: Dictionaries	 109

Chapter 5: Functions	 135

Chapter 6: Comprehensions and Generators	 173

Chapter 7: Classes and Interfaces	 201

Chapter 8: Metaclasses and Attributes	 265

Chapter 9: Concurrency and Parallelism	 319

Chapter 10: Robustness	 399

Chapter 11:  Performance	 447

viii	 Contents at a Glance

Chapter 12: Data Structures and Algorithms	 493

Chapter 13: Testing and Debugging	 533

Chapter 14: Collaboration	 575

Index	 627

Contents

Preface	 xvii

Acknowledgments	 xxiii

About the Author	 xxv

Chapter 1 Pythonic Thinking	 1
Item	 1:	 Know Which Version of Python You’re Using	 1

Item	 2:	 Follow the PEP 8 Style Guide	 3

Item	 3:	 Never Expect Python to Detect Errors at
Compile Time	 6

Item	 4:	 Write Helper Functions Instead of
Complex Expressions	 8

Item	 5:	 Prefer Multiple-Assignment Unpacking over Indexing	 11

Item	 6:	 Always Surround Single-Element Tuples with
Parentheses� 16

Item	 7:	 Consider Conditional Expressions for Simple
Inline Logic	 19

Item	 8:	 Prevent Repetition with Assignment Expressions	 24

Item	 9:	 Consider match for Destructuring in Flow Control;
Avoid When if Statements Are Sufficient	 30

Chapter 2 Strings and Slicing	 41
Item	10:	 Know the Differences Between bytes and str	 41

Item	 11:	 Prefer Interpolated F-Strings over C-Style
Format Strings and str.format	 47

Item	12:	 Understand the Difference Between repr and
str when Printing Objects	 58

x	 Contents

Item	13:	 Prefer Explicit String Concatenation over Implicit,
Especially in Lists	 62

Item	14:	 Know How to Slice Sequences	 67

Item	15:	 Avoid Striding and Slicing in a Single Expression	 70

Item	16:	 Prefer Catch-All Unpacking over Slicing	 72

Chapter 3 Loops and Iterators	 77
Item	 17:	 Prefer enumerate over range	 77

Item	18:	 Use zip to Process Iterators in Parallel	 79

Item	19:	 Avoid else Blocks After for and while Loops	 82

Item	20:	 Never Use for Loop Variables After the Loop Ends	 85

Item	21:	 Be Defensive when Iterating over Arguments	 87

Item	22:	 Never Modify Containers While Iterating
over Them; Use Copies or Caches Instead	 92

Item	23:	 Pass Iterators to any and all for Efficient
Short-Circuiting Logic	 98

Item	24:	 Consider itertools for Working with
Iterators and Generators	 102

Chapter 4 Dictionaries	 109
Item	25:	 Be Cautious when Relying on Dictionary

Insertion Ordering	 109

Item	26:	 Prefer get over in and KeyError to
Handle Missing Dictionary Keys	 117

Item	27:	 Prefer defaultdict over setdefault to
Handle Missing Items in Internal State	 122

Item	28:	 Know How to Construct Key-Dependent
Default Values with __missing__	 124

Item	29:	 Compose Classes Instead of Deeply
Nesting Dictionaries, Lists, and Tuples	 127

Chapter 5 Functions	 135
Item	30:	 Know That Function Arguments Can Be Mutated	 135

Item	 31:	 Return Dedicated Result Objects Instead of
Requiring Function Callers to Unpack
More Than Three Variables	 138

Item	32:	 Prefer Raising Exceptions to Returning None	 142

Item	33:	 Know How Closures Interact with Variable
Scope and nonlocal	 145

	 Contents	 xi

Item	34:	 Reduce Visual Noise with Variable
Positional Arguments	 150

Item	35:	 Provide Optional Behavior with
Keyword Arguments	 153

Item	36:	 Use None and Docstrings to Specify
Dynamic Default Arguments	 157

Item	37:	 Enforce Clarity with Keyword-Only and
Positional-Only Arguments	 161

Item	38:	 Define Function Decorators with functools.wraps	 166

Item	39:	 Prefer functools.partial over lambda
Expressions for Glue Functions	 169

Chapter 6 Comprehensions and Generators	 173
Item	40:	 Use Comprehensions Instead of map and filter	 173

Item	41:	 Avoid More Than Two Control Subexpressions
in Comprehensions	 176

Item	42:	 Reduce Repetition in Comprehensions with
Assignment Expressions	 178

Item	43:	 Consider Generators Instead of Returning Lists	 182

Item	44:	 Consider Generator Expressions for Large List
Comprehensions	 184

Item	45:	 Compose Multiple Generators with yield from	 186

Item	46:	 Pass Iterators into Generators as Arguments
Instead of Calling the send Method	 188

Item	47:	 Manage Iterative State Transitions with a
Class Instead of the Generator throw Method	 195

Chapter 7 Classes and Interfaces	 201
Item	48:	 Accept Functions Instead of Classes for

Simple Interfaces	 201

Item	49:	 Prefer Object-Oriented Polymorphism over
Functions with isinstance Checks	 205

Item	50:	 Consider functools.singledispatch for
Functional-Style Programming Instead of
Object-Oriented Polymorphism	 210

Item	 51:	 Prefer dataclasses for Defining Lightweight Classes	 217

Item	52:	 Use @classmethod Polymorphism to Construct
Objects Generically	 230

Item	53:	 Initialize Parent Classes with super	 235

xii	 Contents

Item	54:	 Consider Composing Functionality with
Mix-in Classes	 240

Item	55:	 Prefer Public Attributes over Private Ones	 245

Item	56:	 Prefer dataclasses for Creating Immutable Objects	 250

Item	57:	 Inherit from collections.abc Classes for Custom
Container Types	 260

Chapter 8 Metaclasses and Attributes	 265
Item	58:	 Use Plain Attributes Instead of Setter and

Getter Methods	 265

Item	59:	 Consider @property Instead of
Refactoring Attributes	 270

Item	60:	 Use Descriptors for Reusable @property Methods	 274

Item	61:	 Use __getattr__, __getattribute__, and
__setattr__ for Lazy Attributes	 279

Item	62:	 Validate Subclasses with __init_subclass__	 285

Item	63:	 Register Class Existence with __init_subclass__	 293

Item	64:	 Annotate Class Attributes with __set_name__	 299

Item	65:	 Consider Class Body Definition Order to
Establish Relationships Between Attributes	 303

Item	66:	 Prefer Class Decorators over Metaclasses for
Composable Class Extensions	 310

Chapter 9 Concurrency and Parallelism	 319
Item	67:	 Use subprocess to Manage Child Processes	 320

Item	68:	 Use Threads for Blocking I/O; Avoid for Parallelism	 324

Item	69:	 Use Lock to Prevent Data Races in Threads	 330

Item	70:	 Use Queue to Coordinate Work Between Threads	 333

Item	71:	 Know How to Recognize When Concurrency
Is Necessary	 344

Item	72:	 Avoid Creating New Thread Instances for
On-Demand Fan-out	 349

Item	73:	 Understand How Using Queue for
Concurrency Requires Refactoring	 353

Item	74:	 Consider ThreadPoolExecutor When Threads
Are Necessary for Concurrency	 361

Item	75:	 Achieve Highly Concurrent I/O with Coroutines	 364

Item	76:	 Know How to Port Threaded I/O to asyncio	 368

	 Contents	 xiii

Item	77:	 Mix Threads and Coroutines to Ease the
Transition to asyncio	 381

Item	78:	 Maximize Responsiveness of asyncio
Event Loops with async-Friendly Worker Threads	 389

Item	79:	 Consider concurrent.futures for True Parallelism	 393

Chapter 10 Robustness	 399
Item	80:	 Take Advantage of Each Block in

try/except/else/finally	 399

Item	81:	 assert Internal Assumptions and raise Missed
Expectations	 404

Item	82:	 Consider contextlib and with Statements
for Reusable try/finally Behavior	 408

Item	83:	 Always Make try Blocks as Short as Possible	 412

Item	84:	 Beware of Exception Variables Disappearing	 414

Item	85:	 Beware of Catching the Exception Class	 416

Item	86:	 Understand the Difference Between
Exception and BaseException	 419

Item	87:	 Use traceback for Enhanced Exception Reporting	 424

Item	88:	 Consider Explicitly Chaining Exceptions to
Clarify Tracebacks	 428

Item	89:	 Always Pass Resources into Generators and
Have Callers Clean Them Up Outside	 436

Item	90:	 Never Set __debug__ to False	 442

Item	 91:	 Avoid exec and eval Unless You’re Building a
Developer Tool	 445

Chapter 11 Performance	 447
Item	92:	 Profile Before Optimizing	 448

Item	93:	 Optimize Performance-Critical Code
Using timeit Microbenchmarks	 453

Item	94:	 Know When and How to Replace Python with
Another Programming Language	 458

Item	95:	 Consider ctypes to Rapidly Integrate with
Native Libraries	 462

Item	96:	 Consider Extension Modules to Maximize
Performance and Ergonomics	 467

Item	97:	 Rely on Precompiled Bytecode and
File System Caching to Improve Startup Time	 475

xiv	 Contents

Item	98:	 Lazy-Load Modules with Dynamic Imports to
Reduce Startup Time	 478

Item	99:	 Consider memoryview and bytearray for
Zero-Copy Interactions with bytes	 485

Chapter 12 Data Structures and Algorithms	 493
Item  100:   Sort by Complex Criteria Using the key Parameter	 493

Item  101:   Know the Difference Between sort and sorted	 499

Item  102:   Consider Searching Sorted Sequences with bisect	 501

Item  103:   Prefer deque for Producer–Consumer Queues	 504

Item  104:   Know How to Use heapq for Priority Queues	 509

Item  105:   Use datetime Instead of time for Local Clocks	 519

Item  106:   Use decimal when Precision Is Paramount	 523

Item  107:   �Make pickle Serialization Maintainable
with copyreg� 526

Chapter 13 Testing and Debugging	 533
Item  108:   Verify Related Behaviors in TestCase Subclasses	 533

Item  109:   Prefer Integration Tests over Unit Tests	 541

Item  110:   �Isolate Tests from Each Other with setUp,
tearDown, setUpModule, and tearDownModule� 547

Item  111:   �Use Mocks to Test Code with Complex
Dependencies� 550

Item  112:   �Encapsulate Dependencies to Facilitate
Mocking and Testing� 559

Item  113:   �Use assertAlmostEqual to Control Precision in
Floating Point Tests� 563

Item  114:   Consider Interactive Debugging with pdb	 565

Item  115:   �Use tracemalloc to Understand Memory
Usage and Leaks� 570

Chapter 14 Collaboration	 575
Item  116:   Know Where to Find Community-Built Modules	 575

Item  117:   �Use Virtual Environments for Isolated and
Reproducible Dependencies� 576

Item  118:   �Write Docstrings for Every Function, Class,
and Module� 582

	 Contents	 xv

Item  119:   �Use Packages to Organize Modules and
Provide Stable APIs� 588

Item  120:   �Consider Module-Scoped Code to
Configure Deployment Environments� 593

Item  121:   �Define a Root Exception to Insulate
Callers from APIs� 595

Item  122:   Know How to Break Circular Dependencies	 600

Item  123:   Consider warnings to Refactor and Migrate Usage	 605

Item  124:  � Consider Static Analysis via typing to
Obviate Bugs� 613

Item  125:   �Prefer Open Source Projects for Bundling Python
Programs over zipimport and zipapp� 621

Index	 627

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

Preface

The Python programming language has unique strengths and
charms that can be hard to grasp. Many programmers familiar with
other languages approach Python from a limited mindset instead of
embracing its full capabilities. Some programmers go too far in the
other direction, overusing Python features that can cause big prob-
lems later.

This book provides insight into the Pythonic way of writing programs:	
the best way to use Python. It builds on a fundamental understanding
of the language that I assume you already have. Novice programmers
will learn the best practices of Python’s critical features. Experienced
programmers will learn how to embrace a new tool with confidence.

With this book I hope to help you use Python to accomplish your
goals, whatever they may be, or at least to help you have more fun on
your journey with programming.

What This Book Covers

Each chapter in this book contains a broad but related set of items.
Feel free to jump between items and follow your interest. Each item
contains concise and specific guidance explaining how you can write
Python programs more effectively. Items include advice on what to
do, what to avoid, how to strike the right balance, and why this is the
best choice. Items reference each other to make it easier to fill in the
gaps as you read.

This third edition covers the language up through Python version
3.13 (see Item 1: “Know Which Version of Python You’re Using”). This
book includes 35 completely new items compared to the second edi-
tion. Most of the items from the second edition have been revised and
included, but many have undergone substantial updates. For some
items, my advice has completely changed due to best practices evolv-
ing as Python has matured over the past five years.

xviii	 Preface

Python takes a “batteries included” approach to its standard library.
Many of these built-in packages are so closely intertwined with idi-
omatic Python that they may as well be part of the language specifi-
cation. The full set of standard modules is too large to cover in this
book, but I’ve included the ones that I feel are critical to be aware of
and use.

Python also has a vibrant ecosystem of community-built modules that
extend the language in valuable ways. Although I mention important
packages to know about in various items, this book is not intended to
be a thorough reference. Similarly, despite the importance of Python
package management, I avoid going into the details about it because
it’s rapidly changing and evolving.

Chapter 1: Pythonic Thinking

The Python community has come to use the adjective Pythonic to
describe code that follows a particular style. The idioms of Python
have emerged over time through experience using the language and
collaborating with other programmers. This chapter covers the best
ways to do the most common things in Python.

Chapter 2: Strings and Slicing

Python has built-in syntax, methods, and modules for string and
sequence processing. These capabilities are so essential that you’ll
see them in nearly every program. They make Python an excellent
language for parsing text, inspecting data formats, and interfacing
with the low-level binary representations used by computers.

Chapter 3: Loops and Iterators

Processing through sequential data is a critical need in programs.
Loops in Python feel natural and capable for the most common tasks
involving built-in data types, container types, and user-defined classes.
Python also supports iterators, which enable a more functional-style
approach to processing arbitrary streams of data with significant
benefits.

Chapter 4: Dictionaries

Python’s built-in dictionary type is a versatile data structure for
bookkeeping in programs. Compared to simple lists, dictionaries pro-
vide much better performance for adding and removing items. Python
also has special syntax and related built-in modules that enhance
dictionaries beyond what you might expect from hash tables in other
languages.

	 Preface	 xix

Chapter 5: Functions

Functions in Python have a variety of extra features that can make a
programmer’s life easier. Some are similar to capabilities in other pro-
gramming languages, but many are unique to Python. This chapter
covers how to use functions to clarify intention, promote reuse, and
reduce bugs.

Chapter 6: Comprehensions and Generators

Python has special syntax for quickly iterating through lists, dictionar-
ies, and sets to generate derivative data structures. It also allows for a
stream of iterable values to be incrementally returned by a function.
This chapter covers how these features can provide better performance,
reduced memory usage, and improved readability.

Chapter 7: Classes and Interfaces

Python is an object-oriented language. Getting things done in Python
often requires writing new classes and defining how they interact
through their interfaces and hierarchies. This chapter covers how to
use classes to express intended behaviors with objects.

Chapter 8: Metaclasses and Attributes

Metaclasses and dynamic attributes are powerful Python features.
However, they also enable you to implement extremely bizarre and
unexpected behaviors. This chapter covers the common idioms for
using these mechanisms to ensure that you follow the rule of least
surprise.

Chapter 9: Concurrency and Parallelism

With features such as threads and asynchronous coroutines, Python
makes it easy to write concurrent programs that do many different
things seemingly at the same time. Python can also be used to do
parallel work through system calls, subprocesses, and special mod-
ules. This chapter covers how to best utilize Python in these subtly
different situations.

Chapter 10: Robustness

Making programs dependable when they encounter unexpected cir-
cumstances is just as important as making programs with correct
functionality. Python has built-in features and modules that aid
in hardening your programs so they are robust in a wide variety of
situations.

xx	 Preface

Chapter 11: Performance

Python includes a variety of capabilities that enable programs to
achieve surprisingly impressive performance with relatively low
amounts of effort. Using these features, it’s possible to extract maxi-
mum performance from a host system while retaining the productiv-
ity gains afforded by Python’s high-level nature.

Chapter 12: Data Structures and Algorithms

Python includes optimized implementations of many standard data
structures and algorithms that can help you achieve high perfor-
mance with minimal effort. The language also provides battle-tested
data types and helper functions for common tasks (e.g., working
with currency and time) that allow you focus on your program’s core
requirements.

Chapter 13: Testing and Debugging

You should always test your code, regardless of what language it’s
written in, but with Python, testing is especially important. Python’s
dynamic features can increase the risk of runtime errors in unique
ways. Luckily, they also make it easier to write tests and diagnose
malfunctioning programs. This chapter covers Python’s built-in tools
for testing and debugging.

Chapter 14: Collaboration

Collaborating on Python programs requires you to be deliberate about
how you write your code. Even if you’re working alone, you’ll want to
understand how to use modules written by others. This chapter cov-
ers the standard tools and best practices that enable people to work
together on Python programs.

Conventions Used in This Book

Python code snippets in this book are in monospace font and have
syntax highlighting. When lines are long, I use � characters to show
when they wrap. I truncate some snippets with ellipses (...) to indi-
cate regions where code exists that isn’t essential for expressing the
point. You’ll need to download the full example code (see below on
where to get it) in order to get these truncated snippets to run cor-
rectly on your computer.

I take some artistic license with the Python style guide in order to
make the code examples better fit the format of a book or to highlight
the most important parts. I’ve also left out embedded documentation

	 Preface	 xxi

to reduce the size of code examples. I strongly suggest that you don’t
emulate this in your projects; instead, you should follow the style
guide (see Item 2: “Follow the PEP 8 Style Guide”) and write documen-
tation (see Item 118: “Write Docstrings for Every Function, Class, and
Module”).

Most code snippets in this book are accompanied by the correspond-
ing output from running the code. When I say “output,” I mean console
or terminal output: what you see when running the Python program
in an interactive interpreter. Output sections are in monospace font,
and each is preceded by a >>> line (the Python interactive prompt).
The idea is that you could type the code snippets into a Python shell
and reproduce the expected output.

Finally, there are some other sections in monospace font that are
not preceded by a >>> line. These represent the output of running
programs besides the Python interpreter. These examples often
begin with $ characters to indicate that I’m running programs from
a command-line shell like Bash. If you’re running these commands
on Windows or another type of system, you may need to adjust the
program names and arguments accordingly.

Where to Get the Code and Errata

It’s useful to view many of the examples from this book as whole pro-
grams without interleaved prose. This also gives you a chance to tin-
ker with the code yourself and understand why the program works as
described. You can find the source code for all code snippets in this
book on the book’s website, https://effectivepython.com. The web-
site also provides instructions on how to report errors. Thank you in
advance for contacting me about any errors you find.

Register your copy of Effective Python: 125 Specific Ways to
Write Better Python, 3rd Edition on the InformIT site for con-
venient access to updates and/or corrections as they become
available. To start the registration process, go to informit.com/
register and log in or create an account. Enter the product ISBN
(9780138172183) and click Submit. If you would like to be notified
of exclusive offers on new editions and updates, please check the
box to receive email from us.

https://effectivepython.com
http://informit.com/register
http://informit.com/register

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

Acknowledgments

Thank you for reading this book. I must emphasize that this book
would not have been possible without guidance, support, and encour-
agement from many people.

Thanks to Scott Meyers for the Effective Software Development series
of books. I discovered the joy of computer programming at a young
age, but when I read his book Effective C++ when I was 15 years old,
something clicked. There’s no doubt that Scott’s books led to my col-
lege education and first job. I’m thrilled to have had the opportunity
to write all three editions of Effective Python. I’ve learned so much in
the process, and I’m deeply grateful for the experience.

Thanks to the team who made this third edition a reality. Thanks to
my executive editor, Debra Williams, for being so supportive through-
out the process. Thanks to development editor Chris Zahn, production
editor Mary Roth, copy editor Kitty Wilson, cover designer Chuti Pras-
ertsith, and marketing manager Chike Lawrence-Mitchell. Thanks to
my technical reviewers—Karry Lu, David N. Cohron, and Andy Chu—
for the depth and thoroughness of their feedback.

Thanks to everyone who supported me in creating the first and sec-
ond editions of this book: Debra Williams, Trina MacDonald, Olivia
Basegio, Mike Bayer, Titus Brown, Brett Cannon, Andy Chu, Tom Cir-
tin, Nick Cohron, Leah Culver, Andrew Dolan, Pamela Fox, Stepha-
nie Geels, Adrian Holovaty, Toshiaki Kurokawa, Michael Levine, Lori
Lyons, Asher Mancinelli, Wes McKinney, Julie Nahil, Stephane Nakib,
Stephane Nakib, Marzia Niccolai, Ade Oshineye, Chuti Prasertsith,
Brandon Rhodes, Tavis Rudd, Katrina Sostek, Mike Taylor, Simon
Willison, Kitty Wilson, and Chris Zahn.

Thanks to all of the readers who reported errors and room for improve-
ment in the book. Please keep the feedback coming! Thanks to all
of the translators who made the book available around the world;
nothing brings a smile to my face quite like seeing my book in other
languages.

xxiv	 Acknowledgments

Thanks to the wonderful Python programmers I’ve known and worked
with: Anthony Baxter, Brett Cannon, Wesley Chun, Jeremy Hylton,
Alex Martelli, Neal Norwitz, Guido van Rossum, Andy Smith, Greg
Stein, Ka-Ping Yee, and Gregory Smith. I appreciate your tutelage and
leadership. Python has an excellent community, and I feel lucky to be
a part of it.

Thanks to my teammates over the years for letting me be the worst
player in the band. Thanks to Kevin Gibbs for helping me take risks.
Thanks to Ken Ashcraft, Ryan Barrett, and Jon McAlister for showing
me how it’s done. Thanks to Brad Fitzpatrick for taking it to the next
level. Thanks to Paul McDonald for being an amazing co-founder.
Thanks to Jeremy Ginsberg, Jack Hebert, John Skidgel, Evan Martin,
Tony Chang, Troy Trimble, Tessa Pupius, Erick Armbrust, and Dylan
Lorimer for helping me learn. Thanks to Sagnik Nandy, Waleed Ojeil,
and Will Grannis for your mentorship.

Thanks to the inspiring programming and engineering teachers
that I’ve had: Ben Chelf, Glenn Cowan, Vince Hugo, Russ Lewin,
Jon Stemmle, Derek Thomson, Daniel Wang, Dean Nevins, Stephen
Strenn, and Alex Guy. Without your instruction, I would never have
pursued our craft or gained the perspective required to teach others.

Thanks to my mother for giving me a sense of purpose and encourag-
ing me to become a programmer. Thanks to my family and friends for
their support. Thanks to my wife for her love and friendship.

About the Author

Brett Slatkin has been programming with Python professionally
for the past 19 years. He currently works as a principal software
engineer in the Office of the CTO at Google, developing technology
strategies and rapid prototypes.

His prior experience includes founding Google Surveys, an inter-
nal startup for collecting machine learning and market research
data sets; launching Google App Engine, the company’s first cloud
computing product; scaling Google’s A/B experimentation products
to billions of users; co-creating PubSubHubbub, the W3C standard
for real-time RSS feeds; and making various contributions to open
source projects.

Brett earned a bachelor’s degree in computer engineering from Colum-
bia University in the City of New York. Outside of his day job, he enjoys
playing piano, surfing, and spending time with his family. He lives in
California. You can find him online at https://onebigfluke.com.

https://onebigfluke.com

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

5 Functions

The first organizational tool programmers use in Python is the func-
tion. As in other programming languages, functions enable you to
break large programs into smaller, simpler components with names
to represent their purpose. They improve readability and make code
more approachable. They allow for reuse and refactoring.

Functions in Python have a variety of extra features that make a pro-
grammer’s life easier. Some are similar to capabilities in other pro-
gramming languages, but many are unique to Python. These extras
can make a function’s interface clearer. They can eliminate noise and
reinforce the intention of callers. They can significantly reduce subtle
bugs that are difficult to find.

Item 30: �Know That Function Arguments Can
Be Mutated

Python doesn’t support pointer types (beyond interfacing with C; see
Item 95: “Consider ctypes to Rapidly Integrate with Native Libraries”).
But arguments passed to functions are all passed by reference. For
simple types, like integers and strings, parameters appear to be passed
by value because they’re immutable objects. But more complex objects
can be modified whenever they’re passed to other functions, regardless
of the caller’s intent.

For example, if I pass a list to another function, that function has the
ability to call mutation methods on the argument:

def my_func(items):
 items.append(4)

x = [1, 2, 3]
my_func(x)
print(x) # 4 is now in the list

136	 Chapter 5  Functions

>>>
[1, 2, 3, 4]

In this case, you can’t replace the original value of the variable x
within the called function, as you might do with a C-style pointer
type. But you can make modifications to the list assigned to x.

Similarly, when one variable is assigned to another, it stores a refer-
ence, or an alias, to the same underlying data structure. Thus, call-
ing a function with what appears to be a separate variable actually
allows for mutation of the original:

a = [7, 6, 5]
b = a # Creates an alias
my_func(b)
print(a) # 4 is now in the list

>>>
[7, 6, 5, 4]

For lists and dictionaries, you can work around this issue by passing
a copy of the container to insulate you from the function’s behavior.
Here, I create a copy by using the slice operation with no starting or
ending indexes (see Item 14: “Know How to Slice Sequences”):

def capitalize_items(items):
 for i in range(len(items)):
 items[i] = items[i].capitalize()

my_items = ["hello", "world"]
items_copy = my_items[:] # Creates a copy
capitalize_items(items_copy)
print(items_copy)

>>>
['Hello', 'World']

The dictionary built-in type provides a copy method specifically for
this purpose:

def concat_pairs(items):
 for key in items:
 items[key] = f"{key}={items[key]}"

my_pairs = {"foo": 1, "bar": 2}
pairs_copy = my_pairs.copy() # Creates a copy
concat_pairs(pairs_copy)
print(pairs_copy)

>>>
{'foo': 'foo=1', 'bar': 'bar=2'}

	 Item 30: Know That Function Arguments Can Be Mutated 	 137

User-defined classes (see Item 29: “Compose Classes Instead of Deeply
Nesting Dictionaries, Lists, and Tuples”) can also be modified by call-
ers. Any of their internal properties can be accessed or assigned by
any function they’re passed to (see Item 55: “Prefer Public Attributes
over Private Ones”):

class MyClass:
 def __init__(self, value):
 self.value = value

x = MyClass(10)

def my_func(obj):
 obj.value = 20 # Modifies the object

my_func(x)
print(x.value)

>>>
20

When implementing a function that others will call, you shouldn’t
modify any mutable value provided unless that behavior is mentioned
explicitly in the function name, argument names, or documentation.
You might also want to make a defensive copy of any arguments you
receive to avoid various pitfalls with iteration (see Item 21: “Be Defen-
sive when Iterating over Arguments” and Item 22: “Never Modify Con-
tainers While Iterating over Them; Use Copies or Caches Instead”).

When calling a function, you should be careful about passing mutable
arguments because your data might get modified, which can cause
difficult-to-spot bugs. For complex objects you control, it can be use-
ful to add helper functions and methods that make it easy to create
defensive copies. Alternatively, you can use a more functional style
and try to leverage immutable objects and pure functions (see Item
56: “Prefer dataclasses for Creating Immutable Objects”).

Things to Remember

✦	Arguments in Python are passed by reference, meaning their attri-
butes can be mutated by receiving functions and methods.

✦	Functions should make it clear (with naming and documentation)
when they will modify input arguments and avoid modifying argu-
ments otherwise.

✦	Creating copies of collections and objects you receive as input is a
reliable way to ensure that your functions avoid inadvertently mod-
ifying data.

138	 Chapter 5  Functions

Item 31: �Return Dedicated Result Objects Instead of
Requiring Function Callers to Unpack More
Than Three Variables

One effect of the unpacking syntax (see Item 5: “Prefer Multiple-
Assignment Unpacking over Indexing”) is that it allows a Python
function to seemingly return more than one value. For example, say
that I’m trying to determine various statistics for a population of alli-
gators. Given a list of lengths, I need to calculate the minimum and
maximum lengths in the population. Here, I do this in a single func-
tion that appears to return two values:

def get_stats(numbers):
 minimum = min(numbers)
 maximum = max(numbers)
 return minimum, maximum

lengths = [63, 73, 72, 60, 67, 66, 71, 61, 72, 70]

minimum, maximum = get_stats(lengths) # Two return values

print(f"Min: {minimum}, Max: {maximum}")

>>>
Min: 60, Max: 73

The way this works is that multiple values are returned together in a
two-item tuple. The calling code then unpacks the returned tuple by
assigning two variables. Here, I use an even simpler example to show
how an unpacking statement and multiple-return function work the
same way:

first, second = 1, 2
assert first == 1
assert second == 2

def my_function():
 return 1, 2

first, second = my_function()
assert first == 1
assert second == 2

Multiple return values can also be received by starred expressions for
catch-all unpacking (see Item 16: “Prefer Catch-All Unpacking over
Slicing”). For example, say I need another function that calculates

	 Item 31: Return Dedicated Result Objects	 139

how big each alligator is relative to the population average. This func-
tion returns a list of ratios, but I can receive the longest and short-
est items individually by using a starred expression for the middle
portion of the list:

def get_avg_ratio(numbers):
 average = sum(numbers) / len(numbers)
 scaled = [x / average for x in numbers]
 scaled.sort(reverse=True)
 return scaled

longest, *middle, shortest = get_avg_ratio(lengths)

print(f"Longest: {longest:>4.0%}")
print(f"Shortest: {shortest:>4.0%}")

>>>
Longest: 108%
Shortest: 89%

Now, imagine that the program’s requirements change, and I need to
also determine the average length, median length, and total popula-
tion size of the alligators. I can do this by expanding the get_stats
function to also calculate these statistics and return them in the
result tuple that is unpacked by the caller:

def get_median(numbers):
 count = len(numbers)
 sorted_numbers = sorted(numbers)
 middle = count // 2
 if count % 2 == 0:
 lower = sorted_numbers[middle - 1]
 upper = sorted_numbers[middle]
 median = (lower + upper) / 2
 else:
 median = sorted_numbers[middle]
 return median

def get_stats_more(numbers):
 minimum = min(numbers)
 maximum = max(numbers)
 count = len(numbers)
 average = sum(numbers) / count
 median = get_median(numbers)
 return minimum, maximum, average, median, count

140	 Chapter 5  Functions

minimum, maximum, average, median, count =
�get_stats_more(lengths)

print(f"Min: {minimum}, Max: {maximum}")
print(f"Average: {average}, Median: {median}, Count {count}")

>>>
Min: 60, Max: 73
Average: 67.5, Median: 68.5, Count 10

There are two problems with this code. First, all of the return values
are numeric, so it is all too easy to reorder them accidentally (e.g.,
swapping average and median), which can cause bugs that are hard
to spot later. Using a large number of return values is extremely error
prone:

Correct:
minimum, maximum, average, median, count =
�get_stats_more(lengths)

Oops! Median and average swapped:
minimum, maximum, median, average, count =
�get_stats_more(lengths)

Second, the line that calls the function and unpacks the values is
long, and it will likely need to be wrapped in one of a variety of ways
(due to PEP 8 style; see Item 2: “Follow the PEP 8 Style Guide”), which
hurts readability:

minimum, maximum, average, median, count = get_stats_more(
 lengths)

minimum, maximum, average, median, count =
 get_stats_more(lengths)

(minimum, maximum, average,
 median, count) = get_stats_more(lengths)

(minimum, maximum, average, median, count
) = get_stats_more(lengths)

To avoid these problems, you should never use more than three vari-
ables when unpacking the multiple return values from a function.
These could be individual values from a three-tuple, two variables
and one catch-all starred expression, or anything shorter.

If you need to unpack more return values than that, you’re better off
defining a lightweight class (see Item 29: “Compose Classes Instead

of Deeply Nesting Dictionaries, Lists, and Tuples” and Item 51: “Pre-
fer dataclasses for Defining Lightweight Classes”) and having your
function return an instance of that instead. Here, I write another ver-
sion of the get_stats function that returns a result object instead of
a tuple:

from dataclasses import dataclass

@dataclass
class Stats:
 minimum: float
 maximum: float
 average: float
 median: float
 count: int

def get_stats_obj(numbers):
 return Stats(
 minimum=min(numbers),
 maximum=max(numbers),
 count=len(numbers),
 average=sum(numbers) / count,
 median=get_median(numbers),
)

result = get_stats_obj(lengths)
print(result)

>>>
Stats(minimum=60, maximum=73, average=67.5, median=68.5,
�count=10)

The code is clearer, less error prone, and will be easier to refactor
later.

Things to Remember

✦	You can have functions return multiple values by putting them in a
tuple and having the caller take advantage of Python’s unpacking
syntax.

✦	Multiple return values from a function can also be unpacked by
catch-all starred expressions.

✦	Unpacking into four or more variables is error prone and should be
avoided; instead, return an instance of a lightweight class.

	 Item 31: Return Dedicated Result Objects	 141

142	 Chapter 5  Functions

Item 32: Prefer Raising Exceptions to Returning None

When writing utility functions, there’s a draw for Python program-
mers to give special meaning to the return value None. It seems
to make sense in some cases (see Item 26: “Prefer get over in and
KeyError to Handle Missing Dictionary Keys”). For example, say I want
a helper function that divides one number by another. In the case of
dividing by zero, returning None seems natural because the result is
undefined:

def careful_divide(a, b):
 try:
 return a / b
 except ZeroDivisionError:
 return None

Code that uses this function can interpret the return value
accordingly:

x, y = 1, 0
result = careful_divide(x, y)
if result is None:
 print("Invalid inputs")

What happens with the careful_divide function when the numera-
tor is zero? If the denominator is not zero, then the function returns
zero. The problem is that a zero return value can cause issues when
you evaluate the result in a condition like an if statement. You might
accidentally look for any falsey value to indicate errors instead of only
looking for None (see Item 4: “Write Helper Functions Instead of Com-
plex Expressions” and Item 7: “Consider Conditional Expressions for
Simple Inline Logic”):

x, y = 0, 5
result = careful_divide(x, y)
if not result: # Changed
 print("Invalid inputs") # This runs! But shouldn't

>>>
Invalid inputs

This misinterpretation of a False-equivalent return value is a com-
mon mistake in Python code when None has special meaning. This is
why returning None from a function like careful_divide is error prone.
There are two ways to reduce the chance of such errors.

	 Item 32: Prefer Raising Exceptions to Returning None	 143

The first way is to split the return value into a two-tuple (see Item 31:
“Return Dedicated Result Objects Instead of Requiring Function Callers
to Unpack More Than Three Variables” for background). The first part
of the tuple indicates that the operation was a success or failure. The
second part is the actual result that was computed:

def careful_divide(a, b):
 try:
 return True, a / b
 except ZeroDivisionError:
 return False, None

Callers of this function have to unpack the tuple. That forces them
to consider the status part of the tuple instead of just looking at the
result of division:

success, result = careful_divide(x, y)
if not success:
 print("Invalid inputs")

The problem is that callers can easily ignore the first part of the
tuple (using the underscore variable name, which is a Python con-
vention for unused variables). The resulting code doesn’t look wrong
at first glance, but this can be just as error prone as returning None:

_, result = careful_divide(x, y)
if not result:
 print("Invalid inputs")

The second, better way to reduce these errors is to never return None
for special cases. Instead, raise an exception up to the caller and have
the caller deal with it. Here, I turn ZeroDivisionError into ValueError
to indicate to the caller that the input values are bad (see Item 88:
“Consider Explicitly Chaining Exceptions to Clarify Tracebacks” and
Item 121: “Define a Root Exception to Insulate Callers from APIs” for
details):

def careful_divide(a, b):
 try:
 return a / b
 except ZeroDivisionError:
 raise ValueError("Invalid inputs") # Changed

The caller no longer requires a condition on the return value of
the function. Instead, it can assume that the return value is always
valid and use the results immediately in the else block after try

144	 Chapter 5  Functions

(see Item 80: “Take Advantage of Each Block in try/except/else/
finally” for background):

x, y = 5, 2
try:
 result = careful_divide(x, y)
except ValueError:
 print("Invalid inputs")
else:
 print(f"Result is {result:.1f}")

>>>
Result is 2.5

This approach can be extended to code using type annotations (see
Item 124: “Consider Static Analysis via typing to Obviate Bugs” for
background). You can specify that a function’s return value will always
be a float and thus will never be None. However, Python’s gradual
typing purposely doesn’t provide a way to indicate when exceptions
are part of a function’s interface (also known as checked exceptions).
Instead, you have to document the exception-raising behavior and
expect callers to rely on that in order to know which exceptions they
should plan to catch (see Item 118: “Write Docstrings for Every Func-
tion, Class, and Module”).

Pulling it all together, here’s what this function should look like when
using type annotations and docstrings:

def careful_divide(a: float, b: float) -> float:
 """Divides a by b.

 Raises:
 ValueError: When the inputs cannot be divided.
 """
 try:
 return a / b
 except ZeroDivisionError:
 raise ValueError("Invalid inputs")

try:
 result = careful_divide(1, 0)
except ValueError:
 print("Invalid inputs") # Expected
else:
 print(f"Result is {result:.1f}")

>>>
$ python3 -m mypy --strict example.py
Success: no issues found in 1 source file

	 Item 33: Know How Closures Interact with Variable Scope and nonlocal	 145

Now the inputs, outputs, and exceptional behavior are all clear, and
the chance of a caller doing the wrong thing is extremely low.

Things to Remember

✦	Functions that return None to indicate special meaning are error
prone because None and many other values, such as zero and empty
strings, evaluate to False in Boolean expressions.

✦	Raise exceptions to indicate special situations instead of returning
None. Expect the calling code to handle exceptions properly when
they’re documented.

✦	Type annotations can be used to make it clear that a function will
never return the value None, even in special situations.

Item 33: �Know How Closures Interact with Variable
Scope and nonlocal

Imagine that I want to sort a list of numbers but prioritize one group
of numbers to come first. This pattern is useful when you’re rendering
a user interface and want important messages or exceptional events
to be displayed before everything else. A common way to do this is
to pass a helper function as the key argument to a list’s sort method
(see Item 100: “Sort by Complex Criteria Using the key Parameter” for
details). The helper’s return value will be used as the value for sorting
each item in the list. The helper can check whether the given item is
in the important group and can vary the sorting value accordingly:

def sort_priority(values, group):
 def helper(x):
 if x in group:
 return (0, x)
 return (1, x)

 values.sort(key=helper)

This function works for simple inputs:

numbers = [8, 3, 1, 2, 5, 4, 7, 6]
group = {2, 3, 5, 7}
sort_priority(numbers, group)
print(numbers)

>>>
[2, 3, 5, 7, 1, 4, 6, 8]

146	 Chapter 5  Functions

There are three reasons this function operates as expected:

✦	Python supports closures—that is, functions that refer to variables
from the scope in which they were defined. This is why the helper
function is able to access the group argument for the sort_priority
function.

✦	Functions are first-class objects in Python, which means you can
refer to them directly, assign them to variables, pass them as argu-
ments to other functions, compare them in expressions and if
statements, and so on. This is how the sort method can accept a
closure function as the key argument.

✦	Python has specific rules for comparing sequences (including
tuples). It first compares items at index zero; then, if those are equal,
it compares items at index one; if they are still equal, it compares
items at index two, and so on. This is why the return value from the
helper closure causes the sort order to have two distinct groups.

It’d be nice if this function returned whether higher-priority items
were seen at all so the user interface code could act accordingly. Add-
ing such behavior seems straightforward. There’s already a closure
function for deciding which group each number is in. Why not also
use the closure to flip a flag when high-priority items are seen? Then,
the function could return the flag value after it’s modified by the
closure.

Here, I try to do that in a seemingly obvious way:

def sort_priority2(numbers, group):
 found = False # Flag initial value

 def helper(x):
 if x in group:
 found = True # Flip the flag
 return (0, x)
 return (1, x)

 numbers.sort(key=helper)
 return found # Flag final value

I can run the function on the same inputs as before:

found = sort_priority2(numbers, group)
print("Found:", found)
print(numbers)

>>>
Found: False
[2, 3, 5, 7, 1, 4, 6, 8]

The sorted results are correct, which means items from group were
definitely found in numbers. However, the found result returned by the
function is False when it should be True. How could this happen?

When you reference a variable in an expression, the Python inter-
preter traverses the nested scopes to resolve the reference in this
order:

1.	The current function’s scope

2.	Any enclosing scopes (such as other containing functions)

3.	The scope of the module that contains the code (also called the
global scope)

4.	The built-in scope (that contains functions like len and str)

If none of these places has defined a variable with the referenced
name, then a NameError exception is raised:

foo = does_not_exist * 5

>>>
Traceback ...
NameError: name 'does_not_exist' is not defined

Assigning a value to a variable works differently. If the variable is
already defined in the current scope, that name will take on the new
value in that scope. If the variable doesn’t exist in the current scope,
Python treats the assignment as a variable definition. Critically, the
scope of the newly defined variable is the function that contains the
assignment, not an enclosing scope with an earlier assignment.

This assignment behavior explains the wrong return value of the
sort_priority2 function. The found variable is assigned to True in the
helper closure. The closure’s assignment is treated as a new variable
definition within the scope of helper, not as an assignment within the
scope of sort_priority2:

def sort_priority2(numbers, group):
 found = False # Scope: 'sort_priority2'

 def helper(x):
 if x in group:
 found = True # Scope: 'helper' -- Bad!

	 Item 33: Know How Closures Interact with Variable Scope and nonlocal	 147

148	 Chapter 5  Functions

 return (0, x)
 return (1, x)

 numbers.sort(key=helper)
 return found

This problem is sometimes called the scoping bug because it can be so
surprising to newbies. But this behavior is the intended result: It pre-
vents local variables in a function from polluting the containing mod-
ule. Otherwise, every assignment in a function would put garbage
into the global module scope. Not only would that be noise, but the
interplay of the resulting global variables could cause obscure bugs.

In Python, there is special syntax for assigning data outside of a clo-
sure’s scope. The nonlocal statement is used to indicate that scope tra-
versal should happen upon assignment for a specific variable name.
The only limit is that nonlocal won’t traverse up to the module-level
scope (to avoid polluting globals).

Here, I define the same function again, now using nonlocal:

def sort_priority3(numbers, group):
 found = False

 def helper(x):
 nonlocal found # Added
 if x in group:
 found = True
 return (0, x)
 return (1, x)

 numbers.sort(key=helper)
 return found

Now the found flag works as expected:

found = sort_priority3(numbers, group)
print("Found:", found)
print(numbers)

>>>
Found: True
[2, 3, 5, 7, 1, 4, 6, 8]

The nonlocal statement makes it clear when data is being assigned
out of a closure and into another scope. It’s complementary to the
global statement, which indicates that a variable’s assignment should
go directly into the module scope.

However, much as with the anti-pattern of global variables, I caution
against using nonlocal for anything beyond simple functions. The side
effects of nonlocal can be hard to follow. It’s especially hard to under-
stand in long functions where the nonlocal statements and assign-
ments to associated variables are far apart.

When your usage of nonlocal starts getting complicated, it’s better
to wrap your state in a helper class. Here, I define a class that can
be called like a function; it achieves the same result as the nonlocal
approach by assigning an object’s attribute during sorting (see
Item 55: “Prefer Public Attributes over Private Ones”):

class Sorter:
 def __init__(self, group):
 self.group = group
 self.found = False

 def __call__(self, x):
 if x in self.group:
 self.found = True
 return (0, x)
 return (1, x)

It’s a little longer than before, but it’s much easier to reason about and
extend if needed (see Item 48: “Accept Functions Instead of Classes for
Simple Interfaces” for details on the __call__ special method). I can
access the found attribute on the Sorter instance to get the result:

sorter = Sorter(group)
numbers.sort(key=sorter)
print("Found:", sorter.found)
print(numbers)

>>>
Found: True
[2, 3, 5, 7, 1, 4, 6, 8]

Things to Remember

✦	Closure functions can refer to variables from any of the enclosing
scopes in which they were defined.

✦	By default, closures can’t affect enclosing scopes by assigning
variables.

	 Item 33: Know How Closures Interact with Variable Scope and nonlocal	 149

150	 Chapter 5  Functions

✦	Use the nonlocal statement to indicate when a closure can modify a
variable in its enclosing scopes. Use the global statement to do the
same thing for module-level names.

✦	Avoid using nonlocal statements for anything beyond simple
functions.

Item 34: �Reduce Visual Noise with Variable Positional
Arguments

Accepting a variable number of positional arguments can make a
function call clearer and reduce visual noise. These positional argu-
ments are often called varargs for short, or star args, in reference to
the conventional name for the parameter *args. For example, say that
I want to log some debugging information. With a fixed number of
arguments, I would need a function that takes a message and a list
of values:

def log(message, values):
 if not values:
 print(message)
 else:
 values_str = ", ".join(str(x) for x in values)
 print(f"{message}: {values_str}")

log("My numbers are", [1, 2])
log("Hi there", [])

>>>
My numbers are: 1, 2
Hi there

Having to pass an empty list when I have no values to log is cumber-
some and noisy. It’d be better to leave out the second argument entirely.
I can do this in Python by prefixing the last positional parameter name
with *. The first parameter for the log message is required, and any
number of subsequent positional arguments are optional. The function
body doesn’t need to change; only the callers do:

def log(message, *values): # Changed
 if not values:
 print(message)
 else:
 values_str = ", ".join(str(x) for x in values)
 print(f"{message}: {values_str}")

	 Item 34: Reduce Visual Noise with Variable Positional Arguments	 151

log("My numbers are", 1, 2)
log("Hi there") # Changed

>>>
My numbers are: 1, 2
Hi there

This syntax works very similarly to the starred expressions used
in unpacking assignment statements (see Item 16: “Prefer Catch-All
Unpacking over Slicing” and Item 9: “Consider match for Destructur-
ing in Flow Control; Avoid When if Statements Are Sufficient” for
more examples).

If I already have a sequence (like a list) and I want to call a variadic
function like log, I can do this by using the * operator. This instructs
Python to pass items from the sequence as positional arguments to
the function:

favorites = [7, 33, 99]
log("Favorite colors", *favorites)

>>>
Favorite colors: 7, 33, 99

There are two problems with accepting a variable number of posi-
tional arguments.

The first issue is that these optional positional arguments are always
turned into a tuple before they are passed to your function. This
means that if the caller of your function uses the * operator on a gen-
erator, it will be iterated until it’s exhausted (see Item 43: “Consider
Generators Instead of Returning Lists” for background). The resulting
tuple includes every value from the generator, which could consume a
lot of memory and cause the program to crash:

def my_generator():
 for i in range(10):
 yield i

def my_func(*args):
 print(args)

it = my_generator()
my_func(*it)

>>>
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

152	 Chapter 5  Functions

Functions that accept *args are best for situations where you know
the number of inputs in the argument list will be reasonably small.
*args is ideal for function calls that pass many literals or variable
names together. It’s primarily for the convenience of the programmer
who calls the function and the readability of the calling code.

The second issue with *args is that you can’t add new positional argu-
ments to a function in the future without migrating every caller. If
you try to add a positional argument in the front of the argument list,
existing callers will subtly break if they aren’t updated. For example,
here I add sequence as the first argument of the function and use it to
render the log messages:

def log_seq(sequence, message, *values):
 if not values:
 print(f"{sequence} - {message}")
 else:
 values_str = ", ".join(str(x) for x in values)
 print(f"{sequence} - {message}: {values_str}")

log_seq(1, "Favorites", 7, 33) # New with *args OK
log_seq(1, "Hi there") # New message only OK
log_seq("Favorite numbers", 7, 33) # Old usage breaks

>>>
1 - Favorites: 7, 33
1 - Hi there
Favorite numbers - 7: 33

The problem with the code above is that the third call to log used 7 as
the message parameter because a sequence argument wasn’t provided.
Bugs like this are hard to track down because the code still runs with-
out raising any exceptions. To avoid this possibility entirely, you should
use keyword-only arguments when you want to extend functions that
accept *args (see Item 37: “Enforce Clarity with Keyword-Only and
Positional-Only Arguments”). To be even more defensive, you could also
consider using type annotations (see Item 124: “Consider Static Analy-
sis via typing to Obviate Bugs”).

Things to Remember

✦	You can have functions accept a variable number of positional argu-
ments by using *args in the def statement.

✦	You can use the items from a sequence as the positional arguments
for a function with the * operator.

	 Item 35: Provide Optional Behavior with Keyword Arguments	 153

✦	Using the * operator with a generator may cause a program to run
out of memory and crash.

✦	Adding new positional arguments to functions that accept *args
can introduce hard-to-detect bugs.

Item 35: �Provide Optional Behavior with Keyword
Arguments

As in most other programming languages, in Python you may pass
arguments by position when calling a function:

def remainder(number, divisor):
 return number % divisor

assert remainder(20, 7) == 6

All normal arguments to Python functions can also be passed by
keyword, where the name of the argument is used in an assignment
within the parentheses of a function call. Keyword arguments can
be passed in any order, as long as all of the required positional argu-
ments are specified. You can mix and match keyword and positional
arguments. These calls are equivalent:

remainder(20, 7)
remainder(20, divisor=7)
remainder(number=20, divisor=7)
remainder(divisor=7, number=20)

Positional arguments must be specified before keyword arguments:

remainder(number=20, 7)

>>>
Traceback ...
SyntaxError: positional argument follows keyword argument

Each argument can be specified only once:

remainder(20, number=7)

>>>
Traceback ...
TypeError: remainder() got multiple values for argument
�'number'

If you already have a dictionary object, and you want to use its
contents to call a function like remainder, you can do this by using
the ** operator. This instructs Python to pass the key-value pairs

154	 Chapter 5  Functions

from the dictionary as the corresponding keyword arguments of the
function:

my_kwargs = {
 "number": 20,
 "divisor": 7,
}
assert remainder(**my_kwargs) == 6

You can mix the ** operator with positional arguments or keyword
arguments in the function call as long as no argument is repeated:

my_kwargs = {
 "divisor": 7,
}
assert remainder(number=20, **my_kwargs) == 6

You can also use the ** operator multiple times if you know that the
dictionaries don’t contain overlapping keys:

my_kwargs = {
 "number": 20,
}
other_kwargs = {
 "divisor": 7,
}
assert remainder(**my_kwargs, **other_kwargs) == 6

And if you’d like for a function to receive any named keyword argu-
ment, you can use the **kwargs catch-all parameter to collect those
arguments into a dict that you can then process (see Item 38: “Define
Function Decorators with functools.wraps” for when this is especially
useful):

def print_parameters(**kwargs):
 for key, value in kwargs.items():
 print(f"{key} = {value}")

print_parameters(alpha=1.5, beta=9, gamma=4)

>>>
alpha = 1.5
beta = 9
gamma = 4

The flexibility of keyword arguments provides three significant
benefits.

	 Item 35: Provide Optional Behavior with Keyword Arguments	 155

The first benefit is that keyword arguments make the function call
clearer to new readers of the code. With the call remainder(20, 7), it’s
not evident which argument is number and which is divisor unless
you look at the implementation of the remainder method. In the call
with keyword arguments, number=20 and divisor=7 make it immedi-
ately obvious which parameter is being used for each purpose.

The second benefit of keyword arguments is that they can have
default values specified in the function definition. This allows a func-
tion to provide additional capabilities when you need them, but you
can accept the default behavior most of the time. This eliminates
repetitive code and reduces noise.

For example, say that I want to compute the rate of fluid flowing into
a vat. If the vat is also on a scale to measure its weight, then I could
use the difference between two weight measurements at two different
times to determine the flow rate:

def flow_rate(weight_diff, time_diff):
 return weight_diff / time_diff

weight_a = 2.5
weight_b = 3
time_a = 1
time_b = 4
weight_diff = weight_b - weight_a
time_diff = time_b - time_a
flow = flow_rate(weight_diff, time_diff)
print(f"{flow:.3} kg per second")

>>>
0.167 kg per second

In the typical case, it’s useful to know the flow rate in kilograms per
second. Other times, it’d be helpful to use the last sensor measure-
ments to approximate larger time scales, like hours or days. I can
provide this behavior in the same function by adding an argument for
the time period scaling factor:

def flow_rate(weight_diff, time_diff, period):
 return (weight_diff / time_diff) * period

The problem is that now I need to specify the period argument every
time I call the function, even in the common case of flow rate per
second (where the period is 1):

flow_per_second = flow_rate(weight_diff, time_diff, 1)

156	 Chapter 5  Functions

To make this less noisy, I can give the period argument a default
value:

def flow_rate(weight_diff, time_diff, period=1): # Changed
 return (weight_diff / time_diff) * period

The period argument is now optional:

flow_per_second = flow_rate(weight_diff, time_diff)
flow_per_hour = flow_rate(weight_diff, time_diff, period=3600)

This works well for simple default values that are immutable; it gets
tricky for complex default values like list instances and user-defined
objects (see Item 36: “Use None and Docstrings to Specify Dynamic
Default Arguments” for details).

The third reason to use keyword arguments is that they provide a
powerful way to extend a function’s parameters while remaining
backward compatible with existing callers. This means you can pro-
vide additional functionality without having to migrate a lot of exist-
ing code, which reduces the chance of introducing bugs.

For example, say that I want to extend the flow_rate function above
to calculate flow rates in weight units besides kilograms. I can do this
by adding a new optional parameter that provides a conversion rate to
alternative measurement units:

def flow_rate(�weight_diff, time_diff,
period=1, units_per_kg=1):

 return ((weight_diff * units_per_kg) / time_diff) * period

The default argument value for units_per_kg is 1, which makes the
returned weight units remain kilograms. This means that all existing
callers will see no change in behavior. New callers to flow_rate can
specify the new keyword argument to see the new behavior:

pounds_per_hour = flow_rate(
 weight_diff,
 time_diff,
 period=3600,
 units_per_kg=2.2,
)

Providing backward compatibility using optional keyword arguments
like this is also crucial for functions that accept *args (see Item 34:
“Reduce Visual Noise with Variable Positional Arguments”).

	 Item 36: Specify Dynamic Default Arguments in Docstrings	 157

The only problem with this approach is that optional keyword
arguments like period and units_per_kg may still be specified as posi-
tional arguments:

pounds_per_hour = flow_rate(weight_diff, time_diff, 3600, 2.2)

Supplying optional arguments positionally can be confusing because
it isn’t clear what the values 3600 and 2.2 correspond to. The best
practice is to always specify optional arguments using the keyword
names and never pass them as positional arguments. As a function
author, you can also require that all callers use this more explicit
keyword style to minimize potential errors (see Item 37: “Enforce
Clarity with Keyword-Only and Positional-Only Arguments”).

Things to Remember

✦	Function arguments can be specified by position or by keyword.

✦	Keywords make it clear what the purpose of each argument is when
it would be confusing with only positional arguments.

✦	Keyword arguments with default values make it easy to add new
behaviors to a function without needing to migrate all existing
callers.

✦	Optional keyword arguments should always be passed by keyword
instead of by position.

Item 36: �Use None and Docstrings to Specify Dynamic
Default Arguments

Sometimes it can be helpful to use a function call, a newly created
object, or a container type (like an empty list) as a keyword argu-
ment’s default value. For example, say that I want to print logging
messages that are marked with the time of the logged event. In the
default case, I want the message to include the time when the func-
tion was called. I might try the following approach, which assumes
that the default value for the when keyword argument is reevaluated
each time the function is called:

from time import sleep
from datetime import datetime

def log(message, when=datetime.now()):
 print(f"{when}: {message}")

158	 Chapter 5  Functions

log("Hi there!")
sleep(0.1)
log("Hello again!")

>>>
2024-06-28 22:44:32.157132: Hi there!
2024-06-28 22:44:32.157132: Hello again!

This doesn’t work as expected. The timestamps are the same because
datetime.now is executed only a single time: when the function is
defined at module import time. A default argument value is evaluated
only once per module load, which usually happens when a program
starts up (see Item 98: “Lazy-Load Modules with Dynamic Imports to
Reduce Startup Time” for details). After the module containing this
code is loaded, the datetime.now() default argument expression will
never be evaluated again.

The convention for achieving the desired result in Python is to provide
a default value of None and to document the actual behavior in the
docstring (see Item 118: “Write Docstrings for Every Function, Class,
and Module” for background). When your code sees that the argu-
ment value is None, you allocate the default value accordingly:

def log(message, when=None):
 """Log a message with a timestamp.

 Args:
 message: Message to print.
 when: datetime of when the message occurred.
 Defaults to the present time.
 """
 if when is None:
 when = datetime.now()
 print(f"{when}: {message}")

Now the timestamps will be different:

log("Hi there!")
sleep(0.1)
log("Hello again!")

>>>
2024-06-28 22:44:32.446842: Hi there!
2024-06-28 22:44:32.551912: Hello again!

Using None for default argument values is especially important when
the arguments are mutable. For example, say that I want to load a

value that’s encoded as JSON data; if decoding the data fails, I want
an empty dictionary to be returned by default:

import json

def decode(data, default={}):
 try:
 return json.loads(data)
 except ValueError:
 return default

The problem here is similar to the problem in the datetime.now exam-
ple above. The dictionary specified for default will be shared by all
calls to decode because default argument values are evaluated only
once (at module load time). This can cause extremely surprising
behavior:

foo = decode("bad data")
foo["stuff"] = 5
bar = decode("also bad")
bar["meep"] = 1
print("Foo:", foo)
print("Bar:", bar)

>>>
Foo: {'stuff': 5, 'meep': 1}
Bar: {'stuff': 5, 'meep': 1}

You might expect two different dictionaries, each with a single key
and value. But modifying one seems to also modify the other. The cul-
prit is that foo and bar are both equal to the default parameter to the
decode function. They are the same dictionary object:

assert foo is bar

The fix is to set the keyword argument default value to None, doc-
ument the actual default value in the function’s docstring, and act
accordingly in the function body when the argument has the value
None:

def decode(data, default=None):
 """Load JSON data from a string.

 Args:
 data: JSON data to decode.
 default: Value to return if decoding fails.
 Defaults to an empty dictionary.
 """

	 Item 36: Specify Dynamic Default Arguments in Docstrings	 159

160	 Chapter 5  Functions

 try:
 return json.loads(data)
 except ValueError:
 if default is None: # Check here
 default = {}
 return default

Now, running the same test code as before produces the expected
result:

foo = decode("bad data")
foo["stuff"] = 5
bar = decode("also bad")
bar["meep"] = 1
print("Foo:", foo)
print("Bar:", bar)
assert foo is not bar

>>>
Foo: {'stuff': 5}
Bar: {'meep': 1}

This approach also works with type annotations (see Item 124: “Con-
sider Static Analysis via typing to Obviate Bugs”). Here, the when
argument is marked as having an optional value that is a datetime.
Thus, the only two valid choices for when are None or a datetime object:

def log_typed(�message: str, when: datetime | None = None) ->
None:

 """Log a message with a timestamp.

 Args:
 message: Message to print.
 when: datetime of when the message occurred.
 Defaults to the present time.
 """
 if when is None:
 when = datetime.now()
 print(f"{when}: {message}")

Things to Remember

✦	A default argument value is evaluated only once: during function
definition at module load time. This can cause odd behaviors for
dynamic values (like function calls, newly created objects, and con-
tainer types).

✦	Use None as a placeholder default value for a keyword argument
that must have its actual default value initialized dynamically.

	 Item 37: Enforce Clarity with * and / Arguments	 161

Document the intended default for the argument in the function’s
docstring. Check for the None argument value in the function body
to trigger the correct default behavior.

✦	Using None to represent keyword argument default values also
works correctly with type annotations.

Item 37: �Enforce Clarity with Keyword-Only and
Positional-Only Arguments

Passing arguments by keyword is a powerful feature of Python func-
tions (see Item 35: “Provide Optional Behavior with Keyword Argu-
ments”). Keyword arguments enable you to write flexible functions
that will be clear to new readers of your code for many use cases.

For example, say that I want to divide one number by another while
being very careful about special cases. Sometimes, I want to ignore
ZeroDivisionError exceptions and return infinity instead. Other
times, I want to ignore OverflowError exceptions and return zero
instead. Here, I define a function with these options:

def safe_division(
 number,
 divisor,
 ignore_overflow,
 ignore_zero_division,
):
 try:
 return number / divisor
 except OverflowError:
 if ignore_overflow:
 return 0
 else:
 raise
 except ZeroDivisionError:
 if ignore_zero_division:
 return float("inf")
 else:
 raise

Using this function is straightforward. This call ignores the float
overflow from division and returns zero:

result = safe_division(1.0, 10**500, True, False)
print(result)

>>>
0

162	 Chapter 5  Functions

This call ignores the error from dividing by zero and returns infinity:

result = safe_division(1.0, 0, False, True)
print(result)

>>>
inf

The problem is that it’s easy to confuse the position of the two Bool-
ean arguments that control the exception handling behavior. This can
easily cause bugs that are hard to track down. One way to improve
the readability of this code is to use keyword arguments. Using default
keyword arguments (see Item 36: “Use None and Docstrings to Specify
Dynamic Default Arguments”), the function can be overly cautious
and can always re-raise exceptions:

def safe_division_b(
 number,
 divisor,
 ignore_overflow=False, # Changed
 ignore_zero_division=False, # Changed
):
 ...

Then, callers can use keyword arguments to specify which of the
ignore flags they want to set for specific operations, overriding the
default behavior:

result = safe_division_b(1.0, 10**500, ignore_overflow=True)
print(result)

result = safe_division_b(1.0, 0, ignore_zero_division=True)
print(result)

>>>
0
inf

The problem is, because these keyword arguments are optional behav-
ior, there’s nothing forcing callers of your functions to use keyword
arguments for clarity. Even with the new definition of safe_division_b,
I can still call it the old way with positional arguments:

assert safe_division_b(1.0, 10**500, True, False) == 0

With complex functions like this, it’s better to require that call-
ers are clear about their intentions by defining your functions with

keyword-only arguments. These arguments can only be supplied by
keyword, never by position.

Here, I redefine the safe_division function to accept keyword-only
arguments. The * symbol in the argument list indicates the end of
positional arguments and the beginning of keyword-only arguments
(*args has the same effect; see Item 34: “Reduce Visual Noise with
Variable Positional Arguments”):

def safe_division_c(
 number,
 divisor,
 *, # Added
 ignore_overflow=False,
 ignore_zero_division=False,
):
 ...

Now, calling the function with positional arguments that correspond
to the keyword arguments won’t work:

safe_division_c(1.0, 10**500, True, False)

>>>
Traceback ...
TypeError: safe_division_c() takes 2 positional arguments but 4
�were given

But keyword arguments and their default values will work as expected
(ignoring an exception in one case and raising it in another):

result = safe_division_c(1.0, 0, ignore_zero_division=True)
assert result == float("inf")

try:
 result = safe_division_c(1.0, 0)
except ZeroDivisionError:
 pass # Expected

However, a problem still remains with the safe_division_c version of
this function: Callers may specify the first two required arguments
(number and divisor) with a mix of positions and keywords:

assert safe_division_c(number=2, divisor=5) == 0.4
assert safe_division_c(divisor=5, number=2) == 0.4
assert safe_division_c(2, divisor=5) == 0.4

	 Item 37: Enforce Clarity with * and / Arguments	 163

164	 Chapter 5  Functions

Later, I may decide to change the names of these first two arguments
because of expanding needs or even just because my style preferences
change:

def safe_division_d(
 numerator, # Changed
 denominator, # Changed
 *,
 ignore_overflow=False,
 ignore_zero_division=False
):
 ...

Unfortunately, this seemingly superficial change breaks all of the
existing callers that specified the number or divisor arguments using
keywords:

safe_division_d(number=2, divisor=5)

>>>
Traceback ...
TypeError: safe_division_d() got an unexpected keyword argument
�'number'

This is especially problematic because I never intended for the key-
words number and divisor to be part of an explicit interface for this
function. These were just convenient parameter names that I chose
for the implementation, and I didn’t expect anyone to rely on them
explicitly.

Python 3.8 introduces a solution to this problem, called positional-
only arguments. These arguments can be supplied only by position
and never by keyword (the opposite of the keyword-only arguments
demonstrated above).

Here, I redefine the safe_division function to use positional-only
arguments for the first two required parameters. The / symbol in the
argument list indicates where positional-only arguments end:

def safe_division_e(
 numerator,
 denominator,
 /, # Added
 *,
 ignore_overflow=False,
 ignore_zero_division=False,
):
 ...

I can verify that this function works when the required arguments
are provided positionally:

assert safe_division_e(2, 5) == 0.4

But an exception is raised if keywords are used for the positional-only
parameters:

safe_division_e(numerator=2, denominator=5)

>>>
Traceback ...
TypeError: safe_division_e() got some positional-only arguments
�passed as keyword arguments: 'numerator, denominator'

Now, I can be sure that the first two required positional arguments
in the definition of the safe_division_e function are decoupled from
callers. I won’t break anyone if I change the parameters’ names again.

One notable consequence of keyword- and positional-only arguments
is that any parameter name between the / and * symbols in the argu-
ment list may be passed either by position or by keyword (which is
the default for all function arguments in Python). Depending on your
API’s style and needs, allowing both argument passing styles can
increase readability and reduce noise. For example, here I’ve added
another optional parameter to safe_division that allows callers to
specify how many digits to use in rounding the result:

def safe_division_f(
 numerator,
 denominator,
 /,
 ndigits=10, # Changed
 *,
 ignore_overflow=False,
 ignore_zero_division=False,
):
 try:
 fraction = numerator / denominator # Changed
 return round(fraction, ndigits) # Changed
 except OverflowError:
 if ignore_overflow:
 return 0
 else:
 raise
 except ZeroDivisionError:
 if ignore_zero_division:
 return float("inf")
 else:
 raise

	 Item 37: Enforce Clarity with * and / Arguments	 165

166	 Chapter 5  Functions

Now, I can call this new version of the function in all of these differ-
ent ways, since ndigits is an optional parameter that may be passed
either by position or by keyword:

result = safe_division_f(22, 7)
print(result)

result = safe_division_f(22, 7, 5)
print(result)

result = safe_division_f(22, 7, ndigits=2)
print(result)

>>>
3.1428571429
3.14286
3.14

Things to Remember

✦	Keyword-only arguments force callers to supply certain arguments
by keyword (instead of by position), which makes the intention of a
function call clearer. Keyword-only arguments are defined after a *
in the argument list (whether on its own or as part of variable argu-
ments like *args).

✦	Positional-only arguments ensure that callers can’t supply certain
parameters using keywords, which helps reduce coupling. Positional-
only arguments are defined before a single / in the argument list.

✦	Parameters between the / and * characters in the argument list
may be supplied by position or keyword, which is the default for
Python parameters.

Item 38: �Define Function Decorators with
functools.wraps

Python has special syntax for decorators that can be applied to
functions. A decorator has the ability to run additional code before
and after each call to a function it wraps. This means decorators
can access and modify input arguments, return values, and raised
exceptions. These capabilities can be useful for enforcing semantics,
debugging, registering functions, and more.

For example, say that I want to print the arguments and return value
of a function call. This can be especially helpful when debugging the
stack of nested function calls from a recursive function. (Logging

	 Item 38: Define Function Decorators with functools.wraps	 167

exceptions could be useful too; see Item 86: “Understand the Differ-
ence Between Exception and BaseException”). Here, I define such a
decorator by using *args and **kwargs (see Item 34: “Reduce Visual
Noise with Variable Positional Arguments” and Item 35: “Provide
Optional Behavior with Keyword Arguments”) to pass through all
parameters to the wrapped function:

def trace(func):
 def wrapper(*args, **kwargs):
 args_repr = repr(args)
 kwargs_repr = repr(kwargs)
 result = func(*args, **kwargs)
 print(f"{func.__name__}"
 f"({args_repr}, {kwargs_repr}) "
 f"-> {result!r}")
 return result

 return wrapper

I can apply this decorator to a function by using the @ symbol:

@trace
def fibonacci(n):
 """Return the n-th Fibonacci number"""
 if n in (0, 1):
 return n
 return fibonacci(n - 2) + fibonacci(n - 1)

Using the @ symbol is equivalent to calling the decorator on the func-
tion it wraps and assigning the return value to the original name in
the same scope:

fibonacci = trace(fibonacci)

The decorated function runs the wrapper code before and after
fibonacci runs. It prints the arguments and return value at each
level in the recursive stack:

fibonacci(4)

>>>
fibonacci((0,), {}) -> 0
fibonacci((1,), {}) -> 1
fibonacci((2,), {}) -> 1
fibonacci((1,), {}) -> 1
fibonacci((0,), {}) -> 0
fibonacci((1,), {}) -> 1
fibonacci((2,), {}) -> 1
fibonacci((3,), {}) -> 2
fibonacci((4,), {}) -> 3

168	 Chapter 5  Functions

This works well, but it has an unintended side effect. The value
returned by the decorator—the function that’s called above—doesn’t
think it’s named fibonacci:

print(fibonacci)

>>>
<function trace.<locals>.wrapper at 0x104a179c0>

The cause of this isn’t hard to see. The trace function returns the
wrapper defined within its body. The wrapper function is what’s
assigned to the fibonacci name in the containing module because
of the decorator. This behavior is problematic because it undermines
tools that do introspection, such as debuggers (see Item 114: “Con-
sider Interactive Debugging with pdb”).

For example, the help built-in function is useless when called on the
decorated fibonacci function. It should print out the docstring defined
above ("""Return the n-th Fibonacci number"""), but it doesn’t:

help(fibonacci)

>>>
Help on function wrapper in module __main__:

wrapper(*args, **kwargs)

Another problem is that object serializers (see Item 107: “Make pickle
Serialization Maintainable with copyreg”) break because they can’t
determine the location of the original function that was decorated:

import pickle

pickle.dumps(fibonacci)

>>>
Traceback ...
AttributeError: Can't pickle local object 'trace.<locals>.
�wrapper'

The solution is to use the wraps helper function from the functools
built-in module. This is a decorator that helps you write decorators.
When you apply it to the wrapper function, it copies all of the import-
ant metadata about the inner function to the outer function. Here, I
redefine the trace decorator using wraps:

from functools import wraps

def trace(func):
 @wraps(func) # Changed

	 Item 39: Prefer functools.partial over lambda Expressions	 169

 def wrapper(*args, **kwargs):
 ...

 return wrapper

@trace
def fibonacci(n):
 ...

Now, running the help function produces the expected result, even
though the function is decorated:

help(fibonacci)
>>>
Help on function fibonacci in module __main__:

fibonacci(n)
 Return the n-th Fibonacci number

The pickle object serializer also works:

print(pickle.dumps(fibonacci))

>>>
b'\x80\x04\x95\x1a\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__\
�x94\x8c\tfibonacci\x94\x93\x94.'

Beyond these examples, Python functions have many other standard
attributes (e.g., __name__, __module__, __annotations__) that must
be preserved to maintain the interface of functions in the language.
Using wraps ensures that you’ll always get the correct behavior.

Things to Remember

✦	Decorators in Python are syntax to allow one function to modify
another function at runtime.

✦	Using decorators can cause strange behaviors in tools that do intro-
spection, such as debuggers.

✦	Use the wraps decorator from the functools built-in module when
you define your own decorators to avoid any issues.

Item 39: �Prefer functools.partial over lambda
Expressions for Glue Functions

Many APIs in Python accept simple functions as part of their interface
(see Item 100: “Sort by Complex Criteria Using the key Parameter,”

170	 Chapter 5  Functions

Item 27: “Prefer defaultdict over setdefault to Handle Missing Items
in Internal State,” and Item 24: “Consider itertools for Working with
Iterators and Generators”). However, these interfaces can cause fric-
tion because they might fall short of your needs.

For example, the reduce function from the functools built-in mod-
ule allows you to calculate one result from a near-limitless iterable of
values. Here, I use reduce to calculate the sum of many log-scaled
numbers (which effectively multiplies them):

def log_sum(log_total, value):
 log_value = math.log(value)
 return log_total + log_value

result = functools.reduce(log_sum, [10, 20, 40], 0)
print(math.exp(result))

>>>
8000.0

The problem is that you don’t always have a function like log_sum that
exactly matches the function signature required by reduce. For exam-
ple, imagine that you simply had the parameters reversed—since it’s
an arbitrary choice anyway—with value first and log_total second.
How could you easily fit this function to the required interface?

def log_sum_alt(value, log_total): # Changed
 ...

One solution is to define a lambda function in an expression to reorder
the input arguments to match what’s required by reduce:

result = functools.reduce(
 lambda total, value: log_sum_alt(value, total), # Reordered
 [10, 20, 40],
 0,
)

For one-offs, creating a lambda like this is fine. But if you find yourself
doing this repeatedly and copying code, it’s worth defining another
helper function with reordered arguments that you can call multiple
times:

def log_sum_for_reduce(total, value):
 return log_sum_alt(value, total)

Another situation where function interfaces are mismatched is
when you need to pass along some additional information for use in

processing. For example, say I want to choose the base for the loga-
rithm instead of always using natural log:

def logn_sum(base, logn_total, value): # New first parameter
 logn_value = math.log(value, base)
 return logn_total + logn_value

In order to pass this function to reduce, I need to somehow provide
the base argument for every call. But reduce doesn’t give me a way to
do this easily. Again, lambda can help here by allowing me to spec-
ify one parameter and pass through the rest. Here, I always provide
10 as the first argument to logn_sum in order to calculate a base-10
logarithm:

result = functools.reduce(
 lambda total, value: logn_sum(10, total, value), # Changed
 [10, 20, 40],
 0,
)
print(math.pow(10, result))

>>>
8000.000000000004

This pattern of pinning some arguments to specific values while
allowing the rest of them to be passed normally is quite common with
functional-style code. This technique is often called Currying or par-
tial application. The functools built-in module provides the partial
function to make this easy and more readable. It takes the function to
partially apply as the first argument followed by the pinned positional
arguments:

result = functools.reduce(
 functools.partial(logn_sum, 10), # Changed
 [10, 20, 40],
 0,
)

partial also allows you to easily pin keyword arguments (see Item 35:
“Provide Optional Behavior with Keyword Arguments” and Item 37:
“Enforce Clarity with Keyword-Only and Positional-Only Arguments”
for background). For example, imagine that the logn_sum function
accepts base as a keyword-only argument, like this:

def logn_sum_last(logn_total, value, *, base=10): # New kwarg
 logn_value = math.log(value, base)
 return logn_total + logn_value

	 Item 39: Prefer functools.partial over lambda Expressions	 171

172	 Chapter 5  Functions

Here, I use partial to pin the value of base to Euler’s number:

import math

log_sum_e = functools.partial(�logn_sum_last,

base=math.e) # Pinned `base`
print(log_sum_e(3, math.e**10))

>>>
13.0

Achieving the same behavior is possible with a lambda expression, but
it’s verbose and error prone:

log_sum_e_alt = lambda *a, base=math.e, **kw: \
 logn_sum_last(*a, base=base, **kw)

partial also allows you to inspect which arguments have already
been supplied, and the function being wrapped, which can be helpful
for debugging:

print(log_sum_e.args, log_sum_e.keywords, log_sum_e.func)

>>>
() {'base': 2.718281828459045} <function logn_sum_last at
�0x1033534c0>

In general, you should prefer using partial when it satisfies your use
case because of these extra niceties. However, partial can’t be used
to reorder the parameters altogether, so that’s one situation where
lambda is preferable.

In many cases, a lambda or partial instance is still not enough,
especially if you need to access or modify state as part of a sim-
ple function interface. Luckily, Python provides additional facilities,
including closures, to make this possible (see Item 33: “Know How
Closures Interact with Variable Scope and nonlocal” and Item 48:
“Accept Functions Instead of Classes for Simple Interfaces”).

Things to Remember

✦	lambda expressions can succinctly make two function interfaces
compatible by reordering arguments or pinning certain parameter
values.

✦	The partial function from the functools built-in is a general tool for
creating functions with pinned positional and keyword arguments.

✦	Use lambda instead of partial if you need to reorder the arguments
of a wrapped function.

Index

Symbols
| pipe operator, 36
+ operator, 43
--version flag, 1
% operator, 44, 50
* operator, 151–152
** operator, 153–154
@ symbol, 167
_asdict method, 226
_astuple method, 225, 227, 228–229
__call__ method, 204–205
__debug__ variable, 443–444
__delattr__ method, 252
__dict__, 306–310
__eq__ method, 226
__getattr__ method, 279–281
__getattribute__ method, 281–283
__getitem__ method, 261–263
__hash__ method, 258
__init__ method, 217–219, 235–236
__init_subclass__ method,

288–299, 306–310
__missing__ method, 124–127
@property decorator

versus refactoring attributes,
270–274

reuse, 274–279
setters and getters, 266–269

_replace method, 255
__repr__ method, 223–224
__set_name__ method, 278,

302–303
__setattr__ method, 252, 283–285

A
accumulate function, 106–107
adjust module, 479–482
advanced string formatting, 52–55
algorithm, 493

binary search, 502–503
leaky-bucket, 270–273

alias, 136
all function, 98–100
animate function, 187
animation generator, 186–188
any function, 100–101
API

exceptions, 595
hooks, 201–203
Python, 468, 471–472
Python C extension, 460, 465
stability, 590–592

append method, 182, 506
argparse module, 479–481
arguments

function, 111–112, 135–137
iterating over, 87–92
keyword, 153–157, 161–162,

219–221
keyword-only, 162–164
None as default value, 157–160
passing by reference, 251
positional, 150–152
positional-only, 164–166

asdict function, 226
assert statement, 404–408,

442–443

628	 Index

assertAlmostEqual method,
564–565

assertNotAlmostEqual method, 565
assignment expressions, 22–23,

24–30, 86
exceptions, 180
in list comprehensions, 178–181
slices, 68–69

AST (abstract syntax tree),
205–206, 208–210

asynchronous coroutines, 319
asynchronous I/O, 368, 376
asyncio module, 329, 366–367,

368–384. See also coroutines
event loops, 389–392
thread/coroutine interoperability,

381–384
attributes, 306

annotation, 299–303
descriptor protocol, 274. See also

descriptors
establishing relationships

between, 303–310
lazy, 279–285
modifying, 299–303
protected, 247–250
public, 245–250, 266–269
updating values, 254–256

auto-formatting, black, 5–6

B
BaseException class, 419–424
batched function, 105–106
binary operators, 44
binary search algorithm, bisect

module, 502–503
binary to Unicode conversion, 42
bisect module, 501–503
black, 5–6
blocking I/O, 324–329, 348,

348–349. See also coroutines
blocks, 399

else, 82–84
try, 412–414
try/except/else, 400–402
try/except/else/finally, 402–404
try/finally, 399–400

Boolean logic, De Morgan’s laws, 101

break statement, 82–83, 85–86
breaking circular dependencies,

600–602
dynamic imports, 604–605
import, configure, run, 603–604
reordering imports, 602

breakpoint function, 566–568
Bucket class, 270–273
buffer protocol, CPython, 487
built-in function.

enumerate, 78–79
filter, 174–175
format, 52–53
hash, 110
help, 168
isinstance, 206
iter, 89–91
map, 174, 175
range, 77–78
super, 238–240
zip, 80–81

built-in modules, 217
bytearray, 489–491
bytecode, 324–325, 475–478
bytes, 41–46

C
C3 linearization, 238
capture patterns, 32–33
cardinality, 505–506
careful_divide function, 142
case clause, 33–34, 36–37
catch-all unpacking, 72–76,

138–139
CFFI module, 461
chain function, 102
chained exceptions, 428–436
child processes

chaining, 322–323
decoupling from parent, 321
managing, 320–324
polling, 320–321

circular dependencies, breaking,
600–602

dynamic imports, 604–605
import, configure, run,

603–604
reordering imports, 602

	 Index	 629

class method polymorphism,
230–235

class/es
BaseException, 419–424
Bucket, 270–273
composability, 310–317
CountMissing, 204–205
Decimal, 523–525
decorators, 315–317
defaultdict, 123–124, 202–204
definition, 211–212
deque, 504–509
descriptor, 269, 275–279,

299–303, 306, 307
docstrings, 584–585
Exception, 416–424
helper, 204
hierarchy, 130
inheritance, 286–287
JsonMixin, 243–244
lightweight, 140–141
Lock, 332–333
mix-in, 240–245
OrderedDict, 112
parent, 235–236, 237–240
Point, 256–258
public attributes, 245–250
Queue, 337–344, 353–360
refactoring, 131–133
registration, 293–299
serializing to and from

JSON, 244
storing values in attributes,

131–133
ThreadPoolExecutor, 361–363,

394–397
user-defined, 137
versioning, 530–531

clause.
case, 33–34, 36–37
finally, 436–442
if, 20, 36, 174

closures, 145–149, 203, 383
code. See also statements

concurrent, 319
expressions, 4–5
formatting, 4
microbenchmarks, 453–458

modules, 5
module-scoped, 593–595
organization, 212
polymorphism, 207–210
port to coroutines and

asynchronous I/O, 368–381
Pythonic, 1
refactoring, 131–133, 387
testing, 533
whitespace, 3–4

code points, 42
coin-flipping loop, 98–101
cold start, 475
collections.abc module, 91, 114

defaultdict class, 123–124
inheriting classes for custom

container types, 260–264
combinations function, 108
combinations_with_replacement

function, 108
command-line tool, timeit,

457–458
commands, interactive

debugger, 567
comma/s. See also syntax

implicit string concatenation, 64
single-element tuple, 17–18

communicate method, 321
community-built modules,

575–576
comparing objects, 227–230
compile time, error detection, 6–8
composability, 310–317
comprehensions, 173

assignment expressions, 178–181
dictionary, 174, 179
generator expressions, 184–186
list, 79–80, 86, 98, 173–174
with more than two

subexpressions, 176–177
concatenation, string, 62–66
concurrency, 319

coordinating work between
threads, 333–344

coroutines, 364–368
fan-in, 348
fan-out, 348, 349–353
when to use, 344–349

630	 Index

concurrent.futures module, 361,
393–397

conditional expressions, 10, 19–23
containers, 261–263

iterating over, 95–98
iterator protocol, 89–92
staging modifications, 96–97

contains function, 37
context managers, 409–412
contextlib module, 409–412
converting

objects to tuples, 224–225
Unicode to binary, 42

Conway’s Game of Life,
344–348, 364

coordinating work between threads,
333–344

copy method, 136
copyreg module, 528, 532
coroutines, 364–368

interoperability with threads,
381–384

moving code to, 368–381
versus threads, 364

count variable, 24–26
CountMissing class, 204–205
CPU. See also concurrency;

parallelism; performance;
threads

parallelism, 319
pipeline, 333–337
threads, 319

CPython, 324–325
buffer protocol, 487
compiling Python without

GIL, 327
extension modules, 467–474
GIL (global interpreter lock),

324–327, 329, 330
performance, 475

creating, objects, 217–218, 219–223,
250–251, 254–256

C-style formatting, 47–52
csv module, 303–306
ctypes module, 460, 462–467
Currying, 171–172
cycle function, 103
Cython, 461

D
data, semi-structured vs.

encapsulated, 37–39
data races, preventing, 330–333
dataclasses module, 131, 217.

See also object/s
decorator, 218, 223
keyword arguments, 219–221
type checker, 218–219

datetime module, 521–523
De Morgan’s laws, 101
debugging. See also exceptions/

exception handling
interactive, 565–570
memory usage, 570–573
postmortem, 568–570
print function, 58–62
traceback, 424–436

Decimal class, 523–525
decorator/s, 166–169, 309, 309–310

@property, 266–269, 270–279
class, 315–317
contextmanager, 409–410
dataclasses module, 218
function, 166–169, 309, 310–312
singledispatch, 212–216
trace_func, 312–313

decoupling, child process from
parent, 321

defaultdict class, 123–124,
202–204

dependency/ies, 212, 481. See
also breaking circular
dependencies

circular, breaking, 600–605
encapsulating, 559–562
hell, 577
injection, 604
reproducing, 580–582

deployment environment, 593–595
deque class, 504–509
descriptors, 269, 275–279,

299–303, 306, 307
deserialize function, 296–297
destructuring, 34–37
deterministic behavior, 203
development environment, 593
diamond inheritance, 237–240

	 Index	 631

dictionary/ies, 109, 306
__dict__, 306–310
comprehensions, 174, 179
converting objects to, 225–226
format strings, 50–52
handling missing keys, 117–121,

122–127
immutable objects, 256–260
iterating over, 92–93, 109–116
KeyError exception, 117–118
key/value pairs, 12
nested, 127–130
whitespace, 4

docstrings, 158–160, 582–583
class, 584–585
function, 585–586
module, 584

dot_product function, 463–464
double-ended queue, 507
dropwhile function, 105
duck typing, 113, 500–501, 616
dumps function, 225–226
dynamic attributes, 265
dynamic imports, 604–605
dynamic inspection, 240–241

E
else blocks, 82–84, 400–402
empty sequence, looping over, 83
empty tuple, 16
encapsulated data, 37–39
encapsulating dependencies,

559–562
encoding, open, 46
enhance module, 479–482
enumerate function, 78–79.

See also iteration
equivalence checking, object,

226–227
error/s. See also exceptions/

exception handling
checking, 6–8
implicit concatenation, 63–64

escaping, 63
eval function, 445–446
evaluate function, 206–208
event loop, 364–365
event loops, 389–392

exceptions/exception handling,
268, 399

assert statement, 404–408
in assignment expressions, 180
BaseException class, 419–424
chained, 428–436
Exception class, 416–424
generator, 195–199
GeneratorExit, 420, 438–442
IndexError, 336
KeyboardInterrupt, 419
KeyError, 117–118, 433
MissingError, 429–436
NameError, 147
OSError, 353
raise statement, 405–408
raising, 142–145
Reset, 197
root, 595–600
ServerMissingKeyError, 433
StopIteration, 88, 198, 438
SyntaxError, 533
traceback, 424–428
try blocks, 412–414
try/except/else blocks, 400–402
try/except/else/finally blocks,

402–404
try/finally blocks, 399–400
ValueError, 401
variables, 414–416

exec function, 445–446
explicit string concatenation, 66
expression/s, 4–5

assignment, 22–23, 24–30,
68–69, 86, 178–181

conditional, 10, 19–23
C-style formatting, 47–52
generator, 181, 184–186
lambda, 172
starred, 73–76, 140
yield, 187–188, 409–410

extending tuples, 131
extension modules, 467–474, 625

F
fail function, 19–20
fan-in, 348
fan-out, 348, 349–353

632	 Index

FIFO (first in, first out) queue,
504–509. See also producer–
consumer queue; queue

file system cache, 477
files

read mode, 46
write mode, 45

filter function, 174–175
filtering items from an iterator

dropwhile function, 105
filterfalse function, 105
islice function, 104
takewhile function, 104–105

finally blocks, 399–400
finally clause, 436–442
first-class function, 202
floating point tests, 563–565
for loops, 14–15, 173–174

avoiding else blocks, 82–84
iterator protocol, 89–92
variables, 85–86

for statement, 79, 80
format

code, 4
specifiers, 47–48, 53

format built-in function, 52–53
formatting, 47

advanced string, 52–55
C-style, 47–52
f-string, 56–58

functional-style programming,
250–251

dynamic inspection, 240–241
mix-in classes, 240–245
single dispatch, 212–216

function/s, 175, 238–240, 315–317
accumulate, 106–107
all, 98–100
animate, 187
any, 100–101
arguments, 111–112, 135–137,

153–160,161–166
asdict, 226
async, 364–365
batched, 105–106
bisect_left, 502–503
breakpoint, 566–568
careful_divide, 142

chain, 102
closure, 145–149, 203, 383
combinations, 108
combinations_with_

replacement, 108
contains, 37
coroutines, 364–368
cycle, 103
decorator, 166–169, 309, 310–312
deserialize, 296–297
docstrings, 585–586
dot_product, 463–464
dropwhile, 105
dumps, 225–226
enumerate, 78–79
eval, 445–446
evaluate, 206–208
exec, 445–446
fail, 19–20
filter, 174–175
filterfalse, 105
finally clause, 436–437
first-class, 202
format, 52–53
generator, 87, 173, 182–184.

See also generator/s
get_cause, 435
get_stats, 139–140
hash, 110
help, 168
helper, 8–11, 21, 42–43, 84, 126,

145–146, 168–169, 232, 251
hooks, 201–203
index_words, 182, 183–184
isinstance, 206
islice, 104
iter, 89–91
kernel, 460
key, 494–499
lambda, 170–171
log_missing, 202
lookup, 431–436
map, 174
mapreduce, 233–235
my_print, 213
namedtuple, 259
None return value, 142
normalization, 87, 89

	 Index	 633

normalize_defensive, 91–92
pairwise, 106
partial, 171–172
patch, 555–558
permutations, 107
positional arguments, 150–152
print, 58–62
product, 107
raising exceptions, 142–145
range, 77–78
repeat, 103
returning more than one value,

138–141
run_report, 416–418
setUpModule, 548–549
sorted, 499–501
with statement, 408–412
takewhile, 104–105
tearDownModule, 548–549
tee, 103
utility, 451
wrapper, 168
zip, 80–81
zip_longest, 81, 103–104

functools module, 170, 171–172

G
gc module, 571–572
GeneratorExit exception, 420,

438–442
generator/s, 87, 173, 182–184,

189–191
animation, 186–188
assignment expressions, 181
compose with yield from

expression, 186–188
expressions, 184–186
lazy, 80–81
passing iterators as arguments,

188–195
throw method, 195–199
wave, 189–195

get method, 9–11, 118–120
get_cause function, 435
get_stats function, 139–140
getter methods, 266–269
GIL (global interpreter lock),

324–327, 329, 330

glider, 345–346
global scope, 147
guard expression, 36

H
hash function, 110
heap, 514
heapq module, 514–519
help function, 168
helper class, 204
helper function, 8–11, 21, 42–43,

84, 126, 145–146, 168–169,
232, 251

helper method, 123
open_picture, 126–127
TestCase class, 535–541

hooks, 201–203
__getattr__, 279–281
__getattribute__, 281–283
__setattr__, 283–285

I
if clause, 36, 174
if statements, 19
immutable objects

creating, 250–251
using in dictionaries and sets,

256–260
implicit string concatenation,

62–66
imports, 5, 592, 601, 604–605
in operator, 117, 119
index_words function, 182, 183–184
IndexError exception, 336
indexing, 72–73. See also slicing

negative, 68
parallel, 79–80
with slicing, 67–69
strings, 10–11

inheritance
class, 286–287
diamond, 237–240
multiple, 236, 239, 240

inheriting classes for custom
container types, 260–264

initializing parent classes, 235–236
inline negation, 5
insert_value, profiling, 448–451

634	 Index

insertion ordering, dictionary,
109–116

insertion_sort, profiling, 448–451
integration tests, 541–542
interactive debugging, 565–568
interpolated format strings, 56–58
I/O

asynchronous, 368, 376
blocking, 324–329, 348
threaded, porting to asyncio,

368–381
isinstance function, 206
islice function, 104
islice method, 72
iter built-in function, 89–91
iteration/iterators, 77, 182–183.

See also loop/s
exception, 88
generator, 87
lists, 79–80, 87
over arguments, 87–92
over containers, 95–98
over dictionaries, 92–93, 109–116
over lists, 94–95
over sets, 93, 96
passing into generators as

arguments, 188–195
passing to all built-in function,

98–100
passing to any built-in function,

100–101
StopIteration exception, 88
zip generator, 80–81

iterator protocol, 89–92
itertools, 72, 185–186

accumulate function, 106–107
batched function, 105–106
chain function, 102
combinations function, 108
combinations_with_replacement

function, 108
cycle function, 103
dropwhile function, 105
filterfalse function, 105
islice function, 104
pairwise function, 106
permutations function, 107
product function, 107

repeat function, 103
takewhile function, 104–105
tee function, 103
zip_longest function, 81, 103–104

J-K
JSON, 37–38, 244, 293–297
JsonMixin class, 243–244

kernel functions, 460
key function, 494–499
KeyboardInterrupt exception, 419
KeyError exception, 117–118, 433
keyword

arguments, 153–157, 161–162,
219–221

-only arguments, 162–164
strict, 81

L
lambda function, 170–171, 495
lazy attributes, 279–285
lazy generator, 80–81
lazy loading, 478–485
leaky-bucket algorithm, 270–273
lightweight class, 140–141
linking iterators together

chain function, 102
cycle function, 103
repeat function, 103
tee function, 103
zip_longest function, 103–104

list/s, 260–261. See also indexing
cardinality, 505–506
comprehensions, 79–80, 86,

98, 173–177, 178–181,
184–186

dequeuing items, 504–509
dictionary value, 119–121
iterating over, 94–95
iteration, 78, 87
nested, 127–130
priority queue, 509–514
sorting items in, 145, 493–499

literal values, 16
Lock class, 332–333
log_missing function, 202
lookup function, 431–436

	 Index	 635

loop/s, 77
break statement, 82–83, 85–86
coin-flipping, 98–101
in comprehensions, 176–177
else block, avoiding, 82–84
event, 364–365, 389–392
for, 14–15, 85–86, 173–174
-and-a-half idiom, 29–30
iterator protocol, 89–92
range function, 77–78
while, 29, 382–383

M
managing, child processes,

320–324
map function, 174, 175
mapreduce function, 233–235
match statement, 30–34, 370

destructuring, 34–37
semi-structured vs. encapsulated

data, 37–39
memory

bytecode caching, 475–478
file system cache, 477
lazy loading, 478–485
leaks, 278–279
usage, debugging, 570–573

memoryview type, 487–491
metaclasses, 265, 285–287

class registration, 293–299
modifying a class’s attributes,

299–303
subclass validation, 287–291
TraceMeta, 313–314

method/s
@property. See @property

decorator
_asdict, 226
_astuple, 225, 227, 228–229
__call__, 204–205
__delattr__, 252
__eq__, 226
__getattr__, 279–281
__getitem__, 261–263
__hash__, 258
__init__, 217–219, 235–236
__init_subclass__, 288–299,

306–310

__iter__, 89–91
__missing__, 124–127
_replace, 255
__repr__, 223–224
__set_name__, 278, 302–303
__setattr__, 252, 283–285
append, 182, 506
assertAlmostEqual, 564–565
assertNotAlmostEqual, 565
communicate, 321
copy, 136
get, 9–11, 118–120
getter, 266–269, 276
helper, 123
islice, 72
open_picture, 126–127
pretty, 209
print_callees, 452–453
print_callers, 452
public attributes, 246
quantize, 525
read, 230–231
register, 213
run, 198–199
send, 189–191
setdefault, 120–121, 122–123, 125
setter, 266–269, 276
sort, 145–149, 201–202, 493–499
str.format, 54–55
throw, 195–199
title, 50
update, 96
whitespace, 4

metrics, 447
microbenchmarks, 453–458,

490–491, 512–517
MissingError exception, 429–436
mix-in classes, 240–245
mocks, 550–558. See also test/s
module/s, 5, 109

adjust, 479–482
argparse, 479–481
asyncio, 329, 366–367, 368–384
bisect, 501–503
built-in, 217
bytecode caching, 475–478
CFFI, 461
collections.abc, 91, 114, 260–264

636	 Index

community-built, 575–576
concurrent.futures, 361,

393–397
contextlib, 409–412
copyreg, 528, 532
CProfile, 449–450
csv, 303–306
ctypes, 460, 462–467
dataclasses, 131, 217, 218–219
datetime, 521–523
decimal, 523–525
docstrings, 584
enhance, 479–482
extension, 467–474, 625
functools, 170, 171–172
gc, 571–572
heapq, 514–519
lazy-loading, 478–485
multiprocessing, 393–397
Numba, 461
Numby, 461
pdb, 566–568
pickle, 526–532
pkgutil, 624–626
root exception, 595–600
-scoped code, 593–595
subprocess, managing child

processes, 320–324
threading, 332
time, 519–521
timeit, 453–458
traceback, 424–428
tracemalloc, 572–573
typing, 613–621
unittest, 533–535, 548
version, 577–578
warnings, 605–613
zipimport, 622–624
zoneinfo, 522–523

MRO (method resolution order), 238
multiple inheritance, 236, 239, 240
multiple return values, unpacking,

138–141
multiple-assignment unpacking,

11–15
multiprocessing module, 393–397
multithreading, preemptive, 325,

331–333

mutex, 325, 330, 332–333, 408
my_print function, 213
mypy tool, 115–116
Mypyc, 461

N
namedtuple function, 259
NameError exception, 147
negative indexing, 68
None, using as default argument

value, 157–160
nonlocal statement, 148–149
normalization function, 87, 89
normalize_defensive function,

91–92
Numba module, 461
Numby module, 461

O
object/s, 60

AST (abstract syntax tree),
208–210

converting to dictionaries,
225–226

converting to tuples, 224–225
creating, 217–218, 219–223
creating copies with replaced

attributes, 254–256
diamond inheritance, 237–240
dynamic internal state, 127
enabling for comparison,

227–230
equivalence checking, 226–227
immutable, 250–251, 256–260
-oriented polymorphism, 207–210
preventing from being modified,

251–254
representing as strings, 223–224
serialization, 168, 528–530
sorting, 494–495

OOP (object-oriented programming)
class definition, 211–212
dependencies, 212. See also

dependency/ies
polymorphism, 207–210

open encoding mode, 46
open source projects, 621–626
open_picture method, 126–127

	 Index	 637

operating system
blocking I/O, 327, 348–349
system calls, 327–329

operator
%, 44, 50
*, 151–152
**, 153–154
| pipe, 36
+, 43
binary, 44
in, 117, 119
ternary, 19–20
walrus, 24–30, 179–181. See also

assignment expressions
OrderedDict class, 112
OSError exception, 353

P
packages, 588

namespaces, 588–590
stable APIs, 590–592

pairwise function, 106
parallel indexing, 79–80
parallelism, 319

concurrent.futures, 393–397
data races, preventing, 330–333
fan-out, 350–353
managing child processes,

320–324
parent class

diamond inheritance, 237–240
initializing, 235–236

parent process, decoupling child
process from, 321

parentheses
assignment expressions, 22–23
single-element tuple, 16–19

partial function, 171–172
patch functions, 555–558
PEP 8 (Python Enhancement

Proposal #8), 3
automation, 5–6
expressions and statements, 4–5
imports, 5
naming, 4
whitespace, 3–4

performance. See also profiling
CPython, 475
engineering, 447

extension modules, 467–474
lazy-loading modules, 478–485
loading modules from zip

archives, 622–623
metrics, 447
microbenchmarks, 490–491,

512–517
producer–consumer queue,

504–509
profiling, 448–453
replacing Python with another

programming language,
458–462

search, 501–503
timeit microbenchmarks, 453–458

permutations function, 107
pickle module, 526–528

default attribute values, 528–530
stable import paths, 531–532
versioning classes, 530–531

pip tool, 575–577
pipeline, 333–337, 416–417
piping data into a subprocess,

321–322
pkgutil module, 624–626
Point objects, 256–258
polymorphism, 207–210, 230–235
porting code to use coroutines and

asyncio, 368–384
bottom-up approach, 387–388
top-down approach, 384–387

positional arguments, variable,
150–152

positional-only arguments, 164–166
postmortem debugging, 568–570
preemptive multithreading, 325,

331–333
pretty method, 209
pretty print, 215
preventing objects from being

modified, 251–254
print function, 58–62
print_callees method, 452–453
print_callers method, 452
priority queue, 509–519
private attributes, 246–247
producer–consumer queue,

504–509

638	 Index

producing combinations of items
from iterators

accumulate function, 106–107
batched function, 105–106
combinations function, 108
combinations_with_replacement

function, 108
pairwise function, 106
permutations function, 107
product function, 107

product function, 107
profiling, 448

insertion_sort and insert_value,
448–451

print_callees method, 452–453
print_callers method, 452
utility functions, 451

programs. See also code;
performance

bytecode, 324–325
concurrent, 319. See also

concurrency
deployment environment,

593–595
development environment, 593
pipeline, 333–337
piping data into a subprocess,

321–322
preemptive multithreading, 325
speedup, 319

protected attributes, 247–250
public attributes, 245–250,

266–269
pylint, 6
PyPI (Python Package Index), 575
Python

C extension API, 460, 465
knowing the version you’re

using, 1–3
replacing with another

programming language,
458–462

support for threads, 327–329
Pythonic style, 1

Q
quantize method, 525
query string parameter, 8–9

queue
priority, 509–519
producer-consumer, 504–509

Queue class, 337–344, 353–360
quota, leaky-bucket algorithm,

270–273

R
raise statement, 405–408
raising exceptions, 142–145. See

also exceptions/exception
handling

assert statement, 404–408
generator, 195–199
raise statement, 405–408
try blocks, 412–414

range function, 77–78
read binary mode, 46
read method, 230–231
refactoring, 131–133, 387
register method, 213
registration, class, 293–299
repeat function, 103
replacing Python with another

programming language,
458–462

repr, difference between str and,
58–62

reproducing dependencies, 580–582
Reset exception, 197
root exceptions, 595–600
rule of least surprise, 265
run method, 198–199
run_report function, 416–418
runtime, error checking, 6–8

S
scope, global, 147
scoping bug, 147–148
scripts, 399
security

eval and exec built-in
functions, 446

pickle module, 526
semi-structured data, 37–39
send method, 189–191
sequences, 261–264. See also list/s

empty, looping over, 83

	 Index	 639

slicing, 67–70
ServerMissingKeyError

exception, 433
setdefault method, 120–121,

122–123, 125
sets

immutable objects, 256–260
iterating over, 93, 96

setter methods, 266–269
setUpModule function, 548–549
simulate function, 365–367
single dispatch, 212–216. See

also OOP (object-oriented
programming)

single-element tuple
parentheses, 16–17
trailing comma, 17

slicing, 67–68, 70
indexing, 67–69
memoryview, 487–488
stride syntax, 70–72
syntax, 67

sort method, 145–149, 201–202,
493–501

sorted function, 499–501
speedup, 319
staging modifications, 96–97
star args, 150–152
starred expression, 73–76, 140
statement/s, 4–5

assert, 404–408, 442–443
break, 82–83, 85–86
for, 79, 80
if, 19
import, 5, 592
match, 30–39, 370
nonlocal, 148–149
raise, 405–408
with, 408–412

static analysis, 613–621
static error, 7
StopIteration exception, 88,

198, 438
str, 41–46, 58–62, 524
str.format method, 54–55
strict keyword, zip function, 81
striding, 70–72
string/s

advanced formatting, 52–55
concatenation, 62–66
C-style formatting, 47–52
indexing, 10–11
interpolated format, 56–58
literals, 63
repr, 58–62
representing objects as, 223–224

subclass/es
protected attributes, 247–250
validation, 287–291

subprocess module, managing child
processes, 320–324

super function, 238–240
superclass, 207, 297
SWIG, 461
syntax

slicing, 67–68
stride, 70–72
unpacking, 12–15, 138–139

SyntaxError exception, 533
system calls, 327–329

T
takewhile function, 104–105
as targets, enabling, 410–412
tearDownModule function, 548–549
tee function, 103
ternary operator, 19–20
TestCase subclasses, 535–541,

547–548
test/s, 533. See also debugging

encapsulating dependencies,
559–562

floating point, 563–565
harness, 547–549
integration, 541–542
mocks, 550–558
TestCase subclasses, 535–541
unit, 542–547
unittest module, 533–535

threaded I/O, porting to asyncio,
368–381

threading module, 332
ThreadPoolExecutor class, 361–363,

394–397
thread/s, 319. See also

concurrency; parallelism

640	 Index

avoiding for on-demand fan-out,
349–353

blocking I/O, 327–329
combining with coroutines,

381–384
coordinating work between,

333–344
versus coroutines, 364
interoperability with coroutines,

381–384
locks, 332–333
preemption, 331–333
preventing data races, 330–333
Python support for, 327–329
worker, 330–331, 335–337,

339–340, 342,354, 358,
389–392

throw method, 195–199
time module, 519–521
timeit microbenchmarks, 453–458
title method, 50
tools. See also itertools; modules

black, 5–6
Cython, 461
error checking, 8
mypy, 115–116
Mypyc, 461
pip, 575–577
static analysis, 614–621
SWIG, 461
timeit, 457–458
venv, 578–580

trace_func decorator, 312–313
traceback, 424–436
tracemalloc module, 572–573
TraceMeta metaclass, 313–314
trailing comma, single-element

tuple, 17–18
tree walking, 206
try blocks, 412–414
try/except/else blocks, 400–402
try/except/else/finally blocks,

402–404
try/finally blocks, 399–400
tuple/s, 11–12, 131

comparator methods, 496
converting objects to, 224–225
empty, 16

extending, 131
literal values, 16
nested, 127–130
single-element, 16

parentheses, 16–17
trailing comma, 17–18

two-, 143
type annotation, 115–116, 144–145,

254, 586–587
type checker, static, 613–621
type registration, 293–299
typing module, 613–621

U
underscore (_), 213
Unicode

to binary conversion, 42
code points, 42
sandwich, 42–43

unit tests, 542–547
unittest module, 533–535, 548
unpacking, 12–15

catch-all, 72–76, 138–139
multiple return values, 138–141
multiple-assignment, 11–15

update method, 96
user-defined classes, 137
UTC (Coordinated Universal

Time), 519
utility functions, 451

V
validation, subclass, 287–291
ValueError exception, 401
varargs, 150–152
variable/s

__debug__, 443–444
alias, 136
count, 24–26
exception, 414–416
for loop, 85–86
scope, 147–148

venv, 578–580
version

class, 530–531
module, 577–578
Python 2, 2
Python 3, 2–3

	 Index	 641

W
walrus operator, 24–30, 179. See

also assignment expressions
warnings module, 605–613
wave generator, 189–195
while loop, 29, 82–84, 382–383
whitespace, 3–4
with statement, 408–412
wordcode, 324–325
worker threads, 330–331, 335–337,

339–340, 342, 354, 358,
389–392

wrapper function, 168

wraps function, 168–169
write binary mode, 45
write text mode, 45

X-Y-Z
yield expressions, 187–188, 409–410

Zen of Python, The, 4
zero-copy operations, 487–491
zip function, 80–81
zip_longest function, 81, 103–104
zipimport module, 622–624
zoneinfo module, 522–523

	Cover
	Half Title Page
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 5 Functions
	Item 30: Know That Function Arguments Can Be Mutated
	Item 31: Return Dedicated Result Objects Instead of Requiring Function Callers to Unpack More Than Three Variables
	Item 32: Prefer Raising Exceptions to Returning None
	Item 33: Know How Closures Interact with Variable Scope and nonlocal
	Item 34: Reduce Visual Noise with Variable Positional Arguments
	Item 35: Provide Optional Behavior with Keyword Arguments
	Item 36: Use None and Docstrings to Specify Dynamic Default Arguments
	Item 37: Enforce Clarity with Keyword-Only and Positional-Only Arguments
	Item 38: Define Function Decorators with functools.wraps
	Item 39: Prefer functools.partial over lambda Expressions for Glue Functions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

