without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions
with regard to this information, including all warranties and conditions of merchantability, whether express, implied or
statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective
suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of
use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors.
Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make
improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen-
shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other coun-
tries. Screenshots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored
or endorsed by or affiliated with the Microsoft Corporation.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted
with care and precision, undergoing rigorous development that involves the unique expertise of members from the
professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we could
improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at
feedback@ciscopress.com.

Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.
About the Contributing Authors

Allan Johnson entered the academic world in 1999, after 10 years as a business owner/operator, to dedicate his efforts to his passion for teaching. He holds both an MBA and an MEd in training and development. He taught CCNA courses at the high school level for 7 years and has taught both CCNA and CCNP courses at Del Mar College in Corpus Christi, Texas. In 2003, Allan began to commit much of his time and energy to the CCNA Instructional Support Team, providing services to Networking Academy instructors worldwide and creating training materials. He now works full time for Cisco Networking Academy as curriculum lead.

Dave Holzinger has been a curriculum developer, project manager, author, and technical editor for the Cisco Networking Academy program in Phoenix, Arizona, since 2001. Dave has helped develop many online courses, including IT Essentials, CCNA, and CCNP. He has been working with computer hardware and software since 1981. Dave has certifications from Cisco, BICSI, and CompTIA, including the A+.
Contents at a Glance

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xxxiii</td>
<td></td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Introduction to Personal Computer Hardware</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>PC Assembly</td>
<td>65</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Advanced Computer Hardware</td>
<td>101</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Preventive Maintenance and Troubleshooting</td>
<td>161</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Networking Concepts</td>
<td>191</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Applied Networking</td>
<td>271</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Laptops and Other Mobile Devices</td>
<td>333</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Printers</td>
<td>415</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Virtualization and Cloud Computing</td>
<td>481</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Windows Installation</td>
<td>503</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Windows Configuration</td>
<td>541</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Mobile, Linux, and macOS Operating Systems</td>
<td>731</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Security</td>
<td>823</td>
</tr>
<tr>
<td>Chapter 14</td>
<td>The IT Professional</td>
<td>929</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Answers to “Check Your Understanding” Questions</td>
<td>985</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>1007</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>1065</td>
</tr>
</tbody>
</table>
Contents

Introduction xxxiii

Chapter 1 Introduction to Personal Computer Hardware 1
Objectives 1
Key Terms 1

Introduction to Personal Computers (1.0) 5

Personal Computer Safety (1.1) 5
 What Is in a Computer? (1.1.1) 5
 Electrical and ESD Safety (1.1.2) 6
 Electrical Safety (1.1.2.1) 6
 ESD (1.1.2.2) 6

PC Components (1.2) 7
 Case and Power Supplies (1.2.1) 7
 Cases (1.2.1.1) 7
 Power Supplies (1.2.1.2) 10
 Connectors (1.2.1.3) 11
 Power Supply Voltage (1.2.1.4) 13
 Motherboards (1.2.2) 13
 Motherboards (1.2.2.1) 13
 Motherboard Components (1.2.2.2) 13
 Motherboard Chipset (1.2.2.3) 16
 Motherboard Form Factors (1.2.2.4) 16
 CPUs and Cooling Systems (1.2.3) 18
 What Is a CPU? (1.2.3.1) 18
 Cooling Systems (1.2.3.2) 19
 Memory (1.2.4) 20
 Types of Memory (1.2.4.1) 20
 Types of ROM (1.2.4.2) 20
 Types of RAM (1.2.4.3) 23
 Memory Modules (1.2.4.4) 24
 Adapter Cards and Expansion Slots (1.2.5) 27
 Adapter Cards (1.2.5.1) 28
 Hard Disk Drives and SSDs (1.2.6) 31
 Types of Storage Devices (1.2.6.1) 31
 Storage Device Interfaces (1.2.6.2) 32
 Magnetic Media Storage (1.2.6.3) 33
 Semiconductor Storage (1.2.6.4) 34
 Optical Storage Devices (1.2.7) 35
Select Optical Drives (2.1.4.3) 76
Install the Hard Drive (2.1.4.4) 78
Install the Optical Drive (2.1.4.5) 79
Install the Adapter Cards (2.1.5) 80
Select Adapter Cards (2.1.5.2) 81
Other Factors for Adapter Card Selection (2.1.5.3) 83
Install the Adapter Cards (2.1.5.4) 86
Select Additional Storage (2.1.6) 87
Select a Media Reader (2.1.6.1) 87
Select External Storage (2.1.6.2) 89
Install the Cables (2.1.7) 90
Install the Front Panel Cables (2.1.7.6) 91
Summary (2.2) 95
Practice 96
Labs 96
Check Your Understanding Questions 96

Chapter 3 Advanced Computer Hardware 101

Objectives 101

Key Terms 101

Introduction to Advanced Computer Hardware (3.0) 104

Boot the Computer (3.1) 104

POST, BIOS, CMOS, and UEFI (3.1.1) 105
 POST (3.1.1.2) 105
 BIOS and CMOS (3.1.1.3) 107
 UEFI (3.1.1.4) 108
BIOS/UEFI Configuration (3.1.2) 110
 BIOS and UEFI Security (3.1.2.2) 110
Update the Firmware (3.1.2.3) 111

Electrical Power (3.2) 113

Wattage and Voltage (3.2.1) 113
 Wattage and Voltage (3.2.1.1) 113
 Power Supply Voltage Setting (3.2.1.2) 114
Power Fluctuation and Protection (3.2.2) 115
 Power Fluctuation Types (3.2.2.1) 115
 Power Protection Devices (3.2.2.2) 116

Advanced Computer Functionality (3.3) 117

CPU Architectures and Operation (3.3.1) 117
 CPU Architectures (3.3.1.1) 117
Preventive Maintenance (4.1) 162
PC Preventive Maintenance Overview (4.1.1) 162
Benefits to Preventive Maintenance (4.1.1.1) 162
Preventive Maintenance - Dust (4.1.1.2) 163
Preventive Maintenance - Internal Components (4.1.1.3) 163
Preventive Maintenance - Environmental Concerns (4.1.1.4) 164
Preventive Maintenance - Software (4.1.1.5) 165

Troubleshooting Process (4.2) 165
Troubleshooting Process Steps (4.2.1) 165
Introduction to Troubleshooting (4.2.1.1) 165
Troubleshooting Process Steps (4.2.1.2) 167
Identify the Problem (4.2.1.3) 167
Establish a Theory of Probable Cause (4.2.1.5) 171
Test the Theory to Determine the Cause (4.2.1.6) 171
Establish a Plan of Action to Resolve the Problem and Implement the Solution (4.2.1.7) 172
Verify Full Functionality and, if Applicable, Implement Preventive Measures (4.2.1.8) 173
Document Findings, Actions, and Outcomes (4.2.1.9) 174

Common Problems and Solutions for PCs (4.2.2) 174
PC Common Problems and Solutions (4.2.2.1) 175
Common Problems and Solutions for Storage Devices (4.2.2.2) 175
Common Problems and Solutions for Motherboards and Internal Components (4.2.2.3) 177
Common Problems and Solutions for Power Supplies (4.2.2.4) 178
Common Problems and Solutions for CPUs and Memory (4.2.2.5) 179
Common Problems and Solutions for Displays (4.2.2.6) 180

Apply Troubleshooting Process to Computer Components and Peripherals (4.2.3) 182
Personal Reference Tools (4.2.3.1) 182
Internet Reference Tools (4.2.3.2) 183
Advanced Problems and Solutions for Hardware (4.2.3.4) 183

Summary (4.3) 186
Practice 186
Labs 186

Check Your Understanding Questions 186
Chapter 5 Networking Concepts 191

Objectives 191

Key Terms 191

Introduction (5.0) 194

Network Components and Types (5.1) 194

Types of Networks (5.1.1) 194
 Network Icons (5.1.1.1) 194
 Network Topologies and Description (5.1.1.2) 196
 5.1.1.4 VLANs 200
 VLAN Topology Example 201

Internet Connection Types (5.1.2) 202
 Brief History of Connection Technologies (5.1.2.1) 202
 DSL, Cable, and Fiber (5.1.2.2) 204
 Line of Sight Wireless Internet Service (5.1.2.3) 205
 Satellite (5.1.2.4) 206
 Cellular (5.1.2.5) 206
 Mobile Hotspot and Tethering (5.1.2.6) 207

Networking Protocols, Standards, and Services (5.2) 208

Transport Layer Protocols (5.2.1) 208
 The TCP/IP Model (5.2.1.3) 208
 TCP (5.2.1.4) 209
 UDP (5.2.1.5) 211

Application Port Numbers (5.2.2) 213
 Classify Application Port Numbers (5.2.2.2) 213

Wireless Protocols (5.2.3) 217
 WLAN Protocols (5.2.3.1) 217
 Bluetooth, NFC, and RFID (5.2.3.2) 218
 Zigbee and Z-Wave (5.2.3.3) 220
 Cellular Generations (5.2.3.4) 221

Network Services (5.2.4) 222
 Client–Server Roles (5.2.4.2) 223
 DHCP Server (5.2.4.3) 225
 DNS Server (5.2.4.4) 225
 Print Server (5.2.4.5) 227
 File Server (5.2.4.6) 227
 Web Server (5.2.4.7) 228
 Mail Server (5.2.4.8) 230
 Proxy Server (5.2.4.9) 230
 Authentication Server (5.2.4.10) 231
 Syslog Server (5.2.4.11) 232
 Load Balancer (5.2.4.12) 232
 SCADA (5.2.4.13) 233
Network Devices (5.3) 233
Basic Network Devices (5.3.1) 233
 Network Interface Card (5.3.1.2) 233
 Repeaters, Bridges, and Hubs (5.3.1.3) 234
 Switches (5.3.1.4) 236
 Wireless Access Points (5.3.1.5) 237
 Routers (5.3.1.6) 238
Security Devices (5.3.2) 239
 Firewalls (5.3.2.2) 239
 IDS and IPS (5.3.2.3) 240
 UTMs (5.3.2.4) 242
 Endpoint Management Server (5.3.2.5) 242
 Spam Management (5.3.2.6) 243
Other Network Devices (5.3.3) 244
 Legacy and Embedded Systems (5.3.3.1) 244
 Patch Panel (5.3.3.2) 245
 Power over Ethernet and Ethernet over Power (5.3.3.3) 245
 Cloud-Based Network Controller (5.3.3.4) 247
Network Cables (5.4) 248
Network Tools (5.4.1) 248
 Network Tools and Descriptions (5.4.1.2) 249
 Network Taps (5.4.1.3) 253
Copper Cables and Connectors (5.4.2) 253
 Cable Types (5.4.2.1) 254
 Coaxial Cables (5.4.2.2) 254
 Twisted-Pair Cables (5.4.2.3) 255
 Twisted-Pair Category Ratings (5.4.2.4) 257
 Twisted-Pair Wire Schemes (5.4.2.5) 258
Fiber Cables and Connectors (5.4.3) 259
 Fiber-Optic Cables (5.4.3.1) 260
 Types of Fiber Media (5.4.3.2) 261
 Fiber-Optic Connectors (5.4.3.3) 262
Summary (5.5) 265
Practice 266
Lab 266
Check Your Understanding Questions 266

Chapter 6 Applied Networking 271
Objectives 271
Key Terms 271
Introduction (6.0) 273

Device to Network Connection (6.1) 273

 Network Addressing (6.1.1) 273
 Two Network Addresses (6.1.1.4) 274
 Displaying the Addresses (6.1.1.5) 276
 IPv4 Address Format (6.1.1.6) 277
 IPv6 Address Formats (6.1.1.7) 278
 Static Addressing (6.1.1.8) 280
 Dynamic Addressing (6.1.1.9) 281
 DNS (6.1.1.10) 282
 DHCP Operation (6.1.1.11) 284
 VLAN (6.1.1.12) 287
 Link-Local IPv4 and IPv6 Addresses (6.1.1.13) 288

Configure a NIC (6.1.2) 290

 Network Design (6.1.2.2) 290
 Selecting a NIC (6.1.2.3) 291
 Installing and Updating a NIC (6.1.2.4) 292
 Configure a NIC (6.1.2.5) 293
 ICMP (6.1.2.6) 295

Configure a Wired and Wireless Network (6.1.3) 296

 Connecting Wired Devices to the Internet (6.1.3.2) 297
 Logging in to the Router (6.1.3.3) 299
 Basic Network Setup (6.1.3.4) 300
 Basic Wireless Settings (6.1.3.5) 303
 Configure a Wireless Mesh Network (6.1.3.6) 306
 NAT for IPv4 (6.1.3.7) 307
 Quality of Service (6.1.3.8) 308

Firewall Settings (6.1.4) 309

 UPnP (6.1.4.2) 310
 DMZ (6.1.4.3) 310
 Port Forwarding (6.1.4.4) 312
 MAC Address Filtering (6.1.4.5) 313
 Whitelisting and Blacklisting (6.1.4.6) 316

IoT Device Configuration (6.1.5) 317

 Internet of Things (6.1.5.1) 318
 IoT Devices in Packet Tracer (6.1.5.2) 318

The Basic Networking Troubleshooting Process (6.2) 319

 Applying the Troubleshooting Process to Networking (6.2.1) 319
 The Six Steps of the Troubleshooting Process (6.2.1.1) 320
 Identify the Problem (6.2.1.2) 320
 Establish a Theory of Probable Cause (6.2.1.3) 321
Test the Theory to Determine the Cause (6.2.1.4) 321
Establish a Plan of Action to Resolve the Problem and
Implement the Solution (6.2.1.5) 322
Verify Full Functionality and, if Applicable, Implement
Preventive Measures (6.2.1.6) 322
Document Findings, Actions, and Outcomes (6.2.1.7) 322
Network Problems and Solutions (6.2.2) 323
Common Problems and Solutions for Networking
(6.2.2.1) 323
Advanced Problems and Solutions for Network
Connections (6.2.2.2) 325
Advanced Problems and Solutions for FTP and Secure
Internet Connections (6.2.2.3) 326
Advanced Problems and Solutions Using Network Tools
(6.2.2.4) 326
Summary (6.3) 328
Practice 328
Labs 329
Packet Tracer Activities 329
Check Your Understanding Questions 329

Chapter 7 Laptops and Other Mobile Devices 333
Objectives 333
Key Terms 333
Introduction (7.0) 336
Characteristics of Laptops and Other Mobile Devices (7.1) 336
Mobile Device Overview (7.1.1) 337
What Do You Already Know? - Mobile Devices
(7.1.1.1) 337
Mobility (7.1.1.2) 338
Laptops (7.1.1.3) 338
Smartphone Characteristics (7.1.1.4) 339
Smartphone Features (7.1.1.5) 340
Tablets and E-readers (7.1.1.6) 341
Wearables: Smartwatches and Fitness Trackers
(7.1.1.7) 342
Wearables: Augmented and Virtual Realities (7.1.1.8) 342
Laptop Components (7.1.2) 344
Motherboards (7.1.2.3) 344
Internal Components (7.1.2.4) 345
Special Function Keys (7.1.2.5) 348
Laptop Display Components (7.1.3) 349
 LCD, LED, and OLED Display Technologies (7.1.3.1) 349
 Laptop Display Features (7.1.3.2) 350
 Backlights and Inverters (7.1.3.3) 351
 Wi-Fi Antenna Connectors (7.1.3.5) 352
 Webcam and Microphone (7.1.3.6) 352

Laptop Configuration (7.2) 353
 Power Settings Configuration (7.2.1) 353
 Power Management (7.2.1.1) 353
 Managing ACPI Settings in the BIOS (7.2.1.2) 354
 Wireless Configuration (7.2.2) 355
 Bluetooth (7.2.2.1) 355
 Bluetooth Laptop Connections (7.2.2.2) 356
 Cellular WAN (7.2.2.4) 357
 Wi-Fi (7.2.2.5) 358

Laptop Hardware and Component Installation and Configuration (7.3) 359
 Expansion Slots (7.3.1) 359
 Expansion Cards (7.3.1.1) 359
 Flash Memory (7.3.1.2) 361
 Smart Card Reader (7.3.1.3) 362
 SODIMM Memory (7.3.1.4) 363
 Replacing Laptop Components (7.3.2) 365
 Overview of Hardware Replacement (7.3.2.1) 365
 Power (7.3.2.5) 366
 Internal Storage and Optical Drive (7.3.2.8) 368

Other Mobile Device Hardware Overview (7.4) 369
 Other Mobile Device Hardware (7.4.1) 369
 Cell Phone Parts (7.4.1.1) 369
 Wired Connectivity (7.4.1.2) 370
 Wireless Connections and Shared Internet Connections (7.4.1.3) 373
 Specialty Mobile Devices (7.4.2) 373
 Wearable Devices (7.4.2.1) 374
 Specialty Devices (7.4.2.2) 375

Network Connectivity and Email (7.5) 377
 Wireless and Cellular Data Networks (7.5.1) 377
 Wireless Data Networks (7.5.1.1) 378
 Cellular Communication Standards (7.5.1.3) 379
 Airplane Mode (7.5.1.4) 380
Hotspot (7.5.1.5) 382
Bluetooth (7.5.2) 383
 Bluetooth for Mobile Devices (7.5.2.1) 384
 Bluetooth Pairing (7.5.2.2) 386
Configuring Email (7.5.3) 387
 Introduction to Email (7.5.3.1) 387
 Android Email Configuration (7.5.3.3) 390
 iOS Email Configuration (7.5.3.4) 391
 Internet Email (7.5.3.5) 391
Mobile Device Synchronization (7.5.4) 392
 Types of Data to Synchronize (7.5.4.1) 392
 Enabling Synchronization (7.5.4.2) 393
 Synchronization Connection Types (7.5.4.3) 396

Preventive Maintenance for Laptops and Other Mobile Devices (7.6) 397
Scheduled Maintenance for Laptops and Other Mobile Devices (7.6.1) 397
 What Do You Already Know? - Preventive Maintenance (7.6.1.1) 397
 The Reason for Maintenance (7.6.1.2) 398
 Laptop Preventive Maintenance Program (7.6.1.3) 398
 Mobile Device Preventive Maintenance Program (7.6.1.4) 399

Basic Troubleshooting Process for Laptops and Other Mobile Devices (7.7) 400
Applying the Troubleshooting Process to Laptops and Other Mobile Devices (7.7.1) 400
 The Six Steps of the Troubleshooting Process (7.7.1.1) 400
 Identify the Problem (7.7.1.2) 400
 Establish a Theory of Probable Cause (7.7.1.3) 401
 Test the Theory to Determine Cause (7.7.1.4) 402
 Establish a Plan of Action to Resolve the Problem and Implement the Solution (7.7.1.5) 403
 Verify Full System Functionality and, if Applicable, Implement Preventive Measures (7.7.1.6) 403
 Document Findings, Actions, and Outcomes (7.7.1.7) 404
Common Problems and Solutions for Laptops and Other Mobile Devices (7.7.2) 404
 Identify Common Problems and Solutions (7.7.2.1) 404
 Common Problems and Solutions for Laptops (7.7.2.2) 405
 Common Problems and Solutions for Other Mobile Devices (7.7.2.3) 407
Chapter 8 Printers 415

Objectives 415

Key Terms 415

Introduction (8.0) 417

Common Printer Features (8.1) 417
 Characteristics and Capabilities (8.1.1) 417
 Characteristics of Printers (8.1.1.1) 417
 Printer Speed, Quality, and Color (8.1.1.2) 418
 Reliability and Total Cost of Ownership (8.1.1.3) 419
 Automatic Document Feeder and Network Scanning (8.1.1.4) 420
 Printer Connections (8.1.2) 421
 Printer Connection Types (8.1.2.1) 421

Printer Type Comparison (8.2) 425
 Inkjet Printers (8.2.1) 425
 Inkjet Printer Characteristics (8.2.1.1) 425
 Inkjet Printer Parts (8.2.1.2) 426
 Laser Printers (8.2.2) 431
 Laser Printer Characteristics (8.2.2.1) 431
 Laser Printer Parts (8.2.2.2) 431
 Laser Printing Process (8.2.3) 435
 How Laser Printing Works (8.2.3.1) 435
 Thermal Printers and Impact Printers (8.2.4) 442
 Thermal Printer Characteristics (8.2.4.1) 443
 Impact Printer Characteristics (8.2.4.2) 443
 Virtual Printers (8.2.5) 444
 Virtual Printer Characteristics (8.2.5.1) 444
 Cloud Printing (8.2.5.2) 445
 3D Printers (8.2.6) 446
 3D Printer Characteristics (8.2.6.1) 446
 3D Printer Parts (8.2.6.2) 447

Installing and Configuring Printers (8.3) 450
 Installing and Updating a Printer (8.3.1) 450
Installing a Printer (8.3.1.1) 450
Test Printer Functions (8.3.1.2) 451
Configuring Options and Default Settings (8.3.2) 452
Common Configuration Settings (8.3.2.1) 452
Optimizing Printer Performance (8.3.3) 454
Software Optimization (8.3.3.1) 454
Hardware Optimization (8.3.3.2) 455

Sharing Printers (8.4) 456
Operating System Settings for Sharing Printers (8.4.1) 456
Configuring Printer Sharing (8.4.1.1) 456
Wireless Printer Connections (8.4.1.2) 458
Print Servers (8.4.2) 459
Purposes of Print Servers (8.4.2.1) 459
Software Print Servers (8.4.2.2) 460
Hardware Print Servers (8.4.2.3) 460
Dedicated Print Servers (8.4.2.4) 461

Maintaining and Troubleshooting Printers (8.5) 462
Printer Preventive Maintenance (8.5.1) 462
Vendor Guidelines (8.5.1.1) 462
What Do You Already Know? Printer Operating Environment (8.5.1.2) 463
Inkjet Printer Preventive Maintenance (8.5.2) 464
Laser Printer Preventive Maintenance (8.5.3) 464
Thermal Printer Preventive Maintenance (8.5.4) 465
Preventive Maintenance on a Thermal Printer (8.5.4.1) 465
Impact Printer Preventive Maintenance (8.5.5) 467
Preventive Maintenance of an Impact Printer (8.5.5.1) 467
3D Printer Preventive Maintenance (8.5.6) 468
Applying the Troubleshooting Process to Printers (8.5.7) 469
The Six Steps of the Troubleshooting Process (8.5.7.1) 469
Identify the Problem (8.5.7.2) 469
Establish a Theory of Probable Cause (8.5.7.3) 470
Test the Theory to Determine Cause (8.5.7.4) 470
Establish a Plan of Action to Resolve the Problem and Implement the Solution (8.5.7.5) 471
Verify Full System Functionality and, if Applicable, Implement Preventive Measures (8.5.7.6) 471
Document Findings, Actions, and Outcomes (8.5.7.7) 471

Problems and Solutions (8.5.8) 472
Identify Printer Problems and Solutions (8.5.8.1) 472
Common Problems and Solutions for Printers (8.5.8.2) 472
Chapter 9 Virtualization and Cloud Computing 481

Objectives 481
Key Terms 481

Introduction (9.0) 482

Virtualization (9.1) 482
Virtualization (9.1.1) 482
Cloud Computing and Virtualization (9.1.1.1) 483
Traditional Server Deployment (9.1.1.2) 483
Server Virtualization (9.1.1.3) 484
Advantages of Server Virtualization (9.1.1.4) 485

Client-Side Virtualization (9.1.2) 486
Client-Side Virtualization (9.1.2.1) 486
Type 1 and Type 2 Hypervisors (9.1.2.2) 488
Virtual Machine Requirements (9.1.2.3) 489

Cloud Computing (9.2) 491
Cloud Computing Applications (9.2.1) 491
How We Use the Cloud (9.2.1.1) 491
Cloud Services (9.2.2) 492
Cloud Services (9.2.2.1) 492
What Do You Already Know? - Cloud Models (9.2.2.2) 493
Cloud Computing Characteristics (9.2.2.3) 495
Software Defined Networking (9.2.2.4) 495

Summary (9.3) 497
Practice 497
Lab 497

Check Your Understanding Questions 498

Chapter 10 Windows Installation 503

Objectives 503
Key Terms 503

Introduction (10.0) 505
Display Settings and Control Panel (11.2.4) 590
 Display Settings and Configuration (11.2.4.1) 590
 Display Features (11.2.4.2) 591
Power and System Control Panels (11.2.5) 593
 Power Options (11.2.5.1) 593
 Power Options Settings (11.2.5.2) 594
 Power Options Actions (11.2.5.3) 595
 System Control Panel Item (11.2.5.5) 596
 System Properties (11.2.5.6) 597
 Increasing Performance (11.2.5.7) 599
Hardware and Sound Control Panels (11.2.6) 600
 Device Manager (11.2.6.1) 601
 Devices and Printers (11.2.6.3) 602
 Sound (11.2.6.4) 604
Clock, Region, and Language (11.2.7) 604
 Clock (11.2.7.1) 605
 Region (11.2.7.2) 605
 Language (11.2.7.3) 607
Programs and Features Control Panels (11.2.8) 609
 Programs (11.2.8.1) 609
 Windows Features and Updates (11.2.8.2) 610
 Default Programs (11.2.8.3) 610
Other Control Panels (11.2.9) 611
 Troubleshooting (11.2.9.1) 612
 BitLocker Drive Encryption (11.2.9.2) 612
 File Explorer and Folder Options (11.2.9.3) 613

System Administration (11.3) 615
Administrative Tools (11.3.1) 615
 Administrative Tools Control Panel Item (11.3.1.1) 615
 Computer Management (11.3.1.2) 616
 Event Viewer (11.3.1.3) 617
 Local Users and Groups (11.3.1.4) 618
 Performance Monitor (11.3.1.5) 620
 Component Services and Data Sources (11.3.1.6) 620
 Services (11.3.1.7) 621
 Data Sources (11.3.1.8) 622
 Print Management (11.3.1.9) 623
 Windows Memory Diagnostics (11.3.1.10) 623
System Utilities (11.3.2) 624
 System Information (11.3.2.1) 624
 System Configuration (11.3.2.2) 625
 The Registry (11.3.2.3) 628
 Regedit (11.3.2.4) 629
Windows Networking (11.5) 683

- Network Sharing and Mapping Drives (11.5.1) 683
 - Domain and Workgroup (11.5.1.1) 684
 - HomeGroup (11.5.1.2) 685
 - Network Shares and Mapping Drives (11.5.1.4) 686
 - Administrative Shares (11.5.1.5) 687
- Sharing Local Resources with Others (11.5.2) 688
 - Sharing Local Resources (11.5.2.1) 688
 - Printer Sharing vs. Network Printer Mapping (11.5.2.2) 689
- Configure a Wired Network Connection (11.5.3) 691
 - Configuring Wired Network Interfaces in Windows 10 (11.5.3.1) 691
 - Configuring a Wired NIC (11.5.3.2) 692
 - Setting a Network Profile (11.5.3.3) 695
 - Verify Connectivity with the Windows GUI (11.5.3.4) 696
 - ipconfig Command (11.5.3.5) 697
 - Network CLI Commands (11.5.3.6) 697
- Configure a Wireless Network Interface in Windows (11.5.4) 698
 - Wireless Settings (11.5.4.1) 698
- Remote Access Protocols (11.5.5) 699
 - VPN Access in Windows (11.5.5.1) 699
 - Telnet and SSH (11.5.5.2) 701
- Remote Desktop and Assistance (11.5.6) 701

Common Preventive Maintenance Techniques for Operating Systems (11.6) 702

- OS Preventive Maintenance Plan (11.6.1) 702
 - Preventive Maintenance Plan Contents (11.6.1.1) 702
 - Windows Updates (11.6.1.3) 704
- Backup and Restore (11.6.2) 706
 - Restore Points (11.6.2.1) 706
 - Hard Drive Backup (11.6.2.2) 708

Basic Troubleshooting Process for Windows Operating Systems (11.7) 709

- Applying Troubleshooting Process to Windows Operating Systems (11.7.1) 709
 - The Six Steps of the Troubleshooting Process (11.7.1.1) 709
 - Identify the Problem (11.7.1.2) 710
 - Establish a Theory of Probable Cause (11.7.1.3) 710
 - Test the Theory to Determine the Cause (11.7.1.4) 711
Establish a Plan of Action to Resolve the Problem and Implement the Solution (11.7.1.5) 711
Verify Full System Functionality and, if Applicable, Implement Preventive Measures (11.7.1.6) 712
Document Findings, Actions, and Outcomes (11.7.1.7) 713
Common Problems and Solutions for Windows Operating Systems (11.7.2) 713
Common Problems and Solutions for Windows Operating Systems (11.7.2.1) 713
Advanced Troubleshooting for Windows Operating Systems (11.7.3) 718
Advanced Problems and Solutions for Windows Operating Systems (11.7.3.1) 718
Summary (11.8) 723
Practice 724
Labs 724
Packet Tracer Activity 725
Check Your Understanding Questions 726

Chapter 12 Mobile, Linux, and macOS Operating Systems 731
Objectives 731
Key Terms 731
Introduction (12.0) 733
Mobile Operating Systems (12.1) 733
Android vs. iOS (12.1.1) 733
Open Source vs. Closed Source (12.1.1.1) 734
Applications and Content Sources (12.1.1.2) 737
Mobile Touch Interface (12.1.2) 739
Android Home Screen Items (12.1.2.1) 739
iOS Home Screen Items (12.1.2.3) 742
Common Mobile Device Features (12.1.3) 746
Screen Orientation (12.1.3.1) 746
Screen Calibration (12.1.3.2) 748
GPS (12.1.3.3) 750
Wi-Fi Calling (12.1.3.5) 752
NFC Payment (12.1.3.6) 755
Virtual Private Network (12.1.3.7) 756
Virtual Assistants (12.1.3.8) 760
Methods for Securing Mobile Devices (12.2) 762
Passcode Locks (12.2.1) 763
What Do You Already Know? Screen Locks (12.2.1.1) 763
Restrictions on Failed Login Attempts (12.2.1.3) 764
Cloud-Enabled Services for Mobile Devices (12.2.2) 766
 Remote Backup (12.2.2.1) 766
 Locator Applications (12.2.2.2) 767
 Remote Lock and Remote Wipe (12.2.2.3) 769
Software Security (12.2.3) 771
 Antivirus (12.2.3.1) 772
 Rooting and Jailbreaking (12.2.3.2) 773
 Patching and Updating Operating Systems (12.2.3.3) 774

Linux and macOS Operating Systems (12.3) 775
Linux and macOS Tools and Features (12.3.1) 775
 Introduction to Linux and macOS Operating Systems (12.3.1.1) 776
 Overview of Linux GUI (12.3.1.2) 778
 Overview of macOS GUI (12.3.1.3) 782
 Overview of Linux and macOS CLI (12.3.1.4) 786
 Linux Backup and Recovery (12.3.1.5) 788
 macOS Backup and Recovery (12.3.1.6) 788
 Overview of Disk Utilities (12.3.1.7) 790
Linux and macOS Best Practices (12.3.2) 790
 Scheduled Tasks (12.3.2.1) 791
 Operating System Updates (12.3.2.2) 793
 Security (12.3.2.3) 794
Basic CLI Commands (12.3.3) 795
 The ls -l Command Output (12.3.3.3) 795
 Basic Unix File and Directory Permissions (12.3.3.4) 796
 Linux Administrative Commands (12.3.3.7) 799
 Linux Administrative Commands Requiring Root Access (12.3.3.8) 803

Basic Troubleshooting Process for Mobile, Linux, and macOS Operating Systems (12.4) 806
Applying the Troubleshooting Process to Mobile, Linux, and macOS Operating Systems (12.4.1) 806
 The Six Steps of the Troubleshooting Process (12.4.1.1) 806
 Identify the Problem (12.4.1.2) 806
 Establish a Theory of Probable Cause (12.4.1.3) 808
 Test the Theory to Determine the Cause (12.4.1.4) 808
 Establish a Plan of Action to Resolve the Problem and Implement the Solution (12.4.1.5) 809
 Verify Full System Functionality and, if Applicable, Implement Preventive Measures (12.4.1.6) 809
Document Findings, Actions, and Outcomes (12.4.1.7) 810
Common Problems and Solutions for Other Operating Systems (12.4.2) 810
Common Problems and Solutions for Mobile Operating Systems (12.4.2.1) 810
Common Problems and Solutions for Mobile OS Security (12.4.2.2) 813
Common Problems and Solutions for Linux and macOS Operating Systems (12.4.2.3) 815

Summary (12.5) 818
Practice 818
Labs 819

Check Your Understanding Questions 819

Chapter 13 Security 823
Objectives 823
Key Terms 823

Introduction (13.0) 826

13.1 Security Threats (13.1) 826
Malware (13.1.1) 827
Malware (13.1.1.1) 827
What Do You Already Know? - Malware (13.1.1.2) 828
Viruses and Trojan Horses (13.1.1.3) 829
Types of Malware (13.1.1.4) 830
Preventing Malware (13.1.2) 832
Anti-Malware Programs (13.1.2.1) 832
Signature File Updates (13.1.2.2) 834
Remediating Infected Systems (13.1.2.4) 835
Network Attacks (13.1.3) 837
Networks Are Targets (13.1.3.1) 837
Types of TCP/IP Attacks (13.1.3.2) 838
Zero-Day (13.1.3.4) 839
Protecting Against Network Attacks (13.1.3.5) 840
Social Engineering Attacks (13.1.4) 842
Social Engineering (13.1.4.1) 842
What Do You Already Know? - Social Engineering Techniques (13.1.4.2) 842
Social Engineering Techniques (13.1.4.3) 844
Protecting Against Social Engineering (13.1.4.4) 845
Security Procedures (13.2) 846

Security Policy (13.2.1) 846

What Is a Security Policy? (13.2.1.1) 846
Security Policy Category (13.2.1.2) 847
Securing Devices and Data (13.2.1.3) 847

Protecting Physical Equipment (13.2.2) 847

Physical Security (13.2.2.1) 847
Types of Secure Locks (13.2.2.2) 848
Mantraps (13.2.2.3) 851
Securing Computers and Network Hardware (13.2.2.4) 852

Protecting Data (13.2.3) 854

Data—Your Greatest Asset (13.2.3.1) 854
Data Backups (13.2.3.2) 854
File and Folder Permissions (13.2.3.3) 855
File and Folder Encryption (13.2.3.4) 856
Windows BitLocker and BitLocker To Go (13.2.3.5) 857

Data Destruction (13.2.4) 860

Data Wiping Magnetic Media (13.2.4.1) 860
Data Wiping Other Media (13.2.4.2) 861
Hard Drive Recycling and Destruction (13.2.4.3) 861

Securing Windows Workstations (13.3) 862

Securing a Workstation (13.3.1) 862

Securing a Computer (13.3.1.1) 862
Securing BIOS (13.3.1.2) 863
Securing Windows Login (13.3.1.3) 864
Local Password Management (13.3.1.4) 866
Usernames and Passwords (13.3.1.5) 867

Windows Local Security Policy (13.3.2) 868

The Windows Local Security Policy (13.3.2.1) 868
Account Policies Security Settings (13.3.2.2) 869
Local Policies Security Settings (13.3.2.3) 871
Exporting the Local Security Policy (13.3.2.4) 872

Managing Users and Groups (13.3.3) 873

Maintaining Accounts (13.3.3.1) 873
Managing User Account Tools and User Account Tasks (13.3.3.2) 874
Local Users and Groups Manager (13.3.3.3) 875
Managing Groups (13.3.3.4) 877
Active Directory Users and Computers (13.3.3.5) 880

Windows Firewall (13.3.4) 881

Firewalls (13.3.4.1) 881
Software Firewalls (13.3.4.2) 883
Windows Firewall (13.3.4.3) 884
Configuring Exceptions in Windows Firewall (13.3.4.4) 886
Windows Firewall with Advanced Security (13.3.4.5) 888

Web Security (13.3.5) 889
Web Security (13.3.5.1) 889
Browser Extensions and Plugins (13.3.5.2) 890
Secure Connections and Valid Certificates (13.3.5.3) 891
Browser Privacy Settings (13.3.5.4) 893
InPrivate Browsing (13.3.5.5) 893
Pop-up Blocker (13.3.5.6) 895
SmartScreen Filter (13.3.5.7) 896
ActiveX Filtering (13.3.5.8) 897

Security Maintenance (13.3.6) 898
Restrictive Settings (13.3.6.1) 899
Disable Auto-Play (13.3.6.2) 899
Operating System Service Packs and Security Patches (13.3.6.3) 900

Wireless Security (13.4) 901
Configure Wireless Security (13.4.1) 901
What Do You Already Know? - Wireless Security (13.4.1.1) 902
Common Communication Encryption Types (13.4.1.2) 902
Wi-Fi Configuration Best Practices (13.4.1.3) 905
Authentication Methods (13.4.1.4) 907
Wireless Security Modes (13.4.1.5) 908
Firmware Updates (13.4.1.6) 909
Firewalls (13.4.1.7) 910
Port Forwarding and Port Triggering (13.4.1.8) 913
Universal Plug and Play (13.4.1.9) 914

Basic Troubleshooting Process for Security (13.5) 916
Applying the Troubleshooting Process to Security (13.5.1) 916
The Six Steps of the Troubleshooting Process (13.5.1.1) 917
Identify the Problem (13.5.1.2) 917
Establish a Theory of Probable Cause (13.5.1.3) 917
Test the Theory to Determine Cause (13.5.1.4) 918
Establish a Plan of Action to Resolve the Problem and Implement the Solution (13.5.1.5) 919
Verify Full System Functionality and, if Applicable, Implement Preventive Measures (13.5.1.6) 919
Document Findings, Actions, and Outcomes (13.5.1.7) 920
Common Problems and Solutions for Security (13.5.2) 920
Common Problems and Solutions for Security (13.5.2.1) 920
Chapter 14 The IT Professional 929

Objectives 929
Key Terms 929

Introduction (14.0) 932

Communication Skills and the IT Professional (14.1) 932
 Communication Skills, Troubleshooting, and Professional Behavior (14.1.1) 932
 Relationship Between Communication Skills and Troubleshooting (14.1.1.1) 933
 Relationship Between Communication Skills and Professional Behavior (14.1.1.2) 933
 Working with a Customer (14.1.2) 934
 Know, Relate, and Understand (14.1.2.1) 934
 Active Listening (14.1.2.2) 935
 Professional Behavior (14.1.3) 936
 Using Professional Behavior with the Customer (14.1.3.1) 936
 Tips for Hold and Transfer (14.1.3.2) 937
 What Do You Already Know? - Netiquette (14.1.3.4) 938
 The Customer Call (14.1.4) 939
 Keeping the Customer Call Focused (14.1.4.1) 939

Operational Procedures (14.2) 941

Documentation (14.2.1) 942
 Documentation Overview (14.2.1.1) 942
 IT Department Documentation (14.2.1.2) 942
 14.2.1.3 Reports and Procedures 944
 14.2.1.4 User Checklists 945
 14.2.1.5 Knowledge Base and Articles 945
 Regulatory Compliance Requirements (14.2.1.6) 946
 14.2.1.7 Asset Databases 946
 14.2.1.8 Asset Procurement 947
 Change Management (14.2.2) 948
 Change Control Process (14.2.2.1) 948
Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).

- **Italic** indicates arguments for which you supply actual values.

- Vertical bars (|) separate alternative, mutually exclusive elements.

- Square brackets ([]) indicate an optional element.

- Braces ({ }) indicate a required choice.

- Braces within brackets ([{ }]) indicate a required choice within an optional element.
Introduction

IT Essentials v8 Companion Guide is a supplemental book to the Cisco Networking Academy IT Essentials: Version 8 course. The course includes information to allow you to develop working knowledge of how computers and mobile devices operate. It covers information security topics and provides practice experience in computer procedures, networking, and troubleshooting.

Cisco Networking Academy is a comprehensive program that delivers information technology skills to students around the world. IT Essentials v8 Companion Guide provides you with the foundational knowledge to be successful in employment in many areas of IT. You will learn techniques to successfully problem-solve and troubleshoot IT functions, understand virtualization technologies, recognize security threats, use mitigation methods and tools, identify and install infrastructure and system components, and enhance your customer service skills.

This book provides a ready reference that explains the same concepts, technologies, protocols, and tools as the online curriculum. You can use the online curriculum as directed by your instructor and then use this Companion Guide’s study tools to help solidify your understanding of all the topics.

The course is designed to prepare you to take and pass the CompTIA A+ 1000 series exams. By reading and completing this book, you have the opportunity to review all key concepts that the CompTIA A+ exams cover. If you use this book along with its study tools, you can reinforce those concepts with hands-on exercises and test that knowledge with review questions and exercises.

The IT Essentials: PC Hardware and Software course aligns with the CompTIA A+ (220-1001) exam and CompTIA A+ (220-1002) exam. You must pass both exams to earn the CompTIA A+ certification.

Who Should Read This Book

This book is intended for students in the Cisco Networking Academy IT Essentials: Version 8 course. Such students are usually pursuing careers in information technology (IT) or want to understand how a computer works, how to assemble a computer, and how to troubleshoot hardware and software issues.
Book Features

The educational features of this book focus on supporting topic coverage, readability, and practice of the course material to facilitate your full understanding of the course material.

Topic Coverage

The following features give you a thorough overview of the topics covered in each chapter so that you can make constructive use of your study time:

- **Objectives:** Listed at the beginning of each chapter, the objectives reference the core concepts covered in the chapter. The objectives match the objectives stated in the corresponding chapters of the online curriculum; however, the question format in the *Companion Guide* encourages you to think about finding the answers as you read the chapter.

- **Notes:** These are short sidebars that point out interesting facts, timesaving methods, and important safety issues.

- **Chapter summaries:** At the end of each chapter is a summary of the chapter's key concepts. It provides a synopsis of the chapter and serves as a study aid.

- **Practice:** At the end of each chapter is a full list of all the labs, class activities, and Packet Tracer activities to refer to at study time.

Readability

The following features assist your understanding of the networking vocabulary:

- **Key terms:** Each chapter begins with a list of key terms, along with a page-number reference from inside the chapter. The terms are listed in the order in which they are explained in the chapter. This handy reference allows you to find a term, flip to the page where the term appears, and see the term used in context. The Glossary defines all the key terms.

- **Glossary:** This book contains an all-new Glossary with more than 1000 terms.

Practice

Practice makes perfect. This *Companion Guide* offers you ample opportunities to put what you learn into practice. You will find the following features valuable and effective in reinforcing the instruction that you receive:

- **Check Your Understanding questions and answer key:** Review questions are presented at the end of each chapter as a self-assessment tool. These questions
match the style of questions that you see in the online course. Appendix A, “Answers to ‘Check Your Understanding’ Questions,” provides an answer key to all the questions and includes an explanation of each answer.

- **Labs and activities**: Throughout each chapter, you are directed to the online course to take advantage of the activities created to reinforce concepts. In addition, at the end of each chapter is a Practice section that lists all the labs and Packet Tracer activities to provide practice with the topics introduced in this chapter.

- **Page references to online course**: After headings, you will see, for example, (1.1.2.3). This number refers to the page number in the online course so that you can easily jump to that spot online to view a video, practice an activity, perform a lab, or review a topic.

About Packet Tracer Software and Activities

Interspersed throughout the chapters you'll find a few Cisco Packet Tracer activities. Packet Tracer allows you to create networks, visualize how packets flow in the network, and use basic testing tools to determine whether the network would work. When you see this icon, you can use Packet Tracer with the listed file to perform a task suggested in this book. The activity files are available in the course. Packet Tracer software is available only through the Cisco Networking Academy website. Ask your instructor for access to Packet Tracer.

How This Book Is Organized

This book corresponds closely to the Cisco Networking Academy CCNA IT Essential v8 course and is divided into 14 chapters, an appendix, and a glossary of key terms:

- **Chapter 1, “Introduction to Personal Computer Hardware”**: This chapter introduces you to all the components that go inside a computer case. A computer system consists of hardware and software components. This chapter discusses hardware components in a computer system as well as safety guidelines you should follow to prevent electrical fires, injuries, and fatalities while working inside a computer. You will also learn about electrostatic discharge (ESD) and how it can damage computer equipment if it is not discharged properly.

- **Chapter 2, “PC Assembly”**: In this chapter, you will learn about PC power supplies and the voltages they provide to other computer components. You will learn about the components that are installed on the motherboard, including the CPU, RAM, and various adapter cards. You will learn about different CPU architectures and how to select RAM that is compatible with the motherboard and
the chipset. You will also learn about various types of storage drives and the factors to consider when selecting the appropriate drive.

- **Chapter 3, “Advanced Computer Hardware”**: This chapter covers the computer boot process, protecting a computer from power fluctuations, multicore processors, redundancy through multiple storage drives, and protecting the environment from hazardous materials present in computer components.

- **Chapter 4, “Preventive Maintenance and Troubleshooting”**: In this chapter, you will learn general guidelines for creating preventive maintenance programs and troubleshooting procedures. Troubleshooting is a systematic process used to locate the cause of a fault in a computer system and to correct the relevant hardware and software issues. In this chapter, you learn general guidelines for creating preventive maintenance programs and troubleshooting procedures. These guidelines are a starting point to help you develop your preventive maintenance and troubleshooting skills.

- **Chapter 5, “Networking Concepts”**: This chapter provides an overview of network principles, standards, and purposes. IT professionals must be familiar with networking concepts to meet the expectations and needs of customers and network users.

- **Chapter 6, “Applied Networking”**: Virtually all computers and mobile devices today are connected to some type of network and to the Internet. This means that configuring and troubleshooting computer networks is now a critical skill for IT professionals. This chapter focuses on applied networking, with a discussion on the format and architecture of Media Access Control (MAC) addresses and Internet Protocol (IP) addresses, both IPv4 and IPv6, that are used to connect computers to a network. Technicians must be able to set up, configure, and troubleshoot networks. This chapter also teaches you how to troubleshoot problems when networks and Internet connections fail.

- **Chapter 7, “Laptops and Other Mobile Devices”**: This chapter focuses on the many features of mobile devices and their capabilities, including configuration, synchronization, and data backup. With the increase in demand for mobility, the popularity of mobile devices will continue to grow. During the course of your career, you will be expected to know how to configure, repair, and maintain these devices.

- **Chapter 8, “Printers”**: This chapter provides essential information about printers. You learn how printers operate, what to consider when purchasing a printer, and how to connect printers to an individual computer or to a network.

- **Chapter 9, “Virtualization and Cloud Computing”**: Organizations both large and small are investing heavily in virtualization and cloud computing. It is therefore important for IT technicians and professionals to understand these two
technologies. While the two technologies do overlap, they are, in fact, two
different technologies. Virtualization software allows one physical server to run
several individual computing environments. Cloud computing is a term used to
describe the availability of shared computing resources (software or data) as a
service and on demand over the Internet. In this chapter, you will learn about
both virtualization and cloud computing.

- **Chapter 10, “Windows Installation”:** As a technician, you will be required to
 install operating systems of many types, using a variety of methods. This chapter
 focuses on the Windows 10, Windows 8.x, and Windows 7 operating systems.
The components, functions, system requirements, and terminology related to
each operating system are explored. The chapter also details the steps to install a
Windows operating system and the Windows boot sequence.

- **Chapter 11, “Windows Configuration”:** In this chapter, you learn about support
 and maintenance of the Windows operating system after it has been installed.
You learn how to use tools that optimize and maintain the operating system.
You also learn methods for organizing and managing Windows computers on
a network, the domain, and the workgroup, and how to share local computer
resources, such as files, folders, and printers, on the network. This chapter also
explores the CLI and PowerShell command line utility.

- **Chapter 12, “Mobile, Linux, and macOS Operating Systems”:** In this chapter,
you learn about operating systems such as iOS, Android, macOS, and Ubuntu
Linux and their characteristics. The portable nature of mobile devices puts them
at risk for theft and loss, so this chapter discusses mobile security features.

- **Chapter 13, “Security”:** Technicians need to understand computer and network
 security. Failure to implement proper security procedures can have impacts on
users, computers, and the general public. This chapter covers why security is
important, security threats, security procedures, how to troubleshoot security
issues, and how you can work with customers to ensure that the best possible
protection is in place.

- **Chapter 14, “The IT Professional”:** As a computer technician, you not only
 fix computers but also interact with people. In fact, troubleshooting is as much
about communicating with customers as it is about knowing how to fix computers.
In this chapter, you learn to use good communication skills as confidently as
you use a screwdriver. You also learn about scripting to automate processes and
tasks on various operating systems.

- **Appendix A, “Answers to ‘Check Your Understanding’ Questions”:** This
 appendix lists the answers to the “Check Your Understanding” review questions
 that are included at the end of each chapter.

- **Glossary:** The Glossary provides definitions for all the key terms identified in
each chapter.
Figure and Text Credits

Figure 3-1, Figure 3-4, Figure 13-16: American Megatrends, Inc

Figure 5-17, Figure 5-26, Figure 6-16, Figure 6-41A, Figure 7-17A, Figure 7-41, Figure 7-44, Figure 7-51 through Figure 7-53, Figure 8-50, Figure 12-3, Figure 12-6, Figure 12-12 through Figure 12-16, Figure 12-19, Figure 12-22, Figure 12-25, Figure 12-28, Figure 12-32, Figure 12-33, Figure 12-36, Figure 12-38 through Figure 12-44, Figure 12-47, Figure 12-51, Figure 12-57 through Figure 12-63, Figure 12-68, Figure 12-73, Figure 12-75: Apple, Inc

Figure 6-41B, Figure 7-49, Figure 7-50, Figure 12-2, Figure 12-7, Figure 12-9 through Figure 12-11, Figure 12-18, Figure 12-21, Figure 12-24, Figure 12-27, Figure 12-30, Figure 12-31, Figure 12-35: Google, Inc

Figure 12-49, Figure 12-76: Ken Thompson

Figure 12-50, Figure 12-65 through Figure 12-67, Figure 12-70 through Figure 12-72, Figure 12-77 through Figure 12-89: The Linux Foundation

Figure 12-52 through Figure 12-56, Figure 12-74: Canonical Ltd

Figure 6-8: Wireshark Foundation

Figure 6-42: Sony
CHAPTER 1

Introduction to Personal Computer Hardware

Objectives
Upon completion of this chapter, you will be able to answer the following questions:

- What are the components in a computer?
- What electrical and ESD safety procedures should you follow when working on a computer?
- What are computer cases and power supplies?
- What are motherboards?
- What are CPUs?
- What are the types of memory?
- What are adapter cards and expansion slots?
- What are hard disk drives and SSDs?
- What are optical storage devices?
- What are ports, cables, and adapters?
- What are input devices?
- What are output devices?
- What are the features and functions of each component in the technician's toolkit?
- How do you disassemble a computer?

Key Terms
This chapter uses the following key terms. You can find the definitions in the glossary at the end of the book.

- Accelerated Graphics Port (AGP) page 30
- adapter page 45
- adapter card page 28
- Advanced Technology (AT) page 11
- alternating current (AC) page 10
- AT Extended (ATX) page 11
- ATX12V page 11
- audio port page 42
- augmented reality (AR) page 56
- barcode scanner page 50
- basic input/output system (BIOS) chip page 14
- cache memory page 27
- capture card page 28
- central processing unit (CPU) page 18
- chipset page 14
- converter page 45
- digital camera page 50
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified Extensible Firmware Interface (UEFI) chip</td>
<td>14</td>
</tr>
<tr>
<td>Universal Serial Bus (USB)</td>
<td>45</td>
</tr>
<tr>
<td>Universal Serial Bus (USB) controller card</td>
<td>28</td>
</tr>
<tr>
<td>video adapter</td>
<td>28</td>
</tr>
<tr>
<td>Video Graphics Array (VGA)</td>
<td>41</td>
</tr>
<tr>
<td>video port</td>
<td>37</td>
</tr>
<tr>
<td>virtual reality (VR)</td>
<td>56</td>
</tr>
<tr>
<td>virtual reality headset</td>
<td>54</td>
</tr>
<tr>
<td>volatile memory</td>
<td>20</td>
</tr>
<tr>
<td>webcam</td>
<td>51</td>
</tr>
<tr>
<td>wireless NIC</td>
<td>28</td>
</tr>
<tr>
<td>zero insertion force (ZIF)</td>
<td>18</td>
</tr>
</tbody>
</table>
Introduction to Personal Computers (1.0)

People prepare for work in the information technology fields by earning certifications, seeking formal education, and gaining experience through internships and jobs. In this chapter, you will learn about all the components that make up a PC, including the case, which houses all the internal components. Computers, computer components, and computer peripherals all contain hazards that can cause severe injury. Therefore, this chapter begins with safety guidelines you should follow to prevent electrical fires, injuries, and fatalities while working inside a computer. You will also learn about electrostatic discharge (ESD) and how it can damage computer equipment if it is not discharged properly.

This chapter will introduce you to all the components inside a computer case, starting with the motherboard. You will learn about all the internal components connected to the motherboard, such as the power supply, the central processing unit (CPU), random access memory (RAM), expansion cards, and storage drives. You will also learn about the connectors, ports, and cables that physically connect devices to the motherboard.

It is important for a technician to learn about computer components and also build hands-on skills. This chapter includes a lab in which you will disassemble a computer so you can become more familiar with all the components and how they are connected.

Personal Computer Safety (1.1)

What Is in a Computer? (1.1.1)

A computer is an electronic machine that performs calculations based on a set of instructions. The first computers were huge, room-sized machines that took teams of people to build, manage, and maintain. The computer systems of today are both exponentially faster and only a fraction of the size of those original computers.

A computer system consists of hardware and software components. Hardware is the physical equipment. It includes the case, keyboard, monitor, cables, storage drives, speakers, and printers. Software includes the operating system and programs. The operating system manages computer operations such as identifying, accessing, and processing information. Programs or applications perform different functions. Programs vary widely, depending on the type of information that is accessed or generated. For example, instructions for balancing a personal budget are different from instructions for simulating a virtual reality world on the Internet.
Electrical and ESD Safety (1.1.2)

Safety is an important topic and practice in the workplace. Safety guidelines help protect individuals from accidents and injury. They also help protect equipment from damage.

Electrical Safety (1.1.2.1)

Follow electrical safety guidelines to prevent electrical fires, injuries, and fatalities.

Some printer parts, such as power supplies, contain high voltage. Check the printer manual for the location of high-voltage components. Some components retain a high voltage even after the printer is turned off.

Electrical devices have certain power requirements. For example, AC adapters are manufactured for specific laptops. Exchanging AC adapters with a different type of laptop or device may cause damage to both the AC adapter and the laptop.

Electric equipment must be grounded. If a fault causes metal parts of the equipment to become live with electrical current, the ground will provide a path of least resistance for the current to flow harmlessly away. Typically, computer products connect to ground via the power plug. Large equipment such as server racks house network devices that must also be grounded.

ESD (1.1.2.2)

Electrostatic discharge (ESD) can occur when there is a buildup of an electric charge (static electricity) on a surface that comes into contact with another, differently charged surface. ESD can cause damage to computer equipment if not discharged properly. Follow proper handling guidelines, be aware of environmental issues, and use equipment that stabilizes power to prevent equipment damage and data loss.

At least 3000 volts (V) of static electricity must build up before a person can feel ESD. For example, static electricity can build up on you as you walk across a carpeted floor. When you touch another person, you both receive a shock. If the discharge causes pain or makes a noise, the charge was probably above 10,000V. By comparison, less than 30V of static electricity can damage a computer component. Static buildup can be discharged by touching a grounded object prior to touching any electronic equipment. This is known as self-grounding.
ESD can cause permanent damage to electrical components. Follow these recommendations to help prevent ESD damage:

- Keep all components in antistatic bags until you are ready to install them.
- Use grounded mats on workbenches.
- Use grounded floor mats in work areas.
- Use antistatic wrist straps when working inside computers.

Check Your Understanding 1.1.2.3: ESD Characteristics
Refer to the online course to complete this activity.

PC Components (1.2)

Personal computers (PCs) are made up of hardware and software components that must be chosen with specific features in mind. All the components must be compatible to work as a system. PCs are built based on how a user works and what needs to be accomplished. They may need to be upgraded when work needs are not being met.

Case and Power Supplies (1.2.1)

Computer cases are the enclosures that house the internal computer components. They come in different sizes, also known as form factors. The case you choose influences what motherboards you can use and what computer components you can install. Case, motherboard, and power supply form factors must be compatible. The power supply is a critical component and is used to convert the current provided from an AC outlet into DC current that is usable by many parts inside the computer case.

Cases (1.2.1.1)

The case of a desktop computer houses the internal components, such as the power supply, motherboard, central processing unit (CPU), memory, disk drives, and assorted adapter cards.

Cases are typically made of plastic, steel, or aluminum and provide the framework to support, protect, and cool the internal components.
A device **form factor** refers to its physical design and look. Desktop computers are available in a variety of form factors, including:

- Horizontal case
- Full-size tower
- Compact tower
- All-in-one

This list is not exhaustive, and many case manufacturers have their own naming conventions (for example, super tower, full tower, mid tower, mini tower, cube case, and more).

Computer components tend to generate a lot of heat; therefore, a computer case contains a fan that moves air through the case. As the air flows past warm components, it absorbs heat and then exits the case. This process keeps the computer components from overheating. Cases are also designed to protect against static electricity damage. A computer’s internal components are grounded via attachment to the case.

Note

A computer case is also referred to as a computer chassis, cabinet, tower, housing, or simply box.

Horizontal Case

A horizontal case, as shown in Figure 1-1, is horizontally oriented on the user’s desk, often with the monitor positioned on top. This type of case was popular in early computer systems. This form factor is often used for home theater PCs (HTPCs).
Full-Size Tower
A full-size tower, as shown in Figure 1-2, is a vertically oriented case typically located under or beside a desk or table. It provides room for expansion to accommodate additional components, such as disk drives, adapter cards, and more.

![Figure 1-2 Full-Size Tower](image)

Compact Tower
Figure 1-3 shows a compact tower, which is a smaller version of a full-size tower. It is a common form factor in the corporate environment. It might also be called a minitower or small form factor (SFF) model. It can be located on the user’s desk or on the floor. It provides limited room for expansion.

![Figure 1-3 Compact Tower](image)

All-in-One
In an all-in-one computer, as shown in Figure 1-4, all of the computer system components are integrated into the display. An all-in-one typically includes touchscreen input and a built-in microphone and speakers. Depending on the model, all-in-one computers offer little to no expansion capabilities. The power supply is often external to the computer.
Electricity from wall outlets is provided in *alternating current (AC)*; however, all components inside a computer require direct current (DC) power. To obtain DC power, computers use a power supply, as shown in Figure 1-5, to convert AC power into lower-voltage DC power.
The list that follows describes the various computer desktop power supply form factors that have evolved over time:

- **Advanced Technology (AT):** This was the original power supply form factor for legacy computer systems and is now considered obsolete.

- **AT Extended (ATX):** This updated version of AT is also considered obsolete.

- **ATX12V:** This is the most common power supply on the market today. It includes a second motherboard connector to provide dedicated power to the CPU. There are several versions of ATX12V available.

- **EPS12V:** This was originally designed for network servers but is now commonly used in high-end desktop models.

Connectors (1.2.1.3)

A power supply includes several different connectors, as shown in Table 1-1. These connectors are used to power various internal components, such as the motherboard and disk drives. The connectors are “keyed,” which means they are designed to be inserted in only one orientation.

<table>
<thead>
<tr>
<th>Type</th>
<th>Example Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 20-pin or 24-pin slotted connector</td>
<td></td>
<td>- Connects to the motherboard
- The 24-pin connector has two rows of 12 pins each
- The 20-pin connector has two rows of 10 pins each</td>
</tr>
<tr>
<td>SATA keyed connector</td>
<td></td>
<td>- Connects disk drives
- Connector is wider and thinner than a Molex connector</td>
</tr>
<tr>
<td>Type</td>
<td>Example Image</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Molex keyed connector</td>
<td></td>
<td>- Connects hard drives, optical drives, or other devices</td>
</tr>
<tr>
<td>Berg keyed connector</td>
<td></td>
<td>- Connects to a legacy floppy drive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Smaller than a Molex connector</td>
</tr>
<tr>
<td>4-pin to 8-pin auxiliary power connector</td>
<td></td>
<td>- Connector has two rows of two to four pins and supplies power to different areas of the motherboard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The auxiliary power connector is the same shape as the main power connector but smaller</td>
</tr>
<tr>
<td>6/8-pin PCIe power</td>
<td></td>
<td>- Connector has two rows of three to four pins and supplies power to internal components</td>
</tr>
</tbody>
</table>
Power Supply Voltage (1.2.1.4)

The different connectors provide different voltages. The most common voltages supplied are 3.3V, 5V, and 12V. The 3.3V and 5V supplies are typically used by digital circuits, and 12V supplies are used to run motors in disk drives and fans.

Power supplies can also be single rail, dual rail, or multi rail. A rail is the printed circuit board (PCB) inside the power supply to which the external cables are connected. A single rail has all the connectors connected to the same PCB. Dual rail splits the total amperage among four circuits; this can allow for safer operation because you're not forcing loads of power through a single rail. A multi rail has separate PCBs for each connector.

A computer can tolerate slight fluctuations in power, but a significant deviation can cause the power supply to fail.

Check Your Understanding 1.2.1.5: Cases and Power Supplies
Refer to the online course to complete this activity.

Motherboards (1.2.2)

A motherboard is one of the most crucial parts of a computer system because it houses key computer components. There are a variety of motherboard types, with different form factors. They are constructed to operate with specific types of memory (RAM) and processors, so all these components must be compatible.

Motherboards (1.2.2.1)

The motherboard, also known as the system board or the main board, is the backbone of the computer. A motherboard is a printed circuit board (PCB) that contains buses, or electrical pathways, which interconnect electronic components. These components may be soldered directly to the motherboard or added using sockets, expansion slots, and ports.

Motherboard Components (1.2.2.2)

A motherboard has some connections where computer components can be added, as shown in Figure 1-6 and described in the list that follows:
Central processing unit (CPU): This is considered the brain of the computer.

Random access memory (RAM): This is a location that temporarily stores data and applications.

Expansion slots: These provide locations to connect additional components.

Chipset: This consists of the integrated circuits on the motherboard that control how system hardware interacts with the CPU and motherboard. It also establishes how much memory can be added to a motherboard and the type of connectors on the motherboard.

Basic input/output system (BIOS) chip and Unified Extensible Firmware Interface (UEFI) chip: BIOS is used to help boot the computer and manage the flow of data between the hard drive, the video card, the keyboard, the mouse, and other components. Recently, the BIOS has been enhanced by UEFI. UEFI specifies a different software interface for boot and runtime services but still relies on the traditional BIOS for system configuration, power-on self-test (POST), and setup.

The Serial Advanced Technology Attachment (SATA), shown in Figure 1-7, is a disk drive interface used for connecting optical drives, hard drives, and solid-state drives to the motherboard. SATA supports hot swapping, which is the ability to replace devices without powering off the computer.
Integrated Drive Electronics (IDE), shown in Figure 1-8, is an older standard interface for connecting disk drives to the motherboard. IDE uses a 40-pin connector. Each IDE interface supports a maximum of two devices.

A 19-pin connector, shown in Figure 1-9, is used to connect the external USB 3 ports on the computer case to the motherboard. USB 1.1 and USB 2 connectors have nine pins.
Motherboard Chipset (1.2.2.3)

Figure 1-10 illustrates how a motherboard connects various components.

![Motherboard Component Connections](image)

Figure 1-10 Motherboard Component Connections

Most chipsets consist of the following two types:

- **Northbridge**: This chipset controls high-speed access to the RAM and video card. It also controls the speed at which the CPU communicates with all the other components in the computer. Video capability is sometimes integrated into the Northbridge.

- **Southbridge**: This chipset allows the CPU to communicate with slower-speed devices, including hard drives, Universal Serial Bus (USB) ports, and expansion slots.

Motherboard Form Factors (1.2.2.4)

The form factor of motherboards pertains to the size and shape of the board. It also describes the physical layout of the different components and devices on the motherboard.

Many variations of motherboards have been developed over the years. There are three common motherboard form factors:
- **Advanced Technology Extended (ATX):** This is the most common motherboard form factor. The ATX case accommodates the integrated I/O ports on the standard ATX motherboard. The ATX power supply connects to the motherboard via a single 20-pin connector.

- **Micro-ATX:** This is a smaller form factor designed to be backward compatible with ATX. Micro-ATX boards often use the same Northbridge and Southbridge chipsets and power connectors as full-size ATX boards and therefore can use many of the same components. Generally, Micro-ATX boards can fit in standard ATX cases. However, Micro-ATX motherboards are much smaller than ATX motherboards and have fewer expansion slots.

- **ITX:** The ITX form factor has gained popularity because of its very small size. There are many types of ITX motherboards; Mini-ITX is one of the most popular. The Mini-ITX form factor uses very little power, and fans are not needed to keep it cool. A Mini-ITX motherboard has only one PCI slot for expansion cards. A computer based on a Mini-ITX form factor can be used in places where it is inconvenient to have a large or noisy computer.

Table 1-2 highlights these and other form factor variations.

Note

It is important to distinguish between form factors. The choice of motherboard form factor determines how individual components attach to it, the type of power supply required, and the shape of the computer case. Some manufacturers also have proprietary form factors based on the ATX design. For this reason, some motherboards, power supplies, and other components are incompatible with standard ATX cases.

| Table 1-2 Motherboard Form Factors |
|-----------------|-----------------|
| **Form Factor** | **Description** |
| ATX | Most popular form factor |
| | 12 in. × 9.6 in. (30.5 cm × 24.4 cm) |
| **Micro-ATX** | Smaller footprint than ATX |
| | Popular in desktop and small form factor computers |
| | 9.6 in. × 9.6 in. (24.4 cm × 24.4 cm) |
| Mini-ITX | Designed for small devices such as thin clients and set-top boxes |
| | 6.7 in. × 6.7 in. (17 cm × 17 cm) |
| ITX | Comparable form factor to Micro-ATX |
| | 8.5 in. × 7.5 in. (21.5 cm × 19.1 cm) |
Check Your Understanding 1.2.2.5: Motherboards
Refer to the online course to complete this activity.

** CPUs and Cooling Systems (1.2.3) **

Whereas the motherboard is considered to be the backbone of the computer, the central processing unit (CPU) is considered to be the brain. In terms of computing power, the CPU, sometimes referred to as the processor, is the most important element of a computer system. Most calculations take place in the CPU, and the CPU therefore generates a significant amount of heat. It is important to have a proper cooling system to effectively keep the CPU as well as other computer components at safe operating temperatures to prevent damage or performance degradation.

** What Is a CPU? (1.2.3.1) **

The *central processing unit (CPU)* is responsible for interpreting and executing commands. It handles instructions from the computer’s other hardware, such as a keyboard, and software. The CPU interprets the instructions and outputs the information to the monitor or performs the requested tasks.

The CPU is a small microchip that resides within a CPU package. The CPU package is often referred to as the CPU. CPU packages come in different form factors, and each style requires a particular socket on the motherboard. Common CPU manufacturers include Intel and AMD.

The CPU socket is the connection between the motherboard and the processor. Modern CPU sockets and processor packages are built around the following architectures:

- *Pin grid array (PGA)* (see Figure 1-11): With PGA architecture, the pins are on the underside of the processor package, and the pins are inserted into the motherboard CPU socket using *zero insertion force (ZIF)*. ZIF refers to the amount of force needed to install a CPU into the motherboard socket or slot.
• *Land grid array (LGA)* (see Figure 1-12): In an LGA architecture, the pins are in the socket instead of on the processor.

![Figure 1-12 LGA CPU and Socket](image)

Cooling Systems (1.2.3.2)

The flow of current between electronic components generates heat. Computer components perform better when kept cool. If the heat is not removed, the computer may run more slowly. If too much heat builds up, the computer could crash, or components can be damaged. Therefore, it is imperative that computers be kept cool.

Computers are kept cool using active and passive cooling solutions. Active solutions require power, and passive solutions do not. Passive solutions for cooling usually involve reducing the speed at which a component is operating or adding heat sinks to computer chips. A case fan is considered active cooling. Figure 1-13 shows examples of passive and active cooling solutions.

![Figure 1-13 Cooling Systems](image)
Memory (1.2.4)

Computers have different types of memory, which comes in different form factors and chip types. Computer memory components can be volatile and nonvolatile, and they can store information temporarily, as RAM (random access memory) does, or permanently, as ROM (read-only memory) does.

Types of Memory (1.2.4.1)

A computer might use different types of memory chips. However, all memory chips store data in the form of bytes. A byte is a grouping of digital information and represents information such as letters, numbers, and symbols. Specifically, a byte is a block of 8 bits stored as either 0 or 1 in the memory chip.

Read-Only Memory

An essential computer chip is the *read-only memory (ROM)* chip. ROM chips are located on the motherboard and other circuit boards and contain instructions that can be directly accessed by a CPU. The instructions stored in ROM include basic operation instructions such as for booting the computer and loading the operating system.

ROM is *nonvolatile memory*, which means the contents are not erased when the computer is powered off.

Random Access Memory

Random access memory (RAM) is temporary working storage for data and programs being accessed by the CPU. Unlike ROM, RAM is *volatile memory*, which means the contents are erased every time the computer is powered off.

Adding more RAM in a computer enhances the system performance. For instance, more RAM increases the memory capacity of the computer to hold and process programs and files. With less RAM, a computer must swap data between RAM and the much slower hard drive. The maximum amount of RAM that can be installed is limited by the motherboard.

Types of ROM (1.2.4.2)

The list that follows describes the types of ROM:
- **ROM:** Information is written to a ROM chip when it is manufactured (see Figure 1-14). ROM chips that cannot be erased or rewritten are now obsolete. The term ROM still tends to be used generically for any read-only memory chip type.

![Figure 1-14 ROM](image1)

- **PROM:** Information on a *programmable read-only memory (PROM)* chip (see Figure 1-15) is written after the chip is manufactured. PROMs are manufactured blank and can be programmed by a PROM programmer when needed. Generally, these chips cannot be erased and can be programmed only once.

![Figure 1-15 PROM](image2)
- **EPROM**: *Erasable programmable read-only memory (EPROM)* (see Figure 1-16) is nonvolatile but can be erased by being exposed to strong ultraviolet light. EPROM usually has a transparent quartz window on the top of the chip. Constant erasing and reprogramming could eventually render the chip useless.

![Figure 1-16 EPROM](image)

- **EEPROM**: Information is written to an *electrically erasable programmable read-only memory (EEPROM)* chip after it is manufactured and without needing to be removed from the device. EEPROM chips (see Figure 1-17) are also called flash ROMs because the contents can be “flashed” for deletion. EEPROMs are often used to store a computer system’s BIOS.

![Figure 1-17 EEPROM](image)
Types of RAM (1.2.4.3)

Table 1-3 lists the different types of RAM.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Dynamic RAM (DRAM)** | - Older technology, popular until the mid-1990s
- Used for main memory
- DRAM gradually discharges energy, and it must be constantly refreshed with pulses of electricity in order to maintain the stored data in the chip |
| **Static RAM (SRAM)** | - Requires constant power to function
- Often used for cache memory
- Consumes less power
- Much faster than DRAM
- More expensive than DRAM |
| **Synchronous Dynamic RAM (SDRAM)** | - DRAM that operates in synchronization with the memory bus
- Able to process overlapping instructions in parallel (for example, can process a read before a write has been completed)
- Higher transfer rates |
| **Double Data Rate Synchronous Dynamic RAM (DDR SDRAM)** | - Transfers data twice as fast as SDRAM
- Able to support two writes and two reads per CPU clock cycle
- Connector has 184 pins and a single notch
- Uses lower standard voltage (2.5V)
- Family: DDR2, DDR3, DDR4 |
| **Double Data Rate 2 Synchronous Dynamic RAM (DDR2 SDRAM)** | - Transfers data twice as fast as SDRAM
- Runs at higher clock speeds than DDR (553 MHz vs. DDR at 200 MHz)
- Improves performance by decreasing noise and cross-talk between signal wires
- Connector has 240 pins
- Uses lower standard voltage (1.8V) |
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Data Rate 3 Synchronous Dynamic RAM (DDR3 SDRAM)</td>
<td>- Expands memory bandwidth by doubling the clock rate of DDR2
- Consumes less power than DDR2 (1.5V)
- Generates less heat
- Runs at higher clock speeds (up to 800 MHz)
- Connector has 240 pins</td>
</tr>
<tr>
<td>Double Data Rate 4 Synchronous Dynamic RAM (DDR4 SDRAM)</td>
<td>- Quadruples the maximum storage capacity compared to DDR3
- Consumes less power than DDR3 (1.2V)
- Runs at higher clock speeds (up to 1600 MHz)
- Connector has 288 pins
- Advanced error correction features</td>
</tr>
<tr>
<td>Graphics Double Data Rate Synchronous Dynamic RAM (GDDR)</td>
<td>- RAM specifically designed for video graphics
- Used in conjunction with a dedicated GPU
- Family: GDDR, GDDR2, GDDR3, GDDR4, GDDR5
- Each higher family member improves performance
- Each higher family member lowers power consumption
- GDDR SDRAM processes massive amounts of data but not necessarily at the fastest speeds</td>
</tr>
<tr>
<td>Double Data Rate 5 Synchronous Dynamic RAM (DDR5 SDRAM)</td>
<td>- More than double the speed of the fastest DDR4 modules
- Quadruples the maximum storage capacity of DDR4
- Consumes slightly less power than DDR4 (1.1V)
- Connector has 288 pins but a different pattern than DDR4, so they are not compatible
- Maximum module size is 128 GB</td>
</tr>
</tbody>
</table>

Memory Modules (1.2.4.4)

Early computers had RAM installed on the motherboard as individual chips. The individual memory chips, called *dual inline package (DIP)* chips, were difficult to install and often became loose. To solve this problem, designers soldered the memory
chips to a circuit board to create a memory module that would then be placed into a memory slot on the motherboard.

The different types of memory modules are as follows:

- A dual inline package (DIP) (see Figure 1-18) is an individual memory chip. A DIP has dual rows of pins used to attach it to the motherboard.

![DIP](image1)

Figure 1-18 DIP

- A single inline memory module (SIMM) (see Figure 1-19) is a small circuit board that holds several memory chips. SIMMs have 30-pin or 72-pin configurations.

![SIMM](image2)

Figure 1-19 SIMM

- A dual inline memory module (DIMM) (see Figure 1-20) is a circuit board that holds SDRAM, DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM, and DDR4 SDRAM chips. There are 168-pin SDRAM DIMMs, 184-pin DDR DIMMs, 240-pin DDR2 and DDR3 DIMMs, and 288-pin DDR4 DIMMs.
A small outline DIMM (SODIMM) (see Figure 1-21) has 72-pin and 100-pin configurations for support of 32-bit transfers and 144-pin, 200-pin, 204-pin, and 260-pin configurations for support of 64-bit transfers. This smaller, more condensed version of DIMM provides random-access data storage that is ideal for use in laptops, printers, and other devices where conserving space is desirable.

Memory modules can be single-sided or double-sided. Single-sided memory modules contain RAM on only one side of the module. Double-sided memory modules contain RAM on both sides.

The speed of memory has a direct impact on how much data a processor can process in a given period of time. As processor speed increases, memory speed must also increase. Memory throughput has also been increased through multichannel technology. Standard RAM is single channel, meaning all the RAM slots are addressed at the same time. Dual channel RAM adds a second channel to make it possible to access a second module at the same time.
Triple channel technology provides yet another channel, so three modules can be accessed at the same time. Quadruple channel adds another channel to the memory controller for even higher bandwidth. To use triple and quadruple channel memory controllers for the most bandwidth, the chipset architecture must support it and will only be able to use the channels that have memory slots populated. In many cases, memory slots can only be populated in a certain order in order to ensure that all memory channels are used.

The fastest memory is typically static RAM (SRAM), which is cache memory for storing the most recently used data and CPU instructions. SRAM provides the processor with faster access to the data than retrieving it from the slower dynamic RAM (DRAM) or main memory.

Cache memory comes in three types:
- **L1 cache** is internal cache and is integrated into the CPU. A CPU can have various models, each with a different amount of L1 cache.
- **L2 cache** is external cache and was originally mounted on the motherboard near the CPU. L2 cache is now integrated into the CPU.
- **L3 cache** is used on some high-end workstations and server CPUs.

Memory errors occur when data is not stored correctly in the chips. The computer uses different methods to detect and correct data errors in memory. There are three types of memory error checking and correction:
- **Nonparity memory** does not check for errors in memory. Nonparity RAM is the most common RAM used for home and business workstations.
- **Parity memory** contains 8 bits for data and 1 bit for error checking. The error-checking bit is called a **parity bit**.
- **Error-correcting code (ECC) memory** can detect multiple bit errors in memory and correct single bit errors in memory. Servers used for financial or data analytics may require ECC memory modules.

Check Your Understanding 1.2.4.5: Memory
Refer to the online course to complete this activity.

Adapter Cards and Expansion Slots (1.2.5)

Adapter cards are the peripheral hardware used in computers to improve the performance and compatibility of systems. On the motherboard, there are different kinds of **expansion slots** that provide connections to the system bus for the various types
of adapter cards, allowing expansion of system performance. There are different kinds of adapter cards and expansion slots available.

Adapter Cards (1.2.5.1)

Adapter cards increase the functionality of a computer by adding controllers for specific devices or by replacing malfunctioning ports.

A variety of adapter cards are available to expand and customize the capability of a computer:

- **Sound adapter**: Sound adapters provide audio capability.
- **Network interface card (NIC)**: A NIC connects a computer to a network using a network cable.
- **Wireless NIC**: A wireless NIC connects a computer to a network using radio frequencies.
- **Video adapter**: Video adapters provide video capability.
- **Capture card**: Capture cards send video signals to a computer so the signals can be recorded to a storage drive with video capture software.
- **TV tuner card**: These cards provide the ability to watch and record television signals on a PC by connecting cable television, satellite, or antenna to the installed tuner card.
- **Universal Serial Bus (USB) controller card**: These cards provide additional USB ports to connect a computer to peripheral devices.
- **eSATA card**: These cards add additional internal and external SATA ports to a computer through a single PCI Express slot.

Figure 1-22 shows some of these adapter cards. It should be noted that some of these adapter cards can be integrated onto the motherboard.

Note

An older computer may also have a modem adapter, an Accelerated Graphics Port (AGP), a Small Computer System Interface (SCSI) adapter, and more.

Computers have expansion slots on the motherboard for installing adapter cards. The type of adapter card connector must match the expansion slot. Table 1-4 describes expansion slots.
Chapter 1: Introduction to Personal Computer Hardware

Figure 1-22 Adapter Cards

Table 1-4 Expansion Slots

<table>
<thead>
<tr>
<th>Type</th>
<th>Example Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral Component Interconnect (PCI)</td>
<td></td>
<td>This is a 32-bit or 64-bit expansion slot. It is currently found in few computers. PCI expansion slots have become mostly obsolete.</td>
</tr>
<tr>
<td>Mini PCI</td>
<td></td>
<td>This is a smaller version of PCI found in some laptops. Mini PCI has three different form factors: Type I, Type II, and Type III.</td>
</tr>
</tbody>
</table>
Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Example Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI-Extended (PCI-X)</td>
<td></td>
<td>This is an updated version of the standard PCI. It uses a 32-bit bus with higher bandwidth than the PCI bus. PCI-X can operate up to four times faster than PCI. PCI-X expansion slots have become mostly obsolete.</td>
</tr>
<tr>
<td>PCI Express (PCIe)</td>
<td></td>
<td>PCI Express is a 64-bit parallel interface that is backward compatible with 32-bit PCI devices. PCIe is a serial point-to-point connection with a different physical interface that was designed to supersede both PCI and PCI-X. There are four sizes (lengths): PCI Express x1, PCI Express x4 (with 4 data lanes), PCI Express x8 (with 8 data lanes), and PCI Express x16 (with 16 data lanes).</td>
</tr>
<tr>
<td>Riser card</td>
<td></td>
<td>A riser card can be added to a computer to provide additional expansion slots for more expansion cards.</td>
</tr>
<tr>
<td>Accelerated Graphics Port (AGP)</td>
<td></td>
<td>This was a high-speed slot for attaching an AGP video card. The AGP has been superseded by PCI. Few motherboards today use this technology.</td>
</tr>
</tbody>
</table>

Table 1-5 shows the speeds, in gigabytes per second (GB/s), for different versions of PCIe x1 and x16 slots.
Table 1-5 PCIe Versions

<table>
<thead>
<tr>
<th>Version</th>
<th>GB/s for x1</th>
<th>GB/s for x16</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0.985</td>
<td>15.754</td>
</tr>
<tr>
<td>4</td>
<td>1.969</td>
<td>31.508</td>
</tr>
<tr>
<td>5</td>
<td>3.938</td>
<td>63.015</td>
</tr>
</tbody>
</table>

Every version of PCIe is backward compatible with all other versions. For example, if you have a motherboard that supports version 4, you can still use version 3 PCIe components. The speed of the bus is determined by the lowest version component installed.

PCIe can supply up to 25 watts of power to each slot. For a graphics card, it can supply up to 75 watts. For very powerful graphics cards, an additional 75 watts can be supplied by a PCIe power connector from the power supply.

Check Your Understanding 1.2.5.2: Adapter Cards and Expansion Slots
Refer to the online course to complete this activity.

Hard Disk Drives and SSDs (1.2.6)
Storage drives read information from or write information to magnetic, optical, or semiconductor storage media. The drives can be used to store data permanently or to retrieve information from a media disk.

Types of Storage Devices (1.2.6.1)
A number of different types of devices are available for data storage on a PC, as shown in Figure 1-23. Data drives provide nonvolatile storage of data, meaning when the drive loses power, the data is retained and available the next time the drive is powered on. Some drives have fixed media, and other drives have removable media. Some offer the ability to read and write data, while others only allow data to be accessed but not written. Data storage devices can be classified according to the media on which the data is stored: magnetic (such as hard disk drives and tape drives), solid state, or optical.
Storage Device Interfaces (1.2.6.2)

Internal storage devices often connect to the motherboard using *Serial AT Attachment (SATA)* connections. The SATA standards define the way data is transferred, the transfer rates, and physical characteristics of the cables and connectors.

There are three main versions of the SATA standard: SATA 1, SATA 2, and SATA 3, as shown in Table 1-6. The cables and connectors for these versions are the same, but the data transfer speeds are different. SATA 1 allows for a maximum data transfer rate of 1.5 Gb/s, while SATA 2 can reach up to 3 Gb/s. SATA 3 is the fastest, with speeds up to 6 Gb/s.

Table 1-6 Storage Device Interfaces

<table>
<thead>
<tr>
<th>ATA</th>
<th>IDE</th>
<th>8.3 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel (PATA)</td>
<td>EIDE</td>
<td>16.6 Mbps</td>
</tr>
<tr>
<td></td>
<td>SATA 1</td>
<td>1.5 Gbps</td>
</tr>
<tr>
<td></td>
<td>SATA 2</td>
<td>3.0 Gbps</td>
</tr>
<tr>
<td></td>
<td>SATA 3</td>
<td>6.0 Gbps</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction to Personal Computer Hardware

Note
Legacy internal drive connection methods include the Parallel ATA standards known as Integrated Drive Electronics (IDE) and Enhanced Integrated Drive Electronics (EIDE).

Small Computer System Interface (SCSI) is another interface between motherboards and data storage devices. It is an older standard that originally used parallel, rather than serial, data transfers. A new version of SCSI, known as Serial Attached SCSI (SAS), has been developed. SAS is a popular interface used for server storage.

Magnetic Media Storage (1.2.6.3)
One type of storage represents binary values as magnetized or non-magnetized physical areas of magnetic media. Mechanical systems are used to position and read the media. The following are common types of magnetic media storage drives:

- **Hard disk drive (HDD):** HDDs are the traditional magnetic disk devices that have been used for years. Their storage capacity ranges from gigabytes (GB) to terabytes (TB). Their speed is measured in revolutions per minute (RPM). This indicates how fast the spindle turns the platters that hold the data. The faster the spindle speed, the more quickly a hard drive can find data on the platters. This can correspond to faster transfer speeds. Common hard drive spindle speeds include 5400, 7200, 10,000, and 15,000 RPM. HDDs come in 1.8-, 2.5-, and 3.5-inch form factors. The 3.5-inch form factor is standard for personal computers. 2.5-inch HDDs are typically used in mobile devices. 1.8-inch HDDs were used in portable media players and other mobile applications but are seldom used in new devices.

- **Tape drive:** Magnetic tapes are most often used for archiving data. At one time, they were useful for backing up PCs. However, the price of HDDs has dropped, and external HDDs are now frequently used for this purpose. However, tape backups are still used in enterprise networks. A tape drive uses a magnetic read/write head and removable tape cartridge. Although data retrieval using a tape drive can be fast, locating specific data is slow because the tape must be wound on a reel until the data is found. Common tape storage capacities vary between a few gigabytes and many terabytes.

Note
Older computers may still incorporate legacy storage devices, including floppy disk drives.
Semiconductor Storage (1.2.6.4)

Solid-state drives (SSD) store data as electrical charges in semiconductor flash memory. This makes SSDs much faster than magnetic HDDs. SSD storage capacity ranges from around 120 GB to many terabytes. SSDs have no moving parts, make no noise, are more energy efficient, and produce less heat than HDDs. Because SSDs have no moving parts to fail, they are considered to be more reliable than HDDs.

SSDs come in three form factors:

- **Disk drive form factor**: With this form factor, the semiconductor memory is in a closed package that can be mounted in computer cases like an HDD. It can be 2.5, 3.5, or 1.8 inches (although 1.8-inch form factors are rare).

- **Expansion card**: This plugs directly into the motherboard and mounts in the computer case like other expansion cards.

- **mSATA or M.2 module**: These packages may use a special socket. M.2 is a standard for computer expansion cards. It is a family of standards that specify physical aspects of expansion cards such as connectors and dimension.

Figure 1-24 shows these form factors.
Figure 1-25 shows the 2.5-inch and M.2 form factors in comparison to a 3.5-inch magnetic HDD.

The **Non-Volatile Memory Express (NVMe)** specification was developed specifically to allow computers to take greater advantage of the features of SSDs by providing a standard interface between SSDs, the PCIe bus, and operating systems. NVMe allows compliant SSDs to attach to the PCIe bus without requiring special drivers, in much the same way USB flash drives can be used in multiple computers without requiring installation on each.

Finally, a **solid-state hybrid drive (SSHD)** is a compromise between a magnetic HDD and an SSD. An SSHD is faster than an HDD but less expensive than an SSD. It combines a magnetic HDD with onboard flash memory that serves as a nonvolatile cache. An SSHD drive automatically caches data that is frequently accessed, which can speed up certain operations, such as operating system startup.

Check Your Understanding 1.2.6.5: Data Storage Devices

Refer to the online course to complete this activity.

Optical Storage Devices (1.2.7)

An **optical storage device** is a peripheral computer component that can read CD-ROMs or other optical discs using a laser to store and retrieve saved data.
Types of Optical Storage Devices (1.2.7.1)

Using lasers to read and write data on optical media, optical drives provide another storage option in a computer system. They were developed to overcome the storage capacity limitations of removable magnetic media such as floppy disks and magnetic storage cartridges. Figure 1-26 shows an internal optical drive.

![Internal Optical Drive](image)

Figure 1-26 Internal Optical Drive

There are three types of optical drives:

- **Compact disc (CD):** Stores audio and data
- **Digital versatile disc (DVD):** Stores digital video and data
- **Blu-ray disc (BD):** Stores HD digital video and data

CD, DVD, and BD media can be prerecorded (read-only), recordable (write-once), or rerecordable (read and write multiple times). DVD and BD media can also be single layer (SL) or dual layer (DL). Dual layer media roughly doubles the capacity of a single disc.

Table 1-7 describes the various types of optical media and their approximate storage capacities.
Chapter 1: Introduction to Personal Computer Hardware 37

Table 1-7 Types of Optical Media

<table>
<thead>
<tr>
<th>Optical Media</th>
<th>Description</th>
<th>Storage Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-ROM</td>
<td>CD read-only memory media that is</td>
<td>700 MB</td>
</tr>
<tr>
<td></td>
<td>prererecorded</td>
<td></td>
</tr>
<tr>
<td>CD-R</td>
<td>CD recordable media that can be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>recorded one time</td>
<td></td>
</tr>
<tr>
<td>CD-RW</td>
<td>CD rewritable media that can be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>recorded, erased, and rerecorded</td>
<td></td>
</tr>
<tr>
<td>DVD-ROM</td>
<td>DVD read-only memory media that is</td>
<td>4.7 GB (single layer) and</td>
</tr>
<tr>
<td></td>
<td>prererecorded</td>
<td>8.5 GB (dual layer)</td>
</tr>
<tr>
<td>DVD-RAM</td>
<td>DVD rewritable media that can be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>recorded, erased, and rerecorded</td>
<td></td>
</tr>
<tr>
<td>DVD+-/-R</td>
<td>DVD recordable media that can be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>recorded one time</td>
<td></td>
</tr>
<tr>
<td>DVD+-/-RW</td>
<td>DVD rewritable media that can be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>recorded, erased, and rerecorded</td>
<td></td>
</tr>
<tr>
<td>BD-ROM</td>
<td>Blu-ray read-only media that is</td>
<td>25 GB (single layer) and</td>
</tr>
<tr>
<td></td>
<td>prererecorded with movies, games, or</td>
<td>50 GB (dual layer)</td>
</tr>
<tr>
<td></td>
<td>software</td>
<td></td>
</tr>
<tr>
<td>BD-R</td>
<td>Blu-ray recordable media that can be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>recorded one time</td>
<td></td>
</tr>
<tr>
<td>BD-RE</td>
<td>Blu-ray rewritable media that can be</td>
<td></td>
</tr>
<tr>
<td></td>
<td>recorded, erased, and rerecorded</td>
<td></td>
</tr>
</tbody>
</table>

Check Your Understanding 1.2.7.2: Types of Optical Media
Refer to the online course to complete this activity.

Ports, Cables, and Adapters (1.2.8)
This section describes and identifies common cables and ports used for connecting peripherals internally and externally on computers.

Video Ports and Cables (1.2.8.1)
A video port connects a monitor cable to a computer. Video ports and monitor cables transfer analog signals, digital signals, or both. Computers are digital devices that create digital signals. The digital signals are sent to the graphics card, where they are transmitted through a cable to a display.
Digital Visual Interface (DVI)

A **Digital Visual Interface (DVI)** connector, shown in Figure 1-27, is usually white and consists of as many as 24 pins (three rows of 8 pins) for digital signals, up to 4 pins for analog signals, and a flat pin called a ground bar.

![DVI Connector](image)

Figure 1-27 DVI

Five types of DVI are available for digital and analog output and also for single link and dual link, which offers extra bandwidth. DVI-D supports only digital devices and outputs. DVI-A supports only analog outputs. DVI-I supports digital outputs and analog devices.

There are currently two main types of DVI connectors: DVI-I and DVI-D. DVI-D provides a digital-only signal, whereas DVI-I can support digital and analog signals. DVI is disappearing as quickly as it appeared. It's still seen in some monitors alongside VGA, which is finally starting to fade in favor of HDMI.

DisplayPort

DisplayPort (see Figure 1-28) is an interface technology designed to connect high-end graphics-capable PCs and displays, as well as home theater equipment and displays.
High-Definition Multimedia Interface (HDMI)

High-Definition Multimedia Interface (HDMI) (see Figure 1-29) was developed specifically for high-definition televisions. However, its digital features also make it a good candidate for computers.
Thunderbolt 1 or 2

Thunderbolt (see Figure 1-30) allows for high-speed connection of peripherals such as hard drives, RAID arrays, and network interfaces, and it can transmit high-definition video using the DisplayPort protocol.

![Thunderbolt 1 or 2](image1)

Figure 1-30 Thunderbolt 1 or 2

Thunderbolt 3

Thunderbolt 3 (see Figure 1-31) uses the same connector as USB-C. It has twice the bandwidth of Thunderbolt 2, uses less power, and can provide two 4K monitors with video.

![Thunderbolt 3](image2)

Figure 1-31 Thunderbolt 3
Video Graphics Array (VGA)

Video Graphics Array (VGA), shown in Figure 1-32, is a connector for analog video. It has three rows and 15 pins. It is also sometimes referred to as a DE-15 or HD-15 connector.

![VGA Connector](image)

Figure 1-32 VGA

Radio Corporation of America (RCA)

As shown in Figure 1-33, a *Radio Corporation of America (RCA)* connector has a central plug with a ring around it. RCA connectors, which are used to carry audio or video, are often found in groups of three, where a yellow connector carries video and a pair of red and white connectors carries left and right audio channels.

![RCA Connector](image)

Figure 1-33 RCA
Other Ports and Cables (1.2.8.2)

Input/output (I/O) ports on a computer connect peripheral devices such as printers, scanners, and portable drives. In addition to the ports and interfaces previously discussed, a computer might also have other ports.

Personal System 2 (PS/2)

A *PS/2 port* (see Figure 1-34) connects a keyboard or a mouse to a computer. A PS/2 port is a 6-pin mini-DIN female connector. The connectors for the keyboard and mouse are often colored differently. If the ports are not color-coded, look for a small figure of a mouse or keyboard next to each port.

![Figure 1-34 PS/2](image)

Audio and Game Port

Figure 1-35 shows audio and game ports. *Audio ports* connect audio devices to the computer. Analog ports typically include a line-in port to connect to an external source (for example, a stereo system), a microphone port, and line-out ports to connect speakers or headphones. The *game port* connects to a joystick or MIDI-interfaced device.
Network

A network port (see Figure 1-36), also known as an RJ-45 or 8P8C port, has 8 pins and connects devices to a network. The connection speed depends on the type of network port. The maximum length of the Ethernet network cable is 100 m (328 ft.).

Serial AT Attachment (SATA)

The Serial AT Attachment (SATA) cable connects SATA devices to the SATA interface using a 7-pin data cable, as shown in Figure 1-37. SATA connectors have an L-shaped slot so the cable fits in only one orientation. This cable does not supply any power to the SATA device. A separate power cable provides power to the drive.
Integrated Drive Electronics (IDE)

An *Integrated Drive Electronics (IDE)* cable is a ribbon cable used to connect storage drives inside a computer. The two most common types of IDE ribbon cables are the 34-pin cable used for floppy drives and the 40-pin cable for hard drives and optical drives.

IDE cables are keyed so the cable inserts into the connector only one way, as shown in Figure 1-38.
The Universal Serial Bus (USB)

Universal Serial Bus (USB) is a standard interface that connects peripheral devices to a computer, as shown in Figure 1-39. USB devices are hot swappable, which means users can connect and disconnect the devices while the computer is powered on.

![USB Cables](image)

Figure 1-39 USB

Adapters and Converters (1.2.8.3)

There are many connection standards in use today. A number of them are interoperable but require specialized components, called adapters and converters:

- **Adapter**: This is a component that physically connects one technology to another (for example, a DVI-to-HDMI adapter). An adapter could be one component or a cable with different ends.

- **Converter**: This performs the same function as an adapter but also translates the signals from one technology to the other. For example, a USB 3.0-to-SATA converter enables a hard disk drive to be used as a flash drive.

Figure 1-40 shows some common adapters and converters.
Input Devices (1.2.9)

Input devices are hardware devices (usually outside the computer case) that allow input of raw data for a computer to process, allowing users to interact with and control the computer.

The Original Input Devices (1.2.9.1)

Input devices allow the user to communicate with a computer. Some of the first input devices are as follows:

- **Keyboard and mouse:** These are the two most commonly used input devices. Keyboards are typically used for creating text documents and emails. The mouse is used to navigate the graphical user interface (GUI). Laptops also have touchpads to provide built-in keyboard and mouse features. The keyboard was the very first type of input device.

- **ADF/flatbed scanner:** Figure 1-41 shows an example of a flatbed scanner. A scanner is a device that digitizes images and documents. A photograph or document is placed on the flat glass surface, and the scan head then moves under the glass. The digitized image is stored as a file that can be displayed, printed,
emailed, or altered. Some of these scanners have automatic document feeders (ADFs) to support multiple-page input.

![Flatbed Scanner](image1)

Figure 1-41 Flatbed Scanner

- **Joystick and gamepad**: Figure 1-42 shows a joystick and gamepad. These are input devices for playing games. Gamepads allow the player to control movement and views with small sticks and multiple buttons. Many gamepads also have triggers that register the amount of pressure the player puts on them. Joysticks are often used to play flight simulation-style games.

![Joystick and Gamepad](image2)

Figure 1-42 Joystick and Gamepad

- **KVM switch**: A keyboard, video, and mouse (KVM) switch, shown in Figure 1-43, is a hardware device that can be used to control more than one computer while using a single keyboard, monitor, and mouse. For businesses, KVM switches provide cost-efficient access to multiple servers. Home users can save
space using a KVM switch to connect multiple computers to one keyboard, monitor, and mouse. Some KVM switches have the capability to share USB devices and speakers with multiple computers.

![KVM Switch](image)

Figure 1-43 KVM Switch

New Input Devices (1.2.9.2)

Some relatively new input devices include the touchscreen, stylus, magnetic stripe reader, and barcode scanner:

- **Touchscreen**: Touchscreens (see Figure 1-44) are input devices that have touch-or pressure-sensitive screens. The computer receives instructions specific to the place on the screen the user touches.

![Touchscreen](image)

Figure 1-44 Touchscreen
- **Stylus**: A *stylus* (see Figure 1-45) is a type of digitizer that allows a designer or an artist to create blueprints, images, or other artwork by using a pen-like tool called a stylus on a surface that senses where the tip is touching it. Some digitizers have more than one surface, or sensor, and allow the user to create 3D models by performing actions with the stylus in mid-air.

![Figure 1-45 Digitizer/Stylus](image)

- **Magnetic stripe reader**: A *magnetic stripe reader* (see Figure 1-46), also called a magstripe reader, is a device that reads information that is magnetically encoded on the back of plastic cards, such as identification badges or credit cards. Also shown on the device in Figure 1-46 is a chip reader. For cards with chips, the card is inserted into the device, and the device reads the chip. Chip reading provides much more security of the user’s data because each transaction generates a unique code that cannot be used again.

![Figure 1-46 Magnetic Stripe Reader](image)
■ **Barcode scanner**: A *barcode scanner* (see Figure 1-47), also called a price scanner, reads the information contained in the barcodes affixed to many products. Barcode scanners can be handheld, wireless, or stationary. The light source on the reader captures the barcode image and translates the image into computer-readable content. This device is typically used at checkout counters in stores or for determining inventory levels. The barcode often is only a number that is used to look up information. Libraries, for instance, affix a barcode to a book so that when it is checked out, the number gets recorded to a library cardholder’s record. Manufacturing facilities use barcodes to track inventory and equipment.

![Barcode Scanner](image)

Figure 1-47 Barcode Scanner

More New Input Devices (1.2.9.3)

Some additional newer input devices are as follows:

■ **Digital camera**: *Digital cameras* (see Figure 1-48) are input devices that capture images and videos that can be stored, displayed, printed, or altered.

![Digital Camera](image)

Figure 1-48 Digital Camera
- **Webcam**: A *webcam* is a video camera that can be integrated into a computer or that can be external, as shown in Figure 1-49. Webcams are typically used for video conferencing or to stream live video onto the Internet.

![Webcam](image)

Figure 1-49 Webcam

- **Signature pad**: A *signature pad*, shown in Figure 1-50, is a device that electronically captures a person’s signature. A person uses a stylus to sign on the screen. Electronic signatures, which are legal signatures, are typically used to establish receipt of deliveries and to sign agreements or contracts.

![Signature Pad](image)

Figure 1-50 Signature Pad

- **Smart card reader**: *Smart card readers* are input devices typically used on a computer to authenticate the user, as shown in Figure 1-51. A smart card might be the size of a credit card with an embedded integrated circuit that is typically under a gold contact pad on one side of the card.
Microphone: This device is a type of digitizer that allows users to speak into a computer and have their voices digitized. Voice, music, or sounds can be stored on the computer to be played back, uploaded, or emailed. This device can also be used as input for games and communication software. Figure 1-52 shows an example of a microphone headset.

Most Recent Input Devices (1.2.9.4)
The newest input devices include NFC devices and terminals, facial recognition scanners, fingerprint scanners, voice recognition scanners, and virtual reality headsets, which are further described in the list that follows:

- **NFC devices and terminals**: Near field communication (NFC) tap-to-pay devices (see Figure 1-53), such as credit cards or smartphones, are able to read and write to NFC chips. An NFC-powered terminal can subtract money from the balance on a debit card or charge money to a credit card. Two NFC-capable devices can also transfer data such as photographs, links, or contacts between them.
Facial recognition scanners: Facial recognition scanners, shown in Figure 1-54, are biometric input devices used to identify a person based on their unique facial features. Many laptops and smartphones have facial recognition scanners to automate logging in to the device. Facial recognition is becoming popular in many smartphones and even some computers and tablets. Microsoft promotes “Windows Hello” as using facial recognition or fingerprint readers as biometric input. These devices are typically used to provide secure access to devices or locations.

Fingerprint scanners: A fingerprint scanner, shown in Figure 1-55, is a biometric input device used to identify a person based on their fingerprint. Many laptops and smart devices have fingerprint readers to automate logging in to the device. These devices are typically used to provide secure access to devices or locations.
Voice recognition scanners: A voice recognition scanner, shown in Figure 1-56, is a biometric input device used to identify a person based on their unique voice. These devices are often used to provide secure access to locations. Voice recognition is also being used for input into personal assistant applications such as Apple’s Siri and Amazon’s Alexa.

Virtual reality headset: Virtual reality headsets, shown in Figure 1-57, are devices typically used with computer games, simulators, and training applications. They are head-mounted devices that provide a separate image for each eye. Most headsets include head-motion and eye-motion tracking sensors. These devices are also output devices that deliver video and audio to the wearer.

Check Your Understanding 1.2.9.5: Input Devices
Refer to the online course to complete this activity.

Output Devices (1.2.10)

Output devices are hardware devices that take the data processed from input and pass on the information for use. Output devices are needed for a user to get processed data in a usable format.
What Are Output Devices? (1.2.10.1)

An output device takes binary information (ones and zeros) from a computer and converts it into a form easily understood by the user. Figure 1-58 shows a variety of output devices.

Monitors and Projectors (1.2.10.2)

Most monitors use one of three types of technology: LCD, LED, or OLED. **Liquid crystal display (LCD)** has two polarizing filters with a liquid crystal solution between them. An electronic current aligns the crystals so light can pass through or not pass through, creating the image. **Light-emitting diode (LED)** is an LCD display that uses LED backlighting. LED has lower power consumption than standard LCD backlighting. The panel is thinner, lighter, and brighter and has better contrast than LCD. **Organic LED (OLED)** is a type of LED display that uses a layer of organic material that responds to electrical stimulus to emit light. Each **pixel** lights individually, resulting in much deeper black levels than are available with LED.
Most video projectors use LCD or DLP technology. Digital light processing (DLP) uses a spinning color wheel with an array of mirrors. Each mirror corresponds to a pixel and reflects light toward or away from the projector optics, creating an image of up to 1024 shades of gray. The color wheel then adds the color data to complete the projected image. Different projectors have different numbers of lumens, which affects the level of brightness of the projected image. LCD projectors typically have more lumens (are brighter) than DLP projectors. ANSI has a standardized procedure for testing projectors. Projectors tested with this procedure are quoted in “ANSI lumens.” Projectors can be compared easily on the basis of their brightness specifications. Brightness (white light output) indicates the total amount of light projected, in lumens. The color brightness specification measures red, green, and blue using the same approach used to measure brightness.

VR and AR Headsets (1.2.10.3)

Virtual reality headsets can have specific hardware and software platforms. They may be tethered to a controller, standalone, or mobile. They may have a variety of sensors, including motion, external visual positioning, camera, motion tracking, accelerometer, gyroscope, and magnetometer sensors. Resolution and refresh rates vary.

Augmented reality headsets and smart glasses come with a wide array of features. Most have a camera, motion sensors, GPS, a CPU, battery power, and a controller. Many also have storage, Bluetooth, speakers, and voice control. The Microsoft HoloLens is a headset with an integrated holographic processing unit.

Virtual reality (VR) uses computer technology to create a simulated three-dimensional environment. The user feels immersed in this virtual world and can manipulate it. A VR headset completely encases the upper portion of the user’s face, not allowing in any ambient light from the physical surroundings. Most VR experiences have three-dimensional images that seem life sized to the user. VR experiences also track a user’s motions and adjust the images on the user’s display accordingly.

Augmented reality (AR) uses similar technology to VR but superimposes images and audio over the real world in real time. AR can provide users with immediate access to information about their real surroundings. An AR headset, shown in Figure 1-59, usually does not close off ambient light to users, allowing them to see their real-life surroundings. Not all AR requires a headset. Some AR can simply be downloaded onto a smartphone. Pokémon Go is an early version of an AR game using a player’s smartphone to “see and capture” virtual objects in the real world. Smart glasses are also AR devices. They weigh much less than AR headsets and are often designed for a specific audience, such as cyclists.
Printers (1.2.10.4)

Printers are output devices that create hard copies of files. A hard copy might be on a sheet of paper. It could also be a plastic form created by a 3D printer.

Figure 1-60 shows a variety of printer types. Today’s printers can be wired, wireless, or both. They use different technologies to create the images you see. All printers require printing material (such as ink, toner, liquid plastic, and so on) and a method to place it accurately on the paper or extrude it into the desired shape. All printers have hardware that must be maintained. Most printers also have software, in the form of drivers, that must be kept up to date.
Speakers and Headphones (1.2.10.5)
Speakers are a type of auditory output device. Most computers and mobile devices have audio support either integrated into the motherboard or on an adapter card. Audio support includes ports that allow input and output of audio signals. The audio card has an amplifier to power headphones and external speakers.

Headphones, earbuds, and the earphones found in headsets are all auditory output devices. These can be wired or wireless. Some are Wi-Fi or Bluetooth enabled.

Check Your Understanding 1.2.10.6: Visual and Auditory Output Device Characteristics
Refer to the online course to complete this activity.

Computer Disassembly (1.3)
In this section, you will explore in detail the steps used to disassemble a computer as well as the tools to complete the task properly, including ESD-specific tools to keep you and your computer safe.

The Technician's Toolkit (1.3.1)
An organized and well-stocked toolkit will help a technician complete work in a safe and efficient way. Having the right tools makes a job safer and can prevent damage from being done in the repair process. A toolkit is an important part of doing a job properly. As you become more experienced or as your role changes, you will find that your toolkit will continue to grow and change to meet your needs.

Video Explanation 1.3.1.1: Technician's Toolkit

Check Your Understanding 1.3.1.2: Technician's Toolkit
Refer to the online course to complete this activity.

Computer Disassembly (1.3.2)
Disassembling a computer system is a pretty straightforward task. Gathering documentation (if available), planning the process, having the right tools, and taking care to follow safety precautions such as powering down the computer and unplugging the PSU as well as using antistatic equipment will aid in making it a successful undertaking.
Lab 1.3.2.1: Safety
In this lab, you will use common safety procedures while building and/or servicing computer hardware.

Video Demonstration 1.3.2.2: Computer Disassembly

Lab 1.3.2.3: Disassemble a Computer
In this lab, you will disassemble a computer.
Summary (1.4)

At the beginning of this chapter, you were introduced to the contents of a computer and safety guidelines that can prevent electrical fires and injuries while working inside a computer. You also learned about ESD and how it can damage computer equipment if not discharged properly.

Next, you learned about all the components that make up a PC, starting with the case, which houses all the internal components. You learned about the various form factors of cases and power supplies and how they have evolved over time. Next, you learned about the various types of connectors used to power various internal components, such as the motherboard and storage drives. Serial AT Attachment (SATA), Molex, and PCIe were discussed, as were the voltages provided by the connectors.

You also learned about the motherboard, the backbone of the computer, which contains buses, or electrical pathways used to connect electronic components. These components include the CPU, RAM, expansion slots, chipset, and BIOS and UEFI chips.

Different types of storage devices, such as hard disk drives, optical drives, and solid-state drives, were also discussed, along with the different versions of PATA and SATA interfaces that connect them to the motherboard.

The commonly used tools were explained, and the computer disassembly process was demonstrated. At the end of the chapter, you disassembled a computer as part of a hands-on lab.

Practice

The following activities provide practice with the topics introduced in this chapter. The labs are available in the companion IT Essentials v8 Labs & Study Guide (ISBN 9780138166304).

Labs

Lab 1.3.2.1: Safety

Lab 1.3.2.3: Disassemble a Computer
Check Your Understanding Questions

Complete all the review questions listed here to test your understanding of the topics and concepts in this chapter. Appendix A, “Answers to ‘Check Your Understanding’ Questions,” lists the answers.

1. Which two PC components communicate with the CPU through the Southbridge chipset? (Choose two.)
 A. hard drive
 B. 64-bit Gigabit Ethernet adapter
 C. video card
 D. RAM

2. A technician wants to replace a failing power supply on a high-end gaming computer. Which form factor should the technician be looking for?
 A. ATX 12V
 B. ATX
 C. EPS 12V
 D. AT

3. Which statement describes augmented reality (AR) technology?
 A. It always requires a headset.
 B. It does not provide users with immediate access to information about their real surroundings.
 C. It superimposes images and audio over the real world in real time.
 D. The headset closes off any ambient light to users.

4. Which type of input device can identify users based on their voice?
 A. scanner
 B. KVM switch
 C. digitizer
 D. biometric identification device

5. Which motherboard form factor has the smallest footprint for use in thin client devices?
 A. Micro-ATX
 B. ATX
 C. ITX
 D. Mini-ATX
6. How is the 6/8-pin PCIe power connector used in a PC?
 A. to connect disk drives
 B. to connect optical drives
 C. to connect legacy floppy drives
 D. to supply power to various internal components

7. Which expansion slot is used by an NVMe-compliant device?
 A. PCI
 B. PCIe
 C. SATA
 D. USB-C

8. How does a technician protect the internal components of a computer against ESD?
 A. by unplugging the computer after use
 B. by using multiple fans to move warm air through the case
 C. by grounding the internal components via attachment to the case
 D. by using computer cases made out of plastic or aluminum

9. A network administrator currently has three servers and needs to add a fourth but does not have enough room for an additional monitor and keyboard. Which device allows the administrator to connect all the servers to a single monitor and keyboard?
 A. touchscreen monitor
 B. UPS
 C. USB switch
 D. PS/2 hub
 E. KVM switch

10. What type of connector is used to convert digital signals to analog signals?
 A. Molex-to-SATA adapter
 B. USB-to-PS/2 adapter
 C. HDMI-to-VGA converter
 D. DVI-to-HDMI adapter
11. Which action can reduce the risk of ESD damage when computer equipment is being worked on?
 A. moving cordless phones away from the work area
 B. keeping the computer plugged into a surge protector
 C. lowering the humidity level in the work area
 D. working on a grounded antistatic mat

12. Which port allows for the transmission of high-definition video using the DisplayPort protocol?
 A. DVI
 B. VGA
 C. Thunderbolt
 D. RCA

13. Which two PC components communicate with the CPU through the Northbridge chipset? (Choose two.)
 A. hard drive
 B. 64-bit Gigabit Ethernet adapter
 C. video card
 D. RAM

14. Which three devices are considered output devices? (Choose three.)
 A. headphones
 B. printer
 C. mouse
 D. fingerprint scanner
 E. keyboard
 F. monitor

15. Which disk drive type contains a magnetic HDD with onboard flash memory and serves as a nonvolatile cache?
 A. SSHD
 B. NVMe
 C. SCSI
 D. SSD
16. Which two of these devices are considered to be the most common input devices? (Choose two.)

A. headphones
B. printer
C. mouse
D. fingerprint scanner
E. keyboard
F. monitor
This page intentionally left blank
Symbols & Numerics

/? command, 652–653
> symbol command, 663
1G/2G, 1007
2.5G, 1007
3D printer, 446, 1007
 axis, 449
 characteristics, 446–447
 feeder, 448
 filament, 447–448
 hotend nozzle, 448–449
 preventive maintenance, 468
 print bed, 449–450
3.5G, 1007
4G, 1007
5G, 222, 1007
32-bit processor, 512
64-bit processor, 74, 512, 1007
802.11 standards, 217–218, 1007

A

AAA (authentication, authorization, and accounting), 231, 1010
AC (alternating current), 10, 1009
acceptable use policy, 944, 1007
acceptance, 1008
access levels, BIOS, 110–111
account lockout policy, 870–871
ACPI (Advanced Configuration and Power Interface), 1008
 managing in the BIOS, 354–355
 power states, 353
Active Directory, 880–881, 1008
active listening, 935–936, 1008
active partition, 521, 1008
ActiveX filtering, 897–898, 1008
adapter cards, 28
 installing, 86–87
 selecting, 81–86
additive manufacturing machines, 444
address bus, 1008
ADF (automatic document feeder), 46–47, 420–421, 1010
administrative shares, 687–688, 1008
Administrative Tools control panel, 615–616
administrator account, 576, 1008
AT (Advanced Technology) power supply, 11, 1008
adware, 830, 1008
AFP (Apple Filing Protocol), 1009
AGP (Accelerated Graphics Port), 28, 30, 1007
AirDrop, 689, 1009
airplane mode, 380–382, 1009
all-in-one computer, 9–10
AMD
 HyperTransport, 117–118
 sockets, 73
analog phone Internet access, 203, 1009
Android, 734, 1009
 apps, 738–739
 auto-rotation setting, 747
 Brightness menu, 749
 email configuration, 390
 Google Now, 761
 home screen, 739–740
 navigation icons, 741
 notification and system icons, 741–742
 Location Services, 751–752
 rooting, 773–774
 VPN, 757–758
 Wi-Fi calling, 754
angry customer, tips for helping, 941
anti-malware, 832–835, 1009
anti-spam, 243
antivirus, 772–773, 833–855, 1009
AP (access point), 237–238, 1008, 1063
APFS (Apple File System), 1009
API (application programming interface), 1009
APIPA (Automatic Private IP Addressing), 1010
application/s, 1010
 business impacts, 649
cloud, 491
deployment tools, 648–649
firewall, 773
installation methods, 642
ISO mountable, 642–643
local installation, 644–645
port numbers, 213, 216–217
security, 647–648
system requirements, 640–641
uninstalling, 646–647
apps, 737, 1010
 Android, 738–739
 antivirus, 772–773
 iOS, 737–738
 sideloading, 738
apt-get command, 804
AR (augmented reality), 56, 342–343, 375, 1010
architecture, CPU (central processing unit), 117, 512
aspect ratio, 144, 1010
assembly, computer, 67
 adapter card
 installing, 86–87
 selecting, 81–86
 CPU (central processing unit), selecting, 73–74
 external storage, selecting, 89–92
 front panel cables, installing, 91–94
general and fire safety, 67–68
HDD (hard disk drive)
 installing, 78–79
 selecting, 75–76
media reader, selecting, 87–89
motherboard
 installing components, 70–71
 selecting, 71
optical storage devices
 installing, 79–80
 selecting, 76–77
preparing the workspace, 68
RAM, selecting, 75
select a power supply, 70–71
select the case and fans, 68–70
system panel connectors, 91–92
asset management, 946–947
 assigned users, 947–948
 procurement life cycle, 947
 warranty and licensing, 947
asymmetric encryption, 884–904, 1010
attack/s
 network, protecting against, 840–842
 reconnaissance, 837–838
 social engineering, 842–845
TCP/IP
 botnet, 838
 DDoS, 838
 DNS poisoning, 838–839
 DoS, 838
 man-in-the-middle, 839
 replay, 839
 spoofing, 839
 SYN flood, 839
 zero-day, 839–840
ATX (AT Extended), 11, 17, 1010
ATX12V, 11
audio port, 42–43, 128
definitions, 1010
 antivirus, 772–773
 port numbers, 213, 216–217
 server, 231–232
authentication, 1010
 methods, 907–908
 multifactor, 889
 server, 231–232
auto-rotation setting
 Android, 747
 iOS, 748
backup and restore, 166–167, 706
 cloud, 952
data and operating system backup, 952–953
 hard drive, 708–709
 Linux, 788
 local backup, 953
 remote backup, 766–767
 restore points, 706–707
 Time Machine, 788–789
baiting, 845, 1011
barcode scanner, 50, 1011
basic disk, 521–522, 1011
battery, laptop, 353, 366–367. See also laptop/s; power and power supply
beep codes, 106, 168, 1011
best-effort delivery protocol, 212
biometric lock, 850, 1011
BIOS (basic input/output system), 14, 105, 107, 1011. See also UEFI (Unified Extensible Firmware Interface)
access levels, 110–111
ACPI management, 354–355
CMOS (complementary metal-oxide semiconductor), 108
configuration, 110
securing, 863–864
security, 110–112
troubleshooting, 168
updating the firmware, 111–113
BitLocker, 548, 612–613, 857–860, 1011
BITS (Background Intelligent Transfer Service), 704, 1011
blacklisting, 316–317, 1012
blackout, 115, 1012
Bluetooth, 218, 383–384, 1012
devices, 384–385
laptop connections, 355–356
pairing, 386–387
Blu-ray disc, 36–37
BNC (Bayonet-Neill-Concelman) connector, 139–140
boot loader program, 104–105
booting/boot sequence, 104–105, 1012. See also BIOS (basic input/output system); UEFI (Unified Extensible Firmware Interface)
BIOS (basic input/output system), 107
POST (power-on self test), 105–107
UEFI (Unified Extensible Firmware Interface), 108–109
Windows, 533–534
botnet, 838, 1012
branch cache, 977, 1012
bridge, 236, 1013
brightness, 143
Brightness menu
Android, 749
iOS, 750
broad network access, 1013
broadband, 203, 1013
brownout, 115, 1013
browser
ActiveX filtering, 897–898
clearing your history, 894
extensions and plugins, 890–891
pop-up blocker, 895–896
privacy settings, 893
settings, 891
SmartScreen Filter, 896–897
buffered memory, 75, 1013
bus, 1013
BYOD (bring your own device) policy, 853
CA (certificate authority), 891
cable/s, 90–91
coax, 138, 254–255
eSATA, 136
fiber-optic, 260–262
front panel, installing, 91–94
IDE (Integrated Drive Electronics), 44, 141
Internet, 204
modem, 1013
network, 248
patch panel, 245
RG-6, 138–139
RG-59, 139
SATA (Serial Advanced Technology Attachment), 43–44, 135
SCSI (Small Computer System Interface), 140–141
tester, 251, 1013
twisted-pair, 137, 255–257
category ratings, 257–258
wire schemes, 258–259
cache memory, 27, 1013
call center, 964–966, 1013
test on technician responsibilities, 966–967
test on technician responsibilities, 967–968
capture card, 28, 82, 86, 1013
case, 7–8
all-in-one, 9–10
compact tower, 9
fan, 19, 69–70, 119, 1013
full-size tower, 9
<table>
<thead>
<tr>
<th>Case Statement</th>
<th>975</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD (compact disc)</td>
<td>36–37</td>
</tr>
<tr>
<td>cd command</td>
<td>658–659, 1013</td>
</tr>
<tr>
<td>cellphone, See smartphone/s</td>
<td></td>
</tr>
<tr>
<td>cellular</td>
<td>1013</td>
</tr>
<tr>
<td>airplane mode</td>
<td>380–382</td>
</tr>
<tr>
<td>communication standards</td>
<td>379–380</td>
</tr>
<tr>
<td>generations</td>
<td>221–222</td>
</tr>
<tr>
<td>hotspot</td>
<td>382–383</td>
</tr>
<tr>
<td>Internet</td>
<td>206–207</td>
</tr>
<tr>
<td>laptop connections</td>
<td>357</td>
</tr>
<tr>
<td>mobile device connections</td>
<td>379–380</td>
</tr>
<tr>
<td>centronics connector</td>
<td>1014</td>
</tr>
<tr>
<td>certificates</td>
<td>891–892</td>
</tr>
<tr>
<td>chain of custody</td>
<td>963–964, 1014</td>
</tr>
<tr>
<td>change management</td>
<td>948–950, 1014</td>
</tr>
<tr>
<td>changing drives</td>
<td>656–657</td>
</tr>
<tr>
<td>chip and chipset</td>
<td>14, 1014</td>
</tr>
<tr>
<td>motherboard</td>
<td>16</td>
</tr>
<tr>
<td>processor</td>
<td>74</td>
</tr>
<tr>
<td>ROM</td>
<td>20</td>
</tr>
<tr>
<td>chkdsk command</td>
<td>1014</td>
</tr>
<tr>
<td>chmod command</td>
<td>802</td>
</tr>
<tr>
<td>chown command</td>
<td>804</td>
</tr>
<tr>
<td>CISC (Complex Instruction Set Computer)</td>
<td>117, 1016</td>
</tr>
<tr>
<td>Cisco Packet Tracer</td>
<td>290, 318–319</td>
</tr>
<tr>
<td>cladding</td>
<td>1014</td>
</tr>
<tr>
<td>clean install</td>
<td>518, 533</td>
</tr>
<tr>
<td>cleaning, dust</td>
<td>163</td>
</tr>
<tr>
<td>CLI (command line interface)</td>
<td>1015</td>
</tr>
<tr>
<td>client-server roles</td>
<td>223–224</td>
</tr>
<tr>
<td>client-side virtualization</td>
<td>486–487, 1014</td>
</tr>
<tr>
<td>clock multiplier</td>
<td>1015</td>
</tr>
<tr>
<td>clock speed</td>
<td>1015</td>
</tr>
<tr>
<td>closed source</td>
<td>734</td>
</tr>
<tr>
<td>closed-ended questions</td>
<td>168, 935–936, 1015</td>
</tr>
<tr>
<td>cloud/cloud computing</td>
<td>483</td>
</tr>
<tr>
<td>applications</td>
<td>491</td>
</tr>
<tr>
<td>backup</td>
<td>952</td>
</tr>
<tr>
<td>-based network controller</td>
<td>247–248</td>
</tr>
<tr>
<td>characteristics</td>
<td>495</td>
</tr>
<tr>
<td>community</td>
<td>494</td>
</tr>
<tr>
<td>hybrid</td>
<td>494</td>
</tr>
<tr>
<td>mobile device services</td>
<td></td>
</tr>
<tr>
<td>locator application</td>
<td>767–769</td>
</tr>
<tr>
<td>remote backup</td>
<td>766–767</td>
</tr>
<tr>
<td>remote lock</td>
<td>769–770</td>
</tr>
<tr>
<td>remote wipe</td>
<td>770–771</td>
</tr>
<tr>
<td>printing</td>
<td>445–446, 1015</td>
</tr>
<tr>
<td>private</td>
<td>494</td>
</tr>
<tr>
<td>public</td>
<td>493–494</td>
</tr>
<tr>
<td>SDN (software defined networking)</td>
<td>495–496</td>
</tr>
<tr>
<td>service providers</td>
<td>492</td>
</tr>
<tr>
<td>services</td>
<td>491–492</td>
</tr>
<tr>
<td>IaaS (Infrastructure as a Service)</td>
<td>492–493</td>
</tr>
<tr>
<td>ITaaS (IT as a Service)</td>
<td>493</td>
</tr>
<tr>
<td>PaaS (Platform as a Service)</td>
<td>492</td>
</tr>
<tr>
<td>SaaS (Software as a Service)</td>
<td>492</td>
</tr>
<tr>
<td>storage</td>
<td>166, 580, 1015</td>
</tr>
<tr>
<td>cls command</td>
<td>653, 1015</td>
</tr>
<tr>
<td>cmd</td>
<td>651, 1015</td>
</tr>
<tr>
<td>CMOS (complementary metal-oxide semiconductor)</td>
<td>105, 108, 1016</td>
</tr>
<tr>
<td>coaxial cable</td>
<td>138, 254–255, 1015</td>
</tr>
<tr>
<td>color</td>
<td></td>
</tr>
<tr>
<td>calibration</td>
<td>1015</td>
</tr>
<tr>
<td>printing</td>
<td>418</td>
</tr>
<tr>
<td>command line</td>
<td></td>
</tr>
<tr>
<td>cmd</td>
<td>651</td>
</tr>
<tr>
<td>PowerShell</td>
<td>650</td>
</tr>
<tr>
<td>commands</td>
<td></td>
</tr>
<tr>
<td>/?, 652–653</td>
<td></td>
</tr>
<tr>
<td>> symbol</td>
<td>663</td>
</tr>
<tr>
<td>cd</td>
<td>658–659</td>
</tr>
<tr>
<td>chkdsk</td>
<td>1014</td>
</tr>
<tr>
<td>cls</td>
<td>653</td>
</tr>
<tr>
<td>copy</td>
<td>666–667</td>
</tr>
<tr>
<td>crontab</td>
<td>791</td>
</tr>
<tr>
<td>del</td>
<td>665–666</td>
</tr>
<tr>
<td>dir</td>
<td>657–658</td>
</tr>
<tr>
<td>dism</td>
<td>676–677</td>
</tr>
<tr>
<td>F7</td>
<td>654</td>
</tr>
<tr>
<td>gpresult</td>
<td>680</td>
</tr>
<tr>
<td>gpupdate</td>
<td>679</td>
</tr>
<tr>
<td>help</td>
<td>651–652</td>
</tr>
<tr>
<td>ipconfig</td>
<td>276–277, 697</td>
</tr>
<tr>
<td>ipconfig/all</td>
<td>313–315</td>
</tr>
<tr>
<td>Linux</td>
<td></td>
</tr>
<tr>
<td>apt-get</td>
<td>804</td>
</tr>
</tbody>
</table>
configuration, NIC (network interface card), 290, 293–294
connection types
analog phone, 203
broadband, 203
cable, 204
cellular, 206–207
DSL (digital subscriber line), 204
fiber, 204–205
ISDN (Integrated Services Digital Network), 203
line of sight, 205–206
mobile device synchronization, 396–397
mobile hotspot, 207
printer
Ethernet, 424
FireWire, 423–424
parallel, 423
serial, 422
USB, 423
wireless, 424
satellite, 206
tethering, 207
connector, 11–12. See also port/s; USB (universal serial bus)
BNC (Bayonet-Neill-Concelman), 139–140
fiber-optic, 262–263
duplex multimode LC, 264
Lucent, 264
straight-tip, 216–263
subscriber, 216–263
FireWire, 68
IDE (Integrated Drive Electronics), 140
Lightning, 134
RJ-11, 137–138
RJ-45, 137
SATA (Serial Advanced Technology Attachment), 135
SCSI (Small Computer System Interface), 140
system panel, 91–92
USB (universal serial bus), 45
contrast ratio, 143, 1016
Control Panel, 1016. See also Windows, Control Panel
controller card, 1016
converter, 45
cooling system, 19
 CPU (central processing unit), 74
 case fan, 119
 fan, 120
 heat sink, 120
 water cooling, 121–122
 copy command, 666–667
 CPU (central processing unit), 14, 18–19, 1014
 64-bit, 74
 architecture, 117
 CISC (Complex Instruction Set Computer), 117
 cooling system, 74
 case fan, 119
 fan, 120, 1016
 heat sink, 120
 water cooling, 121–122
 dual core, 1020
 FSB (front-side bus), 74, 118
 GPU (graphics processing unit), 119
 hyper-threading, 117–118
 laptop, 345–346
 multicore, 118–119, 1036
 NX (execute disable) bit, 119
 overclocking, 118
 processor chip, 74
 RISC (Reduced Instruction Set Computer), 117
 selecting, 73–74
 socket, 18
 AMD, 73
 Intel, 73
 LGA (land grid array), 19
 PGA (pin grid array), 18
 ZIF (zero insertion force), 18
 speed, 74, 118
 throttling, 1016
 troubleshooting, 179–180
 upgrading, 149–150
 virtualization, 118, 1016
 Credential Manager, 578–579, 1016
 crimpler, 250, 1016
 cron service, 791–792, 1017
 crontab command, 791
 CRUs (customer-replaceable units), 365, 1017
 Ctrl+C key combination, 654, 1017
 Ctrl+Shift+Enter, 1017
 customers. See working with customers
cutoff switch, 351, 1017
cyber law, 962, 1017

d
daisy wheel, 1017
data security
 backups, 854–855
 BitLocker and BitLocker To Go, 857–860
 DLP (data loss prevention), 854
 encryption, 856–857
 file and folder permissions, 855–856
 hard drive recycling and destruction, 861–862
 wiping data, 860–861
 data storage device, 31–32, 518–519. See also storage
 interface, 32
 magnetic, 33
 HDD (hard disk drive), 33
 tape drive, 33
 optical, 35–37
 semiconductor, 34–35
 troubleshooting, 175–176
 upgrading, 150–151
 data wiping, 860–861, 1017
 Date and Time control panel, 605, 1017
 dd command, 805
 DDoS (distributed DoS) attack, 838, 1019
 DDR SDRAM (double data rate synchronous dynamic RAM), 23, 1020
 DDR2 SDRAM (double data rate 2 synchronous dynamic RAM), 23, 1020
 DDR3 SDRAM (double data rate 3 synchronous dynamic RAM), 24, 1020
 DDR4 SDRAM (double data rate 4 synchronous dynamic RAM), 24, 1020
 DDR5 SDRAM (double data rate 5 synchronous dynamic RAM), 24, 1020
 deadbolt lock, 849, 1017
 dedicated graphics card, 641
 dedicated print servers, 461–462
 default gateway, 1017
 Default Programs control panel, 610–611
 defense-in-depth, 840, 1017
degaussing wand, 1018
del command, 665–666
on-demand, 1038
deployment tools, 648–649
desktop. See Windows, desktop
destination port number, 213, 1018
detachable screen, 350, 1018
device driver, 1018
Device Manager, 169–170, 601–602, 1018
DHCP (Dynamic Host Configuration Protocol), 281, 284–286, 1021
lease, 286
reservations, 286–287
server, 225
diagnostic tools, 171
digital assistant, 1018
digital camera, 50, 1018
DIMM (dual inline memory module), 1020
DIP (dual inline package), 25, 1020
dir command, 657–658, 1018
directory permissions, Unix, 798
DirectX Diagnostic tool, 631–632, 1019
disassembly, computer, 58–59
disaster prevention and recovery, 951, 953–954, 1019. See also backup and restore
data and operating system backup, 952–953
power and environmental controls, 953
preventing downtime and data loss, 951–952
disk
basic, 521–522
CLI commands, 670–674
cloning, 526–527, 1019
dynamic, 522
error checking, 1019
optimization, 637–639, 1019
utility software, 790
Disk Management utility, 633–634, 1019
adding arrays, 636–637
disk error-checking, 639
drive status, 634–635
mounting a drive, 635–636
diskpart command, 1019
dism command, 676–677
display
adjusting, 591–592
laptop, 349
 backlight, 351–352
cutoff switch, 351
detachable, 350
inverter, 352
LCD, 349
LED, 349
OLED (organic LED), 350
touchscreen, 350–351
resolution, 591
troubleshooting, 180–182
displaying, printers, 602–604
DisplayPort, 38–39, 130–131, 1019
DKIM (DomainKeys Identified Mail), 243
DLP (data loss prevention), 854, 1017
DLP (digital light processing), 56, 1018
DMARC (Domain-based Message Authentication, Reporting, and Conformance), 243
DMZ (demilitarized zone), 310–311, 912, 1018
DNS, 282–283, 1019
DKIM (DomainKeys Identified Mail), 284
poisoning, 838–839
RRs (resource records), 283
server, 225–227
spam management, 243
SPF (Sender Policy Framework), 284
documentation, 942, 1019
asset management, 946–947
assigned users, 947–948
procurement life cycle, 947
warranty and licensing, 947
history of repairs, 183
incident report, 944
IT department, 942–943
knowledge base and articles, 945–946
legal, 962–963
regulatory compliance requirements, 946
SOP (standard operating procedures), 944–945
troubleshooting, 182
user checklists, 945
domain, 1020
DoS (denial of service) attack, 838, 1018
dot matrix printer, 444, 1020
dot pitch, 143, 1020
double parity, 124, 1020
do-while loop, 976–977, 1019
dpi (dots per inch), 1020
DRAM (Dynamic RAM), 23, 1021
drive encryption, 1020
DRM (digital rights management), 960, 1018
DSL (digital subscriber line), 204
DSP (digital signal processor), 1018
end device, 1022. See also host devices
dual core CPU, 1020
dumpster diving, 845, 1020
duplex multimode LC, 264
duplexing assembly, 430, 435, 1021
dust, preventive maintenance, 163
DVD (digital versatile disc), 36–37
DVI (Digital Visual Interface), 38, 129, 1018
dynamic disk, 522, 1021
dynamic IP addressing, 281–282

e
Ease of Access, 1021
ECC (error-correcting code) memory, 27
EEPROM (electrically erasable programmable read-only memory), 22, 1021
EFS (Encrypting File System), 548, 1021
EIDE (Enhanced IDE), 33
electrical safety, 6. See also power and power supply
 ESD (electrostatic discharge), 6–7
ground, 6
SPS (standby power supply), 116
surge protector, 116
UPS (uninterruptible power supply), 116
electronic lock, 849, 1021
electrostatic discharge, 1021
e-mail, 1021
 account information, 389
 configuration
 Android, 390
 iOS, 391
 Internet, 391–392
 malware, 833
 protocols, 214, 388–389
 server, 230
 servers and clients, 388
 spam/spam management, 243
EMM (enterprise mobility management), 853
encryption, 856–857, 1022
 asymmetric, 884–904, 1010
 BitLocker, 612–613, 857–860
drive, 1020
 hard drive, 111
 hash encoding, 903
 symmetric, 904
Fairness
flexibility, 848
failure audit, 1024
failure rate, 418
FAT32 (File Allocation Table, 32-bit), 1024
feeder, 429, 1024
fiber-optic cable, 204–205, 260–261, 1024
 cladding, 1014
 connectors, 262–263
 duplex multimode LC, 264
 Lucent, 264
 straight-tip, 216–263
 subscriber, 216–263
 jacket, 1031
 types of fiber media, 261–262
filament, 447–448, 1024
hardware, 1026
print servers, 460–461
troubleshooting, 183–185
Hardware and Sound control panels, 600
 Device Manager, 601–602
 Devices and Printers, 602–604
 Sound, 604
 hash encoding, 903, 1027
HDD (hard disk drive), 33, 1026. See also Disk
 Management utility
 active partition, 521
 backup and restore, 708–709
 encryption, 111
 extended partition, 521
 formatting, 522
 installing, 78–79
 logical drive, 521
 partitioning, 520
 GUID partition table, 520
 MBR (master boot record), 520
 primary partition, 521
 recycling and destruction, 861–862
 selecting, 75–76
HDMI (High-Definition Multimedia Interface), 30–39, 130, 1027
 heat sink, 120, 1027
 help command, 651–652
HFS Plus (Extended Hierarchical File System), 1023
 history of repairs, documenting, 183
 hives, 628, 1027
 home screen
 Android, 739–740
 navigation icons, 741
 notification and system icons, 741–742
 iOS, 742–743
 Notification Center, 743–744
 settings menu, 744
 Spotlight, 745–746
HomeGroup, 588–589, 685, 1028
 horizontal case, 8
 host device, 195, 1028
 hotend nozzle, 448–449, 1028
 hotspot, 382–383
 hub, 235, 1028
 hybrid cloud, 494, 1028
 hyper-threading, 117–118, 1028
 HyperTransport, 1028
 hypervisor, 484, 488–489, 1028
 IaaS (Infrastructure as a Service), 492–493, 1029
 ICMP (Internet Control Message Protocol), 295–296, 1030
 icons, network, 194–196
 IDE (integrated development environment), 969
 IDE (Integrated Drive Electronics), 15, 33, 44, 140, 1028, 1030
 IDS (intrusion detection system), 240–241, 1030
 IEEE (Institute of Electrical and Electronic Engineers) standards, 1030
 if-then statement, 974
 image backup, 1029
 imaging drum, 1029
 IMAP (Internet Mail Access Protocol), 388
 IMEI (International Mobile Equipment Identity), 378, 1030
 impact printer, 443–444, 467–468
 impersonation, 845, 1029
 incident report, 944
 increasing, virtual memory, 599–600
 inexperienced customer, tips for helping, 941
 inkjet printer, 425–426, 1029
 carriage/belt, 430
 duplexing assembly, 430
 feeder, 429
 ink cartridges, 426–427
 nozzles, 428–429
 preventive maintenance, 464
 print head, 427–429
 roller, 429
 InPrivate browsing, 893–894, 1029
 input device, 46
 ADF/flatbed scanner, 46–47
 barcode scanner, 50
 digital camera, 50
 facial recognition scanner, 53
 fingerprint scanner, 53
 joystick and gamepad, 47
 keyboard and mouse, 46
 KVM switch, 47–48
 magnetic strip reader, 49
 microphone, 52
 NFC devices, 52
signature pad, 51
smart card reader, 51–52
stylus, 49
touchscreen, 48
voice recognition scanner, 54
VR (virtual reality) headset, 54
webcam, 51

installation
adapter card, 86–87
ExpressCard, 359–361
front panel cables, 91–94
HDD (hard disk drive), 78–79
local, 644–645
memory
 - RAM (random access memory), 71
 - SODIMM (small outline DIMM), 363–365
methods, 642
motherboard, 71–72
NIC (network interface card), 292–293
optical storage device, 79–80
printer, 450–451
security considerations, 647–648
sideloading, 738
unattended, 529–530
Windows, 525–526
 - account creation, 524–525
 - custom options, 526–532
 - data migration, 516–518
integrated graphics card, 641
Intel, sockets, 73
interface, data storage device, 32
interlacing, 144
intermediary devices, 195–196, 1030
internal components, preventive maintenance, 163–164

Internet
connecting mobile devices, 373
 - cellular, 379–380
 - Wi-Fi, 378–379
connecting wired devices, 297–299
connection types
 - analog phone, 203
 - broadband, 203
 - cable, 204
 - cellular, 206–207
 - DSL (digital subscriber line), 204
 - fiber, 204–205
 - ISDN (Integrated Services Digital Network), 203
 - line of sight, 205–206
 - mobile hotspot, 207
 - satellite, 206
 - tethering, 207
email, 391–392, 1030. See also email reference tools, 183
troubleshooting, 326

Internet Options, Windows Control Panel, 582–586
inverter, 352, 1030
I/O (input/output)
card, 81, 85, 1028
port, 42, 81
iOS, 735, 1030
AirDrop, 689
apps, 737–738
auto-rotation setting, 748
Brightness menu, 750
e-mail configuration, 391
Find My iPhone, 767–769
home screen, 742–743
Notification Center, 743–744
settings menu, 744
Spotlight, 745–746
jailbreaking, 773–774
Location Services, 752
passcode lock, 765–766
Siri, 762
VPN, 758–760
Wi-Fi calling, 754–755

IoT (Internet of Things), 317–319, 1031
IP address/ing, 273. See also DHCP (Dynamic Host Configuration Protocol)
displaying, 276–277
DNS
 - RRs (resource records), 282–283
 - spam management, 283–284
dynamic, 281–282
format, 275
static, 280–281
subnet mask, 278
whitelisting and blacklisting, 316–317

ipconfig command, 276–277, 313–315, 697, 801, 1031
IPS (indoor positioning system), 750–751, 1029
IPS (intrusion prevention system), 240–241
IPv4, 1031
 alternate configuration, 694
 format, 277–278
 link-local address, 289
 NAT (Network Address Translation), 307–308
IPv6, 1031
 configuration, 695
 format, 278
 link-local address, 289
 omit all 0 segments, 279
 omit leading 0s, 279
IR (infrared), 1029
ISDN (Integrated Services Digital Network), 203, 1030
ISO image, 642–643
IT profession
 ethical and legal considerations, 955–956
 PCI (Payment Card Industry), 956–957
 PHI (protected health information), 957
 PII (personally identifiable information), 956
 legal procedures and considerations, 957–958
 chain of custody, 963–964
 computer forensics, 960–961
 cyber law, 962
 documentation, 962–963
 first response, 962
 licensing, 958
 commercial software, 960
 DRM (digital rights management), 960
 enterprise, 959
 open source, 959–960
 personal, 958–959
ITaaS (IT as a Service), 493
ITX, 17
iwconfig command, 802

K
Kerberos, 1031
keyboard, 46
keylogger Trojan, 1031
keys, 1031
kill command, 801
knowledge base, 945–946
knowledgeable customers, tips for helping, 940
KVM switch, 47–48, 1031

L
LAN (local area network), 197–198, 1033
Language control panel, 607–609
laptop/s, 336, 338–339, 1032
 battery, replacing, 366–367
 CPU (central processing unit), 345–346
 CRUs (customer-replaceable units), 365
 detachable screen, 350
 display, 349
 backlight, 351–352
 cutoff switch, 351
 inverter, 352
 LCD, 349
 LED, 349
 LED backlight, 352
 OLED (organic LED), 350
 touchscreen, 350–351
 ExpressCards, 359–361
 external flash memory, 361–362
 Fn (Function) key, 348
 FRU (field-replaceable unit), 365
 internal storage, 368
 microphone, 352
 motherboard, 344–345
 optical drive, 368
 power management
 ACPI power states, 353
 managing ACPI in the BIOS, 354–355
 preventive maintenance, 397–398
 program, 398–399
 reason for, 398
 RAM (random access memory), 345
 repairing, 365–366
 SATA (Serial Advanced Technology Attachment), 347
 alternate configuration, 694
 format, 277–278
 link-local address, 289
 NAT (Network Address Translation), 307–308
IPv6, 1031
 configuration, 695
 format, 278
 link-local address, 289
 omit all 0 segments, 279
 omit leading 0s, 279
IR (infrared), 1029
ISDN (Integrated Services Digital Network), 203, 1030
ISO image, 642–643
IT profession
 ethical and legal considerations, 955–956
 PCI (Payment Card Industry), 956–957
 PHI (protected health information), 957
 PII (personally identifiable information), 956
 legal procedures and considerations, 957–958
 chain of custody, 963–964
 computer forensics, 960–961
 cyber law, 962
 documentation, 962–963
 first response, 962
 licensing, 958
 commercial software, 960
 DRM (digital rights management), 960
 enterprise, 959
 open source, 959–960
 personal, 958–959
ITaaS (IT as a Service), 493
ITX, 17
iwconfig command, 802

J
jailbreaking, 773–774, 1031
Java, 1031
journal, 183
joystick, 47
jump list, 1031
smart card reader, 362–363
SODIMM (small outline DIMM), installing, 363–365
SSD (solid-state drive), 347
troubleshooting
common problems and solutions, 405–407
document findings, actions, and outcomes, 404
establish a plan of action, 403
establish theory of probable cause, 401–402
identify the problem, 400–401
test theory to determine the cause, 402
verify full functionality, 403–404
webcam, 352
Wi-Fi antenna connector, 352
wireless
Bluetooth, 355–356
cellular WAN, 357
Wi-Fi, 358–359
laser printer, 431, 1032
charging, 436–437
cleaning, 441–442
developing, 438–439
duplexing assembly, 435
exposing, 437–438
fuser assembly, 433
fusing, 440–441
pickup rollers, 434
preventive maintenance, 464–465
processing, 435–436
toner cartridge/paper, 432–433
transfer roller, 433–434
transferring, 439–440
Last Known Good Configuration, 1032
LC (Lucent connector), 264, 1033
LCD (liquid crystal display), 55, 349, 1032
lease, DHCP (Dynamic Host Configuration Protocol), 286
LED (light-emitting diode), 55, 349, 1032
legacy
port, 125
system, 244–245, 1032
legal considerations in the IT profession, 957–958
LEO (low Earth orbit), 206
level one technician, 966–967, 1032
level two technician, 967–968, 1032
LGA (land grid array), 19, 1032
liability release form, 166–167
licensing
commercial software, 960
DRM (digital rights management), 960
enterprise, 959
open source, 959–960
personal, 958–959
software, 958
Lightning
cable, 1032
connector, 134
line of sight Internet, 205–206, 1032
link-local address, 1032
IPv4, 289
IPv6, 289
Linux
backup and restore, 788
CLI (command line interface), 786–787
commands
apt-get, 804
chmod, 802
chown, 804
dd, 805
iwconfig, 802
kill, 801
ls -l command, 795–796
passwd, 799–800
ps, 800
shutdown, 805
sudo, 803
common problems and solutions, 815–817
cron service, 791–792
file system, 776
operating system updates, 793
security updates, 794–795
shell script, 970
swap partition, 776
Ubuntu, 779–781
load balancer, 232, 1033
local backup, 953, 1033
local installation, 644–645
local password management, 866–867
Local Security Policy tool, 868–869
account policy security settings, 869–871
exporting the local security policy, 872–873
local policies security settings, 871–872
Local Users and Groups Manager tool, 618–620, 875–877. See also user account/s
locator application, 767–769
logical drive, 521, 1033
logical port, 213
login
 router, 299–300
 securing, 864–866
LoJack, 111, 1033
loop, 1033
 do-while, 976–977
 for, 975–976
 while, 976
loopback adapter, 251, 1033
low Earth orbit, 1033
ls -l command, 795–796
LTE (Long Term Evolution), 222, 1033

M

MAC (Media Access Control) address, 234, 237, 273, 313–316, 1034
macOS
 CLI (command line interface), 786–787
 common problems and solutions, 815–817
 cron service, 791–792
 file system, 776
 gestures, 785
 GUI, 782–785
 Mission Control, 785
 operating system updates, 793
 security updates, 794–795
 Time Machine, 788–789
macro virus, 1033
magnetic media storage, 33
 HDD (hard disk drive), 33
 tape drive, 33
magnetic strip reader, 49, 1033
mail server, 230
malware, 827–829, 1033
 adware, 830, 1008
 anti-, 832–835
 ransomware, 831
 remediating infected systems, 835–837
 rootkit, 831
 spyware, 831
 Trojan horse, 829–830
 virus, 829
 worm, 831
MAN (metropolitan area network), 199
managed switch, 237
mantrap, 851–852, 1033
mapping a drive, 683–684, 686
maximum speed rating, 74
MBR (master boot record), 104–105, 520, 1034
md command, 659–660
MDF (manual document feeder), 421
MDM (mobile device management), 853
media reader, selecting, 87–89
memory, 20. See also storage
 buffered, 75
 cache, 27
 diagnostic tool, 623–624
 dual channel, 1020
 errors, 27
 flash, 34, 361–362
 module, 24–25, 26, 1034
 DIP (dual inline package), 25
 SIMM (single inline memory module), 25
 SODIMM (small outline DIMM), 26, 363–365
 multichannel technology, 26
 nonparity, 27
 nonvolatile, 20
 parity, 27
RAM (random access memory), 14, 20. See also
 RAM (random access memory)
 CMOS (complementary metal-oxide semiconductor), 105
 DDR SDRAM (double data rate synchronous dynamic RAM), 23
 DDR2 SDRAM (double data rate 2 synchronous dynamic RAM), 23
 DDR3 SDRAM (double data rate 3 synchronous dynamic RAM), 24
 DDR4 SDRAM (double data rate 4 synchronous dynamic RAM), 24
 DDR5 SDRAM (double data rate 5 synchronous dynamic RAM), 24
 dynamic, 23
installing, 71
laptop, 345
selecting, 75
NFC payment, 755–756
operating systems, troubleshooting, 805–810
passcode, 763
iOS Erase Data option, 765
iOS GUI, 765–766
restrictions on failed login attempts, 764
preventive maintenance
program, 399–400
reason for, 398
screen
calibration, 748
orientation, 746–747
security, 762–763
antivirus, 773
common problems and solutions, 813–815
patching and updates, 774–775
rooting and jailbreaking, 773–774
synchronization, 392
connection types, 396–397
enabling, 393–396
types of data to synchronize, 392
tablet, 341
virtual assistant, 760–761
VPN (virtual private network), 756–760
wearables
AR (augmented reality), 342–343, 375
fitness trackers, 342, 374
smartwatch, 342, 374–375
VR (virtual reality), 343, 375
wired connectivity
Lightning cable, 372
micro-USB, 372
mini-USB, 371
proprietary cables and ports, 372–373
USB-C, 371
wireless and shared Internet connections, 373
cellular, 379–380
Wi-Fi, 378–379
mobile hotspot, 207
mobility, 338
modem, 1035
monitor/s. See also displays
classification, 142–143
display standards, 144–145
native resolution, 1036
terms, 143–144
Network settings, 581
Network and Sharing Center, 586–588
network/ing. See also cable/s; connectors; Internet;
TCP/IP
attack, protecting against, 840–842
basic setup, 300–303
bridge, 236
cables, 248
client-server roles, 223–224. See also server
design, 290–291
DMZ (demilitarized zone), 310–311, 912
endpoint management server, 242–243
firewall, 239–240, 309–310, 881–883
port forwarding, 312
port triggering, 312–313
software, 883–884
HomeGroup, 588–589
host devices, 195
hub, 235
icons, 194–196
IDS/IPS, 240–241
intermediary device, 195–196
IP address, 273. See also IP address/ing
format, 275
IPv4, 277–278
IPv6, 278–279
subnet mask, 278
whitelisting and blacklisting, 316–317
legacy systems, 244–245
local area, 197
MAC (Media Access Control) address, 273
filtering, 313–316
format, 274–275
media, 196
metropolitan area, 199
patch panel, 245
personal area, 196–197
port, 43
protocol/s, 208. See also protocol/s
application, 216–217
e-mail and identity management, 214
file transport and management, 214–215
ICMP (Internet Control Message Protocol),
295–296
network operations, 215–216
remote access, 215
troubleshooting, 180–182
using multiple, 145–146
more command, 664–665
motherboard, 13, 1036. See also memory
BIOS (basic input/output system), 14
chipset, 14, 16
connections, 14–15
troubleshooting, 177–178
UEFI (Unified Extensible Firmware Interface)
chip, 14
upgrading, 147–148
mouse, 46
move command, 661–662
MTBF (mean time between failure), 1034
multichannel technology, memory, 26
multicore CPU, 118–119
multifactor authentication, 889, 1036
multifactor lock, 851
multimeter, 185, 250, 1036
multithreading, 1036

N

NAT (Network Address Translation), IPv4, 307–308
native resolution, 1036
net user command, 681–682
netiquette, 938–939, 1037
Network and Internet control panels, 580–581
Internet Options, 582
Advanced tab, 586
Connections tab, 584–585
Content tab, 583
General tab, 582
Privacy tab, 583
Security tab, 582–583
TCP (Transmission Control Protocol), 209–211
transport layer, 208
UDP (User Datagram Protocol), 211–212
UPnP (Universal Plug and Play), 310
wireless, 217–218
world wide web-related, 214
repeater, 234–235
router, 238–239
logging in, 299–300
QoS, 308–309
security settings, 883
software-defined, 495–496
switch, 236
taps, 253
tool/s, 248
advanced problems and solutions, 326–327
cable tester, 251
crimper, 250
loopback adapter, 251
multimeter, 250
punchdown, 250
tone generator and probe, 252
Wi-Fi analyzer, 252–253
wire cutters, 249
wire strippers, 249
troubleshooting, 323–325
UTM (unified threat management), 242
virtual private, 200, 699–700. See also VPN (virtual
private network)
Android, 757–758
iOS, 758–760
wide area, 199–200
Windows
administrative shares, 687–688
configure a wired connection, 691–693
domain, 684
file sharing, 687
HomeGroup, 685
mapping a drive, 683–684, 686
network printer mapping, 690–691
printer sharing, 689–690
setting a network profile, 695–696
sharing local resources, 688–689
verifying connectivity, 696
workgroup, 684
wired, 296
wireless, 296
access points, 237–238
basic setup, 303–306
local area, 198
mesh, 198–199, 306–307
wide area, 581
NFC (near-field communication), 52, 219–220,
755–756, 1037
NFS (Network File System), 1038
NIC (network interface card), 28, 82, 85–86,
233–234, 1037
configuration, 290, 293–294
installing and updating, 292–293
selecting, 291–292
wired, configuring, 692–693
NIST (National Institute of Standards and
Technology)
SP 800–122, 956
SP 800–145, 492
NLQ (near letter quality), 444, 1037
noise, 115, 1038
noncompliant system, 827, 1038
nonparity memory, 27, 1038
nonvolatile memory, 20, 1038
northbridge, 16, 1038
note-taking, 183
nozzle, inkjet printer, 428–429
nslookup command, 697
NTFS (New Technology File System), 1038
NVMe (Non-Volatile Memory Express), 35, 1038
NX (execute disable) bit, 119

Ohm's law, 113–114
OLED (organic LED), 55, 350
onboarding, 853
open source, 734, 1039
open-ended questions, 168, 1039
OpenGL, 1039
operating system/s, 506–507, 779–781, 1039. See
also Android; iOS; Linux; macOS; Windows
32-bit vs. 64-bit processor architecture, 512
backup, 952–953
basic functions, 507
application management, 509
file and folder management, 508
user interface, 508
customer requirements
compatible system software and hardware, 510–511
minimum hardware requirements and compatibility with OS, 511–512
disk utilities, 790
file system, 522–523
Linux, 777
backup and restore, 788
CLI, 786–787
file system, 776
swap partition, 776
Ubuntu, 779–781
macOS, 778
CLI, 786–787
file system, 776
gestures, 785
GUI, 782–785
Mission Control, 785
Time Machine, 788–789
remote network installation, 528–529
sandbox, 1048
security, 900–901
setup, 519
troubleshooting
common problems and solutions for mobile OS, 810–813
six-step process, 805–810
unattended installation, 529–530
operational procedures, 941
optical storage device, 35–37, 1039
installing, 79–80
laptop, 368
selecting, 76–77
OTP (one-time password), 890, 1039
output devices, 54–55
AR (augmented reality) headset, 56
monitor, 55–56
printer, 57
projector, 55–56
speakers and headphones, 58
VR (virtual reality) headset, 56
overclocking, 118, 1039

PaaS (Platform as a Service), 492, 1041
pairing, Bluetooth, 386–387
PAN (personal area network), 196–197, 1040
parallel connection, printer, 423
parallel port, 126
parity, 124, 1040
parity memory, 27
partitioning a hard drive, 520. See also HDD (hard disk drive)
full format, 523
GUID partition table, 520
MBR (master boot record), 520
quick format, 523
passcode lock, 763, 1040
iOS Erase Data option, 765
iOS GUI, 765–766
restrictions on failed login attempts, 764
passwd command, 799–800
password
account lockout policy, 870–871
manager, 891
one-time, 890
policy, 869–870, 1040
securing, 866–867
strong, 867–868
patch, 900–901, 1040
patch panel, 245
PC. See also motherboard; power and power supply
case, 7–8
all-in-one, 9–10
compact tower, 9
full-size tower, 9
horizontal, 8
cooling system, 19
CPU (central processing unit), 18–19
disassembly, 58–59
memory. See memory
motherboard, 13
BIOS (basic input/output system), 14
chipset, 14, 16
connections, 14–15
expansion slots, 14
form factor, 16–17
IDE (Integrated Drive Electronics), 15
SATA (Serial Advanced Technology Attachment), 14–15
UEFI (Unified Extensible Firmware Interface)
chip, 14
power and power supply
connectors, 11–12
form factor, 11
voltage, 13
PCB (printed circuit board), 13, 1043
PCI (Payment Card Industry), 956–957, 1040
PCI (peripheral component interconnect), 29, 82, 1040
PCIe (PCI Express), 30, 31, 82, 1040
PCI-X (PCI-Extended), 30
PCmover Express, 517–518
Performance Monitor, 620, 1040
peripheral device, upgrading, 151–152
permissions, 1040
file and folder, 855–856
Unix, 796–798
personal reference tools, 182–183
PGA (pin grid array), 18, 1041
PHI (protected health information), 957, 1021, 1044
phishing, 844, 1041
physical security, 847–848, 1041
locks, 848–851
mantraps, 851–852
protecting computers and network hardware, 852–853
pickup rollers, 434, 1041
PII (personally identifiable information), 956
ping command, 295–296, 697
pixel, 143
in-place upgrade, 532
plan of action, establishing, 172–173
platen, 421, 1041
plug-ins, browser, 890–891
PoE (Power over Ethernet), 245–246, 1042
policy
acceptable use, 944, 1007
account lockout, 870–871
BYOD, 853
security, 846–847
POP3 (Post Office Protocol 3), 388
pop-up blocker, 895–896
port/s, 1042
audio, 42–43, 128
DisplayPort, 130–131
DVI (Digital Visual Interface), 129
forwarding, 312–313, 913
game, 42–43, 127
HDMI (High-Definition Multimedia Interface), 130
I/O (input/output), 42
legacy, 125
network, 43
parallel, 126
PS/2, 42, 127
serial, 125
triggering, 312–313, 913–914
VGA (Video Graphics Array), 128–129
POST (power-on self test), 105–107
power and power supply, 6, 953, 1042
AC (alternating current), 10
blackout, 115
brownout, 115
connectors, 11–12
Control Panel options, 593–596
dual rail, 1020
form factor, 11
laptop
ACPI power states, 353
managing ACPI in the BIOS, 354–355
replacing the battery, 366–367
noise, 115
Ohm’s law, 113–114
over Ethernet, 245–246
rail, 13
selecting, 70–71
spike, 116
SPS (standby power supply), 116
surge, 116
surge protector, 116
tester, 185
troubleshooting, 178–179
upgrading, 152
UPS (uninterruptible power supply), 116
voltage, 13, 114–115
W (watts), 113
Power and System control panels, 593
Power Options, 593–596
System control panel, 596–599
Power Options control panel, 593–596
powerline networking, 247
PowerShell, 650
pretexting, 844, 1043
preventive maintenance, 162, 397–398
 benefits, 162–163
device driver updates, 705
disk utility software, 790
dust, 163
firmware updates, 705–706
internal components, 163–164
laptop, 398–399
mobile device, 399–400
plan, 702–703
printer, 462
 3D, 468
 impact, 467–468
 inkjet, 464
 laser, 464–465
 operating environment, 463
 thermal, 465–467
 vendor guidelines, 462–463
reason for, 398
repair log, 698–703
security, 703
 disable AutoPlay, 899–900
 restrictive settings, 899
software, 165
startup programs, 703
temperature and humidity, 164–165
Windows updates, 704–705
primary partition, 521, 1043
print job buffering, 455
Print Management, 623
print server, 227, 459
dedicated, 461–462
hardware, 460–461
purposes, 459–460
software, 460
printer and printing, 57
 3D, 446
 axis, 449
 characteristics, 446–447
 feeder, 448
 filament, 447–448
 hotend nozzle, 448–449
 preventive maintenance, 468
 print bed, 449–450
ADF (automatic document feeder), 420–421
cloud, 445–446
color, 418
common configuration settings, 453
connection types
 Ethernet, 424
 FireWire, 423–424
 parallel, 423
 serial, 422
 USB, 423
 wireless, 424
displaying, 602–604
dot matrix, 444
features, 416–417
impact, 443–444, 467–468
inkjet, 425–426
 carriage/belt, 430
 duplexing assembly, 430
 feeder, 429
 ink cartridges, 426–427
 nozzle, 428–429
 preventive maintenance, 464
 print head, 427–429
 roller, 429
installing, 450–451
laser, 431
 charging, 436–437
 cleaning, 441–442
 developing, 438–439
 duplexing assembly, 435
 exposing, 437–438
 fuser assembly, 433
 fusing, 440–441
 pickup rollers, 434
 preventive maintenance, 464–465
 processing, 435–436
 toner cartridge/paper, 432–433
 transfer roller, 433–434
 transferring, 439–440
mapping, 690–691
MDF (manual document feeder), 421
media control options, 453
optimization
 hardware, 455
RAM (random access memory)

software, 454
output options, 453
platen, 421
preventive maintenance, 462
operating environment, 463
vendor guidelines, 462–463
reliability, 419
sharing, 456, 689–690
operating system settings, 456
Windows, 456–458
wireless, 458
speed, 418
TCO (total cost of ownership), 419–420
testing, 451–452
thermal, 442–443, 465–467
troubleshooting
advanced problems and solutions, 475
common problems and solutions, 472–474
six-step process, 469–472
virtual, 444–445
privacy
browser, 893
PII (personally identifiable information), 956
private cloud, 494
private key, 1044
processor
chip, 74
speed, 74
procurement life cycle, 947
professional behavior, 933–934, 936–937. See also working with customers
keeping the call focused, 939
netiquette, 938–939
tips for hold and transfer, 937–938
profile, network, 695–696
Programs control panel, 609–610
projector, 55–56
PROM (programmable read-only memory), 21, 1044
protocol/s, 208, 1044
application, 216–217
best-effort delivery, 212
email and identity management, 214, 388–389
file transport and management, 214–215
ICMP (Internet Control Message Protocol), 295–296
network operations, 215–216
remote access, 215
SSH (Secure Shell), 701
Telnet, 701
transport layer, 208
UPnP (Universal Plug and Play), 310, 914–916
wireless
Bluetooth, 218, 383–385
NFC, 219–220
RFID, 219
WLAN, 217–218
Zigbee, 220
Z-Wave, 220–221
world wide web-related, 214
proxy server, 230–231, 1044
ps command, 800
PS/2 port, 42, 127
public cloud, 493–494
public key, 1044
punchdown tool, 250
PXE (Preboot Execution Environment), 1042

Q–R

QoS (quality of service), 308–309
quick format, 523
RAID (redundant array of independent disks), 1046
characteristics, 122
double parity, 124
levels, 124–125
mirroring, 124
parity, 124
striping, 124
use cases, 123
rail, 13
RAM (random access memory), 14, 20, 1045
CMOS (complementary metal-oxide semiconductor), 105
DDR SDRAM (double data rate synchronous dynamic RAM), 23
DDR2 SDRAM (double data rate 2 synchronous dynamic RAM), 23
DDR3 SDRAM (double data rate 3 synchronous dynamic RAM), 24
DDR4 SDRAM (double data rate 4 synchronous dynamic RAM), 24
DDR5 SDRAM (double data rate 5 synchronous dynamic RAM), 24
RAM (random access memory)

dynamic, 23
GDDR (graphics double data rate synchronous dynamic RAM), 24
installing, 71
laptop, 345
selecting, 75
static, 23
synchronous dynamic, 23
ransomware, 831
RCA (Radio Corporation of America) connector, 41–42, 1045
rd command, 660–661
reconnaissance, 837–838, 1046
recovery partition, 531, 1046
refresh rate, 144, 1046
Region control panel, 605–606
Registry, 628, 629
Editor, 629–630
hives, 628
keys, 628
regulatory compliance requirements, 946, 1046
relational operators, 974, 1046
reliability, printer, 419
remote access protocols, 215
SSH (Secure Shell), 701
Telnet, 701
Remote Assistance and Remote Desktop, 701–702
remote lock, 769–770
remote network installation, 528–529
remote wipe, 770–771
ren command, 662–663
repair log, 1046
repairing laptops, 365–366. See also troubleshooting repeater, 234–235
replacing, laptop battery, 366–367
replay attack, 839
report, incident, 944
resolution, 142, 1047
adjusting, 591
native, 1036
resource pooling, 1047
response time, 144, 1047
restore point, 706–707, 1047
RFID, 219, 1047
RG-6 cable, 138–139
RG-59 cable, 139
RISC (Reduced Instruction Set Computer), 117, 1046
riser card, 30, 1047
RJ-11 connector, 137–138, 1047
RJ-45 connector, 137, 1047
robocopy command, 668–669
rogue antivirus, 833–855
roller, 429
ROM (read-only memory), 20, 22. See also BIOS (basic input/output system)
EEPROM (electrically erasable programmable read-only memory), 22
PROM (programmable read-only memory), 21
rooting, 773–774, 1047
rootkit, 831, 1048
router, 238–239, 1048
default gateway, 1017
logging in, 299–300
QoS (quality of service), 308–309
security settings, 883
rude customers, tips for helping, 940
Run utility, 682–683

S

SaaS (Software as a Service), 492, 1052
Safe mode, 1048
safety
electrical, 6
ESD (electrostatic discharge), 6–7
ground, 6
fire, 67–68
sandbox, 1048
SAIT (Serial Advanced Technology Attachment), 14–15, 43–44
cable, 135
connector, 135
laptop, 347
satellite Internet, 206
SC (subscriber connector), 216–263, 1054
SCADA (Supervisory Control and Data Acquisition), 233
SCP (Secure Copy), 228
screen
calibration, 748
orientation, 746–747
script and scripting language, 969, 970–971, 1049
 basic commands, 971–972
branch, 977
case statements, 975
conditional statement, 973–974
environment variables, 973
if-then statements, 974
Linux shell, 970
loop, 975
do-while, 976–977
for, 975–976
while, 976
relational operators, 974
variable types, 972–973
variables, 972
Windows batch, 969
SCSI (Small Computer System Interface), 140–141, 1051
SD (Secure Digital) card, 87, 370
SDN (software defined networking), 495–496, 1052
SDRAM (synchronous dynamic RAM), 23
SDS (safety data sheet), 154
security. See also attack/s; authentication;
 encryption; malware
application, 647–648
BitLocker, 612–613
data
 backups, 854–855
 encryption, 856–857
 file and folder permissions, 855–856
 hard drive recycling and destruction, 861–862
 loss prevention, 854
data storage devices
 BitLocker and BitLocker To Go, 857–860
 file and folder permissions, 855–856
data wiping, 860–861
external hardware token, 643–644
file permissions, 560
firewall, 239–240, 309–310, 881–883. See also firewall
 IDS/IPS, 240–241
maintenance, 898
 disable AutoPlay, 899–900
 restrictive settings, 899
 service packs and patches, 900–901
mobile device
 antivirus, 772–773
 common problems and solutions, 813–815
 patching and updates, 774–775
 rooting and jailbreaking, 773–774
physical, 847–848
 locks, 848–851
 mantraps, 851–852
 protecting computers and network hardware, 852–853
 policy, 846–847, 1049
 preventive maintenance, 703
troubleshooting
 common problems and solutions, 920–922
 six-step process, 917–920
updates, 794–795
UTM (unified threat management), 242
web, 889–890. See also web security
 wireless, WPA2, 908–909
workstation, 862
 local password management, 866–867
 passwords, 866–868
 securing a computer, 862–863
 securing BIOS, 863–864
 securing Windows login, 864–866
selecting
adapter cards, 81–86
 BIOS/UEFI, 110–112
case, 68–69
case fan, 69–70
CPU (central processing unit), 73–74
external storage, 89–92
hard drive, 75–76
HDD (hard disk drive), 75–76
media reader, 87–89
motherboard, 72–73
NIC (network interface card), 291–292
optical storage devices, 76–77
RAM (random access memory), 75
semiconductor storage, 34–35
serial bus, 1049
serial connection, printer, 422
serial port, 125
server, 1049
 authentication, 231–232
 DHCP, 225
 DNS, 225–227
email, 388
endpoint management, 242–243
file, 227–228
load balancer, 232
mail, 230
print, 227, 459
 hardware, 460–461
 purposes, 459–460
 software, 460
problems with traditional deployment, 483–484
proxy, 230–231
syslog, 232
virtualization, 484–486
web, 228–229
service pack, 900–901
services
 cloud computing, 491–492
 IaaS (Infrastructure as a Service), 492–493
 ITaaS (IT as a Service), 493
 PaaS (Platform as a Service), 492
 SaaS (Software as a Service), 492
Services console, 621–622
sfc command, 677
SFTP (SSH File Transfer Protocol), 228
sharing
 local resources, 688–689
 printers, 689–690
 operating system settings, 456
 Windows, 456–458
 wireless, 458
shell, 786–787
shoulder surfing, 845, 1050
shutdown command, 677–678, 805
sideloading, 738
signature file updates, 834–835
signature pad, 51
SIM card, 370, 1050
SIMM (single inline memory module), 25, 1050
single point of failure, 1050
Siri, 762, 1051
S.M.A.R.T. (self-monitoring analysis and reporting
technology), 1009
smart card reader, 51–52, 362–363
smart home market, 221
smartphone/s, 339–340, 734, 1051. See also
 Android; Bluetooth; cellular; iOS
 airplane mode, 380–382
 Android, 390, 734
 features, 340
 iOS, 391, 735
 mobile payments, 755–756
 passcode, 763
 iOS Erase Data option, 765
 iOS GUI, 765–766
 restrictions on failed login attempts, 764
 SD (Secure Digital) card, 370
 SIM card, 370
 Wi-Fi calling, 752–755
 SmartScreen Filter, 896–897, 1051
 smartwatch, 342, 374–375, 1051
 SMF (single-mode fiber), 261–262, 1051
 SMTP (Simple Mail Transfer Protocol), 389, 1050
 social engineering techniques, 842–845
 socket/s, 18
 AMD, 73
 Intel, 73
 LGA (land grid array), 19
 PGA (pin grid array), 18
 ZIF (zero insertion force), 18
 SODIMM (small outline DIMM), 26, 363–365, 1051
 software, 5
 closed source, 734
 firewall, 883–884
 license, 958
 open source, 734
 preventive maintenance, 165
 print servers, 460
 SCADA (Supervisory Control and Data Acquisition), 233
 source code, 734
 something for nothing attack, 845, 1052
 SOP (standard operating procedures), 944–945
 sound adapter, 28, 1052
 sound card, 82, 84
 Sound control panel, 604
 source code, 734
 source port number, 213
 southbridge, 16, 1052
 spam, 845, 1052
 speakers and headphones, 58
 spear phishing, 844, 1052
 speed
clock, 1015
memory, 26
printer, 418
processor, 74, 118
SPF (Sender Policy Framework), 284
SPI (stateful packet inspection), 911, 912, 1053
spike, 116
spoofing attack, 839, 1052
SPS (standby power supply), 116, 1053
spyware, 831, 1053
SRAM (static RAM), 23, 1053
SSD (solid-state drive), 34–35, 347, 1052
SSH (Secure Shell), 701, 1049
SSHD (solid-state hybrid drive), 35, 1052
SSID (service set identifier), 303
SSL (Secure Sockets Layer), 389, 1049
SSO (single sign-on), 1051
standard formatting, 1053
standards
802.11, 217–218
cellular communication, 379–380
display, 144–145
IEEE, 1030
starting, Windows Control Panel, 570
static IP address, 280–281, 1053
storage. See also external storage; HDD (hard disk drive); optical storage devices
cloud, 166, 580, 1015
controller, 81, 84
media reader, selecting, 87–89
RAID (redundant array of independent disks)
characteristics, 122
double parity, 124
levels, 124–125
mirroring, 124
parity, 124
striping, 124
use cases, 123
straight-tip connector, 216–263
striping, 124
strong passwords, 867–868
stylus, 49
subnet mask, 278, 1054
subtractive manufacturing, 444
Success Audit, 1054
sudo command, 803
surge protector, 116
swap partition, 776
switch, 236, 237, 1054
symmetric encryption, 904, 1054
SYN flood attack, 839, 1054
Sync Center, 579–580
synchronization, mobile device, 392
connection types, 396–397
enabling, 393–396
types of data to synchronize, 392
syntax, command, 655–656
syslog server, 232, 1054
Sysprep tool, 527, 1035
system administration, 615
Administrative Tools control panel, 615–616
Component Services, 620–621
computer management, 616–617
DxDiag, 631–632
Event Viewer, 617–618
Local Users and Groups, 618–620
MMC (Microsoft Management Console), 630–631
Performance Monitor, 620
Print Management, 623
Registry, 628, 629
Editor, 629–630
bives, 628
keys, 628
Services console, 621–622
System Configuration, 625
Boot tab, 626
General tab, 626
Services tab, 627
Startup tab, 627
Tools tab, 628
System Information tool, 624–625
Windows Memory Diagnostics, 623–624
System Configuration, 625
Boot tab, 626
General tab, 626
Services tab, 627
Startup tab, 627
Tools tab, 628
System control panel, 596–600
System Information tool, 1055
tablet, 341, 1055

tailgating, 845

TAP (passive test access point), 253

tape drive, 33

Task Manager, 170, 555

functions, 556

Windows 7, 556–558

taskkill command, 675–676

tasklist command, 674–675

TCO (total cost of ownership), 419–420, 1057

TCP (Transmission Control Protocol), 209–211, 1056

TCP/IP

attack

botnet, 838

DDoS, 838

DNS poisoning, 838–839

DoS, 838

man-in-the-middle, 839

protecting against, 840

replay, 839

spoofing, 839

SYN flood, 839

model, 208–209. See also protocol/s

TCP (Transmission Control Protocol), 209–211

UDP (User Datagram Protocol), 211–212

technician’s toolkit, 58

Telnet, 701

temperature and humidity, 164–165

testing, printers, 451–452

tethering, 207, 357, 1056

thermal printer, 442–443, 465–467, 1056

Thunderbolt 1 or 2, 40

Thunderbolt 3, 40

Time Machine, 788–789

token-based lock, 850, 1056

tone generator and probe, 252, 1056

toner cartridge, 432–433, 1056

tool/s. See also commands; Disk Management utility; system administration; Windows, Control Panel

command line

`cmd`, 651

`PowerShell`, 650

data migration, 516

`PCmover Express`, 517–518

USMT, 516

`Windows Easy Transfer`, 517

deployment, 648–649

diagnostic, 171

DxDiag, 631–632

Internet reference, 183

Local Security Policy, 868–869

account policy security settings, 869–871

exporting the local security policy, 872–873

local policies security settings, 871–872

Local Users and Groups, 618–620, 875–877

multimeter, 249

network, 248

advanced problems and solutions, 326–327

cable tester, 251

crimmer, 250

loopback adapter, 251

taps, 253

tone generator and probe, 252

Wi-Fi analyzer, 252–253

wire cutters, 249

wire strippers, 249

personal reference, 182–183

punchdown, 250

Sysprep, 527

System Information, 624–625

Windows Run Utility, 682–683

topology, VLAN (virtual LAN), 201–202, 287

touchscreen, 48, 350–351, 1057

TPM (Trusted Platform Module), 111, 1057

tracert command, 698

tractor feed, 1057

transfer roller, 433–434

transistor, 1057

transport layer protocols, 208

triple channel technology, memory, 27

Trojan horse, 829–830

troubleshooting, 165–166. See also preventive maintenance

and communication skills, 933

CPU (central processing unit), 179–180

data storage device, 175–176

displays, 180–182
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB (universal serial bus)</td>
<td>1091</td>
</tr>
<tr>
<td>UAC (User Account Control)</td>
<td>577–578, 1059</td>
</tr>
<tr>
<td>Ubuntu</td>
<td>779–781, 790</td>
</tr>
<tr>
<td>UDP (User Datagram Protocol)</td>
<td>211–212</td>
</tr>
<tr>
<td>UEFI (Unified Extensible Firmware Interface)</td>
<td>14, 105, 108–109, 1058</td>
</tr>
<tr>
<td>configuration</td>
<td>110</td>
</tr>
<tr>
<td>security</td>
<td>110–112</td>
</tr>
<tr>
<td>unattended installation</td>
<td>529–530, 1058</td>
</tr>
<tr>
<td>unbuffered memory</td>
<td>75, 1058</td>
</tr>
<tr>
<td>uninstalling applications</td>
<td>646–647</td>
</tr>
<tr>
<td>Unix</td>
<td>776, 796–798, 1058</td>
</tr>
<tr>
<td>up-arrow key</td>
<td>653–654</td>
</tr>
<tr>
<td>update</td>
<td></td>
</tr>
<tr>
<td>BIOS firmware</td>
<td>111–113</td>
</tr>
<tr>
<td>device driver</td>
<td>705</td>
</tr>
<tr>
<td>firmware</td>
<td>705–706</td>
</tr>
<tr>
<td>NIC (network interface card)</td>
<td>292–293</td>
</tr>
<tr>
<td>operating system</td>
<td>793</td>
</tr>
<tr>
<td>signature file</td>
<td>834–835</td>
</tr>
<tr>
<td>Windows</td>
<td>610, 704–705, Windows 10, 549</td>
</tr>
<tr>
<td>upgrading</td>
<td></td>
</tr>
<tr>
<td>CPU (central processing unit)</td>
<td>149–150</td>
</tr>
<tr>
<td>data storage devices</td>
<td>150–151</td>
</tr>
<tr>
<td>motherboard</td>
<td>147–148</td>
</tr>
<tr>
<td>peripheral device</td>
<td>151–152</td>
</tr>
<tr>
<td>power supply</td>
<td>178–179</td>
</tr>
<tr>
<td>printers</td>
<td></td>
</tr>
<tr>
<td>advanced problems and solutions</td>
<td>475</td>
</tr>
<tr>
<td>common problems and solutions</td>
<td>472–474</td>
</tr>
<tr>
<td>six-step process</td>
<td>469–472</td>
</tr>
<tr>
<td>security</td>
<td></td>
</tr>
<tr>
<td>common problems and solutions</td>
<td>920–922</td>
</tr>
<tr>
<td>six-step process</td>
<td>917–920</td>
</tr>
<tr>
<td>test theory to determine the cause</td>
<td>171–172, 321, 402</td>
</tr>
<tr>
<td>verify full functionality</td>
<td>173–174, 322, 403–404</td>
</tr>
<tr>
<td>Windows</td>
<td>advanced problems and solutions, 718–722</td>
</tr>
<tr>
<td>common problems and solutions, 713–718</td>
<td></td>
</tr>
<tr>
<td>six-step process</td>
<td>709–713</td>
</tr>
<tr>
<td>Troubleshooting control panel</td>
<td>612</td>
</tr>
<tr>
<td>TV tuner card</td>
<td>28</td>
</tr>
<tr>
<td>twisted-pair cable</td>
<td>137, 255–257</td>
</tr>
<tr>
<td>category ratings</td>
<td>257–258</td>
</tr>
<tr>
<td>wire schemes</td>
<td>258–259</td>
</tr>
<tr>
<td>type command</td>
<td>664</td>
</tr>
</tbody>
</table>
user account/s, 576–578
 creating, 880
 Credential Manager, 578–579
 deleting, 881
 groups, managing, 877–879
 managing, 873–875
 Sync Center, 579–580
User and Account control panel, 576–577
 Credential Manager, 578–579
 Sync Center, 579–580
 UAC (User Account Control), 577–578
user checklists, 945
USMT (User State Migration Tool), 516, 1059
UTM (unified threat management), 242, 1058

V

V (volt), 6
variables
 environmental, 973
 script, 972
VDSL (very high-speed DSL), 204
VGA (Video Graphics Array), 41, 128–129
video adapter, 28
video ports and cables
 DisplayPort, 38–39
 DVI (Digital Visual Interface), 38
 HDMI (High-Definition Multimedia Interface), 30–39
 RCA, 41–42
 Thunderbolt 1 or 2, 40
 Thunderbolt 3, 40
 VGA (Video Graphics Array), 41
virtual assistant, 760–761
virtual memory, 599–600, 1060
virtual printer, 444–445, 1060
virtualization, 482–483, 1060
 client-side, 486–487, 1014
 CPU (central processing unit), 118
 hypervisor, 484, 488–489
 server, 484–486
 VM (virtual machine), requirements, 489–490
virus, 829, 1060
VM (virtual machine), 484, 489–490, 1060
voice recognition scanner, 54
volatile memory, 20, 105
voltage, 13, 1060
 power supply, 114–115
 spike, 116
VPN (virtual private network), 200, 699–700, 756–757, 1060
 Android, 757–758
 iOS, 758–760
VR (virtual reality), 54, 56, 343, 375, 1060

W

W (watt), 113, 1061
WAN (wide area network), 199–200, 1061
water cooling, 121–122, 1061
wearables
 AR (augmented reality), 342–343, 375
 fitness trackers, 342, 374
 smartwatch, 342, 374–375
 VR (virtual reality), 343, 375
web security, 889–890
 browser
 ActiveX filtering, 897–898
 clearing your history, 894
 extensions and plugins, 890–891
 InPrivate mode, 894
 pop-up blocker, 895–896
 privacy settings, 893
 settings, 891
 SmartScreen Filter, 896–897
 InPrivate browsing, 893–894
 password manager, 891
 secure connections and valid certificates, 891–892
web server, 228–229
webcam, 51, 352, 1061
while loop, 976
whitelisting, 316–317
Wi-Fi, 1061
 analyzer, 252–253
 antenna connector, 352
 best practices, 905–907
 calling, 752–754
 Android, 754
 iOS, 754–755
 laptop connections, 358–359
 mobile device connections, 378–379
Windows
batch script, 969
BitLocker, 548
boot sequence, 533–534
command line
 cmd, 651
 PowerShell, 650
comparing versions, 548–550
Compatibility Mode, 645–646
Control Panel, 567, 569–570, 576, 588–589
 Administrative Tools, 615–616
 Appearance and Personalization, 575–576
 Categories view, 571–572
 Clock and Region, 575, 604–608
 Default Programs, 610–611
 Display settings, 590–593
Ease of Access, 575
File Explorer Options, 613–615
Hardware and Sound, 574, 601–604
Network and Internet, 573–574, 580–590
Power Options, 593–596
Programs, 574, 609–610
starting, 570
System and Security, 573–574
System control panel, 596–600
Troubleshooting, 612
 User Accounts, 574–575, 576–580
corporate features, 548
Defender, 647. See also firewall
desktop, 547, 550
 personalizing, 550–552
 Start menu, 553
taskbar, 553–555
Disk Management utility, 633–634
 adding arrays, 636–637
 disk error-checking, 639
 disk optimization, 637–639
 drive status, 634–635
 mounting a drive, 635–636
EFS (Encrypting File System), 548
File Explorer, 547, 558
directory structure, 562–563
file attributes, 566–567
file extensions, 565–566
folders, 562
 Program Files folder, 564
Run as Administrator, 560
subfolders, 562
System folder, 564
This PC, 559–560
Users folder, 563
Windows libraries, 560–562
Firewall, 884–886
 with Advanced Security, 888
 configuring exceptions, 886–887
HomeGroup, 588–589
Hyper-V requirements, 490
installation, 525–526
 account creation, 524–525
 clean, 533
 custom options, 526–532
 data migration, 516–518
Local Security Policy tool, 868–869
 account policy security settings, 869–871
 exporting the local security policy, 872–873
 local policies security settings, 871–872
minimum system requirements, 512
networking
 administrative shares, 687–688
 configure a wired connection, 691–693
 domain, 684
 file sharing, 687
HomeGroup, 685
 mapping a drive, 683–684, 686
 network printer mapping, 690–691
 printer sharing, 689–690
 setting a network profile, 695–696
 sharing local resources, 688–689
 verifying connectivity, 696
wireless, 698–699
workgroup, 684
in-place upgrade, 532
printer sharing, 456–458
Registry, 628, 629
 Editor, 629–630
 hives, 628
 keys, 628
Run utility, 682–683
Safe mode, 1048
Settings app, 568–569, 590
startup modes, 534–536
startup programs, 703
system administration, 615
Component Services, 620–621
computer management, 616–617
DxDiag, 631–632
Event Viewer, 617–618
Local Users and Groups, 618–620
MMC (Microsoft Management Console), 630–631
Performance Monitor, 620
Print Management, 623
Services console, 621–622
System Configuration. See System Configuration
System Information tool, 624–625
Windows Memory Diagnostics, 623–624
Task Manager, 555, 556
troubleshooting
advanced problems and solutions, 718–722
common problems and solutions, 713–718
six-step process, 709–713
updates, 610, 704–705
Windows 7, Task Manager, 556–558
Windows 10, 549
Windows 11, 510
wire cutters, 249
wire strippers, 249
wired network, 296
wireless network, 296
AP (access point), 237–238
basic setup, 303–306
firmware updates, 909–910
laptop
Bluetooth, 355–356
cellular WAN, 357
Wi-Fi, 358–359
printer
connection, 424
sharing, 458
protocols
Bluetooth, 218, 383–385
NFC, 219–220
RFID, 219
WLAN, 217–218
Zigbee, 220
Z-Wave, 220–221
security modes, 908–909
Windows, settings, 698–699
wireless NIC (network interface card), 28
WLAN (wireless LAN), 198
WMN (wireless mesh network), 198–199, 306–307
work environment, preventive maintenance,
164–165
workgroup, 684, 1063
working with customers
active listening, 935–936
angry customer, tips for helping, 941
inexperienced customer, tips for helping, 941
keeping the call focused, 939
know, relate, and understand, 934–935
knowledgeable customer, tips for helping, 940
netiquette, 938–939
operational procedures, 941
professional behavior, 936–937
rude customer, tips for helping, 940
tips for hold and transfer, 937–938
workstation security, 862
local password management, 866–867
passwords, 866–868
securing a computer, 862–863
securing BIOS, 863–864
securing Windows login, 864–866
worm, 831, 1064
WPA2, 908–909
WPS (Wi-Fi Protected Setup), 909
WWAN (wireless wide area network), 581, 1063

X-Y
xcopy command, 667–668
xD, 88

Z
zero-day, 839–840, 1064
ZIF (zero insertion force), 18
Zigbee, 220, 1064
zombie, 1064
Z-Wave, 220–221, 1064