

The author and publisher have taken care in the preparation of this book, but they make no express or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising from the use of the information or programs contained herein.

© Copyright 2009 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Managers: Tara Woodman, Ellice Uffer

Cover design: IBM Corporation

Associate Publisher: Greg Wiegand
Marketing Manager: Kourtnaye Sturgeon
Acquisitions Editor: Katherine Bull
Publicist: Heather Fox
Development Editor: Julie Bess
Managing Editor: Kristy Hart
Designer: Alan Clements
Project Editor: Jovana San Nicolas-Shirley
Copy Editor: Gayle Johnson
Indexer: Lisa Stumpf
Compositor: TnT Design
Proofreader: Water Crest Publishing
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc

Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United
States, other countries, or both: IBM, the IBM logo, IBM Press, Lotus Notes, and Tivoli.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both. UNIX is a registered trademark of The Open Group in the United States and other countries. ITIL is a regis-
tered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S.
Patent and Trademark Office. IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunica-
tions Agency, which is now part of the Office of Government Commerce. Other company, product, or service names may be
trademarks or service marks of others.

Library of Congress Cataloging-in-Publication Data
Klosterboer, Larry.
Implementing ITIL change and release management / Larry Klosterboer.

p. cm.
ISBN 978-0-13-815041-9
1. Configuration management. 2. Information technology—Management. I. Title. II. Title: Implementing Information Tech-
nology Infrastructure Library change and release management.

QA76.76.C69K65 2008
004.068’8—dc22

2008040421

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-13-815041-9
ISBN-10: 0-13-815041-9

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.

First printing December 2008

27

C H A P T E R 3

Defining Change and
Release Management
Processes

The heart of ITIL is in processes and the disciplines surrounding them. Thus, it should be no sur-
prise that early in the planning for change and release management, you need to begin defining
processes. Although version 3 of the IT Infrastructure Library defines the processes in more
detail than any previous version, it still doesn’t describe exactly which process every organization
should use. This is because one of the best practices is that each organization should define its
process somewhat differently.

This chapter starts with a generic description of how to define any process at four levels.
After you understand the basics, the ITIL suggested high-level processes are introduced, fol-
lowed by specific suggestions about how to customize your own change and release management
processes.

How to Define a Process
Like most specialties, process engineering uses its own vocabulary. The words aren’t complex or
difficult, but they are used in a specific context and must be understood that way. To work effec-
tively with process engineers, you must know this vocabulary. This section introduces the impor-
tant terms and concepts used to define a process. Figure 3.1 shows the steps required to build out
a process.

Figure 3.1 Five basic steps are needed to create a process.

Start with Process Flow
At the onset of defining your process, you need to grapple with what is meant by a process.
Although more technical definitions are available, the working definition of a process is a
sequence of defined actions that produces a measurable and desirable outcome. Because a
process is a sequence, the place to start with definition normally is a flow diagram of some sort.
Whether you favor a “line of visibility” diagram that delineates the different roles in the process
or a simple flowchart that captures only the steps, your organization should adopt a standard way
of defining a process flow. Look around for other process documents, and copy whatever style is
in use for your organization.

Creating a workable process flow requires a solid starting point. Fortunately, the ITIL ser-
vice transition book provides a solid start. In Chapter 4 of that book, you’ll find some excellent
sample process flows that can serve as a starting point. If your organization already has change
management and/or release management processes documented, those can also serve as good ref-
erence points.

After establishing a starting point flow, the next step is to look back at the requirements you
documented. Look very closely at the process requirements, and see if any of them dictate that
you change your starting flow in specific ways. It would be unlikely at this high level, but occa-
sionally a requirement will cause you to add a step to an overall flow.

Be sure not to get too detailed in your high-level flow. A good rule of thumb is that the top
level should fit on a single page. Most of the process requirements will be around the details
rather than the high-level process. Those details will be worked out eventually, but you have the

28 Chapter 3 Defining Change and Release Management Processes

Work Instructions

Procedures

Policies

Subprocesses

Process Flow

greatest chance of success if you start with a single sheet that all your stakeholders can agree is
the top level of the process.

After you have used existing starting points and your own judgment to define a high-level
process flow, it is time to validate it. Take the single sheet to your sponsor, your stakeholders, and
the project team. Get their ideas and incorporate them. Be sure to keep everyone aligned with the
scope of your project. This is not a second round of requirements gathering, but an attempt to
meet the requirements and scope you have already defined. It is important, however, that the
high-level flow meets everyone’s understanding of the project scope, because you are about to
base many hours of work on this single page.

Frequently one or more activities on the high-level flow will be worthy of a separate flow
by themselves. In the language of the process engineer, these are subprocesses. Identify these
subprocesses as you validate the high-level flow, and work with the stakeholders and project team
members to build these flows as well. As before, constrain each to a single sheet of paper, and
focus on getting the flow documented in a consistent format. The subprocesses do not need to be
especially detailed at this point, but they should provide enough information to allow later defini-
tion of the details.

As soon as all the flows are complete, you have the basic outline for all the process work.
From these simple flows, you will determine which policies need to be defined, how many proce-
dures will be written, and ultimately how many work instructions need to be documented.

Identify Needed Policies
The next term to understand is policy. A policy is an axiom or rule that is always true because your
organization says it is true. Change and release management abound with policies, and throughout
this chapter, you’ll find many examples of policies that you may want to adopt for your process
work. For example, many organizations insist on a policy that no IT component or service can
change without an authorized change record. Policies are declarative statements about how things
should work, and many times these policies result directly from the requirements.

When the high-level process flow and subprocess flows are done, the next step is to read the
requirements and determine where policies will be needed. One clue is that policies often are
associated with making a decision. Look at the decisions on your process flows, and determine
how that decision will be made. Is there a policy statement to be defined? Unless the decision is
very simple, you will probably want to provide some guidance in how it is to be made, and that’s
the perfect reason to create a policy.

Not all policies are large and encompassing. Instead of a single grand policy on change
approvals, let the process flow guide you in creating smaller policies on change advisory board
(CAB) membership, voting rules, handling of emergencies, and so forth. Try to keep the policies
focused on one area at a time, and later you can combine them into a single policy document if
that’s more convenient to manage.

Create enough policies that no important decision or action is left to the imagination of one
person. That is when you know enough policies have been defined.

How to Define a Process 29

Create Procedures
Procedures are the meat of the process definition. They are the narrative description of the step-
by-step actions that someone will take to follow the process. Although the high-level flow pro-
vides a good overview, the procedures are the details of how to actually execute the process.

Procedures should be detailed enough that two people executing the same process step will
always get the same result. They do not need to be so detailed that two people following them will
use exactly the same method to get the desired result. Finding the correct level of detail requires
an understanding of your organization and the skill level of the people who will be assuming the
change and release management roles.

Procedures normally are documented as a numbered list of the specific steps that need to be
taken. Not every activity in the process and subprocess flows will require a procedure to be writ-
ten, but many of those steps will. If the outcome of an activity on the high-level flow is critical, or
if that activity will involve a lengthy set of steps, document that activity with a procedure.

Often procedures are written into the same document as the high-level flows. This is a good
format, because it keeps all process documentation in one place and is easier to maintain. On the
other hand, if you have many procedures and policies, keeping everything in a single document
can result in a very long document that is difficult to review and read. Some organizations choose
to keep their process and procedure documentation online in a web page or wiki. That format
lends itself much more readily to having each procedure and policy written as a separate short
document that can be indexed from a process home page.

Document Work Instructions Where Needed
Sometimes procedures can get too lengthy and cumbersome, or the same set of steps needs to be
repeated in multiple procedures. This is where a work instruction can be useful. A work instruc-
tion is a very specific bit of guidance on how to achieve a specific task within the process domain.
For example, in your change management process, you may have several procedures that start
with someone looking for a specific change record in an online tool. If the tool has been in your
organization for a while and everyone knows how to look up records, you can probably just
include a single step in every procedure that says “Look up the change record.” On the other
hand, if the tool is new, you might want to document exactly how to look up a record. You could
do that in one place in a work instruction and refer to it in your procedures.

Normally, work instructions are tool-specific and procedures are not. This is a good prac-
tice, because it allows you to change tools in the future without having to rewrite your procedure
documents by simply creating additional work instructions. If this is important to your organiza-
tion, you will have general procedures with many more work instructions.

Keep the work instructions at a higher level than a tool user guide, however. They should be
used only to describe specific uses of a tool where many options might be available. For example,
your release management tool might support a variety of approaches to documenting a release
policy. You could write a work instruction that directs people to always follow a very specific
method. This ensures that people within your release management team always use the tool in the
same way regardless of the latitude offered by the software publisher.

30 Chapter 3 Defining Change and Release Management Processes

Standard ITIL Process Activities
Now that you understand how to define and document a process, it is time to think specifically
about change and release management. As stated in Chapter 1, “Change and Release Manage-
ment: Better Together,” these processes are intimately linked. We will consider them separately
here because in all likelihood, you will be defining them separately, but throughout this section as
well as the rest of the book, examples will point out the linkages between these process areas.

Change Management
Almost every organization has a change management process in place already, whether or not it is
aligned with ITIL best practices. Surprisingly, most change management processes are similar at
the highest level. This happens because there is really a basic flow that works for almost every-
one, and that is exactly the high level suggested by the service transition volume of ITIL. This
basic flow is shown in Figure 3.2.

Standard ITIL Process Activities 31

Change Life Cycle

Request a
change

Document
RFC

Evaluate
RFC

Schedule
Change

Implement
Change

Review
Change

Figure 3.2 Change management follows a standard high-level flow.

The change flow begins with someone proposing a change. This person is called the
change requester, and his or her proposal is called a request for change (RFC). The RFC is docu-
mented using a set of standard fields, most likely in a change management tool, but sometimes
just on paper.

After the RFC has been documented, the evaluation stage begins. Evaluation can be very
simple or somewhat elaborate. The most basic form of evaluation is someone looking at the doc-
umented RFC and deciding whether it makes sense to proceed with making the proposed change.
Some organizations split this decision into a technical evaluation, aimed at making sure the
change is technically feasible, and a business evaluation, designed to assess the business risks
versus the potential rewards of the change. Throughout this book, you’ll learn much more about
ways to evaluate RFCs to determine whether to enact the changes they propose.

Assuming the evaluation is positive, the change gets woven into the operational schedule.
This can be a complex task, depending on the size of the environment and the number of changes
happening near the same time. You must consider the urgency of making the change, any avail-
able maintenance windows for the environment being changed, other business activities needing
the resources that are being changed, and several other factors. The change is eventually placed
into the operational schedule, known in ITIL terms as the forward schedule of change (FSC).
Normally a change is scheduled with a specific start date and time, as well as a specific end date
and time, so that others will know exactly when the change will be finished.

After scheduling, the next major step in the process flow is implementation. Some preparation
activities may take place before the start date and time, but normally implementation starts when the
schedule indicates that it should. A change may be implemented successfully, or the implementation
may fail. Failed changes may be retried, or perhaps the change may be backed out to restore the envi-
ronment to its state before the change was attempted. Besides the actual change itself, the status of
the change as either successful or failed is the most important aspect of implementation.

After implementation is complete, the process concludes with a review of the change. If the
change is successful, this review may be very brief. For failed changes, the review normally
includes much more detail, including a recovery plan to indicate how the change will be retried
later with a greater likelihood of success.

Based on their needs, different organizations will emphasize different aspects of this basic
cycle. I’ve worked with organizations that separated evaluation into separate steps of evaluation and
then approval. I’ve seen organizations that did hardly any review, even of failed changes. Frequently
the request and documentation are combined into a single step. It isn’t necessary that you have the
same number of high-level steps as ITIL, but it is very important that you think through each part of
this high-level flow and determine how they will be handled by your change management process.

Release and Deployment Management
The official name for release management in the service transition book gives some indication of
the emphasis of the process—it is called “Release and Deployment Management.” The emphasis
is very much on the rollout of new or significantly modified services into the environment.

You should be aware of two levels of activity when thinking of the release management
high-level flow. One set of activities occurs once per service and makes high-level plans for the
entire life cycle of the service. This macro-level planning involves determining the overall busi-
ness goals of the service, managing risks associated with the service, and evolving the architec-
ture and design for the services. Some of the key issues settled at the higher level include how
many releases or projects will be used to initially deploy the service, how often the service will be
enhanced with new features, what cost model will be used to fund the service, and when to retire
the service. This higher level involves strategic thinking and long-range planning.

At the same time, each service will be broken into a series of individual projects called
releases. Each release adds incremental function to the overall service and represents a separately
deployed part of the service. At the lower level, release management is about orchestrating these
releases through a cycle that includes planning, building, testing, and deploying the necessary
components. Normally each release is a project, involving a project team, a scope, a design, and a
project plan of its own.

ITIL would say that the top level is called “service design” and is described in the book by
that name, and that the lower level is properly called “release and deployment management.” For
the purposes of your implementation, however, it is almost impossible to achieve the lower level
without a solid understanding of the higher level, so you should plan to include both in your
release management process document, as shown in Figure 3.3.

32 Chapter 3 Defining Change and Release Management Processes

Figure 3.3 Release management spans both service design and service transition.

At the lower level, release management is much like traditional IT project planning. Actu-
ally, many organizations leverage the same process for both project management and deployment
management because they are so similar. If your project management process covers a full life
cycle, including planning, designing, building, testing, deployment, early support, and transition
to full support, you can also use it for the lower-level process of release management.

Change Management and Operations
Now that you understand the basics of creating a process and what the standard ITIL documents
offer, it is time to look more deeply at the change and release management processes. This section
covers change management, and the next section discusses release management. The goal is to
provide an overview of some of the more interesting process issues that you will undoubtedly
face. The issues are not necessarily resolved for you, but at least they are outlined so that you can
begin to find the best resolutions for your organization.

The First Policy
When beginning to define change management in a more formal way, every organization strug-
gles with the question of exactly which activities need to be controlled with a change record.
After establishing the highest-level flow, you should try to get agreement about the policy of
when a change record is needed. This is the first, and perhaps most important, policy to define.

In most organizations, data center changes are already under change control. Moving a server
to a new rack, deploying a major business application, modifying firewall rules, and decommission-
ing a network appliance are all activities that normally are subject to change control. But why does
everyone agree that data center activities need to be controlled? It is really because of the potential
impact of something going wrong. Perhaps a good policy to use is that if the change could cause a
serious negative consequence, it must be controlled through the change-management process.

Change Management and Operations 33

For each release package

For each release

Release Policy

Plan Define Build Test Deploy

Release Plan Portfolio Mgt

That is a great working definition, but it is too ambiguous to be of direct use. What seems
like a serious negative consequence to one person might seem like a minor inconvenience to
another. For example, swapping the 21-inch display attached to my desktop PC with a 14-inch
display probably wouldn’t seem like it could have serious consequences to the CIO or most of the
IT organization. To me, however, the results of even a successful swap would drastically reduce
my screen size, and thus my ability to multitask, create illustrations, and monitor events all on the
same screen. Therefore, I would interpret this swapping of monitors as having serious negative
consequences. So would a change record be necessary?

Consider a weekly batch job that updates data in your customer support database. The same
job runs each month, picking up data from several sources and then integrating that data into the
database that all your customer support representatives use to respond to customer calls. Cer-
tainly if this job fails in such a way that the database is scrambled, you will have serious negative
consequences. But the job has run for years now and has never failed. Does your policy call for a
change record to control this job? Sometimes data changes require significant controls, and other
times they might be considered standard operations and require no additional controls.

Spend some time at the beginning of the change control process considering as many dif-
ferent scenarios as possible and creating a clear, concise, and helpful statement of when a change
record is needed and when it is not. This first policy will probably need to be amended from time
to time, but making it comprehensive early on will save effort later in the implementation project.

It is worth taking some time to document the scenarios you use in creating this policy.
Those scenarios will be valuable when it comes time to validate your policy and to test the change
management process flow.

Documenting the Request for Change (RFC)
The content of a request for change (RFC) is the second issue you will face. Many people assume
that whatever tool they choose will determine the contents of the RFC, but this is a mistake. Cer-
tainly all tools will come with a comprehensive list of fields that can become part of every RFC,
but all good tools also allow you to customize these fields, and you should certainly take advan-
tage of this flexibility.

Most organizations will adopt common basic fields for their RFC content. A number; a
title; information about the requester, sponsor, and implementer; scheduled and actual dates and
times; and some indication of status are all essential. You will probably also want to have infor-
mation about the approvals necessary for the change and some implementation information such
as an implementation plan, a plan for backing out if necessary, and perhaps a plan to verify that
the change is successful.

The best practices contained in ITIL indicate that each change should reference one or
more configuration items. These are entries from your configuration management database
(CMDB), and each change should record exactly how the configuration of your environment will
be modified by the change being proposed. If you already have a CMDB with well-structured
identifiers for each item, you’re in great shape, and you will want to be able to attach one or more

34 Chapter 3 Defining Change and Release Management Processes

of these identifiers to an RFC. On the other hand, if you haven’t yet implemented a CMDB, you
still need some way to allow the requester to specify which parts of the environment he or she is
changing. This will be very important in assessing the technical impact of the change.

Some organizations like to include fields in every RFC to help understand the compliance
implications of the change. Often these are simple check boxes or flags that indicate whether the
proposed change will affect audit posture. You may also need something more complex, such as
pointers to a separate compliance management tool. The requirements you documented will
guide how much you need to customize the fields that make up the RFC.

Reviews and Impact Assessment
The number and types of reviews needed is another significant process issue to explore. Some
organizations choose a single review that focuses on the question of whether a change should be
made. Other organizations like to use separate technical and business reviews to focus on the
technical and business risks and implications of the change. Your process definition should con-
sider the number and order of the reviews and should assign appropriate roles for each review.
The names of the people reviewing each RFC might change, but the roles should be consistent
from review to review.

Part of the review process should involve assessing the impact of each proposed change.
Impact assessment consists of two parts—technical analysis followed by risk management. The
technical analysis phase determines what components of the overall IT environment might be
affected by the proposed change. For example, if the change calls for rebooting a specific server,
it would be natural to understand which business applications depend on that server. Those appli-
cations could potentially be impacted by the change. The technical analysis would also determine
whether those applications could be switched to other servers or whether an outage of the appli-
cations would be certain with a reboot of the server. Having a complete and accurate CMDB
makes technical assessment of a proposed change much simpler.

The second phase of impact assessment deals with risk analysis. This involves using your
imagination and technical understanding to guess what could go wrong with the proposed
change. Consider the possible ways the change could fail, and build a two-dimensional matrix.
The first axis in the matrix is the likelihood of any potential failure happening, and the second
axis is the damage that would result if that failure actually happened. In the server rebooting
example, for instance, it is possible that a hard disk failure might keep the server from restarting.
Given the reliability of modern disk drives, there is a low likelihood of this happening, but the
impact of the server’s not restarting might be quite significant. This kind of analysis could be
repeated with all the potential failures for the change, and the aggregation of risk data will help
assess whether the change should be attempted.

Approval, Authorization, or Both
One of the key questions to be determined in your change management process is to what extent
you will require changes to be approved before they are implemented. Many different models for
approval exist, and the one you choose should allow sufficient control without undue bureaucracy.

Change Management and Operations 35

Experience suggests that you might want to use two different kinds of permission—
approval and authorization. Approval grants you permission to invest time (and therefore money)
to plan a change and is essentially a business approval. For something like a major release of a
business application, this might involve a team of programmers or the purchase of a vendor soft-
ware package. For hardware implementation, approval may be required to purchase a new router
or to invest in architect time to define a new SAN layout. Any change that requires investment to
get ready for implementation might require an approval to make that investment.

The second kind of permission is authorization. Whereas approval grants permission to
expend resources, authorization grants permission to alter the production environment and thus is
a technical or IT approval. Consider again the implementation of a major business application.
Many months might pass while the developers are working on building and testing the applica-
tion. Approval was granted to spend money during those months, but there is no guarantee that
the results of the effort are safe for deployment. Authorization is an acknowledgment that the test-
ing of the application has been sufficient and that plans for implementation have considered and
mitigated the risks involved.

You should spend a significant part of your change management process work on this ques-
tion of approvals and authorizations. You will probably determine that some changes require only
authorization and that others require both authorization and approval. Be sure to define a policy
that will help everyone understand which kinds of permission are required for which changes.

Post-Implementation Review
ITIL recommends that you review each change after implementation, and it gives you some gen-
eral ideas of what to look for in that review. That guidance is sound as far as it goes, but you will
certainly need to fill in many details concerning how post-implementation reviews will be con-
ducted for your organization.

The central purpose of reviewing a change is to learn how to improve your future imple-
mentations. We learn more from our failures than our successes, and this is also true in change
management. The changes that fail have the most to teach us about future success and thus should
be thoroughly reviewed. Understanding the reason for a failure can make future changes more
successful. This is why each failed change should be reviewed.

Your process definition should include the specifics of how post-implementation reviews
will work. Identify the roles to be involved, the potential actions to be taken, and the ways in
which discovered information will be fed back into future changes. If these reviews are new to
your organization, you need to specify even more closely how they will be conducted to ensure
that they provide the maximum value.

There are many more topics to understand when documenting change management. The
topics common to nearly every implementation are covered throughout this book, but some top-
ics may be more specific, so you need to deal with them on your own. In dealing with any issue in
process definition, the best resolution always comes from forming agreements between your
stakeholders and sponsors. Introduce the issue, generate lots of communication around it, and

36 Chapter 3 Defining Change and Release Management Processes

then proceed with the resolution that makes the most sense to everyone involved. Remember that
policies, procedures, and processes can always be modified later to be even more useful. In the
continuous service improvement book, ITIL suggests that each process document be reviewed at
least annually to find potential improvements, so don’t be too determined to get everything per-
fect on the first pass.

Release Management and the Project Life Cycle
Almost every organization has a change management process, but very few have a specifically
named and defined release management process. Unless your organization does a lot of software
development, you may not have given much thought to release management. Whereas many of
the issues described earlier for change management are familiar to you, those described here for
release management may cover new ground. This doesn’t, of course, make the issues any less
important. You will soon discover that release management is every bit as important as change
management, and that together change and release management form the core of how new ser-
vices get introduced to your environment. This section covers the highest-level process issues in
release management.

Release Unit Identification
Just as change management begins with defining which activities will require a change record,
release management begins with documenting which components will be released simultane-
ously. ITIL defines a release unit as the set of components that get upgraded, installed, or changed
all at the same time. As a simple example, often the next version of a business application
requires new versions of middleware software products. This means that the application and the
middleware form a release unit, because they are deployed at the same time.

There are many reasons to form a release unit. Vendor prerequisites might determine
release units, as in the business application example. Sometimes purchasing considerations
define a release unit, such as when new PCs come with a new operating system already installed.
The PC and operating system become a single release unit. Project management often determines
release units based on an analysis of the risks versus rewards of implementing multiple parts of a
complete project at the same time. In some cases, there are valid architectural reasons to create a
release unit out of multiple components. Whatever the reason, when your organization deter-
mines that multiple components should be joined for the sake of introducing a new service, you
have defined a release unit.

You should try to create release units along consistent lines. Some people find that releases
based on business application environments work well. They change out the operating system,
middleware, and business application all at the same time as part of the release management
process. Others like to create release units based on technology types, creating a desktop PC
release consisting of bundled hardware, operating system, and standard software.

It takes a great deal of communication to create a release unit policy. It would be extremely
difficult to identify in advance every situation that might cause a release unit to be formed, so you

Release Management and the Project Life Cycle 37

should focus instead on creating some guidelines that help people decide how to best create them.
Work with the various deployment teams in your organization to understand and document these
guidelines. Ultimately, deploying two or more things at once is always more risky than deploying
only one component at a time, but most organizations find those risks worth taking in certain cir-
cumstances. Understand what those circumstances are, and document them as part of your
release unit policy.

Release Policies
As soon as you understand release units, you can begin defining some general policies
concerning release management. Most organizations find it useful to define a policy about how
many releases should be produced per year. This policy helps in IT planning activities, because
the organization can lay out the annual plans based on how many release units are active and how
many releases each of those units will go through per the policy.

Of course, the number of releases per year will most likely depend on the number and type
of components that make up the release. If a significant component of your release package is a
software product, you won’t be able to create releases more often than the software publisher pro-
duces releases. If you are bundling hardware refresh into your releases, the release cycle will
depend on how often you choose to refresh your hardware. This will lead to a release policy that
determines the frequency of releases based on the kinds of components that will make up the
release unit.

An alternative to defining numbers of releases is to constrain the size of releases. You can
constrain the size by either project budget or hours expended. For example, your policy might say
that each release will require less than 2,000 hours of planning, testing, and deployment. This
kind of policy ensures that your organization doesn’t attempt huge projects that have correspond-
ingly large risks. Limits of this kind will force projects to break their desired results into multiple
releases and allow your organization to stop those releases if the cost or risk of achieving all the
benefits appears too high.

Regardless of how you choose to define release policies, they are worthwhile to define.
Release policies help create consistency in your organization and tend to create deployment
projects that are roughly the same scope or size. This consistency helps you better evaluate suc-
cessful and failed projects, and you can tune your release policies to optimize the size and scope
of the projects for your organization. By creating fewer, larger releases, you will get larger
projects that run longer, consume more resources, and return more value. By optimizing toward
smaller releases, you wind up with small projects that generally return value more quickly.

Releases or Bundled Changes
Somewhere in your definition of the release management process, confusion is likely to arise
about the difference between a release and a set of bundled changes. Although these may seem
similar on the surface, they are really quite different.

38 Chapter 3 Defining Change and Release Management Processes

Normally changes are bundled as a scheduling tool. There might be three different activi-
ties that all require the mainframe to be restarted, so rather than restarting the mainframe three
separate times, these changes are bundled. All three things are done, the mainframe is restarted,
and the changes are marked as complete. This is a convenient grouping of changes that happens
one time because the schedule works out that way.

A release, on the other hand, is determined by a set of permanent policies that define
release units and release frequency. The components of the release are related to one another by
technology or business purpose, and the relationship is permanent rather than transitory.

A release might be deployed as a single change, or as a group of changes that are related to
one another. For example, if the release includes an operating system and a middleware product,
these might be deployed through two changes that take place on consecutive weekends. If the first
change fails, the second change cannot happen, because the release control process ties the two
together into a single release, and the release cannot be only partially deployed. In other words, a
release can result in a group of bundled changes, but there are perfectly legitimate reasons to
bundle changes that have nothing to do with release management.

Support and the End-of-Life Cycle
One of the key benefits of release management is that it causes an organization to think about the
entire life cycle of a release unit. Many organizations have no policies or, at best, ineffective poli-
cies, around the end of support. I’ve been involved with companies that had six or even seven sep-
arate versions of an application all being supported because they just didn’t know how to sunset
that application. A key part of the release management process definition should be a policy sur-
rounding the end of life for your releases.

Normally a release reaches end of life because a newer release replaces it. It might take
some time to fully deploy the new release, and during this time both releases will be part of the
supported environment. Your policies should take this situation into account and define how long
the older versions will be supported. Your policy might insist that each release deployment
project include the costs of supporting and then removing the old release.

In addition to the end of any specific release, your policy should consider how to define the
end of a release unit. For example, imagine that your release unit consists of a payroll application,
web server, database middleware, and common server operating system. You can define new
releases as the middleware changes or new versions of the application become available, and
each release retires the previous release. But you should also consider when you will move to a
new payroll application that requires different infrastructure and thus creates a new release unit.
If you make it an organizational policy to include this kind of long-range planning in release
management, you will be able to forecast the large number of resources required to actually
launch such a large project. This kind of complete life-cycle thinking is one of the hallmarks of a
mature release management process.

Release Management and the Project Life Cycle 39

Looking Ahead
Process definition is at the heart of ITIL. It is impossible to achieve best practices without docu-
menting what those practices will look like in your organization and training your people to use
them. In this chapter, you’ve learned about the different parts of a solid process document and
how to assemble them. Using this knowledge, you can now read the ITIL books and begin to
build your own implementation of change and release management. In the next chapter, this idea
is extended to included logical work flows, which are repeatable procedures that cover a variety
of common situations.

40 Chapter 3 Defining Change and Release Management Processes

209

Index

A
accessing legacy data, 86-87
acquiring software, tracking

versions in DML, 148
adding

data tasks to data migra-
tion plans, 58

value to new fields, legacy
data, 87-88

administrative changes, work
flows, 45

agendas, process workshops,
98-99

allocating requirements to
projects, 23-24

alternatives, evaluating
(choosing tools based on
trade studies), 81

analyzing requirements, 52
application software, soft-

ware stacks (release pack-
ages), 154-155

approval processes, change
management, 35-36

architecture, features of
change and release manage-
ment tools, 78-79

archiving aged data 90
assembling FSC, 139

automating FSC creation
process, 140

multilevel FSC for multi-
level CABs, 140-141

asset reuse repositories, 74
assigning requirements

proper roles, 52
audit posture, improving with

DML, 151
audit programs, building, 171
auditing, 169-171
authorization, processes

(change management),
35-36

authorization decisions, busi-
ness impact analysis and
CABs, 183

availability management, 207

B
balancing, requirements, 25
benefits of implementing

change and release manage-
ment, 9-10

collaboration, 11-12
confidence, 12
consistency, 11
control, 10-11

best practices for deploying
new IT processes, 105

certifying key staff,
105-106

evaluation and adjust-
ments, 107

measurements, 106-107
bundled changes, processes

(release management),
38-39

business impact analysis, 175
business impacts, 176-177
CABs, 182

authorization
decisions, 183

project decisions, 183

210 Index

scheduling decisions,
182-183

determining business
impact, 177-179

technical impacts, 176
business impacts

business impact analysis,
176-177

determining, 177-179
recording in change

records,179-181
business organization based

pilot programs, 113
business requirements, 16

C
CAB (change advisory board)

meetings, 12
CABs (change advisory

boards), 135
business impact

analysis, 182-183
capacity management, linking

to release management, 205
benefits of integration, 207
process links, 206

certifying staff for deploy-
ment of new IT processes,
105-106

change advisory board (CAB)
meetings, 12

change advisory boards. See
CABs

change aging reports, 190
change and release data,

merging, 93-95
change and release manage-

ment tools
data integration points,

75-76
features to look for, 77

architecture, 78-79
data models, 79

integration, 80
user interfaces, 77-78
work flow, 79-80

ideal tools, 76
process integration points,

74-75
tool integration points, 76

change approvers, 101
change categories

data center changes, 42
data changes, 44
documentation or adminis-

trative changes, 45
work flows, 41
workstation changes, 43

change detection and compli-
ance tools, 69-70

change evaluators, 101
change implementers, 101
change management, 6-9

control points, 166-168
integrating schedules with

release management,
141-142

measurements, 124-127
optimizing with DML, 149

consistency of
deployment, 150

helping the sunset
problem, 150-151

improving audit
posture, 151

processes, 31-32
approval and authoriza-

tion, 35-36
documenting request

for change (RFC),
34-35

policies, 33-34
post-implementation

review, 36-37
reviews and impact

assessment, 35

release management and,
6-7

business benefits of,
9-12

tools for, 67-68
change detection and

compliance tools,
69-70

dedicated change man-
agement tools, 69

integrated service man-
agement tools, 68

work flows. See work
flows

change management process,
reports, 189

change aging reports, 190
changes by lead time,

191-192
failed change reports,

190-191
change management

roles, 101
change managers, 101
change records, 126

FSC, 138
recording business

impact, 179
impact assessments and

relationships, 181
impact assessments as

data fields, 180-181
impact assessments as

text, 180
change reports, 186

change statistics, 188-189
changes by

components, 188
changes by

implementer, 187
changes by requesters,

187-188
change requesters, 101

Index 211

change reviewers, 125
change urgency, work

flows, 45
emergency changes, 45-46
long, complex changes,

47-48
normal changes, 47
urgent changes, 47

changes
linking to configuration

management, 199
benefits of integration,

201-202
data links, 201
linking processes,

200-201
linking to incident man-

agement, 202
benefits of

integration, 203
data links, 203
process links, 202-203

linking to problem man-
agement, 204-205

changes by lead time report,
191-192

choosing pilot programs,
112-114

choosing tools based on trade
studies, 80-82

CI (configuration item), 176
CMDB (configuration

management database), 34,
69, 176

collaboration, benefits of
implementing change and
release management, 11-12

comma-separated value
(CSV) files, 87

complex changes, work
flows, 47-48

compliance documentation,
167-168

compliance management, 70
component requirements, 17
components, change

reports, 188
confidence, benefits of imple-

menting change and release
management, 12

configuration items (CI), 34,
127, 176

configuration management,
linking changes to, 199

benefits of integration,
201-202

data links, 201
linking processes, 200-201

configuration management
database (CMDB), 34,
69, 176

consistency, benefits of
implementing change and
release management, 11

consistency of deployment,
optimizing change manage-
ment with DML, 150

consolidating data, 90-91
forming new data

records, 93
identifying common

keys, 91
reconciling data values, 92
tasks for, 58

contents of DML, 146
control, benefits of imple-

menting change and release
management, 10-11

control points, 164-165
controlling changes,

166-168
guidelines for, 165-166
implementing, 165

controlling changes across
control points, 166-168

converting data values, legacy
data, 88

CSV (comma-separated
value) files, 87

customer satisfaction, release
planning, 196

D
data

change and release data,
merging, 93-95

consolidating, 90-91
forming new data

records, 93
identifying common

keys, 91
reconciling data

values, 92
data audits, 170
data center changes, work

flows, 42
data changes, work flows, 44
data fields, impact assess-

ments as, 180-181
data integration points,

change and release manage-
ment tools, 75-76

data links
linking changes to config-

uration management, 201
linking changes to incident

management, 203
linking changes to prob-

lem management, 205
data migration, planning, 56

adding data tasks, 58
tasks for, 56-57
tasks for data consolida-

tion, 58
data models, features of

change and release manage-
ment tools, 79

data records, forming new, 93

212 Index

data retention policies, 89
archiving aged data, 90

data values
converting, legacy data, 88
reconciling, 92

dedicated change manage-
ment tools, 69

defining requirement priori-
ties, 22-23

Definitive Media Library.
See DML

dependencies, building, 53-55
deploying new IT processes,

best practices for, 105-107
deploying new IT products,

implementation axis
geographic implementa-

tion, 123
organizational implemen-

tation, 121-122
technology implementa-

tion, 123-124
deployment reports, release

management process,
195-196

derived requirements, 19
deriving requirements, 19-21
designing release packages,

158-160
discovering requirements,

17-19
interviews, 18
legacy projects, 19
requirements workshops,

17-18
distributed DMLs, building,

144-145
DML (Definitive Media

Library), 143
building distributed

DMLs, 144-145
contents of, 146
logical aspects of, 144

optimizing change man-
agement, 149-151

physical aspects of, 144
purpose of, 146
tracking versions

acquiring new
software, 148

lending software, 149
replacing lost

media, 149
retiring software pack-

ages, 148-149
using, 147

documentation, defining
processes, 30

documentation changes, work
flows, 45

documenting request for
change (RFC), change
management, 34-35

E
elicited requirements, 19
emergency changes, work

flows, 45-46
end-of-life cycle, processes

(release management), 39
establishing weighting, 81

choosing tools based on
trade studies, 81

estimating task sizes,
requirements, 53

evaluating
alternatives, choosing

tools based on trade
studies, 81

pilot programs, 116-117
external audits, 171

F
failed change reports,

190-191

failure of pilot programs,
117-118

features of change and release
management tools, 77

architecture, 78-79
data models, 79
integration, 80
user interfaces, 77-78
work flow, 79-80

fields, adding new values to
(legacy data), 87-88

financial management, 207
forming new data records, 93
FSC (forward schedule of

change), 135
assembling, 139

automating FSC cre-
ation processes, 140

multilevel FSC for mul-
tilevel CABs, 140-141

change records, 138
determining what informa-

tion to include in each
change, 137-138

determining which
changes to include,
135-137

versus release road
maps, 142

timing issues, 138-139

G
geographic implementation,

implementation axis, 123
geographically based pilot

programs, 112-113
guidelines

for control points, 165-166
for release package

designs, 158-160

Index 213

H
hardware, software stacks

(release packages), 157-158

I
ideal tools, change and

release management
tools, 76

identifying policies, defining
processes, 29

IMAC (Install, Move, Add,
and Change), 43

impact assessment, processes
(change management), 35

impact on business. See busi-
ness impact analysis

implementation axis, 121
geographic implementa-

tion, 123
organizational implemen-

tation, 121-122
technology implementa-

tion, 123-124
implementation problems,

130-131
implementers, changes

by, 187
implementing

control points, 165
tools, 59-61

improving audit posture (opti-
mizing change management
with DML), 151

incident management, linking
changes to, 202

benefits of integration, 203
data links, 203
process links, 202-203

incident records, 126
Information Technology

Infrastructure Library.
See ITIL

infrastructure release flow, 49

Install, Move, Add, and
Change (IMAC), 43

integrated service manage-
ment tools, 68

integrating change and
release management sched-
ules, 141-142

integrating operations
data integration points,

75-76
ideal tool, 76
process integration points,

74-75
tool integration points, 76

integration
benefits of

linking changes to
configuration manage-
ment, 201-202

linking changes
to incident
management, 203

linking changes
to problem manage-
ment, 205

linking release manage-
ment to capacity man-
agement, 207

features of change and
release management
tools, 80

integration points
data integration points,

75-76
ideal tools, 76
process integration points,

74-75
tool integration points, 76

integration project release, 50
internal audits, 171
interviews, discovering

requirements, 18

ITIL (Information
Technology Infrastructure
Library), 3

overview of, 3-4
service management life

cycle, 4-5
service operations, 6
service transitions, 5-6

ITIL volume, service man-
agement life cycle, 5

J
judging, choosing tools based

on trade studies, 82

K
keys, consolidating data, 91

L
legacy data, accessing, 86-87
legacy projects, discovering

requirements, 19
legacy systems, migrating, 85

accessing legacy data,
86-87

adding values to new
fields, 87-88

converting data values, 88
unclosed records, 88-89

lending software, tracking
versions in DML, 149

license management systems,
DML, 147

linking
changes to configuration

management, 199
benefits of integration,

201-202
data links, 201
linking processes,

200-201

214 Index

changes to incident man-
agement, 202-203

changes to problem man-
agement, 204-205

processes, 199
release management and

capacity management,
205-207

logical aspects of DML, 144

M
managing requirements,

13, 21
allocating to projects,

23-24
defining priorities, 22-23
requirements documents,

creating, 21-22
mapping tables, 92
measurements, 124, 129

change management meas-
urements, 124-127

for deployment of new IT
processes, 106-107

release management meas-
urements, 127-128

timing and productivity
measurements, 128-129

measuring pilot programs,
114-115

media, replacing lost
media (tracking versions in
DML), 149

merging change and release
data, 93

configuration items, 94-95
middleware, software stacks

(release packages), 155-156
migrating legacy systems, 85

accessing legacy data,
86-87

adding values to new
fields, 87-88

converting data values, 88
unclosed records, 88-89

N
normal changes, work

flows, 47

O
operating systems, software

stacks (release packages),
156-157

optimizing change manage-
ment with DML, 149-151

organizational implementa-
tion, implementation axis,
121-122

organizations, 100
change management

roles, 101
release management roles,

101-102
staffing roles, 102-103
training, 103

delivering training,
104-105

preparing training
materials, 103-104

P
parsers, accessing legacy

data, 86
participation, process work-

shops, 98
patch management tools, 73
physical aspects of DML, 144
pilot programs, 109-110

choosing, 112-114
business

organizations, 113
geography, 112-113
technology, 113

dealing with failure of,
117-118

evaluating, 116-117
measuring, 114-115
reasons for using, 110-112
running, 115-116

planning
projects. See project

planning
reports, release manage-

ment process, 196
policies

data retention, 89
archiving aged data, 90

defining processes, 29
processes, change man-

agement, 33-34
post-implementation review,

processes (change manage-
ment), 36-37

prioritizing requirements, 21
allocating requirements to

projects, 23-24
defining priorities, 22-23
requirements documents,

creating, 21-22
problem management, linking

changes to, 204
benefits of integration, 205
data links, 205
process links, 204

problems with implementa-
tion, 130-131

procedures, defining
processes, 30

process audits, 169-170
process flow, defining

processes, 28-29
process integration points,

change and release manage-
ment tools, 74-75

Index 215

process links
linking changes to

configuration manage-
ment, 200-201

incident management,
202-203

problem management,
204

linking release manage-
ment to capacity man-
agement, 206

process requirements, 16
process workshops, 97

agendas and purpose of,
98-99

expected workshop out-
comes, 100

participation, 98
processes

change management,
31-32

approval and authoriza-
tion, 35-36

documenting request
for change (RFC),
34-35

policies, 33-34
post-implementation

review, 36-37
reviews and impact

assessment, 35
defining, 27

documenting work
instructions, 30

identifying needed
policies, 29

procedures, creating, 30
process flow, 28-29

linking, 199
release and deployment

management, 32-33

release management, 37
release policies, 38
release unit identifica-

tion, 37-38
releases or bundled

changes, 38-39
support and the end-of-

life cycle, 39
subprocesses, 29

productivity measure-
ments, 129

project decisions, business
impact analysis and
CABs, 183

project management reports,
193-194

project planning, 51
building complete project

plans, 62-63
building dependencies,

53-55
completing the first draft,

54-55
data migration, 56

tasks for, 56-57
tasks for data consoli-

dation, 58
estimating task sizes, 53
requirements, turning into

tasks, 51-53
promotion and deployment

tools, 72-73
provisioning tools, 72

Q
quality management

reports, 194

R
reconciling data values, 92
recording business impact in

change records, 179
impact assessments and

relationships, 181
impact assessments as data

fields, 180-181
impact assessments as

text, 180
records, unclosed records

(legacy data), 88-89
regulations, release manage-

ment, 168-169
relationships, impact assess-

ments and, 181
release and deployment man-

agement, processes, 32-33
release engineers, 102
release management, 6-8

change management and,
6-7

business benefits of,
9-12

integrating schedules with
change management,
141-142

linking to capacity man-
agement, 205

benefits of
integration, 207

process links, 206
measurements, 127-128
processes, 37

release policies, 38
release unit

identification, 37-38
releases or bundled

changes, 38-39
support and end-of-life

cycle, 39
regulations, 168-169

216 Index

tools for, 70
asset reuse

repositories, 74
patch management

tools, 73
promotion and deploy-

ment tools, 72-73
software control

tools, 72
work flow tools, 71

work flows, 48
infrastructure release

flow, 49
integration project

release, 50
software development

flow, 48-49
release management process,

reports, 195
deployment reports,

195-196
planning reports, 196

release management roles,
101-102

release managers, 102
release packages, 74

guidelines for design,
158-160

software stacks, 153-154
application software,

154-155
hardware, 157-158
middleware, 155-156
operating systems,

156-157
using, 161

release policies, processes
(release management), 38

release reports, 192
project management

reports, 193-194
quality management

reports, 194

system engineering
reports, 193

release road maps, versus
FSC, 142

release unit identification,
processes (release manage-
ment), 37-38

releases, processes (release
management), 38-39

replacing lost media, tracking
versions in DML, 149

reports
change management

process, 189
change aging

reports, 190
changes by lead time,

191-192
failed change reports,

190-191
change reports, 186

change statistics,
188-189

changes by compo-
nents, 188

changes by imple-
menter, 187

changes by requesters,
187-188

release management
process, 195

deployment reports,
195-196

planning reports, 196
release reports, 192

project management
reports, 193-194

quality management
reports, 194

system engineering
reports, 193

request for change (RFC),
processes (change manage-
ment), 34-35

requesters, changes by,
187-188

requirements, 13, 51
allocating to projects,

23-24
analyzing, 52
balancing, 25
choosing tools based on

trade studies, 81
derived requirements, 19
deriving, 19-21
discovering, 17-19

interviews, 18
legacy projects, 19
requirements work-

shops, 17-18
elicited requirements, 19
estimating task sizes, 53
prioritizing and

managing, 21
allocating requirements

to projects, 23-24
defining priorities,

22-23
requirements docu-

ments, creating, 21-22
reasons for having, 13-14
turning into tasks, 51-53
types of, 15

business
requirements, 16

component require-
ments, 17

process
requirements, 16

system requirements,
16-17

requirements documents,
creating, 21-22

Index 217

requirements workshops,
17-18

retiring software
optimizing change man-

agement with DML,
150-151

tracking versions in DML,
148-149

reviews, processes (change
management), 35-37

RFC (request for change),
documenting (change man-
agement), 34-35

roles
change management

roles, 101
release management

roles, 101-102
staffing roles, 102-103

running pilot programs,
115-116

S
schedules

integrating change and
release management,
141-142

vendor release
schedules, 160

scheduling decisions, busi-
ness impact analysis and
CABs, 182-183

scoring, choosing tools based
on trade studies, 82

security management, 208
service architects, 102
service continuity manage-

ment, 207
service design volume, ser-

vice management life
cycle, 4

service-level
management, 207

service management life
cycle, ITIL, 4-5

service management
suites, 68

service managers, 102
service operation volume,

service management life
cycle, 4

service operations, ITIL, 6
service strategy volume,

service management life
cycle, 4

service transition volume,
service management life
cycle, 4

service transitions, 7
ITIL, 5-6

software, tracking versions
in DML

acquiring new
software, 148

lending software, 149
retiring software packages,

148-149
software configuration man-

agement systems, 146
software control tools, 72
software development flow,

48-49
software stacks, release

packages, 153-154
application software,

154-155
hardware, 157-158
middleware, 155-156
operating systems,

156-157
staffing roles, 102-103
statistics, change reports,

188-189
subprocesses, 29
support, processes (release

management), 39

system engineering
reports, 193

system requirements, 16-17

T
tasks

for acquisition, imple-
menting tools, 59-60

for customization, imple-
menting tools, 60-61

for data consolidation, 58
for data migration, 56-57
data tasks, adding to data

migration plan, 58
estimating task sizes,

requirements for, 53
for planning, implement-

ing tools, 59
for training, implementing

tools, 61
turning requirements into,

51-53
teams. See organizations
technical impacts, business

impact analysis, 176
technology-based pilot

programs, 113
technology implementation,

implementation axis,
123-124

testing release package
designs, 159-160

text, impact assessments
as, 180

timing and productivity
measurements, 128-129

timing issues, FSC, 138-139
tool integration points,

change and release manage-
ment tools, 76

218 Index

tools
asset reuse repositories, 74
change detection and com-

pliance tools, 69-70
for change management,

67-70
choosing based on trade

studies, 80-82
implementing, 59

tasks for acquisition,
59-60

tasks for customization,
60-61

tasks for planning, 59
tasks for training, 61

integrated service manage-
ment tools, 68-69

patch management
tools, 73

promotion and deployment
tools, 72-73

provisioning tools, 72
for release management,

70
asset reuse

repositories, 74
patch management

tools, 73
promotion and deploy-

ment tools, 72-73
software control

tools, 72
work flow tools, 71

software control tools, 72
work flow tools, 71

traceability, 23
tracking versions in DML

acquiring new
software, 148

lending software, 149
replacing lost media, 149
retiring software packages,

148-149

training materials, preparing,
103-104

training organizations, 103
delivering training,

104-105
preparing training materi-

als, 103-104

U
unclosed records, legacy data,

88-89
urgent changes, work

flows, 47
user interfaces, features of

change and release manage-
ment tools, 77-78

V
vendor release

schedules, release package
designs, 160

W
weighting, establishing, 81
work flow tools, 71
work flows, 41

change categories, 41
data center changes, 42
data changes, 44
documentation or

administrative
changes, 45

workstation
changes, 43

change urgency, 45
emergency changes,

45-46
long, complex changes,

47-48
normal changes, 47
urgent changes, 47

features of change and
release management
tools, 79-80

release management, 48
infrastructure release

flow, 49
integration project

release, 50
software development

flow, 48-49
work instructions, defining

processes, 30
workshops, process work-

shops. See process work-
shops

workstation changes, work
flows, 43

	Chapter 3 Defining Change and Release Management Processes
	How to Define a Process
	Standard ITIL Process Activities
	Change Management and Operations
	Release Management and the Project Life Cycle
	Looking Ahead

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

