
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138102104
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138102104
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138102104

T-SQL Fundamentals

Itzik Ben-Gan

T-SQL Fundamentals
Published with the authorization of Microsoft Corporation by:

Pearson Education, Inc.

Copyright © 2023 by Itzik Ben-Gan.
All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-13: 978-0-13-810210-4

ISBN-10: 0-13-810210-4

Library of Congress Control Number: 2023930537

ScoutAutomatedPrintCode

Trademarks
Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from
the use of the programs accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Editor-in-Chief

Brett Bartow

Executive Editor

Loretta Yates

Associate Editor

Charvi Arora

Development Editor

Songlin Qiu

Managing Editor

Sandra Schroeder

Senior Project Editor

Tracey Croom

Copy Editor

Scout Festa

Indexer

Erika Milllen

Proofreader

Jen Hinchliffe

Technical Editor

Lilach Ben-Gan

Editorial Assistant

Cindy Teeters

Cover Designer

Twist Creative, Seattle

Compositor

codeMantra

http://www.pearson.com/permissions
http://www.microsoft.comon
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
mailto:corpsales@pearsoned.com

Pearson’s Commitment to Diversity,
Equity, and Inclusion
3earson is dedicated to creating bias�free content that reÁects the diversity of all learners. We
embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender,
socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver
opportunities that improve lives and enable economic mobility. As we work with authors to
create content for every product and service, we acknowledge our responsibility to dem-
onstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their
potential through learning. As the world’s leading learning company, we have a duty to help
drive change and live up to our purpose to help more people create a better life for themselves
and to create a better world.

Our ambition is to purposefully contribute to a world where:

■ Everyone has an equitable and lifelong opportunity to succeed through learning.

■ Our educational products and services are inclusive and represent the rich diversity of
learners.

■ 2ur educational content accurately reÁects the histories and experiences of the learners
we serve.

■ Our educational content prompts deeper discussions with learners and motivates them
to expand their own learning (and worldview).

While we worN hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

■ Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

To Dato,
To live in hearts we leave behind,
Is not to die.

—THOMAS CAMPBELL

Contents at a Glance

Acknowledgments xxi
About the Author xxiii
Introduction xxiv

CHAPTER 1 Background to T-SQL querying and programming 1

CHAPTER 2 Single-table queries 27

CHAPTER 3 Joins 117

CHAPTER 4 Subqueries 149

CHAPTER 5 Table expressions 177

CHAPTER 6 Set operators 211

CHAPTER 7 T-SQL for data analysis 231

CHAPTER 8 Data PRdifiFatiRn 293

CHAPTER 9 Temporal tables 343

CHAPTER 10 Transactions and concurrency 367

CHAPTER 11 SQL Graph 409

CHAPTER 12 Programmable objects 491

Appendix: Getting started 527

Index 547

ix

Contents

Acknowledgments . xxi

About the Author . xxiii

Introduction . xxiv

Chapter 1 Background to T-SQL querying and programming 1
Theoretical background . 1

SQL . 2

Set theory . 3

Predicate logic . 4

The relational model . 5

Types of database workloads .11

SQL Server architecture . 13

2n�premises and cloud 5D%0S Áavors . 13

SQL Server instances . 15

Databases . 16

Schemas and objects . 19

&reating tables and defining data integrity . 20

Creating tables . 21

Defining data integrity . 22

Conclusion . 26

Chapter 2 Single-table queries 27
Elements of the SELECT statement . 27

The FROM clause . 29

The WHERE clause . 31

The GROUP BY clause . 32

The HAVING clause . 36

The SELECT clause . 37

The ORDER BY clause .42

The TOP and OFFSET-FETCH filters .44

A quick look at window functions . 49

x Contents

Predicates and operators . 50

CASE expressions . 53

NULLs . 56

The GREATEST and LEAST functions . 62

All-at-once operations . 63

WorNing with character data .64

Data types .64

Collation . 66

Operators and functions . 68

The LIKE predicate . 81

WorNing with date and time data . 83

Date and time data types .84

Literals .84

WorNing with date and time separately . 88

Filtering date ranges .90

Date and time functions .90

Querying metadata . 103

Catalog views . 104

Information schema views . 105

System stored procedures and functions . 105

Conclusion . 106

Exercises . 107

Exercise 1 . 107

Exercise 2 . 107

Exercise 3 . 108

Exercise 4 . 108

Exercise 5 . 109

Exercise 6 . 109

Exercise 7 . 109

Exercise 8 . 110

Exercise 9 . 110

Exercise 10 .111

Contents xi

Solutions .111

Exercise 1 .111

Exercise 2 . 112

Exercise 3 . 112

Exercise 4 . 112

Exercise 5 . 113

Exercise 6 . 114

Exercise 7 . 115

Exercise 8 . 115

Exercise 9 . 116

Exercise 10 . 116

Chapter 3 Joins 117
Cross joins . 117

SQL-92 syntax . 118

SQL-89 syntax . 118

Self cross joins . 119

Producing tables of numbers . 120

Inner joins . 121

SQL-92 syntax . 121

SQL-89 syntax . 122

Inner join safety . 123

More join examples . 124

Composite joins . 124

Non-equi joins . 125

Multi-join queries . 127

Outer joins . 128

Outer joins, described . 128

Including missing values . 130

Filtering attributes from the nonpreserved side
of an outer join . 132

Using outer joins in a multi-join query . 133

Using the COUNT aggregate with outer joins 136

Conclusion . 137

xii Contents

Exercises . 137

Exercise 1-1 . 137

Exercise 1-2 . 138

Exercise 2 . 139

Exercise 3 . 140

Exercise 4 . 140

Exercise 5 . 141

Exercise 6 . 141

Exercise 7 . 141

Exercise 8 . 142

Exercise 9 . 142

Solutions . 143

Exercise 1-1 . 143

Exercise 1-2 . 143

Exercise 2 . 144

Exercise 3 . 144

Exercise 4 . 145

Exercise 5 . 145

Exercise 6 . 145

Exercise 7 . 146

Exercise 8 . 146

Exercise 9 . 147

Chapter 4 Subqueries 149
Self-contained subqueries . 149

Self-contained scalar subquery examples . 149

Self-contained multivalued subquery examples 151

Correlated subqueries . 155
The EXISTS predicate . 158

Returning previous or next values . 159

Using running aggregates . 160

Dealing with misbehaving subqueries . 161
NULL trouble . 161
Substitution errors in subquery column names 163

Conclusion . 166

Contents xiii

Exercises . 166

Exercise 1 . 166

Exercise 2 . 166

Exercise 3 . 167

Exercise 4 . 167

Exercise 5 . 168

Exercise 6 . 168

Exercise 7 . 169

Exercise 8 . 169

Exercise 9 . 170

Exercise 10 . 170

Solutions . 170

Exercise 1 . 170

Exercise 2 . 170

Exercise 3 . 171

Exercise 4 . 171

Exercise 5 . 172

Exercise 6 . 172

Exercise 7 . 172

Exercise 8 . 173

Exercise 9 . 173

Exercise 10 . 174

Chapter 5 Table expressions 177
Derived tables . 177

Assigning column aliases . 179

Using arguments . 181

Nesting . 181

Multiple references . 182

Common table expressions . 183

Assigning column aliases in CTEs . 184

Using arguments in CTEs . 185

Defining multiple &TEs . 185

Multiple references in CTEs . 186

Recursive CTEs . 186

xiv Contents

Views . 188

Views and the ORDER BY clause . 190

View options . 192

Inline table-valued functions . 196

The APPLY operator . 197

Conclusion .200

Exercises . 201

Exercise 1 . 201

Exercise 2-1 . 201

Exercise 2-2 .202

Exercise 3-1 .202

Exercise 3-2 .203

Exercise 4 .203

Exercise 5-1 .203

Exercise 5-2 .204

Exercise 6-1 .205

Exercise 6-2 .205

Solutions .206

Exercise 1 .206

Exercise 2-1 .206

Exercise 2-2 .206

Exercise 3-1 .207

Exercise 3-2 .207

Exercise 4 .207

Exercise 5-1 .208

Exercise 5-2 .208

Exercise 6-1 .209

Exercise 6-2 .209

Chapter 6 Set operators 211
The UNION operator . 212

The UNION ALL operator . 213

The UNION (DISTINCT) operator . 213

Contents xv

The INTERSECT operator . 214

The INTERSECT (DISTINCT) operator . 215

The INTERSECT ALL operator . 215

The EXCEPT operator . 217

The EXCEPT (DISTINCT) operator . 218

The EXCEPT ALL operator . 219

Precedence .220

Circumventing unsupported logical phases . 221

Conclusion .223

Exercises .223

Exercise 1 .223

Exercise 2 .223

Exercise 3 .224

Exercise 4 .225

Exercise 5 .225

Exercise 6 .226

Solutions .227

Exercise 1 .227

Exercise 2 .227

Exercise 3 .228

Exercise 4 .228

Exercise 5 .229

Exercise 6 .230

Chapter 7 T-SQL for data analysis 231
Window functions . 231

Ranking window functions .234

Offset window functions .237

Aggregate window functions .242

The WINDOW clause .244

Pivoting data .246

Pivoting with a grouped query .248

Pivoting with the PIVOT operator .249

xvi Contents

Unpivoting data . 251

Unpivoting with the APPLY operator .253

Unpivoting with the UNPIVOT operator .255

Grouping sets .256

The GROUPING SETS subclause .258

The CUBE subclause .258

The ROLLUP subclause .258

The GROUPING and GROUPING_ID functions 260

Time series .262

Sample data .263

The DATE_BUCKET function .266

Custom computation of start of containing bucket268

Applying bucket logic to sample data .270

Gap filling .275

Conclusion .280

Exercises .280

Exercise 1 .280

Exercise 2 . 281

Exercise 3 .282

Exercise 4 .282

Exercise 5 .282

Exercise 6 .283

Exercise 7 .284

Exercise 8 .285

Solutions .285

Exercise 1 .285

Exercise 2 .286

Exercise 3 .286

Exercise 4 .286

Exercise 5 .287

Exercise 6 .288

Exercise 7 .289

Exercise 8 .290

Contents xvii

Chapter 8 Data modification 293
Inserting data .293

The INSERT VALUES statement .293

The INSERT SELECT statement .295

The INSERT EXEC statement .296

The SELECT INTO statement .297

The BULK INSERT statement .298

The identity property and the sequence object.298

Deleting data .307

The DELETE statement .308

The TRUNCATE statement .309

DELETE based on a join . 310

Updating data . 311

The UPDATE statement . 313

UPDATE based on a join . 314

Assignment UPDATE .316

Merging data . 317

Modifying data through table expressions . 321

0odifications with TOP and OFFSET-FETCH . 324

The OUTPUT clause .326

INSERT with OUTPUT . 326

DELETE with OUTPUT . 328

UPDATE with OUTPUT . 329

MERGE with OUTPUT . 330

Nested DML . 331

Conclusion .333

Exercises .333

Exercise 1 .333

Exercise 2 .334

Exercise 3 .334

Exercise 4 .334

Exercise 5 .336

Exercise 6 .336

xviii Contents

Solutions .337

Exercise 1 .337

Exercise 2 .338

Exercise 3 .339

Exercise 4 .340

Exercise 5 .340

Exercise 6 . 341

Chapter 9 Temporal tables 343
Creating tables . 344

Modifying data .348

Querying data .353

Conclusion .360

Exercises .360

Exercise 1 .360

Exercise 2 .360

Exercise 3 . 361

Exercise 4 .362

Solutions .362

Exercise 1 .362

Exercise 2 .364

Exercise 3 .365

Exercise 4 .366

Chapter 10 Transactions and concurrency 367
Transactions .367

Locks and blocking .370

Locks . 371

Troubleshooting blocking .373

Isolation levels .380

The READ UNCOMMITTED isolation level . 381

The READ COMMITTED isolation level .382

The REPEATABLE READ isolation level .384

The SERIALIZABLE isolation level .386

Contents xix

Isolation levels based on row versioning .387

Summary of isolation levels .394

Deadlocks .394

Conclusion .397

Exercises .397

Exercise 1 .397

Exercise 2 . 400

Exercise 3 .407

Chapter 11 SQL Graph 409
Creating tables . 410

Traditional modeling . 411

Graph modeling . 417

Querying data .438

Using the MATCH clause .438

Recursive queries .450

Using the SHORTEST_PATH option .454

SQL Graph querying features that are still missing 471

Data modification considerations .474

Deleting and updating data .474

Merging data. .477

Conclusion .480

Exercises . 481

Exercise 1 . 481

Exercise 2 .482

Exercise 3 .483

Exercise 4 .483

Solutions . 484

Exercise 1 . 484

Exercise 2 .485

Exercise 3 .487

Exercise 4 .488

Cleanup .490

xx Contents

Chapter 12 Programmable objects 491
Variables . 491

Batches .494

A batch as a unit of parsing .494

Batches and variables .495

Statements that cannot be combined in the same batch495

A batch as a unit of resolution .496

The GO n option .496

Flow elements .497

The IF . . . ELSE Áow element .497

The WHILE Áow element .498

Cursors .500

Temporary tables .505

Local temporary tables .505

Global temporary tables .507

Table variables .508

Table types .509

Dynamic SQL . 510

The EXEC command . 511

The sp_executesql stored procedure . 511

Using PIVOT with Dynamic SQL . 512

Routines . 513

User�defined functions . 514

Stored procedures . 515

Triggers . 517

Error handling . 521

Conclusion .525

Appendix: Getting started 527

Index 547

xxi

Acknowledgments

A number of people contributed to making this book a reality, either directly or indi-
rectly, and deserve thanks and recognition. It’s certainly possible I omitted some names
unintentionally, and I apologize for this ahead of time.

To Lilach: You’re the one who makes me want to be good at what I do. Besides being
my inspiration in life, you always take an active role in my books, helping to review the
text for the first time. In this booN, you tooN a more official technical editing role, and I
can’t appreciate enough the errors you spotted, and the many ideas and suggestions for
improvements.

To my siblings, Mickey and Ina: Thank you for the constant support and for accepting
the fact that I’m away.

To Davide Mauri, Herbert Albert, Gianluca Hotz, and Dejan Sarka: Thanks for your
valuable advice when I reached out asking for it.

To the editorial team at Pearson and related vendors. Loretta Yates, many thanks for
being so good at what you do and for your positive attitude! Thanks to Charvi Arora for all
your hard work and effort. Also, thanks to Songlin Qiu, Scout Festa, Karthik Orukaimani,
and Tracey Croom for sifting through all the text and making sure it’s polished.

To my friends from Lucient, Fernando G. Guerrero, Herbert Albert, Fritz Lechnitz, and
many others. We·ve been worNing together for over two decades, and it·s been quite a
ride!

To members of the Microsoft SQL Server development team, Umachandar Jayachan-
dran (UC), Conor Cunningham, Kevin Farlee, Craig Freedman, Kendal Van Dyke, Derek
Wilson, Davide 0auri, %ob Ward, %ucN Woody, and I·m sure many others. ThanNs for
creating such a great product, and thanks for all the time you spent meeting with me
and responding to my emails, addressing my questions, and answering my requests for
clarification.

To $aron %ertrand, who besides being one of the most active and prolific S4/ Server
pros I know, does an amazing job editing the sqlperformance.com content, including my
articles.

To Data Platform MVPs, past and present: Erland Sommarskog, Aaron Bertrand, Hugo
.ornelis, 3aul White, $leMandro 0esa, Tibor .aras]i, Simon Sabin, Denis 5e]niN, Tony
Rogerson, and many others—and to the Data Platform MVP lead, Rie Merritt. This is a
great program that I’m grateful for and proud to be part of. The level of expertise of this

http://sqlperformance.com

xxii Acknowledgments

group is amazing, and I’m always excited when we all get to meet, both to share ideas
and just to catch up at a personal level.

Finally, to my students: Teaching about T-SQL is what drives me. It’s my passion.
ThanNs for allowing me to fulfill my calling and for all the great questions that maNe me
seek more knowledge.

xxiii

About the Author

ITZIK BEN-GAN is a leading authority on T-SQL, regularly teaching, lecturing, and writing
on the subject. He has delivered numerous training events around the world focused
on T-SQL Querying, Query Tuning, and Programming. He is the author of several books
including T-SQL Fundamentals, T-SQL Querying, and T-SQL Window Functions. Itzik has
been a Microsoft Data Platform MVP (Most Valuable Professional) since 1999.

xxiv

Introduction

This booN walNs you through your first steps in T�S4/ �also Nnown as Transact-SQL),
which is the Microsoft SQL Server dialect of the ISO/IEC and ANSI standards for SQL.

You’ll learn the theory behind T-SQL querying and programming and how to develop
T-SQL code to query and modify data, and you’ll get a brief overview of programmable
objects.

Although this book is intended for beginners, it’s not merely a set of procedures for
readers to follow. It goes beyond the syntactical elements of T-SQL and explains the logic
behind the language and its elements.

Occasionally, the book covers subjects that might be considered advanced for read-
ers who are new to T-SQL; therefore, you should consider those sections to be optional
reading. If you feel comfortable with the material discussed in the book up to that point,
you might want to tackle these more advanced subjects; otherwise, feel free to skip
those sections and return to them after you gain more experience.

Many aspects of SQL are unique to the language and very different from other pro-
gramming languages. This book helps you adopt the right state of mind and gain a true
understanding of the language elements. You learn how to think in relational terms and
follow good SQL programming practices.

The booN is not version specific� it does, however, cover language elements that were
introduced in recent versions of S4/ Server, including S4/ Server ����. When I discuss
language elements that were introduced recently, I specify the version in which they
were added.

%esides being available as an on�premises, or box, Áavor, S4/ Server is also available
as cloud�based Áavors called $]ure S4/ Database and $]ure S4/ 0anaged Instance. The
code samples in this booN are applicable to both the box and cloud Áavors of S4/ Server.

To complement the learning experience, the book provides exercises you can use to
practice what you learn. I cannot emphasize enough the importance of working on those
exercises, so make sure not to skip them!

Introduction xxv

Who Should Read This Book

This book is intended for T-SQL developers, database administrators (DBAs), business
intelligence (BI) practitioners, data scientists, report writers, analysts, architects, and SQL
Server power users who just started working with SQL Server and who need to write
queries and develop code using T-SQL.

This book covers fundamentals. It’s mainly aimed at T-SQL practitioners with little or
no experience. With that said, several readers of the previous editions of this booN have
mentioned that—even though they already had years of experience—they still found
the booN useful for filling in gaps in their Nnowledge.

This book assumes that you are familiar with basic concepts of relational database
management systems.

Organization of This Book

This book starts with a theoretical background to T-SQL querying and programming in
Chapter 1, laying the foundation for the rest of the book, and provides basic coverage of
creating tables and defining data integrity. The booN covers various aspects of querying
and modifying data in Chapters 2 through 8, and holds a discussion of transactions and
concurrency in Chapter 10. In Chapter 9 and Chapter 11 the book covers specialized top-
ics including temporal tables and SQL Graph. Finally, the book provides a brief overview
of programmable objects in Chapter 12.

Here’s a list of the chapters along with a short description of the content in each chapter:

■ Chapter 1, “Background to T-SQL querying and programming,” provides the
theoretical background for SQL, set theory, and predicate logic. It examines
relational theory, describes SQL Server’s architecture, and explains how to create
tables and define data integrity.

■ Chapter 2, “Single-table queries,” covers various aspects of querying a single
table by using the SELECT statement.

■ Chapter 3, “Joins,” covers querying multiple tables by using joins, including cross
joins, inner joins, and outer joins.

■ Chapter 4, “Subqueries,” covers queries within queries, otherwise known as
subqueries.

■ Chapter 5, “Table expressions,” covers derived tables, Common Table Expressions
(CTEs), views, inline table-valued functions (iTVFs), and the APPLY operator.

xxvi Introduction

■ Chapter 6, “Set operators,” covers the set operators UNION, INTERSECT, and EXCEPT.

■ Chapter 7, “T-SQL for data analysis,” covers window functions, pivoting, unpivoting,
working with grouping sets, and handling time-series data.

■ &hapter 8, ´Data modification,µ covers inserting, updating, deleting, and merging
data.

■ Chapter 9, “Temporal tables,” covers system-versioned temporal tables.

■ Chapter 10, “Transactions and concurrency,” covers concurrency of user connec-
tions that work with the same data simultaneously; it covers transactions, locks,
blocking, isolation levels, and deadlocks.

■ Chapter 11, “SQL Graph,” covers modeling data using graph-based concepts such as
nodes and edges. It includes creating, modifying, and querying graph-based data.

■ Chapter 12, “Programmable objects,” provides a brief overview of the T-SQL
programming capabilities in SQL Server.

■ The book also provides an appendix, “Getting started,” to help you set up your
environment, download the book’s source code, install the TSQLV6 sample data-
base, start writing code against SQL Server, and learn how to get help by working
with the product documentation.

System Requirements

The appendix, “Getting started,” explains which editions of SQL Server 2022 you can use to
work with the code samples included with this book. Each edition of SQL Server might have
different hardware and software requirements, and those requirements are described in the
product documentation, under “Hardware and Software Requirements for Installing SQL
Server 2022,” at the following URL: https://learn.microsoft.com/en-us/sql/sql-server/install/
hardware-and-software-requirements-for-installing-sql-server-2022. The appendix also
explains how to work with the product documentation.

If you’re connecting to Azure SQL Database or Azure SQL Managed Instance, hard-
ware and server software are handled by Microsoft, so those requirements are irrelevant
in this case.

For the client tool to run the code samples against SQL Server, Azure SQL Database,
and Azure SQL Managed Instance, you can use either SQL Server Management Studio
(SSMS) or Azure Data Studio (ADS). You can download SSMS at https://learn.microsoft.
com/en-us/sql/ssms. You can download Azure Data Studio at https://learn.microsoft.com/
en-us/sql/azure-data-studio.

https://learn.microsoft.com/en-us/sql/sql-server/install/hardware-and-software-requirements-for-installing-sql-server-2022
https://learn.microsoft.com/en-us/sql/sql-server/install/hardware-and-software-requirements-for-installing-sql-server-2022
https://learn.microsoft.com/en-us/sql/ssms
https://learn.microsoft.com/en-us/sql/ssms
https://learn.microsoft.com/en-us/sql/azure-data-studio
https://learn.microsoft.com/en-us/sql/azure-data-studio

Introduction xxvii

Code Samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All source code, including exercises and solutions, can
be downloaded from the following webpage:

MicrosoftPressStore.com/TSQLFund4e/downloads

)ollow the instructions to download the TS4/)undamentals<<<<00DD.]ip file,
where YYYYMMDD reÁects the last update date of the source code.

Refer to the appendix, “Getting started,” for details about the source code.

Errata & Book Support

We·ve made every effort to ensure the accuracy of this booN and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

MicrosoftPressStore.com/TSQLFund4e/errata

If you discover an error that is not already listed, please submit it to us at the
same page.

For additional book support and information, please visit
MicrosoftPressStore.com/Support

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Stay in Touch

/et·s Neep the conversation going� We·re on Twitter: http://twitter.com/MicrosoftPress.

http://MicrosoftPressStore.com/TSQLFund4e/downloads
http://MicrosoftPressStore.com/TSQLFund4e/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

1

C H A P T E R 1

Background to T-SQL querying
and programming

You’re about to embark on a journey to a land that is like no other—a land that has its own set of
laws. If reading this booN is your first step in learning Transact�S4/ �T�S4/�, you should feel liNe

$lice³Must before she started her adventures in Wonderland.)or me, the Mourney has not ended�
instead, it·s an ongoing path filled with new discoveries. I envy you� some of the most exciting
discoveries are still ahead of you!

I’ve been involved with T-SQL for many years: teaching, speaking, writing, and consulting about it.
T�S4/ is more than Must a language³it·s a way of thinNing. In my first few booNs about T�S4/, I·ve
written extensively on advanced topics, and for years I have postponed writing about fundamentals.
This is not because T-SQL fundamentals are simple or easy—in fact, it’s just the opposite. The apparent
simplicity of the language is misleading. I could explain the language syntax elements in a superficial
manner and have you writing queries within minutes. But that approach would only hold you back in
the long run and make it harder for you to understand the essence of the language.

$cting as your guide while you taNe your first steps in this realm is a big responsibility. I wanted
to make sure that I spent enough time and effort exploring and understanding the language before
writing about its fundamentals. T-SQL is deep; learning the fundamentals the right way involves much
more than just understanding the syntax elements and coding a query that returns the right output.
You need to forget what you know about other programming languages and start thinking in terms
of T-SQL.

Theoretical background

SQL stands for Structured Query Language. SQL is a standard language that was designed to query
and manage data in relational database management systems (RDBMSs). An RDBMS is a database
management system based on the relational model (a semantic model for representing data), which in
turn is based on two mathematical branches: set theory and predicate logic. Many other programming
languages and various aspects of computing evolved pretty much as a result of intuition. In contrast, to
the degree that S4/ is based on the relational model, it is based on a firm foundation³applied math-
ematics. T-SQL thus sits on wide and solid shoulders. Microsoft provides T-SQL as a dialect of, or an
extension to, S4/ in S4/ Server³its on�premises 5D%0S Áavor, and in $]ure S4/ and $]ure Synapse
$nalytics³its cloud�based 5D%0S Áavors.

2 CHAPTER 1 Background to T-SQL querying and programming

Note The term Azure SQL collectively refers to three different cloud offerings: Azure SQL
Database, Azure SQL Managed Instance, and SQL Server on Azure VM. I describe the differ-
ences between these offerings later in the chapter.

This section provides a brief theoretical background about SQL, set theory and predicate logic, the
relational model, and types of database systems. Because this book is neither a mathematics book nor
a design/data-modeling book, the theoretical information provided here is informal and by no means
complete. The goals are to give you a context for the T-SQL language and to deliver the key points that
are integral to correctly understanding T-SQL later in the book.

Language independence
The relational model is language independent. That is, you can apply data management and
manipulation following the relational model’s principles with languages other than SQL—for
example, with C# in an object model. Today it is common to see RDBMSs that support lan-
guages other than just a dialect of SQL—for example, the integration of the CLR, Java, Python,
and R in SQL Server, with which you can handle tasks that historically you handled mainly with
SQL, such as data manipulation.

Also, you should realize from the start that SQL deviates from the relational model in sev-
eral ways. Some even say that a new language—one that more closely follows the relational
model—should replace SQL. But to date, SQL is the de facto language used by virtually all
leading RDBMSs.

See Also For details about the deviations of SQL from the relational model, as well as how
to use SQL in a relational way, see this book on the topic: SQL and Relational Theory: How to
Write Accurate SQL Code, 3rd Edition, by C. J. Date (O’Reilly Media, 2015).

SQL
SQL is both an ANSI and ISO standard language based on the relational model, designed for querying
and managing data in an RDBMS.

In the early 1970s, IBM developed a language called SEQUEL (short for Structured English QUEry
Language) for its RDBMS product called System R. The name of the language was later changed from
SE4UE/ to S4/ because of a trademarN dispute. S4/ first became an $1SI standard in 1�8�, and then
an ISO standard in 1987. Since 1986, the American National Standards Institute (ANSI) and the Interna-
tional Organization for Standardization (ISO) have been releasing revisions for the SQL standard every
few years. So far, the following standards have been released: SQL-86 (1986), SQL-89 (1989), SQL-92

CHAPTER 1 Background to T-SQL querying and programming 3

(1992), SQL:1999 (1999), SQL:2003 (2003), SQL:2006 (2006), SQL:2008 (2008), SQL:2011 (2011), and
SQL:2016 (2016). The SQL standard is made of multiple parts. Part 1 provides the framework and Part 2
defines the foundation with the core S4/ elements. The other parts define standard extensions, such as
SQL for XML, SQL-Java integration, and others.

Interestingly, SQL resembles English and is also very logical. Unlike many programming languages,
which use an imperative programming paradigm, SQL uses a declarative one. That is, SQL requires
you to specify what you want to get and not how to get it, letting the 5D%0S figure out the physical
mechanics required to process your request.

S4/ has several categories of statements, including data definition language �DD/�, data manipula-
tion language �D0/�, and data control language �D&/�. DD/ deals with obMect definitions and includes
statements such as CREATE, ALTER, and DROP. DML allows you to query and modify data and includes
statements such as SELECT, INSERT, UPDATE, DELETE, TRUNCATE, and MERGE. It’s a common misun-
derstanding that D0/ includes only data�modification statements, but as I mentioned, it also includes
SELECT. Another common misunderstanding is that TRUNCATE is a DDL statement, but in fact it is a
DML statement. DCL deals with permissions and includes statements such as GRANT and REVOKE. This
book focuses on DML.

T-SQL is based on standard SQL, but it also provides some nonstandard/proprietary extensions.
0oreover, T�S4/ does not implement all of standard S4/. When describing a language element for the
first time, I·ll typically mention if it·s nonstandard.

Set theory
Set theory, which originated with the mathematician Georg Cantor, is one of the mathematical
branches on which the relational model is based. &antor·s definition of a set follows:

%\�a�´setµ�Ze�mean�an\�FolleFtLon�0�Lnto�a�ZKole�oI�GefinLte��GLstLnFt�oEMeFts�m�
(which are called the “elements” of M) of our perception or of our thought.

—GEORG CANTOR: HIS

MATHEMATICS AND

PHILOSOPHY OF THE INFINITE,
BY JOSEPH W. DAUBEN

(PRINCETON UNIVERSITY

PRESS, 2020)

Every word in the definition has a deep and crucial meaning. The definitions of a set and set mem-
bership are axioms that are not supported by proofs. Each element belongs to a universe, and either is
or is not a member of the set.

Let’s start with the word whole in &antor·s definition. $ set should be considered a single entity.
Your focus should be on the collection of objects as opposed to the individual objects that make up
the collection. Later on, when you write T-SQL queries against tables in a database (such as a table of
employees), you should think of the set of employees as a whole rather than the individual employees.

4 CHAPTER 1 Background to T-SQL querying and programming

This might sound trivial and simple enough, but apparently many programmers have difficulty
adopting this way of thinking.

The word distinct means that every element of a set must be unique. Jumping ahead to tables in a
database, you can enforce the uniqueness of rows in a table by defining Ney constraints. Without a Ney,
you won’t be able to uniquely identify rows, and therefore the table won’t qualify as a set. Rather, the
table would be a multiset or a bag.

The phrase of our perception or of our thought implies that the definition of a set is subMective.
Consider a classroom: one person might perceive a set of people, whereas another might perceive a set
of students and a set of teachers. Therefore, you have a substantial amount of freedom in defining sets.
When you design a data model for your database, the design process should carefully consider the
subMective needs of the application to determine adequate definitions for the entities involved.

As for the word oEMeFt, the definition of a set is not restricted to physical obMects, such as cars or
employees, but rather is relevant to abstract objects as well, such as prime numbers or lines.

What &antor·s definition of a set leaves out is probably as important as what it includes. 1otice that
the definition doesn·t mention any order among the set elements. The order in which set elements are
listed is not important. The formal notation for listing set elements uses curly brackets: {a, b, c}. Because
order has no relevance, you can express the same set as {b, a, c} or {b, c, a}. Jumping ahead to the set
of attributes (columns in SQL) that make up the heading of a relation (table in SQL), an element (in this
case, an attribute� is supposed to be identified by name³not by ordinal position.

Similarly, consider the set of tuples (rows in SQL) that make up the body of the relation; an element
�in this case a tuple� is identified by its Ney values³not by position. 0any programmers have a hard
time adapting to the idea that, with respect to querying tables, there is no order among the rows. In
other words, a query against a table can return table rows in any order unless you explicitly request
that the data be ordered in a specific way, perhaps for presentation purposes.

Predicate logic
Predicate logic, whose roots go back to ancient Greece, is another branch of mathematics on which
the relational model is based. Dr. Edgar F. Codd, in creating the relational model, had the insight to
connect predicate logic to both the management and querying of data. Loosely speaking, a predicate
is a property or an expression that either holds or doesn’t hold—in other words, is either true or false.
The relational model relies on predicates to maintain the logical integrity of the data and define its
structure. 2ne example of a predicate used to enforce integrity is a constraint defined in a table called
Employees that allows only employees with a salary greater than zero to be stored in the table. The
predicate is “salary greater than zero” (T-SQL expression: salary > 0).

<ou can also use predicates when filtering data to define subsets, and more.)or example, if you
need to query the Employees table and return only rows for employees from the sales department,
you use the predicate ´department equals salesµ in your query filter �T�S4/ expression:
department = ‘sales’).

CHAPTER 1 Background to T-SQL querying and programming 5

In set theory, you can use predicates to define sets. This is helpful because you can·t always define a
set by listing all its elements �for example, infinite sets�, and sometimes for brevity it·s more convenient
to define a set based on a property. $s an example of an infinite set defined with a predicate, the set
of all prime numbers can be defined with the following predicate: ´x is a positive integer greater than
1 that is divisible only by 1 and itself.µ)or any specified value, the predicate is either true or not true.
The set of all prime numbers is the set of all elements for which the predicate is true. As an example
of a finite set defined with a predicate, the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} can be defined as the set of all
elements for which the following predicate holds true: “x is an integer greater than or equal to 0 and
smaller than or equal to 9.”

The relational model
The relational model is a semantic model for data management and manipulation and is based on
set theory and predicate logic. As mentioned earlier, it was created by Dr. Edgar F. Codd, and later
explained and developed by &hris Date, +ugh Darwen, and others. The first version of the relational
model was proposed by Codd in 1969 in an IBM research report called “Derivability, Redundancy, and
Consistency of Relations Stored in Large Data Banks.” A revised version was proposed by Codd in 1970
in a paper called “A Relational Model of Data for Large Shared Data Banks,” published in the journal
Communications of the ACM.

The goal of the relational model is to enable consistent representation of data with minimal or no
redundancy and without sacrificing completeness, and to define data integrity �enforcement of data
consistency) as part of the model. An RDBMS is supposed to implement the relational model and pro-
vide the means to store, manage, enforce the integrity of, and query data. The fact that the relational
model is based on a strong mathematical foundation means that given a certain data-model instance
(from which a physical database will later be generated), you can tell with certainty when a design is
Áawed, rather than relying solely on intuition.

The relational model involves concepts such as propositions, predicates, relations, tuples, attributes,
and more. For nonmathematicians, these concepts can be quite intimidating. The sections that follow
cover some key aspects of the model in an informal, nonmathematical manner and explain how they
relate to databases.

Propositions, predicates, and relations
The common belief that the term relational stems from relationships between tables is incorrect.
“Relational” actually pertains to the mathematical term relation. In set theory, a relation is a representa-
tion of a set. In the relational model, a relation is a set of related information, with the counterpart in
SQL being a table—albeit not an exact counterpart. A key point in the relational model is that a single
relation should represent a single set (for example, Customers). Note that operations on relations
(based on relational algebra) result in a relation (for example, an intersection between two relations).
This is what’s known as the closure property of the relational algebra, and is what enables the nesting of
relational expressions.

6 CHAPTER 1 Background to T-SQL querying and programming

Note The relational model distinguishes between a relation and a relation variable, but to
keep things simple, I won’t get into this distinction. Instead, I’ll use the term relation for both
cases. Also, as Figure 1-1 shows, a relation is made of a heading and a body. The heading
consists of a set of attributes (columns in SQL), where each element has a name and a type
name and is identified by name. The body consists of a set of tuples �rows in SQL), where each
element is identified by a Ney. To Neep things simple, I·ll often refer to a table as a set of rows.

Figure 1-1 shows an illustration of a relation called Employees. It compares the components of a
relation in relational theory with those of a table in SQL.

empid
INT

firstname
VARCHAR(40)

lastname
VARCHAR(40)

hiredate
DATE

5 Sven Mortensen 10/17/2021

8 Maria Cameron 3/5/2022

3 Judy Lew 4/1/2020

2 Don Funk 8/14/2020

6 Paul Suurs 10/17/2021

9 Patricia Doyle 11/15/2022

1 Sara Davis 5/1/2020

4 Yael Peled 5/3/2021

7 Russell King 1/2/2022

PK

Heading

Body

Relational
Theory

SQL
Counterparts

Relation Table

set of
attributes

set of
columns

set of
tuples

multiset of
rows

Employees relation/table

FIGURE 1-1 Illustration of Employees relation

%e aware that creating a truly adequate visual representation of a relation is very difficult in practice,
since the set of attributes making the heading of a relation has no order, and the same goes for the set
of tuples making the body of a relation. In an illustration, it might seem like those elements do have
order even though they don’t. Just make sure to keep this in mind.

When you design a data model for a database, you represent all data with relations �tables�. <ou
start by identifying propositions that you will need to represent in your database. A proposition is an
assertion or a statement that must be true or false. For example, the statement, “Employee Jiru
Ben-Gan was born on June 22, 2003, and works in the Pet Food department” is a proposition. If this
proposition is true, it will manifest itself as a row in a table of Employees. A false proposition simply
won’t manifest itself. This presumption is known as the closed-world assumption (CWA).

The next step is to formalize the propositions. You do this by taking out the actual data (the body of
the relation� and defining the structure �the heading of the relation�³for example, by creating predi-
cates out of propositions. You can think of predicates as parameterized propositions. The heading of a
relation comprises a set of attributes. Note the use of the term “set”; in the relational model, attributes

CHAPTER 1 Background to T-SQL querying and programming 7

are unordered and distinct. $n attribute has a name and a type name, and is identified by name.)or
example, the heading of an Employees relation might consist of the following attributes (expressed
as pairs of attribute names and type names): employeeid integer, firstname character string, lastname
character string, birthdate date, and departmentid integer.

A type is one of the most fundamental building blocks for relations. A type constrains an attribute
to a certain set of possible or valid values. For example, the type INT is the set of all integers in the
range –2,147,483,648 to 2,147,483,647. A type is one of the simplest forms of a predicate in a database
because it restricts the attribute values that are allowed. For example, the database would not accept
a proposition where an employee birth date is February 31, 2003 (not to mention a birth date stated as
something like “abc!”). Note that types are not restricted to base types such as integers or dates; a type
can also be an enumeration of possible values, such as an enumeration of possible job positions. A type
can be simple or complex. Probably the best way to think of a type is as a class—encapsulated data and
the behavior supporting it. An example of a complex type is a geometry type that supports polygons.

Missing values
There’s an aspect of the relational model and SQL that is the source of many passionate debates.
Whether to support the notion of missing values and three�valued predicate logic. That is, in two�
valued predicate logic, a predicate is either true or false. If a predicate is not true, it must be false. Use
of two-valued predicate logic follows a mathematical law called “the law of excluded middle.” However,
some support the idea of three-valued predicate logic, taking into account cases where values are
missing. A predicate involving a missing value yields neither true nor false as the result truth value—it
yields unknown.

Take, for example, a mobilephone attribute of an Employees relation. Suppose that a certain employ-
ee’s mobile phone number is missing. How do you represent this fact in the database? One option is to
have the mobilephone attribute allow the use of a special marker for a missing value. Then a predicate
used for filtering purposes, comparing the mobilephone attribute with some specific number, will yield
unknown for the case with the missing value. Three-valued predicate logic refers to the three possible
truth values that can result from a predicate—true, false, and unknown.

Some people believe that NULLs and three-valued predicate logic are nonrelational, whereas
others believe that they are relational. Codd actually advocated for four-valued predicate logic,
saying that there were two different cases of missing values: missing but applicable (A-Values marker),
and missing but inapplicable (I-Values marker). An example of “missing but applicable” is when an
employee has a mobile phone, but you don’t know what the mobile phone number is. An example
of “missing but inapplicable” is when an employee doesn’t have a mobile phone at all. According to
Codd, two special markers should be used to support these two cases of missing values. SQL doesn’t
maNe a distinction between the two cases for missing values that &odd does� rather, it defines the NULL
marker to signify any kind of missing value. It also supports three-valued predicate logic. Support for
NULLs and three-valued predicate logic in SQL is the source of a great deal of confusion and complex-
ity, though one can argue that missing values are part of reality. In addition, the alternative—using
only two-valued predicate logic and representing missing values with your own custom means—is not
necessarily less problematic.

8 CHAPTER 1 Background to T-SQL querying and programming

Note As mentioned, a NULL is not a value but rather a marker for a missing value.
Therefore, though unfortunately it’s common, the use of the terminology “NULL value” is
incorrect. The correct terminology is “NULL marker” or just “NULL.” In the book, I typically
use the latter because it’s more common in the SQL community.

Constraints
2ne of the greatest benefits of the relational model is the ability to define data integrity as part of the
model. Data integrity is achieved through rules called constraints that are defined in the data model
and enforced by the RDBMS. The simplest methods of enforcing integrity are assigning an attribute
type and “nullability” (whether it supports or doesn’t support NULLs). Constraints are also enforced
through the model itself; for example, the relation Orders(orderid, orderdate, duedate, shipdate) allows
three distinct dates per order, whereas the relations Employees(empid) and EmployeeChildren(empid,
childname) allow]ero to countable infinity children per employee.

Other examples of constraints include the enforcement of candidate keys, which provide entity
integrity, and foreign keys, which provide referential integrity. $ candidate Ney is a Ney defined on one
or more attributes of a relation. Based on a candidate key’s attribute values you can uniquely identify a
tuple (row). A constraint enforcing a candidate key prevents duplicates. You can identify multiple candi-
date keys in a relation. For example, in an Employees relation, you can have one candidate key based on
employeeid, another on SSN (Social Security number), and others. Typically, you arbitrarily choose one
of the candidate keys as the primary key (for example, employeeid in the Employees relation) and use
that as the preferred way to identify a row. All other candidate keys are known as alternate keys.

)oreign Neys are used to enforce referential integrity. $ foreign Ney is defined on one or more
attributes of a relation (known as the referencing relation) and references a candidate key in another (or
possibly the same) relation. This constraint restricts the values in the referencing relation’s foreign-key
attributes to the values that appear in the referenced relation’s candidate-key attributes. For example,
suppose that the Employees relation has a foreign Ney defined on the attribute departmentid, which ref-
erences the primary-key attribute departmentid in the Departments relation. This means that the values
in Employees.departmentid are restricted to the values that appear in Departments.departmentid.

Normalization
The relational model also defines normalization rules (also known as normal forms). Normalization is
a formal mathematical process to guarantee that each entity will be represented by a single relation.
In a normali]ed database, you avoid anomalies during data modification and Neep redundancy to
a minimum without sacrificing completeness. If you follow entity relationship modeling �E50� and
represent each entity and its attributes, you probably won’t need normalization; instead, you will apply
normali]ation only to reinforce and ensure that the model is correct. <ou can find the definition of E50
in the following Wikipedia article: https://en.wikipedia.org/wiki/Entity–relationship_model.

https://en.wikipedia.org/wiki/Entity�relationship_model

CHAPTER 1 Background to T-SQL querying and programming 9

The following sections brieÁy cover the first three normal forms �11), �1), and 31)� introduced
by Codd.

1NF

The first normal form says that the tuples �rows� in the relation �table� must be unique and attributes
should be atomic. This is a redundant definition of a relation� in other words, if a table truly represents a
relation, it is already in first normal form.

<ou enforce the uniqueness of rows in S4/ by defining a primary Ney or unique constraint in the
table.

<ou can operate on attributes only with operations that are defined as part of the attribute·s
type. $tomicity of attributes is subMective in the same way that the definition of a set is subMective.
As an example, should an employee name in an Employees relation be expressed with one attribute
(fullname), two attributes (firstname and lastname), or three attributes (firstname, middlename, and
lastname)? The answer depends on the application. If the application needs to manipulate the parts
of the employee’s name separately (such as for search purposes), it makes sense to break them apart;
otherwise, it doesn’t.

In the same way that an attribute might not be atomic enough based on the needs of the applica-
tions that use it, an attribute might also be subatomic. For example, if an address attribute is consid-
ered atomic for the applications that use it, not including the city as part of the address would violate
the first normal form.

This normal form is often misunderstood. Some people think that an attempt to mimic arrays
violates the first normal form. $n example would be defining a YearlySales relation with the following
attributes: salesperson, qty2020, qty2021, and qty2022. However, in this example, you don’t really violate
the first normal form� you simply impose a constraint³restricting the data to three specific years: ����,
2021, and 2022.

2NF

The second normal form involves two rules. 2ne rule is that the data must meet the first normal form.
The other rule addresses the relationship between nonkey and candidate-key attributes. For every can-
didate key, every nonkey attribute has to be fully functionally dependent on the entire candidate key.
In other words, a nonkey attribute cannot be fully functionally dependent on part of a candidate key.
To put it more informally, if you need to obtain any nonkey attribute value, you need to provide the
values of all attributes of a candidate Ney from the same tuple. <ou can find any value of any attribute
of any tuple if you know all the attribute values of a candidate key.

$s an example of violating the second normal form, suppose that you define a relation called Orders
that represents information about orders and order lines. (See Figure 1-2.) The Orders relation contains
the following attributes: orderid, productid, orderdate, qty, customerid, and companyname. The primary
Ney is defined on orderid and productid.

10 CHAPTER 1 Background to T-SQL querying and programming

FIGURE 1-2 Data model before applying 2NF

The second normal form is violated in Figure 1-2 because there are nonkey attributes that depend
on only part of a candidate Ney �the primary Ney, in this example�.)or example, you can find the
orderdate of an order, as well as customerid and companyname, based on the orderid alone.

To conform to the second normal form, you would need to split your original relation into two
relations: Orders and OrderDetails (as shown in Figure 1-3). The Orders relation would include the
attributes orderid, orderdate, customerid, and companyname, with the primary Ney defined on orderid.
The OrderDetails relation would include the attributes orderid, productid, and qty, with the primary key
defined on orderid and productid.

FIGURE 1-3 Data model after applying 2NF and before 3NF

3NF

The third normal form also has two rules. The data must meet the second normal form. Also, all nonkey
attributes must be dependent on candidate keys nontransitively. Informally, this rule means that all
nonkey attributes must be mutually independent. In other words, one nonkey attribute cannot be
dependent on another nonkey attribute.

The Orders and OrderDetails relations described previously now conform to the second normal
form. Remember that the Orders relation at this point contains the attributes orderid, orderdate,
customerid, and companyname, with the primary Ney defined on orderid. Both customerid and com-
panyname depend on the whole primary key—orderid. For example, you need the entire primary key
to find the customerid representing the customer who placed the order. Similarly, you need the whole
primary Ney to find the company name of the customer who placed the order. +owever, customerid
and companyname are also dependent on each other. To meet the third normal form, you need to add

CHAPTER 1 Background to T-SQL querying and programming 11

a Customers relation (shown in Figure 1-4) with the attributes customerid (as the primary key) and
companyname. Then you can remove the companyname attribute from the Orders relation.

FIGURE 1-4 Data model after applying 3NF

Informally, 2NF and 3NF are commonly summarized as follows: “Every non-key attribute is dependent
on the key, the whole key, and nothing but the key—so help me Codd.”

There are higher normal forms beyond &odd·s original first three normal forms that involve compound
primary keys and temporal databases, but they are outside the scope of this book.

Note SQL, as well as T-SQL, permits violating all the normal forms in real tables. It’s the data
modeler’s prerogative and responsibility to design a normalized model.

Types of database workloads
Two main types of workloads use Microsoft RDBMS platforms and T-SQL to manage and manipulate
the data: online transactional processing (OLTP) and data warehouses (DWs). The former can be imple-
mented on SQL Server or Azure SQL. The latter can be implemented on SQL Server or Azure SQL, which
use a symmetric multiprocessing (SMP) architecture; or, for more demanding workloads, on Synapse
Azure Analytics, which uses a massively parallel processing (MPP) architecture. Figure 1-5 illustrates
those workloads and systems and the transformation process that usually takes place between them.

OLTP DW

SQL Server / Azure SQL / Azure Synapse Analytics
T-SQL

Integration Services
/ Azure Data Factory

DSA

ETL / ELT

FIGURE 1-5 Classes of database systems

12 CHAPTER 1 Background to T-SQL querying and programming

Here’s a quick description of what each acronym represents:

■ OLTP: online transactional processing

■ DSA: data-staging area

■ DW: data warehouse

■ ETL / ELT: extract, transform, and load; or extract, load, and transform

Online transactional processing
Data is entered initially into an online transactional processing system. The primary focus of an OLTP sys-
tem is data entry and not reporting—transactions mainly insert, update, and delete data. The relational
model is targeted primarily at OLTP systems, where a normalized model provides both good perfor-
mance for data entry and data consistency. In a normalized environment, each table represents a single
entity and Neeps redundancy to a minimum. When you need to modify a fact, you need to modify it in
only one place. This results in optimi]ed performance for data modifications and little chance for error.

However, an OLTP environment is not suitable for reporting purposes, because a normalized model
usually involves many tables (one for each entity) with complex relationships. Even simple reports
require joining many tables, resulting in complex and poorly performing queries.

You can implement an OLTP database in SQL Server or Azure SQL and both manage it and query it
with T-SQL.

Data warehouses
A data warehouse �DW� is an environment designed for data�retrieval and reporting purposes. When
it serves an entire organization, such an environment is called a data warehouse; when it serves only
part of the organi]ation �such as a specific department� or a subMect matter area in the organi]ation, it
is called a data mart. The data model of a data warehouse is designed and optimized mainly to support
data-retrieval needs. The model has intentional redundancy, fewer tables, and simpler relationships,
ultimately resulting in simpler and more efficient queries than an 2/T3 environment.

The simplest data-warehouse design is called a star schema. The star schema includes several
dimension tables and a fact table. Each dimension table represents a subject by which you want to
analyze the data. For example, in a system that deals with orders and sales, you will probably want to
analyze data by dimensions such as customers, products, employees, and time.

In a star schema, each dimension is implemented as a single table with redundant data. For example,
a product dimension could be implemented as a single ProductDim table instead of three normal-
ized tables: Products, ProductSubCategories, and ProductCategories. If you normalize a dimension
table, which results in multiple tables representing that dimension, you get what’s known as a snow-
ÁaNe�GLmensLon. $ schema that contains snowÁaNe dimensions is Nnown as a snoZÁaNe�sFKema. A star
schema is considered a special case of a snowÁaNe schema.

The fact table holds the facts and measures, such as quantity and value, for each relevant combina-
tion of dimension keys. For example, for each relevant combination of customer, product, employee,

CHAPTER 1 Background to T-SQL querying and programming 13

and day, the fact table would have a row containing the quantity and value. Note that data in a data
warehouse is typically preaggregated to a certain level of granularity (such as a day), unlike data in an
OLTP environment, which is usually recorded at the transaction level.

Historically, early versions of SQL Server mainly targeted OLTP environments, but eventually SQL
Server also started targeting data-warehouse systems and data-analysis needs. You can implement a
data warehouse in SQL Server or Azure SQL, which use a SMP architecture. You can implement a more
demanding workload on Azure Synapse Analytics, which uses a MPP architecture. In any case, you
query and manage the data warehouse with T-SQL.

The process that pulls data from source systems (OLTP and others), manipulates it, and loads it into
the data warehouse is called extract, transform, and load, or ETL. Some of the integration solutions—
especially cloud-based—extract the data, load it, and then transform it. In such a case, the process is
known by the acronym ELT. Microsoft provides an on-premises tool called Microsoft SQL Server Inte-
gration Services (SSIS) to handle ETL/ELT needs, which comes with a SQL Server license. Microsoft also
provides a serverless cloud service for ETL/ELT solutions called Azure Data Factory.

Often the ETL/ELT process will involve the use of a data-staging area (DSA) between the OLTP and
the DW. The DS$ can reside in a relational database, such as S4/ Server or $]ure S4/, or in $]ure Data
Lake Storage Gen2, and is used as the data-cleansing area.

SQL Server architecture

This section will introduce you to the SQL Server architecture, the on-premises and cloud RDBMS
Áavors that 0icrosoft offers, the entities involved³S4/ Server instances, databases, schemas, and
database objects—and the purpose of each entity.

2n�SrePiVeV and FORXd 5D%06 ÁaYRrV
Initially, 0icrosoft offered mainly one enterprise�level 5D%0S³an on�premises Áavor called 0icro-
soft SQL Server. These days, Microsoft offers an overwhelming plethora of options as part of its data
platform, which constantly Neeps evolving. Within its data platform, 0icrosoft offers both on�premises,
or box, solutions, and service-based cloud solutions.

On-premises
The on�premises 5D%0S Áavor that 0icrosoft offers is called 0icrosoft S4/ Server, or Must S4/ Server.
This is the traditional Áavor, usually installed on the customer·s premises. The customer is responsible
for everything—getting the hardware, installing the software, patching, high availability and disaster
recovery, security, and everything else.

The customer can install multiple instances of the product on the same server (more on this in the
next section) and can write queries that interact with multiple databases. It is also possible to switch
the connection between databases, unless one of them is a contained database �defined later�.

14 CHAPTER 1 Background to T-SQL querying and programming

The querying language used is T-SQL. You can run all the code samples and exercises in this book on
an on-premises SQL Server implementation, if you want. See the Appendix for details about obtaining
and installing SQL Server, as well as creating the sample database.

Cloud
Cloud computing provides compute and storage resources on demand from a shared pool of
resources. Microsoft’s RDBMS technologies can be provided both as private-cloud and public-cloud
services. A private cloud is cloud infrastructure that services a single organization and usually uses vir-
tualization technology. It’s typically hosted locally at the customer site, and maintained by the IT group
in the organization. It’s about self-service agility, allowing the users to deploy resources on demand. It
provides standardization and usage metering. The database engine is usually an on-premises engine,
where T�S4/ is used to manage and manipulate the data. S4/ Server can run on either Windows or
Linux, and therefore can be deployed on any private cloud, no matter the underlying OS platform.

As for the public cloud, the services are provided over the network and available to the public.
Microsoft provides two forms of public RDBMS cloud services: infrastructure as a service (IaaS) and
platform as a service �3aaS�. With IaaS, you provision a virtual machine �90� that resides in 0icrosoft·s
cloud infrastructure. This offering is known as SQL Server on Azure VM. As a starting point, you can
choose between several preconfigured 90s that already have a certain version and edition of S4/
Server installed on them, and follow best practices. The hardware is maintained by Microsoft, but
you’re responsible for maintaining and patching the software. It’s essentially like maintaining your own
SQL Server installation—one that happens to reside on Microsoft’s hardware.

With 3aaS, 0icrosoft provides the database cloud platform as a service. It·s hosted in 0icrosoft·s
data centers. Hardware, software installation and maintenance, high availability and disaster recovery,
and patching are all responsibilities of Microsoft. The customer is still responsible for index and query
tuning, however.

Microsoft provides a number of PaaS database offerings. For OLTP systems as well as SMP-based
data warehouses, it offers $]ure S4/ Database and $]ure S4/ 0anaged Instance. <ou can find a
detailed comparison between these two PaaS offerings here: https://learn.microsoft.com/en-us/azure/
azure-sql/database/features-comparison. <ou will find that, for example, with the former you cannot
perform cross-database/three-part name queries and with the latter you can, as well as other differ-
ences. Generally, the latter gives you closer parity with the on�premises Áavor.

As mentioned, Microsoft uses the term Azure SQL to collectively refer to the three SMP-based cloud
offerings: SQL Server on Azure VM, Azure SQL Database, and Azure SQL Managed Instance.

Note that Azure SQL Database and Azure SQL Managed Instance share the same code base with the
latest version of SQL Server. So most of the T-SQL language surface is the same in both the on-premises
and cloud environments. Therefore, most of the T-SQL you’ll learn about in this book is applicable to
both environments. You can read about the differences that do exist—especially between SQL Server
and Azure SQL Database—here: https://learn.microsoft.com/en-us/azure/azure-sql/database/
transact-sql-tsql-differences-sql-server. You should also note that the update and deployment rate of
the cloud Áavors are faster than that of the on�premises S4/ Server product. Therefore, some T�S4/
features might be exposed in the cloud first before they show up in the on�premises product.

https://learn.microsoft.com/en-us/azure/azure-sql/database/features-comparison
https://learn.microsoft.com/en-us/azure/azure-sql/database/features-comparison
https://learn.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server
https://learn.microsoft.com/en-us/azure/azure-sql/database/transact-sql-tsql-differences-sql-server

CHAPTER 1 Background to T-SQL querying and programming 15

As mentioned, Microsoft also provides a MPP-based PaaS offering called Azure Synapse Analytics
as a cloud native data warehousing solution, with a distributed processing engine, that you query and
manage with T-SQL.

SQL Server instances
In the on-premises product, an instance of SQL Server, as illustrated in Figure 1-6, is an installation of
a SQL Server database engine or service. You can install multiple instances of SQL Server on the same
computer. Each instance is completely independent of the others in terms of security and the data that
it manages, and in all other respects. At the logical level, two different instances residing on the same
computer have no more in common than two instances residing on two separate computers. Of course,
same-computer instances do share the server’s physical resources, such as CPU, memory, and disk.

Server1\Inst1

Server1 (default)

Server1\Inst2

Server1\Inst4

Server1\Inst3

Server1

FIGURE 1-6 Multiple instances of SQL Server on the same computer

You can set up one of the multiple instances on a computer as the default instance, whereas all oth-
ers must be named instances. You determine whether an instance is the default or a named one upon
installation; you cannot change that decision later. To connect to a default instance, a client application
needs to specify the computer’s name or IP address. To connect to a named instance, the client needs
to specify the computer’s name or IP address, followed by a backslash (\), followed by the instance
name (as provided upon installation). For example, suppose you have two instances of SQL Server
installed on a computer called Server1. One of these instances was installed as the default instance, and
the other was installed as a named instance called Inst1. To connect to the default instance, you need
to specify only Server1 as the server name. To connect to the named instance, you need to specify both
the server and the instance name: Server1\Inst1.

There are various reasons why you might want to install multiple instances of SQL Server on the
same computer, but I’ll mention a couple of them here. One reason, mainly historic, is to save on sup-
port costs. For example, to test the functionality of features in response to support calls or reproduce
errors that users encounter in the production environment, the support department needs local instal-
lations of SQL Server that mimic the user’s production environment in terms of version, edition, and
service pack of SQL Server. If an organization has multiple user environments, the support department
needs multiple installations of SQL Server. Rather than having multiple computers, each hosting a dif-
ferent installation of SQL Server that must be supported separately, the support department can have
one computer with multiple installed instances. Of course, nowadays you can meet the same needs

16 CHAPTER 1 Background to T-SQL querying and programming

with container or virtualization technologies. It’s just that SQL Server instances were available before
virtualization and container technologies took off.

As another example, consider people like me who teach and lecture about SQL Server. For us, it is
convenient to be able to install multiple instances of SQL Server on the same laptop. This way, we can
perform demonstrations against different versions of the product, showing differences in behavior
between versions, and so on.

$s a final example, also mainly historic, providers of database services sometimes need to guarantee
their customers complete security separation of their data from other customers’ data. At least in the
past, the database provider could have a very powerful data center hosting multiple instances of SQL
Server, rather than needing to maintain multiple less-powerful computers, each hosting a different
instance. Nowadays, cloud solutions and advanced container and virtualization technologies make it
possible to achieve similar goals.

Databases
You can think of a database as a container of objects such as tables, views, stored procedures, and
other objects. Each instance of SQL Server can contain multiple databases, as illustrated in Figure 1-7.
When you install S4/ Server, the setup program creates several system databases that hold system
data and serve internal purposes. After you install SQL Server, you can create your own user databases
that will hold application data.

Instance

DB1

DB2

DB3

DB4

DB5

master

model

tempdb

msdb

Resource

System DatabasesUser Databases

FIGURE 1-7 An example of multiple databases on a SQL Server instance

The system databases that the setup program creates include master, msdb, model, tempdb, and
Resource. A description of each follows:

■ master The master database holds instance-wide metadata information, the server
configuration, information about all databases in the instance, and initiali]ation information.

■ model The model database is used as a template for new databases. Every new database you
create is initially created as a copy of model. So if you want certain obMects �such as user�defined

CHAPTER 1 Background to T-SQL querying and programming 17

data types) to appear in all new databases you create, or certain database properties to be
configured in a certain way in all new databases, you need to create those obMects and config-
ure those properties in the model database. Note that changes you apply to the model database
will not affect existing databases—only new databases you create in the future.

■ tempdb The tempdb database is where SQL Server stores temporary data such as work tables,
sort and hash table data when it needs to persist those, row versioning information, and so on.
SQL Server allows you to create temporary tables for your own use, and the physical location of
those is in tempdb. Note that this database is destroyed and re-created as a copy of the model
database every time you restart the instance of SQL Server.

■ msdb The msdb database is used mainly by a service called SQL Server Agent to store its data.
SQL Server Agent is in charge of automation, which includes entities such as jobs, schedules,
and alerts. SQL Server Agent is also the service in charge of replication. The msdb database also
holds information related to other SQL Server features, such as Database Mail, Service Broker,
backups, and more.

■ Resource The Resource database is a hidden, read�only database that holds the definitions
of all system obMects. When you query system obMects in a database, they appear to reside in
the sys schema of the local database, but in actuality their definitions reside in the Resource
database.

In SQL Server and Azure SQL Managed Instance, you can connect directly to the system databases
master, model, tempdb, and msdb. In Azure SQL Database, you can connect directly only to the sys-
tem database master. If you create temporary tables or declare table variables (more on this topic in
Chapter 12, “Programmable objects”), they are created in tempdb, but you cannot connect directly to
tempdb and explicitly create user objects there.

You can create multiple user databases (up to 32,767) within an instance. A user database holds
objects and data for an application.

<ou can define a property called collation at the database level that will determine default language
support, case sensitivity, and sort order for character data in that database. If you do not specify a
collation for the database when you create it, the new database will use the default collation of the
instance (chosen upon installation).

To run T-SQL code against a database, a client application needs to connect to a SQL Server instance
and be in the context of, or use, the relevant database. The application can still access objects from
other databases by adding the database name as a prefix. That·s the case with both S4/ Server and
Azure SQL Managed Instance. Azure SQL Database does not support cross-database/three-part
name queries.

In terms of security, to be able to connect to a SQL Server instance, the database administra-
tor (DBA) must create a login for you. The login can be tied to your 0icrosoft Windows credentials,
in which case it is called a Windows authenticated login. With a Windows authenticated login, you
can’t provide login and password information when connecting to SQL Server, because you already
provided those when you logged on to Windows. The login can be independent of your Windows

18 CHAPTER 1 Background to T-SQL querying and programming

credentials, in which case it’s called a SQL Server authenticated login. When connecting to S4/ Server
using a SQL Server authenticated login, you will need to provide both a login name and a password.

The DBA needs to map your login to a database user in each database you are supposed to have
access to. The database user is the entity that is granted permissions to objects in the database.

SQL Server supports a feature called contained databases that breaks the connection between a
database user and an instance�level login. The user �Windows or S4/ authenticated� is fully contained
within the specific database and is not tied to a login at the instance level. When connecting to S4/
Server, the user needs to specify the database he or she is connecting to, and the user cannot subse-
quently switch to other user databases.

So far, I’ve mainly mentioned the logical aspects of databases. If you’re using Azure SQL Database or
Azure SQL Managed Instance, your only concern is that logical layer. You do not deal with the physical
layout of the database·s data and log files, tempdb, and so on. But if you’re using SQL Server (including
SQL Server on Azure VM), you are responsible for the physical layer as well. Figure 1-8 shows a diagram
of the physical database layout.

User
Database

FG2

Transaction
Log

.LDF

Data

.NDF

Data

.NDF

FG1

Data

.NDF

Data

.NDF

PRIMARY

Data

.MDF

Log File

Data File

PRIMARY
Filegroup

User
Filegroups

IMOLTP_FG

F:\ IMOLTP_dir

Memory
Optimized
Filegroup

Folder

FIGURE 1-8 Database layout

The database is made up of data files, transaction log files, and optionally checNpoint files holding
memory-optimized data (part of a feature called In-Memory OLTP, which I describe shortly�. When
you create a database, you can define various properties for data and log files, including the file name,
location, initial size, maximum size, and an autogrowth increment. Each database must have at least
one data file and at least one log file �the default in S4/ Server�. The data files hold obMect data, and the
log files hold information that S4/ Server needs to maintain transactions.

$lthough S4/ Server can write to multiple data files in parallel, it can write to only one log file at a time,
in a sequential manner. Therefore, unliNe with data files, having multiple log files does not result in a per-
formance benefit. <ou might need to add log files if the disN drive where the log resides runs out of space.

CHAPTER 1 Background to T-SQL querying and programming 19

Data files are organi]ed in logical groups called fileJrouSs. $ filegroup is the target for creating an
obMect, such as a table or an index. The obMect data will be spread across the files that belong to the
target filegroup.)ilegroups are your way of controlling the physical locations of your obMects. $ data-
base must have at least one filegroup called PRIMARY, and it can optionally have other user filegroups
as well. The PRIMARY filegroup contains the primary data file �which has an .mdf extension� for the
database, and the database·s system catalog. <ou can optionally add secondary data files �which have
an .ndf extension) to PRIMARY. User filegroups contain only secondary data files. <ou can decide which
filegroup is marNed as the default filegroup. 2bMects are created in the default filegroup when the
obMect creation statement does not explicitly specify a different target filegroup.

File extensions .mdf, .ldf, and .ndf
The database file extensions .mdf and .ldf are straightforward. The extension .mdf stands for
Master Data File (not to be confused with the master database), and .ldf stands for Log Data
File. $ccording to one anecdote, when discussing the extension for the secondary data files,
one of the developers suggested, humorously, using .ndf to represent “Not Master Data
File,” and the idea was accepted.

The SQL Server database engine includes a memory-optimized engine called In-Memory OLTP.
You can use this feature to integrate memory-optimized objects, such as memory-optimized tables
and natively compiled modules (procedures, functions, and triggers), into your database. To do so, you
need to create a filegroup in the database marNed as containing memory�optimi]ed data and, within
it, at least one path to a folder. S4/ Server stores checNpoint files with memory�optimi]ed data in that
folder, and it uses those to recover the data every time SQL Server is restarted.

Schemas and objects
When I said earlier that a database is a container of obMects, I simplified things a bit. $s illustrated in
Figure 1-9, a database contains schemas, and schemas contain objects. You can think of a schema as a
container of objects, such as tables, views, stored procedures, and others.

dbo

Sales HR

User Database

Schema

Objects

FIGURE 1-9 A database, schemas, and database objects

20 CHAPTER 1 Background to T-SQL querying and programming

You can control permissions at the schema level. For example, you can grant a user SELECT permis-
sions on a schema, allowing the user to query data from all objects in that schema. So security is one of
the considerations for determining how to arrange objects in schemas.

The schema is also a namespace³it is used as a prefix to the obMect name.)or example, suppose
you have a table named Orders in a schema named Sales. The schema�qualified obMect name �also
known as the tZo�Sart�oEMeFt�name) is Sales.Orders. You can refer to objects in other databases by add-
ing the database name as a prefix �tKree�Sart�oEMeFt�name), and to objects in other instances by adding
the instance name as a prefix �Iour�Sart�oEMeFt�name). If you omit the schema name when referring to
an object, SQL Server will apply a process to resolve the schema name, such as checking whether the
object exists in the user’s default schema and, if the object doesn’t exist, checking whether it exists in
the dbo schema. Microsoft recommends that when you refer to objects in your code you always use the
two-part object names. If multiple objects with the same name exist in different schemas, you might
end up getting a different object than the one you wanted.

Creating tables and defining data integrity

This section describes the fundamentals of creating tables and defining data integrity using T�S4/.)eel
free to run the included code samples in your environment.

More Info
If you don’t know yet how to run code against SQL Server, the Appendix will help you get
started.

As mentioned earlier, DML rather than DDL is the focus of this book. Still, you need to understand
how to create tables and define data integrity. I won·t go into great detail here, but I·ll provide a brief
description of the essentials.

Before you look at the code for creating a table, remember that tables reside within schemas, and
schemas reside within databases. The examples use the book’s sample database, TSQLV6, and a schema
called dbo.

More Info
See the Appendix for details on creating the sample database.

The examples here use a schema named dbo that is created automatically in every database and is
also used as the default schema for users who are not explicitly associated with a different schema.

CHAPTER 1 Background to T-SQL querying and programming 21

Creating tables
The following code creates a table named Employees in the dbo schema in the TSQLV6 database:

USE TSQLV6;

DROP TABLE IF EXISTS dbo.Employees;

CREATE TABLE dbo.Employees
(
 empid INT NOT NULL,
 firstname VARCHAR(30) NOT NULL,
 lastname VARCHAR(30) NOT NULL,
 hiredate DATE NOT NULL,
 mgrid INT NULL,
 ssn VARCHAR(20) NOT NULL,
 salary MONEY NOT NULL
);

The USE statement sets the current database context to that of TSQLV6. It is important to incorpo-
rate the USE statement in scripts that create objects to ensure that SQL Server creates the objects in the
specified database. In S4/ Server and $]ure S4/ 0anaged Instance, the USE statement can actually
change the database context from one to another. In Azure SQL Database, you cannot switch between
different databases, but the USE statement will not fail as long as you are already connected to the tar-
get database. So even in Azure SQL Database, I recommend having the USE statement to ensure that
you are connected to the right database when creating your objects.

The DROP TABLE IF EXISTS statement (aka DIE) drops the Employees table if it already exists in the
current database. Of course, you can choose a different treatment, such as not creating the object if it
already exists.

You use the CREATE TABLE statement to define a table. <ou specify the name of the table and, in
parentheses, the definition of its attributes �columns�.

Notice the use of the two-part name dbo.Employees for the table name, as recommended earlier. If
you omit the schema name, for ad-hoc queries SQL Server will assume the default schema associated
with the database user running the code. For queries in stored procedures, SQL Server will assume the
schema associated with the procedure’s owner.

For each attribute, you specify the attribute name, data type, and whether the value can be NULL
(which is called nullability).

In the Employees table, the attributes empid (employee ID) and mgrid (manager ID) are each
defined with the INT (four-byte integer) data type; the firstname, lastname, and ssn (US Social Security
number� are defined as VARCHAR �variable�length character string with the specified maximum
supported number of characters); hiredate is defined as DATE and salary is defined as MONEY.

If you don’t explicitly specify whether a column allows or disallows NULLs, SQL Server will have to
rely on defaults. Standard S4/ dictates that when a column·s nullability is not specified, the assumption
should be NULL (allowing NULLs), but SQL Server has settings that can change that behavior. I recom-
mend that you be explicit and not rely on defaults. $lso, I recommend defining a column as NOT NULL

22 CHAPTER 1 Background to T-SQL querying and programming

unless you have a compelling reason to support NULLs. If a column is not supposed to allow NULLs
and you don’t enforce this with a NOT NULL constraint, you can rest assured that NULLs will occur. In
the Employees table, all columns are defined as NOT NULL except for the mgrid column. A NULL in the
mgrid column would represent the fact that the employee has no manager, as in the case of the CEO of
the organization.

Coding style
You should be aware of a few general notes regarding coding style, the use of white spaces
(space, tab, new line, and so on), and semicolons. My advice is that you use a style that you
and your fellow developers feel comfortable with. What ultimately matters most is the consis-
tency, readability, and maintainability of your code. I have tried to reÁect these aspects in my
code throughout the book.

T-SQL lets you use white spaces quite freely in your code. You can take advantage of white
spaces to facilitate readability. For example, I could have written the code in the previous
section as a single line. However, the code wouldn’t have been as readable as when it is
broken into multiple lines that use indentation.

The practice of using a semicolon to terminate statements is standard and, in fact, is a re-
quirement in several other database platforms. T-SQL requires the semicolon only in particular
cases—but in cases where it’s not required, it’s still allowed. I recommend that you adopt the
practice of terminating all statements with a semicolon. Not only will doing this improve the
readability of your code, but in some cases it can save you some grief. (When a semicolon is
required and is not specified, the error message S4/ Server produces is not always clear.�

Note The SQL Server documentation indicates that not terminating T-SQL statements
with a semicolon is a deprecated feature. That’s one more reason to get into the habit of
terminating all your statements with a semicolon, even where it’s currently not required.

Defining data integrity
$s mentioned earlier, one of the great benefits of the relational model is that data integrity is an inte-
gral part of it. Data integrity enforced as part of the model³namely, as part of the table definitions³is
considered declarative data integrity. Data integrity enforced with code—such as with stored proce-
dures or triggers—is considered procedural data integrity.

Data type and nullability choices for attributes and even the data model itself are examples of
declarative data integrity constraints. In this section, I describe other examples of declarative
constraints: primary Ney, unique, foreign Ney, checN, and default constraints. <ou can define such
constraints when creating a table as part of the CREATE TABLE statement, or you can define them for

CHAPTER 1 Background to T-SQL querying and programming 23

already created tables by using an ALTER TABLE statement. All types of constraints except for default
constraints can be defined as composite constraints—that is, based on more than one attribute.

Primary key constraints
A primary key constraint enforces the uniqueness of rows and also disallows NULLs in the constraint
attributes. Each unique combination of values in the constraint attributes can appear only once in the
table³in other words, only in one row. $n attempt to define a primary Ney constraint on a column that
allows NULLs will be rejected by the RDBMS. Each table can have only one primary key.

+ere·s an example of defining a primary Ney constraint on the empid attribute in the Employees
table that you created earlier:

ALTER TABLE dbo.Employees
 ADD CONSTRAINT PK_Employees
 PRIMARY KEY(empid);

With this primary Ney in place, you can be assured that all empid values will be unique and known.
An attempt to insert or update a row such that the constraint would be violated will be rejected by the
RDBMS and result in an error.

To enforce the uniqueness of the logical primary key constraint, SQL Server will create a unique
index behind the scenes. A unique index is a physical object used by SQL Server to enforce uniqueness.
Indexes (not necessarily unique ones) are also used to speed up queries by avoiding sorting and
unnecessary full table scans (similar to indexes in books).

Unique constraints
A unique constraint enforces the uniqueness of rows, allowing you to implement the concept of alter-
nate Neys from the relational model in your database. UnliNe with primary Neys, you can define multiple
unique constraints within the same table. $lso, a unique constraint is not restricted to columns defined
as NOT NULL. 0ore on the specifics of NULL-handling shortly.

The following code defines a unique constraint on the ssn column in the Employees table:

ALTER TABLE dbo.Employees
 ADD CONSTRAINT UNQ_Employees_ssn
 UNIQUE(ssn);

As with a primary key constraint, SQL Server will create a unique index behind the scenes as the
physical mechanism to enforce the logical unique constraint.

For the purpose of enforcing a unique constraint, SQL Server handles NULLs just like non-NULL
values. Consequently, for example, a single-column unique constraint allows only one NULL in the
constrained column. +owever, the S4/ standard defines NULL-handling by a unique constraint dif-
ferently, like so: ´$�unLTue�FonstraLnt�on�7�Ls�satLsfieG�LI�anG�onl\�LI�tKere�Go�not�e[Lst�tZo�roZs�5��anG�5��
of T such that R1 and R2 have the same non-NULL values in the unique columns.” In other words, only

24 CHAPTER 1 Background to T-SQL querying and programming

the non-NULL values are compared to determine whether duplicates exist. Consequently, a standard
single-column unique constraint would allow multiple NULLs in the constrained column. To emulate a
standard single�column unique constraint in S4/ Server you can use a unique filtered index that filters
only non-NULL values. For example, suppose that the column ssn allowed NULLs, and you wanted to
create such an index instead of a unique constraint. You would have used the following code:

CREATE UNIQUE INDEX idx_ssn_notnull ON dbo.Employees(ssn) WHERE ssn IS NOT NULL;

The index is defined as a unique one, and the filter excludes NULLs from the index, so duplicate
NULLs will be allowed in the underlying table, whereas duplicate non-NULL values won’t be allowed.

Emulating a standard composite unique constraint in SQL Server is a bit more involved and may
not be of common Nnowledge. <ou can find the details in the following article: https://sqlperformance.
com/2020/03/t-sql-queries/null-complexities-part-4-missing-standard-unique-constraint.

Foreign key constraints
$ foreign Ney enforces referential integrity. This constraint is defined on one or more attributes in
what’s called the referencing table and points to candidate key (primary key or unique constraint) attri-
butes in what’s called the referenced table. Note that the referencing and referenced tables can be one
and the same. The foreign key’s purpose is to restrict the values allowed in the foreign key columns to
those that exist in the referenced columns.

The following code creates a table called Orders with a primary Ney defined on the orderid column:

DROP TABLE IF EXISTS dbo.Orders;

CREATE TABLE dbo.Orders
(
 orderid INT NOT NULL,
 empid INT NOT NULL,
 custid VARCHAR(10) NOT NULL,
 orderts DATETIME2 NOT NULL,
 qty INT NOT NULL,
 CONSTRAINT PK_Orders
 PRIMARY KEY(orderid)
);

Suppose you want to enforce an integrity rule that restricts the values supported by the empid
column in the Orders table to the values that exist in the empid column in the Employees table. You can
achieve this by defining a foreign Ney constraint on the empid column in the Orders table pointing to
the empid column in the Employees table, like so:

ALTER TABLE dbo.Orders
 ADD CONSTRAINT FK_Orders_Employees
 FOREIGN KEY(empid)
 REFERENCES dbo.Employees(empid);

https://sqlperformance.com/2020/03/t-sql-queries/null-complexities-part-4-missing-standard-unique-constraint
https://sqlperformance.com/2020/03/t-sql-queries/null-complexities-part-4-missing-standard-unique-constraint

CHAPTER 1 Background to T-SQL querying and programming 25

Similarly, if you want to restrict the values supported by the mgrid column in the Employees table
to the values that exist in the empid column of the same table, you can do so by adding the following
foreign key:

ALTER TABLE dbo.Employees
 ADD CONSTRAINT FK_Employees_Employees
 FOREIGN KEY(mgrid)
 REFERENCES dbo.Employees(empid);

Note that NULLs are allowed in the foreign key columns (mgrid in the last example) even if there are
no NULLs in the referenced candidate key columns.

The preceding two examples are basic definitions of foreign Neys that enforce a referential action
called no action. No action means that attempts to delete rows from the referenced table or update the
referenced candidate key attributes will be rejected if related rows exist in the referencing table. For
example, if you try to delete an employee row from the Employees table when there are related orders
in the Orders table, the RDBMS will reject such an attempt and produce an error.

<ou can define the foreign Ney with actions that will compensate for such attempts �to delete rows
from the referenced table or update the referenced candidate key attributes when related rows exist
in the referencing table�. <ou can define the options ON DELETE and ON UPDATE with actions such
as CASCADE, SET DEFAULT, and SET NULL as part of the foreign Ney definition. CASCADE means that
the operation (delete or update) will be cascaded to related rows. For example, ON DELETE CASCADE
means that when you delete a row from the referenced table, the RDBMS will delete the related rows
from the referencing table. SET DEFAULT and SET NULL mean that the compensating action will set the
foreign key attributes of the related rows to the column’s default value or NULL, respectively. Note that
regardless of which action you choose, the referencing table will have orphaned rows only in the case
of the exception with NULLs in the referencing column that I mentioned earlier. Parent rows with no
related child rows are always allowed.

Check constraints
You can use a check constraint to define a predicate that a row must meet to be entered into the table
or to be modified.)or example, the following checN constraint ensures that the salary column in the
Employees table will support only positive values:

ALTER TABLE dbo.Employees
 ADD CONSTRAINT CHK_Employees_salary
 CHECK(salary > 0.00);

An attempt to insert or update a row with a nonpositive salary value will be rejected by the RDBMS.
Note that a check constraint rejects an attempt to insert or update a row when the predicate evalu-
ates to FALSE. The modification will be accepted when the predicate evaluates to either TRUE or
UNKNOWN. For example, salary –1000 will be rejected, whereas salaries 50000 and NULL will both
be accepted (if the column allowed NULLs). As mentioned earlier, SQL is based on three-valued logic,
which results in two actual actions. With a checN constraint, the row is either accepted or reMected.

26 CHAPTER 1 Background to T-SQL querying and programming

When adding checN and foreign Ney constraints, you can specify an option called WITH NOCHECK
that tells the RDBMS you want it to bypass constraint checking for existing data. This is considered a
bad practice because you cannot be sure your data is consistent. You can also disable or enable existing
check and foreign key constraints.

Default constraints
A default constraint is associated with a particular attribute. It’s an expression that is used as the default
value when an explicit value is not specified for the attribute when you insert a row.)or example, the
following code defines a default constraint for the orderts attribute (representing the order’s time
stamp):

ALTER TABLE dbo.Orders
 ADD CONSTRAINT DFT_Orders_orderts
 DEFAULT(SYSDATETIME()) FOR orderts;

The default expression invokes the SYSDATETIME function, which returns the current date and
time value. $fter this default expression is defined, whenever you insert a row into the Orders table
and do not explicitly specify a value in the orderts attribute, SQL Server will set the attribute value to
SYSDATETIME.

When you·re done, run the following code for cleanup:

DROP TABLE IF EXISTS dbo.Orders, dbo.Employees;

Conclusion

This chapter provided a brief background to T-SQL querying and programming. It presented a theo-
retical background, explaining the strong foundations that T-SQL is based on. It gave an overview of
the SQL Server architecture and concluded with sections that demonstrated how to use T-SQL to create
tables and define data integrity. I hope that by now you see that there·s something special about S4/,
and that it’s not just a language that can be learned as an afterthought. This chapter equipped you with
fundamental concepts—the actual journey is just about to begin.

547

Index

Symbols and Numbers
+ (addition) operator, 50–53
= (assignment) operator, 50–53
* (asterisk), SELECT and, 41–42, 159
\ (backslash), 15
^ (caret), 83
[<character>-<character>] wildcard, 83
, (comma)

in cross joins, 118
in grouping sets, 258

+ (concatenation) operator, 69–70
/ (division) operator, 50–53
“ (double quotes), 68
$edge_id

metadata, querying, 434–438
overview of, 419

$from_id
DELETE and, 474–477
edge table creation and, 422–434
MATCH and, 441
metadata, querying, 434–438
overview of, 419

$from_node, 419
> (greater than) operator, 50–53
>= (greater than or equal to) operator, 50–53
@@identity, 300
<> (inequality) operator, 50–53
< (less than) operator, 50–53
[<list of characters>] wildcard, 82
% (modulo) operator, 50–53
* (multiplication) operator, 50–53
@nextval, 317
$node_id, 435

overview of, 419
querying, 421

!= (not equal to) operator, 50–53
!> (not greater than) operator, 50–53
!< (not less than) operator, 50–53

() (parentheses)
in grouping sets, 258
set operators and, 221

% (percent) wildcard, 81–82
(pound sign), 507
; (semicolon), 22, 29, 319
‘ (single quotes), 68
@@SPID, 375
[] (square brackets), 68, 82
- (subtraction) operator, 50–53
$to_id

DELETE and, 474–477
edge table creation and, 422–434
MATCH and, 441
metadata, querying, 434–438
overview of, 419

$to_node, 419
@@TRANCOUNT, 368
_ (underscore), 82
11) �first normal form�, �
2NF (second normal form), 9–10
3NF (third normal form), 10–11

A
Accelerated Database Recovery (ADR), 369, 387
ACID (atomicity, consistency, isolation, and
durability), 368–370
ADD CONSTRAINT UNQ, 424
addition (+) operator, 50–53
ADO.NET, 494
AFTER INSERT, 519
after triggers, 518–519
aggregate functions. See also COUNT; pivoting data;
window functions

graph path aggregate functions, 456

548

window functions

window functions (continued)
NULLs and, 35
overview of, 231–233, 242–244
running aggregates, subqueries and, 160–161

aliases
in common table expressions, 184
cross joins and, 118
derived tables and, 179–181
inline table-valued functions (TVFs), 196–197
INSERT VALUES and, 295
ORDER BY and, 42–44
SELECT clause and, 37–42
self joins and, 119

ALL
EXCEPT ALL, 219–220
INTERSECT ALL, 215–217
temporal table queries, 358
UNION ALL, 213

all-at-once operations, 63–64
ALTER DATABASE, 68
ALTER PROC, 515
ALTER SEQUENCE, 303
ALTER TABLE, 24, 194

data integrity, defining, ��
lockable resources types and, 373
MATCH and, 442–444
sequence objects and, 306
temporal table creation, 344–348, 353

ALTER TABLE ADD CONSTRAINT, 309
ALTER TABLE DROP CONSTRAINT, 309
$/TE5 9IEW, 18�, 1�3
alternate keys, 8
American National Standards Institute (ANSI), 2–3
AND, 51

MATCH and, 446–448
MERGE and, 321
temporal table queries, 357

anonymous result columns, 37
ANSI (American National Standards Institute), 2–3
application programming interfaces (APIs), 494
application-time period tables, 343
APPLY, 63

exercise descriptions, 201–206
exercise solutions, 206–209
table expressions, 197–200
unpivoting data with, 253–255

arbitrary length pattern, 455, 471–473
arguments

in common table expressions, 185
derived table queries and, 181

arithmetic operators, 50–53
AS

data types and, 302
derived tables and, 177–178, 180, 182
SELECT and, 37

AS EDGE, 422–434
AS NODE, 420–422
AS OF, 355, 358
ASC, ORDER BY and, 42–44
assignment (=) operator, 50–53
assignment UPDATE, 316–317
asterisk (*)

multiplication operator, 50–53
SELECT and, 41–42, 159

$T TI0E =21E, ��²��, 3�8²3��
atomicity, 368
auditing

with data definition language �DD/�
triggers, 519–521
with data manipulation language (DML)
triggers, 518–519

authenticated login, 17–18
AVG, 35, 456
Azure Data Factory, 13
Azure Data Studio (ADS), 494
Azure SQL Database, 1–2, 14–15

collation, 66–68
databases, 17–19
edge constraints, 423
gap filling, �7�
INSERT VALUES and, 294–295
ledgers, 353
online transactional processing (OLTP), 11–13
SHORTEST_PATH option, 454–464
transactions

isolation levels and, 380, 388, 392
lock modes and compatibility, 371–372
locks and blocking, 370–371

Azure SQL Managed Instance, 67
Azure Synapse Analytics, 1, 15

B
backslash (\), 15
bag, 40
batches

GO n option, 496
overview of, 494
statements that cannot be combined in,
 495–496

collation

549

transactions versus, 494
as unit of parsing, 494–495
as unit of resolution, 496
variables and, 495

BEGIN, 498
BEGIN TRAN (TRANSACTION), 351, 367
BEGIN TRY, 521–525
%ETWEE1

temporal table queries, 357, 358
use of, 50–53

BIGINT data type, 302, 421
binding, 496
bitemporal tables, 343
blocking, 373–380. See also isolation levels; locks;
transactions
blocking_session_id, 379
BREAK, 499
bucketized data

DATE_BUCKET
bucket logic, applying to data, 270–275
containing bucket, computation of start of,
268–270
overview of, 266–268

exercise descriptions, 280–285
exercise solutions, 285–291
gap filling, �7�²�7�

bugs, subqueries and
NULL trouble, 160–161
substitution errors in subquery column
names, 163–164

BULK INSERT, 298

C
CACHE, sequence objects and, 303
caching, 303
candidate keys, 8
Cantor, Georg, 3
caret (̂), 83
CASCADE, 25, 423
CASE expressions

all-at-once operations and, 63–64
GREATEST/LEAST and, 62–63
overview of, 53–56, 147
pivoting with grouped queries, 248–249
temporal table queries, 359

CAST, 211
correlated subqueries and, 157
date and time functions, 91–93

date and time literals, 87–88
REPLICATE and, 74–75

catalog views, 104–105
CATCH, error handling, 521–525
change management, DDL triggers and, 519–521
CHAR, 51, 64–66
character data, working with. See also functions;
operators

CHARINDEX, 72
collation, 66–68
COMPRESS/DECOMPRESS, 79
CONCAT, 69–70
&21&$TBWS, ��²7�
concatenation, 69–70
data types, overview of, 64–66
DATALENGTH, 71–72
FORMAT, 78
LEFT, 71
LEN, 71–72
LIKE, 81–83
/2WE5, 7�
PATINDEX, 72
REPLACE, 72–73
REPLICATE, 74–75
RIGHT, 71
RTRIM and LTRIM, 76
STRING_AGG, 81
STRING_SPLIT, 80
STUFF, 75
SUBSTRING, 70–71
TRANSLATE, 73–74, 77
TRIM, 76–78
UPPER, 75

[<character>-<character>] wildcard, 83
CHARINDEX, 72
CHECK, 25–26, 56

CASE expressions, 53–56
identity property and, 299, 300
working with date and time separately, 88–90

CHECK OPTION, views and, 194–195
CHOOSE, CASE expressions and, 55–56
&/2SE, W+I/E Áow element and, ���
closed�world assumption �&W$�, �
closure property, 5, 39
cloud computing, 14–15
COALESCE, 55–56, 70
Codd, Edgar F.4, 5, 7
coding style, 22
COLLATE, 66–68
collation, 17, 66–68

column names

550

column names
aliases, assigning

in common table expressions, 184
in derived tables, 179–181

derived tables and, 179
COLUMNPROPERTY, 106
comma (,)

in cross joins, 118
in grouping sets, 258

COMMIT TRAN (TRANSACTION), 351
isolation levels and, 383, 389, 393
lock modes and compatibility, 371
overview of, 367
troubleshooting blocking and, 374

common table expressions (CTEs)
arguments, use of, 185
column aliases, assigning, 184
defining multiple, 18�
exercise descriptions, 201–206
exercise solutions, 206–209
multiple references in, 186
overview of, 183–184
recursive, 186–188

commutative relationships, 411
comparison operators, 50–53
compatible data types, 211
composite constraints, 22–23
composite joins

exercise descriptions, 137–143
exercise solutions, 143–147
use and syntax, 124–125

COMPRESS, 79
compression, 66
CONCAT, 69–70
&21&$TBWS, ��²7�
concatenation, 69–70
concurrency, transactions and, 371–372.
See also transactions
conÁict detection, S1$3S+2T and, 3��²3��
conjunction of predicates, 50
consistency, 368
constraints, 22–26

check, 25–26, 89
composite, 22–23
default, 26
edge, 423
foreign key, 8, 24–25
overview of, 8
primary key, 9, 23
unique, 23–24, 61

constructors, row, 316
contained databases, 18
containing bucket, computation of start of,
268–270
CONTINUE, 500
CONVERT, 87–88, 89, 91–93, 211
correlated subqueries

exercise descriptions, 166–170
exercise solutions, 170–175
overview of, 155–157

COUNT, 180, 456, 463
HAVING clause and, 36
with outer joins, 144
outer joins and, 136–137
SELECT clause and, 39
subqueries and, 170–171
W+E5E clause and, 3�²3�

CREATE DATABASE, DDL triggers and, 519–521
CREATE DEFAULT, 495
CREATE FUNCTION, 495
&5E$TE 25 $/TE5 9IEW, 1�3
CREATE PROCEDURE, 495
CREATE RULE, 495
CREATE SCHEMA, 495
CREATE SEQUENCE, 302–307
CREATE TABLE, 21

data integrity, defining, ��
DDL triggers, 519–521
edge tables, creating, 422–434
INSERT VALUES and, 294
node tables, creating, 420–422

CREATE TRIGGER, 495
CREATE UNIQUE INDEX, 24
&5E$TE 9IEW, 18�, ���
CROSS APPLY

exercise descriptions, 205–206
exercise solutions, 209
overview of, 197–200
unpivoting data, 253–255

cross joins
exercise descriptions, 137–143
exercise solutions, 143–147
use and syntax, 117–121

CUBE, 258
CURRENT, 371
current date and time functions, 90–91
&U55E1T 52W, �33
CURRENT_TIMESTAMP, 90–91
cursors, 43, 500–505
CYCLE, sequence objects and, 303

DATEPART

551

D
Darwen, Hugh, 5
data analysis. See grouping sets; pivoting data;
time series data; window functions
data compression, 66
data control language (DCL), 3
data definition language �DD/�, 3

batches, 496
triggers, 519–521

data integrity, defining, ��²��. See also constraints
data manipulation language (DML), 3

batches, 496
nested DML, 331–333
triggers, 518–519

data marts, 12
data types

BIGINT, 302, 421
CHAR, 51, 64–66
compatible, 211
definition of, 7
INT, 21, 52, 491
NCHAR, 51, 64–66
NUMERIC, 52, 157
NVARCHAR, 51, 64–66, 81
overview of, 64–66
precedence of, 52
SQL_VARIANT, 307, 507
VARCHAR, 21, 51, 64–66, 74, 81, 85, 294

data warehouses �DWs�, 1�²13
database administrators (DBAs), 17–18
database triggers, 519–521
database users, 18
DATABASEPROPERTYEX, 106
databases, SQL Server, 16–19. See also RDBMS
(relational database management systems)

architecture and layout, 16–19
contained, 18
database system types, 11–13
file extensions, 1�
schemas and objects, 19–20
tempdb

local temporary tables, 505–507
table variables, 508–509

DATALENGTH, 71–72
data-staging area (DSA), 13
data-type precedence, 85
DATE, 21

bucketized data and, 274
data types, 84

literals, 84–88
working with date and time separately, 88–90

Date, Chris, 5
date and time data, working with. See also time series
data

$T TI0E =21E, ��²��
CAST, 91–93
CONVERT, 91–93
current date and time functions, 90–91
CURRENT_TIMESTAMP, 90–91
data ranges, filtering, ��
data types, 84
DATEADD, 96, 131, 274–275
DATEDIFF, 96–98, 131, 143, 268–270, 274–275
DATEDIFF_BIG, 96–98
DATENAME, 99
DATEPART, 98
DATETRUNC, 99–100
EOMONTH, 101–102
FROMPARTS, 101
GENERATE_SERIES, 102–103
GETDATE, 90–91
GETUTCDATE, 90–91
ISDATE, 100
literals, 84–88
PARSE, 91–93
SWIT&+2))SET, �3²��
SYSDATETIME, 90–91
SYSDATETIMEOFFSET, 90–91
SYSUTCDATETIME, 90–91
TODATETIMEOFFSET, 94
TRY_CAST, 91–93
TRY_CONVERT, 91–93
TRY_PARSE, 91–93
working with separately, 88–90
YEAR, MONTH, and DAY, 98–99

DATE_BUCKET, 100
bucket logic, applying to data, 270–275
containing bucket, computation of start of, 268–270
exercise descriptions, 280–285
exercise solutions, 285–291
gap filling, �7�²�7�
overview of, 266–268

DATEADD, 96, 131, 274–275
DATEDIFF, 96–98, 131, 143, 175, 268–270, 274–275
DATEDIFF_BIG, 96–98
DATEFORMAT, 84–88
DATEFROMPARTS, 101
DATENAME, 99
DATEPART, 98

DATETIME

552

DATETIME
data types, 84
literals, 88–90
temporal table creation, 344–348

DATETIME2
data types, 84
literals, 84–88
temporal table creation, 344–348

DATETIME2FROMPARTS, 101
DATETIMEFROMPARTS, 101
DATETIMEOFFSET, 93–94

data types, 84
literals, 84–88

DATETIMEOFFSETFROMPARTS, 101
DATETRUNC, 99–100
DAY, 98–99
DBCC CHECKIDENT, 302
DCL (data control language), 3
DDL. See data definition language �DD/�
DEADLOCK_PRIORITY, 394
deadlocks, 394–397
deadly embrace deadlocks, 396
DE$//2&$TE, W+I/E Áow element and, ���
declarative data integrity, 22
DECLARE

table types, 509
table variables, 508–509
variables and, 491–493

DECLARE CURSOR, 503
DECOMPRESS, 79
default constraints, 26
default instances, 15
degenerate intervals, 351–352
DELETE

DML triggers, 518–519
exercise descriptions, 333–337
exercise solutions, 337–341
joins and, 310–311
MERGE and, 317–321
OUTPUT and, 328–329
overview of, 308
row-versioning isolation and, 388
SQL Graph and, 474–477
table expressions, modifying data through, 321–324
temporal table modification, 3�8²3�3
T23 filter in, 3��²3��

deleting data. See also UPDATE
DELETE

joins and, 310–311
overview of, 308

sample data for, 307–308
SQL Graph, 474–477
TRUNCATE, 309–310

DENSE_RANK, 234–237
derived tables

arguments, use of, 181
column aliases, assigning, 179–181
exercise descriptions, 201–206
exercise solutions, 206–209
multiple references, 182–183
nesting, 181–182
overview of, 177–179

DESC, ORDER BY and, 42–44
DESCENDING, 459
dictionary sorting, 66
dirty reads, 381–382
disjunction of predicates, 50
DISTINCT, 211–212

aggregate functions and, 35
EXCEPT (DISTINCT), 218–219
INTERSECT (DISTINCT), 215
IS DISTINCT FROM, 57–61
IS NOT DISTINCT FROM, 57–61
ORDER BY and, 42–44
outer joins and, 147
ranking window functions and, 236
SELECT and, 41
self-contained multivalued subqueries and, 154, 171
UNION (DISTINCT), 213–214

distinct, definition of, �
division (/) operator, 50–53
DML. See data manipulation language (DML)
double quotes (“), 68
DROP, 309
DROP CONSTRAINT, 306
DROP FUNCTION IF EXISTS, 197
DROP TABLE IF EXISTS, 21, 24, 26

global temporary tables, 508
local temporary tables, 507
self-contained multivalued subqueries and, 155
sequence objects and, 304, 307
subqueries, NULL trouble and, 164
UNPIVOT and, 256
UPDATE and, 316–317

D523 9IEW, ���²���
durability, transactions, 369
DWs �data warehouses�, 1�²13
dynamic management views (DMV), 374

sys.dm_exec_connections, 376
sys.dm_exec_input_buffer, 377

553

FALSE

sys.dm_exec_requests, 377–379
sys.dm_exec_sessions, 378
sys.dm_exec_sql_text, 377
sys.dm_os_waiting_tasks, 379
sys.dm_tran_locks, 374–376

dynamic SQL
definition of, �1�
EXEC command, 511
overview of, 510
PIVOT operator, 512–513

E
edge constraints, 423
edge tables, creating, 422–434
EDGE_ID_FROM_PARTS, 437–438
edges, 417
ELSE

CASE expressions and, 53–56
I) . . . E/SE Áow element, ��7²��8

ELSE NULL, 248
ENCRYPTION, views and, 192–193
END, 498
END TRY, 521–525
entity relationship modeling (ERM), 8
EOMONTH, 98, 101–102
equi joins

exercise descriptions, 137–143
exercise solutions, 143–147
overview of, 125

error handling
deadlocks and, 394–397
programmable objects and, 521–525
transactions and, 370

ERROR_LINE, 522
ERROR_MESSAGE, 522
ERROR_NUMBER, 522–523
ERROR_PROCEDURE, 522
ERROR_SEVERITY, 522
ERROR_STATE, 522
ESCAPE, 83
EVENTDATA, 520
EXCEPT

exercise descriptions, 223–226
exercise solutions, 227–230
MATCH and, 449–450
precedence and, 220–221
SELECT INTO and, 297
use of, 217–220

EXCEPT (DISTINCT), 218–219

EXCEPT ALL, 219–220
exclusive locks, 371–372
EXEC, 296–297, 511
exercise descriptions. See also exercise solutions

DELETE, 333–337
INSERT, 333–337
JOIN, 137–143
MERGE, 333–337
OFFSET-FETCH, 333–337
OUTPUT, 333–337
queries, 107–111
SELECT, 107–111
set operators, 223–226
SQL Graph, 481–483
subqueries, 166–170
table expressions, 201–206, 333–337
temporal tables, 360–362
T23 filter, 333²337
transactions, 397–408
window functions, 280–285

exercise solutions
DELETE, 337–341
INSERT, 337–341
JOIN, 143–147
MERGE, 337–341
OFFSET-FETCH, 337–341
OUTPUT, 337–341
queries, 111–116
SELECT, 111–116
set operators, 227–230
SQL Graph, 484–489
subqueries, 170–175
table expressions, 206–209, 337–341
temporal tables, 362–366
T23 filter, 337²3�1
window functions, 285–291

EXISTS
correlated subqueries and, 158–159, 172–173
MATCH and, 449–450
subqueries, NULL trouble and, 161–163, 170–175

external aliasing, 180–181
extract, load, and transform (ELT), 13
extract, transform, and load (ETL), 13

F
FALSE, 50

all-at-once operations, 63–64
HAVING clause and, 36
I) . . . E/SE Áow element and, ��7²��8

554

FALSE

FALSE (continued)
NULLs, overview of, 56–61
subqueries, NULL trouble and, 161–163, 173
W+E5E clause and, 3�
W+I/E Áow element and, ��8

FETCH, 191
OFFSET-FETCH, 47–48
W+I/E Áow element and, ��3

filegroups, 1�
filters. See also +$9I1G� W+E5E

date ranges, 90
OFFSET-FETCH

data modification with, 3��²3��
derived tables and, 178
exercise descriptions, 333–337
exercise solutions, 337–341
overview of, 47–48
views and ORDER BY clause, 222

predicates, 129–130
TOP

data modification with, 3��²3��
derived tables and, 178
exercise descriptions, 333–337
exercise solutions, 337–341
overview of, 44–47
subqueries and, 170–171
views and ORDER BY clause, 191–192, 222

WIT+ TIES, ��²�7, �8, 17�²171
FIRST_VALUE, 237–242
Áow elements

IF . . . ELSE, 497–498
W+I/E, ��8²���

fn_helpcollations, 66–68
follow relationships, 411–412
FOR PATH, 455
FOR SYSTEM_TIME CONTAINED IN, 357
FOR SYSTEM_TIME, 351–352, 353–359
foreign key constraints, 8, 24–25
FORMAT, 75, 78
friendship relationships, 411, 468
FROM. See also JOIN

DELETE and, 308, 310
derived tables and, 182
logical query processing order, 117
MATCH and, 444–448
overview of, 29–30
PIVOT and, 249–251
SHORTEST_PATH and, 455–456
with table expressions

common table expressions (CTEs), 186
derived tables, 177, 180

temporal table queries, 356, 358
UNPIVOT and, 255–256
unpivoting data and, 255
user�defined functions �UD)s� and, �1�
WI1D2W clause, ���²���

from nodes, 411, 417
FROMPARTS functions, 101
FULL, 128
functions. See also aggregate functions; window
functions; sSeFLfiF�IunFtLon�names

for character string operations
CHARINDEX, 72
COMPRESS/DECOMPRESS, 79
&21&$T�&21&$TBWS, ��²7�
DATALENGTH, 71–72
FORMAT, 78
LEFT, 71
LEN, 71–72
/2WE5, 7�
PATINDEX, 72
REPLACE, 72–73
REPLICATE, 74–75
RIGHT, 71
RTRIM and LTRIM, 76
STRING_AGG, 81
STRING_SPLIT, 80
STUFF, 75
SUBSTRING, 70–71
TRANSLATE, 73–74, 77
TRIM, 76–78
UPPER, 75

date and time
$T TI0E =21E, ��²��
CAST, 91–93
CONVERT, 91–93
current date and time functions, 90–91
CURRENT_TIMESTAMP, 90–91
DATEADD, 96
DATEDIFF, 96–98
DATEDIFF_BIG, 96–98
DATENAME, 99
DATEPART, 98
DATETRUNC, 99–100
EOMONTH, 101–102
FROMPARTS, 101
GENERATE_SERIES, 102–103
GETDATE, 90–91
GETUTCDATE, 90–91
ISDATE, 100
PARSE, 91–93
SWIT&+2))SET, �3²��

555

IN

SYSDATETIME, 90–91
SYSDATETIMEOFFSET, 90–91
SYSUTCDATETIME, 90–91
TODATETIMEOFFSET, 94
TRY_CAST, 91–93
TRY_CONVERT, 91–93
TRY_PARSE, 91–93
YEAR, MONTH, and DAY, 98–99

overview of, 68–69
system stored, 105–106
user�defined, �1�²�1�

G
gap filling, �7�²�7�
GENERATE_SERIES, 102–103, 276–279
GE1E5$TED $/W$<S $S 52W E1D, 3��²3�8, 3�3
GE1E5$TED $/W$<S $S 52W ST$5T,
344–348, 363
GETDATE, 90–91
GETUTCDATE, 90–91
global temporary tables, 507–508
globally unique identifiers �GUIDs�, ���, �1�
GO, 189, 496–497

batches and, 496–497
variables and, 494

graph data, querying
exercise descriptions, 481–483
exercise solutions, 484–489
features that are still missing, 471–473
LAST_NODE function, 464–471
MATCH clause, 438–450, 477–480
overview of, 438
recursive queries, 450–454
SHORTEST_PATH option, 454–464

graph modeling. See also SQL Graph
edge tables, creating, 422–434
exercise descriptions, 481–483
exercise solutions, 484–489
metadata, querying, 434–438
node tables, creating, 420–422
overview of, 417–419

graph path aggregate functions, 456
graph_id, 435, 436
GRAPH_ID_FROM_EDGE_ID, 437–438
GRAPH_ID_FROM_NODE_ID, 437–438
GREATEST, 36, 62–63
GROUP BY. See also grouping sets

CUBE, 258
GROUPING SETS, 258

NULL and, 61
overview of, 31–36
pivoting data with, 248–249
ROLLUP subclause, 258–259
with table expressions, 179–181, 182
WI1D2W, ���²���

grouped queries, pivoting data with, 248–249
GROUPING, 260–262
GROUPING SETS, 258
grouping sets. See also GROUP BY

CUBE, 258
exercise descriptions, 280–285
exercise solutions, 285–291
GROUPING and GROUPING_ID, 260–262
GROUPING SETS, 258
overview of, 256–257
ROLLUP, 258–259

GROUPING_ID, 260–262
G=I3 algorithm, 7�

H
HAVING

CASE expressions, 53–56
overview of, 36–37
WI1D2W clause, ���²���

hidden columns, 355
historical data. See temporal tables
history retention policy, 344
HISTORY_RETENTION_PERIOD, 344
HOLDLOCK, 381

I
IaaS (infrastructure as a service), 14
IDENT_CURRENT, 300–302
identifier names, delimiting, 31
identifiers, quoted, �8
identity property, 298–302
IDENTITY_INSERT, 301–302
I) . . . E/SE Áow element, ��7²��8
IGNORE NULLS, 239–242
IIF, 55–56
IMPLICIT_TRANSACTIONS, 367–368
IN

PIVOT operator and, 512
self-contained multivalued subqueries and,
151–155
subqueries, NULL trouble and, 161–163, 173
use of, 50–53

inconsistent analysis

556

inconsistent analysis, 384, 393
INCREMENT BY, sequence objects and, 303
indentation, recursive queries and, 453–454
indexes, unique, 23
indirect friendship relationships, 455
information schema views, 105
INFORMATION_SCHEMA, 105
infrastructure as a service (IaaS), 14
inline aliasing, 180–181
inline table-valued functions (TVFs)

exercise descriptions, 201–206
exercise solutions, 206–209
overview of, 196–197

In-Memory OLTP, 18–19, 367
inner joins

exercise descriptions, 137–143
exercise solutions, 143–147
MATCH and, 438–450
use and syntax, 121–123

inner queries, 178–179
INSERT

BULK INSERT, 298
cross joins and, 120
DML triggers, 518–519
exercise descriptions, 333–337
exercise solutions, 337–341
identity property, 298–302
MERGE and, 317–321, 478
NEXT VALUE FOR and, 303–307
OUTPUT and, 326–327
self-contained multivalued subqueries
and, 154
table expressions, modifying data
through, 321–324
temporal table modification, 3�8²3�3
T23 filter in, 3��²3��
transactions and, 367

INSERT DEFAULT VALUES, 497
INSERT EXEC, 296–297
INSERT INTO, 507

edge tables, creating, 424–426
identity property and, 298–302
INSERT INTO, 507
node tables, creating, 420–422

INSERT SELECT, 295–296, 332–333
INSERT VALUES, 293–295
inserting data, 298–302. See also INSERT

BULK INSERT, 298
identity property and, 298–302
INSERT EXEC, 296–297

INSERT INTO, 298–302, 420–422, 424–426
INSERT SELECT, 295–296
INSERT VALUES, 293–295
SELECT INTO, 297–298
sequence objects, 302–307

instances, SQL Server, 15–16
instead of triggers, 518–519
INT, 21, 52, 491
integrity rule enforcement

with data definition language �DD/�
triggers, 519–521
with data manipulation language (DML)
triggers, 518–519

International Organization for Standardization
(ISO), 2–3
INTERSECT

exercise descriptions, 223–226
exercise solutions, 227–230
precedence and, 220–221
use of, 214–217

INTERSECT (DISTINCT), 215
INTERSECT ALL, 215–217
INTO

INSERT INTO, 298–302
INSERT VALUES and, 294
MERGE and, 478
OUTPUT and, 326, 329
SELECT INTO, 297–298

IS DISTINCT FROM, 57–61
IS NOT DISTINCT FROM, 57–61
IS NOT NULL

overview of, 56–61
subqueries, NULL trouble and, 163

IS NULL, 55–61, 130, 132–133, 498
ISDATE, 100
ISO (International Organization for
Standardization), 2–3
isolation levels. See also row versioning

exercises, 397–408
overview of, 368–369, 380–381, 387–388
READ COMMITTED, 382–384
READ UNCOMMITTED, 381–382
REPEATABLE READ, 384–385
SE5I$/I=$%/E, 38�²387
SNAPSHOT

conÁict detection, 3��²3��
isolation, overview of, 388–390
READ COMMITTED SNAPSHOT,
392–393

summary of, 394

.mdf file extension

557

J
JOIN

composite joins, 124–125
cross joins, 117–121
DELETE and, 310–311
derived tables, multiple references, 182–183
equi joins, 125
exercise descriptions, 137–143
exercise solutions, 143–147
inner joins, 121–123
MATCH and, 438–450
multi-join queries, 127
natural joins, 125
non-equi joins, 125–127
outer joins, 219

COUNT aggregate and, 136–137
description of, 128–130
filtering attributes from nonpreserved
side of, 132–133
missing values, inclusion of, 130–132
in multi-join queries, 133–135

overview of, 117
self joins, 119
theta joins, 125
UPDATE and, 314–316

JSON (JavaScript Object Notation), 491

K
keys

alternate, 8
candidate, 8
foreign, 8, 25
generation of

identity property, 298–302
sequence objects, 302–307

primary, 9
surrogate, 298–302

KILL, 379–380

L
LAG, 160, 237–242, 509
language independence, 2
LANGUAGE/DATEFORMAT, 84–88
large object (LOB), 66
LAST_NODE, 464–471
LAST_VALUE, 237–242, 456, 460, 464–471

LATERAL, 197
.ldf file extension, 1�
LEAD, 160, 237–242
LEADING, 78
LEAST, 36, 62–63
ledgers, 353
LEFT, 71, 128
LEN, 71–72
LIKE, 50–53, 81–83
linked history tables, 344–348
[<list of characters>] wildcard, 82
literals, data and time data, 84–88
local temporary tables, 505–507
LOCK_ESCALATION, 373
LOCK_TIMEOUT, 379–380
locks

exercises, 397–408
lockable resources types, 372–373
modes and compatibility, 371–372
overview of, 370–371

logical operators, 50–53
logical query processing, 117. See also set operators
logins, SQL Server database, 17–18
lost updates, 385
/2WE5, 7�
LTRIM, 76

M
many-to-many relationships, 439, 441
massively parallel processing (MPP) architecture,
11–13
master databases, 16
MATCH, 438–450

FROM and, 444–448
AND in, 446–448
edge constraints in, 442–444
EXISTS and, 449–450
joins and, 441–442
MERGE and, 477–480
in SELECT queries, 438–441
simple match patterns, 454–455
UNION and, 448–449
W+E5E and, ���²��8

matching predicates, 129–130
MAX, 36, 66, 456
MAXRECURSION, 188
MAXVAL, 303
MAXVALUE, 302–303
.mdf file extension, 1�

MERGE

558

MERGE
INTO clause, 478
ON clause, 478
data manipulation language (DML)
triggers, 518–519
exercise descriptions, 333–337
exercise solutions, 337–341
OUTPUT and, 330–331
overview of, 317–321
SQL Graph and, 477–480
table expressions, modifying data through,
321–324
temporal table modification, 3�8²3�3
USING clause, 478

MERGE INTO, 319
merging of data, SQL Graph and, 477–480. See also
MERGE
metadata, querying of, 103–106

catalog views, 104–105
information schema views, 105
in SQL Graph, 434–438
system stored procedures and functions, 105–106

Microsoft SQL Server. See SQL Server
MIN, 36, 456
MINVAL, 303
MINVALUE, 302–303
missing values

in outer joins, 130–132
overview of, 7–8

model databases, 16–17
modeling, graph. See graph modeling
modeling, traditional, 411–417
MONTH, 98–99
msdb database, 17
MTD calculations, 243
multi-join queries

exercise descriptions, 137–143
exercise solutions, 143–147
outer joins in, 133–135
use and syntax, 127

multiplication operator (*), 50–53
multiset theory, 40
multi-statement table-valued functions (TVFs), 196
multivalued subqueries, 151–155

N
names

column. See column names
identifier, 31

named instances, 15
node, 417–418
table, 411

natural joins, 125
NCHAR, 51, 64–66
.ndf file extension, 1�
nested DML, 331–333
nested queries

definition of, 1��
derived tables and, 181–182

1EWID, �1�
NEXT VALUE FOR, 303–307, 327
next values, returning, 159–160
NO ACTION, 423
NO CACHE, 303
NO CYCLE, 303
NOCOUNT, 308
node tables, creating, 420–422
NODE_ID_FROM_PARTS, 437–438
nodes, definition of, �17
NOLOCK, 381
non-equi joins, 125–127
nonrepeatable reads, 384
nonstandard operators, 50–53
normal forms, 8–11
normalization, 8–11
NOT, 51

MATCH and, 448–450
self-contained multivalued subqueries and, 153
subqueries, NULL trouble and, 161–163

NOT EXISTS, 219
correlated subqueries and, 172
MATCH and, 450
subqueries, NULL trouble and, 163

NOT NULL, 130
GROUPING and GROUPING_ID functions and,
260–262
subqueries, NULL trouble and, 163

NTILE, 234–237
NULL, 160–161. See also constraints

aggregate functions and, 35
CASE expressions and, 53–56
COALESCE and, 70
data integrity, defining, �3²��
distinct predicate and, 211–212
gap filling and, �78
GREATEST/LEAST and, 62
GROUPING function and, 260–262
identity property and, 300
I) . . . E/SE Áow element and, ��7²��8

559

ORDER BY

inner joins and, 122
INSERT VALUES and, 294
MATCH and, 451
missing values and, 7–8
missing values, overview of, 7
outer joins and, 145–146

COUNT aggregate and, 136
description of, 128–130
filtering attributes, 13�²133
multi-join queries, 133–135

OUTPUT and, 331
overview of, 56–61
pivoting data, 248–249
string concatenation and, 69–70
STUFF and, 75
subqueries and

correlated subqueries, 159–160
NULL trouble, 161–163, 173
scalar subqueries, 151
self-contained multivalued subqueries, 153

table creation and, 21–22
table expressions, modifying data through, 322
unpivoting data

APPLY, 255
overview of, 252
UNPIVOT, 255–256

variables and, 493
window functions and, 237–242

NUMERIC, 52, 157
NVARCHAR, 51, 64–66, 81
NVARCHAR(MAX), 81

O
OBJECT_DEFINITION, 192–193
OBJECT_ID_FROM_EDGE_ID, 437–438
OBJECT_ID_FROM_NODE_ID, 437
OBJECT_NAME, 376
OBJECTPROPERTY, 106
objects

sequence, 302–307
in set theory, 4
SQL Server, 19–20

OFFSET, 191
offset window functions, 237–242
OFFSET-FETCH, 191–192

APPLY operator and, 199
data modification with, 3��²3��
derived tables and, 178
exercise descriptions, 333–337

exercise solutions, 337–341
overview of, 47–48
views and ORDER BY clause, 222

OLTP (online transactional processing), 11–12
ON

inner joins and, 122, 123
MERGE and, 478
non-equi joins and, 125
outer joins and, 128, 129–130, 146

ON DELETE CASCADE, 25
ON DELETE, 25
ON UPDATE, 25
one-to-many relationships, 439
online transactional processing (OLTP), 11–12
ONLY, OFFSET-FETCH and, 48
on-premises RDBMS, 13–14
operators. See also APPLY; JOIN; PIVOT; set operators;
UNPIVOT

APPLY, 63, 253–255
exercise descriptions, 201–206
exercise solutions, 206–209

arithmetic, 50–53
comparison, 50–53
logical, 50–53
overview of, 50–53, 68–69
precedence of, 50–53, 220–221
set

EXCEPT, 217–220
exercise descriptions, 223–226
exercise solutions, 227–230
INTERSECT, 214–217
overview of, 211–212
precedence and, 220–221
UNION, 212–214
unsupported logical phrases,
circumventing, 221–223

optimistic concurrency, 372
optimization, query, 311
OR, 51, 448–450
ORDER BY

CASE expressions, 53–56
circumventing supported logical
phrases with, 221–223
cursors, 500–505
INTERSECT ALL and, 215–217
OFFSET-FETCH and, 324
overview of, 42–44
52WB1U0%E5 and, �3�
set operators and, 211
with table expressions

560

ORDER BY

ORDER BY (continued)
derived tables, 178
views, 190–192

T23 filter and, 3��
WI1D2W clause, ���²���
window functions and, 232–233, 238

ORIGINAL_LOGIN, 518
OSQL, 494
OUTER APPLY, 197–200
outer joins, 219

COUNT aggregate and, 136–137
description of, 128–130
exercise descriptions, 137–143
exercise solutions, 143–147
filtering attributes from nonpreserved
side of, 132–133
MATCH and, 438–450
missing values, inclusion of, 130–132
in multi-join queries, 133–135

outer queries
definition of, 1��
in table expressions, 177

OUTPUT
INTO and, 326
DELETE and, 328–329
exercise descriptions, 333–337
exercise solutions, 337–341
INSERT and, 326–327
MERGE and, 330–331
nested DML, 331–333
overview of, 326
SQL Graph and, 476–477
stored procedures and, 516–517
UPDATE and, 329–330

OVER
sequence objects and, 305
window functions and, 231–233, 242–244

P
PaaS (platform as a service), 14
parentheses

in grouping sets, 258
set operators and, 221

PARSE, 87–88, 91–93
parsing, batches and, 494–495
PARTITION BY

INTERSECT ALL and, 215–217
window functions and, 49–50, 233

partitions, 309–310, 373

PATINDEX, 72
PERCENT

OFFSET-FETCH and, 48
TOP and, 45

percent (%) wildcard, 81–82
PERIOD FOR SYSTEM_TIME, temporal table creation,
344–348, 363
pessimistic concurrency, 372
phantoms and phantom reads, 386–387
physical query processing, 117
PIVOT, 249–251, 512–513
pivoting data

exercise descriptions, 280–285
exercise solutions, 285–291
with grouped queries, 248–249
overview of, 285–291
with PIVOT operator, 249–251
unpivoting data

with APPLY operator, 253–255
overview of, 251–252

platform as a service (PaaS), 14
plus sign (+), 457

addition operator, 50–53
concatenation operator, 69–70

policies
enforcement of

with data definition language �DD/� triggers,
519–521
with data manipulation language (DML)
triggers, 518–519

retention, 344, 353
posts, in traditional modeling, 412
pound sign (#), 507
precedence

data types, 52, 85
operators, 50–53, 220–221

predicates. 6ee�also�sSeFLfiF�SreGLFate�names
conjunction of, 50
disjunction of, 50
filtering, 1��²13�
matching, 129–130
overview of, 50–53
predicate logic, 4–5
relational model, overview of, 5–7

preserved tables, 128
previous values, returning, 159–160
primary key constraints, 9, 23
PRINT, 495, 497

error handling, 522–525
EXEC command and, 511

561

expressions; window functions

private cloud, 14
procedural data integrity, 22
procedures, system, 105–106
programmable objects

batches and, 494–497
cursors, 500–505
dynamic SQL, 510–513
error handling, 521–525
Áow elements, ��7²���
routines

overview of, 513
stored procedures, 511–512, 515–517
triggers, 517–521
user�defined functions �UD)s�, �1�²�1�

temporary tables, 505–510
variables, 491–493

propositions, relational model, 5–7
publications, in traditional modeling, 412

Q
queries. See also SELECT; subqueries; table
expressions; window functions

all-at-once operations, 63–64
CASE expressions, overview of, 53–56
character data, working with

CHARINDEX, 72
collation, 66–68
COMPRESS/DECOMPRESS, 79
CONCAT, 69–70
&21&$TBWS, ��²7�
concatenation, 69–70
data types, 64–66
DATALENGTH, 71–72
FORMAT, 78
LEFT, 71
LEN, 71–72
LIKE, 81–83
/2WE5, 7�
PATINDEX, 72
REPLICATE, 72–73, 74–75
RIGHT, 71
RTRIM and LTRIM, 76
STRING_AGG, 81
STRING_SPLIT, 80
STUFF, 75
SUBSTRING, 70–71
TRANSLATE, 73–74, 77
TRIM, 76–78
UPPER, 75

FROM clause, overview of, 29–30
clauses versus phrases in, 29
cursors returned by, 43
date and time data, working with

$T TI0E =21E, ��²��
CAST, 91–93
CONVERT, 91–93
current date and time functions, 90–91
CURRENT_TIMESTAMP, 90–91
data ranges, filtering, ��
data types, 84
DATEADD, 96
DATEDIFF, 96–98
DATEDIFF_BIG, 96–98
DATENAME, 99
DATEPART, 98
DATETRUNC, 99–100
EOMONTH, 101–102
FROMPARTS, 101
GENERATE_SERIES, 102–103
GETDATE, 90–91
GETUTCDATE, 90–91
ISDATE, 100
literals, 84–88
PARSE, 91–93
SWIT&+2))SET, �3²��
SYSDATETIME, 90–91
SYSDATETIMEOFFSET, 90–91
SYSUTCDATETIME, 90–91
TODATETIMEOFFSET, 94
TRY_CAST, 91–93
TRY_CONVERT, 91–93
TRY_PARSE, 91–93
working with separately, 88–90
YEAR, MONTH, and DAY, 98–99

exercise descriptions, 107–111
exercise solutions, 111–116
graph data

data modification considerations, �7�²�8�
features that are still missing, 471–473
LAST_NODE, 464–471
MATCH, 438–450, 477–480
overview of, 438
recursive queries, 450–454
SHORTEST_PATH, 454–464

GREATEST function, overview of, 62–63
GROUP BY clause, overview of, 32–36
identifier names, delimiting, 31
inner, 178–179
intersecting, 214–217

562

expressions; window functions

expressions; window functions (continued)
LEAST function, overview of, 62–63
logical query processing, 117
metadata, querying of, 103–106

catalog views, 104–105
information schema views, 105
in SQL Graph, 434–438
system stored procedures and functions, 105–106

nested
definition of, 1��
derived tables and, 181–182

NULLs, overview of, 56–61
2))SET�)ET&+ filter, overview of, �7²�8
operators, overview of, 50–53
optimization, 311
optimization of, 311
ORDER BY clause, overview of, 42–44
outer, 149, 177
physical query processing, 117
pivoting data with, 248–249
predicates, overview of, 50–53
recursive, 450–452, 453–454
SELECT clause, overview of, 37–42
set difference operations, 217–220
in temporal tables, 353–359
T23 filter, overview of, ��²�7
unifying results of, 212–214
W+E5E clause, overview of, 31²3�

QUOTED_IDENTIFIER, 68
QUOTENAME, 513

R
RAND, 514
RANGE, 233
RANK, 234–237
ranking window functions, 234–237
RDBMS (relational database management systems)

cloud, 14–15
definition of, 1
on-premises, 13–14
relational model, 5–7

READ COMMITTED
isolation, overview of, 382–384
SNAPSHOT and, 371–372, 392–393
troubleshooting blocking and, 374

READ COMMITTED SNAPSHOT
isolation levels and, 381, 392–393
lock modes and compatibility, 371–372
overview of, 371

READ UNCOMMITTED, 381–382
READCOMMITTEDLOCK, 392
recursive common table expressions (CTEs), 186–188
recursive queries, 450–454

overview of, 450–452
sorting and indentation, 453–454

referenced tables, 24
referencing relation, 8
referencing tables, 24
relational database management systems. See
RDBMS (relational database management systems)
relational model

constraints, 8
data integrity, defining, ��²��
definition of, �
language independence, 2
missing values, 7–8
normalization, 8
propositions, predicates, and relations, 5–7

relationships
commutative, 411
follow, 411–412
friendship, 411, 468
indirect friendship, 455
many-to-many, 439, 441
one-to-many, 439

REPEATABLE READ, 384–385
REPLACE, 72–73
REPLICATE, 74–75
resolution, batches and, 496
Resource database, 17
resource types, locking of, 372–373
RESPECT NULLS, 239–242
5EST$5T WIT+, 3�3
retention policy, 353
RETURN

inline table-valued functions (TVFs) and, 196
user�defined functions �UD)s� and, �1�

RETURNS TABLE, 196
RIGHT, 71, 74–75, 128
ROLLBACK TRAN (TRANSACTION), 518

isolation levels and, 382
lock modes and compatibility, 371
overview of, 367
troubleshooting blocking and, 374

ROLLUP, 258–259
routines

overview of, 513
stored procedures, 511–512, 515–517
triggers

563

window functions

DDL, 519–521
definition of, �17²�18
DML, 518–519

user�defined functions, �1�²�1�
52W, 2))SET�)ET&+ and, �8
row constructors, 316
row versioning

isolation levels based on
overview of, 387–388
READ COMMITTED SNAPSHOT, 392–393
SNAPSHOT, 388–392
summary of, 394

overview of, 368–369
52WB1U0%E5, �3�²�37, 3�3²3��

EXCEPT ALL and, 219
INTERSECT ALL and, 215–216
overview of, 49–50

rows, 234–237
52WS, 2))SET�)ET&+ and, �8
52WS %ETWEE1, �33, �38, ���
52WS %ETWEE1 U1%2U1DED 35E&EDI1G $1D
&U55E1T 52W, �38
RTRIM, 76
rules, normalization, 8–11
running aggregates, subqueries and, 160–161

S
scalar subqueries, 149–151
scalar user�defined functions �UD)s�, �1�²�1�
SCHEMA_NAME, 104
SCHEMABINDING, views and, 193–194
schema�qualified obMect name, ��
schemas

CREATE SCHEMA, 495
information schema views, 105
snowÁaNe, 1�
SQL Server architecture, 19–20
star, 12

SCOPE_IDENTITY, 300, 326
searched CASE expressions, 53–56
SELECT. See also table expressions;
window functions

aliases and, 37–42
all-at-once operations, 63–64
CASE expressions, overview of, 53–56, 248–249
CAST, 87–88
character data, working with

CHARINDEX, 72
collation, 66–68

&21&$T and &21&$TBWS, ��²7�
concatenation, 69–70
data types, 64–66
DATALENGTH, 71–72
LEFT, 71
LEN, 71–72
/2WE5, 7�
PATINDEX, 72
REPLACE, 72–73
REPLICATE, 74–75
RIGHT, 71
RTRIM and LTRIM, 76
STUFF, 75
SUBSTRING, 70–71
TRANSLATE, 73–74
UPPER, 75

AS clause and, 37
clauses versus phrases in, 29
CONVERT and, 87–88
correlated subqueries and, 159
date and time data, working with

$T TI0E =21E, ��²��
CAST, 91–93
CONVERT, 91–93
current date and time functions, 90–91
CURRENT_TIMESTAMP, 90–91
data ranges, filtering, ��
data types, 84
DATEADD, 96
DATEDIFF, 96–98
DATEDIFF_BIG, 96–98
DATENAME, 99
DATEPART, 98
DATETRUNC, 99–100
EOMONTH, 101–102
FROMPARTS, 101
GENERATE_SERIES, 102–103
GETDATE, 90–91
GETUTCDATE, 90–91
ISDATE, 100
literals, 84–88
PARSE, 91–93
SWIT&+2))SET, �3²��
SYSDATETIME, 90–91
SYSDATETIMEOFFSET, 90–91
SYSUTCDATETIME, 90–91
TODATETIMEOFFSET, 94
TRY_CAST, 91–93
TRY_CONVERT, 91–93
TRY_PARSE, 91–93

564

window functions

window functions (continued)
working with separately, 88–90
YEAR, MONTH, and DAY, 98–99

DISTINCT and, 41
elements of, 27–29
exercise descriptions, 107–111
exercise solutions, 111–116
global temporary tables and, 507
GREATEST function, overview of, 62–63
GROUP BY clause, overview of, 32–36
HAVING clause, overview of, 36–37
hidden columns and, 355
identifier names, delimiting, 31
INSERT SELECT, 295–296
isolation levels and, 381, 392
LEAST function, overview of, 62–63
MATCH and, 438–441
metadata, querying of, 103–106

catalog views, 104–105
information schema views, 105
in SQL Graph, 434–438
system stored procedures and functions,
105–106

NULLs, overview of, 56–61
2))SET�)ET&+ filter, overview of, �7²�8
ORDER BY clause, overview of, 42–44
FROM, overview of, 29–30
PARSE, 87–88
predicates and operators, overview of, 50–53
processing order of, 28–29
ranking window functions and, 236–237
SELECT clause, overview of, 37–42
SHORTEST_PATH and, 454–464
stored procedures and, 516–517
subqueries and

correlated subqueries, 157
self-contained subqueries, 149

with table expressions
common table expressions, 183–188
derived tables, 177–183
inline table-valued functions, 196–200
overview of, 177
views, 188–195

temporary tables and, 505–507
T23 filter, overview of, ��²�7
transactions and, 370
variables and, 492–493
W+E5E clause, overview of, 31²3�
WI1D2W clause, ���²���

SELECT *41–42

SELECT * FROM
edge tables, creating, 425–434
identity property and, 302
node tables, creating, 420–422

SELECT INTO, 297–298
SELECT NODE_ID_FROM_PARTS, 438
self joins

exercise descriptions, 137–143
exercise solutions, 143–147
overview of, 119

self-contained subqueries
definition of, 1��
exercise descriptions, 166–170
exercise solutions, 170–175
multivalued subquery examples, 151–155
scalar subquery examples, 149–151

semicolon (;), 22, 29, 319
SEQUEL (Structured English Query Language), 2–3
sequence objects, 299, 302–307
SE5I$/I=$%/E

conÁict detection and, 3��²3��
isolation level, overview of, 380–381, 386–387, 394

SERVERPROPERTY, 106
session IDs, 375–376
SET

quoted identifiers, �8
UPDATE and, 340–341
variables and, 491–493

SET DATEFORMAT, 84–88
SET DEFAULT, 25
SET LANGUAGE, 85
SET NOCOUNT ON, 497, 516–517
SET NULL, 25
set operators

EXCEPT, 217–220
exercise descriptions, 223–226
exercise solutions, 227–230
INTERSECT, 214–217
overview of, 211–212
precedence and, 220–221
UNION, 212–214
unsupported logical phrases, circumventing,
221–223

set theory, 3–4
SET TRANSACTION ISOLATION LEVEL, 381
sets, grouping. See grouping sets
shared locks, 371–372
SHORTEST_PATH, 454–464. See also LAST_NODE
simple CASE expressions, 53–56
simple match pattern, 454–455

Structured English Query Language (SEQUEL)

565

single quotes (‘), 68
single-table queries. See queries
SMALLDATETIME

data types, 84
literals, 84–88
working with date and time separately, 88–90

SMALLDATETIMEFROMPARTS, 101
SNAPSHOT

conÁict detection, 3��²3��
isolation, overview of, 388–390
READ COMMITTED SNAPSHOT

isolation levels and, 381, 392–393
lock modes and compatibility, 371–372
overview of, 371

snowÁaNe schema, 1�
sorting, recursive queries and, 453–454
sp_columns, 106
sp_executesql stored procedure, 511–512
sp_help, 105
sp_helpconstraint, 106
sp_sequence_get_range, 306–307
sp_tables, 105
SQL (Structured Query Language), overview of, 1–2.
See also dynamic SQL

database system types, 11–13
history and use of, 2–3
relational model

constraints, 8
definition of, �
language independence, 2
missing values, 7–8
normalization, 8–11
propositions, predicates, and relations, 5–7

set theory, 3–4
standards for use, 2–3

SQL Graph
cleanup, 490
data modification

deleting of data, 474–477
merging of data, 477–480
updating of data, 474–477

exercise descriptions, 481–483
exercise solutions, 484–489
graph data, querying

features that are still missing, 471–473
LAST_NODE function, 464–471
MATCH clause, 438–450, 477–480
overview of, 438
recursive queries, 450–454
SHORTEST_PATH option, 454–464

graph modeling
edge tables, creating, 422–434
metadata, querying, 434–438
node tables, creating, 420–422
overview of, 417–419

LAST_NODE, 464–471
overview of, 409
sample tables for, 410
traditional modeling versus, 411–417
transitive closure, 462

SQL Server
Accelerated Database Recovery (ADR), 369, 387
architecture overview

cloud computing, 14–15
databases, 16–19
instances, 15–16
on-premises RDBMS, 13–14
schemas and objects, 19–20

authenticated login, 17–18
edge constraints, 423
gap filling in, �7�
In-Memory OLTP, 367
ledgers, 353
Management Studio, 375
online transactional processing (OLTP), 11–13
unique indexes, 23

SQL Server Agent, 17
SQL Server Integration Services (SSIS), 13
SQL Server Management Studio (SSMS), 494

pivoting data and, 249
session ID, troubleshooting blocks, 373–380
temporal table creation, 345

SQL_VARIANT, 307, 507
SQLCMD, 494
square brackets ([]), 68, 82
star schema, 12
ST$5T WIT+, 3�3
stored procedures

ENCRYPTION, 192–193
overview of, 515–517
sp_columns, 106
sp_executesql, 511–512
sp_help, 105
sp_helpconstraint, 106
sp_sequence_get_range, 306–307
sp_tables, 105

STRING_AGG, 81, 456, 458, 513
STRING_SPLIT, 80
strings, operations on. See character data, working with
Structured English Query Language (SEQUEL), 2–3

566

STUFF

STUFF, 75
subqueries. See also table expressions; window functions

bugs
NULL trouble, 160–161
substitution errors in subquery column names,
163–164

correlated, 155–157
exercise descriptions, 166–170
exercise solutions, 170–175
EXISTS predicate, 158–159
overview of, 149
previous or next values, returning, 159–160
running aggregates and, 160–161
self-contained

definition of, 1��
multivalued subquery examples, 151–155
scalar subquery examples, 149–151

substitution errors in subquery column names, 163–164
SUBSTRING, 70–71
subtraction (-) operator, 50–53
SUM, 34–35, 242, 456, 472
surrogate keys, identity property and, 298–302
SWIT&+2))SET, �3²��, ��²��
symmetric multiprocessing (SMP) architecture, 11
Synapse Azure Analytics, 11–13
SYSDATETIME, 518

current date and time functions, 90–91
default constraints, defining, ��
INSERT SELECT and, 296

SYSDATETIMEOFFSET, 90–91
sys.dm_exec_connections, 376
sys.dm_exec_input_buffer, 377
sys.dm_exec_requests, 377–379
sys.dm_exec_sessions, 378
sys.dm_exec_sql_text, 377
sys.dm_os_waiting_tasks, 379
sys.dm_tran_locks, 374–376
system stored procedures/functions, 105–106
SYSTEM_TIME, temporal table queries, 353–359
SYSTEM_VERSIONING, temporal table creation,
344–348, 351, 353, 363
system-versioned temporal tables. See temporal
tables
SYSUTCDATETIME, 90–91, 348, 360

T
table expressions, 39

APPLY operator, 197–200
common table expressions (CTEs)

arguments, use of, 185
column aliases, assigning, 184
defining multiple, 18�
multiple references in, 186
overview of, 183–184
recursive, 186–188

derived tables
arguments, use of, 181
column aliases, assigning, 179–181
multiple references, 182–183
nesting, 181–182
overview of, 177–179

exercise descriptions, 201–206, 333–337
exercise solutions, 206–209, 337–341
inline table-valued functions (TVFs), 196–200
modifying data through, 321–324
overview of, 177
views

CHECK OPTION, 194–195
ENCRYPTION, 192–193
ORDER BY, 190–192
overview of, 188–189
SCHEMABINDING, 193–194

table value constructor, 228
tables. See also table expressions; temporal tables

creating, 19–22
derived

arguments, use of, 181
column aliases, assigning, 179–181
multiple references, 182–183
nesting, 181–182
overview of, 177–179

edge, 422–434
names, 411
node, 420–422
partitioning, 309–310
preserved, 128
referencing versus referenced, 24
temporary, 505–510
types of, 509–510
variables, 508–509

table-valued functions, inline. See inline table-valued
functions (TVFs)
table-valued parameters (TVPs), 509
table�valued user�defined functions �UD)s�, �1�²�1�
tempdb database

local temporary tables, 505–507
overview of, 17
table variables, 508–509

temporal tables

567

T-SQL, overview of

creating, 344–348
exercise descriptions, 360–362
exercise solutions, 362–366
modifying data in, 348–353
overview of, 343
querying data in, 353–359
types of, 343

temporary tables
global, 507–508
local, 505–507
overview of, 505
table types, 509–510
table variables, 508–509

THEN, CASE expressions and, 53–56
theta joins, 125
TIME

data types, 84
literals, 84–88
working with date and time separately,
88–90

time series data. See also date and time data,
working with

DATE_BUCKET function
bucket logic, applying to data, 270–275
containing bucket, computation of
start of, 268–270
overview of, 266–268

exercise descriptions, 280–285
exercise solutions, 285–291
gap filling, �7�²�7�
overview of, 262–263
sample data for, 263–266

TIMEFROMPARTS, 101
to nodes, 417
TO, TRUNCATE and, 309
TODATETIMEOFFSET, 94
T23 filter

data modification with, 3��²3��
derived tables and, 178
exercise descriptions, 333–337
exercise solutions, 337–341
overview of, 44–47
subqueries and, 170–171
views and ORDER BY clause,
191–192, 222

total ordering, 46
TRAILING, 78
transactions

batches versus, 494
closing, 351

deadlocks, 394–397
definition of, 3�7
exercises, 397–408
isolation levels

overview of, 380–381
READ COMMITTED, 382–384
READ UNCOMMITTED, 381–382
REPEATABLE READ, 384–385
row versioning and, 387–388
SE5I$/I=$%/E, 38�²387
SNAPSHOT, 388–393
summary of, 394

locks and blocking
lockable resources types, 372–373
modes and compatibility, 371–372
overview of, 370–371
troubleshooting, 373–380

opening, 351–352
overview of, 367–370

transitive closure, 462
TRANSLATE, 73–74, 77
triggers

DDL, 519–521
definition of, �17²�18
DML, 518–519

TRIM, 76–78
troubleshooting

locks and blocking, 373–380
OUTPUT, 326
table expressions, modifying data through,
321–324

TRUE, 50
all-at-once operations, 63–64
HAVING clause and, 36
I) . . . E/SE Áow element and, ��7
NULLs, overview of, 56–61
W+E5E clause and, 3�
W+I/E Áow element and, ��8

TRUNCATE, 309–310, 348
TRY. . .CATCH

error handling, 521–525
transactions and, 370

TRY_CAST, 91–93
TRY_CONVERT, 91–93
TRY_PARSE, 91–93
T-SQL, overview of

coding style, 22
data integrity, 22–26
database system types, 11–13
language independence, 2

568

T-SQL, overview of

T-SQL, overview of (continued)
predicate logic, 4–5
relational model

constraints, 8
data integrity, defining, ��²��
definition of, �
missing values, 7–8
normalization, 8–11
propositions, predicates, and relations, 5–7

set theory, 3–4
SQL development and, 2
tables, creating, 19–22

TYPE_NAME, 104–105
types, data. See data types
types, table, 509–510

U
U1%2U1DED)2//2WI1G, window functions and, ���
UNBOUNDED PRECEDING, window functions and, 233
underscore (_) wildcard, 82
Unicode data types, 65, 512
UNION

exercise descriptions, 223–226
exercise solutions, 227–230
MATCH and, 448–449
precedence and, 220–221
use of, 212–214

UNION (DISTINCT), 213–214
UNION ALL, 213, 256–257
UNIQUE, NULL and, 61
unique constraints, 23–24
unique index, 23
U1.12W1, ��

HAVING clause and, 36
I) . . . E/SE Áow element and, ��7²��8
missing values, overview of, 7
NULLs, overview of, 56–61
outer joins and

description of, 130
filtering attributes, 13�²133
multi-join queries, 133–135

subqueries and
NULL trouble, 161–163, 173
scalar subqueries, 151

W+E5E clause and, 3�
W+I/E Áow element and, ��8

UNPIVOT, 63, 255–256
unpivoting data

with APPLY operator, 253–255
overview of, 251–252
with UNPIVOT operator, 63, 255–256

unsupported logical phrases, circumventing, 221–223
UPDATE, 316–317

assignment UPDATE, 316–317
based on a join, 314–316
data manipulation language (DML) triggers,
518–519
MERGE and, 317–321
nested DML, 331–333
OUTPUT and, 329–330
overview of, 311–314
sequence objects and, 305
SET and, 340–341
SQL Graph and, 474–477, 478
table expressions, modifying data through, 321–324
temporal table modification, 3�8²3�3
T23 filter in, 3��²3��

UPPER, 75
USE

SELECT and, 28
table creation, 21

user�defined functions �UD)s�, �1�²�1�
USING, MERGE and, 319, 478
UTF-8 character encoding support, 65–68
UTF-16 character encoding support, 65

V
VALUES, 295

APPLY and, 253–255
INSERT VALUES, 293–295
missing, 7–8, 130–132
table value constructor, 228

VARBINARY(MAX), 79
VARCHAR, 21, 51, 64–66, 74, 81, 85, 294
VARCHAR(MAX), 81
variables

batches and, 495
as programmable objects, 491–493
table, 508–509

vector expressions, 316
views

catalog, 104–105
exercise descriptions, 201–206
exercise solutions, 206–209
information schema, 105
table expressions

YTD calculations

569

CHECK OPTION, 194–195
ENCRYPTION, 192–193
ORDER BY, 190–192
overview of, 188–189
SCHEMABINDING, 193–194

virtual machines (VM), 14

W
W+E1, &$SE expressions and, �3²��
W+E1 0$T&+ED, 3��, �78
W+E1 0$T&+ED $1D, 3�1
W+E1 0$T&+ED T+E1, 31�
W+E1 12T 0$T&+ED, 3��, �78
W+E1 12T 0$T&+ED %< S2U5&E, 3��
W+E1 12T 0$T&+ED T+E1, 31�
W+E5E

CASE expressions, overview of, 53–56
DELETE and, 308, 310
graph metadata, querying, 437–438
inner joins and, 122
MATCH and, 446–448, 451
outer joins and, 129–130

exercise solutions, 143–147
filtering attributes, 13�²133

overview of, 31–32
SHORTEST_PATH and, 455–458
subqueries and, 149, 170
with table expressions, 179, 181, 182
unpivoting data and, 255
UPDATE and, 313, 314–316
WI1D2W clause and, ���²���

W+I/E Áow element, ��8²���
whole, definition of, 3²�
wildcards, LIKE predicate and

[<character>-<character>]83
ESCAPE character, 83
[<list of characters>]82
percent (%), 81–82
underscore (_), 82

window functions. 6ee�also�sSeFLfiF�IunFtLon�names
aggregate. See also COUNT; pivoting data

graph path aggregate functions, 456
NULLs and, 35
overview of, 231–233, 242–244
running aggregates, subqueries and, 160–161

exercise descriptions, 280–285
exercise solutions, 285–291
offset, 237–242
overview of, 49–50, 231–233
ranking, 234–237
subqueries and, 160
WI1D2W clause, ���²���

window-frame clause, 233, 242–244
window-order clause, 233, 242–244
window-partition clause, 233, 242–244
Windows authenticated login, 17²18
WIT+, common table expressions �&TEs� and,
183–184
WIT+ 12&+E&., ��
WIT+ TIES

OFFSET-FETCH and, 48
ORDER BY and, 46–47
subqueries and, 170–171

WIT+I1 G52U3, 81, ���

X
XACT_ABORT, 368
XML (Extensible Markup Language), 491
XQuery, 520

Y-Z
YEAR, 98–99

derived tables and, 179, 182
SELECT clause and, 39
W+E5E clause and, 3�

YTD calculations, 243

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Acknowledgments
	About the Author
	Introduction
	Chapter 1: Background to T-SQL querying and programming
	Theoretical background
	SQL
	Set theory
	Predicate logic
	The relational model
	Types of database workloads

	SQL Server architecture
	On-premises and cloud RDBMS flavors
	SQL Server instances
	Databases
	Schemas and objects

	Creating tables and defining data integrity
	Creating tables
	Defining data integrity

	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

