
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138062835
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138062835
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138062835

Oracle PL/SQL
by Example
Sixth Edition

This page intentionally left blank

Oracle PL/SQL
by Example
Sixth Edition

Benjamin Rosenzweig
Elena Rakhimov

Oracle PL/SQL by Example

Sixth Edition

Copyright © 2023 by Pearson Education, Inc.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Pearson cannot attest to the accuracy of this information. Use of a term in this book should not
be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or
fitness is implied. The information provided is on an “as is” basis. The authors and the publisher shall have
neither liability nor responsibility to any person or entity with respect to any loss or damages arising from
the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has been taken in the
preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is
any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-806283-5
ISBN-10: 0-13-806283-8

Library of Congress Control Number: 2023933441

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited
to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the
potential to deliver opportunities that improve lives and enable economic mobil-
ity. As we work with authors to create content for every product and service, we
acknowledge our responsibility to demonstrate inclusivity and incorporate diverse
scholarship so that everyone can achieve their potential through learning. As the
world’s leading learning company, we have a duty to help drive change and live up
to our purpose to help more people create a better life for themselves and to create
a better world.

Our ambition is to purposefully contribute to a world where

§ Everyone has an equitable and lifelong opportunity to succeed through
learning

§ Our educational products and services are inclusive and represent the rich
diversity of learners

§ Our educational content accurately reflects the histories and experiences of
the learners we serve

§ Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you
about any concerns or needs with this Pearson product so that we can investigate
and address them.

Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

Figure Credits

Cover: wanpatsorn/Shutterstock

Figure 1-4 through Figure 1-17, Figure 13-1 through Figure 13-5: Oracle, Inc.

vii

Contents at a Glance

Preface xvii

Introduction to PL/SQL New Features in Oracle 21c xxiii

Chapter 1 PL/SQL Concepts 1

Chapter 2 PL/SQL Language Fundamentals 27

Chapter 3 SQL in PL/SQL 39

Chapter 4 Conditional Control: IF Statements 49

Chapter 5 Conditional Control: CASE Statements 65

Chapter 6 Iterative Control: Part I 85

Chapter 7 Iterative Control: Part II 111

Chapter 8 Error Handling and Built-in Exceptions 125

Chapter 9 Exceptions 135

Chapter 10 Exceptions: Advanced Concepts 151

Chapter 11 Introduction to Cursors 161

viii Contents at a Glance

Chapter 12 Advanced Cursors 181

Chapter 13 Triggers 201

Chapter 14 Mutating Tables and Compound Triggers 221

Chapter 15 Collections 229

Chapter 16 Records 259

Chapter 17 Native Dynamic SQL 273

Chapter 18 Bulk SQL 289

Chapter 19 Procedures 319

Chapter 20 Functions 331

Chapter 21 Packages 341

Chapter 22 Stored Code Advanced Concepts 357

Chapter 23 Object Types in Oracle 379

Chapter 24 Storing Object Types in Tables 399

Chapter 25 Dynamic SQL with the DBMS_SQL Package 411

Appendix A PL/SQL Formatting Guide 421

Appendix B Student Database Schema 425

Index 433

ix

Contents

Preface xvii

Introduction to PL/SQL New Features in Oracle 21c xxiii
PL/SQL Extended Iterators xxiv

PL/SQL Qualified Expressions Enhancements xxiv

SQL Macros xxiv

New JSON Data Type xxiv

New Pragma SUPPRESSES_WARNING_6009 xxv

PL/SQL Type Attributes in Non-Persistable
User-Defined Types xxvi

PL/SQL Function Enhanced Result Cache xxvii

Chapter 1 PL/SQL Concepts 1
Lab 1.1: PL/SQL Architecture 2

PL/SQL Architecture 2

PL/SQL Block Structure 5

How PL/SQL Gets Executed 9

x Contents

Lab 1.2: PL/SQL Development Environment 10

Getting Started with SQL Developer 10

Getting Started with SQL*Plus 13

Executing PL/SQL Scripts 14

Lab 1.3: PL/SQL: The Basics 18

DBMS_OUTPUT.PUT_LINE Statement 18

Substitution Variable Feature 21

Summary 25

Chapter 2 PL/SQL Language Fundamentals 27
Lab 2.1: PL/SQL Language Components 27

PL/SQL Variables 29

PL/SQL Reserved Words 31

Delimiters 32

Literals in PL/SQL 33

Lab 2.2: Anchored Data Types 33

Lab 2.3: Scope of a Variable, Block, Nested Blocks, and Labels 35

Scope of a Variable 35

Nested Blocks and Labels 36

Summary 38

Chapter 3 SQL in PL/SQL 39
Lab 3.1: SQL Statements in PL/SQL 39

Initializing Variables with the SELECT INTO Statement 40

Using DML Statements in a PL/SQL Block 41

Using a Sequence in a PL/SQL Block 43

Lab 3.2: Transaction Control in PL/SQL 44

The COMMIT, ROLLBACK, and SAVEPOINT Statements 44

The SET TRANSACTION Statement 47

Summary 48

Chapter 4 Conditional Control: IF Statements 49
Lab 4.1: IF Statements 50

IF-THEN Statements 50

IF-THEN-ELSE Statements 52

Lab 4.2: ELSIF Statements 55

Contents xi

Lab 4.3: Nested IF Statements 59

Logical Operators 61

Summary 62

Chapter 5 Conditional Control: CASE Statements 65
Lab 5.1: CASE Statements 65

CASE Statements 66

Searched CASE Statements 68

Lab 5.2: CASE Expressions 74

Lab 5.3: NULLIF and COALESCE Functions 78

NULLIF Function 78

COALESCE Function 80

Summary 82

Chapter 6 Iterative Control: Part I 85
Lab 6.1: Simple Loops 86

EXIT Statement 87

EXIT WHEN Statement 91

Lab 6.2: WHILE Loops 92

Using WHILE Loops 92

Terminating the WHILE Loop Prematurely 95

Lab 6.3: Numeric FOR Loops 97

Using the IN Option in the Loop 100

Using the REVERSE Option in the Loop 103

Using Iteration Controls in the Loop 104

Terminating the Numeric FOR Loop Prematurely 108

Summary 109

Chapter 7 Iterative Control: Part II 111
Lab 7.1: CONTINUE Statement 111

Using the CONTINUE Statement 112

Using the CONTINUE WHEN Statement 116

Lab 7.2: Nested Loops 119

Using Nested Loops 119

Using Loop Labels 120

Summary 122

xii Contents

Chapter 8 Error Handling and Built-in Exceptions 125
Lab 8.1: Handling Errors 125

Lab 8.2: Built-in Exceptions 128

Summary 133

Chapter 9 Exceptions 135
Lab 9.1: Exception Scope 135

Lab 9.2: User-Defined Exceptions 139

Lab 9.3: Exception Propagation 143

Re-raising Exceptions 148

Summary 149

Chapter 10 Exceptions: Advanced Concepts 151
Lab 10.1: RAISE_APPLICATION_ERROR 151

Lab 10.2: EXCEPTION_INIT Pragma 155

Lab 10.3: SQLCODE and SQLERRM 157

Summary 160

Chapter 11 Introduction to Cursors 161
Lab 11.1: Types of Cursors 162

Implicit Cursor 162

Explicit Cursor 164

Lab 11.2: Table-Based and Cursor-Based Records 171

Table-Based Records 172

Cursor-Based Records 174

Lab 11.3: Cursor FOR Loops 175

Lab 11.4: Nested Cursors 177

Summary 179

Chapter 12 Advanced Cursors 181
Lab 12.1: Parameterized Cursors 181

Lab 12.2: Cursor Variables and Expressions 186

Cursor Variables 187

Cursor Expressions 193

Lab 12.3: FOR UPDATE Cursors 196

Summary 199

Contents xiii

Chapter 13 Triggers 201
Lab 13.1: What Triggers Are 201

Database Trigger 202

BEFORE Triggers 205

AFTER Triggers 210

Autonomous Transaction 211

Lab 13.2: Types of Triggers 213

Row and Statement Triggers 213

INSTEAD OF Triggers 215

Summary 219

Chapter 14 Mutating Tables and Compound Triggers 221
Lab 14.1: Mutating Tables 221

Lab 14.2: Compound Triggers 223

Summary 228

Chapter 15 Collections 229
Lab 15.1: PL/SQL Tables 230

Associative Arrays 231

Nested Tables 233

Collection Methods 236

Lab 15.2: Varrays 240

Lab 15.3: Multidimensional Collections 245

Lab 15.4: Collection Iteration Controls and
Qualified Expressions 247

Collection Iteration Controls 247

Qualified Expressions 251

Summary 258

Chapter 16 Records 259
Lab 16.1: User-Defined Records 259

User-Defined Records 260

Qualified Expressions with Records 262

Record Compatibility 263

Lab 16.2: Nested Records 265

Lab 16.3: Collections of Records 268

Summary 271

xiv Contents

Chapter 17 Native Dynamic SQL 273
Lab 17.1: EXECUTE IMMEDIATE Statements 274

EXECUTE IMMEDIATE Statement 275

Lab 17.2: OPEN FOR, FETCH, and CLOSE Statements 283

Summary 287

Chapter 18 Bulk SQL 289
Lab 18.1: FORALL Statements 290

FORALL Statements 290

SAVE EXCEPTIONS Option 294

INDICES OF Option 296

VALUES OF Option 297

Lab 18.2: The BULK COLLECT Clause 299

Lab 18.3: Binding Collections in SQL Statements 308

Binding Collections with EXECUTE IMMEDIATE
Statements 308

Binding Collections with OPEN FOR, FETCH, and
CLOSE Statements 314

Summary 318

Chapter 19 Procedures 319
Lab 19.1: Creating Nested Procedures 320

Nested Procedures 320

Parameter Modes 321

Forward Declaration 326

Lab 19.2: Creating Stand-Alone Procedures 327

Summary 330

Chapter 20 Functions 331
Lab 20.1: Creating Nested Functions 331

Lab 20.2: Creating Stand-Alone Functions 336

Summary 340

Chapter 21 Packages 341
Lab 21.1: Creating Packages 341

Creating a Package Specification 342

Creating a Package Body 343

Contents xv

Lab 21.2: Package Instantiation and Initialization 348

Package Instantiation and Initialization 349

Package State 351

Lab 21.3: SERIALLY_REUSABLE Packages 351

Summary 356

Chapter 22 Stored Code Advanced Concepts 357
Lab 22.1: Subprogram Overloading 357

Lab 22.2: Result-Cached Functions 363

Lab 22.3: Invoking PL/SQL Functions from
SQL Statements 366

Invoking Functions in SQL Statements 367

Using Pipelined Table Functions 368

Using SQL Macros 370

Summary 375

Chapter 23 Object Types in Oracle 379
Lab 23.1: Object Types 380

Creating Object Types 381

Using Object Types with Collections 385

Lab 23.2: Object Type Methods 388

Using Constructor Methods 389

Using Member Methods 392

Using Static Methods 393

Comparing Objects 393

Summary 398

Chapter 24 Storing Object Types in Tables 399
Lab 24.1: Storing Object Types in Relational Tables 400

Lab 24.2: Storing Object Types in Object Tables 403

Lab 24.3: Type Evolution 405

Summary 410

Chapter 25 Dynamic SQL with the DBMS_SQL Package 411
Lab 25.1: Generating Dynamic SQL with the

DBMS_SQL Package 412

Summary 420

xvi Contents

Appendix A PL/SQL Formatting Guide 421
Case 421

Whitespace 421

Naming Conventions 422

Comments 423

Appendix B Student Database Schema 425
Table and Column Descriptions 425

Index 433

xvii

Preface

Oracle® PL/SQL by Example, Sixth Edition, presents the Oracle PL/SQL
programming language in a unique and highly effective format. It challenges you
to learn Oracle PL/SQL by using it rather than by simply reading about it.

Just as a grammar workbook would teach you about nouns and verbs by first
showing you examples and then asking you to write sentences, Oracle® PL/SQL by
Example teaches you about loops, cursors, procedures, triggers, and so on by first
showing you examples and then asking you to create these objects yourself.

Who This Book Is For

This book is intended for anyone who needs a quick but detailed introduction to
programming with Oracle’s PL/SQL language. The ideal readers are those with
some relational database experience, with some Oracle experience, specifically
with SQL, SQL*Plus, and SQL Developer, but with little or no experience with
PL/SQL or with most other programming languages.

The content of this book is based primarily on the material that was taught
in an Introduction to PL/SQL class at Columbia University’s Computer Technol-
ogy and Applications (CTA) program in New York City. The student body was
rather diverse, in that there were some students who had years of experience with
information technology (IT) and programming, but no experience with Oracle
PL/SQL, and then there were those with absolutely no experience in IT or pro-
gramming. The content of the book, like the class, is balanced to meet the needs of
both extremes.

xviii Preface

How This Book Is Organized

The intent of this workbook is to teach you about Oracle PL/SQL by explaining a
programming concept or a particular PL/SQL feature and then illustrate it fur-
ther by means of examples. Oftentimes, as the topic is discussed more in depth,
these examples would be changed to illustrate newly covered material. In addition,
most of the chapters of this book have “Additional Exercises” sections available
through the companion website. These exercises allow you to test the depth of your
understanding of the new material.

The basic structure of each chapter is as follows:

§ Objectives

§ Introduction

§ Lab

§ Lab…

§ Summary

The “Objectives” section lists topics covered in the chapter. Basically, a single
objective corresponds to a single lab.

The “Introduction” offers a short overview of the concepts and features covered
in the chapter.

Each lab covers a single objective listed in the Objectives section of the chapter.
In some instances, the objective is divided even further into the smaller individ-
ual topics in the lab. Then each topic is explained and illustrated with the help of
examples and corresponding outputs. Note that as much as possible, each exam-
ple is provided in its entirety so that a complete code sample is readily available.
These examples are also available through the companion website.

At the end of each chapter, you will find a “Summary” section, which provides a
brief conclusion of the material discussed in the chapter.

About the Companion Website

The companion website is located at www.informit.com/title/9780138062835. Here
you will find these very important things:

§ Files required to create and install the STUDENT schema.

§ Files that contain example scripts used in the book chapters.

§ “Additional Exercises” chapters where you are asked to create scripts based
on the requirement provided. These exercises are meant to help you test the
depth of your understanding.

http://www.informit.com/title/9780138062835

Preface xix

By the Way
You need to visit the companion website, download the STUDENT schema, and
install it in your database prior to using this book if you would like the ability to
execute the scripts provided in the chapters and on the site.

What You Will Need

There are software programs as well as knowledge requirements necessary to
complete the labs in this book. Note that some features covered throughout the
book are applicable to Oracle 21c only. However, you will be able to run a great
majority of the examples by using the following products:

§ Oracle 18c or higher

§ SQL Developer or SQL*Plus 18c or higher

§ Access to the Internet

You can use either Oracle Personal Edition or Oracle Enterprise Edition to
execute the examples in this book. If you use Oracle Enterprise Edition, it can be
running on a remote server or locally on your own machine. It is recommended
that you use Oracle 21c or Oracle 18c to perform all or most of the examples in this
book. When a feature will work in the latest version of Oracle database only, the
book will state so explicitly. Additionally, you should have access to and be famil-
iar with SQL Developer or SQL*Plus.

You have several options for how to edit and run scripts in SQL Developer or
SQL*Plus. There are also many third-party programs to edit and debug PL/SQL
code. Both SQL Developer and SQL*Plus are used throughout this book because
they are two Oracle-provided tools and come as part of the Oracle installation.

By the Way
Chapter 1 has a lab titled “PL/SQL Development Environment” that describes
how to get started with SQL Developer and SQL*Plus. However, most of the
examples used in the book were executed in SQL Developer.

About the Sample Schema

The STUDENT schema contains tables and other objects meant to keep information
about a registration and enrollment system for a fictitious university. Ten tables in
the system store data about students, courses, instructors, and so on. In addition
to storing contact information (addresses and telephone numbers) for students and
instructors, and descriptive information about courses (costs and prerequisites),
the schema also keeps track of the sections for courses and the sections in which
students are enrolled.

xx Preface

The SECTION table is one of the most important tables in the schema because it
stores data about the individual sections that have been created for each course.
Each section record also stores information about where and when the section will
meet and which instructor will teach the section. The SECTION table is related to
the COURSE and INSTRUCTOR tables.

The ENROLLMENT table is just as important because it keeps track of students
who are enrolled in sections. Each enrollment record also stores information about
the student’s grade and enrollment date. The ENROLLMENT table is related to the
STUDENT and SECTION tables.

The STUDENT schema also has several other tables that manage grading for
each student in each section.

The detailed structure of the STUDENT schema is described in Appendix B,
“Student Database Schema.”

xxi

Acknowledgments

Elena Rakhimov: My contribution to this book reflects the help and advice
of many people. I am especially indebted to Tonya Simpson and Chris Zahn for
their meticulous editing skills and to Michael Rinomhota and Dan Hotka for
their invaluable technical expertise. Many thanks to Malobika Chakraborty, and
many others at Pearson who diligently worked to bring this book to market. Most
importantly, to my family, whose excitement, enthusiasm, inspiration, and support
encouraged me to work hard to the very end and were exceeded only by their love.

xxii

About the Author

Elena Rakhimov has more than 20 years of experience in software architecture
and development in a wide spectrum of enterprise and business environments
ranging from nonprofit organizations to Wall Street to her current position with
a prominent consulting company. Her determination to stay “hands-on” notwith-
standing, Elena managed to excel in the academic arena, having taught rela-
tional database programming at Columbia University’s highly esteemed Computer
Technology and Applications program. She was educated in database analysis
and design at Columbia University and in applied mathematics at Baku State
University in Azerbaijan.

xxiii

Introduction to PL/SQL
New Features in Oracle 21c

Oracle 21c has introduced several new features and improvements for PL/SQL.
This introduction briefly describes features not covered in this book and points
you to specific chapters for features that are within the scope of this book. The
list of features described here is also available in the “Changes in This Release for
Oracle Database PL/SQL Language Reference” section of the PL/SQL Language
Reference manual offered as part of Oracle help available online.

The new PL/SQL features and enhancements are as follows:

§ PL/SQL Extended Iterators

§ PL/SQL Qualified Expressions Enhancements

§ SQL Macros

§ New JSON Data Type

§ New Pragma SUPRESSES_WARNING_6009

§ PL/SQL Type Attributes in Non-Persistable User-Defined Types

§ PL/SQL Function Enhanced Result Cache

xxiv Introduction to PL/SQL New Features in Oracle 21c

PL/SQL Extended Iterators

In this release, Oracle has extended functionality of the numeric FOR loop.
For example, you can combine multiple iteration boundaries in the comma-
delimited list in a single loop. Prior to Oracle 21c, you would need to specify a dis-
tinct FOR loop for a specific iteration boundary. This functionality is covered in
greater detail in Lab 6.3, “Numeric FOR Loops,” and in Lab 15.4, “Collection Itera-
tion Controls and Qualified Expressions.”

PL/SQL Qualified Expressions Enhancements

Qualified expressions were introduced in Oracle 18c and further improved in
Oracle 21c. Essentially, starting with Oracle 18c, you can populate a record or a
collection data type with values provided by an expression constructor. Qualified
expressions are covered in Lab 15.4, “Collection Iteration Controls and Qualified
Expressions,” and in Chapter 16, “Records.”

SQL Macros

Starting with Oracle 21c, you can create a PL/SQL function and mark it as a SQL
macro. This capability is especially useful when a PL/SQL function is used in a
SQL statement. Every time a PL/SQL function is called from a SQL statement,
there is a context switch between SQL and PL/SQL engines. This context switch
adds a certain processing overhead. However, after a function is flagged as a SQL
macro, the context switch is eliminated. SQL macros are discussed in Lab 22.3,
“Invoking PL/SQL Functions from SQL Statements.”

New JSON Data Type

JSON (JavaScript Object Notation) is a new data type available in SQL and
PL/SQL. Prior to Oracle 21c, JSON data could be stored as VARCHAR2 or CLOB data
types. With Oracle21c, a JSON data type may be used when creating a column in
a table, in SQL queries, and in PL/SQL programs. Consider the following example
with a table that contains JSON data type column.

For Example Table with JSON Column

CREATE TABLE json_test
 (id NUMBER
 ,json_doc JSON);

-- Insert sample data
INSERT INTO json_test

Introduction to PL/SQL New Features in Oracle 21c xxv

VALUES (1
 ,'{"Doc" : 1
 ,"DocName" : "Sample JSON Doc 1"
 ,"DocAuthor" : "John Smith" }');

INSERT INTO json_test
VALUES (2
 ,'{"Doc" : 2
 ,"DocName" : "Sample JSON Doc 2"
 ,"DocAuthor" : "Mary Brown" }');

Note that the string '{…}' in the INSERT statement is converted to a JSON data
type. JSON data may be queried as illustrated by the next example.

For Example Querying JSON Data

SELECT json_doc
 FROM json_test;
JSON_DOC
--
{"Doc":1,"DocName":"Sample JSON Doc 1","DocAuthor":"John Smith"}
{"Doc":2,"DocName":"Sample JSON Doc 2","DocAuthor":"Mary Brown"}

-- Select Doc Name and Doc Author from json_doc
SELECT j.json_doc.DocName, j.json_doc.DocAuthor
 FROM json_test j;

DOCNAME DOCAUTHOR
------------------- ------------
"Sample JSON Doc 1" "John Smith"
"Sample JSON Doc 2" "Mary Brown"

Take a closer look at the second SELECT statement. When you are referencing
individual elements of JSON data, a table alias is required. Without a table alias,
the second SELECT statement would cause the following error:

ERROR at line 1:
ORA-00904: "JSON_DOC"."DOCAUTHOR": invalid identifier

As mentioned earlier, JSON data may be used in PL/SQL. There are various
built-in functions such as JSON_EXISTS and JSON_EQUAL, and JSON object types
such as JSON_OBJECT_T.

Note that the JSON data type is outside the scope of this book, and detailed
information on it may be found in the Oracle’s JSON Developer’s Guide available
online.

New Pragma SUPPRESSES_WARNING_6009

New pragma SUPPRESSES_WARNING_6009 suppresses PL/SQL warning
PLW-06009. This warning occurs when an exception handler does not utilize
RAISE or RAISE_APPLICATION_ERROR statements. This warning applies to

xxvi Introduction to PL/SQL New Features in Oracle 21c

stand-alone and package procedures and functions as well as methods in type
definitions. The SUPPRESSES_WARNING_6009 pragma is not covered in this book,
and additional information on it may be found in the PL/SQL Language Reference
manual offered as part of Oracle help available online.

PL/SQL Type Attributes in Non-Persistable
User-Defined Types

Starting with Oracle 18c, you can define a user-defined type as persistable or not
persistable. Persistable is a default option, and after such an object type is cre-
ated, it may be referenced in PL/SQL programs, SQL statements, and in the DDL
statements.

When a user-defined type is defined as non-persistable, it may be referenced
in the PL/SQL code and SQL statements only. Referencing it in a DDL statement
such as CREATE TABLE causes an error.

For Example Creating a Non-Persistable Object

CREATE TYPE non_persist_type_obj AS OBJECT
 (city VARCHAR2(30)
 ,state VARCHAR2(2)
 ,zip VARCHAR2(5))
NOT PERSISTABLE;
/
Type NON_PERSIST_TYPE_OBJ compiled

CREATE TABLE test_obj
 (id NUMBER
 ,zip_obj non_persist_type_obj);

ORA-22384: cannot create a column or table of a non-persistable type

However, this non-persistable object type may be used in the PL/SQL code as
illustrated in this example.

For Example Using a Non-Persistable Object Type in PL/SQL Code

DECLARE
 v_zip_obj non_persist_type_obj :=
 non_persist_type_obj('New York', 'NY', null);
BEGIN
 DBMS_OUTPUT.PUT_LINE ('City: '||v_zip_obj.city);
 DBMS_OUTPUT.PUT_LINE ('State: '|| v_zip_obj.state);
END;
/

City: New York
State: NY

Introduction to PL/SQL New Features in Oracle 21c xxvii

Starting with Oracle 21c, non-persistable user-defined types have been
enhanced to handle attributes of PL/SQL data types such as BOOLEAN or
PLS_INTEGER.

For Example Creating a Non-Persistable Object

DROP TYPE non_persist_type_obj;
/
Type NON_PERSIST_TYPE_OBJ dropped.
CREATE TYPE non_persist_type_obj AS OBJECT
 (city VARCHAR2(30)
 ,state VARCHAR2(2)
 ,zip VARCHAR2(5)

,is_valid BOOLEAN)
NOT PERSISTABLE;
/
Type NON_PERSIST_TYPE_OBJ compiled

DECLARE
 v_zip_obj non_persist_type_obj :=

non_persist_type_obj('New York', 'NY', null, true);
BEGIN
 DBMS_OUTPUT.PUT_LINE ('City: '||v_zip_obj.city);
 DBMS_OUTPUT.PUT_LINE ('State: '|| v_zip_obj.state);

IF v_zip_obj.is_valid
 THEN
 DBMS_OUTPUT.PUT_LINE ('Valid');
 ELSE
 DBMS_OUTPUT.PUT_LINE ('Not valid');
 END IF;
END;
/
City: New York
State: NY
Valid

Additional details on PL/SQL data types in non-persistable user-defined types
may be found in the PL/SQL Language Reference manual offered as part of Oracle
help available online.

PL/SQL Function Enhanced Result Cache

With Oracle 21c, result cache functionality has been expanded to provide better
control of the cached result set, increase the number of use cases for such func-
tions, and further improve database performance and reduce the overall workload.
Result-cached function is covered in Lab 22.2, “Result-Cached Functions.”

This page intentionally left blank

1

PL/SQL stands for “Procedural Language Extension to SQL.” Because of its tight
integration with SQL, PL/SQL supports the great majority of the SQL features,
such as SQL data manipulation, data types, operators, functions, and transaction
control statements. As an extension to SQL, PL/SQL combines SQL with program-
ming structures and subroutines available in any high-level language.

PL/SQL is used for both server-side and client-side development. For example,
database triggers (code that is attached to tables discussed in Chapter 13, “Trig-
gers,” and Chapter 14, “Mutating Tables and Compound Triggers”) on the server
side and the logic behind an Oracle form on the client side can be written using
PL/SQL. In addition, PL/SQL can be used to develop web and mobile applications
in both conventional and cloud environments when used in conjunction with a
wide variety of Oracle development tools.

1
PL/SQL Concepts

In this chapter, you will learn about
■ PL/SQL Architecture Page 2

■ PL/SQL Development Environment Page 10

■ PL/SQL: The Basics Page 18

2 Chapter 1 ■ PL/SQL Concepts

Lab 1.1: PL/SQL Architecture

After this lab, you will be able to
■ Describe PL/SQL Architecture

■ Discuss PL/SQL Block Structure

■ Understand How PL/SQL Gets Executed

Many Oracle applications are built using multiple tiers, also known as N-tier
architecture, where each tier represents a separate logical and physical layer. For
example, a three-tier architecture would consist of three tiers: a data management
tier, an application processing tier, and a presentation tier. In this architecture,
the Oracle database resides in the data management tier, and the programs that
make requests against this database reside in either the presentation tier or the
application processing tier. Such programs can be written in many programming
languages, including PL/SQL. An example of a simplified three-tier architecture
is shown in Figure 1.1.

PL/SQL Architecture

Although PL/SQL is just like any other programming language, its main distinc-
tion is that it is not a stand-alone programming language. Rather, PL/SQL is a
part of the Oracle RDBMS as well as various Oracle development tools such as
Oracle Application Express (APEX) and Oracle Forms and Reports, components
of Oracle Fusion Middleware. As a result, PL/SQL may reside in any layer of the
multitier architecture.

No matter which layer PL/SQL resides in, any PL/SQL block or subroutine is
processed by the PL/SQL engine, which is a special component of various Oracle
products. As a result, it is easy to move PL/SQL modules between various tiers.
The PL/SQL engine processes and executes any PL/SQL statements and sends
any SQL statements to the SQL statement processor. The SQL statement pro-
cessor is always located on the Oracle server. Figure 1.2 illustrates the PL/SQL
engine residing on the Oracle server.

Lab 1.1: PL/SQL Architecture 3

Figure 1.1 Three-Tier Architecture

4 Chapter 1 ■ PL/SQL Concepts

Figure 1.2 PL/SQL Engine

When the PL/SQL engine is located on the server, the whole PL/SQL block is
passed to the PL/SQL engine on the Oracle server. The PL/SQL engine processes
the block according to the scheme depicted in Figure 1.2.

When the PL/SQL engine is located on the client, as it is in Oracle development
tools, the PL/SQL processing is done on the client side. All SQL statements that
are embedded within the PL/SQL block are sent to the Oracle server for further
processing. When a PL/SQL block contains no SQL statements, the entire block is
executed on the client side.

Using PL/SQL has several advantages. For example, when you issue a SELECT
statement in SQL*Plus or SQL Developer against the STUDENT table, it retrieves a
list of students. The SELECT statement you issued at the client computer is sent to
the database server to be executed. The results of this execution are then returned
to the client. In turn, rows are displayed on your client machine.

Now, assume that you need to issue multiple SELECT statements. Each SELECT
statement is a request against the database and is sent to the Oracle server. The
results of each SELECT statement are sent back to the client. Each time a SELECT
statement is executed, network traffic is generated. Hence, multiple SELECT state-
ments will result in multiple round-trip transmissions, adding significantly to the
network traffic.

When these SELECT statements are combined into a PL/SQL program, they
are sent to the server as a single unit. The SELECT statements in this PL/SQL
program are executed at the server. The server sends the results of these SELECT
statements back to the client, also as a single unit. Therefore, a PL/SQL program

Lab 1.1: PL/SQL Architecture 5

encompassing multiple SELECT statements can be executed at the server and have
all the results returned to the client in the same round trip. This process is obvi-
ously more efficient than having each SELECT statement execute independently.
This model is illustrated in Figure 1.3.

Figure 1.3 compares two applications. The first application uses four indepen-
dent SQL statements that generate eight trips on the network. The second appli-
cation combines SQL statements into a single PL/SQL block, which is then sent to
the PL/SQL engine. The engine sends SQL statements to the SQL statement pro-
cessor and checks the syntax of the PL/SQL statements. As you can see, only two
trips are generated on the network with the second application.

In addition, applications written in PL/SQL are portable. They can run in any
environment that Oracle products can run in. Because PL/SQL does not change
from one environment to the next, different tools can use PL/SQL programs.

PL/SQL Block Structure

A block is the most basic unit in PL/SQL. All PL/SQL programs are combined
into blocks. These blocks can also be nested within one another. Usually, PL/SQL
blocks combine statements that represent a single logical task. Therefore, different
tasks within a single program can be separated into blocks. With this structure, it
is easier to understand and maintain the logic of the program.

Figure 1.3 PL/SQL in Client-Server Architecture

6 Chapter 1 ■ PL/SQL Concepts

PL/SQL blocks can be divided into two groups: named and anonymous. Named
PL/SQL blocks are used when creating subroutines. These subroutines, which
include procedures, functions, and packages, can be stored in the database and
referenced by their names later. In addition, subroutines such as procedures and
functions can be defined within the anonymous PL/SQL block. These subrou-
tines exist as long as the block is executing and cannot be referenced outside the
block. In other words, subroutines defined in one PL/SQL block cannot be called
by another PL/SQL block or referenced by their names later. Subroutines are dis-
cussed in Chapters 19 through 21. Anonymous PL/SQL blocks, as you have proba-
bly guessed, do not have names. As a result, they cannot be stored in the database
or referenced later.

PL/SQL blocks contain three sections: a declaration section, an executable section,
and an exception-handling section. The executable section is the only mandatory
section of the block; both the declaration and exception-handling sections are
optional. As a result, a PL/SQL block has the structure illustrated in Listing 1.1.

Listing 1.1 PL/SQL Block Structure

DECLARE
 Declaration statements
BEGIN
 Executable statements
EXCEPTION
 Exception-handling statements
END;

Declaration Section
The declaration section is the first section of the PL/SQL block. It contains defi-
nitions of PL/SQL identifiers such as variables, constants, cursors, and so on.
PL/SQL identifiers are covered in detail throughout this book.

For Example

DECLARE
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);

This example shows the declaration section of an anonymous PL/SQL block. It
begins with the keyword DECLARE and contains two variable declarations. The
names of the variables, v_first_name and v_last_name, are followed by their
data types and sizes. Notice that a semicolon terminates each declaration.

Lab 1.1: PL/SQL Architecture 7

Executable Section
The executable section is the next section of the PL/SQL block. It contains
executable statements that allow you to manipulate the variables that have been
declared in the declaration section.

For Example

BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||
 v_last_name);
END;

This example shows the executable section of the PL/SQL block. It begins with
the keyword BEGIN and contains a SELECT INTO statement from the STUDENT
table. The first and last names for student ID 123 are selected into two variables:
v_first_name and v_last_name. Chapter 3, “SQL in PL/SQL,” contains a
detailed explanation of the SELECT INTO statement. Next, the values of the vari-
ables, v_first_name and v_last_name, are displayed on the screen with the
help of the DBMS_OUTPUT.PUT_LINE statement. This statement is covered later in
this chapter in greater detail. The end of the executable section of this block is
marked by the keyword END.

By the Way
The executable section of any PL/SQL block always begins with the keyword
BEGIN and ends with the keyword END.

Exception-Handling Section
Two types of errors may occur when a PL/SQL block is executed: compilation or
syntax errors and runtime errors. Compilation errors are detected by the PL/SQL
compiler when there is a misspelled reserved word or a missing semicolon at the
end of the statement.

For Example

BEGIN
 DBMS_OUTPUT.PUT_LINE ('This is a test')

END;

This example contains a syntax error: the DBMS_OUTPUT.PUT_LINE statement
is not terminated by a semicolon.

8 Chapter 1 ■ PL/SQL Concepts

Runtime errors occur while the program is running and cannot be detected
by the PL/SQL compiler. These types of errors are detected or handled by the
exception-handling section of the PL/SQL block. It contains a series of statements
that are executed when a runtime error occurs within the block.

When a runtime error occurs, control is passed to the exception-handling section of
the block. The error is then evaluated, and a specific exception is raised or executed.
This is best illustrated by the following example. All changes are shown in bold.

For Example

BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||
 v_last_name);
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 DBMS_OUTPUT.PUT_LINE ('There is no student with student id
 123');
END;

This example shows the exception-handling section of the PL/SQL block. It
begins with the keyword EXCEPTION. The WHEN clause evaluates which exception
must be raised. In this example, there is only one exception, called NO_DATA_
FOUND, and it is raised when the SELECT statement does not return any rows. If
there is no record for student ID 123 in the STUDENT table, control will be passed
to the exception-handling section and the DBMS_OUTPUT.PUT_LINE statement
will be executed. Chapter 8, “Error Handling and Built-In Exceptions,” Chapter 9,
“Exceptions,” and Chapter 10, “Exceptions: Advanced Concepts,” contain detailed
explanations of the exception-handling section.

You have seen examples of the declaration section, executable section, and
exception-handling section. These examples may be combined into a single
PL/SQL block.

For Example ch01_1a.sql

DECLARE
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);
BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||
 v_last_name);

Lab 1.1: PL/SQL Architecture 9

EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 DBMS_OUTPUT.PUT_LINE ('There is no student with student id
 123');
END;

How PL/SQL Gets Executed

Every time an anonymous PL/SQL block is executed, the code is sent to the
PL/SQL engine, where it is compiled. A named PL/SQL block is compiled only at
the time of its creation or if it has been changed. The compilation process includes
syntax and semantic checking, as well as code generation.

Syntax checking involves checking PL/SQL code for syntax or compilation
errors. As stated previously, a syntax error occurs when a statement does not
exactly correspond to the syntax of the programming language. A misspelled key-
word, a missing semicolon at the end of the statement, and an undeclared variable
are all examples of syntax errors. After syntax errors are corrected, the compiler
can generate a parse tree.

By the Way
A parse tree is a tree-like structure that represents the language rules of a
computer language.

Semantic checking involves further processing on the parse tree. It determines
whether database objects such as table names and column names referenced in
the SELECT statements are valid and whether you have privileges to access them.
At the same time, the compiler can assign a storage address to program variables
that are used to hold data. This process, which is called binding, allows Oracle
software to reference storage addresses when the program is run.

Code generation creates code for the PL/SQL block in interpreted or native
mode. Code created in interpreted mode is called p-code. P-code is a list of instruc-
tions to the PL/SQL engine that are interpreted at runtime. Code created in
a native mode is a processor-dependent system code that is called native code.
Because native code does not need to be interpreted at runtime, it usually runs
slightly faster.

The mode in which the PL/SQL engine generates code is determined by the
PLSQL_CODE_TYPE database initialization parameter. By default, its value is set
to INTERPRETED. This parameter is typically set by the database administrators.

For named blocks, both p-code and native code are stored in the database and
are used the next time the program is executed. When the process of compilation
has completed successfully, the status of a named PL/SQL block is set to VALID,
and it is also stored in the database. If the compilation process was not successful,
the status of the named PL/SQL block is set to INVALID.

10 Chapter 1 ■ PL/SQL Concepts

Watch Out!
Successful compilation of the named PL/SQL block on one occasion does not
guarantee successful execution of this block in the future. If, at the time of exe-
cution, any one of the stored objects referenced by the block is not present in
the database or not accessible to the block, execution will fail. At such time, the
status of the named PL/SQL block will be changed to INVALID.

Lab 1.2: PL/SQL Development Environment

After this lab, you will be able to
■ Get Started with SQL Developer

■ Get Started with SQL*Plus

■ Execute PL/SQL Scripts

SQL Developer and SQL*Plus are two Oracle-provided tools that you can use to
develop and run PL/SQL scripts. SQL*Plus is an old-style command-line utility
tool that has been part of the Oracle platform since its infancy. It is included in the
Oracle installation on every platform. SQL Developer is a free graphical tool used
for database development and administration. It is available either as a part of the
Oracle installation or via download from Oracle’s website.

Due to its graphical interface, SQL Developer is a much easier environment to
use than SQL*Plus. It allows you to browse database objects; run SQL statements;
and create, debug, and run PL/SQL statements. In addition, it supports syntax
highlighting and formatting templates that become very useful when you are
developing and debugging complex PL/SQL modules.

Even though SQL*Plus and SQL Developer are two very different tools, their
underlying functionality and their interactions with the database are very similar.
At runtime, the SQL and PL/SQL statements are sent to the database. After they
are processed, the results are sent back from the database and displayed on the
screen.

The examples used in this chapter are executed in both tools to illustrate some
of the interface differences when appropriate. Note that the primary focus of this
book is learning PL/SQL; thus, these tools are covered only to the degree that is
required to run PL/SQL examples provided by this book.

Getting Started with SQL Developer

Whether SQL Developer has been installed as part of the Oracle installation
or as a separate module, you need to create at least one connection to the data-
base server. You can accomplish this task by clicking the Plus icon located in the

Lab 1.2: PL/SQL Development Environment 11

upper-left corner of the Connections tab. Clicking this icon activates the New/
Select Database Connection dialog box, as shown in Figure 1.4.

In Figure 1.4, you need to provide a connection name (ORCLPDB_STUDENT),
username (student), and password (learn).

In the same dialog box, you need to provide database connection information
such as the hostname (typically, the IP address of the machine or the machine
name where the database server resides), the default port where that database lis-
tens for the connection requests (usually 1521), and the SID (system ID) or service
name that identifies a particular database. Both the SID and service name would
depend on the names you picked up for your installation of Oracle. The default SID
for the pluggable database is usually set to ORCLPDB.

Watch Out!
If you have not created the STUDENT schema yet, you will not be able to create
this connection successfully. To create the STUDENT schema, refer to the installa-
tion instructions provided on the companion website.

After the connection has been successfully created, you can connect to the data-
base by double-clicking the ORCLPDB_STUDENT. By expanding the ORCLPDB_
STUDENT (clicking the plus sign located to the left of it), you can browse various
database objects available in the STUDENT schema. For example, Figure 1.5 shows
list of tables available in the STUDENT schema. At this point you can start typing
SQL or PL/SQL commands in the Worksheet window.

Figure 1.4 Creating a Database Connection in SQL Developer

12 Chapter 1 ■ PL/SQL Concepts

Figure 1.5 List of Tables in the STUDENT Schema

To disconnect from the STUDENT schema, you need to right-click the
ORCLPDB_STUDENT and click the Disconnect option. This action is illustrated
in Figure 1.6.

Figure 1.6 Disconnecting from a Database in SQL Developer

Lab 1.2: PL/SQL Development Environment 13

Getting Started with SQL*Plus

You can access SQL*Plus via the Programs menu or by typing sqlplus in
the command prompt window. When you open SQL*Plus, you are prompted to
enter the username and password (student or student@orclpdb and learn,
respectively).

By the Way
In SQL*Plus, the password is not displayed on the screen, even as masked text.

Watch Out!
You need to have an entry for the pluggable database container (PDB) in your
TNSNAMES.ORA file to be able to connect to the STUDENT schema via SQL*Plus.
It should look similar to

ORCLPDB =
(DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = orclpdb)
)
)

After successful login, you are able to enter your commands at the SQL>
prompt. This prompt is illustrated in Figure 1.7.

Figure 1.7 Connecting to the Database in SQL*Plus

To terminate your connection to the database, type either EXIT or QUIT
command and press Enter.

14 Chapter 1 ■ PL/SQL Concepts

Did You Know?
Terminating the database connection in either SQL Developer or SQL*Plus termi-
nates only your own client connection. In a multiuser environment, there may
be potentially hundreds of client connections to the database server at any time.
As these connections terminate and new ones are initiated, the database server
continues to run and send various query results back to its clients.

Executing PL/SQL Scripts

As mentioned earlier, at runtime SQL and PL/SQL statements are sent from the
client machine to the database. After they are processed, the results are sent back
from the database to the client and are displayed on the screen. However, there
are some differences between entering SQL and PL/SQL statements.

Consider the following example of a SQL statement.

For Example

SELECT first_name, last_name
FROM student

 WHERE student_id = 102;

If this statement is executed in SQL Developer, the semicolon is optional. To
execute this statement, you need to click the triangle button in the ORCLPDB_
STUDENT SQL Worksheet or press the F9 key on your keyboard. The results of
this query are then displayed in the Query Result window, as shown in Figure 1.8.
Note that the statement does not have a semicolon.

When the same SELECT statement is executed in SQL*Plus, the semicolon is
required. It signals SQL*Plus that the statement is terminated. As soon as you
press the Enter key, the query is sent to the database and the results are displayed
on the screen, as shown in Figure 1.9.

Lab 1.2: PL/SQL Development Environment 15

Figure 1.8 Executing a Query in SQL Developer

Figure 1.9 Executing a Query in SQL*Plus

16 Chapter 1 ■ PL/SQL Concepts

Now, consider the example of the PL/SQL block used in the previous lab.

For Example ch01_1a.sql

DECLARE
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);
BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = 123;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||
 v_last_name);
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 DBMS_OUTPUT.PUT_LINE ('There is no student with student id
 123');
END;

Note that each individual statement in this script is terminated by a semicolon.
Each variable declaration, the SELECT INTO statement, both DBMS_OUTPUT.PUT_
LINE statements, and the END keyword are all terminated by the semicolon. This
syntax is necessary because in PL/SQL the semicolon marks termination of an
individual statement within a block. In other words, the semicolon is not a block
terminator.

Because SQL Developer is a graphical tool, it does not require a special block
terminator. The preceding example can be executed in SQL Developer by clicking
the triangle button in the ORCLPDB_STUDENT SQL Worksheet or pressing the
F9 key on your keyboard, as shown in Figure 1.10.

The block terminator becomes necessary when the same example is executed in
SQL*Plus. Because it is a command-line tool, SQL*Plus requires a textual way of
knowing when the block has terminated and is ready for execution. The forward
slash (/) is interpreted by SQL*Plus as a block terminator. After you press the
Enter key, the PL/SQL block is sent to the database, and the results are displayed
on the screen. This is shown in Figure 1.11 on the left.

If you omit /, SQL*Plus will not execute the PL/SQL script. Instead, it will sim-
ply add a blank line to the script when you press the Enter key. This is shown in
Figure 1.11 on the right, where lines 16 through 20 are blank.

Lab 1.2: PL/SQL Development Environment 17

Triangle button to execute the script

Figure 1.10 Executing a PL/SQL Block in SQL Developer

Figure 1.11 Executing a PL/SQL Block in SQL*Plus with a Block Terminator
and Without a Block Terminator

18 Chapter 1 ■ PL/SQL Concepts

Lab 1.3: PL/SQL: The Basics

After this lab, you will be able to
■ Use the DBMS_OUTPUT.PUT_LINE Statement

■ Use the Substitution Variable Feature

We noted earlier that PL/SQL is not a stand-alone programming language; rather,
it exists only as a tool within the Oracle environment. As a result, it does not
really have any capabilities to accept input from a user. The lack of this ability is
compensated with the special feature of the SQL Developer and SQL*Plus tools
called a substitution variable.

Similarly, it is often helpful to provide the user with some pertinent informa-
tion after the execution of a PL/SQL block, and this is accomplished with the help
of the DBMS_OUTPUT.PUT_LINE statement. Note that unlike the substitution vari-
able, this statement is part of the PL/SQL language.

DBMS_OUTPUT.PUT_LINE Statement

In the previous section of this chapter, you saw how the DBMS_OUTPUT.PUT_LINE
statement may be used in a script to display information on the screen. The DBMS_
OUTPUT.PUT_LINE is a call to the procedure PUT_LINE. This procedure is a part of
the DBMS_OUTPUT package that is owned by the Oracle user SYS.

The DBMS_OUTPUT.PUT_LINE statement writes information to the buffer for
storage. After a program has completed, the information from the buffer is dis-
played on the screen. The size of the buffer can be set between 2000 and 1 million
bytes.

To see the results of the DBMS_OUTPUT.PUT_LINE statement on the screen, you
need to enable it. In SQL Developer, you do so by selecting the View menu option
and then choosing the Dbms Output option, as shown in Figure 1.12.

After the Dbms Output window appears in SQL Developer, you must click the
plus button, as shown in Figure 1.13.

Lab 1.3: PL/SQL: The Basics 19

Figure 1.12 Enabling DBMS_OUTPUT in SQL Developer: Step 1

Figure 1.13 Enabling DBMS_OUTPUT in SQL Developer: Step 2

20 Chapter 1 ■ PL/SQL Concepts

After you click the plus button, you will be prompted with the name of the
connection for which you want to enable the statement. You need to select
ORCLPDB_STUDENT and click OK. The result of this operation is shown in
Figure 1.14.

To enable the DBMS_OUTPUT statement in SQL*Plus, you enter one of the
following statements before the PL/SQL block:

SET SERVEROUTPUT ON;

or

SET SERVEROUTPUT ON SIZE 5000;

The first SET statement enables the DBMS_OUTPUT.PUT_LINE statement, with
the default value for the buffer size being used. The second SET statement not only
enables the DBMS_OUTPUT.PUT_LINE statement but also changes the buffer size
from its default value to 5000 bytes.

Figure 1.14 Enabling DBMS_OUTPUT in SQL Developer: Step 3

Lab 1.3: PL/SQL: The Basics 21

Similarly, if you do not want information to be displayed on the screen by the
DBMS_OUTPUT.PUT_LINE statement, you can issue the following SET command
prior to the PL/SQL block:

SET SERVEROUTPUT OFF;

Substitution Variable Feature

Substitution variables are a special type of variable that enables PL/SQL to accept
input from a user at a runtime. These variables cannot be used to output values,
however, because no memory is allocated for them. Substitution variables are
replaced with the values provided by the user before the PL/SQL block is sent to
the database. The variable names are usually prefixed by the ampersand (&) or
double ampersand (&&) character.

Consider the following example.

For Example ch01_1b.sql

DECLARE
 v_student_id NUMBER := &sv_student_id;
 v_first_name VARCHAR2(35);
 v_last_name VARCHAR2(35);
BEGIN
 SELECT first_name, last_name
 INTO v_first_name, v_last_name
 FROM student
 WHERE student_id = v_student_id;

 DBMS_OUTPUT.PUT_LINE ('Student name: '||v_first_name||' '||
 v_last_name);
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 DBMS_OUTPUT.PUT_LINE ('There is no such student');
END;

When this example is executed, the user is asked to provide a value for the stu-
dent ID. The student’s name is then retrieved from the STUDENT table if there is a
record with the given student ID. If there is no record with the given student ID,
the message from the exception-handling section is displayed on the screen.

In SQL Developer, the substitution variable feature operates as shown in
Figure 1.15.

After the value for the substitution variable is provided, the results of the execu-
tion are displayed in the Script Output window, as shown in Figure 1.16.

22 Chapter 1 ■ PL/SQL Concepts

Figure 1.15 Using a Substitution Variable in SQL Developer

Figure 1.16 Using a Substitution Variable in SQL Developer: Script Output Window

Lab 1.3: PL/SQL: The Basics 23

In Figure 1.16, the substitution of the variable is shown in the Script Output
window, and the result of the execution is shown in the Dbms Output window.

In SQL*Plus, the substitution variable feature operates as shown in Figure 1.17.
Note that SQL*Plus does not list the complete PL/SQL block in its results, but
rather displays the substitution operation only.

The preceding example uses a single ampersand for the substitution variable.
When a single ampersand is used throughout the PL/SQL block, the user is asked
to provide a value for each occurrence of the substitution variable.

For Example ch01_2a.sql

BEGIN
 DBMS_OUTPUT.PUT_LINE ('Today is '||'&sv_day');
 DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'&sv_day');
END;

When executing this example in either SQL Developer or SQL*Plus, you are
prompted twice to provide the value for the substitution variable. This example
produces the following output:

Today is Monday
Tomorrow will be Tuesday

Figure 1.17 Using a Substitution Variable in SQL*Plus

24 Chapter 1 ■ PL/SQL Concepts

Did You Know?
When a substitution variable is used in the script, the output produced by the
program contains the statements that show how the substitution was done.

If you do not want to see these lines displayed in the output produced by the
script, use the SET command option before you run the script:

SET VERIFY OFF;

This command is supported by both SQL Developer and SQL*Plus.

As demonstrated earlier, when the same substitution variable is used with a
single ampersand, the user is prompted to provide a value for each occurrence of
this variable in the script. To avoid this task, you can prefix the first occurrence of
the substitution variable by the double ampersand (&&) character, as highlighted
in bold in the following example.

For Example ch01_2b.sql

BEGIN
 DBMS_OUTPUT.PUT_LINE ('Today is '||'&&sv_day');
 DBMS_OUTPUT.PUT_LINE ('Tomorrow will be '||'&sv_day');
END;

In this example, the substitution variable sv_day is prefixed by a double
ampersand in the first DBMS_OUTPUT.PUT_LINE statement. As a result, this
version of the example produces different output:

Today is Monday
Tomorrow will be Monday

From the output shown, it is clear that the user is asked only once to provide
the value for the substitution variable sv_day. In turn, both DBMS_OUTPUT.PUT_
LINE statements use the value of Monday entered by the user.

When a substitution variable is assigned to the string (text) data type, it is a
good practice to enclose it with single quotes. You cannot always guarantee that a
user will provide text information in single quotes. This practice, which will make
your program less error prone, is illustrated in the following code fragment.

For Example

DECLARE
 v_course_no VARCHAR2(5) := '&sv_course_no';

Summary 25

As mentioned earlier, substitution variables are usually prefixed by the amper-
sand (&) or double ampersand (&&) characters; these are the default characters
that denote substitution variables. A special SET command option available in SQL
Developer and SQL*Plus also allows you to change the default character to any
other character or disable the substitution variable feature. This SET command
has the following syntax:

SET DEFINE character

or

SET DEFINE ON

or

SET DEFINE OFF

The first SET command option changes the prefix of the substitution variable
from an ampersand to another character. Note, however, that this character can-
not be alphanumeric or whitespace. The second (ON option) and third (OFF option)
control whether SQL*Plus will look for substitution variables. In addition, the ON
option changes the value of the character back to the ampersand.

Summary

In this chapter, you learned about PL/SQL architecture and how it may be used in
a multitier environment. You also learned how PL/SQL can interact with users via
substitution variables and the DBMS_OUTPUT.PUT_LINE statement. Finally, you
learned about two PL/SQL development tools—SQL Developer and SQL*Plus. The
examples shown in this chapter were executed in both tools to illustrate the differ-
ences between them. The main difference between the two is that SQL Developer
has a graphical user interface and SQL*Plus has a command-line interface. The
PL/SQL examples used throughout this book may be executed in either tool with
the same results. Depending on your preference, you may choose one tool over the
other. However, it is a good idea to become familiar with both, as these tools are
part of almost every Oracle database installation.

By the Way
The companion website provides additional exercises and suggested answers for
this chapter, with discussion related to how those answers resulted. The main
purpose of these exercises is to help you test the depth of your understanding by
utilizing all the skills that you have acquired throughout this chapter.

This page intentionally left blank

433

Index

Symbols
& (ampersand), 21, 25
:= (assignment operator),

35, 37
{ } (braces), 372
-- comment notation, 28, 423
/* comment notation, 28, 423
> (comparison operator), 393
" (double quotes), 31
/ (forward slash), 28, 354,

423
%FOUND attribute, 167
%ISOPEN attribute, 167,

171
%NOTFOUND attribute,

167, 190
() (parentheses), 61
? (question mark), 61
.. (range operator), 98
%ROWCOUNT attribute,

167, 191
%ROWTYPE attribute,

172, 174

A
actual parameters,

319–321
AFTER STATEMENT

sections, compound
triggers, 223–227

AFTER triggers, 210–211
aggregate qualified

expressions
with index iterator

association, 254–255
with iterator association,

253–254
with sequence iterator

association, 255–257
ALTER TRIGGER

statement, 204
ALTER TYPE statement,

405–410
ampersand (&), 21, 25
anchored data types,

33–35
anchored declarations, 33
AND logical operator, 61

anonymous blocks, 6
architecture, PL/SQL.

See also functions;
packages; procedures;
triggers

block structure
nested blocks, 36–38
overview of, 5–9, 128
sequences in, 43–44

client-server
architecture, 4–5

code execution, 9–10
DBMS_OUTPUT.PUT_

LINE statement,
18–21

development
environment
overview of, 10
SQL Developer, 10–12

engine, 2
overview of, 2–5
substitution variables,

21–25
three-tier architecture,

1–2

434 Index

arrays
associative

creating, 231–233
nested tables and
varrays compared to,
244

varrays (variable-size
arrays)
associative arrays
and nested tables
compared to, 244
creating, 240–244
nested, 245

assignment operator (:=),
35, 37

associative arrays
creating, 231–233
nested tables and

varrays compared to,
244

attributes, 380
autonomous transactions,

211–213
AUTONOMOUS_

TRANSACTION
pragma, 211–213

B
BEFORE EACH ROW

section, compound
triggers, 223–227

BEFORE STATEMENT
section, compound
triggers, 223–227

BEFORE triggers, 205–210
BEGIN keyword, 7
bind arguments,

EXECUTE
IMMEDIATE
statement, 275–282

BIND_ARRAY function
(DBMS_SQL), 412

BIND_VARIABLE function
(DBMS_SQL), 412

BIND_VARIABLE_PKG
function (DBMS_
SQL), 412

binding, 9
with CLOSE statement,

314–317
with EXECUTE

IMMEDIATE
statement, 308–314

with FETCH statement,
314–317

with OPEN FOR
statement, 314–317

block structure. See also
functions; packages;
procedures; triggers

nested blocks, 36–38
overview of, 5–9, 128
sequences in, 43–44

body
of packages, 343–348
of triggers, 204–205

Boolean expressions,
terminating loops
with, 95

braces ({ }), 372
built-in exceptions,

128–133
exception handling,

130–133
list of, 129–130
RAISE_APPLICATION_

ERROR procedure,
151–155

BULK COLLECT clause,
299–307

with INSERT, UPDATE,
and DELETE
statements, 303–307

with SELECT
statement, 299–303

BULK SELECT statement,
385, 403

bulk SQL

BULK COLLECT
clause, 299–307
with INSERT,
UPDATE, and
DELETE statements,
303–307
with SELECT
statement, 299–303

collections, binding in
SQL statements
with CLOSE
statement, 314–317
with EXECUTE
IMMEDIATE
statement, 308–314
with FETCH
statement, 314–317
with OPEN FOR
statement, 314–317

FORALL statements
INDICES OF option,
291, 296–297
overview of, 290
SAVE EXCEPTIONS
option, 294–296
structure and use of,
290–293
VALUES OF option,
291, 297–299

overview of, 289

C
c_course cursor, 184–186
c_name cursor, 269, 284
c_zip cursor, 182–184, 287
calc function, 334–335
calc_sum procedure,

320–321
CASCADE option, 405
case

formatting guidelines
for, 421

literals, 33
CASE expressions, 74–78

Index 435

CASE statements
functions embedded in,

339
overview of, 66
searched

CASE versus
searched CASE
statements, 70–74
structure of, 68–70

structure of, 66–68
character sets, 27–28
check_total_rows function,

415
city_data_adm package,

363–366
city_tab variable, 388
city_tab_type table type,

387
clauses. See also reserved

words; statements
BULK COLLECT,

299–307
with INSERT,
UPDATE, and
DELETE statements,
303–307
with SELECT
statement, 299–303

COMPOUND
TRIGGER, 223–224

CREATE OR REPLACE
TYPE, 381–384

DETERMINISTIC, 336,
374

ELSE, 66, 76
CASE statements,
66, 76
ELSIF, 55–59
IF-THEN-ELSE
statement, 52–55

END CASE, 72
FOLLOWS/PRECEDES,

203–204
INDEX BY, 231
INTO, 275, 282

ISOLATION LEVEL, 47
NAME, 47
PARALLEL_ENABLE,

336, 374
PIPELINED, 336,

368–370, 374
READ ONLY, 47
READ WRITE, 47
RESULT_CACHE,

363–366, 374
RETURN, 332–333, 370

EXECUTE
IMMEDIATE
statement, 275
IN OUT parameter,
391
SELF parameter, 389,
391

RETURNING, 304
RETURNING INTO,

41–42, 275
SQL_MACRO, 370–375
USE ROLLBACK

SEGMENT, 47
USING

EXECUTE
IMMEDIATE
statement, 275,
280–282
OPEN FOR
statement, 284

WHEN, 66, 76
WHERE CURRENT OF,

198
client-server architecture,

4–5
CLOSE statement, 166,

189, 283–287,
314–317

CLOSE_CURSOR function
(DBMS_SQL), 412

COALESCE function, 31,
80–82

code execution, 9–10

collection iteration controls,
245–247

collection methods,
236–240

collections
binding in SQL

statements
with CLOSE
statement, 314–317
with EXECUTE
IMMEDIATE
statement, 308–314
with FETCH
statement, 314–317
with OPEN FOR
statement, 314–317

collection methods,
236–240

empty, 236
iteration controls,

247–251
multidimensional,

245–247
object types with,

385–388
overview of, 229
qualified expressions

with, 247–251
aggregate with index
iterator association,
254–255
aggregate with
iterator association,
253–254
aggregate with
sequence iterator
association, 255–257
empty, 253
simple, 253
syntax for, 251–253

tables
associative arrays,
231–233, 244
definition of, 230
nested, 233–236

436 Index

collections (continued)
varrays (variable-size

arrays)
associative arrays
and nested tables
compared to, 244
creating, 240–244
nested, 245

column objects, storing
in relational tables,
400–403

COLUMN_VALUE function
(DBMS_SQL), 412,
417

COLUMN_VALUE_LONG
function (DBMS_
SQL), 412

columns
naming conventions,

421–422
STUDENT database

schema
COURSE table,
425–426
ENROLLMENT
table, 427–428
GRADE table,
430–431
GRADE_
CONVERSION table,
431
GRADE_TYPE table,
429
GRADE_TYPE_
WEIGHT table, 430
INSTRUCTOR table,
428
SECTION table, 426
STUDENT table, 427
ZIPCODE table, 429

comments
definition of, 28
formatting guidelines

for, 423

COMMIT statement, 44–47
comparing objects

with map methods,
394–395

with order methods,
395–398

comparison operator (>),
393

compatibility, record,
263–265

compilation errors, 125–128
compile-time constants, 351
COMPOUND TRIGGER

clause, 223–224
compound triggers

creating, 223–224
resolving mutating table

issues with, 223–227
restrictions, 224–225
structure of, 223–224

concatenation operator, 32
conditional control

CASE expressions,
74–78

CASE statements
CASE versus
searched CASE
statements, 70–74
COALESCE function,
80–82
NULLIF function,
78–80
overview of, 66
searched, 68–74
structure of, 66–68

IF statements
ELSIF, 55–59
IF-THEN, 50–52
IF-THEN-ELSE,
52–55
importance of, 49
inner versus outer, 60
logical operators, 61
nested, 59–60, 62

NULL conditions,
54–55

connections, database
creating with SQL

Developer, 10–12
creating with SQL*Plus,

13–14
constants

compile-time, 351
naming conventions, 422

constructor methods,
389–392

context switches, 371
CONTINUE statement,

112–115
CONTINUE WHEN

statement, 116–118
COUNT method, 237–240,

243
counters, loop, 88
COURSE table schema,

425–426
course_rec record, 172–174
course_sections macro,

373–375
CREATE FUNCTION

statement, 336–339
SQL_MACRO clause,

370–375
stand-alone procedures,

creating, 327–330
CREATE keyword,

202–203
CREATE OR REPLACE

TYPE BODY
statement, 409

CREATE OR REPLACE
TYPE clause,
381–384

CREATE PROCEDURE
statement, 327–330

CREATE TABLE
statement, 278,
403–404

Index 437

CREATE TRIGGER
statement, 213–214

Create Trigger window,
206–210

CREATE TYPE statement,
234, 241

CREATE VIEW privilege,
215

CURRVAL operator, 43
CURSOR keyword, 165
cursor specification section,

packages, 343–344
cursor-based records,

174–175
cursors

c_name, 269
cursor expressions,

193–196
cursor loops

cursor FOR loops,
175–177
processing with
DBMS_SQL, 418–420

cursor variables,
187–193

cursor-based records,
174–175

definition of, 161
explicit

declaring, 164–165
fetching, 166–171
opening/closing,
165–166
overview of, 164

FOR UPDATE, 196–199
implicit, 162–164
INVALID_CURSOR

exception, 191–193
naming conventions, 165
nested, 177–179
parameterized, 181–186
SQL, 162

cv_course variable, 193
cv_student_name variable,

195

D
Data Manipulation

Language (DML)
statements, 41–42

data types
anchored, 33–35
VARCHAR2, 77
weak, 187

database character sets,
27–28

Database Object-Relational
Developer's Guide,
379, 399

database triggers
AFTER, 210–211
autonomous

transactions, 211–213
BEFORE, 205–210
creating, 202–204
definition of, 202–205
editioned versus

noneditioned, 203
enabling/disabling,

202–204
firing, 202, 203–204
INSTEAD OF, 215–219
names, 203
row triggers, 213–214
statement triggers,

213–214
trigger headers,

204–205
triggering events, 202

databases, connecting to/
disconnecting from

with SQL Developer,
10–12

with SQL*Plus, 13–14
date_time_info_adm

package, 348, 351
creating, 349–350
instantiating and

initializing, 349–350
package state, 351

DBMS_OUTPUT.PUT_
LINE statement,
18–21

DBMS_RESULT_CASH.
FLUSH procedure,
366

DBMS_SQL package,
generating dynamic
SQL with

cursor loop processing
with, 418–420

execution flow for,
411–413

multirow SELECT
statement, 416–420

table_adm_pkg package
example
creating/replacing,
413–415
testing, 416

DBMS_UTILITY package,
293

declaration, forward,
324–325

declaration section
packages, 343–344
PL/SQL blocks, 6

DECLARE keyword, 6
DEFINE_ARRAY function

(DBMS_SQL), 412, 419
DEFINE_COLUMN

function (DBMS_
SQL), 412, 415

DEFINE_COLUMN_
LONG function
(DBMS_SQL), 412

DELETE method, 237–240,
243

DELETE statement, 41–42
BULK COLLECT

clause, 303–307
RETURNING INTO

clause, 42
WHERE CURRENT OF

clause, 198

438 Index

delete_table_data function,
415

delete_test procedure, 311
DELETING function, 210
delimiters, 28, 32, 372
DETERMINISTIC clause,

336, 374
development environment

overview of, 10
script execution, 14–16
SQL Developer

database connections,
creating/terminating,
10–12
script execution,
10–12
substitution
variables, 21–25

SQL*Plus
database connections,
creating/terminating,
13–14
script execution,
13–14
substitution
variables, 21–25

diff function, 332
display procedure,

overloading, 357–358
display_data procedure, 403
display_person procedure,

402–403
display_student_info

procedure, 316–317
display_zipcode_info

method, 393
DML (Data Manipulation

Language)
statements, 41–42

dot notation, 346
double quotes ("), 31
double-pipe (||) delimiter,

32
DUP_VALUE_ON_INDEX

exception, 130

dynamic SQL
generating with DBMS_

SQL package
cursor loop processing
with, 418–420
execution flow for,
411–413
multirow SELECT
statement, 416–420
table_adm_pkg
package, creating/
replacing, 413–415
table_adm_pkg
package, testing, 416

native dynamic SQL
CLOSE statement,
283–287
EXECUTE
IMMEDIATE
statement, 274–283
FETCH statement,
283–287
OPEN FOR
statement, 283–287
overview of, 273

E
e_invalid_id exception,

140–141
EDITIONABLE keyword,

203, 328
editioning, trigger, 203
ELSE keyword

CASE statements, 66, 76
ELSIF statement, 55–59
IF-THEN-ELSE

statement, 52–55
ELSIF statement, 55–59,

334–335
embedded functions, 335
empty collections, 236
empty qualified

expressions, 253
ENABLE/DISABLE option,

203–204

enclosing records, 265
END CASE clause, 72
END keyword, 7
END LOOP statement,

89, 121
engine, PL/SQL, 2
enroll_array_type

associative array
type, 271

enroll_rec_type record
type, 271

enroll_tab associative
array, 271

ENROLLMENT table
schema, 427–428

error handling
compilation versus

runtime errors,
125–128

error messages,
creating
RAISE_
APPLICATION_
ERROR procedure,
151–155
SQLCODE function,
157–160

exceptions
built-in, 128–133
DUP_VALUE_ON_
INDEX, 130
exception handlers,
127–128
EXCEPTION_INIT
pragma, 155–157
internally defined,
155–157
INVALID_CURSOR,
191–193
NO_DATA_FOUND,
136–138, 232, 248
ORA-06530, 384
propagating,
143–148

Index 439

RAISE_
APPLICATION_
ERROR procedure,
151–155
re-raising, 148–149
scope of, 135–138
SQLCODE function,
157–160
SQLERRM function,
157–160
user-defined, 139–143
VALUE_ERROR, 137

EXECUTE
IMMEDIATE
statement, 276–282

importance of, 125–128
mutating table issues

description of,
221–223
resolving with
compound triggers,
223–227

packages, 347–348
ERROR_CODE field,

294–296
ERROR_INDEX field,

294–296
events, triggering, 202
evolution, type, 405–410
exc_ind_type data type,

298
EXCEPTION keyword, 8,

31, 139
exception variable, 31
EXCEPTION_INIT

pragma, 155–157, 212
exception-handling section,

PL/SQL blocks, 7–9
exceptions

built-in, 128–133,
151–155

DUP_VALUE_ON_
INDEX, 130

exception handlers,
127–128

EXCEPTION_INIT
pragma, 155–157

internally defined,
155–157

INVALID_CURSOR,
191–193

NO_DATA_FOUND,
136–138, 232, 248

ORA-06530, 384
propagating, 143–148
RAISE_APPLICATION_

ERROR procedure,
151–155

re-raising, 148–149
scope of, 135–138
SQLCODE function,

157–160
SQLERRM function,

157–160
user-defined, 139–143
VALUE_ERROR, 137

executable section, PL/SQL
blocks, 7

EXECUTE function
(DBMS_SQL), 412,
415, 417

EXECUTE IMMEDIATE
statement, 274–283,
308–314

with CLOSE statement,
314–317

error handling, 276–282
with FETCH statement,

314–317
NULL values, passing,

282–283
with OPEN FOR

statement, 314–317
structure of, 274–276

EXECUTE_AND_FETCH
function (DBMS_
SQL), 412

execution of code, 9–10,
14–16

EXISTS method, 237–240

EXIT statement, 13, 87–90
EXIT WHEN statement,

91–92
explicit cursors

declaring, 164–165
fetching, 166–171
opening/closing, 165–166
overview of, 164

expressions
CASE, 74–78
cursor, 193–196
qualified, 262

expressions, qualified
with collections, 251–257

aggregate with index
iterator association,
254–255
aggregate with
iterator association,
253–254
aggregate with
sequence iterator
association, 255–257
empty, 253
simple, 253
syntax for, 251–253

with user-defined
records, 262

EXTEND method, 236–240

F
FETCH statement,

166–171, 189,
283–287, 314–317

FETCH_ROWS function
(DBMS_SQL), 412,
417

fetching cursors, 166–171
firing order, triggers,

203–204
firing triggers, 202
FIRST method, 237–240,

243
first&last_names

variable, 30

440 Index

FOLLOWS/PRECEDES
clause, 203–204

FOR EACH ROW
statement, 203,
213–214

FOR loops
cursor FOR loops,

175–177
nested, 119–120
numeric, 97–103

IN option, 100–103
IN REVERSE option,
103–104
multiple iterations,
107–108
single expression
iteration, 106–107
stepped range
iteration, 104–106
structure of, 97–100
terminating
prematurely, 108–109

terminating
prematurely, 108–109

FOR UPDATE cursors,
196–199

FORALL statements
INDICES OF option,

291, 296–297
overview of, 290
SAVE EXCEPTIONS

option, 294–296
structure and use of,

290–293
VALUES OF option, 291,

297–299
formal parameters, nested

procedures, 319–321
format_name function,

371–373
formatting guidelines,

421–423
forward declaration,

326–327
forward slash (/), 16, 28,

354, 423

%FOUND attribute, 167
function|procedure

specification section,
packages, 343–344

functions. See also
methods; procedures;
individual functions

definition of, 331–332
embedding, 335
invoking in SQL

statements, 367–368
nested, 331–335
pipelined table, 368–370
purity rules, 367–368
result-cached, 363–366
return types, 332–333
SQL macros, 370–375
stand-alone, 336–339

G
get_city_data function,

365–366
get_student procedure,

346
get_student_name

procedure, 328–330
get_students procedure,

343, 346
GET_TIME function, 293
GRADE table schema,

430–431
GRADE_CONVERSION

table schema, 431
GRADE_TYPE table

schema, 429
grade_type_rec variable,

174
GRADE_TYPE_WEIGHT

table schema, 430

H-I
headers

loop, 99
trigger, 204–205

id_is_good function, 346
identifiers, 28, 29

IF statements
ELSIF, 55–59
IF-THEN, 50–52
IF-THEN-ELSE, 52–55
importance of, 49
inner versus outer, 60
logical operators, 61
nested, 59–60, 62
NULL conditions, 54–55
RAISE statement with,

142
IF-THEN statement, 50–52
IF-THEN-ELSE statement,

52–55, 393
implicit cursors, 162–164
IN option, numeric FOR

loops, 100–103
IN OUT parameter, 322,

391, 395
IN parameter mode, 322
IN REVERSE option,

numeric FOR loops,
103–104

INDEX BY clause, 231
index iterator associations,

aggregate qualified
expressions with,
254–255

INDICES OF option, 247–
251, 291, 296–297

infinite loops, 87
initialization

of packages, 343–344,
349–350

of variables, 40–41
inner IF statements, 60
INSERT statement, 41–42,

209–210
BULK COLLECT

clause, 303–307
mutating table issues,

resolving, 226–227
person_obj_type objects,

404
insert_table_data function,

415

Index 441

instantiation of packages,
349–350

INSTEAD OF triggers,
215–219

INSTRUCTOR table
schema, 428

internally defined
exceptions, 155–157

INTO clause, EXECUTE
IMMEDIATE
statement, 275, 282

INVALID_CURSOR
exception, 191–193

INVALID_NUMBER error,
137

INVALIDATE option, 405
is_number function, 335
ISOLATION LEVEL

clause, 47
%ISOPEN attribute, 167,

171
iterative control

collection iteration
controls, 245–247

CONTINUE statement,
112–115

CONTINUE WHEN
statement, 116–118

loops
with Boolean
expressions, 95
FOR, 97–109, 175–177
infinite, 87
labels, 120–122
loop counters, 88
loop headers, 99
multiple iterations,
107–108
nested, 119–120
simple, 86–92
single expression
iteration, 106–107
stepped range
iteration, 104–106

terminating
prematurely, 108–109
WHILE, 92–97

iterator associations,
aggregate qualified
expressions with,
253–255

J-K-L
keywords. See reserved

words
labels

loop, 120–122
nested, 36–38

LAST method, 237–240,
243

last_name_tab associative
array, 231–232

last_name_table, 234–236
last_name_type, 268
leaf-level attributes, 399
LIMIT method, 243
LIMIT option, BULK

COLLECT clause,
301–302

literals, 28, 33
logical operators, 61
LOGIN_DENIED

exception, 130
FOR.LOOP statement, 99
loop_counter variable, 98
loops

CONTINUE statement,
112–115

CONTINUE WHEN
statement, 116–118

FOR, 97–103
cursor FOR loops,
175–177
IN option, 100–103
IN REVERSE option,
103–104
multiple iterations,
107–108

single expression
iteration, 106–107
stepped range
iteration, 104–106
structure of, 97–100
terminating
prematurely, 108–109

infinite, 87
labels, 120–122
loop counters, 88
loop headers, 99
multiple iterations,

106–107
nested, 119–120
simple

with EXIT statement,
87–90
with EXIT WHEN
statement, 91–92
structure of, 86–87

single expression
iteration, 106–107

stepped range iteration,
104–106

terminating
with Boolean
expressions, 95
with EXIT statement,
87–90
with EXIT WHEN
statement, 91–92
terminating
prematurely, 108–109

WHILE, 92–97

M
macros, 370–375
map methods, 394–395
mathematical symbols, 29
member methods, 392
MERGE statement, 41–42
messages, error

RAISE_APPLICATION_
ERROR procedure,
151–155

442 Index

messages, error (continued)
SQLCODE function,

157–160
SQLERRM function,

157–160
methods

collection, 236–240
definition of, 380
object type

constructor methods,
389–392
map methods,
394–395
member methods, 392
order methods,
395–398
overview of, 388–389
static methods, 393

public, 382
mixed notation, 324–325
MOD function, 68, 71
modular code, 319
multidimensional

collections, 245–247
multiple iterations, 106–107
multirow queries, 283–287
multirow SELECT

statement, 416–420
mutating tables

description of, 221–223
resolving with compound

triggers, 223–227

N
NAME clause, SET

TRANSACTION
statement, 47

name_type record type, 266
named blocks, 6
named notation, 324–325,

330, 390
naming conventions,

421–422
cursors, 165
variables, 29–31

national character sets,
27–28

native code, 9
native dynamic SQL

CLOSE statement,
283–287

EXECUTE
IMMEDIATE
statement, 274–283
error handling,
276–282
NULL values,
passing, 282–283
structure of, 274–276

FETCH statement,
283–287

OPEN FOR statement,
283–287

overview of, 273
nesting

blocks, 36–38
cursors, 177–179
functions, 331–335
IF statements, 59–60, 62
labels, 36–38
loops, 119–120
procedures

formal versus actual
parameters, 319–321
forward declaration,
324–325
parameter modes,
321–325

records, 265–268
subprograms

definition of, 319
overloading, 357–363

tables
associative arrays
and varrays
compared to, 244
creating, 233–236

varrays (variable-size
arrays), 245

:NEW pseudorecord, 226

New Trigger option,
Worksheet window,
206–210

New/Select Database
Connection dialog
box, 10–11

NEXT method, 237–240
NEXTVAL, 43
NO_DATA_FOUND

exception, 129–130,
131–132, 136, 232,
248, 339

NOCOPY, 391
NONEDITIONABLE

keyword, 203, 328
NOT INCLUDING TABLE

DATA phrase, 406
NOT NULL constraint, 34,

260–261
notation types, 323–325, 330
%NOTFOUND attribute,

167, 190
NULL values

CASE statements, 68
empty collections versus,

236
with IF statements,

54–55
object types, 383–384
passing, 282–283
procedures and, 323

NULLIF function, 78–80
numeric FOR loops, 97–103

IN option, 100–103
IN REVERSE option,

103–104
multiple iterations,

107–108
single expression

iteration, 106–107
stepped range iteration,

104–106
structure of, 97–100
terminating

prematurely, 108–109
NVL function, 80

Index 443

O
object tables

comparing objects
with map methods,
394–395
with order methods,
395–398

public interfaces, 382
storing objects in,

403–405
type evolution, 405–410

object types
with collections,

385–388
creating, 381–384
NULL values, 383–384
object type methods

constructor methods,
389–392
map methods,
394–395
member methods, 392
order methods,
395–398
overview of, 388–389
static methods, 393

overview of, 379
public objects, 342
result objects, 365
storing in tables

object tables, 403–405
overview of, 399–400
relational tables,
400–403
type evolution,
405–410

structure of, 380
OPEN FOR statement, 189,

283–287, 314–317
OPEN statement, 166
OPEN_CURSOR function

(DBMS_SQL), 412,
415

operators
comparison (>), 393
CURRVAL, 43

logical, 61
range (.), 98

OR logical operator, 61
ORA-06530 exception, 384
Oracle Application Express

(APEX), 2
Oracle Forms and Reports,

2
Oracle Fusion Middleware,

2
order methods, 395–398
OTHERS exception

handler, 132–133
OUT parameter, 322, 391,

395
outer IF statements, 60
overloading subprograms,

357–363

P
p_prereq cursor parameter,

185–186
p_state cursor parameter,

182–184
p_students_tab collecgion,

346
packages

benefits of, 341–342
creating

package body,
343–348
package specification,
342–343

DBMS_SQL, generating
dynamic SQL with
cursor loop processing
with, 418–420
execution flow for,
411–413
multirow SELECT
statement, 416–420
table_adm_pkg
package, creating/
replacing, 413–415
table_adm_pkg
package, testing, 416

DBMS_UTILITY, 293
error handling, 347–348
initializing, 349–350
instantiating, 349–350
naming conventions,

421–422
package state, 351
package subprograms,

319, 357–363
SERIALLY_

REUSABLE, 351–356
stateful/stateless, 351

PARALLEL_ENABLE
clause, 336, 374

param_modes procedure,
322–324

parameterized cursors,
181–186

parameters
for cursors, 181–186
for nested procedures

formal versus actual,
319–321
forward declaration,
324–325
notation types,
323–325
parameter modes,
321–325

parentheses, 61
PARSE function

(DBMS_SQL), 415
parse trees, 9
p-code, 9
PERSON table, 401–403
person_obj_type objects,

400–403
person_rec record, 265–266
person_type record type,

266
pipe (|), 32
PIPE ROW statement, 370
PIPELINED clause, 336,

368–370, 374
pipelined table functions,

368–370

444 Index

PLS_INTEGER type, 231,
298

plsql_block variable, 279
PLSQL_CODE_TYPE

parameter, 9
pluggable database

container (PDB), 13
populate_student_tab

procedure, 316–317
populate_test procedure,

311
populate_test_rec

procedure, 313
positional notation,

323–325, 390
pragmas

AUTONOMOUS_
TRANSACTION,
211–213

EXCEPTION_INIT,
155–157, 212

SERIALLY_
REUSABLE, 351–356

print_student_data
procedure,
overloading, 358–362

PRIOR method, 237–240
procedures. See also

functions; methods;
individual procedures

forward declaration,
326–327

naming conventions,
421–422

nested, creating
formal versus actual
parameters, 319–321
forward declaration,
324–325
parameter modes,
321–325

notation types, 323–325,
330

stand-alone, creating,
327–330

PROGRAM_ERROR
exception, 130

propagating exceptions,
143–148

pseudorecords, 205–206
public interfaces, 382
public methods, 382
public objects, 342
punctuation characters, 28
purity rules, 367–368
PUT_LINE statement,

18–21

Q
qualified expressions

with collections,
251–257
aggregate with index
iterator association,
254–255
aggregate with
iterator association,
253–254
aggregate with
sequence iterator
association, 255–257
empty, 253
simple, 253
syntax for, 251–253

with user-defined
records, 262

queries
executing, 14–16
multirow, 283–287
stored, 215
view, 216

question mark (?), 61
QUIT command, 13

R
RAISE statement, 140, 142,

151–155
RAISE_APPLICATION_

ERROR procedure,
151–155

range operator (.), 98
READ ONLY clause, SET

TRANSACTION
statement, 47

READ WRITE clause, SET
TRANSACTION
statement, 47

records
collections of, 268–271
cursor-based, 174–175
enclosing, 265
nested, 265–268
pseudorecords, 205–206
table-based, 172–174
user-defined

creating, 260–262
qualified expressions
with, 262
record compatibility,
263–265

REF CURSOR type, 187,
194, 284, 315, 317

relational tables, storing
objects in, 400–403

REPLACE keyword,
202–203

re-raising exceptions,
148–149

reserved words. See also
clauses; statements

BEGIN, 7
CREATE, 202–203
CURSOR, 165
DECLARE, 6, 7
definition of, 28
EDITIONABLE, 203,

328
ELSE

CASE statements,
66, 76
ELSIF statement,
55–59
IF-THEN-ELSE
statement, 52–55

END, 7

Index 445

EXCEPTION, 8, 31, 139
formatting guidelines

for, 421
NONEDITIONABLE,

203, 328
overview of, 31–32
REPLACE, 202–203

result objects, 365
RESULT_CACHE clause,

336, 363–366, 374
result-cached functions,

363–366
RETURN clause, 332–333,

370
EXECUTE

IMMEDIATE
statement, 275

IN OUT parameter, 391
SELF parameter, 389,

391
return types, 332–333
RETURNING clause, 304
RETURNING INTO

clause, 41–42, 275
REVERSE option, loops,

103–104
ROLLBACK statement,

44–47, 198
row objects, storing in

object tables, 403–405
row triggers, 213–214
row_text_tab associative

array, 298
%ROWCOUNT attribute,

167, 191
%ROWTYPE attribute,

172, 174
rules, purity, 367–368
runtime errors

error handling, 125–128
mutating tables

description of,
221–223
resolving with
compound triggers,
223–227

S
SAVE EXCEPTIONS

option, FORALL
statement, 294–296

SAVEPOINT statement,
44–47

scalar expression, 371
scalar SQL macros, 370–375
SCALAR type, 371
scope

of exceptions, 135–138
of variables, 35

script execution, 14–16
searched CASE statements

CASE statements
versus, 70–74

structure of, 68–70
SECTION table schema,

426
SECTION_COMPOUND

trigger, 227
SELECT FOR UPDATE

statement, 196–199
SELECT INTO statement,

7, 337
initializing variables

with, 40–41
mutating table issues,

221–223
object attributes,

383–384
SELECT statement, 4. See

also cursors
BULK COLLECT

clause, 299–307
dynamic SQL, 283–287
invoking functions in,

367–368
multirow, 416–420
person_obj_type objects,

404
SELECT FOR UPDATE,

196–199
VALUE function, 406

SELF parameter, 389, 391,
395

semantic checking, 9
sequence iterator

associations,
aggregate qualified
expressions with,
255–257

sequences, 43–44
SERIALLY_REUSABLE

packages, 351–356
SET command, 25
SET SERVEROUTPUT

statement, 20
SET TRANSACTION

statement, 47–48
SGA (system global area),

352
show_description function,

336–337, 367–368
show_enrollment function,

338–339
simple loops

with EXIT statement,
87–90

with EXIT WHEN
statement, 91–92

nested, 119–120
structure of, 86–87

simple qualified
expressions, 253

single expression iteration,
106–107

SQL cursors, 162
SQL Developer

database connections,
creating/terminating,
10–12

script execution, 10–12
substitution variables,

21–25
SQL macros, 370–375
SQL statements. See

statements
SQL%BULK_

EXCEPTIONS
attribute, 294–296

446 Index

SQL%FOUND attribute,
163–164

SQL%ISOPEN attribute,
163–164

SQL%NOTFOUND
attribute, 163–164

SQL%ROWCOUNT
attribute, 163–164

SQL*Plus
database connections,

creating/terminating,
13–14

script execution, 13–14
substitution variables,

21–25
SQL_MACRO clause,

370–375
SQLCODE function,

157–160
SQLERRM function,

157–160
sqlplus command, 13
stand-alone functions,

336–339
stand-alone subprograms,

319
state_obj_type object type,

387
stateful packages, 351
stateless packages, 351
statement triggers, 213–214
statements, 34, 47–48

ALTER TRIGGER, 204
ALTER TYPE, 405–410
binding collections in

with CLOSE
statement, 314–317
with EXECUTE
IMMEDIATE
statement, 308–314
with FETCH
statement, 314–317
with OPEN FOR
statement, 314–317

BULK SELECT, 385,
403

CASE
CASE versus
searched CASE,
70–74
COALESCE function,
80–82
functions embedded
in, 339
NULLIF function,
78–80
overview of, 66
searched, 68–74
structure of, 66–68

CLOSE, 166, 189,
283–287, 314–317

COMMIT, 44–47
CONTINUE, 112–115
CONTINUE WHEN,

116–118
CREATE FUNCTION,

336–339
SQL_MACRO clause,
370–375
stand-alone
procedures, creating,
327–330

CREATE OR REPLACE
TYPE BODY, 409

CREATE PROCEDURE,
327–330

CREATE TABLE, 278,
403–404

CREATE TRIGGER,
213–214

CREATE TYPE, 234,
241

DBMS_OUTPUT.PUT_
LINE, 18–21

DELETE, 41–42
BULK COLLECT
clause, 303–307
RETURNING INTO
clause, 42
WHERE CURRENT
OF clause, 198–199

DML (Data
Manipulation
Language), 41–42

ELSIF, 334–335
END LOOP, 89, 121
EXECUTE

IMMEDIATE,
274–283, 308–314
error handling,
276–282
NULL values,
passing, 282–283
structure of, 274–276

EXIT, 13, 87–90
EXIT WHEN, 91–92
FETCH, 166–171, 189,

283–287, 314–317
FOR EACH ROW, 203,

213–214
FORALL

INDICES OF option,
291, 296–297
overview of, 290
SAVE EXCEPTIONS
option, 294–296
structure and use of,
290–293
VALUES OF option,
291, 297–299

IF, 142
ELSIF, 55–59
IF-THEN, 50–52
IF-THEN-ELSE,
52–55, 393
importance of, 49
inner versus outer, 60
logical operators, 61
nested, 59–60, 62
NULL conditions,
54–55

INSERT, 41–42,
209–210
BULK COLLECT
clause, 303–307
person_obj_type
objects, 404

Index 447

invoking functions in,
367–368

FOR.LOOP, 99
MERGE, 41–42
OPEN, 166
OPEN FOR, 189,

283–287, 314–317
PIPE ROW, 370
PRAGMA SERIALLY_

REUSABLE, 352
RAISE, 140, 142,

151–155
RETURN, 332–333, 370
ROLLBACK, 44–47, 198
SAVEPOINT, 44–47
SELECT, 4. See also

cursors
BULK COLLECT
clause, 299–307
DBMS_SQL package
and, 416–420
dynamic SQL,
283–287
invoking functions in,
367–368
person_obj_type
objects, 404
VALUE function, 406

SELECT FOR UPDATE,
196–199

SELECT INTO, 7, 337
initializing variables
with, 40–41
mutating table issues,
221–227
object attributes,
383–384

TABLE, 368
TYPE, 187, 231, 241, 260
UPDATE, 41–42

autonomous
transactions, 211–213
BULK COLLECT
clause, 303–307
mutating table issues,
221–227

person_obj_type
objects, 405
SELECT FOR
UPDATE and,
196–199
WHERE CURRENT
OF clause, 198–199

static methods, 393
stepped range iteration,

104–106
stored code. See also

packages
functions. See also

individual functions
definition of, 331–332
embedding, 335
invoking in SQL
statements, 367–368
nested, 331–335
pipelined table,
368–370
purity rules, 367–368
result-cached,
363–366
return types,
332–333
SQL macros, 370–375
stand-alone, 336–339

procedures. See also
individual procedures
forward declaration,
326–327
naming conventions,
421–422
nested, creating,
319–325
notation types,
323–325, 330
stand-alone, creating,
327–330

subprogram overloading,
357–363

stored queries, 215
stored subprograms,

319

STUDENT database
schema

COURSE table, 425–426
database connections,

creating/terminating
with SQL Developer,
10–12
with SQL*Plus, 13–14

ENROLLMENT table,
427–428

entity relationship
diagram, 432

GRADE table, 430–431
GRADE_CONVERSION

table, 431
GRADE_TYPE table,

429
GRADE_TYPE_

WEIGHT table, 430
INSTRUCTOR table,

428
PERSON table, 401–403
SECTION table, 426
STUDENT table,

223–227, 427
ZIPCODE table, 429

STUDENT table, 223–227,
427

student_adm package
overloaded procedures

in, 358–362
package body, 344–348
package specification,

342–343
with record and

collection types,
316–317

STUDENT_BI trigger,
205–210

student_cur cursor
variable, 315, 346

student_cur variable, 315
student_cur_typ cursor

type, 315
student_rec variable, 315
subprograms, 319–321

448 Index

definition of, 319
forward declaration,

326–327
overloading, 357–363
placement of definition

of, 321
procedures. See also

individual procedures
forward declaration,
326–327
naming conventions,
421–422
nested, creating,
319–325
stand-alone, creating,
327–330

subscript notation, 231
substitution variables,

21–25
sv_table_name variable,

276
syntax checking, 9
syntax errors, 125–128
SYS_REFCURSOR type,

187
system global area (SGA),

352
system_date variable, 349

T
tab_type table type, 368
table expression, 371
TABLE function, 317, 386
table functions, pipelined,

368–370
table SQL macros, 370–375
TABLE statement, 368
TABLE type, 371
table_adm_pkg package

creating/replacing with
DBMS_SQL, 413–415

testing, 416
table_exists function, 415
table-based records,

172–174

tables
associative arrays

creating, 231–233
nested tables and
varrays compared to,
244

definition of, 230
mutating

description of,
221–223
resolving with
compound triggers,
223–227

naming conventions,
421–422

nested
associative arrays
and varrays
compared to, 244
creating, 233–236

pipelined table
functions, 368–370

records
cursor-based, 174–175
table-based, 172–174

storing object types in
object tables, 403–405
overview of, 399–400
relational tables,
400–403
type evolution,
405–410

STUDENT database
schema
COURSE, 425–426
ENROLLMENT,
427–428
entity relationship
diagram, 432
GRADE, 430–431
GRADE_
CONVERSION, 431
GRADE_TYPE, 429
GRADE_TYPE_
WEIGHT, 430

INSTRUCTOR, 428
PERSON, 401–403
SECTION, 426
STUDENT, 427
ZIPCODE, 429

terminating loops
with Boolean

expressions, 95
with EXIT statement,

87–90
with EXIT WHEN

statement, 91–92
terminating

prematurely, 108–109
TEST_EXC table, 298
testing table_adm_pkg

package, 416
time_rec record, 260–262
time_rec_type record,

260–262
TO_CHAR function, 40, 77,

231, 358
TOO_MANY_ROWS

exception, 130, 131
transactions

autonomous, 211–213
transaction control

COMMIT statement,
44–47
ROLLBACK
statement, 44–47
SAVEPOINT
statement, 44–47
SET TRANSACTION
statement, 47–48

triggering events, 202
triggers

AFTER, 210–211
autonomous

transactions, 211–213
BEFORE, 205–210
compound, 223–227

creating, 223–224
restrictions, 224–225
structure of, 223–224

Index 449

creating, 202–204
definition of, 202–205
editioned versus

noneditioned, 203
enabling/disabling,

202–204
firing, 202, 203–204
INSTEAD OF, 215–219
mutating table issues

description of,
221–223
resolving with
compound triggers,
223–227

names, 203
row, 213–214
statement, 213–214
trigger headers,

204–205
triggering events, 202

TRIM method, 237–240
type evolution, 405–410
TYPE statement, 187, 231,

241, 260
typemark, 251
types, object. See object

types

U
UGA (user global area), 352
UNIQUE constraint, 34
unnamed user-defined

exceptions, 151–155
UPDATE statement, 41–42

autonomous
transactions, 211–213

BULK COLLECT
clause, 303–307

mutating table issues
description of,
221–223
resolving with
compound triggers,
226–227

person_obj_type objects,
405

SELECT FOR UPDATE,
196–199

WHERE CURRENT OF
clause, 198

UPDATING function, 210
USE ROLLBACK

SEGMENT clause, 47
user global area (UGA), 352
user-defined constructors,

390
user-defined exceptions,

139–143
user-defined records

creating, 260–262
qualified expressions

with, 262
record compatibility,

263–265
USING clause

EXECUTE
IMMEDIATE
statement, 275,
280–282

OPEN FOR statement,
284

V
v_area variable, 280
v_city variable, 195
v_counter variable, 88–109
v_date_rec variable, 348
v_diff variable, 332
v_dob variable, 30
v_dyn_sql variable, 311
v_err_code variable, 153
v_err_msg variable, 153
v_final_grade variable, 73
v_first_name variable, 6–7,

34
v_index variable, 268
v_instructor_id variable,

133
v_last_name variable, 6
v_letter_grade variable, 73
v_my_table_name variable,

277

v_name variable, 30
v_new_name variable, 34
v_num variable, 57, 79, 327
v_num_flag variable, 68,

70, 71, 76
v_num1 variable, 51–52,

126–127, 321
v_num2 variable, 52,

126–127, 321
v_numeric_grade variable,

34
v_prereq variable, 77,

185–186, 193
v_remainder variable, 79
v_result variable, 75, 126,

397
v_seq_value variable, 43–44
v_state variable, 195
v_student_id variable, 132,

136, 136–142, 153
v_sum variable, 321
v_table_name variable,

285–287
v_temp variable, 51–52
v_total_rows variable, 276
v_trans_type variable, 211
v_zip variable, 195, 268,

278
v_zip_rec variable, 287
VALUE function, 406
VALUE_ERROR exception,

130, 137
VALUES OF option, 247–

251, 291, 297–299
VARCHAR2 data type, 77,

337
VARIABLE_VALUE

function (DBMS_
SQL), 412

VARIABLE_VALUE_PKG
function (DBMS_
SQL), 412

variables. See also
individual variables

cursor variables,
187–193

450 Index

variables (continued)
declaring, 29
initializing, 40–41
naming conventions,

29–31, 421–422
overview of, 29–31
scope of, 35
substitution, 21–25

varrays (variable-size
arrays)

associative arrays
and nested tables
compared to, 244

creating, 240–244
nested, 245

view query, 216
views, 215

W
weak types, 187
WHEN clause, 66, 76
WHERE CURRENT OF

clause, 198
WHILE loops, 92–97,

119–120
whitespace, formatting

guidelines for, 28,
421–422

X-Y-Z
ZERO_DIVIDE exception,

130
zip_code_obj_type object

type, 383
zip_cur cursor, 195

zip_info_rec record, 268
zip_is_good function, 346
zip_rec_type, 287
zip_tab variable, 388
zip_tab_type table type,

386, 387
zip_type array type, 385
ZIPCODE table schema,

429
zipcode_obj_type, 382–383,

389–392, 396

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Preface
	Introduction to PL/SQL New Features in Oracle 21c
	PL/SQL Extended Iterators
	PL/SQL Qualified Expressions Enhancements
	SQL Macros
	New JSON Data Type
	New Pragma SUPPRESSES_WARNING_6009
	PL/SQL Type Attributes in Non-Persistable User-Defined Types
	PL/SQL Function Enhanced Result Cache

	Chapter 1 PL/SQL Concepts
	Lab 1.1: PL/SQL Architecture
	PL/SQL Architecture
	PL/SQL Block Structure
	How PL/SQL Gets Executed

	Lab 1.2: PL/SQL Development Environment
	Getting Started with SQL Developer
	Getting Started with SQL*Plus
	Executing PL/SQL Scripts

	Lab 1.3: PL/SQL: The Basics
	DBMS_OUTPUT.PUT_LINE Statement
	Substitution Variable Feature

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

