
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138031671
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138031671
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138031671

Cisco pyATS—Network
Test and Automation
Solution

Data-driven and reusable testing for
modern networks

John Capobianco

Dan Wade

Cisco Press
221 River Street

Hoboken, NJ 07030 USA

ii    Cisco pyATS—Network Test and Automation Solution

Cisco pyATS—Network Test and Automation Solution
John Capobianco, Dan Wade

Copyright© 2025 Cisco Systems, Inc.

Cisco Press logo is a trademark of Cisco Systems, Inc.

Published by:
Cisco Press

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose all such
documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/or its
respective suppliers hereby disclaim all warranties and conditions with regard to this information, includ-
ing all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a
particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers
be liable for any special, indirect or consequential damages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising
out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical
errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers
may make improvements and/or changes in the product(s) and/or the program(s) described herein at any
time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation
in the U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the
Microsoft Corporation.

$PrintCode

Library of Congress Control Number: 2024907000

ISBN-13: 978-0-13-803167-1

ISBN-10: 0-13-803167-3

Warning and Disclaimer
This book is designed to provide information about all aspects of Cisco pyATS. Every effort has been
made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall
have neither liability nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the discs or programs that may
accompany it.

The opinions expressed in this book belong to the authors and are not necessarily those of Cisco
Systems, Inc.

http://www.pearson.com/permissions

iii

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise of
members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us
through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your
message.

We greatly appreciate your assistance.

Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.

GM K12, Early Career and Professional
Learning: Soo Kang

Alliances Manager, Cisco Press: Caroline Antonio

Director, ITP Product Management: Brett Bartow

Executive Editor: Nancy Davis

Managing Editor: Sandra Schroeder

Development Editor: Christopher Cleveland

Senior Project Editor: Mandie Frank

Copy Editor: Bart Reed

Technical Editors: Stuart Clark, Charles Greenaway

Editorial Assistant: Cindy Teeters

Designer: Chuti Prasertsith

Composition: codeMantra

Indexer: Timothy Wright

Proofreader: Barbara Mack

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks,
go to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does

not imply a partnership relationship between Cisco and any other company. (1110R)

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters
Cisco Systems International BV Amsterdam,
The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
mailto:feedback@ciscopress.com
https://www.pearson.com/report-bias.html
http://www.cisco.com/go/trademarks
http://www.cisco.com/go/offices

iv    Cisco pyATS—Network Test and Automation Solution

About the Authors
John Capobianco has a dynamic and multifaceted career in IT and networking, marked
by significant contributions to both the public and private sectors. Beginning his journey
in the field as an aluminum factory worker, Capobianco’s resilience and dedication pro-
pelled him through college, earning a diploma as a Computer Programmer Analyst from
St. Lawrence College. This initial phase set the foundation for a career underpinned by
continuous learning and achievement, evident from his array of certifications, including
multiple Cisco certifications as well as Microsoft certification.

Transitioning from his early educational accomplishments, Capobianco’s professional
life has spanned over two decades, featuring roles that showcased his technical prow-
ess and strategic vision. His work has significantly impacted both the public and private
sectors, including notable positions at the Parliament of Canada, where he served as a
Senior IT Planner and Integrator, and at Cisco, where he began as a Developer Advocate.
These roles have been instrumental in shaping his perspective on network management
and security, leading to his recent advancement into a Technical Leader role in Artificial
Intelligence for Cisco Secure, reflecting his commitment to integrating AI technologies
for enhancing network security solutions.

In addition to his professional and technical achievements, Capobianco is also an
accomplished author. His book Automate Your Network: Introducing the Modern
Approach to Enterprise Network Management, published in March 2019, encapsulates
his philosophy toward leveraging automation for efficient and effective network manage-
ment. He is dedicated to lifelong learning and professional development, supported by a
solid foundation in education and a broad spectrum of certifications, and now aims to
share his knowledge with others through this book, YouTube videos, and blogs. John can
be found on X using @john_capobianco.

Dan Wade is a Network and Infrastructure Automation Practice Lead at BlueAlly. As part
of the Solutions Strategy team at BlueAlly, he is responsible for developing network and
infrastructure automation solutions and enabling the sales and consulting teams on
delivery of the developed solutions. Solutions may include infrastructure provisioning,
configuration management, network source of truth, network observability, and, of
course, automated testing and validation. Previous to this role, Dan worked as a
consulting engineer with a focus on network automation.

Dan has more than seven years of experience in network automation, having worked
with automation tooling and frameworks such as Ansible and Terraform, and Python
libraries, including Nornir, Netmiko, NAPALM, Scrapli, and Python SDKs. Dan has
been working with pyATS and the pyATS library (Genie) for the past four to five years,
which has inspired him to embrace automated network testing. In 2021, Dan contributed
to the genieparser library with a new IOS XE parser. He also enjoys creating his own
open-source projects focused on network automation. Dan holds two professional-level
certifications from Cisco: Cisco DevNet Professional and CCNP Enterprise. He is also a
member of the Cisco DevNet 500 and Cisco Champions program.

v

Dan enjoys sharing knowledge and experience on social media with blog posts and
YouTube videos as well as participating in podcast episodes. He’s passionate about help-
ing others explore network automation and advocating how network automation can
empower, not replace, network engineers. You can find him on social media @devnetdan.

vi    Cisco pyATS—Network Test and Automation Solution

About the Technical Reviewers
Stuart Clark is a senior developer advocate, public speaker, author, and DevNet Expert
No. 2022005. Stuart is a sought-after speaker, frequently gracing the stages of industry
conferences worldwide, presenting on his expertise in programmability and DevOps
methodologies. Passionate about fostering knowledge sharing, he actively creates com-
munity content and leads developer communities, empowering others to thrive in the
ever-evolving tech landscape. In his previous role as a network engineer, he became
obsessed with network automation and became a developer advocate for network auto-
mation. He contributed to the Cisco DevNet exams and was part of one of the SME
teams that created, designed, and built the Cisco Certified DevNet Expert. He lives in
Lincoln, England, with his wife, Natalie, and their son, Maddox. He plays guitar and
rocks an impressive two-foot beard while drinking coffee. You can find him on social
media @bigevilbeard.

Charles Greenaway, CCIE No. 11226 (R&S, Security, Datacenter), is a field CTO for BT
(https://www.bt.com/about/bt). With more than 20 years of data networking experience
across LAN/WAN/DC in multiple industry sectors across the globe, he ensures that his
customers’ use of technology is aligned with their business goals while developing and
implementing the technology strategy.

His current focus is helping customers transition toward Global Fabric technologies that
provide software-defined underlay and overlay networking to underpin secure multicloud
connectivity.

As a member of the DevNet 500 and the Cisco Champions program, Charles promotes
the use of programmability and automation to make it accessible to engineers at all levels
of skill and experience. He has developed technical content through Greencodemedia
Limited and in the public domain at events such as Cisco DevNet Create. Charles is a
graduate of Loughborough University, holds a BSc in Computer Science, and lives in the
United Kingdom.

https://www.bt.com/about/bt

vii

Dedications
John: This book is dedicated to my wife and partner of more than 25 years, Michelle.
Without her support and encouragement, I would likely still be driving a forklift.
J’taime le.

Dan: I would like to dedicate this book to my wonderful wife Hailey and my two
amazing kids. They are my foundation and have been patient during the entire writing
process. I’d also like to dedicate this book to my parents, who have continued to push
me to accomplish whatever I wanted in life. I love you all!

viii    Cisco pyATS—Network Test and Automation Solution

Acknowledgments
John: I would first like to acknowledge what a pivotal role St. Lawrence College has
played in my life—first as a student, then as a professor. Thank you to Donna Graves,
Janis Michael, and, of course, rest in peace, Carl Davis. To everyone I’ve ever worked
with in my career from Empire Life to the Parliament of Canada, thank you. I am very
proud of what we accomplished together and for the confidence you had in me to build,
support, evolve, and, ultimately, automate your networks. Thanks also to Cisco for
embracing me completely as one of your own—I’ve never had such a supportive culture.

Thanks as well to everyone involved with the publishing of this book, from Nancy Davis
and Chris Cleveland and the Pearson team, to our editors Stuart Clark and Charles
Greenaway for their dedication to the project, and last but not least, to Dan Wade for
co-authoring the book. From joint live streams to collaborating on this book, I am really
proud to call you a friend.

Finally, to JB and Siming, for inviting me to a private pyATS crash course. You have both
been so giving and have provided me real guidance and direction and turned me onto
Python. Thank you both.

Dan: First, I’d like to thank the Art of Network Engineering (AONE) community,
specifically AJ Murray, for encouraging me to begin blogging and creating my own
brand. I can confidently say there would be no DevNet Dan without AONE! I’d also
like to thank NetCraftsmen for taking a chance on me in the beginning of my consult-
ing career. It was my first time working in the consulting space, and they’ve consistently
guided me to success. Thank you Terry, Shaffeel, Robert, Bill, Joel, and John for
continuing to encourage me and push me to grow professionally.

I would like to thank Nancy Davis for giving me the opportunity to pursue this
project. She continues to encourage and support me to pursue creative opportunities.
A big thank you to Chris Cleveland, development editor, for providing the best support
developing the book, and to Stuart and Charles for their unbiased and honest technical
review of the book and its contents. I’d also like to thank my wonderful co-author John.
It has been a pleasure working and writing this phenomenal book with him!

Finally, thanks to all the content creators, trainers, and authors who have influenced my
narration style and contributed to my constant learning of networking and software
development.

ix

Contents at a Glance

 Introduction xxx

Chapter 1 Foundations of NetDevOps 1

Chapter 2 Installing and Upgrading pyATS 37

Chapter 3 Testbeds 49

Chapter 4 AEtest Test Infrastructure 73

Chapter 5 pyATS Parsers 137

Chapter 6 Test-Driven Development 169

Chapter 7 Automated Network Documentation 189

Chapter 8 Automated Network Testing 233

Chapter 9 pyATS Triggers and Verifications 279

Chapter 10 Automated Configuration Management 303

Chapter 11 Network Snapshots 321

Chapter 12 Recordings, Playbacks, and Mock Devices 337

Chapter 13 Working with Application Programming Interfaces (API) 347

Chapter 14 Parallel Call (pcall) 397

Chapter 15 pyATS Clean 411

Chapter 16 pyATS Blitz 459

Chapter 17 Chatbots with Webex 485

Chapter 18 Running pyATS as a Container 503

Chapter 19 pyATS Health Check 515

Chapter 20 XPRESSO 527

Chapter 21 CI/CD with pyATS 557

Chapter 22 Robot Framework 575

Chapter 23 Leveraging Artificial Intelligence in pyATS 591

Appendix A Writing Your Own Parser 633

Appendix B Secret Strings 651

 Index 657

x    Cisco pyATS—Network Test and Automation Solution

Reader Services
Register your copy at www.ciscopress.com/title/ISBN for convenient access to
downloads, updates, and corrections as they become available. To start the registration
process, go to www.ciscopress.com/register and log in or create an account*. Enter the
product ISBN 9780138031671 and click Submit. When the process is complete, you will
find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive
discounts on future editions of this product.

http://www.ciscopress.com/title/ISBN
http://www.ciscopress.com/register

xi

Contents
Introduction xxx

Chapter 1 Foundations of NetDevOps 1

Traditional Network Operations 2

Architecture 2

High-Level Design 3

Low-Level Design 3

Day–1 4

Offline Initial Configuration 5

Software Images 5

Day 0 5

Layer 1 6

Initial Configuration 6

Initial Testing and Validation 7

Day 1 7

Incremental Configuration 8

Provisioning New Endpoints 9

Provisioning New Services 9

Day N 9

Monitoring (and Now Testing) 9

Responding to Events 10

Upgrading 10

Decommissioning 11

Software Development Methodologies 11

Waterfall 11

Lean 12

Agile 12

DevOps 13

Expanding into Networks 13

Infrastructure as Code 14

Test-Driven Development 14

NetDevOps 14

Plan 16

xii    Cisco pyATS—Network Test and Automation Solution

Code 16

Build 16

Test 16

Release 16

Deploy 17

Operate 17

Monitor 18

Additional Benefits of NetDevOps 18

Single Source of Truth 18

Intent-Based Configuration 18

Version and Source Control 19

GitOps 19

Efficiency 19

Speed 20

Agility 21

Quality 21

Comparing Network Automation Tools 21

The Modern Network Engineer Toolkit 22

Integrated Development Environment 22

“Old School” 22

“New School” 23

Git 23

GitHub 24

GitLab 24

Structured Data 24

JavaScript Object Notation (JSON) 24

eXtensible Markup Language (XML) 25

YAML Ain’t Markup Language (YAML) 26

YANG 26

Application Programing Interface (API) 27

Representational State Transfer (REST) 27

GraphQL 28

cURL 28

Postman 29

Python 29

Contents    xiii

pip 30

Software Development Kits 31

Virtual Environment 31

Virtual Machines 31

Containers 31

Kubernetes 32

CI/CD 32

Jenkins 33

GitLab CI/CD 33

GitHub Actions 34

Drone 34

Summary 35

References 36

Chapter 2 Installing and Upgrading pyATS 37

Installing pyATS 37

Setting Up a Python Virtual Environment 38

Installing pyATS Packages 38

Upgrading pyATS 42

Troubleshooting pyATS 45

Summary 47

Chapter 3 Testbeds 49

What Is YAML? 49

What Is a Testbed? 51

Building a Simple Testbed 53

Edge Cases 54

External Sources of Truth 56

Device Connection Abstractions 60

Testbed Validation 63

Dynamic Testbeds 66

Intent-based Networking with Extended Testbeds 68

Summary 70

Chapter 4 AEtest Test Infrastructure 73

Getting Started with AEtest 74

Installation 74

Design Features 74

xiv    Cisco pyATS—Network Test and Automation Solution

Core Concepts 75

Testscript Structure 75

Common Setup 76

Subsection 76

Testcases 77

Setup Section 77

Test Section 77

Cleanup Section 77

Common Cleanup 78

Section Steps 79

AEtest Object Model 82

TestScript Class 82

Container Classes 82

Function Classes 83

Runtime Behavior 85

Self 86

Parent 87

Section Ordering 88

Test Results 88

Result Objects 88

Result Behavior 89

Interaction Results 90

Result Rollup 90

Processors 91

Processor Types 91

Processor Definition and Arguments 92

Context Processors 93

Global Processors 93

Processor Results 94

Data-Driven Testing 94

Test Parameters 95

Parameter Relationships 95

Parameter Properties 96

Parameter Types 96

Parameter Parametrization 98

Contents    xv

Reserved Parameters 98

Datafile Input 98

Looping Sections 104

Defining Loops 104

Loop Parameters 104

Dynamic Looping 107

Running Testscripts 108

Testing Arguments 108

Standard Arguments 108

Argument Propagation 109

Execution Environments 109

Standalone Execution 109

Easypy Execution 114

Testable 117

Testscript Flow Control 117

Skip Conditions 117

Running Specific Testcases 119

Testcase Grouping 120

Must-Pass Testcases 121

Testcase Randomization 123

Maximum Failures 124

Custom Testcase Discovery 125

Reporting 126

Standalone Reporter 126

AEtest Reporter 127

Debugging 133

Summary 134

Chapter 5 pyATS Parsers 137

Vendor-Agnostic Automation 138

pyATS learn 139

pyATS Parsers 146

Parsing at the CLI 148

Parsing with Python 159

Dictionary Query 160

Differentials 162

Summary 167

xvi    Cisco pyATS—Network Test and Automation Solution

Chapter 6 Test-Driven Development 169

Introduction to Test-Driven Development 170

Applying Test-Driven Development to Network Automation 172

Introduction to pyATS 174

The pyATS Framework 175

AEtest 176

Easypy 179

Testbed and Topology 180

Testbed and Device Cleaning with Kleenex 181

Asynchronous Library (Parallel Call) 182

Data Structures 182

TCL Integration 183

Logging 184

Result Objects 185

Reporter 185

Utilities 186

Robot Framework Support 186

Manifest 187

Summary 187

Endnotes 188

Chapter 7 Automated Network Documentation 189

Introduction to pyATS Jobs 190

Running pyATS Jobs from the CLI 196

pyATS Job CLI Logs 199

pyATS Logs HTML Viewer 203

Jinja2 Templating 205

Business-Ready Documents 206

JSON 207

YAML 207

Comma-Separated Values 208

Markdown: Tables 210

Markdown: Markmap Mind Maps 212

Markdown: Mermaid Flowcharts 215

Markdown: Mermaid Class Diagrams 217

Markdown: Mermaid State Diagrams 219

Markdown: Mermaid Entity Relationship Diagrams 221

Contents    xvii

Markdown: Mermaid Mind Maps 223

HTML 225

Datatables 227

Summary 232

References 232

Chapter 8 Automated Network Testing 233

An Approach to Network Testing 234

Software Version Testing 235

Interface Testing 243

Communicating with Devices: The Role of SSH in Testing 244

Using RESTCONF 252

Neighbor Testing 259

Reachability Testing 262

Intent Validation Testing 267

Feature Testing 271

Summary 276

Chapter 9 pyATS Triggers and Verifications 279

Genie Objects 279

Genie Ops 280

Genie Conf 281

Genie Harness 282

gRun 282

Datafiles 283

Device Configuration 284

PTS (Profile the System) 285

PTS Golden Config 286

Verifications 286

Verification Types 287

Verification Datafile 288

Writing a Verification 288

Triggers 290

Trigger Datafile 291

Trigger Cluster 292

Writing a Trigger 293

Trigger and Verification Example 296

Genie Harness (gRun) 297

xviii    Cisco pyATS—Network Test and Automation Solution

pyATS 299

Summary 301

Chapter 10 Automated Configuration Management 303

Intent-Based Network Configuration 303

Generating Configurations with pyATS 304

Data Modeling and Validation 304

Data Templates 305

Genie Conf Objects 308

Configuring Devices with pyATS 309

File Transfer 309

FileUtils Module 309

Embedded pyATS File Transfer Server 311

pyATS Library API 313

Testbed-Wide Configuration 314

Device Configuration 315

Jinja2 Configuration 317

Genie Harness 317

Config Datafile 317

Config Check 319

Summary 320

Chapter 11 Network Snapshots 321

Network Profiling 321

What Is a Network Snapshot? 322

Network Features 322

Comparing Network State 324

Pre-change Snapshots 324

Post-change Snapshots 326

Snapshot Differentials 327

Genie Diff 327

Data Exclusions 331

Default Exclusions 331

Additional Exclusions 332

Custom Exclusions 332

Polling Expected State 332

Robot Framework with Genie 333

Summary 335

References 335

Contents    xix

Chapter 12 Recordings, Playbacks, and Mock Devices 337

Recording pyATS jobs 337

Playback Recordings 341

Mock Devices 342

Use Cases for Mock Devices 342

Additional Use Cases 343

Mock Device CLI 344

Summary 345

Chapter 13 Working with Application Programming Interfaces (API) 347

pyATS APIs 347

REST Connector 353

NXOS 355

GET API 355

POST API 356

DELETE API 357

PATCH API 358

PUT API 358

NSO 359

Connect API 360

GET API 361

POST API 361

PATCH API 362

PUT API 362

DELETE API 363

Catalyst Center 363

Connect API 364

GET API 365

Disconnect API 365

IOS XE 366

Connect API 366

GET API 367

POST API 367

PATCH API 368

PUT API 368

xx    Cisco pyATS—Network Test and Automation Solution

DELETE API 368

Cisco ACI APIC 369

GET API 370

POST API 370

DELETE API 371

Query 371

Config 372

LookupByDn 372

LookupByClass 372

Exists 372

Get_Model 373

Create 373

Config_And_Commit 373

BIG-IP 373

Connect API 374

Disconnect API 375

GET API 375

POST API 375

PATCH API 376

PUT API 376

DELETE API 376

SD-WAN vManage 377

Connect API 378

GET API 379

POST API 379

PUT API 379

DELETE API 380

DCNM 380

GET API 381

POST API 381

DELETE API 382

PATCH API 382

PUT API 383

Nexus Dashboard 383

GET Command 383

Contents    xxi

POST Command 384

PUT Command 384

DELETE Command 385

YANG Connector 385

Topology YAML Configuration 386

Connect Function 387

Connected Property 388

Get Function 388

Get Config Function 388

Edit Config Function 388

Request Function 388

Get Schema Function 389

Disconnect and Close Session Functions 389

gNMI 389

Setting Up and Connecting with gNMI Client 389

Fetching Device Capabilities 390

gNMI SetRequest 391

gNMI GetRequest 391

Creating an Instance of Config 392

Creating Config Objects 392

Comparing Configs 393

Creating ConfigDelta Objects with Special Requirements 394

XPath Queries 394

Facilitating XPath Queries with ns_help() 395

Important Note on RPCReply and XPath 395

Summary 395

Chapter 14 Parallel Call (pcall) 397

Scaling Performance 397

Asynchronous Programming 398

Threading 398

Multiprocessing 399

Easypy 400

Logging and Reporting 400

Parallel Call (pcall) 400

Usage 401

xxii    Cisco pyATS—Network Test and Automation Solution

Targets 402

Single Target 402

Multiple Targets 403

Error Handling 404

Logging 404

Pcall Object 405

Performance Comparison 406

Summary 409

Chapter 15 pyATS Clean 411

Getting Started 411

Device Cleaning 412

Supported Devices 413

Network Platforms 413

Power Cyclers 413

Clean YAML 423

Devices 424

Clean Stages 424

Device Groups 428

Useful Features 431

Software Image Management 431

Device Recovery 434

Clean Execution 436

Clean Validation 436

Execution Methods 437

Integrated 437

Standalone 437

Clean Logging 438

pyATS Testscript Usage 438

Developing Clean Stages 443

Getting Started 443

Stage Template 443

New Stage 444

Abstracting an Existing Stage 444

Schema and Arguments 445

Clean Stage Steps 447

Contents    xxiii

Execution Order 450

Documentation 452

Abstracted Clean Stages 455

Summary 456

Chapter 16 pyATS Blitz 459

Blitz YAML 459

Actions 460

Action Outputs 461

Filters 461

Variables 463

Saving Outputs 465

Verifying Action Outputs 467

Advanced Actions 470

Parallel 470

Loop 471

Run Condition 475

Blitz Features 476

Negative Testing 477

Script Termination on Failure 477

Prompt Handling 478

Results 478

Timeouts 479

Customizing Log Messages 480

Blitz Usage 481

Blitz Development 481

Custom Blitz Actions 481

Custom Blitz Sections 482

Useful Tips 483

Summary 484

Chapter 17 Chatbots with Webex 485

Integrating pyATS with Webex 486

pyATS Job Integration 487

pyATS Health Check Integration 489

Adaptive Cards 490

Customized Job Notifications 492

Summary 502

xxiv    Cisco pyATS—Network Test and Automation Solution

Chapter 18 Running pyATS as a Container 503

Introduction to Containers 504

pyATS Official Docker Container 506

pyATS Image Builder 507

Building a pyATS Image from Scratch 510

Summary 513

Chapter 19 pyATS Health Check 515

Health Checks 515

CPU and Memory 515

Logging 516

Core File 516

Custom Health Checks 517

Health YAML File 517

The processor Key 520

The reconnect Key 520

Testcase/Section Selection 520

Health Check Results 522

Health Check Usage 523

Health Check YAML Validation 523

PyATS Job Integration 523

Health Check CLI Arguments 524

Summary 525

Chapter 20 XPRESSO 527

Installing XPRESSO 529

Common Issues, Questions and Answers 534

Unhealthy Services 535

References to S3 535

Error: No Resources Found 535

Cannot Log In Using the Default admin/admin 535

ElasticSearch Failed to Start 535

Cannot Connect to Database 535

General Networking Issues with the XPRESSO Installation 535

Getting Started with XPRESSO 536

Facilitating Quick Adoption 536

Transforming a pyATS Job into XPRESSO 538

Summary 556

Contents    xxv

Chapter 21 CI/CD with pyATS 557

What Is CI/CD? 557

Demystifying CI/CD 558

CI/CD Pipeline Integration 558

GitHub Actions 558

GitLab CI/CD 559

CI/CD In NetDevOps 560

NetDevOps Scenario 562

Lab Setup 562

CI/CD Stages 563

NetDevOps in Action 565

Configuration Changes 565

Testing Network Changes 568

Feedback Loop 571

What’s Next? 572

Summary 573

Chapter 22 Robot Framework 575

What Is the Robot Framework? 575

Getting Started with Robot Framework 576

Test Cases 576

Keywords 577

Variables 578

Importing Libraries 580

Test Execution 580

Test Results and Reporting 581

Robot Integration with pyATS 582

PyATS Keywords 582

Unicon Keywords 584

Genie Keywords 585

Easypy Integration 588

Summary 590

Chapter 23 Leveraging Artificial Intelligence in pyATS 591

OpenAI API 597

Retrieval Augmented Generation with LangChain 612

Rapid Prototyping with Streamlit 621

Summary 631

xxvi    Cisco pyATS—Network Test and Automation Solution

Appendix A Writing Your Own Parser 633

Contributing to the pyATS Library 633

Parser Structure 635

Schema Class 635

Parser Class 637

Creating Your Parser 638

Development Environment 638

Writing Your Schema Class 640

Writing Your Parser Class 642

Testing Your Parser 644

Contributing to Genieparser 647

References and Recommended Readings 650

Appendix B Secret Strings 651

How to Secure Your Secret Strings 651

Multiple Representers 653

Representer Classes 655

 Index 657

xxvii

Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions
used in the IOS Command Reference. The Command Reference describes these conven-
tions as follows:

■■ Boldface indicates commands and keywords that are entered literally as shown. In
actual configuration examples and output (not general command syntax), boldface
indicates commands that are manually input by the user (such as a show command).

■■ Italic indicates arguments for which you supply actual values.

■■ Vertical bars (|) separate alternative, mutually exclusive elements.

■■ Square brackets ([]) indicate an optional element.

■■ Braces ({ }) indicate a required choice.

■■ Braces within brackets ([{ }]) indicate a required choice within an optional element.

xxviii    Cisco pyATS—Network Test and Automation Solution

Foreword
In late 2013, I found myself seated at the end of a restaurant table in San Jose, celebrat-
ing the success of our latest Tcl language–based test automation feature release. Tibor
Fabry-Asztalos, our visionary senior director, raised his glass in a toast: “We need to
look at our next goal. It’s time to transition to Python-based automation.” With that,
he gazed to his left, where coincidentally his chain of reports was seated in order—and
each person looked further to their left, until there was just me, the final link in the
chain, entrusted to shoulder that responsibility.

And so pyATS was born.

After two decades of Tcl/Expect-based automation and testing in Cisco, the call for a
more modern, natively object-orienting infrastructure was undeniable—one that could
scale forward, lower the barrier for adoption, and attract new talents as Tcl expertise
waned.

2024 marks the 10-year anniversary for pyATS. Originally introduced as an internal test-
ing solution, its 2017 public launch through Cisco DevNet marked a definitive, transfor-
mative moment. It enabled closer collaboration between Cisco engineering, customers,
and their network engineers, unlocking a plethora of opportunities and use cases. Around
that time, NetDevOps was in its infancy, and network engineers were seeking for their
next career breakthrough. pyATS was ready just around the corner.

Rarely does one find themselves at the helm of opportunity to shape the next decade of
network automation, a chance to redefine the landscape of network testing, and influence
the careers of countless network engineers. It has been an exciting journey, filled with
dedication, perseverance, and innovation. Most importantly, we took pride in what we
have created and accomplished.

Looking back, could we have done better? Absolutely. Along the way, mistakes were
made, and compromises became necessary. But as someone special to me once said,
“every decision you make in life [sic] is always the best that you could, based on the
limited knowledge you had at that time.” We, the pyATS development team, gave it our
best, and the community echoed positively.

It has been a privilege and an honor to be able to stand at the precipice of a new chapter
in the history of test automation at Cisco. A heartfelt thank-you goes to our team, our
community members, and everyone who supported us along the way. As pyATS contin-
ues to evolve, my sincerest wishes for its continued momentum and enduring legacy.

>>> from pyats import awesome

—Siming Yuan, pyATS Founder, Architect and Lead Developer

xxix

Reflecting on the inception of pyATS, it’s astounding to see the journey from an ambi-
tious project within Cisco engineering to a cornerstone of network automation. Born
from the challenges we faced daily, it quickly grew beyond the initial scope, demonstrat-
ing the power of innovative solutions in a rapidly evolving field. I am filled with gratitude
for the brilliant minds I worked with and the community that has grown around these
tools. Your enthusiasm and support have been the driving force behind its success.

Now, looking back, I see the legacy of pyATS not just in the technical achievements, but
in the community and collaboration it fostered. It has been a privilege to contribute to
this chapter of network engineering, and I am proud of what we accomplished together.

A special thanks to all the pyATS team members who have worked on it. It wouldn’t have
been possible without you. Thank you to everyone who has joined us on this remarkable
journey. Your contributions have made all the difference.

—Jean-Benoit Aubin, Lead Developer and Architect, pyATS

xxx    Cisco pyATS—Network Test and Automation Solution

Introduction
This book was written to explore the powerful capabilities of automated network test-
ing with the Cisco pyATS framework. Network testing and validation is a low-risk, yet
powerful domain in the network automation space. This book is organized to address
the multiple features of pyATS and the pyATS library (Genie). Readers will learn why
network testing and validation are important, how pyATS can be leveraged to run tests
against network devices, and how to integrate pyATS into larger workflows using CI/CD
pipelines and artificial intelligence (AI).

Goals and Objectives
This book touches on many aspects of network automation, including device configu-
ration, data parsing, APIs, parallel programming, artificial intelligence, and, of course,
automated network testing. The intended audience for this book is network profession-
als and software developers wanting to learn more about the pyATS framework and
the benefits of automated network testing. The audience should be comfortable with
Python, as pyATS is built with the Python programming language.

Candidates who are looking to learn pyATS as it relates to the Cisco DevNet Expert
Lab exam will find the use cases and examples throughout the book valuable for exam
preparation.

How This Book Is Organized
Chapter 1, “Foundations of NetDevOps”: This chapter introduces NetDevOps, outlin-
ing its benefits and how it merges with software development methodologies to enhance
network automation. We compare key automation tools and detail the modern network
engineer’s toolkit, setting the stage for applying NetDevOps in practice.

Chapter 2, “Installing and Upgrading pyATS”: The chapter shows how to install and
upgrade pyATS and the pyATS library using Python package management tools and built-
in pyATS commands.

Chapter 3, “Testbeds”: This chapter covers YAML’s basics, explores the concept of a
testbed, and examines device connection abstractions. We discuss methods for testbed
validation, the creation of dynamic testbeds, and how intent-based networking integrates
with extended testbeds, providing a roadmap for their practical application.

Chapter 4, “AEtest Test Infrastructure”: This chapter is one of the key chapters in this
book. It goes in depth and reviews the different components that make up AEtest, the
testing infrastructure that is the core of pyATS. Everything from defining testcases and
individual test sections to running testscripts is covered in this chapter. After reading this
chapter, you’ll understand how to introduce test inputs and parameters, define test
sections, control the flow of test execution, and review test results with the built-in
reporting features.

xxxi

Chapter 5, “pyATS Parsers”: This chapter delves into pyATS parsers, emphasizing
vendor-neutral automation strategies. It covers the essentials of pyATS learn and parse
features, techniques for CLI parsing, and parsing with Python. Additionally, we explore
how to perform dictionary queries and analyze differentials, equipping you with the nec-
essary skills for effective network data handling.

Chapter 6, “Test-Driven Development”: This chapter introduces test-driven develop-
ment (TDD), its application in network automation, and an overview of pyATS. It further
explores the pyATS framework, setting the foundation for incorporating TDD practices
into network management.

Chapter 7, “Automated Network Documentation”: This chapter explores automated net-
work documentation, beginning with an introduction to pyATS jobs. It details executing
pyATS jobs from the command-line interface (CLI), interpreting CLI logs, and utilizing
the pyATS logs HTML viewer for enhanced analysis. We also delve into Jinja2 templating
for document creation, culminating in the generation of business-ready documents.

Chapter 8, “Automated Network Testing”: This pivotal chapter delves into automated
network testing, the core focus of the book. It outlines a strategic approach to network
testing, including software version testing, interface testing, neighbor testing, and reach-
ability testing. Additionally, we explore intent-validation testing and feature testing,
essential components for ensuring network reliability and performance.

Chapter 9, “pyATS Triggers and Verifications”: This chapter reviews how to use triggers
and verifications using the Genie Harness. Triggers and verifications allow you to build
dynamic testcases, with a low-code approach, that can change with your network
requirements.

Chapter 10, “Automated Configuration Management”: In this chapter we will look
at how to generate intent-based configuration using data models, Jinja2 templates, and
Genie Conf objects. In addition to generating configurations, we will see how to push
configuration to network devices using a file transfer server, Genie Conf objects, and
pyATS device APIs.

Chapter 11, “Network Snapshots”: This chapter looks at how to profile the network by
creating and comparing snapshots of the network. Network snapshots can be helpful
when you’re troubleshooting a network issue or just learning about the network’s operat-
ing state at a point in time.

Chapter 12, “Recordings, Playbacks, and Mock Devices”: This chapter introduces
pyATS recordings, covering the recording of pyATS jobs and the playback of these
recordings. It explains how to create mock devices and simulate device interactions
through the mock device CLI, offering practical insights into testing without the need for
live network equipment.

Chapter 13, “Working with Application Programming Interfaces (API)”: This chapter
focuses on working with pyATS APIs, detailing the pyATS API framework, REST
connector, YANG connector, and gNMI. It provides insights into how these tools and
protocols can be utilized for efficient network automation and management through
API interactions.

xxxii    Cisco pyATS—Network Test and Automation Solution

Chapter 14, “Parallel Call (pcall)”: Testing in pyATS can be sped up using parallel
processing (parallelism). In this chapter, we review the differences between parallelism
and concurrency using asynchronous programming. Parallel call (pcall) in pyATS enables
parallel execution and is built on the multiprocessing package in the Python standard
library.

Chapter 15, “pyATS Clean”: In this chapter, you will see how pyATS can reset devices
during or after testing using the pyATS Clean feature.

Chapter 16, “pyATS Blitz”: In this chapter, we will review pyATS Blitz, which creates a
low-code approach to building pyATS testcases using YAML syntax.

Chapter 17, “Chatbots with Webex”: This chapter explores integrating pyATS with
Webex, including pyATS job and health check integrations. It delves into using Adaptive
Cards within Webex for interactive content and outlines methods for setting up custom-
ized job notifications, enhancing communication and monitoring in network operations.

Chapter 18, “Running pyATS as a Container”: This chapter introduces the concept of
containers, focusing on the pyATS official Docker container. It guides you through the
pyATS image builder and details the process of building a pyATS image from scratch,
offering a comprehensive approach to deploying pyATS as a containerized application.

Chapter 19, “pyATS Health Check”: This chapter dives into the different health checks
that run to ensure devices under testing are operating correctly. Built-in health checks
include checking CPU, memory, logging, and the presence of core dump files to ensure
devices haven’t malfunctioned or crashed during testing.

Chapter 20, “XPRESSO”: This section covers pyATS XPRESSO, starting with installa-
tion instructions. It provides a beginner’s guide to getting started with XPRESSO and
details on running pyATS jobs within the XPRESSO environment, facilitating an easy
entry into utilizing this powerful tool.

Chapter 21, “CI/CD with pyATS”: The concept of CI/CD is a common practice in soft-
ware development to build and test code before it’s pushed to production. In this chapter,
we see how to use multiple network automation tools, including GitLab, Ansible, and
pyATS, to apply CI/CD practices when pushing configuration changes to the network.

Chapter 22, “Robot Framework”: In this chapter, we review Robot Framework, an open-
source test automation framework. Robot Framework allows you to use English-like
keywords to define testcases. After we review Robot Framework, we see how the pyATS
libraries—Unicon, pyATS, and the pyATS library (Genie)—are integrated into Robot
Framework by providing test libraries that include keywords to interact with network
devices and define testcases.

Chapter 23, “Leveraging Artificial Intelligence in pyATS”: This chapter explores the
integration of pyATS with artificial intelligence, focusing on leveraging the OpenAI API
for enhanced network automation. It discusses the use of retrieval augmented genera-
tion (RAG) with Langchain for intelligent data handling and introduces rapid prototyping
with Streamlit, showcasing the potential for AI to revolutionize network management
processes.

xxxiii

Appendix A, “Writing Your Own Parser”: This appendix covers how to contribute to
the genieparser library (https://github.com/CiscoTestAutomation/genieparser) by creating
a new parser for a Cisco IOS XE show command.

Appendix B, “Secret Strings”: This appendix covers how to protect the sensitive data in
your testbed.yaml files through secret strings.

Credits
Figure 1.1: chinnappa/123RF

Figures 5.2a, 5.7-5.9, 5.13, 5.14, 13.2a, 21.1, AppA 1, 2, 4-7: GitHub, Inc

Figures 5.15-5.17, 7.24-7.34: Microsoft Corporation

Figure 20.26a: Jenkins

Figures 21.3, 21.4: GitLab B.V.

Figures 23.3-23.6: Snowflake Inc

https://github.com/CiscoTestAutomation/genieparser

This page intentionally left blank

Automated network tests face challenges in achieving futureproofing due to the dynamic
nature of networks and their evolving requirements. The pyATS library (Genie) provides
the Genie Harness to execute network tests with dynamic and robust capabilities. The
Genie Harness is part of the pyATS library (Genie), which is built on the foundation of
pyATS. It introduces the ability for engineers to create dynamic, event-driven tests with
the use of processors, triggers, and verifications. In this chapter, the following topics are
going to be covered:

 ■ Genie objects

 ■ Genie Harness

 ■ Triggers

 ■ Verifications

The Genie Harness can be daunting for new users of the pyATS library (Genie), as there
are many configuration options and parameters. The focus of this chapter will be to pro-
vide an overview of Genie Harness and its features and wrap up with a focus on triggers
and verifications. By the end of the chapter, you’ll understand the powerful capabilities of
Genie Harness and how to write and execute triggers and verifications.

Genie Objects
One of the hardest parts of network automation is figuring out how to normalize and
structure the data returned from multiple network device types. For example, running
commands to gather operational data (CPU, memory, interface statistics, routing state,
and so on) from a Cisco IOS XE switch, IOS XR router, and an ASA firewall may have
different, but similar, output. How do we account for the miniscule differences across

pyATS Triggers and Verifications

Chapter 9

280    Chapter 9: pyATS Triggers and Verifications

the different outputs? The pyATS library (Genie) abstracts the details of the parsed data
returned from devices by creating network OS-agnostic data models. Two types of Genie
objects represent these models: Ops and Conf. In the following sections, you’ll dive into
the details of each object.

Genie Ops

As you may be able to guess from the name, the Genie Ops object learns everything
about the operational state of a device. The operational state data is represented as a
structured data model, or feature. A feature is a network OS-agnostic data model that
is created when pyATS “learns” about a device. Multiple commands are executed on a
device and the output is parsed and normalized to create the structure of the feature. You
can access the learned feature data by accessing <feature>.info. To learn more informa-
tion about the available models, check out the Genie models documentation (https://
pubhub.devnetcloud.com/media/genie-feature-browser/docs/#/models). Example 9-1
shows how to instantiate an Ops object for BGP and learn the BGP feature on a Cat8000v
device. Figure 9-1 shows the associated output.

Example 9-1 Genie Ops Object

from genie import testbed

from genie.libs.ops.bgp.iosxe.bgp import Bgp

import pprint

Load Genie testbed

testbed = testbed.load(testbed="testbed.yaml")

Find the device using hostname or alias

uut = testbed.devices["cat8k-rt2"]

uut.connect()

Instantiate the Ops object

bgp_obj = Bgp(device=uut)

This will send many show commands to learn the operational state

of BGP on this device

bgp_obj.learn()

pprint.pprint(bgp_obj.info)

http://<feature>.info
https://pubhub.devnetcloud.com/media/genie-feature-browser/docs/#/models
https://pubhub.devnetcloud.com/media/genie-feature-browser/docs/#/models

Genie Objects 281

Figure 9-1  Genie Ops Object Output

Genie Conf

The Genie Conf object allows you to take advantage of Python’s object-oriented pro-
gramming (OOP) approach by building logical representations of devices and generating
configurations based on the logical device and its attributes. Just like Genie Ops, the
structure of Genie Conf objects is based on the feature models. The best way to describe
the Conf object is by example. Example 9-2 shows how to build a simple network
interface object for an IOS XE device. You’ll notice that the code is very comprehensive,
specifically for a network engineer, and will even generate the configuration!

Example 9-2  Genie Conf Object

from genie import testbed

from genie.libs.conf.interface.iosxe.interface import Interface

import pprint

Load Genie testbed

testbed = testbed.load(testbed="testbed.yaml")

Find the device using hostname or alias

uut = testbed.devices["cat8k-rt2"]

Instantiate the Conf object

interface_obj = Interface(device=uut, name="Loopback100")

Add attributes to the Interface object

interface_obj.description = "Managed by pyATS"

interface_obj.ipv4 = "1.1.1.1"

interface_obj.ipv4.netmask = "255.255.255.255"

interface_obj.shutdown = False

282    Chapter 9: pyATS Triggers and Verifications

Build the configuration for the interface

print(interface_obj.build_config(apply=False))

! Code Execution Output

interface Loopback100

 description Managed by pyATS

 ip address 1.1.1.1 255.255.255.255

 no shutdown

 exit

You may notice the last line of code actually builds the necessary configuration for you!
To go one step further, you can add the interface object to a testbed device and push the
configuration to a device. The Conf object allows you to drive the configuration of net-
work devices with Python, which takes you one step further into the world of
automation.

Genie Harness
The Genie Harness is structured much like a pyATS testscript. There are three main sec-
tions: Common Setup, Triggers and Verifications, and Common Cleanup. The Common
Setup section will connect to your devices, take a snapshot of current system state, and
optionally configure the devices, if necessary. The Triggers and Verifications section,
which you will see later in the chapter, will execute the triggers and verifications to per-
form tests on the devices. This is where the action happens! The Common Cleanup sec-
tion confirms that the state of the devices is the same as their state in the Common Setup
section by taking another snapshot of the current system state and comparing it with the
one captured in the Common Setup section.

gRun

The first step to running jobs with Genie Harness is creating a job file. Job files are set
up much like a pyATS job file. Within the job file there’s a main function that is used as
an entry point to run the job(s). However, instead of using run() within the main function
to run the job, you must use gRun(), or the “Genie Run” function. This function is used
to execute pyATS testscripts with additional arguments that provide robust and dynamic
testing. Datafiles are passed in as arguments, which allows you to run specific triggers
and verifications. Example 9-3 shows a Genie job file from the documentation that runs
one trigger and one verification.

Genie Harness    283

Example 9-3 Genie Harness – Job file

from genie.harness.main import gRun

def main():

 # Using built-in triggers and verifications

 gRun(trigger_uids=["TriggerSleep"],

 verification_uids=["Verify_IpInterfaceBrief"])

The trigger and verification names in Example 9-3 are self-explanatory: sleep for a
specified amount of time and parse and verify the output of show ip interface brief
command. Each trigger and verification is part of the pyATS library. If these were cus-
tom-built triggers or if a testbed device did not have the name or alias of “uut” in your
testbed file, you would need to create a mapping datafile. A mapping datafile is used to
create a relationship, or mapping, between the devices in a testbed file and Genie. It’s
required if you want to control multiple connections and connection types (CLI, XML,
YANG) to testbed devices. By default, Genie Harness will only connect to the device
with the name or alias of “uut,” which represents “unit under testing.” The uut name/alias
requirement allows Genie Harness to properly load the correct default trigger and verifi-
cation datafiles. Otherwise, you must include a list of testbed devices to the triggers/veri-
fications in the respective datafile. If this doesn’t make sense, don’t worry; we will touch
on datafiles and provide examples further in the chapter that should help provide clarity.

To wrap up the Genie Harness example, the Genie job is run with the same Easypy run-
time environment used to run pyATS jobs. To run the Genie job from the command line,
enter the following:

(.venv)dan@linux-pc# pyats run job {job file}.py --testbed-file
{/path/to/testbed}

Remember to have your Python virtual environment activated! In the next section, we
will jump into datafiles and how they are defined.

Datafiles

The purpose of a datafile is to provide additional information about the Genie features
(triggers, verifications, and so on) you would like Genie Harness to run during a job. For
example, the trigger datafile may specify which testbed devices a trigger should run on in
the job. There are many datafiles available in Genie Harness. However, many of them are
optional and are only needed if you’re planning to modify the default datafiles provided.
The default datafiles can be found at the following path:

$VIRTUAL_ENV/lib/python<version>/site-packages/genie/libs/sdk/genie_
yamls

Within the genie_yamls directory, you’ll find default datafiles that apply to all operating
systems (OSs) and others that are OS-specific. These default datafiles are only implicitly

284    Chapter 9: pyATS Triggers and Verifications

activated when a testbed device has either a name or alias of uut. If there isn’t a testbed
device with that name or alias, the default datafile will not be implicitly passed to that
job. I would highly recommend checking out (not editing) the default datafiles. If you’d
like to edit one, you may create a new datafile in your local directory and extend the
default one—but don’t jump too far ahead yet! This topic will be covered later in the
chapter. Here’s a list of the different datafiles that can be passed to gRun:

 ■ Testing datafile

 ■ Mapping datafile

 ■ Verification datafile

 ■ Trigger datafile

 ■ Subsection datafile

 ■ Configuration datafile

 ■ PTS datafile

Each datafile serves a purpose to a specific Genie Harness feature, but one only needs
to be specified if you are deviating from the provided default datafile. For example, the
Profile the System (PTS) default datafile only specifies to run on the testbed device with
the alias uut. If you would like it to run on more devices, you’ll need to create a pts_data-
file.yaml file that maps devices to the device features you want profiled by PTS and
include the pts_datafile argument to gRun.

Device Configuration

Applying device configuration is always a hot topic when it comes to network automa-
tion. In the context of pyATS and the pyATS library (Genie), the focus is on applying
(and reverting) the configuration during testing. In many cases, you’ll want to test a fea-
ture by configuring it on a device, testing its functionality, and removing the configura-
tion before the end of testing. The pyATS library (Genie) provides many ways to apply
configuration to devices. Here are some of the options you have to configure a network
device during testing:

 ■ Manual configuration before testing begins (not recommended).

 ■ Automatically apply the configuration to the device in the Common Setup and
Common Cleanup sections with TFTP/SCP/FTP. A config.yaml file can be provided
to the config_datafile argument of gRun, which specifies the configuration to apply.

 ■ Automatically apply the configuration to the device in the Common Setup and
Common Cleanup sections using Jinja2 template rendering. The Jinja2 template file-
name will be passed to gRun using the jinja2_config argument and the device vari-
ables will be passed as key-value pairs using the jinja2_arguments argument.

Genie Harness    285

You will dive into Jinja2 templates further and how to use them to generate configura-
tions in Chapter 10, “Automated Configuration Management.” For now, just understand
that you can standardize the configuration being pushed to the network devices under
testing using configuration templates and a template rendering engine (Jinja2) to render
the templates with device variables, resulting in complete configuration files.

All configurations should be built using the show running style, which means you create
your configuration files how they would appear when you view a device’s configuration
using the show running-config command. This differs from how you would configure a
device interactively via SSH using the configure terminal approach.

After the devices under testing have been configured, the pyATS library learns the con-
figuration of the devices via the check_config subsection. The check_config subsection
runs twice: once during Common Setup and another time during Common Cleanup. It
collects the running-config of each device in the topology and compares the two config-
uration “snapshots” to ensure the configuration remains the same before and after testing.

PTS (Profile the System)

Earlier in this chapter, you saw examples of device features that can be learned (for exam-
ple, BGP) during testing. This is made possible by the network OS-agnostic models built
into pyATS. These models create the foundation for building reliable data structures and
provide the ability to parse data from the network.

PTS provides the ability to “profile” the network during testing. PTS creates profile
snapshots of each feature in the Common Setup and Common Cleanup sections. PTS can
learn about all the device features, or a specific list of device features can be provided as
a list to the pts_features argument of gRun. Example 9-4 shows how gRun is called in a
job file with a list of features passed to the pts_features argument.

Example 9-4 PTS Feature

from genie.harness.main import gRun

def main():

 # Profiling built-in features (models) w/o the PTS datafile

 gRun(pts_features=["bgp", "interface"])

Along with having the ability to profile a subset of features/device commands, PTS, by
default, will only run on the device with the device alias uut. To have more devices pro-
filed by PTS, you’ll need to supply a pts_datafile.yaml file. The datafile can provide a list
of devices to profile and describe specific attributes to ignore in the output when com-
paring snapshots (such as timers, uptime, and dates). Example 9-5 shows a PTS datafile,
and Example 9-6 shows the updated gRun call, with the pts_datafile argument included.

286    Chapter 9: pyATS Triggers and Verifications

Example 9-5 PTS Datafile – ex0906_pts_datafile.yaml

extends: "%CALLABLE{genie.libs.sdk.genie_yamls.datafile(pts)}"

bgp:

 devices: ["cat8k-rt1", "cat8k-rt2"]

 exclude:

 - up_time

interface:

 devices: ["cat8k-rt1", "cat8k-rt2"]

Example 9-6 PTS Datafile Argument

from genie.harness.main import gRun

def main():

 # Profiling built-in features (models) w/ the PTS datafile

 gRun(pts_features=["bgp", "interface"],

 pts_datafile="ex0906_pts_datafile.yaml")

PTS Golden Config

PTS profiles the operational state of the network devices under testing, but how do we
know the state is what we expect? PTS provides a “golden config” snapshot feature that
compares the profiles learned by PTS to what is considered the golden snapshot. Each job
run generates a file named pts that is saved to the pyATS archive directory of the job. Any
PTS file can be moved to a fixed location and used as the golden snapshot. Like the pts_
datafile argument, the pts_golden_config argument can be passed to gRun, which points
to the golden PTS snapshot used to compare against the current test run snapshots.

There’s a lot to digest with Genie Harness as well as a lot of different options, and an
understanding of these features and when to use them is critical. In the following sec-
tions, we will turn our attention to triggers and verifications. Let’s take a look at verifica-
tions first, as triggers rely on them to perform properly.

Verifications
A verification runs one or multiple commands to retrieve the current state of the device.
The main purpose of a verification is to capture and compare the operational state before
and after a trigger, or set of triggers, performs an action on a device. The state of the
device can be retrieved via the multiple connection types offered by the pyATS library
(CLI, YANG, and so on). Verifications typically run in conjunction with triggers to verify
the trigger action did what it was supposed to do and to check for unexpected results,
such as changes to a feature you didn’t initiate.

Verifications    287

Verification Types

Verifications can be broken down into two types: global and local. The difference between
the two is related to scoping and when each verification type runs within a script.

 ■ Global verifications: Global verifications are used to capture a snapshot of a device
before a trigger is executed. Global verifications run immediately after the Common
Setup section and before a trigger in a script. If more than one trigger is executed,
subsequent snapshots are captured before and after each trigger using the same set
of verifications.

 ■ Local verifications: Local verifications are independent of global verifications and
run as subsections within a trigger. More specifically, a set of snapshots is taken
before a trigger action and a subsequent set is taken after to compare to the first one.
Local verifications confirm the trigger action did what it was supposed to do (con-
figure/unconfigure, shut/no shut, and so on).

Figure 9-2 shows where and when the different verification types run in a Genie job.

Common Setup

Global Verification1

Global Verification2

Local Verification1

Local Verification2

Local Verification1

Local Verification2

Global Verification1

Global Verification2

Global Verification1

Global Verification2

Trigger1

Trigger2

Trigger Action

Local Verification1

Local Verification3

Local Verification1

Local Verification3

Trigger Action

Common Cleanup

Figure 9-2 Verification Execution

288    Chapter 9: pyATS Triggers and Verifications

Verification Datafile

A verification datafile is used to customize the execution of built-in or custom verifica-
tions. Like other datafiles, verification_datafile.yaml must be provided to gRun using the
verification_datafile argument. Example 9-7 shows a verification datafile that extends
the default verification datafile (via the extends: key) and overrides the default setting of
connecting to only the “uut” device (via the devices: key) for the Verify_Interfaces verifi-
cation. If you wanted to change the list of devices to connect to for another verification,
you would need to add that verification in the datafile.

Example 9-7 Verification Datafile – ex0908_verification_datafile.yaml

Extend default verification datafile to inherit the required keys

(class, source, etc.) per the verification datafile schema

extends: "%CALLABLE{genie.libs.sdk.genie_yamls.datafile(verification)}"

Verify_Interfaces:

 devices: ["cat8k-rt1", "cat8k-rt2"]

In order to run the verifications listed in the datafile, or any other built-in verifications,
you’ll need to include them in the verification_uids argument to gRun. Example 9-8
shows how to run the Verify_Interfaces verification with the verification datafile from
Example 9-7.

Example 9-8 gRun – Verifications

from genie.harness.main import gRun

def main():

 gRun(

 verification_uids=["Verify_Interfaces"],

 verification_datafile="ex0908_verification_datafile.yaml"

)

Writing a Verification

The process in which a feature is verified during testing may be different for different use
cases. If a built-in verification does not suffice, the pyATS library (Genie) allows you to
create your own verification.

There are several ways to create your own verification. You can use a Genie Ops feature
(model), a parser, or callable. For the Genie Ops feature and parser options, you can use
an existing model or parser, or you can create your own. The last option, using a callable,
is discouraged, as it isn’t OS-agnostic and does not provide extensibility to use different

Verifications    289

management interfaces (CLI, YANG, and so on). Example 9-9 shows a custom verification
built with the show bgp all parser. Take note of the list of excluded values from the
parsed data (found under the exclude: key). The reason is because many of these values
are dynamic (such as timers, counters, and so on) and are almost guaranteed to be differ-
ent between snapshots. Remember, if a parsed value is different between snapshots, the
verification will fail.

Example 9-9 Custom Verification – ex0910_verification_datafile.yaml

Local verification datafile that already extends the default datafile

extends: verification_datafile.yaml

Verify_Bgp:

 cmd:

 class: show_bgp.ShowBgpAll

 pkg: genie.libs.parser

 context: cli

 source:

 class: genie.harness.base.Template

 devices: ["cat8k-rt1", "cat8k-rt2"]

 iteration:

 attempt: 5

 interval: 10

 exclude:

 - if_handle

 - keepalives

 - last_reset

 - reset_reason

 - foreign_port

 - local_port

 - msg_rcvd

 - msg_sent

 - up_down

 - bgp_table_version

 - routing_table_version

 - tbl_ver

 - table_version

 - memory_usage

 - updates

 - mss

 - total

 - total_bytes

 - up_time

290    Chapter 9: pyATS Triggers and Verifications

 - bgp_negotiated_keepalive_timers

 - hold_time

 - keepalive_interval

 - sent

 - received

 - status_codes

 - holdtime

 - router_id

 - connections_dropped

 - connections_established

 - advertised

 - prefixes

 - routes

 - state_pfxrcd

To run the custom verification, you follow the same process as running any other
verification. Pass the verification datafile with the custom verification to gRun via the
verification_datafile argument and add the custom verification name to the list of veri-
fications in the verification_uids argument. Example 9-10 shows the updated gRun call
with the custom verification name and datafile. Remember, the custom verification data-
file (Example 9-9) extends the original verification datafile (Example 9-7), which essen-
tially inherits all the built-in verifications from the pyATS library (Genie).

Example 9-10 gRun – Custom Verification

from genie.harness.main import gRun

def main():

 gRun(

 verification_uids=["Verify_Interfaces", "Verify_Bgp"],

 verification_datafile="ex0910_verification_datafile.yaml"

)

Triggers
Triggers perform a specific action, or a sequence of actions, on a device to alter its state
and/or configuration. As examples, actions may include adding/removing parts of a con-
figuration, flapping protocols/interfaces, or performing high availability (HA) events such
as rebooting a device. The important part to understand is that triggers are what alter the
device during testing.

The pyATS library (Genie) has many prebuilt triggers available for Cisco IOS/IOS XE,
NX-OS, and IOS XR. All prebuilt triggers are documented, describing what happens

Triggers    291

when the trigger is initiated and what keys/values to include in the trigger datafile
specifically for that trigger. For example, the TriggerShutNoShutBgpNeighbors trigger
performs the following workflow:

 1. Learn BGP Ops object and verify it has “established” neighbors. If there aren’t any
“established” neighbors, skip the trigger.

 2. Shut the BGP neighbor that was learned from step 1 with the BGP Conf object.

 3. Verify the state of the learned neighbor(s) in step 2 is “down.”

 4. Unshut the BGP neighbor(s).

 5. Learn BGP Ops again and verify it is the same as the BGP Ops snapshot in step 1.

As you might recall from earlier in this chapter, the Genie Ops object represents a device/
feature’s operational state via a Python object, and the Genie Conf object represents a
feature, as a Python object, that can be configured on a device. The focus of the Conf
object is what feature you want to apply on the device, not how to apply it per device
(OS) platform. This allows a network engineer to focus on the network features being
tested and not on the low-level details of how the configuration is applied.

Now that there’s a general understanding of what triggers do, let’s check out how they
can be configured using a trigger datafile.

Trigger Datafile

As with other features of the pyATS library (Genie), to run triggers, there needs to be a
datafile—more specifically, a trigger datafile (trigger_datafile.yaml). The pyATS library
provides a default trigger datafile found in the same location as all the other default data-
files, discussed earlier in the chapter. However, if you want to customize any specific
trigger settings, such as what devices or group of devices to run on during testing (any
device besides uut), or to run a custom trigger, you’ll need to create your own trigger
datafile. A complete example can be found at the end of the chapter that includes both
triggers and verifications, but let’s focus now on just triggers in a brief example.
Example 9-11 shows a custom trigger file that flaps the OSPF process on the targeted
devices (iosv-0 and iosv01). Example 9-12 shows how to include the appropriate trigger
and trigger datafile in the list of arguments to gRun.

Example 9-11 Trigger Datafile – ex0912_trigger_datafile.yaml

extends: "%CALLABLE{genie.libs.sdk.genie_yamls.datafile(trigger)}"

Custom trigger - created in Example 9-14

TriggerShutNoShutOspf:

source imports the custom trigger, just as you would any other Python class

 source:

 class: ex0915_custom_trigger.ShutNoShutOspf

 devices: ["iosv-0", "iosv-1"]

292    Chapter 9: pyATS Triggers and Verifications

Example 9-12 gRun – Triggers and Trigger Datafile

from genie.harness.main import gRun

def main():

 gRun(

 trigger_uids=["TriggerShutNoShutOspf"],

 trigger_datafile="ex0912_trigger_datafile.yaml"

)

Trigger Cluster

The last neat trigger feature to cover is the ability to execute a group of multiple trig-
gers and verifications in one cluster trigger. First, a trigger datafile must be created with
the list of triggers and verifications, the order in which to run them, and a list of testbed
devices to run them against. Example 9-13 shows a trigger datafile configured for a trig-
ger cluster and the accompanying test results if it was run.

Example 9-13 Trigger Cluster

TriggerCombined:

 sub_verifications: ['Verify_BgpVrfAllAll']

 sub_triggers: ['TriggerSleep', 'TriggerShutNoShutBgp']

 sub_order: ['TriggerSleep', 'Verify_BgpVrfAllAll',

 'TriggerSleep','TriggerShutNoShutBgp','Verify_BgpVrfAllAll']

 devices: ['uut']

-- TriggerCombined.uut PASSED

 |-- TriggerSleep_sleep.1 PASSED

 |-- TestcaseVerificationOps_verify.2 PASSED

 |-- TriggerSleep_sleep.3 PASSED

 |-- TriggerShutNoShutBgp_verify_prerequisite.4 PASSED

 | |-- Step 1: Learning 'Bgp' Ops PASSED

 | |-- Step 2: Verifying requirements PASSED

 | '-- Step 3: Merge requirements PASSED

 |-- TriggerShutNoShutBgp_shut.5 PASSED

 | '-- Step 1: Configuring 'Bgp' PASSED

 |-- TriggerShutNoShutBgp_verify_shut.6 PASSED

 | '-- Step 1: Verifying 'Bgp' state with ops.bgp.bgp.Bgp PASSED

 |-- TriggerShutNoShutBgp_unshut.7 PASSED

 | '-- Step 1: Unconfiguring 'Bgp' PASSED

 |-- TriggerShutNoShutBgp_verify_initial_state.8 PASSED

 | '-- Step 1: Verifying ops 'Bgp' is back to original state PASSED

 '-- TestcaseVerificationOps_verify.9 PASSED

Triggers    293

You may notice that the triggers have accompanying local verifications that run before
and after the trigger is run to ensure the action was actually taken against the device. This
is the true power of triggers. One of the biggest reasons people are skeptical about net-
work automation is due to the lack of trust. Did this automation script/test really do what
it’s supposed to do? Triggers provide that verification out of the box through global and
local verifications.

What if we wanted to build our own trigger with verifications? In the next section, you’ll
see how to do just that!

Writing a Trigger

The pyATS library (Genie) provides the ability to write your own triggers. A trigger is
simply a Python class that has multiple tests in it that either configure, verify, or uncon-
figure the configuration or device feature you’re trying to test.

To begin, your custom trigger must inherit from a base Trigger class. This base class
contains common setup and cleanup tasks that help identify any unexpected changes
to testbed devices not currently under testing (for example, a device rebooting). For our
custom trigger, we are going to shut and unshut OSPF. Yes, this trigger already exists in
the library, but it serves as a great example when you’re beginning to create custom trig-
gers. The workflow is going to look like this:

 1. Check that OSPF is configured and running.

 2. Shut down the OSPF process.

 3. Verify that OSPF is shut down.

 4. Unshut the OSPF process.

 5. Verify OSPF is up and running.

In Examples 9-14 and 9-15, you’ll see the code to create the custom OSPF trigger and
the associated job file, running it with gRun. To run the job file, you’ll need the following
files:

 ■ ex0915_custom_trigger.py

 ■ ex0916_custom_trigger_job.py

 ■ ex0915_custom_trigger_datafile.yaml

 ■ testbed2.yaml

294    Chapter 9: pyATS Triggers and Verifications

The testbed2.yaml file has two IOSv routers, named “iosv-0” and “iosv-1,” running OSPF.
The file ex0915_custom_trigger_datafile.yaml is used to map the custom OSPF triggers
and the testbed devices:

ex0915_custom_trigger_datafile.yaml

extends: "%CALLABLE{genie.libs.sdk.genie_yamls.datafile(trigger)}"

Custom trigger

TriggerMyShutNoShutOspf:

 # source imports the custom trigger

 source:

 class: ex0915_custom_trigger.MyShutNoShutOspf

 devices: ["iosv-0", "iosv-1"]

Example 9-14 Custom Trigger and Job File

import time

import logging

from pyats import aetest

from genie.harness.base import Trigger

from genie.metaparser.util.exceptions import SchemaEmptyParserError

log = logging.getLogger()

class MyShutNoShutOspf(Trigger):

"""Shut and unshut OSPF process. Verify both actions."""

 @aetest.setup

 def prerequisites(self, uut):

 """Check whether OSPF is configured and running."""

 # Checks if OSPF is configured. If not, skip this trigger

 try:

 output = uut.parse("show ip ospf")

 except SchemaEmptyParserError:

 self.failed(f"OSPF is not configured on device {uut.name}")

 # Extract the OSPF process ID

 self.ospf_id = list(output["vrf"]["default"]["address_family"] \

 ["ipv4"]["instance"].keys())[0]

Triggers    295

 # Checks if the OSPF process is enabled

 ospf_enabled = output["vrf"]["default"]["address_family"] \

 ["ipv4"]["instance"][self.ospf_id]["enable"]

 if not ospf_enabled:

 self.skipped(f"OSPF is not enabled on device {uut.name}")

 @aetest.test

 def ShutOspf(self, uut):

 """Shutdown the OSPF process"""

 uut.configure(f"router ospf {self.ospf_id}\n shutdown")

 time.sleep(5)

 @aetest.test

 def verify_ShutOspf(self, uut):

 """Verify ShutOspf worked"""

 output = uut.parse("show ip ospf")

 ospf_enabled = output["vrf"]["default"]["address_family"] \

 ["ipv4"]["instance"][self.ospf_id]["enable"]

 if ospf_enabled:

 self.failed(f"OSPF is enabled on device {uut.name}")

 @aetest.test

 def NoShutOspf(self, uut):

 """Unshut the OSPF process"""

 uut.configure(f"router ospf {self.ospf_id}\n no shutdown")

 @aetest.test

 def verify_NoShutOspf(self, uut):

 """Verify NoShutOspf worked"""

 output = uut.parse("show ip ospf")

 ospf_enabled = output["vrf"]["default"]["address_family"] \

 ["ipv4"]["instance"][self.ospf_id]["enable"]

 if not ospf_enabled:

 self.failed(f"OSPF is enabled on device {uut.name}")

296    Chapter 9: pyATS Triggers and Verifications

Example 9-15 Running a Custom Trigger – ex0915_custom_trigger_job.py

from genie.harness.main import gRun

def main():

 gRun(

 trigger_uids=["TriggerMyShutNoShutOspf"],

 trigger_datafile="ex0915_custom_trigger_datafile.yaml",

)

Running the job using 'pyats run job' command

pyats run job ex0916_custom_trigger_job.py --testbed-file testbed2.yaml

Figure 9-3 shows some sample job output.

Figure 9-3 Job Results

Trigger and Verification Example
Now it’s time to combine the triggers and verifications into one complete example. In
the example, we will build on previous examples where we flap (shut/unshut) the OSPF
process on two IOSv routers. The trigger has local verifications that will confirm OSPF

Trigger and Verification Example    297

is indeed shut down and confirm that it comes up after being unshut. In addition to the
local verifications defined in the trigger, the job will also introduce a global verification
to check the router link states (LSA Type 1) in the OSPF LSDB (link state database). This
global verification will run before and after the trigger. This allows us to confirm that
LSA Type 1 packets are being exchanged before and after testing and that the router link
types have not changed during testing.

Let’s see how this example can be implemented and executed using Genie Harness and
also within a pyATS testscript.

Genie Harness (gRun)

This whole chapter has been focused on Genie Harness, so let’s not rehash the details.
Example 9-16 shows an example of the job file, trigger datafile, and verification datafile
used to execute the job. Figure 9-4 shows the associated test results.

Example 9-16 Trigger and Verification Example – ex0917_complete_example.py

Job file - ex0917_complete_example.py

from genie.harness.main import gRun

def main():

gRun(

 trigger_uids=["TriggerShutNoShutOspf"],

 trigger_datafile="ex0917_trigger_datafile.yaml",

 verification_uids=["Verify_IpOspfDatabaseRouter"],

 verification_datafile="ex0917_verification_datafile.yaml"

)

Trigger datafile – ex0917_trigger_datafile.yaml

extends: "%CALLABLE{genie.libs.sdk.genie_yamls.datafile(trigger)}"

Custom trigger - created before Example 9-14

TriggerShutNoShutOspf:

source imports the custom trigger, just as you would any other Python class

 source:

 class: ex0915_custom_trigger.MyShutNoShutOspf

 devices: ["iosv-0", "iosv-1"]

298    Chapter 9: pyATS Triggers and Verifications

Verification datafile - ex0917_verification_datafile.yaml

extends: "%CALLABLE{genie.libs.sdk.genie_yamls.datafile(verification)}"

Verify_IpOspfDatabaseRouter:

 devices: ["iosv-0", "iosv-1"]

Figure 9-4 Trigger and Verification Example Results

Trigger and Verification Example    299

pyATS

Triggers and verifications can be run in a pyATS testscript as a testcase or within a test
section. Custom trigger and verification datafiles can be provided using the --trigger-
datafile and --verification-datafile arguments when calling a pyATS job.

To run it as its own testcase, you’ll just need to create a class that inherits from
GenieStandalone, which inherits from the pyATS Testcase class. The inherited class you
create will provide a list of triggers and verifications. The same trigger and verification
datafiles will be included as options when running the pyATS job via the command line.

The second way to include triggers and verifications in a pyATS testscript is by including
them in an individual test section, as part of a pyATS testcase. The run_genie_sdk func-
tion allows you to run triggers or verifications as steps within a section.

Example 9-17 shows how to include triggers and verifications as their own testcase and
within an existing subsection in a pyATS testscript. To run the testscript, you’ll need to
add the --trigger-datafile and --verification-datafile arguments with the appropriate data-
files to map the custom trigger and verifications to the additional devices. These datafiles
are not included in the example. Figure 9-5 shows the testscript results.

Example 9-17 Triggers and Verifications in pyATS Testscript

from pyats import aetest

import genie

from genie.harness.standalone import GenieStandalone, run_genie_sdk

class CommonSetup(aetest.CommonSetup):

""" Common Setup section """

 @aetest.subsection

 def connect(self, testbed):

 """Connect to each device in the testbed."""

 genie_testbed = genie.testbed.load(testbed)

 self.parent.parameters["testbed"] = genie_testbed

 genie_testbed.connect()

Call Triggers and Verifications as independent pyATS testcase

class GenieOspfTriggerVerification(GenieStandalone):

"""Shut/unshut the OSPF process and verify LSA Type 1 packets are still being

exchanged before and after testing."""

300    Chapter 9: pyATS Triggers and Verifications

 # Must specify 'uut'

 # If other devices are included in the datafile(s), they will be tested

 uut = "iosv-0"

 triggers = ["TriggerShutNoShutOspf"]

 verifications = ["Verify_IpOspfDatabaseRouter"]

Calling Triggers and Verifications within a pyATS section

class tc_pyats_genie(aetest.Testcase):

 """Testcase with triggers and verifications."""

 # First test section

 @aetest.test

 def simple_test_1(self, steps):

 """Sample test section."""

 # Run Genie triggers and verifications

 # Note that you must specify the order of each trigger and verification

 run_genie_sdk(self,

 steps,

 ["Verify_IpOspfDatabaseRouter", \

 "TriggerShutNoShutOspf", \

 "Verify_IpOspfDatabaseRouter"],

 uut="iosv-0"

)

class CommonCleanup(aetest.CommonCleanup):

"""Common Cleanup section"""

@aetest.subsection

def disconnect_from_devices(self, testbed):

 """Disconnect from each device in the testbed."""

 testbed.disconnect()

Summary    301

Figure 9-5 Triggers and Verifications in pyATS Testscript Results

Summary
This chapter covered a lot of information about the pyATS library (Genie), the Genie
Harness, with its many different features, along with triggers and verifications. The Genie
Harness allows you to take advantage of the pyATS infrastructure without having to
dive-deep into code. The goal of the pyATS library (Genie) is to be modular and robust.
Triggers and verifications are a perfect example. They make it easy to quickly build
dynamic testcases that change with your network requirements. I highly recommend tak-
ing a closer at the code examples in this chapter and trying them out for yourself. Within
minutes, you’ll see how quickly you can test a network feature with speed and accuracy!

This page intentionally left blank

Index

A
abstracted clean stage, 455–456
action/s, 460–461

advanced, 470
looping, 471–475
parallel, 470
run condition, 475–476

custom, 481–482
output, 461

appending to an existing file,
466

Dq filter, 461–462
List filter, 462–463
RegEx filter, 461–462
saving to a dictionary, 467
saving to a file, 465–466
variables, 463–465
verifying, 467–470

timeouts, 479–480
Adaptive Cards, 490–491

Jinja2 template, 491, 492–500
sending to Webex, 500–501

AEtest, 176–179

Common Cleanup, 78–79, 179
Common Setup, 76, 178
decorator, 75
design features, 74–75
installation, 74
logic module, 86
loops, 74–75, 104

defining, 104
dynamic, 107–108
parameters, 104–106

object model, 82
container classes, 82–83
function classes, 83–85
TestScript class, 82

pause on phrase, 133–134
processor/s, 91

context, 93
definition and arguments,

92–93
global, 93–94
results, 94
types, 91–92

Reporter, 127
event data, 132–133

658  AEtest

report structure, 128–129
results.yaml file, 129–132

runtime behavior, 85–86
parent, 87
section ordering, 88
self keyword, 86–87

Standalone Reporter, 126–127
step/s, 79–80

attributes, 80–81
nested, 81–82

test results, 88
arguments, 90
interaction results, 90
result behavior, 89–90
result objects, 88–89
result rollup, 90–91

testable, 117
testcase, 75, 77–78

cleanup section, 77
setup section, 77
test section, 77

testscript, 75, 78–79
aetest.main() function, 110, 113
agent-based tools, 21–22
agentless tools, 22
Agile, 12–13, 18
Agile Manifesto, 170–171
agility, NetDevOps, 21
AI (artificial intelligence), 591.

See also NLP (natural language
processing); OpenAI; RAG
(retrieval augmented generation)

data analysis
routing table, 606–609
running configuration, 609–

610
embeddings, 593, 595
generative, 591

models and providers, 597–598
OpenAI API, 597
RAG (retrieval augmented

generation), 592, 612
textual segment, 593–594

alert, Webex, 10
Ansible, 562–563, 566
APIC (Application Policy

Infrastructure Controller), 369
API/s (application programming

interface/s), 2, 6–7, 27, 192–
193, 347–351. See also REST
Connector

Chat Completions, 597–599
JSON mode, 599
messages parameter, 599

clean, 438–440
configure_by_jinja, 317
Connect, 360–361, 364–365,

366–367, 374–375, 378
copy_to_device, 312
DELETE, 357–358, 363, 368, 371,

376–377, 380, 382
device, 313–314
Disconnect, 365, 375
GET, 355–356, 361, 365, 367, 370,

375, 379, 381
get_software_version(), 351–352
GraphQL, 28
Jinja2, 206
load_jinja_template, 307
network management, 352–353
NX-, 355
OpenAI, 591, 597
PATCH, 358, 362, 368, 376, 382
pcall, 182, 400–401

error handling, 404
logging, 404

BGP (Border Gateway Protocol)  659

object, 405–406
performance comparison,

406–409
targets, 402–404
usage, 401–402

POST, 356–357, 361–362, 367–368,
370–371, 375–376, 379, 381

PUT, 358–359, 362–363, 368, 376,
379–380, 383

REST, 27–28
testbed, 61

approval, code, 16
architect, network, 2–3
argument/s

clean stage, 445–447
function, 97
processor, 93
propagation, 109
pyATS job, 197–199
script, 96–97
section, 98
standard, 108–109
template, 306
test result, 90
testing, 108
Unicon configure service, 315–316

asynchronous programming, 398
asyncio library, 398
attribute/s

dictionaries, 182–183
function class, 84
interface object, 59
link object, 59
parent, 87
step, 80–81
testbed object, 52–53

Aubin, Jean-Benoit, 1

automated network testing, 234–235
feature testing, 271–276
intent validation testing, 267–271
interface testing, 243–244
keys, 247–248
neighbor testing, 259–262
reachability testing, 262–267
RESTCONF, 252–258
role of SSH in, 244–251
software version testing, 235–243
testing for input errors, 248–251

automation, 6
agent-based tools, 21–22
agentless tools, 22
builds, 16
day–1

offline initial configuration, 5
software image management, 5

learn models, 144
network, 1
parsing, 137
testing, 14
traditional network, 2
velocity, 20
vendor-agnostic, 138–139

awaitables, 398

B
bare metal, 31
base class, 82
BaseStage class, 443
“batteries-included” programming

language, 29–30
Beck, Kent, 170
BGP (Border Gateway Protocol)

configuration, 566–567

660  BGP (Border Gateway Protocol)

feature testing, 271–276
BIG-IP, 373–374

Connect API, 374–375
DELETE API, 376–377
Disconnect API, 375
GET API, 375
PATCH API, 376
POST API, 375–376
PUT API, 376

Blitz, 459, 483–484. See also action/s
action output, 461

appending to an existing file,
466

Dq filter, 461–462
List filter, 462–463
RegEx filter, 462
saving to a dictionary, 467
saving to a file, 465–466
variables, 463–465
verifying, 467–470

advanced actions, 470
loop keywords, 471–475
parallel, 470
run_condition, 475–476

altering results, 478–479
custom actions, 481–482
custom test sections, 482–483
customizing log messages, 480
development, 481
negative testing, 477
prompt handling, 478
script termination on failure, 477–

478
timeouts, 479–480
usage, 481
YAML files, 459, 460–461

breakpoints, 133

brownfield, 17, 173–174
builds, 16, 53–54
business-ready documents, 206–207

CSV file, 208–210
datatable, 227–232
HTML, 225–227
JSON, 207
markdown, 210–211
markmap mind map, 212–215
Mermaid class diagram, 217–219
Mermaid entity relationship diagram,

221–223
Mermaid flowchart, 215–217
Mermaid mind map, 223–225
Mermaid state diagram, 219–221
YAML, 207–208

C
callables, 83, 98
Catalyst Center, 363–364

Connect API, 364–365
Disconnect API, 365
GET API, 365

CD (continuous deployment), 32
CDP (Cisco Discovery Protocol)

enabling with pyATS, 260
neighbor ping test, 265
testing with pyATS, 260–262

Cerebrus, 304–305
change management, 337–338
change plans, 561
ChangeBootVariable class, 444–445
Chat Completions API, 597–599

JSON mode, 599
messages parameter, 599

ChatGPT, 591, 612

CLI (command-line interface)  661

child process, 399
ChromaDB, 594, 614, 621
CI/CD (continuous integration/

continuous development), 2–3, 7–8,
16, 16–17, 32–33, 64, 557

Docker containers, 505
Drone, 34–36
GitHub Actions, 34
GitLab, 33–34, 559–560, 563–565
Jenkins, 33
in NetDevOps, 560–562
pipeline, 17, 18, 19, 172, 505, 558,

561–562
configuration changes, 565–

568
GitHub Actions, 558–559
testing network changes, 568–

570
Cisco ACI APIC, 369–370, 371–373

DELETE API, 371
GET API, 370
POST API, 370–371

Cisco DevNet Always-On IOS-XE
Sandbox testbed, 235

class/es
base, 82
BaseStage, 443
callables, 83, 98
ChangeBootVariable, 444–445
container, 82–83
context processor, 93
diagram, 217–219
function, 83–85
MoDirectory, 371–372
parser, 637–638
Pcall, 405–406
representer, 655

REST Connector, 354
schema, 635–636
ScriptDiscovery, 125–126
Steps, 80
TestScript, 82
WebInteraction, 90

Clean, 443–445
clean stage template, 443–445
device recovery, 434–436
file validation, 436–437
including a clean stage in testscripts,

440–443
installing, 411
Integrated execution, 437–440
logging, 438–439
software image management,

431–433
Standalone execution, 437–438
supported OS/platforms, 413
supported power cyclers, 414–422
YAML, 423–424

clean stages, 424–427
device groups, 428–431
devices block, 424

clean API, 438–440
clean stage

abstracted, 455–456
creating

execution order, 450–452
schema and arguments, 445–

447
stage steps, 447–450
template, 443–445

docstrings, 452–454
cleanup section, testcase, 77
CLI (command-line interface), 24

job log, 199–202

662  CLI (command-line interface)

mock device, 344–345
network features, learning, 322–324
parsing, 148–150

connection file, 150–151
console output, 151–152
ops output, 153–155

Python, 30
running pyATS jobs, 196–199
SSH options, 54–55
using RESTCONF, 56

cluster, trigger, 292–293
CML (Cisco Modeling Labs), 562–

563
code, 16
VS Code, 23
code

approval, 16
asynchronous, 398
builds, 16
coverage, 73
debugging, 133–134
IDE (integrated development

environment)
new school, 23
old school, 22–23

infrastructure as, 14, 16–17, 19, 23,
32

learn model, 142
linting, 16
quality, 64
regression testing, 73
static analysis, 64
testing, 73
version control, 23

command/s. See also API/s
(application programming
interface/s); CLI

copy, 312–313
DELETE, 385
genie diff, 327–329, 331–332
genie learn, 325–327
GET, 383–384
learn, 150, 155–156

connection file, 150–151
console help, 156
console output, 151–152
ops output, 153–155

no logging console, 55
parse, 157–158
ping, 260–262

parsing, 262–264
reachability testing, 265–267

pip install pyats, 38–39, 176
pip list, 39–41
POST, 384
PUT, 384–385
pyats create testbed, 56
pyats logs view, 201–202
pyats run job, 115
pyats version check, 42
pyats version update, 43–44, 45–46
Python

import this, 30
install, 30

show, 139–145, 189
show ip interface brief, 25, 26, 191,

207, 210, 214–215, 625–626
show running-config, 285, 319, 431
show version, 236–243
terminal width 511, 55

Common Cleanup, 78–79, 179
Common Setup container, 76, 178
concurrency, 398

creating  663

Conf object, Genie, 281–282, 291,
308–309

config datafile, Genie Harness,
317–319

configuration/s
BGP, 566–567
checking, 319
day–1, 4–5
device, 284–285, 309

config datafile, 317–319
embedded file transfer server,

311–313
FileUtils module, 309–311

drift, 8, 18
generating with pyATS, 304

data modeling and validation,
304–305

data templates, 305–307
Genie Conf objects, 308–309

incremental, 8–9
intent-based, 6–7, 18–19, 303–304
pyATS request and push using

ChatGPT, 612
re-, 8
snapshot, 319, 322
testbed-wide, 314–315
Unicon, 315–316
untracked, 303
validation, 7

configure_by_jinja2 API, 317
Connect API, 360–361, 364–365,

366–367, 374–375, 378
connection file, 150–151
container/s, 31, 504–506

class, 82–83
Common Cleanup, 78–79
Common Setup, 76

subsections, 76
Docker, 503, 505–506
step/s, 79–80

attributes, 80–81
nested, 81–82

testcase, 77–78
cleanup section, 77
must-pass, 121–123
randomization, 123–124
setup section, 77
test section, 77

testscript, 75
context

processor, 93
template, 306

continuous improvement, 14
contributing to genieparser, 647–650
copy command, 312–313
copy_to_device API, 312
core dump file, 516
core framework, pyATS, installing,

38–39
coroutines, 398
cosine similarity, 595–596
CPOC (Center of Proof of Concept),

169
CPU, health check, 515–516
creating

clean stage
execution order, 450–452
schema and arguments,

445–447
stage steps, 447–450
template, 443–445

Dockerfile, 508, 623–625
mock devices, 343–344
schema, 635–636

664  creating

testbed, 66–67
virtual environment, 60–61

credentials
device, 54
YAML file, 56–57

CSV file, 208–211
cURL (Client URL), 28–29
customizing log messages, 480

D
data center, failure, 21
data model/s, 3–4

Pydantic, 304–305
YANG, 26

database. See vector stores
data-driven testing, 94–95
datafile/s, 98–104

Genie Harness, 283–284
trigger, 291–292
verification, 288

Datatables.net, 227–232
day 0 activities, 5–6

initial configuration, 6–7
initial testing and validation, 7
Layer 1, 6

day 1 activities, 7–8
incremental configuration, 8–9
provisioning new endpoints, 9
provisioning new services, 9

day N activities, 9
decommissioning, 11
monitoring, 9–10
responding to events, 10
upgrading, 10–11

day–1 activities

device configuration, 4–5
offline initial configuration, 5
software images, 5

DCNM (Cisco Data Center Network
Manager), 380

DELETE API, 382
GET API, 381
PATCH API, 382
POST API, 381
PUT API, 383

debugging, 133–134
declarative Jenkinsfiles, 33
decommissioning, 1
decorator, 75
DELETE API, 357–358, 363, 368,

371, 376–377, 380, 382
DELETE command, 385
deployment, automated, 17
design features, AEtest, 74–75
development. See also software

development; TDD (test-driven
development)

Blitz, 481
test-driven, 14

device/s. See also API/s (application
programming interface/s); mock
device/s

API, 307, 313–314
cleaning, 181, 412–413, 438–445.

See also Clean
configuration, 284–285, 309

checking, 319
config datafile, 317–319
configure_by_jinja2 API, 317
embedded file transfer server,

311–313
FileUtils module, 309–311
testbed-wide, 314–315

http://Datatables.net

Easypy  665

Unicon, 315–316
connection abstractions, 60–63
core dump file, 516
credentials, 54
day–1 configuration, 4–5
decommissioning, 11
groups, 428–431
mock, 342
neighbor testing, 259–262
network features, learning, 322–324
object attribute list, 57–58
output, 279–280
power cyclers, 413–414
public Internet access, 266
recovery, 434–436
REST Connector, 354
RESTCONF validation, 253
terminal settings, 55

DevOps, 1, 13, 557, 560–561.
See also CI/CD (continuous
integration/continuous
development)

builds, 16
lifecycle, 14–15

dictionary/ies
attribute, 182–183
orderable, 183
saving action output to, 467

Diff library, 162–167
Disconnect API, 365, 375
discovery, testcase, 125–126
Django, 67, 622
DMI (data model interface), 385
do_until keyword, 473
Docker, 17, 31, 504. See also

container/s
containers, 503, 505–506

image, 504, 624
Dockerfile

building a Docker image from
scratch, 510–513

creating, 508, 623–625
docstrings, clean stage, 452–454
documentation

business-ready, 206–207
CSV file, 208–210
datatable, 227–232
HTML, 225–227
JSON, 207
markdown, 210–211
markmap mind map, 212–215
Mermaid class diagram, 217–

219
Mermaid entity relationship

diagram, 221–223
Mermaid flowchart, 215–217
Mermaid mind map, 223–225
Mermaid state diagram,

219–221
YAML, 207–208

high-level design, 3
domain name, intent validation

testing, 268–269
Dq (dictionary query), 160–162
Dq filter, 461–462
Drone, 34–36
dynamic looping, 107–108
dynamic testbed, 66–68

E
Easypy, 179–180, 190

job file, 116–117
multiprocessing, 400

666  Easypy

Reporter package, 400
testscript execution, 114–117
.zip folder, 180

efficiency, NetDevOps, 19–20
ElasticSearch, 595
ElasticVue, 595
element managers, 2
ELK (Elastic, Logstash, Kibana),

595
embedded file transfer server, device

configuration, 311–313
embeddings, 593, 595, 621
endpoints, provisioning, 9
end-to-end BGP feature testing,

272–276
enforcing intent, 70
event/s

GitHub Actions, 34
response, 10

every_seconds keyword, 473–474
exception handling, 89
exclude keyword, 467
ExecuteCommand clean stage, 425
extended testbed, 68–70
external sources of truth, 56–60
extreme programming, 170

F
failure

data center, 21
network, 321

feature testing, 271–276
Fielding, Roy, “Architectural Styles

and Design of a Network-based
Software Architecture”, 27

FileUtils module, 309–311

filter
Dq, 461–462
List, 462–463
RegEx, 461–462

flow control, testscript, 117
running specific testcases, 119–120
skip conditions, 117–119
testcase grouping, 120–121

flowchart, Mermaid, 215–217
for loop, 243, 473
forensics and security analysis, pyATS

job recordings, 338
forking, 399, 400
framework. See also Streamlit.io

Django, 622
pyATS, 175–176

AEtest, 176–179
Easypy, 179–180

pyats Clean. See pyATS (Python
Automated Test Systems), clean

Robot, 333–335, 575–576
keywords, 577–578
test cases, 576–577
test libraries, 580
variables, 578–579

function/s, 75
.parse(), 159
aetest.main(), 110, 113
arguments, 97
callables, 83, 98
classes, 83–85
coroutines, 398
gRun(), 282–283
learn_poll(), 332–333
loop.mark(), 107–108
parametrized, 98
show version, 406–407

http://Streamlit.io

health check/s  667

testbed.connect(), 196
verify, 332

G
generating configurations with

pyATS, 304
data modeling and validation,

304–305
data templates, 305–307
Genie Conf objects, 308–309

generative AI, 591
Genie, 138

Conf object, 281–282, 291, 308–309
device configuration, 284–285
job file

creating, 282–283
trigger and verification names,

283
keywords, 585–588
objects, 279–280
Ops object, 280–281, 291
Robot Framework, 333–335

genie diff command, 327–329,
331–332

Genie Harness, 279, 282, 297–298
config datafile, 317–319
datafiles, 283–284
job file, 283
PTS (profile the system), 285–286
trigger, 290–291, 296–297

cluster, 292–293
datafile, 291–292
writing, 293–296

verifications, 286
datafile, 288
writing, 288–290

genie learn command, 325–327

genieparser, 633, 647–650
geospatial analysis, vector data, 595
GET API, 355–356, 361, 365, 367,

370, 375, 379, 381
get_software_version() API, 351–352
Git, 7–8, 23, 24, 33
GitHub, 24, 34, 142, 558–559
GitLab, 24, 562–563

CI/CD, 33–34, 559–560, 563–565
Webex Teams integration, 571–572

GitOps, 19
global processor, 93–94
gNMI (gRPC Network Management

Interface), 389
comparing configs, 393–394
creating an instance of Config, 392
creating Config objects, 392–393
creating ConfigDelta objects with

special requirements, 394
fetching device capabilities, 390–391
GetRequest, 391–392
SetRequest, 391
setting up and connecting with

clients, 389–390
golden config, PTS, 286
goto statement, 121–122
GraphQL, 28
group, testcase, 120–121
gRPC (Google Remote Procedure

Call), 389
gRun() function, 282–283

H
health check/s

core file, 516
CPU and memory, 515–516
custom, creating, 517

668  health check/s

integrating with Webex, 489–490
logging, 516
results, 522–523
running as part of pyATS jobs,

523–524
testcase/section selection, 520–522
usage, 523
YAML file, 517–519

processor key, 520
reconnect key, 520
validation, 523

high-level design, 3
hosted hypervisor, 31
HTML

logs viewer, 203–205
table, 225–227

Hugging Face, 597
hypervisor, 31

I
IaC (infrastructure as code), 14,

16–17, 19, 23, 32
IDE (integrated development

environment), 22
new school, 23
old school, 22–23

image, software, 5
Image Builder, 507–509, 543–545
import this command, 30
include keyword, 467
incremental configuration, 8–9
inheritance, class, 80
initial configuration, 6–7
input errors, testing for, 248–251
install command, 30

installing
AEtest, 74
pyATS, 38–41
pyats Clean, 411
REST Connector, 354
XPRESSO, 529–534

Integrated execution, pyATS Clean,
437–440

intent, 172
-based configuration, 6–7, 18–19,

303–304
-based networking, 68–70
enforcing, 70
validation testing, 267–271

interaction results, 90
interface/s

description, intent validation testing,
269–271

object attribute list, 59
testing, 177–178, 243–244

Internet access, testing on a device,
266

I/O operation, 397, 398
IOS XE, 366

Connect API, 366–367
DELETE API, 368
GET API, 367
PATCH API, 368
POST API, 367–368
PUT API, 368

ios_xe_version_job.py job file,
236

ipaddress module, 160
iterable, 83
IXP (Internet exchange point),

259

keyword/s  669

J
Jenkins, 33
Jinja2, 189. See also business-ready

documents
APIs, 206
creating business-ready documents,

206–207
template, 6–7, 285

Adaptive Card, 491, 492–501
configuration file, 305–307,

317
context, 306
CSV file, 209
HTML, 226
markdown table, 211
markmap mind map, 213
Mermaid class diagram,

218–219
Mermaid entity relationship

diagram, 222–223
Mermaid flowchart, 216
Mermaid mind map, 224–225
Mermaid state diagram,

220–221
tags, 205

JIT (just-in-time) manufacturing, 12
job file, 29–30, 190–191

Easypy, 116–117, 179
Genie

creating, 282–283
trigger and verification names,

283
Genie Harness, 283
ios_xe_version_job.py, 236
learn_all_job.py, 339
parsers, 159

job/s
GitHub Actions, 34
health checks, 523–524
integrating with Webex, 487–489
logs, 7
pyATS, 179, 190–196

arguments, 197–199
CLI logs, 199–202
running from the CLI, 196–199

recording, 337–341
replaying recorded jobs, 341–342
use cases, 337–339

transforming into XPRESSO,
538–556

Jones, Daniel, 12
JSON (JavaScript Object Notation),

14, 24–25
Chat Completions API, 599
loader, 619–620
output, learn(interface) command,

246–247
saving to a file, 192–196
transforming to CSV, 208–209
transforming to markmap mind map,

212–213
transforming to YAML, 207–208

K
keyword/s, 334, 577–578

do_until, 473
every_seconds, 473–474
Genie, 585–588
include/exclude, 467
loop, 471–472
parallel, 470, 474
pyATS, 582–584

670  keyword/s

range, 472–473
run_condition, 475–476
self, 86–87
Unicon, 584–585
user, 578

Kibana, 595
Kleenex Clean, 181
known-good state, 324
Krafcik, John, “Triumph of the Lean

Production System”, 12
Kubernetes, 32, 505

L
LangChain, 592–593, 621

integration with Streamlit.io,
622–623

RAG (retrieval augmented genera-
tion), 612–614
JSON loader, 619–620
running configuration,

questions and responses,
614–618

sourcing JSON or raw text
data, 614

vector stores, 614
language models, 593
Layer 1, testing, 6
Lean, 12
learn command, 150, 155–156

connection file, 150–151
console help, 156
console output, 151–152
ops output, 153–155

.learn() method, 244
learn models, 139–140

code, 142
structure, 140–142

learn_poll() function, 332–333
learning network features, 322–324

differential results, 327–329
post-change, 326–327
pre-change, 324–326
using Robot Framework, 334–335

library. See also Genie; genieparser;
LangChain

asyncio, 398
Cerebrus, 304–305
genieparser, 633
LangChain, 592–593
Rich, 234
Unicon, 61–62, 312–313

configure service, 315–316
copy service, 312–313

link object attribute list, 59
linting, 16, 63–65
List filter, 462–463
LLM (large language model), 592,

593, 596–597
load_jinja_template API, 307
logging module, 400
logic testing, 86
logs and logging, 184

AI (artificial intelligence), 603–604
customizing log messages, 480
health check, 516
HTML viewer, 203–205
job, 199–202
pcall, 404
syslog with AI analysis, 604–605

loop.mark() function, 107–108
loop/s

AEtest, 74–75, 104
defining, 104
dynamic, 107–108

http://Streamlit.io

NetDevOps  671

parameters, 104–106
combining with parallel, 474
do_until keyword, 473
every_seconds keyword, 473–474
for, 243
keywords, 471–472
nested, 475
range keyword, 472–473
value key, 472

low-level design, 3–4
LSA (link-state advertisement), 330

M
machine learning, 595

cosine similarity, 595–596
vector data, 594

Manifest files, 187
“Manifesto for Agile Software

Development”, 12
markdown, 210–211. See also

Mermaid
markmap mind map, 212–215
Mermaid, 215–217
tables, 210–211

markmap mind map, 212–215
Martin, Robert C., 171
maximum failures, testcase, 124–125
memory, health check, 515–516
Mermaid, 215–217

class diagram, 217–219
entity relationship diagram, 221–223
flowchart, 215–217
mind map, 223–225
state diagram, 219–221

metaparser, 137
method/s, 75

child, 88
decorator, 75
.learn(), 244

MIT (Management Information Tree),
369

mock device/s, 342, 343–344
CLI, 344–345
creating, 343–344
use cases, 342–343

mock testbed, 60–61
MoDirectory class, 371–372
module

FileUtils, 309–311
ipaddress, 160
logging, 184, 400
logic, 86
pickle, 399
robot, 582, 585–586
Tcl, 183–184
topology, 180–181
YANG Connector, 385–386

MongoDB, 595
monitoring, network, 9–10, 18
multiprocessing, 178–182, 399–400
must-pass testcases, 121–123

N
negative testing, 477
neighbor testing, 259–262
nested loop, 475
nested steps, 81–82
NETCONF, 385, 386–389
NetDevOps, 1, 2, 13, 562. See also

CI/CD (continuous integration/
continuous development)

benefits

672  NetDevOps

agility, 21
efficiency, 19–20
GitOps, 19
intent-based configuration,

18–19
quality, 21
single source of truth, 18
speed, 20
version and source control, 19

CI/CD (continuous integration/con-
tinuous development), 32–33,
560–562, 563–565

deployments, 17
IaC (infrastructure as code), 14
monitoring activities, 18
network architect, 2–3
operations, 17
plan phase, 16
TDD (test-driven development), 14

network/s. See also AEtest;
automated network testing

architect, 2–3
automation, 1
brownfield, 17
change plans, 561
failure, 321
features, 322–324
high-level design, 3
intent verification, 266–267
intent-based, 68–70
low-level design, 3–4
management, APIs, 352–353
monitoring, 9–10, 18
objects, 74
profiling, 321–322
routing table analysis using AI,

606–609

snapshot, 322
data exclusions, 331–332
differentials, 327
post-change, 326–327
pre-change, 324–326

state
comparing, 324
known-good, 324
polling, 332–333

subnet, 3–4
traditional, automation, 2

Nexus Dashboard, 383
DELETE command, 385
GET command, 383–384
POST command, 384
PUT command, 384–385

NLP (natural language processing)
cosine similarity, 595–596
embeddings, 593
semantic analysis, 594
textual segment, 593–594
vector data, 594

NMS (network management system),
18

no logging console command, 55
ns_help(), 395
NSO (Cisco Network Services

Orchestrator), 359–360
Connect API, 360–361
DELETE API, 363
GET API, 361
PATCH API, 362
POST API, 361–362
PUT API, 362–363

NXOS
DELETE API, 357–358
GET API, 355–356

parser  673

PATCH API, 358
POST API, 356–357
PUT API, 358–359

O
object model, AEtest. See AEtest,

object model
object/s. See also class/es; method/s

attributes, 57–58
Genie

Conf, 281–282
Ops, 280–281

interface, 59
iterable, 83
link, 59
Ops, 322
-oriented programming, 74
parent-child relationships, 87
pcall, 405–406
result, 88–89, 185
runtime, 85–86
Steps, 80
testable, 117
testbed, 52–53
variables, 61

offline initial configuration, 5
onboarding, 5–6. See also day 0
OOP (object-oriented programming),

74
OpenAI

API, 597
Chat Completions API, 597–599

JSON mode, 599
messages parameter, 599

ChatGPT, 591

OpenAI API, integrating into an
interface health check, 600–603

logs, 603–604
syslog with AI analysis, 604–605

Ops object, 280–281, 291, 322
orderable dictionary, 183
OSPF

features, learning, 325–326, 334–335
LSA (link-state advertisement), 330

output. See also command/s
device, 279–280

P
package, 29–30
packet forwarding, 321–322
parallel keyword, 470, 474
parallelism, 398, 400
parameter/s, 94–95

loop, 104–106
parametrization, 98
properties, 96
relationship model, 95–96
reserved, 98
types, 96–98

parent attribute, 87
parse command, 157–158
.parse() function, 159
parser

creating, 638
development environment,

638–640
writing your parser class,

642–644
writing your schema class,

640–642
testing, 644–647

674  Parser Filter

Parser Filter, 146–148
parsing, 137

at the CLI, 148–150
connection file, 150–151
console output, 151–152
ops output, 153–155

Diff library, 162–167
Dq (dictionary query), 160–162
learn models, 139–145
ping command, 262–264
Python script, 159–160
routing table, 607–608
show command, 322–323
show ip interface brief command,

625–626
PATCH API, 358, 362, 368, 376,

382
pause on phrase, 133–134
pcall, 182, 400–401

error handling, 404
logging, 404
object, 405–406
performance comparison, 406–409
targets, 402–404
usage, 401–402

performance, scaling, 397
Peters, Tim, 29–30
pickle module, 399
Pinecone, 594–595
ping, 260–262

parsing, 262–264
reachability testing, 262–267

pip, 30
pip install pyats command, 38–39,

176
pip list command, 39–41

pipeline. See also CI/CD (continuous
integration/continuous
development), pipeline

CI/CD (continuous integration/
continuous development), 172

Drone, 35
pipes, 399
plan phase, NetDevOps, 16
plugin

Datatables.net, 227–228
Drone, 35
Easypy, 179
Webex Team Notification, 487–488

POC (proof of concept), 169
polling, expected state, 332–333
POST API, 356–357, 361–362, 367–

368, 370–371, 375–376, 379,
381

POST command, 384
post-change snapshot, 326–327
Postman, 29
power cyclers, 413–414

Clean-supported, 414–422
connected to a testbed, 422–423
device recovery, 435–436

pre-change snapshot, 324–326
predictive analysis, 352
Preston, Hank, 13
principles

Agile, 12–13, 170–171
Lean, 12
Python, 30

processes
child, 399
parallelism, 400
transferring data between, 399

processor/s, 91

http://Datatables.net

pyATS (Python Automated Test Systems)  675

context, 93
definition and arguments, 92–93
global, 93–94
results, 94
types, 91–92

profiling, network, 321–322
programming language, “batteries-

included”, 29–30
prompt handling, 478
properties, test parameter, 96
prototyping with Streamlit.io, 621–

622
provisioning

endpoint, 9
service, 9

pseudocode, 174
PTS (profile the system), 285–286
public Internet access, testing on a

device, 266
PUT API, 358–359, 362–363, 368,

376, 379–380, 383
PUT command, 384–385
pyATS (Python Automated Test

Systems), 1, 174–175
API/s, 347–351. See also API/s

(application programming
interface/s)
get_software_version(), 351–

352
network management, 352–353

Blitz, 459. See also Blitz
Clean, 10–11. See also Clean

clean stage template, 443–445
device recovery, 434–436
docstrings, 452–454
file validation, 436–437
including a clean stage in test-

scripts, 440–443

installing, 411
Integrated execution, 437–440
logging, 438–439
software image management,

431–433
Standalone execution, 437–438
supported OS/platforms, 413
supported power cyclers,

414–422
YAML, 423–424

command line, 41
core framework, installing, 38–39
data structures, 182–183
day 0 activities, 5–6

initial configuration, 6–7
initial testing and validation, 7
Layer 1, 6

day 1 activities, 7–8
incremental configuration, 8–9
provisioning new endpoints, 9
provisioning new services, 9

day N activities, 9
decommissioning, 11
monitoring, 9–10
responding to events, 10
upgrading, 10–11

day–1 activities, 4–5
offline initial configuration, 5
software image management, 5

device configuration, 309
embedded file transfer server,

311–313
FileUtils module, 309–311

Diff library, 162–167
Docker container

building an image from scratch,
510–513

http://Streamlit.io

676  pyATS (Python Automated Test Systems)

customizing, 506–507
image, downloading, 506
shell mode, 506

files, 190
framework, 175–176

AEtest, 176–179
Easypy, 179–180
Kleenex Clean, 181
testbed and topology, 180–181

generating configurations, 304
data modeling and validation,

304–305
data templates, 305–307
Genie Conf objects, 308–309

Health Check, 517. See also health
checks
CLI arguments, 524–525
core file, 516
CPU and memory, 515–516
logging, 516
results, 522–523
testcase/section selection,

520–522
usage, 523

HTML logs viewer, 203–205
Image Builder, 507–509
installing, 38–41
integrating with Webex, 486

health checks, 489–490
jobs, 487–489

integration with NetDevOps, 14–15
job/s, 29–30, 179, 190–196

arguments, 197–199
CLI logs, 199–202
ios_xe_version_job.py, 236
running from the CLI, 196–199

keywords, 582–584

learn command. See learn command
learn models, 139–140
log viewer, 438–439
logging, 184
Manifest, 187
metaparser. See metaparser
NETCONF client, 386
parse command, 157–158
Parser Filter, 146–148
pcall, 182
Python shell, 159–160
Reporter, 185–186
REST Connector, 354

installing, 354
specifying for a device, 354

result objects, 185
Robot Framework, 186
running as a container, 503–504
Tcl module, 183–184
testbed, 16, 51. See also testbed

benefits, 51
building, 53–54
device connection abstractions,

60–63
dynamic, 66–68
extended, 68–70
external sources of truth,

56–60
interface object attribute list, 59
keys and values, 53–54
link object attribute list, 59
object, 52–53
object attribute list, 57–58
single device, 54
topology module, 51–52
validation, 63–65

troubleshooting, 45–46

REST Connector  677

upgrading, 42–44
utilities, 186
YANG Connector, 385–386

pyats create testbed command, 56
pyats logs view command, 201–202
pyats run job command, 115
pyats version check command, 42
pyats version update command,

43–44, 45–46
Pydantic, 304–305
pytest, 73, 74
Python, 2, 29–30. See also

commands, Python
Cerebrus, 304–305
Debugger, 133–134
Django, 67
Dq (dictionary query), 160–162
packages, 29–30
parsing, 159–160
pip, 30
principles, 30
Rich library, 234
SDK (software development kit), 31
settting up a virtual environment, 38
virtual environment, 31, 60–61

Q-R
queries

Dictionary, 160–162
XPath, 394–395

race conditions, 399
RAG (retrieval augmented

generation), 592, 612, 612–614
embeddings, 593, 595, 621
JSON loader, 619–620
in network automation, 593

running configuration, questions and
responses, 614–618

sourcing JSON or raw text data, 614
textual segment, 593–594
vector stores, 594–596, 614

randomization, testcase, 123–124
range keyword, 472–473
reachability testing, 262–267
reconfiguration, 8
recording jobs, 337–341

replaying recorded jobs, 341–342
use cases, 337–339

RegEx (regular expressions), 24
RegEx filter, 461–462
regression testing, 73
replaying recorded jobs, 341–342
reporting

AEtest Reporter, 127–133, 185–186,
400

results.yaml file, 129–132
Standalone Reporter, 126–127

representer classes, 655
reserved parameters, 98
REST (Representational State

Transfer), 27–28
DELETE API, 357–358
GET API, 355–356
PATCH API, 358
POST API, 356–357
PUT API, 358–359

REST Connector, 253–258, 354
BIG-IP, 373–374

Connect API, 374–375
DELETE API, 376–377
Disconnect API, 375
GET API, 375
PATCH API, 376

678  REST Connector

POST API, 375–376
PUT API, 376

Catalyst Center, 363–364
Connect API, 364–365
Disconnect API, 365
GET API, 365

Cisco ACI APIC, 369–370
DELETE API, 371
GET API, 370
POST API, 370–371

DCNM, 380
DELETE API, 382
GET API, 381
PATCH API, 382
POST API, 381
PUT API, 383

installing, 354
IOS XE, 366

Connect API, 366–367
DELETE API, 368
GET API, 367
PATCH API, 368
POST API, 367–368
PUT API, 368

Nexus Dashboard, 383
DELETE command, 385
GET command, 383–384
POST command, 384
PUT command, 384–385

NSO, 359–360
Connect API, 360–361
DELETE API, 363
GET API, 361
PATCH API, 362
POST API, 361–362
PUT API, 362–363

NXOS, 355
DELETE API, 357–358
GET API, 355–356
PATCH API, 358
POST API, 356–357
PUT API, 358–359

SD-WAN vManage, 377–378
Connect API, 378
DELETE API, 380
GET API, 379
POST API, 379
PUT API, 379–380

specifying for a device, 354
RESTCONF, 56, 252–258
RESTful verbs, 353–354
result objects, 88–89, 185
result rollup, 90–91
results.yaml file, 129–132
Rich library, 234
risk, mitigation, 20
Robot Framework, 186, 333–335,

575–576
Easypy integration, 588–590
integration with pyATS, 582
keywords, 577–578

Genie, 585–588
pyATS, 582–584
Unicon, 584–585

test cases, 576–577
test execution, 580–581
test libraries, 580
variables, 578–579

rollback, 17
routing table

AI analysis, 606–609
creating an application to chat with,

623–631

SNMP (Simple Network Management Protocol)  679

RPC (remote procedure call), 26
run condition, 475–476
run_condition keyword, 475–476
runner

Drone, 35
GitHub Actions, 34

running a testscript, 108
runtime behavior, AEtest, 85–86

parent, 87
section ordering, 88
self keyword, 86–87

runtime.groups variable, 121

S
saving command output to a variable,

463–464
scalar variable syntax, 578–579
scaling performance, 397
schema

clean stage, 445–447
creating, 635–636

script
arguments, 96–97
Dockerfile, 623
Python, parsing, 159–160
startup.sh, 625
termination on failure, 477–478

ScriptDiscovery class, 125–126
SDK (software development kit), 31,

592
SDN (software-defined networking),

355
SD-WAN vManage, 377–378

Connect API, 378
DELETE API, 380
GET API, 379

POST API, 379
PUT API, 379–380

secret strings, 651
multiple representers, 653–655
representer classes, 655
securing, 651–653

section argument, 98
securing secret strings, 651–653
self keyword, 86–87
semantic analysis, 594
semantic search, 595, 596
service, provisioning, 9
setup section, testcase, 77
show commands, 189

learn model, 139–140
code, 142
structure, 140–142

parsing, 322–323
show ip interface brief command,

25, 26, 191, 207, 210, 214–215,
625–626

show running-config command, 285,
319, 431

show version command, 236–243
show version function, 406–407
simplicity, 170–171
skip conditions, testscript, 117–119
SLA (service-level agreement), 2–3
snapshot, 322

data exclusions, 331, 332
custom, 332
default, 331–332

differentials, 327
post-change, 326–327
pre-change, 324–326

SNMP (Simple Network Management
Protocol), 9–10

680  SOA (service-oriented architecture)

SOA (service-oriented architecture),
27

SOAP (Simple Object Access
Protocol), 27

software
-defined networking, 355
image management, 5, 10–11,

431–433
linting, 63–65
version testing, 235–243

software development
containerization, 503
extreme programming, 170
lifecycle, 234
methodology, 11, 17

Agile, 12–13, 18
DevOps, 13
Lean, 12
TDD (test-driven development),

169
waterfall, 11–12

scaling performance, 397
source control, 16, 18, 19, 23
Sparks, Geoffrey, “Database

Modeling in UML”, 217
speed, NetDevOps, 20
SSH (Secure Shell)

CLI options, 54–55
versus RESTCONF, 252–253
role in testing, 244–251

standalone execution, testscript,
109–114

Standalone execution, pyATS Clean,
437–438

Standalone Reporter, 126–127
standard arguments, 108–109
state, network, 324

known-good, 324

polling, 332–333
static analysis, 64
step/s, 79–80

attributes, 80–81
clean stage, 447–450
Drone, 35
GitHub Actions, 34
nested, 81–82

Steps class, 80
Steps object, 80
Streamlit.io, 621–622

creating an application to query a
routing table, 623–631

integration with LangChain,
622–623

structure
AEtest report, 128–129
learn model, 140–142
Ops, 323
testscript, 75, 78–79

structured data, 24. See also JSON
(JavaScript Object Notation);
YAML; YANG

JSON (JavaScript Object Notation),
24–25

XML (eXtensible Markup Language),
25–26

YAML, 26
YANG, 26

subnet, 3–4
subsections, Common Setup, 76
syslog, alarm, 9–10

T
tags

HTML, 225
Jinja2 template, 205

http://Streamlit.io

testbed  681

XML, 25
targets, 402–404
TaskLog, 179
Tcl module, 183–184
TDD (test-driven development), 14,

16, 49, 169, 234
applying to network automation,

172–174
in brownfield environments, 173–174
rules, 171
three-step approach, 171–172
workflow, 172–173

template, 305–307
Jinja2, 6–7, 285

Adaptive Card, 492–501
arguments, 306
configuration file, 305–307
context, 306
CSV file, 209
HTML, 226
markdown table, 211
markmap mind map, 213
Mermaid class diagram,

218–219
Mermaid entity relationship

diagram, 222–223
Mermaid flowchart, 216
Mermaid mind map, 224–225
Mermaid state diagram,

220–221
tags, 205
variables, 305

stage, 443–445
terminal server, device recovery,

435–436
terminal width 511 command, 55
test case, 576–577. See also Robot

Framework

execution, 580–581
results and reporting, 581–582

test libraries, 580
test parameter, 94–95

parametrization, 98
properties, 96
relationships, 95–96
reserved, 98
types, 96–98

test results
arguments, 90
interaction results, 90
result behavior, 89–90
result objects, 88–89, 185
result rollup, 90–91

testable, 117
testbed, 49, 51, 651. See also device

arguments, 306
benefits, 51
building, 53–54
Cisco DevNet Always-On IOS-XE

Sandbox, 235
creating, 66–67
device connection abstractions,

60–63
dynamic, 66–68
extended, 68–70
external sources of truth, 56–60
file, 5
intent_testbed.yaml, 267
keys and values, 53–54
mock, 60–61
object, 52–53

attributes, 57–58
interface, 59
link, 59
variables, 61

682  testbed

with power cycler, 422–423
single device, 54
topology module, 51–52
validation, 63–65
-wide configuration, 314–315

testbed.connect() function, 196
testcase, 77–78, 178–179, 253. See

also Blitz
cleanup section, 77
container, 77
discovery, 125–126
maximum failures, 124–125
must-pass, 121–123
randomization, 123–124
script termination on failure,

477–478
self, 86–87
setup section, 77
test section, 77
UID, 85

testing, 10, 14. See also TDD (test-
driven development)

arguments, 108
code, 73
feature, 271–276
for input errors, 248–251
intent validation, 267–271
interface, 243–244
interfaces for CRC errors, 177–178
linting, 16
logic, 86
negative, 477
neighbor relationshiops, 259–262
network, 234–243
pause on phrase, 133–134
reachability, 262–267
regression, 73

SSH role in, 244–251
unit, 172, 173

testscript, 78–79, 177
Common Cleanup, 78–79
datafile input, 98–104
debugging, 133–134
device cleaning, 438–443
Easypy execution, 114–117
flow control, 117

must-pass testcases, 121–123
running specific testcases,

119–120
skip conditions, 117–119
testcase grouping, 120–121

ios_xe_interface.py, 245
ios_xe_version_job.py, 236–243
learn_all.py, 340–341
running, 108
standalone execution, 109–114
structure, 75
triggers and verifications, 299–301

TestScript class, 82
text editor, 22–23
textual segment, 593–594
threading, 398–399
tool/s, 352–353

AI, 591
automation

agent-based, 21–22
agentless, 22

cURL, 28–29
element managers, 2
GitLab CI/CD, 33–34
image builder, 505
Image Builder, 507–509, 543–545
Jenkins, 33

verification/s  683

LangChain, 592–593
Mermaid, 215–217
network monitoring, 561
Postman, 29

topology module, 51–52, 180–181
topology YAML configuration, 386–

389
Torvalds, Linus, 23
TPS (Toyota Production System), 12
traditional network, automation, 2
training, role of pyATS job

recordings, 338
trigger, 290–291, 296–297

cluster, 292–293
datafile, 291–292
Drone, 35
job file, 283
in pyATS testscript, 299–301
writing, 293–296

troubleshooting, 330
pyATS, 45–46
role of job recordings, 338
XPRESSO, 534–536

U
UID, testcase, 85
UML, class diagram, 217–219
Unicon, 61–62

configure service, 315–316
copy service, 312–313
creating mock devices, 343–344
keywords, 584–585

unified diff format, 327–330
unit testing, 173
unittest, 73, 74

unstructured data, parsing, 137
untracked configuration, 303
upgrading, 10–11, 42–44
use cases

job recording, 337–339
mock device, 342–343

user keywords, 578
utilities, 186. See also tool/s

V
validation, 304–305

Clean file, 436–437
configuration, 7
intent, 267–271
testbed, 63–65

value keyword, 472
variables, 16

action output, 463–465
Robot Framework, 578–579
runtime.groups, 121
template, 305
testbed object, 61
testscript-level, 464–465
version_threshold, 241

vector data, 594
cosine similarity, 595–596
geospatial analysis, 595

vector stores, 594–596, 614, 621
velocity, 20
vendor-agnostic automation,

138–139
venv module, 31, 38
verification/s, 296–297

action output, 467–470
datafile, 288

684  verification/s

job file, 283
in pyATS testscript, 299–301
types, 287
writing, 288–290

version control, 16, 18, 19, 23, 23
version_threshold variable, 241
virtual environment, creating, 60–61
VM (virtual machine), 31, 504
VXLAN (Virtual eXtensible LAN),

3–4

W
waterfall methodology, 11–12, 17
Webex, 485

Adaptive Cards, 490–492, 500–501
alert, 10
integrating with pyATS, 486

health checks, 489–490
jobs, 487–489

sending a notification when a health
check fails, 525

Webex Team Notification plugin,
487–488

webhooks, 571
WebInteraction class, 90
while loop, 473
Womack, James, 12
workflow

GitHub Actions, 34
TDD (test-driven development),

172–173
writing

triggers, 293–296
verifications, 288–290

WSL (Windows Subsystem for Linux),
37

X
XML (eXtensible Markup Language),

25–26
XPath queries, 394–395
XPRESSO, 172

common issues, questions and
answers, 534
cannot connect to database, 535
cannot log in using default

admin, 535
ElasticSearch failed to start,

535
Error: No Resources Found,

535
general networking issues with

the installation, 535–536
references to S3, 535
unhealthy services, 535

features and benefits, 527–529
getting started

facilitating quick adoption,
536–538

transforming a pyATS job into
XPRESSO, 538–556

installing, 529–534

Y
YAML/YAML files, 5, 14, 26, 181,

306–307. See also topology YAML
configuration

applications, 51
Blitz, 459, 460–461
business-ready documents, 207–208
characteristics, 49–50
Clean, 423–424

clean stages, 424–427

ZTP (zero-touch provisioning)  685

device groups, 428–431
devices block, 424

creating, 56–57
datafiles, 98–104
health check, 517–520
testbed, 49. See also testbed

building, 53–54
Cisco DevNet Always-On IOS-

XE Sandbox, 235
dynamic, 66–68
extended, 68–70
external sources of truth,

56–60

interface object attribute list, 59
keys and values, 53–54
object attribute list, 57–58
validation, 63–65

YANG, 26
YANG Connector, 385–386
Yuan, Siming, 1

Z
“The Zen of Python”, 30
.zip folder, 180
ZTP (zero-touch provisioning), 6

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Introduction
	Chapter 9 pyATS Triggers and Verifications
	Genie Objects
	Genie Ops
	Genie Conf

	Genie Harness
	gRun
	Datafiles
	Device Configuration
	PTS (Profile the System)
	PTS Golden Config

	Verifications
	Verification Types
	Verification Datafile
	Writing a Verification

	Triggers
	Trigger Datafile
	Trigger Cluster
	Writing a Trigger

	Trigger and Verification Example
	Genie Harness (gRun)
	pyATS

	Summary

	Index

