
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137993642
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137993642
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137993642

OCP
Oracle Certified Professional

Java SE 17 Developer
(Exam 1Z0-829)
Programmer’s Guide

This page intentionally left blank

OCP
Oracle Certified Professional

Java SE 17 Developer
(Exam 1Z0-829)
Programmer’s Guide

Khalid A. Mughal
Vasily A. Strelnikov

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover image: your/Shutterstock

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital let-
ters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The views expressed in this book are those of the author and do not necessarily reflect the
views of Oracle.

Oracle America Inc. does not make any representations or warranties as to the accuracy,
adequacy or completeness of any information contained in this work, and is not responsible
for any errors or omissions.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2022951639

Copyright © 2023 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval sys-
tem, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the appro-
priate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-799364-2
ISBN-10: 0-13-799364-1

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited
to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.
Education is a powerful force for equity and change in our world. It has the poten-
tial to deliver opportunities that improve lives and enable economic mobility. As
we work with authors to create content for every product and service, we acknowl-
edge our responsibility to demonstrate inclusivity and incorporate diverse schol-
arship so that everyone can achieve their potential through learning. As the
world's leading learning company, we have a duty to help drive change and live
up to our purpose to help more people create a better life for themselves and to cre-
ate a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through
learning.

• Our educational products and services are inclusive and represent the rich
diversity of learners.

• Our educational content accurately reflects the histories and experiences of the
learners we serve.

• Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any con-
cerns or needs with this Pearson product so that we can investigate and address them.

• Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

This page intentionally left blank

To the loving memory of my mother, Zubaida Begum,
and my father, Mohammed Azim.

And to the future generation: Tobias Albert, Ronja Johanne
and Serine Begum—with all my love.

—K.A.M.

This page intentionally left blank

ix

Contents Overview

Figures xxi

Tables xxv

Examples xxix

Foreword xxxvii

Preface xxxix

1 Basics of Java Programming 1

2 Basic Elements, Primitive Data Types, and Operators 29

3 Declarations 97

4 Control Flow 151

5 Object-Oriented Programming 189

6 Access Control 323

7 Exception Handling 363

8 Selected API Classes 423

9 Nested Type Declarations 489

10 Object Lifetime 531

11 Generics 563

12 Collections, Part I: ArrayList<E> 643

x CONTENTS OVERVIEW

13 Functional-Style Programming 673

14 Object Comparison 741

15 Collections: Part II 781

16 Streams 879

17 Date and Time 1023

18 Localization 1095

19 Java Module System 1161

20 Java I/O: Part I 1231

21 Java I/O: Part II 1285

22 Concurrency: Part I 1365

23 Concurrency: Part II 1419

24 Database Connectivity 1511

25 Annotations 1555

26 Secure Coding 1599

A Taking the Java SE 17 and Java SE 11 Developer Exams 1615

B Exam Topics: Java SE 17 Developer 1623

C Exam Topics: Java SE 11 Developer 1629

D Annotated Answers to Review Questions 1635

E Mock Exam: Java SE 17 Developer 1709

F Annotated Answers to Mock Exam 1737

G Java Logging API Overview 1747

Index 1753

xi

Contents

Figures xxi

Tables xxv

Examples xxix

Foreword xxxvii

Preface xxxix
Writing This Book xxxix
About This Book xl
Using This Book xli
Book Website xliii
Request for Feedback xliii
About the Authors xliv
Acknowledgments xliv

1 Basics of Java Programming 1
1.1 The Java Ecosystem 2
1.2 Classes 5
1.3 Objects 8
1.4 Instance Members 9
1.5 Static Members 10
1.6 Inheritance 13
1.7 Aggregation 16

Review Questions 17
1.8 Sample Java Program 19
1.9 Program Output 24

Review Questions 26

xii CONTENTS

2 Basic Elements, Primitive Data Types, and Operators 29
2.1 Basic Language Elements 30
2.2 Primitive Data Types 41
2.3 Conversions 43
2.4 Type Conversion Contexts 46
2.5 Precedence and Associativity Rules for Operators 50
2.6 Evaluation Order of Operands 52
2.7 The Simple Assignment Operator = 54
2.8 Arithmetic Operators: *, /, %, +, - 58
2.9 The Binary String Concatenation Operator + 67
2.10 Variable Increment and Decrement Operators: ++, -- 69

Review Questions 71
2.11 Boolean Expressions 74
2.12 Relational Operators: <, <=, >, >= 74
2.13 Equality 75
2.14 Boolean Logical Operators: !, ^, &, | 78
2.15 Conditional Operators: &&, || 80
2.16 Integer Bitwise Operators: ~, &, |, ^ 82
2.17 Shift Operators: <<, >>, >>> 86
2.18 The Conditional Operator ?: 90
2.19 Other Operators: new, [], instanceof, -> 92

Review Questions 93

3 Declarations 97
3.1 Class Declarations 99
3.2 Method Declarations 100
3.3 Statements 101
3.4 Variable Declarations 102
3.5 Instance Methods and the Object Reference this 106
3.6 Method Overloading 108
3.7 Constructors 109
3.8 Static Member Declarations 112

Review Questions 115
3.9 Arrays 117
3.10 Parameter Passing 127
3.11 Variable Arity Methods 136
3.12 The main() Method 141
3.13 Local Variable Type Inference 142

Review Questions 147

4 Control Flow 151
4.1 Selection Statements 152
4.2 The switch Statement 155
4.3 The switch Expression 164

Review Questions 170

CONTENTS xiii

4.4 Iteration Statements 172
4.5 The while Statement 172
4.6 The do-while Statement 173
4.7 The for(;;) Statement 174
4.8 The for(:) Statement 176
4.9 Transfer Statements 179
4.10 Labeled Statements 179
4.11 The break Statement 180
4.12 The continue Statement 182
4.13 The return Statement 184

Review Questions 185

5 Object-Oriented Programming 189
5.1 Implementing Inheritance 191
5.2 The Object Reference super 206
5.3 Chaining Constructors Using this() and super() 209

Review Questions 215
5.4 Abstract Classes and Methods 218
5.5 Final Declarations 225

Review Questions 234
5.6 Interfaces 237

Review Questions 257
5.7 Arrays and Subtyping 259
5.8 Reference Values and Conversions 261
5.9 Reference Value Assignment Conversions 261
5.10 Method Invocation Conversions Involving References 265
5.11 Reference Casting and the instanceof Operator 269
5.12 Polymorphism 278

Review Questions 283
5.13 Enum Types 287
5.14 Record Classes 299
5.15 Sealed Classes and Interfaces 311

Review Questions 318

6 Access Control 323
6.1 Design Principle: Encapsulation 324
6.2 Java Source File Structure 325
6.3 Packages 326
6.4 Searching for Classes on the Class Path 337

Review Questions 341
6.5 Access Modifiers 345
6.6 Scope Rules 352
6.7 Implementing Immutability 356

Review Questions 360

xiv CONTENTS

7 Exception Handling 363
7.1 Stack-Based Execution and Exception Propagation 365
7.2 Exception Types 368
7.3 Exception Handling: try, catch, and finally 375
7.4 The throw Statement 386
7.5 The throws Clause 388

Review Questions 392
7.6 The Multi-catch Clause 397
7.7 The try-with-resources Statement 407
7.8 Advantages of Exception Handling 416

Review Questions 417

8 Selected API Classes 423
8.1 Overview of the java.lang Package 425
8.2 The Object Class 425
8.3 The Wrapper Classes 429

Review Questions 438
8.4 The String Class 439
8.5 The StringBuilder Class 464

Review Questions 471
8.6 The Math Class 478
8.7 The Random Class 482
8.8 Using Big Numbers 484

Review Questions 487

9 Nested Type Declarations 489
9.1 Overview of Nested Type Declarations 491
9.2 Static Member Types 495
9.3 Non-Static Member Classes 501

Review Questions 510
9.4 Local Classes 512
9.5 Static Local Types 519
9.6 Anonymous Classes 521

Review Questions 527

10 Object Lifetime 531
10.1 Garbage Collection 533
10.2 Reachable Objects 533
10.3 Facilitating Garbage Collection 536
10.4 Invoking Garbage Collection Programmatically 537

Review Questions 538
10.5 Initializers 540
10.6 Field Initializer Expressions 540
10.7 Static Initializer Blocks 545
10.8 Instance Initializer Blocks 551

CONTENTS xv

10.9 Constructing Initial Object State 555
Review Questions 558

11 Generics 563
11.1 Introducing Generics 565
11.2 Generic Types and Parameterized Types 567
11.3 Collections and Generics 578
11.4 Wildcards 579
11.5 Using References of Wildcard Parameterized Types 584
11.6 Bounded Type Parameters 591
11.7 Generic Methods and Constructors 593
11.8 Implementing a Simplified Generic Stack 598

Review Questions 600
11.9 Wildcard Capture 604
11.10 Flexibility with Wildcard Parameterized Types 607
11.11 Type Erasure 613
11.12 Implications for Overloading and Overriding 615
11.13 Limitations and Restrictions on Generic Types 623

Review Questions 636

12 Collections, Part I: ArrayList<E> 643
12.1 Lists 644
12.2 Declaring References and Constructing ArrayLists 646
12.3 Modifying an ArrayList<E> 651
12.4 Querying an ArrayList<E> 655
12.5 Iterating Over an ArrayList<E> 657
12.6 Converting an ArrayList<E> to an Array 658
12.7 Creating List Views 659
12.8 Arrays versus ArrayLists 662

Review Questions 667

13 Functional-Style Programming 673
13.1 Functional Interfaces 675
13.2 Lambda Expressions 679
13.3 Lambda Expressions and Anonymous Classes 688

Review Questions 693
13.4 Overview of Built-In Functional Interfaces 695
13.5 Suppliers 699
13.6 Predicates 703
13.7 Consumers 709
13.8 Functions 712
13.9 Two-Arity Specialization of Function<T, R>: BiFunction<T, U, R> 717
13.10 Extending Function<T,T>: UnaryOperator<T> 720
13.11 Extending BiFunction<T,T,T>: BinaryOperator<T> 721
13.12 Currying Functions 723

xvi CONTENTS

13.13 Method and Constructor References 724
13.14 Contexts for Defining Lambda Expressions 733

Review Questions 735

14 Object Comparison 741
14.1 The Objects Class 743
14.2 Implementing the equals() Method 744
14.3 Implementing the hashCode() Method 753
14.4 Implementing the java.lang.Comparable<E> Interface 761
14.5 Implementing the java.util.Comparator<E> Interface 769

Review Questions 774

15 Collections: Part II 781
15.1 The Java Collections Framework 783
15.2 Collections 790
15.3 Lists 801
15.4 Sets 804
15.5 Sorted Sets and Navigable Sets 810
15.6 Queues 814
15.7 Deques 821

Review Questions 826
15.8 Maps 830
15.9 Map Implementations 840
15.10 Sorted Maps and Navigable Maps 845

Review Questions 851
15.11 The Collections Class 856
15.12 The Arrays Class 864

Review Questions 874

16 Streams 879
16.1 Introduction to Streams 881
16.2 Running Example: The CD Record Class 882
16.3 Stream Basics 884
16.4 Building Streams 890
16.5 Intermediate Stream Operations 905
16.6 The Optional Class 940
16.7 Terminal Stream Operations 946
16.8 Collectors 978
16.9 Parallel Streams 1009

Review Questions 1016

17 Date and Time 1023
17.1 Date and Time API Overview 1024
17.2 Working with Dates and Times 1027

CONTENTS xvii

17.3 Using Temporal Units and Temporal Fields 1044
17.4 Working with Instants 1049
17.5 Working with Periods 1057
17.6 Working with Durations 1064
17.7 Working with Time Zones and Daylight Savings 1072
17.8 Converting Date and Time Values to Legacy Date 1088

Review Questions 1089

18 Localization 1095
18.1 Using Locales 1096
18.2 Properties Files 1100
18.3 Bundling Resources 1102

Review Questions 1112
18.4 Core API for Formatting and Parsing of Values 1115
18.5 Formatting and Parsing Number, Currency, and Percentage Values 1116
18.6 Formatting and Parsing Date and Time 1127
18.7 Formatting and Parsing Messages 1139

Review Questions 1153

19 Java Module System 1161
19.1 Making the Case for Modules 1163
19.2 The Modular JDK 1164
19.3 Module Basics 1168
19.4 Overview of Module Directives 1177
19.5 Creating a Modular Application 1179
19.6 Compiling and Running a Modular Application 1186
19.7 Creating JAR Files 1189
19.8 Open Modules and the opens Directive 1191
19.9 Services 1196
19.10 Creating Runtime Images 1204
19.11 Categories of Modules 1205
19.12 Migrating to Modules 1209
19.13 Exploring Modules 1211
19.14 Summary of Selected Operations with the JDK Tools 1218

Review Questions 1223

20 Java I/O: Part I 1231
20.1 Input and Output 1233
20.2 Byte Streams: Input Streams and Output Streams 1234
20.3 Character Streams: Readers and Writers 1241
20.4 The Console Class 1256

Review Questions 1259
20.5 Object Serialization 1261

Review Questions 1277

xviii CONTENTS

21 Java I/O: Part II 1285
21.1 Characteristics of a Hierarchical File System 1287
21.2 Creating Path Objects 1289
21.3 Working with Path Objects 1294
21.4 Operations on Directory Entries 1304
21.5 Reading and Writing Files Using Paths 1314
21.6 Managing File Attributes 1321
21.7 Creating Directory Entries 1339
21.8 Stream Operations on Directory Entries 1345

Review Questions 1355

22 Concurrency: Part I 1365
22.1 Threads and Concurrency 1367
22.2 Runtime Organization for Thread Execution 1369
22.3 Creating Threads 1370

Review Questions 1378
22.4 Thread Lifecycle 1380
22.5 Thread Issues 1408

Review Questions 1415

23 Concurrency: Part II 1419
23.1 Utility Classes TimeUnit and ThreadLocalRandom 1421
23.2 The Executor Framework 1423
23.3 The Fork/Join Framework 1447
23.4 Writing Thread-Safe Code 1451
23.5 Special-Purpose Synchronizers 1470
23.6 Synchronized Collections and Maps 1477
23.7 Concurrent Collections and Maps 1482

Review Questions 1504

24 Database Connectivity 1511
24.1 Introduction to Relational Databases 1512
24.2 Introduction to JDBC 1517
24.3 Establishing a Database Connection 1519
24.4 Creating and Executing SQL Statements 1522
24.5 Processing Query Results 1533
24.6 Customizing Result Sets 1539
24.7 Discovering Database and ResultSet Metadata 1543
24.8 Implementing Transaction Control 1545

Review Questions 1548

25 Annotations 1555
25.1 Basics of Annotations 1557
25.2 Declaring Annotation Types 1558

CONTENTS xix

25.3 Applying Annotations 1563
25.4 Meta-Annotations 1567
25.5 Selected Standard Annotations 1577
25.6 Processing Annotations 1587

Review Questions 1593

26 Secure Coding 1599
26.1 Application Security Overview 1600
26.2 Security Threat Categories 1602
26.3 Java Security Policies 1608
26.4 Additional Security Guidelines 1610

Review Questions 1611

A Taking the Java SE 17 and Java SE 11 Developer Exams 1615
A.1 Preparing for the Exam 1615
A.2 Registering for the Online Proctored Exam 1616
A.3 How the Online Proctored Exam Is Conducted 1618
A.4 The Questions 1619

B Exam Topics: Java SE 17 Developer 1623

C Exam Topics: Java SE 11 Developer 1629

D Annotated Answers to Review Questions 1635

E Mock Exam: Java SE 17 Developer 1709

F Annotated Answers to Mock Exam 1737

G Java Logging API Overview 1747
G.1 Purpose of the Logging API 1747
G.2 Configuring Logging 1748
G.3 Writing Log Messages 1749
G.4 Applying Guarded Logging 1751
G.5 Summary 1751

Index 1753

This page intentionally left blank

xxi

Figures

Chapter 1 11.1 UML Notation for Classes 6
1.2 UML Notation for Objects 9
1.3 Class Diagram Showing Static Members of a Class 11
1.4 Members of a Class 12
1.5 Class Diagram Depicting Inheritance Relationship 14
1.6 Class Diagram Depicting Aggregation 16

Chapter 2 292.1 Primitive Data Types in Java 41
2.2 Widening Primitive Conversions 44
2.3 Overflow and Underflow in Floating-Point Arithmetic 60
2.4 Numeric Promotion in Arithmetic Expressions 65

Chapter 3 973.1 Array of Arrays 126
3.2 Parameter Passing: Primitive Data Values 130
3.3 Parameter Passing: Reference Values 132
3.4 Parameter Passing: Arrays 133

Chapter 4 1514.1 Activity Diagram for if Statements 153
4.2 Form of the switch Statement with the Colon Notation 156
4.3 Activity Diagram for the switch Statement with the Colon Notation 157
4.4 Form of the switch Statement with the Arrow Notation 160
4.5 Activity Diagram for the switch Statement with the Arrow Notation 161
4.6 Activity Diagram for the while Statement 173
4.7 Activity Diagram for the do-while Statement 174
4.8 Activity Diagram for the for Statement 175
4.9 Enhanced for Statement 177

Chapter 5 1895.1 Inheritance Hierarchy 194
5.2 Inheritance Hierarchy for Example 5.2 197
5.3 Class Diagram for Example 5.8 220
5.4 Inheritance Hierarchies for Classes and Interfaces in Example 5.10 245
5.5 Inheritance Relationships for Interface Constants 255
5.6 Reference Type Hierarchy: Arrays and Subtype Covariance 259
5.7 Type Hierarchy to Illustrate Polymorphism 279
5.8 A Domain Model as Represented by Inheritance Hierarchy 312
5.9 Sealed Classes for Domain Modeling of Inheritance Hierarchy 313

5.10 Sealed Classes and Interfaces 316

xxii FIGURES

Chapter 6 3236.1 Java Source File Structure 326
6.2 Package Structure 327
6.3 Compiling Code into Package Directories 336
6.4 Searching for Classes 338
6.5 Accessibility of Class Members 348
6.6 Block Scope 355

Chapter 7 3637.1 Normal Method Execution 367
7.2 Exception Propagation 368
7.3 Partial Exception Inheritance Hierarchy 369
7.4 The try-catch-finally Construct 376
7.5 Exception Handling (Scenario 1) 378
7.6 Exception Handling (Scenario 2) 380
7.7 Exception Handling (Scenario 3) 382

Chapter 8 4238.1 Partial Inheritance Hierarchy in the java.lang Package 425
8.2 Converting Values among Primitive, Wrapper, and String Types 430
8.3 Incidental Whitespace in Text Blocks 462

Chapter 9 4899.1 Overview of Type Declarations 491
9.2 Static Member Classes and Interfaces 499
9.3 Outer Object with Associated Inner Objects 503
9.4 Non-Static Member Classes and Inheritance 508
9.5 Local Classes and Inheritance Hierarchy 517

Chapter 10 53110.1 Memory Organization at Runtime 535
Chapter 11 56311.1 Extending Generic Types 574

11.2 No Subtype Covariance for Parameterized Types 580
11.3 Partial Type Hierarchy for Node<? extends Number> 581
11.4 Partial Type Hierarchy for Node<? super Integer> 582
11.5 Partial Type Hierarchy for Selected Parameterized Types of Node<E> 583

Chapter 12 64312.1 Partial ArrayList Inheritance Hierarchy 645
Chapter 13 673Chapter 14 741Chapter 15 78115.1 The Core Interfaces 784

15.2 The Core Collection Interfaces and Their Implementations 786
15.3 The Core Map Interfaces and Their Implementations 787
15.4 Bulk Operations on Collections 791

Chapter 16 87916.1 Data Processing with Streams 885
16.2 The Core Stream Interfaces 890
16.3 Filtering Stream Elements 913
16.4 Selecting Distinct Elements 916
16.5 Skipping Elements at the Head of a Stream 916
16.6 Truncating a Stream 917
16.7 Mapping 923
16.8 Incorrect Solution to the Query 925
16.9 Mapping a Stream of Streams 925

16.10 Flattening Streams 926
16.11 Reducing with an Initial Value 957
16.12 Parallel Functional Reduction 963
16.13 Sequential Mutable Reduction 966
16.14 Parallel Mutable Reduction 967

FIGURES xxiii

16.15 Collecting to a Map 982
16.16 Grouping 986
16.17 Multilevel Grouping as a Two-Dimensional Matrix 988
16.18 Partitioning 991

Chapter 17 1023Chapter 18 109518.1 Core Classes for Formatting in the java.text Package 1115
Chapter 19 116119.1 Structure of JDK 17 Installation 1166

19.2 Partial Module Graph of Java SE 17 Modules 1167
19.3 Modules and Module Declarations 1170
19.4 Module Graph and Implicit Dependencies 1173
19.5 Module Declarations and Module Graph 1175
19.6 Implied Module Dependencies 1176
19.7 Qualified Export 1177
19.8 Module Graph of the adviceApp Application 1180
19.9 Application Directory Structure 1181

19.10 Exploded Module Structure for the model Module 1181
19.11 Module Graph and Module Declarations 1182
19.12 Compiling Exploded Modules Containing Source Code 1183
19.13 Compiling the model Module 1187
19.14 Creating Modular JARs 1188
19.15 Module Graph and Module Declarations for Services 1198
19.16 Bottom-Up Strategy for Code Migration 1210
19.17 Top-Down Strategy for Code Migration 1211
19.18 Module Graph Using the jdeps Tool 1217

Chapter 20 123120.1 Partial Byte Stream Inheritance Hierarchies in the java.io Package 1235
20.2 Stream Chaining for Reading and Writing Binary Values to a File 1239
20.3 Selected Character Streams in the java.io Package 1242
20.4 Setting Up a PrintWriter to Write to a File 1248
20.5 Setting Up Readers to Read Characters 1250
20.6 Buffered Writers 1251
20.7 Buffered Readers 1252
20.8 Keyboard and Display as Console 1256
20.9 Object Stream Chaining 1261

Chapter 21 128521.1 Creating Path Objects 1291
Chapter 22 136522.1 Runtime Data Areas 1369

22.2 Spawning Threads Using a Runnable Object 1372
22.3 Spawning Threads—Extending the Thread Class 1375
22.4 Thread States 1381
22.5 Starting a Thread 1386
22.6 Running and Yielding 1387
22.7 Blocked for Lock Acquisition 1388
22.8 Sleeping and Waking Up 1396
22.9 Timed Waiting and Notifying 1397

22.10 Thread Coordination 1398
22.11 Timed Joining of Threads 1403
22.12 Blocked for I/O 1405
22.13 Thread Termination 1405

http://java.io
http://java.io

xxiv FIGURES

22.14 Deadlock 1409
Chapter 23 141923.1 Executor Interfaces in the java.util.concurrent Package 1424

23.2 Executor Service Lifecycle 1428
23.3 Selected Interfaces and Classes in the Lock API 1461
23.4 Concurrent Collections in the java.util.concurrent Package 1485
23.5 Concurrent Maps in the java.util.concurrent Package 1490
23.6 Blocking Queues in the java.util.concurrent Package 1495
23.7 Copy-on-Write Collections in the java.util.concurrent Package 1501

Chapter 24 151124.1 Layered Database Connectivity 1517
Chapter 25 155525.1 API Documentation of a Deprecated Method 1582

25.2 Selected Types from the Reflection API 1588
Chapter 26 1599

xxv

Tables

Chapter 1 11.1 Terminology for Class Members 13
1.2 Format Specifier Examples 26

Chapter 2 292.1 Keywords in Java 31
2.2 Contextual Keywords 31
2.5 Separators in Java 32
2.6 Examples of Literals 32
2.3 Reserved Keywords Not Currently in Use 32
2.4 Reserved Literals in Java 32
2.7 Examples of Decimal, Binary, Octal, and Hexadecimal Literals 33
2.8 Representing Signed byte Values Using Two’s Complement 34
2.9 Examples of Character Literals 37

2.10 Escape Sequences 38
2.11 Examples of Escape Sequence \ddd 38
2.13 Range of Character Values 42
2.14 Range of Floating-Point Values 42
2.12 Range of Integer Values 42
2.15 Boolean Values 43
2.16 Summary of Primitive Data Types 43
2.17 Selected Conversion Contexts and Conversion Categories 47
2.18 Operator Summary 51
2.19 Examples of Truncated Values 58
2.20 Arithmetic Operators 59
2.21 Examples of Arithmetic Expression Evaluation 64
2.22 Arithmetic Compound Assignment Operators 67
2.23 Relational Operators 74
2.24 Primitive Data Value Equality Operators 75
2.25 Reference Equality Operators 76
2.26 Truth Values for Boolean Logical Operators 78
2.27 Boolean Logical Compound Assignment Operators 79
2.28 Conditional Operators 80
2.29 Truth Values for Conditional Operators 80
2.30 Integer Bitwise Operators 83
2.31 Result Table for Bitwise Operators 83

xxvi TABLES

2.32 Examples of Bitwise Operations 84
2.33 Bitwise Compound Assignment Operators 85
2.34 Shift Operators 86
2.35 Shift Compound Assignment Operators 90

Chapter 3 973.1 Default Values 103
3.2 Parameter Passing by Value 128

Chapter 4 1514.1 Comparing the switch Statement and the switch Expression 169
4.2 The return Statement 184

Chapter 5 1895.1 Overriding, Hiding, and Overloading of Methods 204
5.2 Summary of Member Declarations in an Interface (Part I) 239
5.3 Summary of Member Declarations in an Interface (Part II) 239
5.4 Types and Values 259

Chapter 6 3236.1 Compiling and Executing Non-Modular Java Code 341
6.2 Access Modifiers for Top-Level Reference Types (Non-Modular) 347
6.3 Accessibility of Members in a Class (Non-Modular) 352
6.4 Accessing Members within a Class 353
6.5 Examples of Immutable Classes 356

Chapter 7 3637.1 Comparing Checked and Unchecked Exceptions 392
Chapter 8 4238.1 Indenting Lines in a String 457

8.2 Incidental Whitespace in Text Blocks 463
8.3 Applying Rounding Functions 480
8.4 Big Number Classes 485

Chapter 9 4899.1 Various Aspects of Type Declarations 494
Chapter 10 531Chapter 11 56311.1 Summary of Subtyping Relationships for Generic Types 581

11.2 Get and Set Operations Using Parameterized References 587
11.3 Summary of Get and Set Operations Using Parameterized References 590
11.4 Examples of Type Erasure 614
11.5 Examples of Reifiable Types 624
11.6 Examples of Non-Reifiable Types 624

Chapter 12 64312.1 Summary of Arrays versus ArrayLists 662
Chapter 13 67313.1 Basic Functional Interfaces in the java.util.function Package 695

13.2 Built-In Functional Interfaces in the java.util.function Package 696
13.3 Summary of Built-In Functional Interfaces 698
13.4 Suppliers 699
13.5 Predicates 703
13.6 Consumers 709
13.7 Functions 712
13.8 Two-arity Functions 718
13.9 Unary Operators 720

13.10 Binary Operators 722
13.11 Method and Constructor References 725

Chapter 14 741Chapter 15 78115.1 Core Interfaces and Concrete Classes in the Collections Framework 784
15.2 Summary of Collection and Map Implementations 788
15.3 Bulk Operations and Set Logic 804
15.4 Summary of Methods in the Queue Interface 815
15.5 Summary of Deque Methods 822

TABLES xxvii

15.6 Summary of Scenarios Using Advanced Key-Based Operations 836
15.7 Map Implementations 840

Chapter 16 87916.1 Summary of Stream Building Methods 904
16.2 Interoperability between Stream Types 934
16.3 Selected Aspects of Intermediate Stream Operations 938
16.4 Intermediate Stream Operations 939
16.5 Terminal Stream Operations 977
16.6 Additional Terminal Operations in the Numeric Stream Interfaces 978
16.7 Static Methods in the Collectors Class 1005
16.8 Method Comparison: The Stream Interfaces and the Collectors Class 1008

Chapter 17 102317.1 Fields in Selected Classes in the Date and Time API 1025
17.2 Selected Method Name Prefixes in the Temporal Classes 1026
17.3 Selected Common Methods in the Temporal Classes 1026
17.4 Some Differences between the Period Class and the Duration Class 1072

Chapter 18 109518.1 Selected Language Codes 1097
18.2 Selected Country/Region Codes 1097
18.3 Selected Predefined Locales for Languages 1097
18.4 Selected Predefined Locales for Countries 1097
18.5 Result and Parent Bundles (See Example 18.3) 1110
18.6 Compact Number Styles 1120
18.7 Formatting Numbers to Compact Form 1121
18.8 Parsing Compact Form to Numbers 1122
18.9 Selected Rounding Modes 1123

18.10 Selected Number Format Pattern Symbols for the United States 1125
18.11 Selected ISO-Based Predefined Formatters for Date and Time 1130
18.13 Using Style-Based Formatters 1132
18.12 Format Styles for Date and Time 1132
18.14 Using Style-Based Parsers 1133
18.15 Selected Date/Time Pattern Letters 1135
18.16 Format Type and Format Style Combinations for Format Elements 1140

Chapter 19 116119.1 Module Accessibility Rules 1174
19.2 Overview of Module Directives 1177
19.3 The open Modifier for Modules 1178
19.4 How JARs Are Handled Depends on the Path 1206
19.5 Module Comparison 1208
19.6 Selected Operations with the JDK Tools 1218
19.7 Selected Options for the javac Tool 1219
19.8 Selected Options for the java Tool 1220
19.9 Selected Options for the jar Tool 1221

19.10 Selected Options for the jdeps Tool 1222
19.12 Selected Common Shorthand Options for JDK Tools 1223
19.11 Selected Options for the jlink Tool 1223

Chapter 20 123120.1 Selected Input Streams 1235
20.2 Selected Output Streams 1236
20.3 The DataInput and DataOutput Interfaces 1238
20.4 Selected Readers 1242

xxviii TABLES

20.5 Selected Writers 1243
20.6 Print Methods of the PrintWriter Class 1246
20.7 Correspondence between Selected Byte and Character Streams 1255

Chapter 21 128521.1 Using Current and Parent Directory Designators 1289
21.2 Converting to an Absolute Path 1298
21.3 Normalizing Paths 1299
21.4 Resolving Paths 1300
21.5 Constructing a Relative Path between Two Paths 1301
21.7 Converting to a Real Path 1302
21.6 Link Option 1302
21.8 Standard Copy Options 1308
21.9 Selected Standard Open Options 1314

21.10 POSIX File Permissions 1326
21.11 Interfaces for Read-Only Access to File Attributes 1330
21.12 Selected File Attribute Views 1334
21.13 File Visit Option 1349

Chapter 22 136522.1 Thread States Defined by the Thread.State Enum Type 1382
22.2 Selective Priorities Defined by the Thread Class 1385

Chapter 23 141923.1 Constants Defined by the java.util.concurrent.TimeUnit Enum Type 1421
23.2 Selected Executor Services Provided by the Executors Utility Class 1426
23.3 Task-Defining Classes 1448
23.4 Selected Atomic Classes 1457
23.5 Concurrent Collections in the java.util.concurrent Package 1486
23.6 Characteristics of Concurrent Collections 1486
23.7 Selected Methods in the ConcurrentLinkedQueue Class 1487
23.8 Selected Methods in the ConcurrentLinkedDeque Class 1487
23.9 Concurrent Maps in the java.util.concurrent Package 1491

23.10 Characteristics of Concurrent Maps 1491
23.11 Blocking Queues in the java.util.concurrent Package 1496
23.13 Selected Methods in the BlockingQueue Interface 1497
23.12 Characteristics of Blocking Queues 1497
23.14 Selected Methods in the BlockingDeque Interface 1499
23.15 Copy-on-Write Collections in the java.util.concurrent Package 1502
23.16 Characteristics of Copy-on-Write Collections 1502

Chapter 24 151124.1 Definition of the compositions Table 1513
24.2 Data in the compositions Table 1513
24.3 Selected Constants Defined in the ResultSet Interface 1539

Chapter 25 155525.1 Retention Policy Values for the @Retention Meta-Annotation 1568
25.2 The ElementType Values for the @Target Meta-Annotation 1569
25.3 Summary of Selected Standard Annotations 1586

Chapter 26 1599

xxix

Examples

Chapter 1 11.1 Basic Elements of a Class Declaration 7
1.2 Static Members in Class Declaration 11
1.3 Defining a Subclass 15
1.4 Using Aggregation 17
1.5 A Sample Program 20
1.6 A Single-File Source-Code Program 22

Chapter 2 292.1 Evaluation Order of Operands and Arguments 53
2.2 Numeric Promotion in Arithmetic Expressions 64
2.3 Short-Circuit Evaluation Involving Conditional Operators 81
2.4 Bitwise Operations 84

Chapter 3 973.1 Default Values for Fields 104
3.2 Flagging Uninitialized Local Variables of Primitive Data Types 104
3.3 Flagging Uninitialized Local Reference Variables 105
3.4 Using the this Reference 107
3.5 Namespaces 110
3.6 Accessing Static Members in a Class 113
3.7 Using Arrays 121
3.8 Using Anonymous Arrays 123
3.9 Using Multidimensional Arrays 126

3.10 Passing Primitive Values 129
3.11 Passing Reference Values 131
3.12 Passing Arrays 132
3.13 Array Elements as Primitive Data Values 134
3.14 Array Elements as Reference Values 135
3.15 Calling a Variable Arity Method 138
3.16 Passing Program Arguments 142
3.17 Illustrating Local Variable Type Reference 143

Chapter 4 1514.1 Fall-Through in a switch Statement with the Colon Notation 158
4.2 Nested switch Statements with the Colon Notation 159
4.3 Nested switch Statements with the Arrow Notation 161
4.4 Strings in a switch Statement 162
4.5 Enums in a switch Statement 163
4.6 A yield Statement in a switch Expression with the Colon Notation 165

xxx EXAMPLES

4.7 Statement Blocks in a switch Expression with the Arrow Notation 167
4.8 Expression Actions in a switch Expression with the Arrow Notation 168
4.9 Returning Multiple Values as a Record from a switch Expression 168

4.10 The break Statement 180
4.11 Labeled break Statement 182
4.12 The continue Statement 183
4.13 Labeled continue Statement 183
4.14 The return Statement 185

Chapter 5 1895.1 Extending Classes: Inheritance and Accessibility 192
5.2 Overriding, Overloading, and Hiding 198
5.3 Ambiguous Call to Overloaded Methods 202
5.4 Using the super Keyword 207
5.5 Constructor Overloading 209
5.6 The this() Constructor Call 210
5.7 The super() Constructor Call 212
5.8 Using Abstract Classes 222
5.9 Using the final Modifier 227

5.10 Implementing Interfaces 241
5.11 Default Methods in Interfaces 247
5.12 Inheriting Default Method Implementations from Superinterfaces 249
5.13 Inheriting Method Implementations from Supertypes 250
5.14 Static Methods in Interfaces 251
5.15 Private Methods in Interfaces 253
5.16 Constants in Interfaces 254
5.17 Inheriting Constants in Interfaces 256
5.18 Assigning and Passing Reference Values 262
5.19 Choosing the Most Specific Method (Simple Case) 266
5.20 Overloaded Method Resolution 268
5.21 The instanceof Type Comparison and Cast Operators 272
5.22 Using the instanceof Type Comparison Operator 273
5.23 Using Polymorphism 280
5.24 Using Enums 289
5.25 Declaring Enum Constructors and Members 291
5.26 Declaring Constant-Specific Class Bodies 295
5.27 The CD Class 299
5.28 The CD Record Class 301
5.29 Normal Canonical Record Constructor 305
5.30 Compact Record Constructor and Non-Canonical Constructor 306
5.31 Other Member Declarations in a Record Class 309
5.32 Declaring sealed, non-sealed, and final Classes 314
5.33 Using Sealed Classes 318

Chapter 6 3236.1 Defining Packages and Using Type Import 328
6.2 Single Static Import 331
6.3 Avoiding the Interface Constant Antipattern 332
6.4 Importing Enum Constants 333
6.5 Shadowing Static Import 333

EXAMPLES xxxi

6.6 Conflict in Importing a Static Method with the Same Signature 335
6.7 Access Modifiers for Top-Level Reference Types 345
6.8 Accessibility of Class Members 349
6.9 Class Scope 354

6.10 Implementing an Immutable Class 356
Chapter 7 3637.1 Method Execution 365

7.2 The try-catch Construct 378
7.3 Exception Propagation 380
7.4 The try-catch-finally Construct 383
7.5 The try-finally Construct 384
7.6 The finally Clause and the return Statement 385
7.7 Throwing Exceptions Programmatically 387
7.8 The throws Clause 389
7.9 Using Multiple catch Clauses 398

7.10 Using the Multi-catch Clause 399
7.11 Precise Rethrowing of Exceptions 401
7.12 Precise throws Clause 402
7.13 Conditions for Rethrowing Final Exceptions 404
7.14 Chaining Exceptions 405
7.15 Naive Resource Management 407
7.16 Explicit Resource Management 408
7.17 Using try with Automatic Resource Management (ARM) 411
7.18 Implementing the AutoCloseable Interface 413

Chapter 8 4238.1 Methods in the Object Class 427
8.2 Text Representation of Integers 436
8.3 String Construction and Internment 443
8.4 Reading Characters from a String 445
8.5 Controlling String Builder Capacity 470

Chapter 9 4899.1 Overview of Type Declarations 493
9.2 Static Member Types 495
9.3 Importing Static Member Types 498
9.4 Accessing Members in Enclosing Context (Static Member Classes) 499
9.5 Defining and Instantiating Non-Static Member Classes 501
9.6 Qualified this and Qualified Class Instance Creation Expression 505
9.7 Inheritance Hierarchy and Enclosing Context 507
9.8 Extending Inner Classes 508
9.9 Declaring Local Classes 513

9.10 Accessing Local Declarations in the Enclosing Block (Local Classes) 514
9.11 Accessing Members in the Enclosing Class (Local Classes) 516
9.12 Instantiating Local Classes 517
9.13 Defining Static Local Record Classes 520
9.14 Defining Anonymous Classes 522
9.15 Accessing Declarations in Enclosing Context (Anonymous Classes) 526

Chapter 10 53110.1 Initializer Expression Order and Method Calls 542
10.2 Exceptions in Initializer Expressions 544
10.3 Static Initializers and Forward References 547

xxxii EXAMPLES

10.4 Static Initializers and Order of Execution 548
10.5 Static Initializer Blocks and Exceptions 549
10.6 Instance Initializers and Forward References 552
10.7 Instance Initializer Block in Anonymous Class 553
10.8 Exception Handling in Instance Initializer Blocks 554
10.9 Object State Construction 556

10.10 Initialization Anomaly under Object State Construction 557
Chapter 11 56311.1 A Legacy Class 566

11.2 A Generic Class for Nodes 568
11.3 A Generic Interface and Its Implementation 572
11.4 A Non-Generic Class Implementing a Generic Interface 573
11.5 Extending Generic Types 574
11.6 Unchecked Warnings 577
11.7 Illustrating Get and Set Operations Using Parameterized References 587
11.8 Implementing the Comparable<E> Interface 592
11.9 Declaring Generic Methods 593

11.10 Implementing a Simplified Generic Stack 598
11.11 Using Recursive Bounds 612
11.12 Using the @Override Annotation 618
11.13 Subsignatures 619
11.14 Overriding from Generic Supertype 619
11.15 Missing Supertype Parameterization 620
11.16 Genericity Cannot be Added to Inherited Methods 621
11.17 Restrictions on Exception Handling 632
11.18 Type Parameter in throws Clause 633
11.19 Generic Nested Types 634
11.20 Instantiating Generic Nested Classes 635
11.21 Enum Implements Parameterized Generic Interface 635

Chapter 12 64312.1 Using an ArrayList 663
Chapter 13 67313.1 Accessing Members in the Enclosing Object 686

13.2 Accessing Local Variables in the Enclosing Method 688
13.3 Filtering an ArrayList<E> 689
13.4 Implementing Suppliers 701
13.5 Implementing the BiPredicate<T, U> Functional Interface 707
13.6 Implementing Functions 714

Chapter 14 74114.1 Not Overriding the Object.equals() Method 744
14.2 Implications of Not Overriding the Object.equals() Method 745
14.3 Implementing the equals() Method 748
14.4 Implications of Implementing the equals() Method 751
14.5 Implications of Not Overriding the Object.hashCode() Method 755
14.6 Implementing the hashCode() Method 757
14.7 Implications of Implementing the hashCode() Method 759
14.8 Implementing the compareTo() Method of the Comparable<E> Interface 763
14.9 Implications of Implementing the compareTo() Method 766

14.10 Natural Ordering and Total Orderings 770
14.11 Using a Comparator for Version Numbers 772

EXAMPLES xxxiii

Chapter 15 78115.1 Iterating Over a Collection 792
15.2 Converting Collections to Arrays 799
15.3 Using Lists 803
15.4 Iterating Over Sets 807
15.5 Using Sets 809
15.6 Using Navigable Sets 813
15.7 Using Priority Queues 818
15.8 Demonstrating Deque Operations 823
15.9 Using Deques as a LIFO Stack and as a FIFO Queue 825

15.10 Using Maps 844
15.11 Using Navigable Maps 849

Chapter 16 87916.1 The CD Example Classes 883
16.2 Data Processing Using Streams 888
16.3 Stream Mapping and Loop Fusion 906
16.4 Order of Intermediate Operations 909
16.5 Filtering 918
16.6 Examining Stream Elements 920
16.7 Sorting Streams 930
16.8 Using Optionals 941
16.9 Using Numerical Optionals 945

16.10 Identity Matrix Test 951
16.11 Implementing Functional Reductions 958
16.12 Implementing Mutable Reductions 968
16.13 Flat mapping 996
16.14 Benchmarking 1012

Chapter 17 102317.1 Creating Local Dates and Local Times 1031
17.2 Using Local Dates and Local Times 1037
17.3 Temporal Arithmetic 1043
17.4 Valid Temporal Units and Temporal Fields 1047
17.5 Period-Based Loop 1062
17.6 More Temporal Arithmetic 1063
17.7 Duration-Based Loop 1071
17.8 Flight Time Information 1080
17.9 Adjusting for DST Crossovers 1084

17.10 Converting to Legacy Date 1089
Chapter 18 109518.1 Understanding Locales 1099

18.2 The BasicResources Bundle Family (See Also Example 18.3) 1104
18.3 Using Resource Bundles (See Also Example 18.2) 1105
18.4 Locating Resource Bundles 1111
18.5 Rounding Modes 1124
18.6 Using the DecimalFormat class 1126
18.7 Formatting and Parsing with Letter Patterns 1137
18.8 Formatting Compound Messages 1143
18.9 Using Choice Pattern 1147

18.10 Using the ChoiceFormat Class 1149
Chapter 19 116119.1 Source Code Files for the adviceApp Application 1184

xxxiv EXAMPLES

19.2 Selected Source Code Files in the adviceOpen Application 1193
19.3 Specifying the Advice Service Interface 1197
19.4 Implementing the Advice Service Providers 1199
19.5 Implementing the Advice Service Locator 1201
19.6 Implementing of the Advice Service Consumer 1203

Chapter 20 123120.1 Copying a File Using a Byte Buffer 1237
20.2 Reading and Writing Binary Values 1240
20.3 Copying a File Using a Character Buffer 1245
20.4 Demonstrating Readers and Writers, and Character Encoding 1253
20.5 Changing Passwords 1258
20.6 Object Serialization 1263
20.7 Non-Serializable Objects 1266
20.8 Customized Serialization 1269
20.9 Serialization and Inheritance 1272

20.10 Class Versioning 1276
Chapter 21 128521.1 Querying Path Objects 1296

21.2 Reading and Writing Text Files 1316
21.3 Reading and Writing Bytes 1319
21.4 Accessing Individual Attributes 1321
21.5 Traversing the Directory Hierarchy 1350

Chapter 22 136522.1 Implementing the Runnable Interface 1374
22.2 Extending the Thread Class 1376
22.3 Thread States 1384
22.4 Mutual Exclusion 1389
22.5 Interrupt Handling 1394
22.6 Waiting and Notifying 1400
22.7 Joining of Threads 1404
22.8 Thread Termination 1407
22.9 Deadlock 1409

22.10 Livelock 1411
22.11 Starvation 1413

Chapter 23 141923.1 Executor Lifecycle 1429
23.2 Submitting Tasks and Handling Task Results 1438
23.3 Executing Scheduled One-Shot Tasks 1441
23.4 Executing Scheduled Periodic Tasks 1443
23.5 Task Cancellation 1446
23.6 Filtering Values Using Fork/Join Framework 1449
23.7 Testing Counter Implementations 1451
23.8 Visibility of Shared Data 1454
23.9 Volatile Counter 1456

23.10 Atomic Counter 1458
23.11 Synchronized Counter 1460
23.12 Reentrant Lock Counter 1465
23.13 Reentrant Read-Write Lock Counter 1467
23.14 Cyclic Barrier 1473
23.15 Count-Down Latch 1475

EXAMPLES xxxv

23.16 Serial Access in Synchronized Views of Collections 1479
23.17 Compound Mutually Exclusive Operation 1481
23.18 Concurrent Collections 1488
23.19 Using a Concurrent Map 1493
23.20 Linked Blocking Queue 1500
23.21 Copy-on-Write Array List 1503

Chapter 24 151124.1 Connecting to the musicDB Database 1521
24.2 Executing a Prepared Statement 1528
24.3 Prepared Statement to Execute INSERT, UPDATE, and DELETE 1529
24.4 Stored Procedures and Functions 1532
24.5 Processing a ResultSet 1537
24.6 Using ResultSet Options 1542
24.7 Discovering Metadata for the Database and ResultSet 1544
24.8 Controlling Transactions 1546

Chapter 25 155525.1 Using the @Deprecated Annotation 1580
25.2 Using the @SuppressWarnings Annotation 1583
25.3 Using the @SafeVarargs Annotation 1585
25.4 Processing Annotations 1589
25.5 Annotation Processor 1592

Chapter 26 1599

This page intentionally left blank

xxxvii

Foreword

In over 25 years of teaching Java, one of the recurring questions I am asked is why one
would bother to pursue Java certification. Obviously one answer is that it might be
helpful in pursuit of a job, or a better job, as a Java programmer. But whether that is
relevant is dependent on the job market. There is another answer that does not
depend on the ever-changing ratio of applicants to vacancies, and it is the answer that
I have always preferred. That answer is that it is good for anyone who claims to take
a skill seriously to do two things. One is to be measured by the standards of one’s
peers, and the other is to push oneself to learn and improve continuously. Being sat-
isfied with “good enough” must surely be a sign of some degree of mediocrity.

These days Java training is widely available from many sources (including video-
based training that I offer). Each has its pros and cons, but what makes Khalid and
Vasily’s book stand out is probably the thoroughness of the treatment that is
offered in these pages. Khalid has a long history teaching at the university level,
and good teaching is a very different skill from merely being an expert. Far too
much of what we are offered as training or self-study material these days is, on
closer analysis, simply an enumeration of facts. Good teaching requires building
not just knowledge but understanding, layer upon layer, so that it sticks.

One aspect of teaching and learning that is sadly little understood is how we learn.
If you want to get better at lifting heavy weights, most of us would recognize that
somewhere in the process, you have to do just that: lift heavy weights. That is
essentially true of all human skills. We must practice (and practice diligently) those
things at which we wish to succeed. In the case of learning, what we want to be
able to do is to recall facts and apply them on demand. That means, quite literally,
that we must practice the act of recalling those facts. To this end, you will find
extensive review questions between these covers. These will provide you with the
opportunity to practice the act of recall and thereby solidify your knowledge and
understanding. That way, not only can you expect to pass what is undoubtedly a
challenging exam, but you can also expect to become a better Java programmer.

Good luck in your study!

Simon Roberts
President, Dancing Cloud Services, LLC

This page intentionally left blank

xxxix

Preface

Writing This Book

Java has been around for over 25 years. During this time, the Java ecosystem has
evolved to become the platform of choice for developing software systems, and the
Java certification has evolved with it. The goal of this book is twofold: to provide
a comprehensive guide, not only for learning Java, and also to nail the Java certifi-
cation exams.

This book provides extensive coverage for the following Java certifications:

• Oracle Certified Professional (OCP), Java SE 17 Developer, and its required exam,
Java SE 17 Developer (1Z0-829) (for details, see Appendix B)

• Oracle Certified Professional (OCP), Java SE 11 Developer, and its required exam,
Java SE 11 Developer (1Z0-819) (for details, see Appendix C)

The exam syllabus is defined by a set of exam objectives. The exam objectives have
evolved to become more high-level, with a smattering of specific topics, leaving
plenty of room for interpretation as to which topics are covered by an exam objec-
tive. The scope of the exam objectives is thus very difficult to define, and entails
exhaustive coverage of the Java language features and its many APIs to be on the
safe side. This factor is the major cause of the considerable size of this book.

Our approach to writing this book has not changed from the one we employed for
our previous books, mainly because it has proved successful. The emphasis remains
on analyzing code scenarios, rather than esoteric syntax of individual language con-
structs. The exam continues to require actual experience with the language, not just
mere recitation of facts. We still claim that proficiency in the language is the key to
success.

Since the exam emphasizes the core features of Java, this book provides in-depth
coverage of topics related to those features.This book is also no different from our
previous books in one other important aspect: It is a one-stop guide, providing a
mixture of theory and practice that enables readers to prepare for the exam. It can
be used to learn Java and to prepare for the exam. After the exam is passed, it can
also be used as a handy reference for the Java language.

xl PREFACE

All elements found in our previous books (e.g., examples, figures, tables, review
questions, mock exam questions) can be found in this one as well. We continue to
use UML (Unified Modeling Language) extensively to illustrate concepts and lan-
guage constructs, and all numbered examples continue to be complete Java pro-
grams ready for experimentation.

With that, dear reader, we wish you all the best should you decide to go down the
path of Java certification. May your loops terminate and your exceptions get caught!

About This Book

This book provides extensive coverage of the core features of the Java program-
ming language and its core application programming interface (API). The book is
primarily intended for professionals who want to prepare for the Java SE 17 or Java
SE 11 Developer Exams, but it is readily accessible to any programmer who wants to
master the language. For both purposes, it provides in-depth coverage of essential
features of the language and its core API.

The demand for well-trained and highly skilled Java programmers remains
unabated. Oracle offers many Java certifications that professionals can take to val-
idate their skills (see https://education.oracle.com). The certification provides
members of the IT industry with a standard to use when hiring such professionals,
and it allows professionals to turn their Java skills into credentials that are impor-
tant for career advancement.

The book provides extensive coverage of all the objectives defined by Oracle for
both the Java SE 17 and Java SE 11 Developer Exams. The exam objectives are selec-
tive, however, and do not include many of the essential features of Java. This book
covers many additional topics that every Java programmer should master to be
truly proficient. In this regard, the book is a comprehensive primer for learning the
Java programming language. After mastering the language by working through
this book, the reader can confidently sit for the exams.

This book is not a complete reference for Java, as it does not attempt to list every mem-
ber of every class from the Java SE Platform API documentation. The purpose is not
to document the Java SE Platform API. The emphasis is more on the Java program-
ming language features—their syntax and correct usage through code examples—
and less on teaching programming techniques.

The book assumes little background in programming. We believe the exam is
accessible to any programmer who works through the book. A Java programmer
can easily skip over material that is well understood and concentrate on parts that
need reinforcing, whereas a programmer new to Java will find the concepts
explained from basic principles.

Each topic is explained and discussed thoroughly with examples, and is backed by
review questions to reinforce the concepts. The book is not biased toward any par-
ticular platform, but provides platform-specific details where necessary.

https://education.oracle.com

PREFACE xli

Using This Book

The reader can choose a linear or a nonlinear route through the book, depending
on their programming background. Non-Java programmers wishing to migrate to
Java can read Chapter 1, which provides a short introduction to object-oriented
programming concepts, and the procedure for compiling and running Java appli-
cations. For those preparing for any of the Developer exams, the book has a sepa-
rate appendix (Appendix A) providing all the pertinent information on preparing
for and taking the exams.

Cross-references are provided where necessary to indicate the relationships among
the various constructs of the language. To understand a language construct, all
pertinent details are provided where the construct is covered, but in addition,
cross-references are provided to indicate its relationship to other constructs. Some-
times it is necessary to postpone discussion of certain aspects of a topic if they
depend on concepts that have not yet been covered in the book. A typical example
is the consequences of object-oriented programming concepts (e.g., inheritance) on
the member declarations that can occur in a class. This approach can result in for-
ward references in the initial chapters of the book.

The table of contents; listings of tables, examples, and figures; and a comprehen-
sive index facilitate locating topics discussed in the book.

In particular, we draw attention to the following features of the book:

Chapter Topics

Each chapter starts with a short summary of the topics covered in the chapter,
pointing out the major concepts that are introduced.

Developer Exam Objectives

[0.1] Exam objectives that are covered in each chapter are stated clearly at the beginning
of every chapter.

[0.2] The number in front of the objective identifies the exam objective, as defined by
Oracle. The objectives are organized into major sections, detailing the curriculum
for the exam.

[0.3] The objectives for the Java SE 17 and Java SE 11 Developer Exams are reproduced
verbatim in Appendix B and Appendix C, respectively. These appendices also
map each exam objective to relevant chapters and sections in the book.

Supplementary Topics

• Supplementary topics are Java topics that are not on the exam per se, but which
the candidate is expected to know.

• Any supplementary topic is listed as a bullet at the beginning of the chapter.

xlii PREFACE

Review Questions

Review questions are provided after every major topic to test and reinforce the
material. The review questions predominantly reflect the kind of multiple-choice
questions that can be asked on the actual exam. On the exam, the exact number of
answers to choose for each question is explicitly stated. The review questions in
this book follow that practice.

Many questions on the actual exam contain code snippets with line numbers to
indicate that complete implementation is not provided, and that the necessary
missing code to compile and run the code snippets can be assumed. The review
questions in this book provide complete code implementations where possible, so
that the code can be readily compiled and run.

Annotated answers to the review questions are provided in Appendix D.

Example 0.1 Example Source Code

We encourage readers to experiment with the code examples to reinforce the material
in the book. The source code for the examples can be downloaded from the com-
panion book website (see p. xliii), and readily imported into Eclipse IDE 2022-06.

Java code in the book is presented in a monospaced font. Lines of code in the exam-
ples or in code snippets are referenced in the text by a number, which is specified
by using a single-line comment in the code. For example, in the following code
snippet, the call to the method doSomethingInteresting() at (1) does something
interesting:

// ...
doSomethingInteresting(); // (1)
// ...

Names of classes and interfaces start with an uppercase letter. Names of packages,
variables, and methods start with a lowercase letter. Constants are in all uppercase
letters. Interface names begin with the prefix I, when it makes sense to distinguish
them from class names. Coding conventions are followed, except when we have
had to deviate from these conventions in the interest of space or clarity.

Mock Exam

The mock exam for Java SE 17 in Appendix E should be attempted when the reader
feels confident about the topics on the exam. It is highly recommended to read
Appendix A before attempting the mock exam, as Appendix A contains pertinent
information about the questions to expect on the actual exam. Each multiple-
choice question in the mock exam explicitly states how many answers are applica-
ble for a given question, as is the case on the actual exam. Annotated answers to
the questions in the mock exam are provided in Appendix F.

PREFACE xliii

Java SE Platform API Documentation

To obtain the maximum benefit from using this book in preparing for the Java SE 17
and Java SE 11 Developer Exams, we strongly recommend installing the latest version
(Release 17 or newer) of the JDK and its accompanying API documentation. The book
focuses solely on Java SE 17 and Java SE 11, and does not acknowledge other versions.

Book Website

This book is backed by a website:
https://www.mughal.no/jse17ocp/

Auxiliary material on the website includes the following:

• Source code for all the examples in the book
• Annotated answers to the reviews questions in the book
• Annotated answers to the mock exam in the book
• Table of contents, sample chapters, and index from the book
• Content specific for the Java SE 17 and Java SE 11 Developer Exams
• Errata for the book
• Links to miscellaneous Java resources (e.g., certification, discussion groups,

and tools)

Information about the Java Standard Edition (SE) and its documentation can be
found at the following website:

www.oracle.com/technetwork/java/javase/overview/index.html

The current authoritative technical reference for the Java programming language,
The Java® Language Specification: Java SE 17 Edition, can be found at this website:

http://docs.oracle.com/javase/specs/index.html

Request for Feedback

Considerable effort has been made to ensure the accuracy of the content of this
book. All code examples (including code fragments) have been compiled and
tested on various platforms. In the final analysis, any errors remaining are the sole
responsibility of the principal author.

Any questions, comments, suggestions, and corrections are welcome. Let us know
whether the book was helpful (or not) for your purpose. Any feedback is valuable.

A vertical gray bar is used to highlight methods and fields found in the classes
of the Java SE Platform API.

Any explanation following the API information is also similarly highlighted.

https://www.mughal.no/jse17ocp/
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://docs.oracle.com/javase/specs/index.html

xliv PREFACE

The principal author and the co-author can be reached at the following email
addresses, respectively:

khalid@mughal.no
vasiliy.a.strelnikov@oracle.com

About the Authors

Khalid A. Mughal

Khalid A. Mughal is the principal author of this book, primarily responsible for
writing the material covering the Java topics. He is also the principal author of
three other books on previous versions of the Java certification exam: Java SE 8
OCA (1Z0-808), Java SE 6 (1Z0-851), and SCPJ2 1.4 (CX-310-035).

Khalid is an associate professor emeritus at the Department of Informatics at the
University of Bergen, Norway, where he was responsible for designing and imple-
menting various courses in informatics. Over the years, he has taught programming
(primarily Java), software engineering (object-oriented system development), data-
bases (data modeling and database management systems), compiler techniques,
web application development, and software security courses. For 15 years, he was
responsible for developing and running web-based programming courses in Java,
which were offered to off-campus students. He has also given numerous courses and
seminars at various levels in object-oriented programming and system development
using Java and Java-related technologies, both at the University of Bergen and vari-
ous other universities in Norway and East Africa, and also for the IT industry.

Vasily A. Strelnikov

Vasily Strelnikov is primarily responsible for developing new review questions for
the chapters contained in this book.

Vasily is a senior principal OCI (Oracle Cloud Infrastructure) solution specialist,
working at Oracle for more than 26 years. He is a co-author of the Java EE 7, Java SE 8,
Java SE 11, and Java SE 17 Certification exams. He has designed multiple Java
courses that are offered by Oracle: Java SE 17 Programming Complete, Java SE 11
Programming Complete, and Java SE 8 Certification Preparation Seminar. He has
also created the Developing Applications for the Java EE 7 Platform training at
Oracle. Vasily has over 20 years of experience in Java. He specializes in Java middle-
ware application development and web services.

Acknowledgments

First of all, we would like to acknowledge the contribution that Rolf W. Rasmussen
at vizrt made in earlier Java certification books that we wrote together. Some of that
contribution still permeates this edition as well.

mailto:khalid@mughal.no
mailto:vasiliy.a.strelnikov@oracle.com

PREFACE xlv

At Pearson, senior executive editor Greg Doench was once again at the helm. He
managed the long process of publishing this book. Senior content producer Julie
Nahil was again the in-house contact at Pearson, professionally and efficiently
managing production of the book. Audrey Doyle did a truly marvelous job copy-
editing the book. She scrutinized every sentence with a meticulous eye—and
taught us a thing or two about the English language. The folks at codeMantra did
the critical proofreading, endorsing the book with a quality assurance stamp. Rob
Mauhar at The CIP Group performed the typesetting wizardry necessary to give
the book its professional look. Our sincere thanks to Greg, Julie, Audrey, Rob, the
folks at codeMantra, and all those behind the scenes at Pearson, who helped to
make this publication see the light of day.

For the technical review of the book, we were lucky to have two Java gurus who
agreed to take on the task.

• Mikalai Zaikin is a lead Java developer at IBA Lithuania, and is currently located
in Vilnius. He has helped Oracle with development of Java certification exams
and has also been a technical reviewer of several Java certification books. He
also contributes to the Java Quiz column for Oracle’s Java Magazine in collabo-
ration with Simon Roberts.

• Ankit Garg is currently Vice President at Morgan-Stanley, Bengaluru, India,
and a Sheriff (i.e., Moderator) for various Java Forums at coderanch.com. He is a
Java developer with many years’ experience in several Java-related technolo-
gies (e.g., Java SE, Java EE, and Spring). He is also a certified Java Programmer
and Web Component Developer.

Without doubt, both Mikalai and Ankit have an eye for detail. It is no exaggeration
to say that their feedback has been invaluable in improving the quality of this book
at all levels. Our most sincere thanks to both Mikalai and Ankit for the many excel-
lent comments and suggestions, and above all, for weeding out numerous pesky
errors in the manuscript.

Kristian Berg and Morten Nygaard Åsnes were kind enough to review two chap-
ters each and provide useful feedback, for which we are very grateful.

Great effort has been made to eliminate mistakes and errors in this book. We accept
full responsibility for any remaining oversights. We hope that when our diligent
readers find any, they will bring them to our attention.

Without family support this edition would still be a fantasy, and we are very grate-
ful to our families for putting up with us when we were burning the midnight oil.
Hopefully we can get our family life back now that this book is out the door.

—Khalid A. Mughal
December 2, 2022.

Bergen, Norway.

http://coderanch.com

This page intentionally left blank

879

16Streams

Chapter Topics

• Understanding the construction of a stream pipeline

• Understanding various aspects of streams: sequential or parallel,
ordered or unordered, finite or infinite, and object or numeric

• Creating object streams from various sources; for example, assorted
collections, arrays, strings, and I/O classes

• Creating infinite numeric streams using generator functions

• Understanding the various aspects of intermediate stream opera-
tions: stream mapping, lazy execution, short-circuit evaluation,
and stateless or stateful operations

• Understanding the implications of operation order, and non-
interfering and stateless behavioral parameters of intermediate
stream operations

• Filtering, skipping, and examining stream elements

• Selecting distinct elements and truncating a stream

• Understanding mapping and flattening a stream

• Sorting stream elements

• Changing the execution mode of a stream and marking a stream as
unordered

• Understanding interoperability between stream types

• Understanding the role of the Optional class

• How to create, query, filter, map, and flatten optionals

• Using numeric optionals

• Understanding the implication of invoking a terminal operation
on a stream

• Applying consumer actions to elicit side effects in a stream

• Using terminal operations to match, find, and count stream elements

880 CHAPTER 16: STREAMS

• Understanding functional and mutable reduction, both sequential and parallel

• Collecting stream results in lists, sets, and arrays

• Using functional reduction on numeric streams, including statistical operations

• Understanding the role of a collector in stream execution

• Collecting to a collection, list, set, map, and concurrent map

• Using a collector to join strings

• Using collectors that group and partition stream elements

• Using downstream collectors for functional reduction: counting, finding min/
max, summing, averaging, and summarizing

• How to implement collectors for customized reduction

• How to use map-reduce, filtering, flat mapping, and finishing adapters for
downstream collectors

• Understanding how to build and execute a parallel stream

• Understanding factors that can affect parallel stream execution

• Understanding the importance of benchmarking parallel stream execution

Java SE 17 Developer Exam Objectives

[6.1] Use Java object and primitive Streams, including lambda
expressions implementing functional interfaces, to supply,
filter, map, consume, and sort data
❍ Streams are covered in this chapter.
❍ For lambda expressions implementing functional interfaces, see

Chapter 13, p. 673.

§16.3, p. 884
§16.4, p. 890
§16.5, p. 905
§16.7, p. 946

[6.2] Perform decomposition, concatenation and reduction, and
grouping and partitioning on sequential and parallel
streams

§16.7, p. 946
§16.8, p. 978
§16.9, p. 1009

Java SE 11 Developer Exam Objectives

[6.2] Use Java Streams to filter, transform and process data §16.3, p. 884
§16.4, p. 890
§16.5, p. 905
§16.7, p. 946

[6.3] Perform decomposition and reduction, including grouping
and partitioning on sequential and parallel streams

§16.7, p. 946
§16.8, p. 978
§16.9, p. 1009

16.1: INTRODUCTION TO STREAMS 881

The Stream API brings a new programming paradigm to Java: a declarative way of
processing data using streams—expressing what should be done to the values and
not how it should be done. More importantly, the API allows programmers to har-
ness the power of multicore architectures for parallel processing of data.

We strongly suggest reviewing the following topics which we consider essential
prerequisites for learning about streams:

• Functional-style programming (Chapter 13, p. 673); specially, functional inter-
faces, lambda expressions, method references, and built-in functional interfaces

• Comparing objects (Chapter 14, p. 741); in particular, the Comparator<E> func-
tional interface (§14.4, p. 761)

16.1 Introduction to Streams

A stream allows aggregate operations to be performed on a sequence of elements.
An aggregate operation performs a task on the stream as a whole rather than on an
individual element of the stream. In the context of streams, these aggregation oper-
ations are called stream operations. Such operations utilize behavior parameteriza-
tion implemented by functional interfaces for actions performed on the stream
elements.

Examples of stream operations accepting implementation of functional interfaces
include:

• Generating elements of the stream using a Supplier
• Converting the elements in the stream according to a mapping defined by a

Function

• Filtering the elements in the stream according to some criteria defined by
a Predicate

• Sorting the elements in the stream using a Comparator
• Performing actions for each of the elements in the stream with the help of a

Consumer

Streams can be produced from a variety of sources. Collections and arrays are typ-
ical examples of sources for streams. The Collection<E> interface and the Arrays
utility class both provide a stream() method that builds a stream from the elements
of a collection or an array.

In the loop-based solution below, elements from the values list are processed using
a for(:) loop to test whether a year is after the year 2000. The strings in the list are
parsed to a Year object before being tested in an if statement.

// Loop-based solution:
List<String> values = List.of("2001", "1999", "2021");
for (String s : values) {
 Year y = Year.parse(s);
 if (y.isAfter(Year.of(2000))) {

882 CHAPTER 16: STREAMS

 System.out.print(s + " "); // 2001 2021
 }
}

// Stream-based solution:
List<String> values2 = List.of("2001", "1999", "2021");
values2.stream() // (1)
 .map(s -> Year.parse(s)) // (2)
 .filter(y -> y.isAfter(Year.of(2000))) // (3)
 .forEach(y -> System.out.print(y + " ")); // (4) 2001 2021

A stream-based solution for the same problem is also presented above. The
stream() operation at (1) generates a stream based on the elements from the collec-
tion. The map() operation at (2) parses the string elements to a Year object, as defined
by the lambda expression that implements the Function interface. The filter()
operation at (3) performs a filtering of the elements in the stream that are after the
year 2000, as defined by a lambda expression that implements the Predicate inter-
face. The forEach() operation at (4) performs an action on each stream element, as
defined by a lambda expression that implements the Consumer interface.

The loop-based solution specifies how the operations should be performed. The
stream-based solution states what operations should be performed, qualified by
the implementation of an appropriate functional interface. Stream-based solutions
to many problems can be elegant and concise compared to their iteration-based
counterparts.

In this chapter we will cover many stream operations in detail, as well as discover
other use cases and benefits of using streams.

16.2 Running Example: The CD Record Class

We will use the CD record class and the Genre enum type from Example 16.1 in many
of the examples throughout this chapter. The classes are intentionally kept simple
for the purposes of exposition, but they will suffice in illustrating the vast number
of topics covered in this chapter.

The CD record class declares fields for the following information about a CD: an art-
ist name, a title, a fixed number of tracks, the year the CD was released, and a musi-
cal genre. The compiler provides the relevant get methods to access the fields in a
CD record, but boolean methods are explicitly defined to determine its musical
genre. The compiler also provides implementations to override the toString(),
hashCode(), and equals() methods from the Object class. However, the record class
provides its own implementation of the toString() method. The record class imple-
ments the Comparable<CD> interface with the following comparison order for the
fields: artist name, title, number of tracks, year released, and musical genre.

It is important to note the static field declarations in the CD record class, as they will
be used in subsequent examples. These include the static references cd0, cd1, cd2,
cd3, and cd4 that refer to five different instances of the CD record class. In addition,

16.2: RUNNING EXAMPLE: THE CD RECORD CLASS 883

the fixed-size list cdList contains these five ready-made CDs, as does the array
cdArray. The output from Example 16.1 shows the state of the CDs in the cdList. We
recommend consulting this information in order to verify the results from exam-
ples presented in this chapter.

The simple enum type Genre is used to indicate the style of music on a CD.

Example 16.1 The CD Example Classes

// The different genres in music.
public enum Genre {POP, JAZZ, OTHER}

import java.time.Year;
import java.util.Comparator;
import java.util.List;

/** A record class that represents a CD. */
public record CD(String artist, String title, int noOfTracks,
 Year year, Genre genre) implements Comparable<CD> {

 // Additional get methods:
 public boolean isPop() { return this.genre == Genre.POP; }
 public boolean isJazz() { return this.genre == Genre.JAZZ; }
 public boolean isOther() { return this.genre == Genre.OTHER; }

 // Provide own implementation of the toString() method.
 @Override public String toString() {
 return String.format("<%s, \"%s\", %d, %s, %s>",
 this.artist, this.title, this.noOfTracks, this.year, this.genre);
 }

 /** Compare by artist, by title, by number of tracks, by year, and by genre. */
 @Override public int compareTo(CD other) {
 return Comparator.comparing(CD::artist)
 .thenComparing(CD::title)
 .thenComparing(CD::noOfTracks)
 .thenComparing(CD::year)
 .thenComparing(CD::genre)
 .compare(this, other);
 }

 // Some ready-made CDs.
 public static final CD cd0
 = new CD("Jaav", "Java Jive", 8, Year.of(2017), Genre.POP);
 public static final CD cd1
 = new CD("Jaav", "Java Jam", 6, Year.of(2017), Genre.JAZZ);
 public static final CD cd2
 = new CD("Funkies", "Lambda Dancing", 10, Year.of(2018), Genre.POP);
 public static final CD cd3
 = new CD("Genericos", "Keep on Erasing", 8, Year.of(2018), Genre.JAZZ);
 public static final CD cd4
 = new CD("Genericos", "Hot Generics", 10, Year.of(2018), Genre.JAZZ);

884 CHAPTER 16: STREAMS

 // A fixed-size list of CDs.
 public static final List<CD> cdList = List.of(cd0, cd1, cd2, cd3, cd4);

 // An array of CDs.
 public static final CD[] cdArray = {cd0, cd1, cd2, cd3, cd4};
}

import java.util.List;

public final class CDAdmin {
 public static void main(String[] args) {
 List<CD> cdList = CD.cdList;
 System.out.println(" Artist Title No. Year Genre");
 for(int i = 0; i < cdList.size(); ++i) {
 CD cd = cdList.get(i);
 String cdToString = String.format("%-10s%-16s%-4d%-5s%-5s",
 cd.artist(), cd.title(), cd.noOfTracks(),
 cd.year(), cd.genre());
 System.out.printf("cd%d: %s%n", i, cdToString);
 }
 }
}

Output from the program:

 Artist Title No. Year Genre
cd0: Jaav Java Jive 8 2017 POP
cd1: Jaav Java Jam 6 2017 JAZZ
cd2: Funkies Lambda Dancing 10 2018 POP
cd3: Genericos Keep on Erasing 8 2018 JAZZ
cd4: Genericos Hot Generics 10 2018 JAZZ

16.3 Stream Basics

In this section we introduce the terminology and the basic concepts required to
work with streams, and provide an overview of the Stream API.

An example of an aggregate operation is filtering the elements in the stream
according to some criteria, where all the elements of the stream must be examined
in order to determine the result. We saw a simple example of filtering a list in the
previous section. Figure 16.1a shows an example of a stream-based solution for fil-
tering a list of CDs to find all pop music CDs. A stream of CDs is created at (1). The
stream is filtered at (2) to find pop music CDs. Each pop music CD that is found is
accumulated into a result list at (3). Note how the method calls are chained, which
is typical of processing elements in a stream. We will fill in the details as we use
Figure 16.1 to introduce the basics of data processing using streams.

A stream must be built from a data source before operations can be performed on
its elements. Streams come in two flavors: those that process object references, called

16.3: STREAM BASICS 885

object streams; and those that process numeric values, called numeric streams. In
Figure 16.1a, the call to the stream() method on the list cdList creates an object
stream of CD references with cdList as the data source. Building streams from data
sources is explored in §16.4, p. 890.

Stream operations are characterized either as intermediate operations (§16.5, p. 905)
or terminal operations (§16.7, p. 946). In Figure 16.1a, there are two stream opera-
tions. The methods filter() and collect() implement an intermediate operation
and a terminal operation, respectively.

An intermediate operation always returns a new stream—that is, it transforms its
input stream to an output stream. In Figure 16.1a, the filter() method is called at (2)
on its input stream, which is the initial stream of CDs returned by the stream()
method at (1). The method reference CD::isPop passed as an argument to the
filter() method implements the Predicate<CD> functional interface to filter the CDs
in the stream. The filter() method returns an output stream, which is a stream of
pop music CDs.

Figure 16.1 Data Processing with Streams

Stream<CD> Stream<CD> List<CD>

filter() toList()

cd0cd0cd1cd4 cd3 cd2

cd1cd4 cd3 cd2

cd4 cd3 cd2

cd4 cd3

cd4

cd2

stream()

Contents of
the cdList

Stream
 creation Intermediate operation Terminal operation

1 2 3

// Query to create a list of all CDs with pop music.
List<CD> cdList = List.of(CD.cd0, CD.cd1, CD.cd2, CD.cd3, CD.cd4);
List<CD> popCDs = cdList
 .stream() // Stream creation.
 .filter(CD::isPop) // Intermediate operation.
 .toList(); // Terminal operation.

1

2

3

(a) A query for data processing with streams

(b) A stream pipeline

(c) Execution of a stream pipeline

Stream
source

is the object referenced by CD.cdi.cdi

Element processing in the pipeline

[,]cd0 cd2

886 CHAPTER 16: STREAMS

A terminal operation either causes a side effect or computes a result. The method
collect() at (3) implements a terminal operation that computes a result (§16.7,
p. 964). This method is called on the output stream of the filter() operation, which
is now the input stream of the terminal operation. Each CD that is determined to
be a pop music CD by the filter() operation at (2) is accumulated into a result list
by the toList() method at (3). The toList() method (p. 972) creates an empty list and
accumulates elements from the input stream—in this case, CDs with pop music.

The code below splits the chain of method calls in Figure 16.1a, but produces the
same result. The code explicitly shows the streams that are created and how an
operation is invoked on the stream returned by the preceding operation. However,
this code is a lot more verbose and not as easy to read as the code in Figure 16.1a—
so much so that it is frowned upon by stream aficionados.

Stream<CD> stream1 = cdList.stream(); // (1a) Stream creation.
Stream<CD> stream2 = stream1.filter(CD::isPop); // (2a) Intermediate operation.
List<CD> popCDs2 = stream2.toList(); // (3a) Terminal operation.

Composing Stream Pipelines

Stream operations can be chained together to compose a stream pipeline in which
stream components are specified in the following order:

• An operation on a data source for building the initial stream
• Zero or more intermediate operations to transform one stream into another
• A single mandatory terminal operation in order to execute the pipeline and

produce some result or side effect

Composition into a pipeline is possible because stream creation and intermediate
operations return a stream, allowing method calls to be chained as we have seen in
Figure 16.1a.

The chain of method calls in Figure 16.1a forms the stream pipeline in Figure 16.1b,
showing the components of the pipeline. A stream pipeline is analogous to an
assembly line, where each operation depends on the result of the previous opera-
tion as parts are assembled. In a pipeline, an intermediate operation consumes ele-
ments made available by its input stream to produce elements that form its output
stream. The terminal operation produces the final result from its input stream. Cre-
ating a stream pipeline can be regarded as a fusion of stream operations, where
only a single pass of the elements is necessary to process the stream.

Stream operations are typically customized by behavior parameterization that is
specified by functional interfaces and implemented by lambda expressions. That is
why understanding built-in functional interfaces and writing method references (or
their equivalent lambda expressions) is essential. In Figure 16.1a, the Predicate argu-
ment of the filter() operation implements the behavior of the filter() operation.

A stream pipeline formulates a query on the elements of a stream created from a
data source. It expresses what should be done to the stream elements, and not how

16.3: STREAM BASICS 887

it should be done—analogous to a database query. One important advantage of com-
posing stream pipelines is that the compiler can freely optimize the operations—
for example, for parallel execution—as long as the same result is guaranteed.

Executing Stream Pipelines

Apart from the fact that an intermediate operation always returns a new stream
and a terminal operation never does, another crucial difference between these two
kinds of operations is the way in which they are executed. Intermediate operations
use lazy execution; that is, they are executed on demand. Terminal operations use
eager execution; that is, they are executed immediately when the terminal operation
is invoked on the stream. This means the intermediate operation will never be exe-
cuted unless a terminal operation is invoked on the output stream of the interme-
diate operation, whereupon the intermediate operations will start to execute and
pull elements from the stream created on the data source.

The execution of a stream pipeline is illustrated in Figure 16.1c. The stream()
method just returns the initial stream whose data source is cdList. The CD objects in
cdList are processed in the stream pipeline in the same order as in the list, desig-
nated as cd0, cd1, cd2, cd3, and cd4. The way in which elements are successively pro-
cessed by the operations in the pipeline is shown horizontally for each element. The
execution of the pipeline only starts when the terminal operation toList() is
invoked, and proceeds as follows:

1. cd0 is selected by the filter() operation as it is a pop music CD, and the col-
lect() operation places it in the list created to accumulate the results.

2. cd1 is discarded by the filter() operation as it is not a pop music CD.

3. cd2 is selected by the filter() operation as it is a pop music CD, and the
collect() operation places it in the list created to accumulate the results.

4. cd3 is discarded by the filter() operation as it is not a pop music CD.

5. cd4 is discarded by the filter() operation as it is not a pop music CD.

In Figure 16.1c, when the stream is exhausted, execution of the collect() terminal
operation completes and execution of the pipeline stops. Note that there was only
one pass over the elements in the stream. From Figure 16.1c, we see that the result-
ing list contains only cd0 and cd2, which is the result of the query. Printing the
resulting popCDs list produces the following output:

[<Jaav, "Java Jive", 8, 2017, POP>, <Funkies, "Lambda Dancing", 10, 2018, POP>]

A stream is considered consumed once a terminal operation has completed execu-
tion. A stream that has been consumed cannot be reused, and any attempt to use it
will result in a nasty java.lang.IllegalStateException.

The code presented in this subsection is shown in Example 16.2.

888 CHAPTER 16: STREAMS

Example 16.2 Data Processing Using Streams

import java.util.List;
import java.util.stream.Stream;

public class StreamPipeLine {
 public static void main(String[] args) {

 List<CD> cdList = List.of(CD.cd0, CD.cd1, CD.cd2, CD.cd3, CD.cd4);

 // (A) Query to create a list of all CDs with pop music.
 List<CD> popCDs = cdList.stream() // (1) Stream creation.
 .filter(CD::isPop) // (2) Intermediate operation.
 .toList(); // (3) Terminal operation.
 System.out.println(popCDs);

 // (B) Equivalent to (A).
 Stream<CD> stream1 = cdList.stream(); // (1a) Stream creation.
 Stream<CD> stream2 = stream1.filter(CD::isPop);// (2a) Intermediate operation.
 List<CD> popCDs2 = stream2.toList(); // (3a) Terminal operation.
 System.out.println(popCDs2);
 }
}

Output from the program:

[<Jaav, "Java Jive", 8, 2017, POP>, <Funkies, "Lambda Dancing", 10, 2018, POP>]
[<Jaav, "Java Jive", 8, 2017, POP>, <Funkies, "Lambda Dancing", 10, 2018, POP>]

Comparing Collections and Streams

It is important to understand the distinction between collections and streams.
Streams are not collections, and vice versa, but a stream can be created with a col-
lection as the data source (p. 897).

Collections are data structures that can be used to store and retrieve elements.
Streams are data structures that do not store their elements, but process them by
expressing computations on them through operations like filter() and collect().

Typically, operations are provided to add or remove elements from a collection.
However, no elements can be added or removed from a stream—that is, streams
are immutable. Because of their functional nature, if a stream operation does
remove or discard an element in a stream, a new stream is returned with the
remaining elements. A stream operation does not mutate its data source.

A collection can be used in the program as long as there is a reference to it. How-
ever, a stream cannot be reused once it is consumed. It must be re-created on the
data source in order to be reused.

Operations on a collection are executed immediately, whereas streams can define
intermediate operations that are executed on demand—that is, by lazy execution.

16.3: STREAM BASICS 889

Collections are iterable, but streams are not iterable. Streams do not implement the
Iterable<T> interface, and therefore, a for(:) loop cannot be used to iterate over a
stream.

Mechanisms for iteration over a collection are based on an iterator defined by the
Collection interface, but must be explicitly used in the program to iterate over the
elements; this is called external iteration. On the other hand, iteration over stream
elements is implicitly handled by the API; this is called internal iteration and it
occurs when the stream operations are executed.

Collections have a finite size, but streams can be unbounded; these are called
infinite streams. Special stream operations, such as limit(), exist to compute with
infinite streams.

Some collections, such as lists, allow positional access of their elements with an
index. However, this is not possible with streams, as only aggregate operations are
permissible.

Note also that streams supported by the Stream API are not the same as those sup-
ported by the File I/O APIs (§20.1, p. 1233).

Overview of API for Data Processing Using Streams

In this subsection we present a brief overview of new interfaces and classes that
are introduced in this chapter. We focus mainly on the Stream API in the java.util
.stream package, but we also discuss utility classes from the java.util package.

The Stream Interfaces

Figure 16.2 shows the inheritance hierarchy of the core stream interfaces that are
an important part of the Stream API defined in the java.util.stream package. The
generic interface Stream<T> represents a stream of object references—that is, object
streams. The interfaces IntStream, LongStream, and DoubleStream are specializations to
numeric streams of type int, long, and double, respectively. These interfaces provide
the static factory methods for creating streams from various sources (p. 890), and
define the intermediate operations (p. 905) and the terminal operations (p. 946) on
streams.

The interface BaseStream defines the basic functionality offered by all streams. It is
recursively parameterized with a stream element type T and a subtype S of the
BaseStream interface. For example, the Stream<T> interface is a subtype of the param-
eterized BaseStream<T, Stream<T>> interface, and the IntStream interface is a subtype
of the parameterized BaseStream<Integer, IntStream> interface.

All streams implement the AutoCloseable interface, meaning they should be closed
after use in order to facilitate resource management during execution. However,
this is not necessary for the majority of streams. Only resource-backed streams need
to be closed—for example, a stream whose data source is a file. Such resources are
best managed automatically with the try-with-resources statement (§7.7, p. 407).

890 CHAPTER 16: STREAMS

The Collectors Class

A collector encapsulates the machinery required to perform a reduction operation
(p. 978). The java.util.stream.Collector interface defines the functionality that a
collector must implement. The java.util.stream.Collectors class provides a rich
set of predefined collectors for various kinds of reductions.

The Optional Classes

Instances of the java.util.Optional<T> class are containers that may or may not
contain an object of type T (p. 940). An Optional<T> instance can be used to represent
the absence of a value of type T more meaningfully than the null value. The
numeric analogues are OptionalInt, OptionalLong, and OptionalDouble that can
encapsulate an int, a long, or a double value, respectively.

The Numeric Summary Statistics Classes

Instances of the IntSummaryStatistics, LongSummaryStatistics, and DoubleSummary-
Statistics classes in the java.util package are used by a group of reduction oper-
ations to collect summarizing statistics like the count, sum, average, min, and max
of the values in a numeric stream of type int, long, and double, respectively (p. 974,
p. 1001).

16.4 Building Streams

A stream must have a data source. In this section we will explore how streams can
be created from various data sources: collections, arrays, specified values, genera-
tor functions, strings, and I/O channels, among others.

Figure 16.2 The Core Stream Interfaces

java.util.stream

«interface»
java.lang.AutoCloseable

«interface»
BaseStream<T,S extends BaseStream<T,S>>

«interface»
Stream<T>

<T,Stream<T>>

«interface»
IntStream

<Integer,IntStream>

«interface»
LongStream

<Long,LongStream>

«interface»
DoubleStream

<Double,DoubleStream>

16.4: BUILDING STREAMS 891

Aspects to Consider When Creating Streams

When creating a stream from a data source, certain aspects to consider include
whether the stream is:

• Sequential or parallel
• Ordered or unordered
• Finite or infinite
• Object or numeric

Sequential or Parallel Stream

A sequential stream is one whose elements are processed sequentially (as in a for
loop) when the stream pipeline is executed by a single thread. Figure 16.1 illus-
trates the execution of a sequential stream, where the stream pipeline is executed
by a single thread.

A parallel stream is split into multiple substreams that are processed in parallel by
multiple instances of the stream pipeline being executed by multiple threads, and
their intermediate results combined to create the final result. Parallel streams are
discussed in detail later (p. 1009).

The different ways to create a stream on a data source that are illustrated in this sec-
tion result in a sequential stream. A parallel stream can only be created directly on
a collection by invoking the Collection.parallelStream() method (p. 897).

The sequential or parallel mode of an existing stream can be modified by calling
the BaseStream.sequential() and BaseStream.parallel() intermediate operations,
respectively (p. 933). A stream is executed sequentially or in parallel depending on
the execution mode of the stream on which the terminal operation is initiated.

Ordered or Unordered Stream

The encounter order of a stream refers to the way in which a stream makes its ele-
ments available for processing to an operation in a pipeline. For such data sources
as a list, the encounter order of the initial stream is the same as the order of the ele-
ments in the list, whereas a stream created with a set of values does not have an
encounter order, as the elements of a set are considered to be unordered.

The encounter order of a stream may be changed by an intermediate operation. For
example, the sorted() operation may impose an encounter order on an unordered
stream (p. 929), and the unordered() operation may designate a stream unordered
(p. 932). Also, some terminal operations might choose to ignore the encounter
order; an example is the forEach() operation (p. 948).

For ordered sequential streams, an identical result is produced when identical
stream pipelines are executed on an identical data source—that is, the execution is
deterministic. This guarantee does not hold for unordered sequential streams, as
the results produced might be different.

892 CHAPTER 16: STREAMS

Processing of unordered parallel streams may have better performance than for
ordered parallel streams in identical stream pipelines when the ordering constraint
is removed, as maintaining the order might carry a performance penalty.

Finite or Infinite Stream

The size of a stream can be finite or infinite depending on how the stream is cre-
ated. The generate() and iterate() methods of the core stream interfaces create
streams with an infinite number of elements (p. 894). Such a stream is said to
be unbounded. The overloaded ints(), longs(), and doubles() methods of the
java.util.Random class create streams with an effectively unlimited number of
pseudorandom values (p. 900). An infinite stream must be truncated before the
terminal operation is initiated; otherwise, the stream pipeline will never terminate
(p. 917).

Object or Numeric Stream

The interface Stream<T> defines the contract for streams of object references—that
is, object streams. The specialized interfaces IntStream, LongStream, and DoubleStream
represent streams of int, long, and double values, respectively—that is, numeric
streams. The various ways to create streams discussed here will always result in a
stream whose element type is either a reference type or a numeric type (int, long,
or double). Conversion between these stream types is discussed in §16.5, p. 934.

Table 16.1, p. 904, summarizes selected methods for building streams from various
data sources.

The following static factory methods for building streams are defined in the
Stream<T> class. Counterparts to these methods are also provided by the IntStream,
LongStream, and DoubleStream interfaces for creating numeric streams, unless other-
wise noted:

static <T> Stream<T> empty()
static <T> Stream<T> of(T t)
static <T> Stream<T> of(T... varargs)

The first method creates an empty stream—that is, a stream that has no
elements.
The second method creates a singleton stream—that is, a stream that has a
single element.

The third method creates a finite sequential ordered stream whose elements are
the values specified by the variable arity parameter varargs.
The second and last methods throw a NullPointerException if the argument is
null.

static <T> Stream<T> ofNullable(T t) Only in the Stream<T> interface.
Creates a singleton stream that has a single element, if the argument t is non-
null; otherwise, it returns an empty stream.

16.4: BUILDING STREAMS 893

The Empty Stream

An empty stream can be obtained by calling the empty() method of the core stream
interfaces. As the name implies, such a stream has no elements.

Stream<CD> cdStream = Stream.empty(); // Empty stream of CD.
System.out.println("Count: " + cdStream.count()); // Count: 0
IntStream iStream = IntStream.empty(); // Empty stream of int.
System.out.println("Count: " + iStream.count()); // Count: 0

The count() method is a terminal operation in the Stream<T> interface (p. 953). It
returns the number of elements processed through the stream pipeline.

Using the null value to indicate that a stream is empty may result in a NullPointer-
Exception. Therefore, using an explicit empty stream is highly recommended.

Streams from Specified Values

The two overloaded of() methods in the core stream interfaces create finite
sequential ordered streams from data values that are specified as arguments.

In the code below, the single-argument of() method is called at (1), and the variable
arity of() method is called at (2), both creating a stream of element type CD. The size
of the streams created at (1) and (2) is 1 and 3, respectively. The stream pipeline com-
prising (3) and (4) filters the pop music CDs and prints their title at (4). The forEach()
terminal operation at (4) applies its Consumer action to each pop music CD.

// From specified objects.
Stream<CD> cdStream1 = Stream.of(CD.cd0); // (1) Single-arg call.
Stream<CD> cdStream2 = Stream.of(CD.cd0, CD.cd1, CD.cd2); // (2) Varargs call.
cdStream2.filter(CD::isPop) // (3)
 .forEach(cd -> System.out.println(cd.title())); // (4)

static <T> Stream<T> generate(Supplier<T> supplier)

Creates an infinite sequential unordered stream where each element is generated
by the specified supplier. Typically, this is used for constant streams and
streams with random elements.

static <T> Stream<T> iterate(T s, UnaryOperator<T> uop)

Creates an infinite sequential ordered stream produced by the iterative applica-
tion of the function uop to an initial element seed s, producing a stream consist-
ing of s, e1=uop.apply(s), e2=uop.apply(e1), and so on; that is, uop is applied to
the previous element.

static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)

Creates a stream whose elements are all elements of the first stream followed
by all elements of the second stream.
The resulting stream is ordered only if both input streams are ordered. If either
input stream is parallel, the resulting stream is parallel. As one would expect,
the resulting stream is finite only if both input streams are finite.

894 CHAPTER 16: STREAMS

The code below shows examples of using numeric values to create streams. The
values specified at (1) and (2) are autoboxed to create a stream of objects. The dec-
laration statements at (3) and (4) avoid the overhead of autoboxing when streams
of numeric values are created. However, at (4), an implicit numeric conversion to
double is applied to the non-double values.

// From specified numeric values.
Stream<Integer> integerStream1 = Stream.of(2017, 2018, 2019); // (1)
Stream<? extends Number> numStream = Stream.of(100, 3.14D, 5050L); // (2)
IntStream intStream1 = IntStream.of(2017, 2018, 2019); // (3)
DoubleStream doubleStream = DoubleStream.of(100, 3.14D, 5050L); // (4)

The variable arity of() method can be used to create a stream whose source is an
array. Equivalently, the overloaded Arrays.stream() method can be used for the
same purpose. In all cases below, the size of the stream is the same as the size of the
array, except at (7). An int array is an object that is passed to the single-argument
Stream.Of() method (creating a Stream<int[]>), and not the variable arity Stream.of()
method. The int array is, however, passed to the variable arity IntStream.of()
method at (8). Creating a stream from a numeric array is safer with the numeric
stream interfaces or the Arrays.stream() method than the Stream.of() method.

// From an array of CDs.
Stream<CD> cdStream3 = Stream.of(CD.cdArray); // (1)
Stream<CD> cdStream4 = Arrays.stream(CD.cdArray); // (2)

// From an array of Integer.
Integer[] integerArray = {2017, 2018, 2019}; // (3)
Stream<Integer> integerStream2 = Stream.of(integerArray); // (4)
Stream<Integer> integerStream3 = Arrays.stream(integerArray); // (5)

// From an array of int.
int[] intArray = {2017, 2018, 2019}; // (6)
Stream<int[]> intArrayStream = Stream.of(intArray); // (7) Size is 1.
IntStream intStream2 = IntStream.of(intArray); // (8) Size is 3.
IntStream intStream3 = Arrays.stream(intArray); // (9) Size is 3.

The Stream.of() methods throw a NullPointerException if the argument is null. The
ofNullable() method, on the other hand, returns an empty stream if this is the case;
otherwise, it returns a singleton stream.

Using Generator Functions to Build Infinite Streams

The generate() and iterate() methods of the core stream interfaces can be used to
create infinite sequential streams that are unordered or ordered, respectively.

Infinite streams need to be truncated explicitly in order for the terminal operation to
complete execution, or the operation will not terminate. Some stateful intermediate
operations must process all elements of the streams in order to produce their
results—for example, the sort() intermediate operation (p. 929) and the reduce() ter-
minal operation (p. 955). The limit(maxSize) intermediate operation can be used to
limit the number of elements that are available for processing from a stream (p. 917).

16.4: BUILDING STREAMS 895

Generate

The generate() method accepts a supplier that generates the elements of the infinite
stream.

IntSupplier supplier = () -> (int) (6.0 * Math.random()) + 1; // (1)
IntStream diceStream = IntStream.generate(supplier); // (2)
diceStream.limit(5) // (3)
 .forEach(i -> System.out.print(i + " ")); // (4) 2 4 5 2 6

The IntSupplier at (1) generates a number between 1 and 6 to simulate a dice throw
every time it is executed. The supplier is passed to the generate() method at (2) to
create an infinite unordered IntStream whose values simulate throwing a dice. In
the pipeline comprising (3) and (4), the number of values in the IntStream is limited
to 5 at (3) by the limit() intermediate operation, and the value of each dice throw
is printed by the forEach() terminal operation at (4). We can expect five values
between 1 and 6 to be printed when the pipeline is executed.

Iterate

The iterate() method accepts a seed value and a unary operator. The method gener-
ates the elements of the infinite ordered stream iteratively: It applies the operator to
the previous element to generate the next element, where the first element is the
seed value.

In the code below, the seed value of 1 is passed to the iterate() method at (2),
together with the unary operator uop defined at (1) that increments its argument by
2. The first element is 1 and the second element is the result of the unary operator
applied to 1, and so on. The limit() operation limits the stream to five values. We
can expect the forEach() operation to print the first five odd numbers.

IntUnaryOperator uop = n -> n + 2; // (1)
IntStream oddNums = IntStream.iterate(1, uop); // (2)
oddNums.limit(5)
 .forEach(i -> System.out.print(i + " ")); // 1 3 5 7 9

The following stream pipeline will really go bananas if the stream is not truncated
by the limit() operation:

Stream.iterate("ba", b -> b + "na")
 .limit(5)
 .forEach(System.out::println);

Concatenating Streams

The concat() method creates a resulting stream where the elements from the first
argument stream are followed by the elements from the second argument stream.
The code below illustrates this operation for two unordered sequential streams.
Two sets are created at (1) and (2) based on lists of strings that are passed to the set
constructors. The two streams created at (3) and (4) are unordered, since they are
created from sets (p. 897). These unordered streams are passed to the concat()

896 CHAPTER 16: STREAMS

method at (5). The resulting stream is processed in the pipeline comprising (5) and
(6). The forEachOrdered() operation at (6) respects the encounter order of the stream
if it has one—that is, if it is ordered (p. 948). The output confirms that the resulting
stream is unordered.

Set<String> strSet1 // (1)
 = Set.of("All", " objects", " are", " equal");
Set<String> strSet2 // (2)
 = Set.of(" but", " some", " are", " more", " equal", " than", " others.");
Stream<String> unorderedStream1 = strSet1.stream(); // (3)
Stream<String> unorderedStream2 = strSet2.stream(); // (4)
Stream.concat(unorderedStream1, unorderedStream2) // (5)
 .forEachOrdered(System.out::print); // (6)
// objectsAll equal are some are others. than equal more but

The resulting stream is ordered if both argument streams are ordered. The code
below illustrates this operation for two ordered sequential streams. The two
streams created at (1) and (2) below are ordered. The ordering is given by the spec-
ification order of the strings as arguments to the Stream.of() method. These
ordered streams are passed to the concat() method at (3). The resulting stream is
processed in the pipeline comprising (3) and (4). The output confirms that the
resulting stream is ordered.

Stream<String> orderedStream1 = Stream.of("All", " objects", // (1)
 " are", " equal");
Stream<String> orderedStream2 = Stream.of(" but", " some", " are", " more", // (2)
 " equal", " than", " others.");
Stream.concat(orderedStream1, orderedStream2) // (3)
 .forEachOrdered(System.out::print); // (4)
// All objects are equal but some are more equal than others.

As far as the mode of the resulting stream is concerned, it is parallel if at least one
of the constituent streams is parallel. The code below illustrates this behavior.

The parallel() intermediate operation used at (1) returns a possibly parallel stream
(p. 933). The call to the isParallel() method confirms this at (2). We pass one par-
allel stream and one sequential stream to the concat() method at (3). The call to the
isParallel() method at (4) confirms that the resulting stream is parallel. The print-
out from (5) shows that it is also unordered. Note that new streams are created on
the sets strSet1 and strSet2 at (1) and (3), respectively, as we cannot reuse the
streams that were created earlier and consumed.

Stream<String> pStream1 = strSet1.stream().parallel(); // (1)
System.out.println("pStream1 is parallel: " + pStream1.isParallel()); // (2) true
Stream<String> rStream = Stream.concat(pStream1, strSet2.stream()); // (3)
System.out.println("rStream is parallel: " + pStream1.isParallel()); // (4) true
rStream.forEachOrdered(System.out::print); // (5)
// objectsAll equal are some are others. than equal more but

16.4: BUILDING STREAMS 897

Streams from Collections

The default methods stream() and parallelStream() of the Collection interface cre-
ate streams with collections as the data source. Collections are the only data source
that provide the parallelStream() method to create a parallel stream directly. Oth-
erwise, the parallel() intermediate operation must be used in the stream pipeline.

The following default methods for building streams from collections are defined
in the java.util.Collection interface:

We have already seen examples of creating streams from lists and sets, and several
more examples can be found in the subsequent sections.

The code below illustrates two points about streams and their data sources. If the
data source is modified before the terminal operation is initiated, the changes will
be reflected in the stream. A stream is created at (2) with a list of CDs as the data
source. Before a terminal operation is initiated on this stream at (4), an element is
added to the underlying data source list at (3). Note that the list created at (1) is
modifiable. The count() operation correctly reports the number of elements pro-
cessed in the stream pipeline.

List<CD> listOfCDS = new ArrayList<>(List.of(CD.cd0, CD.cd1)); // (1)
Stream<CD> cdStream = listOfCDS.stream(); // (2)
listOfCDS.add(CD.cd2); // (3)
System.out.println(cdStream.count()); // (4) 3
// System.out.println(cdStream.count()); // (5) IllegalStateException

Trying to initiate an operation on a stream whose elements have already been con-
sumed results in a java.lang.IllegalStateException. This case is illustrated at (5).
The elements in the cdStream were consumed after the terminal operation at (4). A
new stream must be created on the data source before any stream operations can
be run.

To create a stream on the entries in a Map, a collection view can be used. In the code
below, a Map is created at (1) and populated with some entries. An entry view on
the map is obtained at (2) and used as a data source at (3) to create an unordered
sequential stream. The terminal operation at (4) returns the number of entries in
the map.

Map<Integer, String> dataMap = new HashMap<>(); // (1)
dataMap.put(1, "en"); dataMap.put(2, "to");
dataMap.put(3, "tre"); dataMap.put(4, "fire");
long numOfEntries = dataMap
 .entrySet() // (2)

default Stream<E> stream()
default Stream<E> parallelStream()

Return a finite sequential stream or a possibly parallel stream with this collection
as its source, respectively. Whether it is ordered or not depends on the collec-
tion used as the data source.

898 CHAPTER 16: STREAMS

 .stream() // (3)
 .count(); // (4) 4

In the examples in this subsection, the call to the stream() method can be replaced
by a call to the parallelStream() method. The stream will then execute in parallel,
without the need for any additional synchronization code (p. 1009).

Streams from Arrays

We have seen examples of creating streams from arrays when discussing the vari-
able arity of() method of the stream interfaces and the overloaded Arrays.stream()
methods earlier in the chapter (p. 893). The sequential stream created from an array
has the same order as the positional order of the elements in the array. As far as
numeric streams are concerned, only an int, long, or double array can act as the data
source of such a stream.

The code below illustrates creating a stream based on a subarray that is given by
the half-open interval specified as an argument to the Array.stream() method, as
shown at (1). The stream pipeline at (2) calculates the length of the subarray.

Stream<CD> cdStream = Arrays.stream(cdArray, 1, 4); // (1)
long noOfElements = cdStream.count(); // (2) 3

The following overloaded static methods for building sequential ordered streams
from arrays are defined in the java.util.Arrays class:

Building a Numeric Stream with a Range

The overloaded methods range() and rangeClosed() can be used to create finite
ordered streams of integer values based on a range that can be half-open or closed,
respectively. The increment size is always 1.

The following static factory methods for building numeric streams are defined
only in the IntStream and LongStream interfaces in the java.util.stream package.

static <T> Stream<T> stream(T[] array)
static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive)

Create a finite sequential ordered Stream<T> with the specified array as its source.
The stream created by the second method comprises the range of values given
by the specified half-open interval.

static NumTypeStream stream(numtype[] array)
static NumTypeStream stream(numtype[] array,
 int startInclusive, int endExclusive)

NumType is Int, Long, or Double, and the corresponding numtype is int, long, or dou-
ble.
Create a finite sequential ordered NumTypeStream (which is either IntStream,
LongStream, or DoubleStream) with the specified array as its source. The stream
created by the second method comprises the range of primitive values given
by the specified half-open interval.

16.4: BUILDING STREAMS 899

The range(startInclusive, endExclusive) method is equivalent to the following
for(;;) loop:

for (int i = startInclusive; i < endExclusive; i++) {
 // Loop body.
}

When processing with ranges of integer values, the range() methods should also
be considered on par with the for(;;) loop.

The stream pipeline below prints all the elements in the CD array in reverse. Note
that no terminating condition or increment expression is specified. As range values
are always in increasing order, a simple adjustment can be done to reverse their
order.

IntStream.range(0, CD.cdArray.length) // (1)
 .forEach(i -> System.out.println(cdArray[CD.cdArray.length - 1 - i]));

The following example counts the numbers that are divisible by a specified divisor
in a given range of values.

int divisor = 5;
int start = 2000, end = 3000;
long divisibles = IntStream
 .rangeClosed(start, end) // (1)
 .filter(number -> number % divisor == 0) // (2)
 .count(); // (3)
System.out.println(divisibles); // 201

The next example creates an int array that is filled with increment values specified
by the range at (1) below. The toArray() method is a terminal operation that creates
an array of the appropriate type and populates it with the values in the stream
(p. 971).

int first = 10, len = 8;
int[] intArray = IntStream.range(first, first + len).toArray(); // (1)
System.out.println(intArray.length + ": " + Arrays.toString(intArray));
//8: [10, 11, 12, 13, 14, 15, 16, 17]

The example below shows usage of two nested ranges to print the multiplication
tables. The inner arrange is executed 10 times for each value in the outer range.

static NumTypeStream range(numtype startInclusive, numtype endExclusive)
static NumTypeStream rangeClosed(numtype startInclusive,
 numtype endInclusive)

NumType is Int or Long, and the corresponding numtype is int or long.

Both methods return a finite sequential ordered NumTypeStream whose elements
are a sequence of numbers, where the first number in the stream is the start
value of the range startInclusive and increment length of the sequence is 1.
For a half-open interval, as in the first method, the end value of the range
endExclusive is excluded. For a closed interval, as in the second method, the end
value of the range endInclusive is included.

900 CHAPTER 16: STREAMS

IntStream.rangeClosed(1, 10) // Outer range.
 .forEach(i -> IntStream.rangeClosed(1, 10) // Inner range.
 .forEach(j -> System.out.printf("%2d * %2d = %2d%n",
 i, j, i * j)));
}

We cordially invite the inquisitive reader to code the above examples in the imper-
ative style using explicit loops. Which way is better is not always that clear-cut.

Numeric Streams Using the Random Class

The following methods for building numeric unordered streams are defined in the
java.util.Random class:

The examples below illustrate using a pseudorandom number generator (PRNG) to
create numeric streams. The same PRNG can be used to create multiple streams.
The PRNG created at (1) will be used in the examples below.

Random rng = new Random(); // (1)

The int stream created at (2) is an effectively unlimited unordered stream of int val-
ues. The size of the stream is limited to 3 by the limit() operation. However, at (3),
the maximum size of the stream is specified in the argument to the ints() method.
The values in both streams at (2) and (3) can be any random int values. The con-
tents of the array constructed in the examples will, of course, vary.

IntStream iStream = rng.ints(); // (2) Unlimited, any int value
int[] intArray = iStream.limit(3).toArray(); // Limits size to 3
//[-1170441471, 1070948914, 264046613]

NumType is Int, Long, or Double, and the corresponding numtype is int, long, or
double. The corresponding overloaded numtypes() methods are ints(), longs(),
and doubles().

NumTypeStream numtypes()
NumTypeStream numtypes(numtype randomNumberOrigin,
 numtype randomNumberBound)
NumTypeStream numtypes(long streamSize)
NumTypeStream numtypes(long streamSize, numtype randomNumberOrigin,
 numtype randomNumberBound)

The first two methods generate an effectively unlimited sequential unordered
stream of pseudorandom numtype values. For the zero-argument doubles()
method, the double values are between 0.0 (inclusive) and 1.0 (exclusive). For
the second method, the numtype values generated are in the half-open interval
defined by the origin and the bound values.
The last two methods generate a finite sequential unordered stream of pseudo-
random numtype values, where the length of the stream is limited by the speci-
fied streamSize parameter.

16.4: BUILDING STREAMS 901

intArray = rng.ints(3).toArray(); // (3) Size 3, any int value
//[1011448344, -974832344, 816809715]

The unlimited unordered stream created at (4) simulates the dice throw we imple-
mented earlier using the generate() method (p. 895). The values are between 1 and
6, inclusive. The limit() method must be used explicitly to limit the stream. The
finite unordered stream created at (5) incorporates the size and the value range.

intArray = rng.ints(1, 7) // (4) Unlimited, [1, 6]
 .limit(3) // Limits size to 3
 .toArray(); // [5, 2, 4]

intArray = rng.ints(3, 1, 7) // (5) Size 3, [1, 6]
 .toArray(); // [1, 4, 6]

The zero-argument doubles() method and the single-argument doubles(streamSize)
method generate an unlimited and a limited unordered stream, respectively,
whose values are between 0.0 and 1.0 (exclusive).

DoubleStream dStream = rng.doubles(3); // (6) Size 3, [0.0, 1.0)
double[] dArray = dStream.toArray();
//[0.9333794789872794, 0.7037326827186609, 0.2839257522887708]

Streams from a CharSequence

The CharSequence.chars() method creates a finite sequential ordered IntStream from a
sequence of char values. The IntStream must be transformed to a Stream<Character>
in order to handle the values as Characters. The IntStream.mapToObj() method can
be used for this purpose, as shown at (2). A cast is necessary at (2) in order to con-
vert an int value to a char value which is autoboxed in a Character. Conversion
between streams is discussed in §16.5, p. 934.

String strSource = "banananana";
IntStream iStream = strSource.chars(); // (1)
iStream.forEach(i -> System.out.print(i + " ")); // Prints ints.
// 98 97 110 97 110 97 110 97 110 97

strSource.chars()
 .mapToObj(i -> (char)i) // (2) Stream<Character>
 .forEach(System.out::print); // Prints chars.
// banananana

The following default method for building IntStreams from a sequence of char val-
ues (e.g., String and StringBuilder) is defined in the java.lang.CharSequence inter-
face (§8.4, p. 444):

default IntStream chars()

Creates a finite sequential ordered stream of int values by zero-extending the
char values in this sequence.

902 CHAPTER 16: STREAMS

Streams from a String

The following method of the String class can be used to extract text lines from a
string:

In the code below, the string at (1) contains three text lines separated by the line termi-
nator (\n). A stream of element type String is created using this string as the source
at (2). Each line containing the word "mistakes" in this stream is printed at (3).

String inputLines = "Wise men learn from their mistakes.\n" // (1)
 + "But wiser men learn from the mistakes of others.\n"
 + "And fools just carry on.";
Stream<String> lStream = inputLines.lines(); // (2)
lStream.filter(l -> l.contains("mistakes")).forEach(System.out::println); // (3)

Output from the code:

Wise men learn from their mistakes.
But wiser men learn from the mistakes of others.

Streams from a BufferedReader

A BufferedReader allows contents of a text file to be read as lines. A line is a sequence
of characters terminated by a line terminator sequence. Details of using a Buffered-
Reader are covered in §20.3, p. 1251. A simple example of creating streams on text
files using a BufferedReader is presented below.

At (1) and (2) in the header of the try-with-resources statement (§7.7, p. 407), a
BufferedReader is created to read lines from a given file, and a stream of String is
created at (3) by the lines() method provided by the BufferedReader class. These
declarations are permissible since both the buffered reader and the stream are Auto-
Closeable. Both will be automatically closed after the try block completes execu-
tion. A terminal operation is initiated at (4) on this stream to count the number of
lines in the file. Of course, each line from the stream can be processed depending
on the problem at hand.

try (FileReader fReader = new FileReader("CD_Data.txt"); // (1)
 BufferedReader bReader = new BufferedReader(fReader); // (2)
 Stream<String> lStream = bReader.lines()) { // (3)
 System.out.println("Number of lines: " + lStream.count()); // (4) 13
} catch (FileNotFoundException e) {
 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
}

The following method for building a Stream<String> from a text file is defined in the
java.io.BufferedReader class:

Stream<String> lines()

Returns a stream of lines extracted from this string, separated by line termina-
tors.

http://java.io

16.4: BUILDING STREAMS 903

Streams from Factory Methods in the Files Class

A detailed discussion of the NIO2 File API that provides the classes for creating the
various streams for reading files, finding files, and walking directories in the file
system can be found in Chapter 21, p. 1285.

Analogous to the lines() method in the BufferedReader class, a static method with
the same name is provided by the java.nio.file.Files class that creates a stream
for reading the file content as lines.

In the example below, a Path is created at (1) to represent a file on the file system.
A stream is created to read lines from the path at (2) in the header of the try-with-
resources statement (§7.7, p. 407). As streams are AutoCloseable, such a stream is
automatically closed after the try block completes execution. As no character set is
specified, bytes from the file are decoded into characters using the UTF-8 charset.
A terminal operation is initiated at (3) on this stream to count the number of lines
in the file. Again, each line in the stream can be processed as desired.

Path path = Paths.get("CD_Data.txt"); // (1)
try (Stream<String> lStream = Files.lines(path)) { // (2)
 System.out.println("Number of lines: " + lStream.count()); // (3) 13
} catch (FileNotFoundException e) {
 e.printStackTrace();
} catch (IOException e) {
 e.printStackTrace();
}

The following static methods for building a Stream<String> from a text file are
defined in the java.nio.file.Files class:

Stream<String> lines()

Returns a finite sequential ordered Stream of Strings, where the elements are text
lines read by this BufferedReader.

The reader position in the file is not guaranteed after the stream terminal oper-
ation completes.
The result of the terminal stream operation is undefined if the reader is oper-
ated upon during the execution of this operation.
Any operation on a Stream returned by a BufferedReader that has already been
closed will throw an UncheckedIOException.

static Stream<String> lines(Path path)
static Stream<String> lines(Path path, Charset cs)

Return a finite sequential ordered Stream of String, where the elements are text
lines read from a file given by the specified path. The first method decodes the
bytes into characters using the UTF-8 charset. The charset to use can be explic-
itly specified, as in the second method.

904 CHAPTER 16: STREAMS

Summary of Stream Building Methods

Selected methods for building streams from various data sources are listed in
Table 16.1. The first column lists the method names and the reference type that pro-
vides them. For brevity, the parameters of the methods are omitted. Note that some
methods are overloaded. The prefix NumType stands for Int, Long, or Double. A refer-
ence is also provided where details about the method can be found. The remaining
four columns indicate various aspects of a stream: the type of stream returned by
a method, whether the stream is finite or infinite, whether it is sequential or paral-
lel, and whether it is ordered or unordered (p. 891).

Table 16.1 Summary of Stream Building Methods

Method
Returned
stream type

Finite/
Infinite

Sequential/
Parallel

Ordered/
Unordered

Stream.empty()
NumTypeStream.empty()
(p. 893)

Stream<T>
NumTypeStream

Finite Sequential Ordered

Stream.of()
Stream.ofNullable()
NumTypeStream.of()
(p. 893)

Stream<T>
Stream<T>
NumTypeStream

Finite Sequential Ordered

Stream.generate()
NumTypeStream.generate()
(p. 895)

Stream<T>
NumTypeStream

Infinite Sequential Unordered

Stream.iterate()
NumTypeStream.iterate
(p. 895)

Stream<T>
NumTypeStream

Infinite Sequential Ordered

Stream.concat()
NumTypeStream.concat()
(p. 895)

Stream<T>
NumTypeStream

Finite if
both
finite

Parallel if
either
parallel

Ordered if
both ordered

Collection.stream()
(p. 897)

Stream<T> Finite Sequential Ordered if
collection
ordered

Collection.parallelStream()
(p. 897)

Stream<T> Finite Parallel Ordered if
collection
ordered

Arrays.stream()
(p. 898)

Stream<T>
NumTypeStream

Finite Sequential Ordered

IntStream.range()
IntStream.rangeClosed()
LongStream.range()
LongStream.rangeClosed()
(p. 898)

IntStream
IntStream
LongStream
LongStream

Finite Sequential Ordered

16.5: INTERMEDIATE STREAM OPERATIONS 905

16.5 Intermediate Stream Operations

A stream pipeline is composed of stream operations. The stream operations pro-
cess the elements of the stream to produce some result. After the creation of the ini-
tial stream, the elements of the stream are processed by zero or more intermediate
operations before the mandatory terminal operation reduces the elements to some
final result. The initial stream can undergo several stream transformations (techni-
cally called mappings) by the intermediate operations as the elements are processed
through the pipeline.

Intermediate operations map a stream to a new stream, and the terminal operation
reduces the final stream to some result. Because of the nature of the task they per-
form, the operations in a stream pipeline are also called map-reduce transformations.

Aspects of Streams, Revisited

We now take a closer look at the following aspects pertaining to streams:

• Stream mapping
• Lazy execution
• Short-circuit evaluation
• Stateless and stateful operations
• Order of intermediate operations
• Non-interfering and stateless behavioral parameters of stream operations

Random.ints()
Random.longs()
Random.doubles()
(p. 900)

IntStream
LongStream
DoubleStream

Finite or
infinite,
depending
on para-
meters

Sequential Unordered

CharSequence.chars()
(p. 901)

IntStream Finite Sequential Ordered

String.lines()
(p. 902)

Stream<String> Finite Sequential Ordered

BufferedReader.lines()
(p. 902)

Stream<String> Finite Sequential Ordered

Files.lines()
(p. 903)

Stream<String> Finite Sequential Ordered

Table 16.1 Summary of Stream Building Methods (Continued)

Method
Returned
stream type

Finite/
Infinite

Sequential/
Parallel

Ordered/
Unordered

906 CHAPTER 16: STREAMS

Table 16.3, p. 938, summarizes certain aspects of each intermediate operation.
Table 16.4, p. 939, summarizes the intermediate operations provided by the Stream
API.

Stream Mapping

Each intermediate operation returns a new stream—that is, it maps the elements of
its input stream to an output stream. Intermediate operations can thus be easily
recognized. Having a clear idea of the type of the new stream an intermediate oper-
ation should produce aids in customizing the operation with an appropriate
implementation of its behavioral parameters. Typically, these behavioral parame-
ters are functional interfaces.

Because intermediate operations return a new stream, calls to methods of interme-
diate operations can be chained, so much so that code written in this method chaining
style has become a distinct hallmark of expressing queries with streams.

In Example 16.3, the stream pipeline represents the query to create a list with titles
of pop music CDs in a given list of CDs. Stream mapping is illustrated at (1). The
initial stream of CDs (Stream<CD>) is first transformed by an intermediate operation
(filter()) to yield a new stream that has only pop music CDs (Stream<CD>), and this
stream is then transformed to a stream of CD titles (Stream<String>) by a second
intermediate operation (map(), p. 921). The stream of CD titles is reduced to the
desired result (List<CD>) by the terminal operation (collect()).

In summary, the type of the output stream returned by an intermediate operation
need not be the same as the type of its input stream.

Example 16.3 Stream Mapping and Loop Fusion

 import java.util.List;

public class StreamOps {
 public static void main(String[] args) {

 // Query: Create a list with titles of pop music CDs.

 // (1) Stream Mapping:
 List<CD> cdList1 = CD.cdList;
 List<String> popCDs1 = cdList1
 .stream() // Initial stream: Stream<CD>
 .filter(CD::isPop) // Intermediate operation: Stream<CD>
 .map(CD::title) // Intermediate operation: Stream<String>
 .toList(); // Terminal operation: List<String>
 System.out.println("Pop music CDs: " + popCDs1);
 System.out.println();

 // (2) Lazy Evaluation:
 List<CD> cdList2 = CD.cdList;
 List<String> popCDs2 = cdList2
 .stream() // Initial stream: Stream<CD>

16.5: INTERMEDIATE STREAM OPERATIONS 907

 .filter(cd -> { // Intermediate operation: Stream<CD>
 System.out.println("Filtering: " + cd // (3)
 + (cd.isPop() ? " is pop CD." : " is not pop CD."));
 return cd.isPop();
 })
 .map(cd -> { // Intermediate operation: Stream<String>
 System.out.println("Mapping: " + cd.title()); // (4)
 return cd.title();
 })
 .toList(); // Terminal operation: List<String>
 System.out.println("Pop music CDs: " + popCDs2);
 }
}

Output from the program:

Pop music CDs: [Java Jive, Lambda Dancing]

Filtering: <Jaav, "Java Jive", 8, 2017, POP> is pop CD.
Mapping: Java Jive
Filtering: <Jaav, "Java Jam", 6, 2017, JAZZ> is not pop CD.
Filtering: <Funkies, "Lambda Dancing", 10, 2018, POP> is pop CD.
Mapping: Lambda Dancing
Filtering: <Genericos, "Keep on Erasing", 8, 2018, JAZZ> is not pop CD.
Filtering: <Genericos, "Hot Generics", 10, 2018, JAZZ> is not pop CD.
Pop music CDs: [Java Jive, Lambda Dancing]

Lazy Execution

A stream pipeline does not execute until a terminal operation is invoked. In other
words, its intermediate operations do not start processing until their results are
needed by the terminal operation. Intermediate operations are thus lazy, in contrast
to the terminal operation, which is eager and executes when it is invoked.

An intermediate operation is not performed on all elements of the stream before
performing the next operation on all elements resulting from the previous stream.
Rather, the intermediate operations are performed back-to-back on each element in
the stream. In a sense, the loops necessary to perform each intermediate operation
on all elements successively are fused into a single loop (technically called loop
fusion). Thus only a single pass is required over the elements of the stream.

Example 16.3 illustrates loop fusion resulting from lazy execution of a stream pipe-
line at (2). The intermediate operations now include print statements to announce
their actions at (3) and (4). Note that we do not advocate this practice for produc-
tion code. The output shows that the elements are processed one at a time through
the pipeline when the terminal operation is executed. A CD is filtered first, and if
it is a pop music CD, it is mapped to its title and the terminal operation includes
this title in the result list. Otherwise, the CD is discarded. When there are no more
CDs in the stream, the terminal operation completes, and the stream is consumed.

908 CHAPTER 16: STREAMS

Short-circuit Evaluation

The lazy nature of streams allows certain kinds of optimizations to be performed
on stream operations. We have already seen an example of such an optimization
that results in loop fusion of intermediate operations.

In some cases, it is not necessary to process all elements of the stream in order to
produce a result (technically called short-circuit execution). For instance, the limit()
intermediate operation creates a stream of a specified size, making it unnecessary
to process the rest of the stream once this limit is reached. A typical example of its
usage is to turn an infinite stream into a finite stream. Another example is the
takeWhile() intermediate operation that short-circuits stream processing once its
predicate becomes false.

Certain terminal operations (anyMatch(), allMatch(), noneMatch(), findFirst(),
findAny()) are also short-circuit operations, since they do not need to process all
elements of the stream in order to produce a result (p. 949).

Stateless and Stateful Operations

An stateless operation is one that can be performed on a stream element without
taking into consideration the outcome of any processing done on previous ele-
ments or on any elements yet to be processed. In other words, the operation does
not retain any state from processing of previous elements in order to process a new
element. Rather, the operation can be performed on an element independently of
how the other elements are processed.

A stateful operation is one that needs to retain state from previously processed ele-
ments in order to process a new element.

The intermediate operations distinct(), dropWhile(), limit(), skip(), sorted(), and
takeWhile() are stateful operations. All other intermediate operations are stateless.
Examples of stateless intermediate operations include the filter() and map()
operations.

Order of Intermediate Operations

The order of intermediate operations in a stream pipeline can impact the perfor-
mance of a stream pipeline. If intermediate operations that reduce the size of the
stream can be performed earlier in the pipeline, fewer elements need to be pro-
cessed by the subsequent operations.

Moving intermediate operations such as filter(), distinct(), dropWhile(), limit(),
skip(), and takeWhile() earlier in the pipeline can be beneficial, as they all decrease
the size of the input stream. Example 16.4 implements two stream pipelines at (1)
and (2) to create a list of CD titles, but skipping the first three CDs. The map() oper-
ation transforms each CD to its title, resulting in an output stream with element
type String. The example shows how the number of elements processed by the
map() operation can be reduced if the skip() operation is performed before the map()
operation (p. 921).

16.5: INTERMEDIATE STREAM OPERATIONS 909

Example 16.4 Order of Intermediate Operations

import java.util.List;

public final class OrderOfOperations {
 public static void main(String[] args) {

 List<CD> cdList = CD.cdList;

 // Map before skip.
 List<String> cdTitles1 = cdList
 .stream() // (1)
 .map(cd -> { // Map applied to all elements.
 System.out.println("Mapping: " + cd.title());
 return cd.title();
 })
 .skip(3) // Skip afterwards.
 .toList();
 System.out.println(cdTitles1);
 System.out.println();

 // Skip before map preferable.
 List<String> cdTitles2 = cdList
 .stream() // (2)
 .skip(3) // Skip first.
 .map(cd -> { // Map not applied to the first 3 elements.
 System.out.println("Mapping: " + cd.title());
 return cd.title();
 })
 .toList();
 System.out.println(cdTitles2);
 }
}

Output from the program:

Mapping: Java Jive
Mapping: Java Jam
Mapping: Lambda Dancing
Mapping: Keep on Erasing
Mapping: Hot Generics
[Keep on Erasing, Hot Generics]

Mapping: Keep on Erasing
Mapping: Hot Generics
[Keep on Erasing, Hot Generics]

Non-interfering and Stateless Behavioral Parameters

One of the main goals of the Stream API is that the code for a stream pipeline
should execute and produce the same results whether the stream elements are pro-
cessed sequentially or in parallel. In order to achieve this goal, certain constraints
are placed on the behavioral parameters—that is, on the lambda expressions and

910 CHAPTER 16: STREAMS

method references that are implementations of the functional interface parameters
in stream operations. These behavioral parameters, as the name implies, allow the
behavior of a stream operation to be customized. For example, the predicate sup-
plied to the filter() operation defines the criteria for filtering the elements.

Most stream operations require that their behavioral parameters are non-interfering
and stateless. A non-interfering behavioral parameter does not change the stream data
source during the execution of the pipeline, as this might not produce determinis-
tic results. The exception to this is when the data source is concurrent, which guar-
antees that the source is thread-safe. A stateless behavioral parameter does not access
any state that can change during the execution of the pipeline, as this might not be
thread-safe.

If the constraints are violated, all bets are off, resulting in incorrect results being
computed, which causes the stream pipeline to fail. In addition to these con-
straints, care should be taken to introduce side effects via behavioral parameters,
as these might introduce other concurrency-related problems during parallel exe-
cution of the pipeline.

The aspects of intermediate operations mentioned in this subsection will become
clearer as we fill in the details in subsequent sections.

Filtering

Filters are stream operations that select elements based on some criteria, usually
specified as a predicate. This section discusses different ways of filtering elements,
selecting unique elements, skipping elements at the head of a stream, and truncat-
ing a stream.

The following methods are defined in the Stream<T> interface, and analogous meth-
ods are also defined in the IntStream, LongStream, and DoubleStream interfaces:

// Filtering using a predicate.
Stream<T> filter(Predicate<? super T> predicate)

Returns a stream consisting of the elements of this stream that match the given
non-interfering, stateless predicate.
This is a stateless intermediate operation that changes the stream size, but not
the stream element type or the encounter order of the stream.

// Taking and dropping elements using a predicate.
default Stream<T> takeWhile(Predicate<? super T> predicate)
default Stream<T> dropWhile(Predicate<? super T> predicate)

The takeWhile() method puts an element from the input stream into its output
stream, if it matches the predicate—that is, if the predicate returns the value
true for this element. In this case, we say that the takeWhile() method takes the
element.
The dropWhile() method discards an element from its input stream, if it
matches the predicate—that is, if the predicate returns the value true for this
element. In this case, we say that the dropWhile() method drops the element.

16.5: INTERMEDIATE STREAM OPERATIONS 911

For an ordered stream:

The takeWhile() method takes elements from the input stream as long as an ele-
ment matches the predicate, after which it short-circuits the stream processing.
The dropWhile() method drops elements from the input stream as long as an
element matches the predicate, after which it passes through the remaining
elements to the output stream.
In short, both methods find the longest prefix of elements to take or drop from the
input stream, respectively.

For an unordered stream, where the predicate matches some but not all elements in the
input stream:

The elements taken by the takeWhile() method or dropped by the dropWhile()
method are nondeterministic; that is, any subset of matching elements can be
taken or dropped, respectively, including the empty set.

If the predicate matches all elements in the input stream, regardless of whether the
stream is ordered or unordered:

The takeWhile() method takes all elements; that is, the result is the same as the
input stream.
The dropWhile() method drops all elements; that is, the result is the empty
stream.

If the predicate matches no elements in the input stream, regardless of whether the
stream is ordered or unordered:

The takeWhile() method takes no elements; that is, the result is the empty stream.
The dropWhile() method drops no elements; that is, the result is the same as the
input stream.
Note that the takeWhile() method is a short-circuiting stateful intermediate
operation, whereas the dropWhile() method is a stateful intermediate operation.

// Selecting distinct elements.
Stream<T> distinct()

Returns a stream consisting of the distinct elements of this stream, where no
two elements are equal according to the Object.equals() method; that is, the
method assumes that the elements override the Object.equals() method. It also
uses the hashCode() method to keep track of the elements, and this method
should also be overridden from the Object class.

For ordered streams, the first occurrence of a duplicated element is selected in
the encounter order—called the stability guarantee. This stateful operation is
particularly expensive for a parallel ordered stream which entails buffering
overhead to ensure the stability guarantee. There is no such guarantee for an
unordered stream: Which occurrence of a duplicated element will be selected
is not guaranteed.
This stateful intermediate operation changes the stream size, but not the
stream element type.

912 CHAPTER 16: STREAMS

Filtering Using a Predicate

We have already seen many examples of filtering stream elements in this chapter.
The first example of using the Stream.filter() method was presented in
Figure 16.1, p. 885.

Filtering a collection using the Iterator.remove() method and the Collection.removeIf()
method is discussed in §13.3, p. 691, and §15.2, p. 796, respectively.

The filter() method can be used on both object and numeric streams. The
Stream.filter() method accepts a Predicate<T> as an argument. The predicate is
typically implemented as a lambda expression or a method reference defining the
selection criteria. It yields a stream consisting of elements from the input stream
that satisfy the predicate. The elements that do not match the predicate are
discarded.

In Figure 16.3, Query 1 selects those CDs from a list of CDs (CD.cdList) whose titles
are in a set of popular CD titles (popularTitles). The Collection.contains() method
is used in the predicate to determine if the title of a CD is in the set of popular CD
titles. The execution of the stream pipeline shows there are only two such CDs (cd0,
cd1). CDs that do not satisfy the predicate are discarded.

We can express the same query using the Collection.removeIf() method, as shown
below. The code computes the same result as the stream pipeline in Figure 16.3.
Note that the predicate in the remove() method call is a negation of the predicate in
the filter() operation.

List<CD> popularCDs2 = new ArrayList<>(CD.cdList);
popularCDs2.removeIf(cd -> !(popularTitles.contains(cd.title())));
System.out.println("Query 1b: " + popularCDs2);
//Query 1b: [<Jaav, "Java Jive", 8, 2017, POP>, <Jaav, "Java Jam", 6, 2017, JAZZ>]

// Skipping elements.
Stream<T> skip(long n)

Returns a stream consisting of the remaining elements of this stream after dis-
carding the first n elements of the stream in encounter order. If this stream has
fewer than n elements, an empty stream is returned.
This stateful operation is expensive for a parallel ordered stream which entails
keeping track of skipping the first n elements.
This is a stateful intermediate operation that changes the stream size, but not
the stream element type.

// Truncating a stream.
Stream<T> limit(long maxSize)

Returns a stream consisting of elements from this stream, truncating the length
of the returned stream to be no longer than the value of the parameter maxSize.
This stateful operation is expensive for a parallel ordered stream which entails
keeping track of passing the first n elements from the input stream to the out-
put stream.
This is a short-circuiting, stateful intermediate operation.

16.5: INTERMEDIATE STREAM OPERATIONS 913

In summary, the filter() method implements a stateless intermediate operation. It
can change the size of the stream, since elements are discarded. However, the ele-
ment type of the output stream returned by the filter() method is the same as that
of its input stream. In Figure 16.3, the input and output stream type of the filter()
method is Stream<CD>. Also, the encounter order of the stream remains unchanged.
In Figure 16.3, the encounter order in the output stream returned by the filter()
method is the same as the order of the elements in the input stream—that is, the
insertion order in the list of CDs.

Taking and Dropping Elements Using Predicates

Both the takeWhile() and the dropWhile() methods find the longest prefix of ele-
ments to take or drop from the input stream, respectively.

The code below at (1) and (2) illustrates the case for ordered streams. The take-
While() method takes odd numbers from the input stream until a number is not
odd, and short-circuits the processing of the stream—that is, it truncates the rest of
the stream based on the predicate. The dropWhile() method, on the other hand,
drops odd numbers from the input stream until a number is not odd, and passes
the remaining elements to its output stream; that is, it skips elements in the begin-
ning of the stream based on the predicate.

// Ordered stream:
Stream.of(1, 3, 5, 7, 8, 9, 11) // (1)

Figure 16.3 Filtering Stream Elements

Stream<CD> Stream<CD> List<CD>

filter() toList()

cd0cd4 cd3 cd2

cd4 cd3

cd4

cd1

cd2

cd3

cd4

cd0

cd1

cd2

cd3

cd4

cd1

stream()1 2 3

// Query 1: Find CDs whose titles are in the set of popular CD titles.
Set<String> popularTitles = Set.of("Java Jive", "Java Jazz", "Java Jam");
List<CD> popularCDs1 = CD.cdList
 .stream()
 .filter(cd -> popularTitles.contains(cd.title()))
 .toList();

1

2

3

(a) Query to filter stream elements

(b) Execution of stream pipeline

List<CD>
as

stream
source

[,]cd0 cd1

914 CHAPTER 16: STREAMS

 .takeWhile(n -> n % 2 != 0) // Takes longest prefix: 1 3 5 7
 .forEach(n -> System.out.print(n + " ")); // 1 3 5 7

Stream.of(1, 3, 5, 7, 8, 9, 11) // (2)
 .dropWhile(n -> n % 2 != 0) // Drops longest prefix: 1 3 5 7
 .forEach(n -> System.out.print(n + " ")); // 8 9 11

Given an unordered stream, as shown below at (3), both methods return nondeter-
ministic results: Any subset of matching elements can be taken or dropped, respec-
tively.

// Unordered stream:
Set<Integer> iSeq = Set.of(1, 9, 4, 3, 7); // (3)
iSeq.stream()
 .takeWhile(n -> n % 2 != 0) // Takes any subset of elements.
 .forEach(n -> System.out.print(n + " ")); // Nondeterministic: 1 9 7

iSeq.stream()
 .dropWhile(n -> n % 2 != 0) // Drops any subset of elements.
 .forEach(n -> System.out.print(n + " ")); // Nondeterministic: 4 3

Regardless of whether the stream is ordered or unordered, if all elements match the
predicate, the takeWhile() method takes all the elements and the dropWhile()
method drops all the elements, as shown below at (4) and (5).

// All match in ordered stream: (4)
Stream.of(1, 3, 5, 7, 9, 11)
 .takeWhile(n -> n % 2 != 0) // Takes all elements.
 .forEach(n -> System.out.print(n + " ")); // Ordered: 1 3 5 7 9 11

Stream.of(1, 3, 5, 7, 9, 11)
 .dropWhile(n -> n % 2 != 0) // Drops all elements.
 .forEach(n -> System.out.print(n + " ")); // Empty stream

// All match in unordered stream: (5)
Set<Integer> iSeq2 = Set.of(1, 9, 3, 7, 11, 5);
iSeq2.stream()
 .takeWhile(n -> n % 2 != 0) // Takes all elements.
 .forEach(n -> System.out.print(n + " ")); // Unordered: 9 11 1 3 5 7

iSeq2.stream()
 .dropWhile(n -> n % 2 != 0) // Drops all elements.
 .forEach(n -> System.out.print(n + " ")); // Empty stream

Regardless of whether the stream is ordered or unordered, if no elements match the
predicate, the takeWhile() method takes no elements and the dropWhile() method
drops no elements, as shown below at (6) and (7).

// No match in ordered stream: (6)
Stream.of(2, 4, 6, 8, 10, 12)
 .takeWhile(n -> n % 2 != 0) // Takes no elements.
 .forEach(n -> System.out.print(n + " ")); // Empty stream

Stream.of(2, 4, 6, 8, 10, 12)
 .dropWhile(n -> n % 2 != 0) // Drops no elements.
 .forEach(n -> System.out.print(n + " ")); // Ordered: 2 4 6 8 10 12

16.5: INTERMEDIATE STREAM OPERATIONS 915

// No match in unordered stream: (7)
Set<Integer> iSeq3 = Set.of(2, 10, 8, 12, 4, 6);
iSeq3.stream()
 .takeWhile(n -> n % 2 != 0) // Takes no elements.
 .forEach(n -> System.out.print(n + " ")); // Empty stream

iSeq3.stream()
 .dropWhile(n -> n % 2 != 0) // Drops no elements.
 .forEach(n -> System.out.print(n + " ")); // Unordered: 8 10 12 2 4 6

Selecting Distinct Elements

The distinct() method removes all duplicates of an element from the input stream,
resulting in an output stream with only unique elements. Since the distinct()
method must be able to distinguish the elements from one another and keep track
of them, the stream elements must override the equals() and the hashCode() meth-
ods of the Object class. The CD objects comply with this requirement (Example 16.1,
p. 883).

In Figure 16.4, Query 2 creates a list of unique CDs with pop music. The filter()
operation and the distinct() operation in the stream pipeline select the CDs with
pop music and those that are unique, respectively. The execution of the stream
pipeline shows that the resulting list of unique CDs with pop music has only one
CD (cd0).

In Figure 16.4, interchanging the stateless filter() operation and the stateful
distinct() operation in the stream pipeline gives the same results, but then the
more expensive distinct() operation is performed on all elements of the stream,
rather than on a shorter stream which is returned by the filter() operation.

Skipping Elements in a Stream

The skip() operation slices off or discards a specified number of elements from the
head of a stream before the remaining elements are made available to the next
operation. It preserves the encounter order if the input stream has one. Not surpris-
ingly, skipping more elements than are in the input stream returns the empty
stream.

In Figure 16.5, Query 3a creates a list of jazz music CDs after skipping the first two
CDs in the stream. The stream pipeline uses a skip() operation first to discard two
CDs (one of them being a jazz music CD) and a filter() operation afterward to
select any CDs with jazz music. The execution of this stream pipeline shows that
the resulting list contains two CDs (cd3, cd4).

In the stream pipeline in Figure 16.5, the skip() operation is before the filter()
operation. Switching the order of the skip() and filter() operations as in Query 3b
in Example 16.5 does not solve the same query. It will skip the first two jazz music
CDs selected by the filter() operation.

916 CHAPTER 16: STREAMS

Figure 16.4 Selecting Distinct Elements

Figure 16.5 Skipping Elements at the Head of a Stream

// Query 2: Create a list of unique CDs with pop music.
List<CD> miscCDList = List.of(CD.cd0, CD.cd0, CD.cd1, CD.cd0);
List<CD> uniquePopCDs1 = miscCDList
 .stream()
 .filter(CD::isPop)
 .distinct()
 .toList();

1

2

3

(a) Selecting distinct elements in a stream

4

Stream<CD> Stream<CD> Stream<CD> List<CD>

distinct() toList()stream()1 3 4

cd0 cd0cd0 cd1

filter()2

cd0 cd1

cd0 cd0

List<CD>
as

stream
source

cd0cd0cd0cd0 cd1 cd0 []cd0

(b) Execution of stream pipeline

Stream<CD> Stream<CD> Stream<CD> List<CD>

filter() toList()stream()1 3 4

(a) Skipping elements in a stream

skip()2

// Query 3a: Create a list of jazz CDs, after skipping the first two CDs.
List<CD> jazzCDs1 = CD.cdList
 .stream()
 .skip(2)
 .filter(CD::isJazz)
 .toList();

1

2

3

4

List<CD>
as

stream
source

cd4 cd3 cd2 cd1 cd0

cd4 cd3 cd2 cd1

cd2cd4 cd3 cd2

cd4 cd3 cd3
[,]cd3 cd4

cd3

cd4 cd4cd4

(b) Execution of stream pipeline

16.5: INTERMEDIATE STREAM OPERATIONS 917

Truncating a Stream

The limit() operation returns an output stream whose maximum size is equal to
the max size specified as an argument to the method. The input stream is only trun-
cated if its size is greater than the specified max size.

In Figure 16.6, Query 4 creates a list with the first two CDs that were released in
2018. The stream pipeline uses a filter() operation first to select CDs released in
2018, and the limit() operation truncates the stream, if necessary, so that, at most,
only two CDs are passed to its output stream. The short-circuit execution of this
stream pipeline is illustrated in Figure 16.6, showing the resulting list containing
two CDs (cd2, cd3). The execution of the stream pipeline terminates after the limit()
operation has reached its limit if there are no more elements left to process. In
Figure 16.6, we can see that the limit was reached and execution was terminated.
Regardless of the fact that the last element in the initial stream was not processed,
the stream cannot be reused once the execution of the pipeline terminates due to a
short-circuiting operation.

The limit() operation is ideal for turning an infinite stream into a finite stream.
Numerous examples of using the limit() operation with the iterate() and gener-
ate() methods can be found in §16.4, p. 894, and with the Random.ints() method in
§16.4, p. 900.

For a given value n, limit(n) and skip(n) are complementary operations on a stream,
as limit(n) comprises the first n elements of the stream and skip(n) comprises the

Figure 16.6 Truncating a Stream

Stream<CD> Stream<CD> Stream<CD> List<CD>

limit() toList()stream()1 3 4

(a) Truncating a stream

filter()2

// Query 4: Create a list with the first 2 CDs that were released in 2018.
List<CD> twoFirstCDs2018 = CD.cdList
 .stream()
 .filter(cd -> cd.year().equals(Year.of(2018)))
 .limit(2)
 .toList();

1

2

3

4

List<CD>
as

stream
source

cd4 cd3 cd2

cd4 cd3

Short-circuit

cd0cd1cd4 cd3 cd2

cd1cd4 cd3 cd2

cd2 cd2

cd3 cd3

[,]cd2 cd3

(b) Execution of stream pipeline

918 CHAPTER 16: STREAMS

remaining elements in the stream. In the code below, the resultList from process-
ing the resulting stream from concatenating the two substreams is equal to the
stream source CD.cdList.

List<CD> resultList = Stream
 .concat(CD.cdList.stream().limit(2), CD.cdList.stream().skip(2))
 .toList();
System.out.println(CD.cdList.equals(resultList)); // true

The skip() operation can be used in conjunction with the limit() operation to pro-
cess a substream of a stream, where the skip() operation can be used to skip to the
start of the substream and the limit() operation to limit the size of the substream.
The substream in the code below starts at the second element and comprises the
next three elements in the stream.

List<CD> substream = CD.cdList
 .stream()
 .skip(1)
 .limit(3)
 .toList();
System.out.println("Query 5: " + substream);
// Query 5: [<Jaav, "Java Jam", 6, 2017, JAZZ>,
// <Funkies, "Lambda Dancing", 10, 2018, POP>,
// <Genericos, "Keep on Erasing", 8, 2018, JAZZ>]

The limit() operation is a short-circuiting stateful intermediate operation, as it
needs to keep state for tracking the number of elements in the output stream. It
changes the stream size, but not the stream element type or the encounter order.
For an ordered stream, we can expect the elements in the resulting stream to have
the same order, but we cannot assume any order if the input stream is unordered.

Example 16.5 contains the code snippets presented in this subsection.

Example 16.5 Filtering

import java.time.Year;
import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import java.util.stream.Stream;

public final class Filtering {
 public static void main(String[] args) {

 // Query 1: Find CDs whose titles are in the set of popular CD titles.
 Set<String> popularTitles = Set.of("Java Jive", "Java Jazz", "Java Jam");

 // Using Stream.filter().
 List<CD> popularCDs1 = CD.cdList
 .stream()
 .filter(cd -> popularTitles.contains(cd.title()))
 .toList();
 System.out.println("Query 1a: " + popularCDs1);

16.5: INTERMEDIATE STREAM OPERATIONS 919

 // Using Collection.removeIf().
 List<CD> popularCDs2 = new ArrayList<>(CD.cdList);
 popularCDs2.removeIf(cd -> !(popularTitles.contains(cd.title())));
 System.out.println("Query 1b: " + popularCDs2);

 // Query 2: Create a list of unique CDs with pop music.
 List<CD> miscCDList = List.of(CD.cd0, CD.cd0, CD.cd1, CD.cd0);
 List<CD> uniquePopCDs1 = miscCDList
 .stream()
 .filter(CD::isPop)
 .distinct() // distinct() after filter()
 .toList();
 System.out.println("Query 2: " + uniquePopCDs1);

 // Query 3a: Create a list of jazz CDs, after skipping the first two CDs.
 List<CD> jazzCDs1 = CD.cdList
 .stream()
 .skip(2) // skip() before filter().
 .filter(CD::isJazz)
 .toList();
 System.out.println("Query 3a: " + jazzCDs1);

 // Query 3b: Create a list of jazz CDs, but skip the first two jazz CDs.
 List<CD> jazzCDs2 = CD.cdList // Not equivalent to Query 3
 .stream()
 .filter(CD::isJazz)
 .skip(2) // skip() after filter().
 .toList();
 System.out.println("Query 3b: " + jazzCDs2);

 // Query 4: Create a list with the first 2 CDs that were released in 2018.
 List<CD> twoFirstCDs2018 = CD.cdList
 .stream()
 .filter(cd -> cd.year().equals(Year.of(2018)))
 .limit(2)
 .toList();
 System.out.println("Query 4: " + twoFirstCDs2018);

 // limit(n) and skip(n) are complementary.
 List<CD> resultList = Stream
 .concat(CD.cdList.stream().limit(2), CD.cdList.stream().skip(2))
 .toList();
 System.out.println(CD.cdList.equals(resultList));

 // Query 5: Process a substream by skipping 1 and limiting the size to 3.
 List<CD> substream = CD.cdList
 .stream()
 .skip(1)
 .limit(3)
 .toList();
 System.out.println("Query 5: " + substream);
 }
}

920 CHAPTER 16: STREAMS

Output from the program (formatted to fit on the page):

Query 1a: [<Jaav, "Java Jive", 8, 2017, POP>, <Jaav, "Java Jam", 6, 2017, JAZZ>]
Query 1b: [<Jaav, "Java Jive", 8, 2017, POP>, <Jaav, "Java Jam", 6, 2017, JAZZ>]
Query 2: [<Jaav, "Java Jive", 8, 2017, POP>]
Query 3a: [<Genericos, "Keep on Erasing", 8, 2018, JAZZ>,
 <Genericos, "Hot Generics", 10, 2018, JAZZ>]
Query 3b: [<Genericos, "Hot Generics", 10, 2018, JAZZ>]
Query 4: [<Funkies, "Lambda Dancing", 10, 2018, POP>,
 <Genericos, "Keep on Erasing", 8, 2018, JAZZ>]
true
Query 5: [<Jaav, "Java Jam", 6, 2017, JAZZ>,
 <Funkies, "Lambda Dancing", 10, 2018, POP>,
 <Genericos, "Keep on Erasing", 8, 2018, JAZZ>]

Examining Elements in a Stream

The peek() operation allows stream elements to be examined at the point where the
operation is used in the stream pipeline. It does not affect the stream in any way,
as it only facilitates a side effect via a non-interfering consumer specified as an argu-
ment to the operation. It is primarily used for debugging the pipeline by examin-
ing the elements at various points in the pipeline.

The following method is defined in the Stream<T> interface, and an analogous
method is also defined in the IntStream, LongStream, and DoubleStream interfaces:

By using the peek() method, we can dispense with explicit print statements that
were inserted in the implementation of the behavioral parameter of the map() oper-
ation in Example 16.4, p. 909. Example 16.6 shows how the peek() operation can be
used to trace the processing of elements in the pipeline. A peek() operation after
each intermediate operation prints pertinent information which can be used to ver-
ify the workings of the pipeline. In Example 16.6, the output shows that the skip()
operation before the map() operation can improve performance, as the skip() oper-
ation shortens the stream on which the map() operation should be performed.

Example 16.6 Examining Stream Elements

import java.util.List;

public final class OrderOfOperationsWithPeek {
 public static void main(String[] args) {

Stream<T> peek(Consumer<? super T> action)

Returns a stream consisting of the same elements as those in this stream, but
additionally performs the provided non-interfering action on each element as
elements are processed from this stream.
This is a stateless intermediate operation that does not change the stream size,
the stream element type, or the encounter order.

16.5: INTERMEDIATE STREAM OPERATIONS 921

 System.out.println("map() before skip():");
 List<String> cdTitles1 = CD.cdList
 .stream()
 .map(CD::title)
 .peek(t -> System.out.println("After map: " + t))
 .skip(3)
 .peek(t -> System.out.println("After skip: " + t))
 .toList();
 System.out.println(cdTitles1);
 System.out.println();

 System.out.println("skip() before map():"); // Preferable.
 List<String> cdTitles2 = CD.cdList
 .stream()
 .skip(3)
 .peek(cd -> System.out.println("After skip: " + cd))
 .map(CD::title)
 .peek(t -> System.out.println("After map: " + t))
 .toList();
 System.out.println(cdTitles2);
 }
}

Output from the program:

map() before skip():
After map: Java Jive
After map: Java Jam
After map: Lambda Dancing
After map: Keep on Erasing
After skip: Keep on Erasing
After map: Hot Generics
After skip: Hot Generics
[Keep on Erasing, Hot Generics]

skip() before map():
After skip: <Genericos, "Keep on Erasing", 8, 2018, JAZZ>
After map: Keep on Erasing
After skip: <Genericos, "Hot Generics", 10, 2018, JAZZ>
After map: Hot Generics
[Keep on Erasing, Hot Generics]

Mapping: Transforming Streams

The map() operation has already been used in several examples (Example 16.3,
p. 906, Example 16.4, p. 909, and Example 16.6, p. 920). Here we take a closer look
at this essential intermediate operation for data processing using a stream. It maps
one type of stream (Stream<T>) into another type of stream (Stream<R>); that is, each
element of type T in the input stream is mapped to an element of type R in the out-
put stream by the function (Function<T, R>) supplied to the map() method. It defines
a one-to-one mapping. For example, if we are interested in the titles of CDs in the CD

922 CHAPTER 16: STREAMS

stream, we can use the map() operation to transform each CD in the stream to a
String that represents the title of the CD by applying an appropriate function:

Stream<String> titles = CD.cdList
 .stream() // Input stream: Stream<CD>.
 .map(CD::title); // Lambda expression: cd -> cd.title()

The following methods are defined in the Stream<T> interface, and analogous meth-
ods are also defined in the IntStream, LongStream, and DoubleStream interfaces:

In Figure 16.7, the query creates a list with CD titles released in 2018. The stream
pipeline uses a filter() operation first to select CDs released in 2018, and the map()
operation maps a CD to its title (String). The input stream is transformed by the
map() operation from Stream<CD> to Stream<String>. The execution of this stream
pipeline shows the resulting list (List<String>) containing three CD titles.

The query below illustrates transforming an object stream to a numeric stream.
When executed, the stream pipeline prints the years in which the CDs were
released. Note the transformation of the initial stream, Stream<CD>. The map() oper-
ation first transforms it to a Stream<Year> and the distinct() operation selects the
unique years. The mapToInt() operation transforms the stream from Stream<Year> to
IntStream—that is, a stream of ints whose values are then printed.

CD.cdList.stream() // Stream<CD>
 .map(CD::year) // Stream<Year>
 .distinct() // Stream<Year>
 .mapToInt(Year::getValue) // IntStream
 .forEach(System.out::println); // 2017
 // 2018

<R> Stream<R> map(Function<? super T,? extends R> mapper)

Returns a stream consisting of the result of applying the given non-interfering,
stateless function to the elements of this stream—that is, it creates a new
stream (Stream<R>) from the results of applying the mapper function to the ele-
ments of this stream (Stream<T>).

This is an intermediate operation that does not change the stream size, but it
can change the stream element type and does not guarantee to preserve the
encounter order of the input stream.

// Converting Stream<T> to a Numeric Stream
IntStream mapToInt(ToIntFunction<? super T> mapper)
LongStream mapToLong(ToLongFunction<? super T> mapper)
DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper)

Return the numeric stream consisting of the results of applying the given non-
interfering, stateless function to the elements of this stream—that is, they
create a stream of numeric values that are the results of applying the mapper
function to the elements of this stream (Stream<T>).

These operations are all intermediate operations that transform an object
stream to a numeric stream. The stream size is not affected, but there is no
guarantee that the encounter order of the input stream is preserved.

16.5: INTERMEDIATE STREAM OPERATIONS 923

In the example below, the range() method generates an int stream for values in the
half-open interval specified by its arguments. The values are generated in increas-
ing order, starting with the lower bound of the interval. In order to generate them
in decreasing order, the map() operation can be used to reverse the values. In this
case, the input stream and output stream of the map() operation are both IntStreams.

int from = 0, to = 5;
IntStream.range(from, to) // [0, 5)
 .map(i -> to + from - 1 - i) // Reverse the stream values
 .forEach(System.out::print); // 43210

The stream pipeline below determines the number of times the dice value is 6. The
generate() method generates a value between 1 and 6, and the limit() operation
limits the max size of the stream. The map() operation returns the value 1 if the dice
value is 6; otherwise, it returns 0. In other words, the value of the dice throw is
mapped either to 1 or 0, depending on the dice value. The terminal operation sum()
sums the values in the streams, which in this case are either 1 or 0, thus returning
the correct number of times the dice value was 6.

long sixes = IntStream
 .generate(() -> (int) (6.0 * Math.random()) + 1) // [1, 6]
 .limit(2000) // Number of throws.
 .map(i -> i == 6 ? 1 : 0) // Dice value mapped to 1 or 0.
 .sum();

Figure 16.7 Mapping

Stream<CD> Stream<CD> Stream<String> List<String>

map() toList()stream()1 3 4

// Query: Create a list of CD titles released in 2018.
List<String> listOfCDNames = CD.cdList
 .stream() // Stream<CD>
 .filter(cd -> cd.year().equals(Year.of(2018))) // Stream<CD>
 .map(CD::title) // Stream<String>
 .toList(); // List<String>

1

2

3

(a) Query using the Stream.map() method

filter()2

4

List of CDs
as

stream
source

cd2

cd3

cd0cd1cd3 cd2cd4

cd1cd3 cd2cd4

cd3 cd2cd4

cd3cd4

cd4 cd4

"Lambda Dancing"

"Keep on Erasing"

"Hot Generics"

["Lambda Dancing",
 "Keep on Erasing",
 "Hot Generics"]

List of strings

(b) Execution of stream pipeline

924 CHAPTER 16: STREAMS

Flattening Streams

The flatMap() operation first maps each element in the input stream to a mapped
stream, and then flattens the mapped streams to a single stream—that is, the ele-
ments of each mapped stream are incorporated into a single stream when the pipe-
line is executed. In other words, each element in the input stream may be mapped
to many elements in the output stream. The flatMap() operation thus defines a one-
to-many mapping that flattens a multilevel stream by one level.

The following method is defined in the Stream<T> interface, and an analogous
method is also defined in the IntStream, LongStream, and DoubleStream interfaces:

The methods below are defined only in the Stream<T> interface. No counterparts
exist in the IntStream, LongStream, or DoubleStream interfaces:

To motivate using the flatMap() operation, we look at how to express the query for
creating a list of unique CDs from two given lists of CDs. Figure 16.8 shows an
attempt to express this query by creating a stream of lists of CDs, Stream<List<CD>>,
and selecting the unique CDs using the distinct() method. This attempt fails mis-
erably as the distinct() method distinguishes between elements that are lists of
CDs, and not individual CDs. Figure 16.8 shows the execution of the stream pipe-
line resulting in a list of lists of CDs, List<List<CD>>.

The next attempt to express the query uses the map() operation as shown in
Figure 16.9. The idea is to map each list of CDs (List<CD>) to a stream of CDs
(Stream<CD>), and select the unique CDs with the distinct() operation. The mapper

<R> Stream<R> flatMap(
 Function<? super T,? extends Stream<? extends R>> mapper)

The mapper function maps each element of type T in this stream to a mapped
stream (Stream<R>). The method returns an output stream (Stream<R>) which is
the result of replacing each element of type T in this stream with the elements of
type R from its mapped stream.

If the result of the mapper function is null, the empty stream is used as the
mapped stream.
This is an intermediate operation that changes the stream size and the element
type of the stream, and does not guarantee to preserve the encounter order of
the input stream.

IntStream flatMapToInt(Function<? super T,? extends IntStream> mapper)
LongStream flatMapToLong(Function<? super T,? extends LongStream> mapper)
DoubleStream flatMapToDouble(
 Function<? super T,? extends DoubleStream> mapper)

The mapper function maps each element of type T in this stream to a mapped
numeric stream (NumTypeStream). The method returns an output stream (NumType-
Stream), which is the result of replacing each element of type T in this stream
with the values from its mapped numeric stream. The designation NumType
stands for Int, Long, or Double.

16.5: INTERMEDIATE STREAM OPERATIONS 925

function of the map() operation maps each list of CDs to a mapped stream that is a
stream of CDs, Stream<CD>. The resulting stream from the map() operation is a
stream of streams of CDs, Stream<Stream<CD>>. The distinct() method distinguishes
between elements that are mapped streams of CDs. Figure 16.9 shows the execu-
tion of the stream pipeline resulting in a list of mapped streams of CDs,
List<Stream<CD>>.

Figure 16.8 Incorrect Solution to the Query

Figure 16.9 Mapping a Stream of Streams

[, ,]

Stream<List<CD>>

toList()stream()1 3

// Query: Create a list of unique CDs from two given lists of CDs.
List<List<CD>> listOfListOfCDs =
 Stream.of(cdList1, cdList2) // Stream<List<CD>>
 .distinct() // Stream<List<CD>>
 .toList()); // List<List<CD>>

1

2

3

(a) Incorrect solution using the Stream.distinct() method

(b) Stream pipeline

distinct()2

Two lists of
CDs as
stream
source

Stream<List<CD>> List<List<CD>>

List of lists of CDsLists of CDs

[,]cd1cd0

[,]cd1cd0 cd1 cd1cd0 [, ,]cd1 cd1cd0

[,]cd1cd0

[,
]

[, ,]cd1 cd1cd0

[,]cd1cd0

List of CDs

[,

]

[, ,]

Stream<List<CD>> Stream<Stream<CD>>

distinct() toList()stream()1 3 4

// Query: Create a list of unique CDs from two given lists of CDs.
List<Stream<CD>> listOfStreamOfCD =
 Stream.of(cdList1, cdList2) // Stream<List<CD>>
 .map(List::stream) // Stream<Stream<CD>>
 .distinct() // Stream<Stream<CD>>
 .toList(); // List<Stream<CD>>

1

2

3

(a) Incorrect solution using the Stream.map() method

(b) Stream pipeline

map()2

4

Two lists of
CDs as
stream
source

Stream<Stream<CD>> List<Stream<CD>>

cd0cd1 cd1

cd0cd1

cd0cd1 cd1

cd0cd1
cd0cd1

cd0cd0 cd1

List of mapped
streamsA mapped streamLists of CDs

[,]cd1cd0

[,]cd1cd0 cd1 cd1cd0

A mapped stream

926 CHAPTER 16: STREAMS

The flatMap() operation provides the solution, as it flattens the contents of the
mapped streams into a single stream so that the distinct() operation can select the
unique CDs individually. The stream pipeline using the flatMap() operation and its
execution are shown in Figure 16.10. The mapper function of the flatMap() operation
maps each list of CDs to a mapped stream that is a stream of CDs, Stream<CD>. The
contents of the mapped stream are flattened into the output stream. The resulting
stream from the flatMap() operation is a stream of CDs, Stream<CD>. Note how each
list in the initial stream results in a flattened stream whose elements are processed
by the pipeline. The result list of CDs contains the unique CDs from the two lists.

The code below flattens a two-dimensional array to a one-dimensional array. The
Arrays.stream() method call at (1) creates an object stream, Stream<int[]>, whose
elements are arrays that are rows in the two-dimensional array. The mapper of the
flatMapToInt() operation maps each row in the Stream<int[]> to a stream of ints
(IntStream) by applying the Array.stream() method at (2) to each row. This would
result in a stream of mapped streams of ints (Stream<IntStream>>), but it is flattened
by the flatMapToInt() operation to a final stream of ints (IntStream). The terminal
operation toArray() creates an appropriate array in which the int values of the final
stream are stored (p. 971).

Figure 16.10 Flattening Streams

Stream<List<CD>> Stream<CD> Stream<CD> List<CD>

distinct() toList()

cd0

stream()1 3 4

//Query: Create a list of unique CDs from two given lists of CDs.
List<CD> listOfCD =
 Stream.of(cdList1, cdList2) // Stream<List<CD>>
 .flatMap(List::stream) // Stream<CD>
 .distinct() // Stream<CD>
 .toList()); // List<CD>

1

2

3

(a) Solution using the Stream.flatMap() method

(b) Stream pipeline

flatMap()2

4

Two lists of
CDs as
stream
source

cd0cd1

cd1

cd1 cd0

[,]cd1cd0

[,]cd1cd0 [, ,]cd1 cd1cd0

cd1 cd1 cd1

[,]cd1cd0

cd1

cd1

A mapped streamA stream of lists of CDs A list of CDs

16.5: INTERMEDIATE STREAM OPERATIONS 927

int[][] twoDimArray = { {2017, 2018}, {1948, 1949} };
int[] intArray = Arrays
 .stream(twoDimArray) // (1) Stream<int[]>
 .flatMapToInt(row -> Arrays.stream(row)) // (2) mapper: int[] -> IntStream,
 // flattens Stream<IntStream> to IntStream.
 .toArray(); // [2017, 2018, 1948, 1949]

Replacing Each Element of a Stream with Multiple Elements

The mapMulti() intermediate operation applies a one-to-many transformation to the
elements of the stream and flattens the result elements into a new stream. The func-
tionality of the mapMulti() method is very similar to that of the flatMap() method.
Whereas the latter uses a Function<T, Stream<R>> mapper to create a mapping stream
for each element and then flattens the stream, the former applies a BiConsumer<T,
Consumer<R>> mapper to each element. The mapper calls the Consumer to accept the
replacement elements that are incorporated into a single stream when the pipeline
is executed.

The mapMulti() method can be used to perform filtering, mapping, and flat map-
ping of stream elements, all depending on the implementation of the BiConsumer
mapper passed to the method.

The code below shows a one-to-one transformation of the stream elements. A
BiConsumer is defined at (1) that first filters the stream for pop music CDs at (2), and
maps each CD to a string that contains its title and its number of tracks represented
by an equivalent number of "*" characters. The resulting string is submitted at (3)
to the consumer (supplied by the mapMulti() method). Each value passed to the
accept() method of the consumer replaces the current element in the stream. Note
that the body of the BiConsumer is implemented in an imperative manner using an if
statement. The BiConsumer created at (1) is passed to the mapMulti() method at (5) to
process the CDs of the stream created at (4). The mapMulti() method passes an
appropriate Consumer to the BiConsumer that accepts the replacement elements.

// One-to-one
BiConsumer<CD, Consumer<String>> bcA = (cd, consumer) -> { // (1)
 if (cd.genre() == Genre.POP) { // (2)
 consumer.accept(String.format("%-15s: %s", cd.title(), // (3)
 "*".repeat(cd.noOfTracks())));
 }
};

CD.cdList.stream() // (4)
 .mapMulti(bcA) // (5)
 .forEach(System.out::println);

Output from the code:

Java Jive : ********
Lambda Dancing : **********

928 CHAPTER 16: STREAMS

The code below shows a one-to-many transformation of the stream elements. The
BiConsumer at (1) iterates through a list of CDs and maps each CD in the list to its
title. Each list of CDs in the stream will thus be replaced with the titles of the CDs
in the list. The mapMulti() operation with the BiConsumer at (1) is applied at (3) to a
stream of list of CDs (Stream<List<CD>>) created at (2). The mapMulti() operation in
this case is analogous to the flatMap() operation to achieve the same result.

// One-to-many
List<CD> cdList1 = List.of(CD.cd0, CD.cd1, CD.cd1);
List<CD> cdList2 = List.of(CD.cd0, CD.cd1);
BiConsumer<List<CD>, Consumer<String>> bcB = (lst, consumer) -> { // (1)
 for (CD cd : lst) {
 consumer.accept(cd.title());
 }
};
List<String> listOfCDTitles = Stream.of(cdList1, cdList2) // (2) Stream<List<CD>>
 .mapMulti(bcB) // (3)
 .distinct()
 .toList();
System.out.println(listOfCDTitles); // [Java Jive, Java Jam]

The previous two code snippets first defined the BiConsumer with all relevant types
specified explicitly, and then passed it to the mapMulti() method. The code below
defines the implementation of the BiConsumer in the call to the mapMulti() method.
We consider three alternative implementations as exemplified by (2a), (2b), and (2c).

Alternative (2a) results in a compile-time error. The reason is that the compiler can-
not unequivocally infer the actual type parameter R of the consumer parameter of
the lambda expression. It can only infer that the type of the lst parameter is
List<CD> as it denotes an element of stream whose type is Stream<List<CD>>. The com-
piler makes the safest assumption that the type parameter R is Object. With this
assumption, the resulting list is of type List<Object>, but this cannot be assigned to
a reference of type List<String>, as declared in the assignment statement. To avoid
the compile-time error in this case, we can change the type of the reference to
Object or to the wildcard ?.

Alternative (2b) uses the type witness <String> in the call to the mapMulti() method
to explicitly corroborate the actual type parameter of the consumer.

Alternative (2c) explicitly specifies the types for the parameters of the lambda
expression.

List<String> listOfCDTitles2 = Stream.of(cdList1,cdList2) // (1) Stream<List<CD>>
// .mapMulti((lst, consumer) -> { // (2a) Compile-time error!
// .<String>mapMulti((lst, consumer) -> { // (2b) OK.
 .mapMulti((List<CD> lst, Consumer<String> consumer) -> { // (2c) OK.
 for (CD cd : lst) {
 consumer.accept(cd.title());
 }
 })
 .distinct()
 .toList();
System.out.println(listOfCDTitles2); // [Java Jive, Java Jam]

16.5: INTERMEDIATE STREAM OPERATIONS 929

The mapMulti() method is preferable to the flatMap() method under the following
circumstances:

• When an element is to be replaced with a small number of elements, or none at
all. The mapMulti() method avoids the overhead of creating a mapped stream
for each element, as done by the flatMap() method.

• When an imperative approach for creating replacement elements is easier than
using a stream.

The following default method is defined in the Stream<T> interface, and an analogous
method is also defined in the IntStream, LongStream, and DoubleStream interfaces:

The following default methods are defined only in the Stream<T> interface. No
counterparts exist in the IntStream, LongStream, or DoubleStream interfaces:

Sorted Streams

The sorted() intermediate operation can be used to enforce a specific encounter
order on the elements of the stream. It is important to note that the data source is
not sorted; only the order of the elements in the stream is affected when a stream is
sorted. It is an expensive stateful operation, as state must be kept for all elements
in the stream before making them available in the resulting stream.

default <R> Stream<R> mapMulti(
 BiConsumer<? super T,? super Consumer<R>> mapper)

Returns a stream that is a result of replacing each element of this stream with
multiple elements, specifically zero or more elements.

The specified mapper is applied to each element in conjunction with a consumer
that accepts replacement elements. The mapper calls the consumer zero or more
times to accept the replacement elements.

Note that the consumer is supplied by the mapMulti() method, and called by the
mapper to accept replacement elements. An element of type T is replaced with
zero or more elements of type R.
This is an intermediate operation that changes the stream size and the element
type of the stream, and does not guarantee to preserve the encounter order of
the input stream.

default IntStream
 mapMultiToInt(BiConsumer<? super T,? super IntConsumer> mapper)
default LongStream
 mapMultiToLong(BiConsumer<? super T,? super LongConsumer> mapper)
default DoubleStream
 mapMultiToDouble(BiConsumer<? super T,? super DoubleConsumer> mapper)

Return an IntStream, LongStream, and DoubleStream, respectively, consisting of
the results of replacing each element of this stream with multiple elements,
specifically zero or more elements.

930 CHAPTER 16: STREAMS

The following methods are defined in the Stream<T> interface, but only the first
method is defined in the IntStream, LongStream, and DoubleStream interfaces:

The Comparable<E> and Comparator<E> interfaces are covered in §14.4, p. 761, and
§14.5, p. 769, respectively.

Example 16.7 illustrates the sorted() operation on streams. Printing the array at (1)
and executing the stream pipeline at (2) shows that the order of the elements in the
array and in the stream is positional order, as one would expect. The zero-argument
sorted() method sorts in natural order, as in the pipeline at (3). It expects the stream
elements to implement the Comparable<CD> interface. The sorted() method in the
pipeline at (4) uses the reverse natural order to sort the elements.

The pipeline at (5) represents the query to find all jazz music CDs and sort them by
their title. A comparator to compare by title is passed to the sorted() method.
Finally, the pipeline at (6) finds CDs with eight or more tracks, and sorts them
according to the number of tracks. An appropriate comparator that compares by
the number of tracks is passed to the sorted() method.

It is instructive to compare the output showing the results from each pipeline in
Example 16.7. The comparators in Example 16.7 are also implemented as lambda
expressions, in addition to their implementation by the methods in the Compara-
tor<E> interface.

Example 16.7 Sorting Streams

import java.util.Arrays;
import java.util.Comparator;
import java.util.List;

public class Sorting {
 public static void main(String[] args) {

 System.out.println("(1) Positional order in the array:");

Stream<T> sorted()
Stream<T> sorted(Comparator<? super T> cmp)

Return a stream containing the elements of this stream, sorted according to
natural order or according to total order defined by the specified comparator,
respectively.

The first method requires that the elements implement the Comparable<T> inter-
face.
The sorting operation provides a stability guarantee for ordered streams only—
that is, duplicates of an element will be in their encounter order in the resulting
stream.
This is a stateful intermediate operation that does not change the size of the
stream or the stream element type, and enforces the sort order to be the
encounter order of the resulting stream.

16.5: INTERMEDIATE STREAM OPERATIONS 931

 CD[] cdArray = CD.cdArray;
 System.out.println(Arrays.toString(cdArray)); // (1)

 System.out.println("(2) Positional order in the stream:");
 List<CD> cdsByPositionalOrder = // (2)
 Arrays.stream(cdArray)
 .toList();
 System.out.println(cdsByPositionalOrder);

 System.out.println("(3) Natural order:");
 List<CD> cdsByNaturalOrder = // (3)
 Arrays.stream(cdArray)
 .sorted()
 .toList();
 System.out.println(cdsByNaturalOrder);

 System.out.println("(4) Reversed natural order:");
 List<CD> cdsByRNO = // (4)
 Arrays.stream(cdArray)
// .sorted((c1, c2) -> -c1.compareTo(c2))
 .sorted(Comparator.reverseOrder())
 .toList();
 System.out.println(cdsByRNO);

 System.out.println("(5) Only Jazz CDs, ordered by title:");
 List<String> jazzCDsByTitle = // (5)
 Arrays.stream(cdArray)
 .filter(CD::isJazz)
// .sorted((c1, c2) -> c1.title().compareTo(c2.title()))
 .sorted(Comparator.comparing(CD::title))
 .map(CD::title)
 .toList();
 System.out.println(jazzCDsByTitle);

 System.out.println("(6) No. of tracks >= 8, ordered by number of tracks:");
 List<CD> cds = // (6)
 Arrays.stream(cdArray)
 .filter(d -> d.noOfTracks() >= 8)
// .sorted((c1, c2) -> c1.noOfTracks() - c2.noOfTracks())
 .sorted(Comparator.comparing(CD::noOfTracks))
 .toList();
 System.out.println(cds);
 }
}

Output from the program (formatted to fit on the page):

(1) Positional order in the array:
[<Jaav, "Java Jive", 8, 2017, POP>,
 <Jaav, "Java Jam", 6, 2017, JAZZ>,
 <Funkies, "Lambda Dancing", 10, 2018, POP>,
 <Genericos, "Keep on Erasing", 8, 2018, JAZZ>,
 <Genericos, "Hot Generics", 10, 2018, JAZZ>]
(2) Positional order in the stream:
[<Jaav, "Java Jive", 8, 2017, POP>,
 <Jaav, "Java Jam", 6, 2017, JAZZ>,

932 CHAPTER 16: STREAMS

 <Funkies, "Lambda Dancing", 10, 2018, POP>,
 <Genericos, "Keep on Erasing", 8, 2018, JAZZ>,
 <Genericos, "Hot Generics", 10, 2018, JAZZ>]
(3) Natural order:
[<Funkies, "Lambda Dancing", 10, 2018, POP>,
 <Genericos, "Hot Generics", 10, 2018, JAZZ>,
 <Genericos, "Keep on Erasing", 8, 2018, JAZZ>,
 <Jaav, "Java Jam", 6, 2017, JAZZ>,
 <Jaav, "Java Jive", 8, 2017, POP>]
(4) Reversed natural order:
[<Jaav, "Java Jive", 8, 2017, POP>,
 <Jaav, "Java Jam", 6, 2017, JAZZ>,
 <Genericos, "Keep on Erasing", 8, 2018, JAZZ>,
 <Genericos, "Hot Generics", 10, 2018, JAZZ>,
 <Funkies, "Lambda Dancing", 10, 2018, POP>]
(5) Only Jazz CDs, ordered by title:
[Hot Generics, Java Jam, Keep on Erasing]
(6) No. of tracks >= 8, ordered by number of tracks:
[<Jaav, "Java Jive", 8, 2017, POP>,
 <Genericos, "Keep on Erasing", 8, 2018, JAZZ>,
 <Funkies, "Lambda Dancing", 10, 2018, POP>,
 <Genericos, "Hot Generics", 10, 2018, JAZZ>]

Setting a Stream as Unordered

The unordered() intermediate operation does not actually reorder the elements in
the stream to make them unordered. It just removes the ordered constraint on a
stream if this constraint is set for the stream, indicating that stream operations can
choose to ignore its encounter order. Indicating the stream to be unordered can
improve the performance of some operations. For example, the limit(), skip(), and
distinct() operations can improve performance when executed on unordered par-
allel streams, since they can process any elements by ignoring the encounter order.
The removal of the ordered constraint can impact the performance of certain oper-
ations on parallel streams (p. 1015).

It clearly makes sense to call the unordered() method on an ordered stream only if
the order is of no consequence in the final result. There is no method called ordered
to impose an order on a stream. However, the sorted() intermediate operation can
be used to enforce a sort order on the output stream.

In the stream pipeline below, the unordered() method clears the ordered constraint
on the stream whose elements have the same order as in the data source—that is,
the positional order in the list of CDs. The outcome of the execution shows that the
titles in the result list are in the same order as they are in the data source; this is the
same result one would get without the unordered() operation. It is up to the stream
operation to take into consideration that the stream is unordered. The fact that the
result list retains the order does not make it invalid. After all, since the stream is set
as unordered, it indicates that ignoring the order is at the discretion of the stream
operation.

16.5: INTERMEDIATE STREAM OPERATIONS 933

//Query: Create a list with the first 2 Jazz CD titles.
List<String> first2JazzCDTitles = CD.cdList
 .stream()
 .unordered() // Don't care about ordering.
 .filter(CD::isJazz)
 .limit(2)
 .map(CD::title)
 .toList(); // [Java Jam, Keep on Erasing]

The following method is inherited by the Stream<T> interface from its superinterface
BaseStream. Analogous methods are also inherited by the IntStream, LongStream, and
DoubleStream interfaces from the superinterface BaseStream.

Execution Mode of a Stream

The two methods parallel() and sequential() are intermediate operations that can
be used to set the execution mode of a stream—that is, whether it will execute
sequentially or in parallel. Only the Collection.parallelStream() method creates a
parallel stream from a collection, so the default mode of execution for most streams
is sequential, unless the mode is specifically changed by calling the parallel()
method. The execution mode of a stream can be switched between sequential and
parallel execution at any point between stream creation and the terminal operation
in the pipeline. However, it is the last call to any of these methods that determines
the execution mode for the entire pipeline, regardless of how many times these
methods are called in the pipeline.

The declaration statements below show examples of both sequential and parallel
streams. No stream pipeline is executed, as no terminal operation is invoked on
any of the streams. However, when a terminal operation is invoked on one of the
streams, the stream will be executed in the mode indicated for the stream.

Stream<CD> seqStream1
 = CD.cdList.stream().filter(CD::isPop); // Sequential
Stream<CD> seqStream2
 = CD.cdList.stream().sequential().filter(CD::isPop); // Sequential
Stream<CD> seqStream3
 = CD.cdList.stream().parallel().filter(CD::isPop).sequential(); // Sequential
Stream<CD> paraStream1
 = CD.cdList.stream().parallel().filter(CD::isPop); // Parallel
Stream<CD> paraStream2
 = CD.cdList.stream().filter(CD::isPop).parallel(); // Parallel

The isParallel() method can be used to determine the execution mode of a stream.
For example, the call to the isParallel() method on seqStream3 below shows that

Stream<T> unordered()

Returns an unordered sequential stream that has the same elements as this
stream. The method returns itself if this stream is already unordered. The
method can only indicate that the encounter order of this stream can be
ignored, and an operation might not comply to this request.
This is an intermediate operation that does not change the stream size or the
stream element type. It only indicates that the encounter order can be ignored.

934 CHAPTER 16: STREAMS

this stream is a sequential stream. It is the call to the sequential() method that
occurs last in the pipeline that determines the execution mode.

System.out.println(seqStream3.isParallel()); // false

Parallel streams are explored further in §16.9, p. 1009.

The following methods are inherited by the Stream<T> interface from its superinterface
BaseStream. Analogous methods are also inherited by the IntStream, LongStream, and
DoubleStream interfaces from the superinterface BaseStream.

Converting between Stream Types

Table 16.2 provides a summary of interoperability between stream types—that is,
transforming between different stream types. Where necessary, the methods are
shown with the name of the built-in functional interface required as a parameter.
Selecting a naming convention for method names makes it easy to select the right
method for transforming one stream type to another.

Stream<T> parallel()
Stream<T> sequential()

Set the execution mode of a stream. They return a parallel or a sequential
stream that has the same elements as this stream, respectively. Each method
will return itself if this stream is already parallel or sequential, respectively.
These are intermediate operations that do not change the stream size, the
stream element type, or the encounter order.

boolean isParallel()

Returns whether this stream would execute in parallel when the terminal
operation is invoked. The method might yield unpredictable results if called
after a terminal operation has been invoked.
It is not an intermediate operation.

Table 16.2 Interoperability between Stream Types

Stream types To Stream<R> To IntStream To LongStream To DoubleStream

From

Stream<T>

map(
 Function)

flatMap(
 Function)

mapToInt(
 ToIntFunction)

flatMapToInt(
 Function)

mapToLong(

ToLongFunction)

flatMapToLong(
 Function)

mapToDouble(
 ToDoubleStream)

flatMapToDouble(
 Function)

From

IntStream

mapToObj(
 IntFunction)

Stream<Integer>
 boxed()

map(
 IntUnary-
 Operator)

flatMap(
 IntFunction)

mapToLong(
 IntToLong-
 Function)

asLongStream()

mapToDouble(
 IntToDouble-
 Function)

asDoubleStream()

16.5: INTERMEDIATE STREAM OPERATIONS 935

Mapping between Object Streams

The map() and flatMap() methods of the Stream<T> interface transform an object
stream of type T to an object stream of type R. Examples using these two methods
can be found in §16.5, p. 921, and §16.5, p. 924, respectively.

Mapping an Object Stream to a Numeric Stream

The mapToNumType() methods in the Stream<T> interface transform an object stream
to a stream of the designated numeric type, where NumType is either Int, Long, or Double.

The query below sums the number of tracks for all CDs in a list. The mapToInt()
intermediate operation at (2) accepts an IntFunction that extracts the number of tracks
in a CD, thereby transforming the Stream<CD> created at (1) into an IntStream. The ter-
minal operation sum(), as the name implies, sums the values in the IntStream (p. 973).

int totalNumOfTracks = CD.cdList
 .stream() // (1) Stream<CD>
 .mapToInt(CD::noOfTracks) // (2) IntStream
 .sum(); // 42

The flatMapToNumType() methods are only defined by the Stream<T> interface to flat-
ten a multilevel object stream to a numeric stream, where NumType is either Int, Long,
or Double.

Earlier we saw an example of flattening a two-dimensional array using the flat-
MapToInt() method (p. 924).

The query below sums the number of tracks for all CDs in two CD lists. The flatMap-
ToInt() intermediate operation at (1) accepts a Function that maps each List<CD> in
a Stream<List<CD>> to an IntStream whose values are the number of tracks in a CD
contained in the list. The resulting Stream<IntStream> from the mapper function is
flattened into an IntStream by the flatMapToInt() intermediate operation, thus

From
LongStream

mapToObj(
 LongFunction)

Stream<Long>
 boxed()

mapToInt(
 LongToInt-
 Function)

map(
 LongUnary-
 Operator)

flatMap(
 LongFunction)

mapToDouble(
 LongToDouble-
 Function)

asDoubleStream()

From
DoubleStream

mapToObj(
DoubleFunction)

Stream<Double>
 boxed()

mapToInt(
 DoubleToInt-
 Function)

mapToLong(
 DoubleToLong-
 Function)

map(
 DoubleUnary-
 Operator)

flatMap(
 DoubleFunction)

Table 16.2 Interoperability between Stream Types (Continued)

Stream types To Stream<R> To IntStream To LongStream To DoubleStream

936 CHAPTER 16: STREAMS

transforming the initial Stream<List<CD>> into an IntStream. The terminal operation
sum() sums the values in this IntStream (p. 973).

List<CD> cdList1 = List.of(CD.cd0, CD.cd1);
List<CD> cdList2 = List.of(CD.cd2, CD.cd3, CD.cd4);
int totalNumOfTracks =
 Stream.of(cdList1, cdList2) // Stream<List<CD>>
 .flatMapToInt(// (1)
 lst -> lst.stream() // Stream<CD>
 .mapToInt(CD::noOfTracks)) // IntStream
 // Stream<IntStream>,
 // flattened to IntStream.
 .sum(); // 42

Mapping a Numeric Stream to an Object Stream

The mapToObj() method defined by the numeric stream interfaces transforms a
numeric stream to an object stream of type R, and the boxed() method transforms
a numeric stream to an object stream of its wrapper class.

The query below prints the squares of numbers in a given closed range, where the
number and its square are stored as a pair in a list of size 2. The mapToObj() inter-
mediate operation at (2) transforms an IntStream created at (1) to a
Stream<List<Integer>>. Each list in the result stream is then printed by the forEach()
terminal operation.

IntStream.rangeClosed(1, 3) // (1) IntStream
 .mapToObj(n -> List.of(n, n*n)) // (2) Stream<List<Integer>>
 .forEach(p -> System.out.print(p + " ")); // [1, 1] [2, 4] [3, 9]

The query above can also be expressed as shown below. The boxed() intermediate
operation transforms the IntStream at (3) into a Stream<Integer> at (4); in other
words, each int value is boxed into an Integer which is then mapped by the map()
operation at (5) to a List<Integer>, resulting in a Stream<List<Integer>> as before.
The compiler will issue an error if the boxed() operation is omitted at (4), as the map()
operation at (5) will be invoked on an IntStream, expecting an IntUnaryFunction,
which is not the case.

IntStream.rangeClosed(1, 3) // (3) IntStream
 .boxed() // (4) Stream<Integer>
 .map(n -> List.of(n, n*n)) // (5) Stream<List<Integer>>
 .forEach(p -> System.out.print(p + " ")); // [1, 1] [2, 4] [3, 9]

The examples above show that the IntStream.mapToObj() method is equivalent to
the IntStream.boxed() method followed by the Stream.map() method.

The mapToObj() method, in conjunction with a range of int values, can be used to
create sublists and subarrays. The query below creates a sublist of CD titles based
on a closed range whose values are used as an index in the CD list.

List<String> subListTitles = IntStream
 .rangeClosed(2, 3) // IntStream
 .mapToObj(i -> CD.cdList.get(i).title()) // Stream<String>
 .toList(); // [Lambda Dancing, Keep on Erasing]

16.5: INTERMEDIATE STREAM OPERATIONS 937

Mapping between Numeric Streams

In contrast to the methods in the Stream<T> interface, the map() and the flatMap()
methods of the numeric stream interfaces transform a numeric stream to a numeric
stream of the same primitive type; that is, they do not change the type of the
numeric stream.

The map() operation in the stream pipeline below does not change the type of the
initial IntStream.

IntStream.rangeClosed(1, 3) // IntStream
 .map(i -> i * i) // IntStream
 .forEach(n -> System.out.printf("%d ", n)); // 1 4 9

The flatMap() operation in the stream pipeline below also does not change the type
of the initial stream. Each IntStream created by the mapper function is flattened,
resulting in a single IntStream.

IntStream.rangeClosed(1, 3) // IntStream
 .flatMap(i -> IntStream.rangeClosed(1, 4)) // IntStream
 .forEach(n -> System.out.printf("%d ", n)); // 1 2 3 4 1 2 3 4 1 2 3 4

Analogous to the methods in the Stream<T> interface, the mapToNumType() methods in
the numeric stream interfaces transform a numeric stream to a stream of the desig-
nated numeric type, where NumType is either Int, Long, or Double.

The mapToDouble() operation in the stream pipeline below transforms the initial
IntStream into a DoubleStream.

IntStream.rangeClosed(1, 3) // IntStream
 .mapToDouble(i -> Math.sqrt(i)) // DoubleStream
 .forEach(d -> System.out.printf("%.2f ", d));// 1.00 1.41 1.73

The methods asLongStream() and asDoubleStream() in the IntStream interface trans-
form an IntStream to a LongStream and a DoubleStream, respectively. Similarly, the
method asDoubleStream() in the LongStream interface transforms a LongStream to a
DoubleStream.

The asDoubleStream() operation in the stream pipeline below transforms the initial
IntStream into a DoubleStream. Note how the range of int values is thereby trans-
formed to a range of double values by the asDoubleStream() operation.

IntStream.rangeClosed(1, 3) // IntStream
 .asDoubleStream() // DoubleStream
 .map(d -> Math.sqrt(d)) // DoubleStream
 .forEach(d -> System.out.printf("%.2f ", d));// 1.00 1.41 1.73

In the stream pipeline below, the int values in the IntStream are first boxed into
Integers. In other words, the initial IntStream is transformed into an object stream,
Stream<Integer>. The map() operation transforms the Stream<Integer> into a
Stream<Double>. In contrast to using the asDoubleStream() in the stream pipeline
above, note the boxing/unboxing that occurs in the stream pipeline below in the
evaluation of the Math.sqrt() method, as this method accepts a double as a param-
eter and returns a double value.

938 CHAPTER 16: STREAMS

IntStream.rangeClosed(1, 3) // IntStream
 .boxed() // Stream<Integer>
 .map(n -> Math.sqrt(n)) // Stream<Double>
 .forEach(d -> System.out.printf("%.2f ", d));// 1.00 1.41 1.73

Summary of Intermediate Stream Operations

Table 16.3 summarizes selected aspects of the intermediate operations.

The intermediate operations of the Stream<T> interface (including those inherited
from its superinterface BaseStream<T,Stream<T>>) are summarized in Table 16.4. The
type parameter declarations have been simplified, where any bounds <? super T> or
<? extends T> have been replaced by <T>, without impacting the intent of a method.
A reference is provided to each method in the first column. Any type parameter
and return type declared by these methods are shown in column two.

The last column in Table 16.4 indicates the function type of the corresponding
parameter in the previous column. It is instructive to note how the functional inter-
face parameters provide the parameterized behavior of an operation. For example,

Table 16.3 Selected Aspects of Intermediate Stream Operations

Intermediate
operation

Stateful/
Stateless

Can change
stream size

Can change
stream type Encounter order

distinct (p. 915) Stateful Yes No Unchanged

dropWhile (p. 913) Stateful Yes No Unchanged

filter (p. 910) Stateless Yes No Unchanged

flatMap (p. 921) Stateless Yes Yes Not guaranteed

limit (p. 917) Stateful,
short-circuited

Yes No Unchanged

map (p. 921) Stateless No Yes Not guaranteed

mapMulti (p. 927) Stateless Yes Yes Not guaranteed

parallel (p. 933) Stateless No No Unchanged

peek (p. 920) Stateless No No Unchanged

sequential (p. 933) Stateless No No Unchanged

skip (p. 915) Stateful Yes No Unchanged

sorted (p. 929) Stateful No No Ordered

takeWhile (p. 913) Stateful,
short-circuited

Yes No Unchanged

unordered (p. 932) Stateless No No Not guaranteed

16.5: INTERMEDIATE STREAM OPERATIONS 939

the filter() method returns a stream whose elements satisfy a given predicate. This
predicate is defined by the functional interface Predicate<T> that is implemented by
a lambda expression or a method reference, and applied to each element in the
stream.

The interfaces IntStream, LongStream, and DoubleStream also define analogous meth-
ods to those shown in Table 16.4, except for the flatMapToNumType() methods, where
NumType is either Int, Long, or Double. A summary of additional methods defined by
these numeric stream interfaces can be found in Table 16.2.

Table 16.4 Intermediate Stream Operations

Method name

Any type
parameter +
return type

Functional interface
parameters

Function type
of parameters

distinct (p. 915) Stream<T> ()

dropWhile (p. 913) Stream<T> (Predicate<T> predicate) T -> boolean

filter (p. 910) Stream<T> (Predicate<T> predicate) T -> boolean

flatMap (p. 921) <R> Stream<R> (Function<T,Stream<R>> mapper) T -> Stream<R>

flatMapToDouble
(p. 921)

DoubleStream (Function<T,DoubleStream>
 mapper) T -> DoubleStream

flatMapToInt (p.
921)

IntStream (Function<T,IntStream> mapper) T -> IntStream

flatMapToLong (p.
921)

LongStream (Function<T,LongStream>
 mapper) T -> LongStream

limit (p. 917) Stream<T> (long maxSize)

map (p. 921) <R> Stream<R> (Function<T,R> mapper) T -> R

mapMulti (p. 927) <R> Stream<R> (BiConsumer<T,Consumer<R>>
mapper)

(T, Consumer<R>)
-> void

mapToDouble (p.
921)

DoubleStream (ToDoubleFunction<T> mapper) T -> double

mapToInt (p. 921) IntStream (ToIntFunction<T> mapper) T -> int

mapToLong (p. 921) LongStream (ToLongFunction<T> mapper) T -> long

parallel (p. 933) Stream<T> ()

peek (p. 920) Stream<T> (Consumer<T> action) T -> void

sequential (p.
933)

Stream<T> ()

skip (p. 915) Stream<T> (long n)

sorted (p. 929) Stream<T> ()

sorted (p. 929) Stream<T> (Comparator<T> cmp) (T,T) -> int

940 CHAPTER 16: STREAMS

16.6 The Optional Class

When a method returns a null value, it is not always clear whether the null value
represents a valid value or the absence of a value. Methods that can return null val-
ues invariably force their callers to check the returned value explicitly in order to
avoid a NullPointerException before using the returned value. For example, method
chaining, which we have seen for composing stream pipelines, becomes cumber-
some if each method call must be checked to see whether it returns a null value
before calling the next method, resulting in a cascade of conditional statements.

The concept of an Optional object allows the absence of a value to be handled in a
systematic way, making the code robust by enforcing that a consumer of an
Optional must also deal with the case when the value is absent. Taking full advan-
tage of Optional wrappers requires using them the right way, primarily to handle
situations where the value returned by a method is absent.

The generic class Optional<T> provides a wrapper that represents either the pres-
ence or absence of a non-null value of type T. In other words, the wrapper either
contains a non-null value of type T or no value at all.

Example 16.8 illustrates using objects of the Optional<T> class.

Declaring and Returning an Optional

Example 16.8 illustrates declaring and returning an Optional. A book is represented
by the Book class that has an optional blurb of type String; that is, a book may or
may not have a blurb. The Optional<T> class is parameterized with the type String
in the declaration, and so is the return type of the method that returns the optional
blurb.

class Book {
 private Optional<String> optBlurb;

 public Optional<String> getOptBlurb() { return optBlurb; }

 //...
}

takeWhile (p. 913) Stream<T> (Predicate<T> predicate) T -> boolean

unordered (p. 932) Stream<T> ()

Table 16.4 Intermediate Stream Operations (Continued)

Method name

Any type
parameter +
return type

Functional interface
parameters

Function type
of parameters

16.6: THE OPTIONAL CLASS 941

Creating an Optional

The Optional<T> class models the absence of a value by a special singleton returned
by the Optional.empty() method. In contrast to the null value, this singleton is a via-
ble Optional object on which methods of the Optional class can be invoked without
a NullPointerException being thrown.

The static Optional.of() factory method creates an Optional that encapsulates the
non-null argument specified in the method call, as in the first declaration below.
However, if the argument is a null value, a NullPointerException is thrown at run-
time, as in the second declaration.

Optional<String> blurb0 = Optional.of("Java Programmers tell all!");
Optional<String> xblurb = Optional.of(null); // NullPointerException

The static Optional.ofNullable() factory method also creates an Optional that
encapsulates the non-null argument specified in the method call, as in the first dec-
laration below. However, if the argument is a null value, the method returns an
empty Optional, as in the second declaration—which is effectively the same as the
third declaration below.

Optional<String> blurb1 = Optional.ofNullable("Program like a Java Pro!");
Optional<String> noBlurb2 = Optional.ofNullable(null); // Optional.empty()
Optional<String> noBlurb3 = Optional.empty();

The blurbs above are used to initialize two Book objects (book0, book1) in
Example 16.8. These Book objects with optional blurbs will be used to illustrate how
to use Optional objects.

Example 16.8 Using Optionals

// File: OptionalUsage.java
import java.util.Optional;

// A book can have an optional blurb.
class Book {
 private String bookName;
 private Optional<String> optBlurb;

 public String getBookName() { return bookName; }
 public Optional<String> getOptBlurb() { return optBlurb; }

static <T> Optional<T> empty()
static <T> Optional<T> of(T nonNullValue)
static <T> Optional<T> ofNullable(T value)

The empty() method returns an empty Optional instance; that is, it indicates the
absence of a value.
The of() method returns an Optional with the specified value, if this value is
non-null. Otherwise, a NullPointerException is thrown.
The ofNullable() method returns an Optional with the specified value, if this
value is non-null. Otherwise, it returns an empty Optional.

942 CHAPTER 16: STREAMS

 public Book(String bookName, Optional<String> optBlurb) {
 this.bookName = bookName;
 this.optBlurb = optBlurb;
 }
}

// A course can have an optional book.
class Course {
 private Optional<Book> optBook;
 public Optional<Book> getOptBook() { return optBook; }
 public Course(Optional<Book> optBook) { this.optBook = optBook; }
}

public class OptionalUsage {
 public static void main(String[] args) {

 // Creating an Optional:
 Optional<String> blurb0 = Optional.of("Java Programmers tell all!");
 //Optional<String> xblurb = Optional.of(null); // NullPointerException
 Optional<String> blurb1 = Optional.ofNullable("Program like a Java Pro!");
 Optional<String> noBlurb2 = Optional.ofNullable(null); // Optional.empty()
 Optional<String> noBlurb3 = Optional.empty();

 // Create some books:
 Book book0 = new Book("Embarrassing Exceptions", blurb0);
 Book book1 = new Book("Dancing Lambdas", noBlurb2); // No blurb.

 // Querying an Optional:
 if (book0.getOptBlurb().isPresent()) {
 System.out.println(book0.getOptBlurb().get());//Java Programmers tell all!
 }

 book0.getOptBlurb()
 .ifPresent(System.out::println); //Java Programmers tell all!

// System.out.println(book1.getOptBlurb().get()); // NoSuchElementException

 String blurb = book0.getOptBlurb()
 .orElse("No blurb"); // "Java Programmers tell all!"
 System.out.println(blurb);

 blurb = book1.getOptBlurb().orElse("No blurb"); // "No blurb"
 System.out.println(blurb);

 blurb = book1.getOptBlurb().orElseGet(() -> "No blurb"); // "No blurb"
 System.out.println(blurb);

 //blurb = book1.getOptBlurb() // RuntimeException
 // .orElseThrow(() -> new RuntimeException("No blurb"));
 }
}

Output from the program:

Java Programmers tell all!
Java Programmers tell all!

16.6: THE OPTIONAL CLASS 943

Java Programmers tell all!
No blurb
No blurb

Querying an Optional

The presence of a value in an Optional can be determined by the isPresent()
method, and the value can be obtained by calling the get() method—which is not
much better than checking explicitly for the null value, but as we shall see, other
methods in the Optional class alleviate this drudgery. The get() method throws a
NoSuchElementException if there is no value in the Optional.

if (book0.getOptBlurb().isPresent()) {
 System.out.println(book0.getOptBlurb().get()); // Java Programmers tell all!
}
System.out.println(book1.getOptBlurb().get()); // NoSuchElementException

The idiom of determining the presence of a value and then handling the value is
combined by the ifPresent() method that accepts a Consumer to handle the value if
one is present. The ifPresent() method does nothing if there is no value present in
the Optional.

book0.getOptBlurb().ifPresent(System.out::println); //Java Programmers tell all!

T get()

If a value is present in this Optional, the method returns that value; otherwise,
it throws a NoSuchElementException.

boolean isPresent()
void ifPresent(Consumer<? super T> consumer)

The first method returns true if there is a value present in this Optional; other-
wise, it returns false.
If a value is present in this Optional, the second method invokes the specified
consumer with the value; otherwise, it does nothing.

T orElse(T other)
T orElseGet(Supplier<? extends T> other)
<X extends Throwable> T orElseThrow(Supplier<? extends X> exceptionSupplier)
 throws X extends Throwable

If a value is present in this Optional, all three methods return this value.

They differ in their action when a value is not present in this Optional. The first
method returns the other value. The second method invokes the specified sup-
plier other and returns its result. The third method invokes the specified
supplier exceptionSupplier and throws the exception created by this supplier.
Note that the type of argument in the first two methods must be compatible
with the parameterized type of the Optional on which the method is invoked,
or the compiler will issue an error.

944 CHAPTER 16: STREAMS

Often, a default value should be supplied when an Optional does not contain a
value. The orElse() method returns the value in the Optional if one is present; other-
wise, it returns the value given by the argument specified in the method call.

The orElse() method in the statement below returns the blurb in the book refer-
enced by the reference book0, as this book has a blurb.

String blurb = book0.getOptBlurb()
 .orElse("No blurb"); // "Java Programmers tell all!"

The book referenced by the reference book1 has no blurb. Therefore, the orElse()
method invoked on the optional blurb returns the argument in the method.

blurb = book1.getOptBlurb().orElse("No blurb"); // "No blurb"

For an Optional with a value, the orElseGet() method returns the value in the
Optional. The orElseGet() method in the statement below returns the object sup-
plied by the Supplier specified as an argument, since the book has no blurb.

blurb = book1.getOptBlurb().orElseGet(() -> "No blurb"); // "No blurb"

For an Optional with a value, the orElseThrow() method also returns the value in the
Optional. The orElseThrow() method in the statement below throws the exception
created by the Supplier specified as an argument, since the book has no blurb.

blurb = book1.getOptBlurb() // RuntimeException
 .orElseThrow(() -> new RuntimeException("No blurb"));

Numeric Optional Classes

An instance of the generic Optional<T> class can only encapsulate an object. To deal
with optional numeric values, the java.util package also defines the following
non-generic classes that can encapsulate primitive numeric values: OptionalInt,
OptionalLong, and OptionalDouble. For example, an OptionalInt object encapsulates
an int value.

The numeric optional classes provide methods analogous to the static factory
methods of the Optional class to create a numeric optional from a numeric value
and methods to query a numeric optional. The filter(), map(), and flatMap() meth-
ods are not defined for the numeric optional classes.

The following methods are defined in the OptionalInt, OptionalLong, and Optional-
Double classes in the java.util package. In the methods below, NumType is Int, Long,
or Double, and the corresponding numtype is int, long, or double.

static OptionalNumType empty()
static OptionalNumType of(numtype value)

These two methods return an empty OptionalNumType instance and an Optional-
NumType with the specified value, respectively.

16.6: THE OPTIONAL CLASS 945

Example 16.9 illustrates using numeric optional values. A recipe has an optional
number of calories that are modeled using an OptionalInt that can encapsulate an
int value. Declaring, creating, and querying OptionalInt objects is analogous to
that for Optional objects.

Example 16.9 Using Numerical Optionals

// File: NumericOptionalUsage.java
import java.util.OptionalInt;

class Recipe {
 private String recipeName;
 private OptionalInt calories; // Optional number of calories.

 public String getRecipeName() { return recipeName; }
 public OptionalInt getCalories() { return calories; }

 public Recipe(String recipeName, OptionalInt calories) {
 this.recipeName = recipeName;
 this.calories = calories;
 }
}

public final class NumericOptionalUsage {
 public static void main(String[] args) {
 // Creating an OptionalInt:
 OptionalInt optNOC0 = OptionalInt.of(3500);
 OptionalInt optNOC1 = OptionalInt.empty();

boolean isPresent()
void ifPresent(NumTypeConsumer consumer)

If there is a value present in this Optional, the first method returns true. Other-
wise, it returns false.
If a value is present in this Optional, the specified consumer is invoked on the
value. Otherwise, it does nothing.

numtype getAsNumType()

If a value is present in this OptionalNumType, the method returns the value.
Otherwise, it throws a NoSuchElementException.

numtype orElse(numtype other)
numtype orElseGet(NumTypeSupplier other)
<X extends Throwable> numtype orElseThrow(Supplier<X> exceptionSupplier)
 throws X extends Throwable

If a value is present in this OptionalNumType, all three methods return this value.
They differ in their action when there is no value present in this numeric
optional. The first method returns the specified other value. The second
method invokes the specified other supplier and returns the result. The third
method throws an exception that is created by the specified supplier.

946 CHAPTER 16: STREAMS

 // Creating recipes with optional number of calories:
 Recipe recipe0 = new Recipe("Mahi-mahi", optNOC0);
 Recipe recipe1 = new Recipe("Loco moco", optNOC1);

 // Querying an Optional:
 // System.out.println(recipe1.getCalories()
 // .getAsInt()); // NoSuchElementException
 System.out.println((recipe1.getCalories().isPresent()
 ? recipe1.getCalories().getAsInt()
 : "Unknown calories.")); // Unknown calories.

 recipe0.getCalories().ifPresent(s -> System.out.println(s + " calories."));
 System.out.println(recipe0.getCalories().orElse(0) + " calories.");
 System.out.println(recipe1.getCalories().orElseGet(() -> 0) + " calories.");
 // int noc = recipe1.getCalories() // RuntimeException
 // .orElseThrow(() -> new RuntimeException("Unknown calories."));
 }
}

Output from the program:

Unknown calories.
3500 calories.
3500 calories.
0 calories.

16.7 Terminal Stream Operations

A stream pipeline does not execute until a terminal operation is invoked on it; that
is, a stream pipeline does not start to process the stream elements until a terminal
operation is initiated. A terminal operation is said to be eager as it executes imme-
diately when invoked—as opposed to an intermediate operation which is lazy.
Invoking the terminal operation results in the intermediate operations of the
stream pipeline to be executed. Understandably, a terminal operation is specified
as the last operation in a stream pipeline, and there can only be one such operation
in a stream pipeline. A terminal operation never returns a stream, which is always
done by an intermediate operation. Once the terminal operation completes, the
stream is consumed and cannot be reused.

Terminal operations can be broadly grouped into three groups:

• Operations with side effects

The Stream API provides two terminal operations, forEach() and forEachOr-
dered(), that are designed to allow side effects on stream elements (p. 948).
These terminal operations do not return a value. They allow a Consumer action,
specified as an argument, to be applied to every element, as they are consumed
from the stream pipeline—for example, to print each element in the stream.

16.7: TERMINAL STREAM OPERATIONS 947

• Searching operations

These operations perform a search operation to determine a match or find an
element as explained below.
All search operations are short-circuit operations; that is, the operation can termi-
nate once the result is determined, whether or not all elements in the stream
have been considered.
Search operations can be further classified into two subgroups:

❍ Matching operations

The three terminal operations anyMatch(), allMatch(), and noneMatch() deter-
mine whether stream elements match a given Predicate specified as an argu-
ment to the method (p. 949). As expected, these operations return a boolean
value to indicate whether the match was successful or not.

❍ Finding operations

The two terminal operations findAny() and findFirst() find any element and
the first element in a stream, respectively, if such an element is available (p.
952). As the stream might be empty and such an element might not exist, these
operations return an Optional.

• Reduction operations

A reduction operation computes a result from combining the stream elements
by successively applying a combining function; that is, the stream elements are
reduced to a result value. Examples of reductions are computing the sum or
average of numeric values in a numeric stream, and accumulating stream ele-
ments into a collection.
We distinguish between two kinds of reductions:

❍ Functional reduction

A terminal operation is a functional reduction on the elements of a stream if it
reduces the elements to a single immutable value which is then returned by the
operation.
The overloaded reduce() method provided by the Stream API can be used to
implement customized functional reductions (p. 955), whereas the terminal
operations count(), min(), and max() implement specialized functional reduc-
tions (p. 953).
Functional reductions on numeric streams are discussed later in this section (p.
972).

❍ Mutable reduction

A terminal operation performs a mutable reduction on the elements of a stream if
it uses a mutable container—for example, a list, a set, or a map—to accumulate
values as it processes the stream elements. The operation returns the mutable
container as the result of the operation.
The Stream API provides two overloaded collect() methods that perform
mutable reduction (p. 964). One overloaded collect() method can be used to

948 CHAPTER 16: STREAMS

implement customized mutable reductions by specifying the functions (sup-
plier, accumulator, combiner) required to perform such a reduction. A second
collect() method accepts a Collector that is used to perform a mutable reduc-
tion. A collector encapsulates the functions required for performing a mutable
reduction. The Stream API provides built-in collectors that allow various con-
tainers to be used for performing mutable reductions (p. 978). When a terminal
operation performs a mutable reduction using a specific container, it is said to
collect to this container.
The toArray() method implements a specialized mutable reduction that returns
an array with the accumulated values (p. 971); that is, the method collects to an
array.

Consumer Action on Stream Elements

We have already used both the forEach() and forEachOrdered() terminal operations
to print elements when the pipeline is executed. These operations allow side effects
on stream elements.

The forEach() method is defined for both streams and collections. In the case of col-
lections, the method iterates over all the elements in the collection, whereas it is a
terminal operation on streams.

Since these terminal operations perform an action on each element, the input
stream to the operation must be finite in order for the operation to terminate.

Counterparts to the forEach() and forEachOrdered() methods for the primitive
numeric types are also defined by the numeric stream interfaces.

The difference in behavior of the forEach() and forEachOrdered() terminal opera-
tions is that the forEach() method does not guarantee to respect the encounter
order, whereas the forEachOrdered() method always does, if there is one.

Each operation is applied to both an ordered sequential stream and an ordered par-
allel stream to print CD titles with the help of the consumer printStr:

Consumer<String> printStr = str -> System.out.print(str + "|");

CD.cdList.stream().map(CD::title).forEach(printStr); // (1a)
//Java Jive|Java Jam|Lambda Dancing|Keep on Erasing|Hot Generics|

void forEach(Consumer<? super T> action)

This terminal operation performs an action on each element of this stream.
This method should not be relied upon to produce deterministic results, as the
order in which the elements are processed is not guaranteed.

void forEachOrdered(Consumer<? super T> action)

This terminal operation performs an action on each element of this stream, but
in the encounter order of the stream if the stream has one.

16.7: TERMINAL STREAM OPERATIONS 949

CD.cdList.stream().parallel().map(CD::title).forEach(printStr); // (1b)
//Lambda Dancing|Hot Generics|Keep on Erasing|Java Jam|Java Jive|

The behavior of the forEach() operation is nondeterministic, as seen at (1a) and
(1b). The output from (1a) and (1b) shows that the forEach() operation respects the
encounter order for an ordered sequential stream, but not necessarily for an
ordered parallel stream. Respecting the encounter order for an ordered parallel
stream would incur overhead that would impact performance, and is therefore
ignored.

On the other hand, the forEachOrdered() operation always respects the encounter
order in both cases, as seen below from the output at (2a) and (2b). However, it is
important to note that, in the case of the ordered parallel stream, the terminal
action on the elements can be executed in different threads, but guarantees that the
action is applied to the elements in encounter order.

CD.cdList.stream().map(CD::title).forEachOrdered(printStr); // (2a)
//Java Jive|Java Jam|Lambda Dancing|Keep on Erasing|Hot Generics|

CD.cdList.stream().parallel().map(CD::title).forEachOrdered(printStr); // (2b)
//Java Jive|Java Jam|Lambda Dancing|Keep on Erasing|Hot Generics|

The discussion above also applies when the forEach() and forEachOrdered() termi-
nal operations are invoked on numeric streams. The nondeterministic behavior of
the forEach() terminal operation for int streams is illustrated below. The terminal
operation on the sequential int stream at (3a) seems to respect the encounter order,
but should not be relied upon. The terminal operation on the parallel int stream at
(3b) can give different results for different runs.

IntConsumer printInt = n -> out.print(n + "|");

IntStream.of(2018, 2019, 2020, 2021, 2022).forEach(printInt); // (3a)
//2018|2019|2020|2021|2022|

IntStream.of(2018, 2019, 2020, 2021, 2022).parallel().forEach(printInt); // (3b)
//2020|2019|2018|2021|2022|

Matching Elements

The match operations determine whether any, all, or none of the stream elements
satisfy a given Predicate. These operations are not reductions, as they do not
always consider all elements in the stream in order to return a result.

Analogous match operations are also provided by the numeric stream interfaces.

boolean anyMatch(Predicate<? super T> predicate)
boolean allMatch(Predicate<? super T> predicate)
boolean noneMatch(Predicate<? super T> predicate)

These three terminal operations determine whether any, all, or no elements of
this stream match the specified predicate, respectively.

950 CHAPTER 16: STREAMS

The queries at (1), (2), and (3) below determine whether any, all, or no CDs are jazz
music CDs, respectively. At (1), the execution of the pipeline terminates as soon as
any jazz music CD is found—the value true is returned. At (2), the execution of the
pipeline terminates as soon as a non-jazz music CD is found—the value false is
returned. At (3), the execution of the pipeline terminates as soon as a jazz music
CD is found—the value false is returned.

boolean anyJazzCD = CD.cdList.stream().anyMatch(CD::isJazz); // (1) true
boolean allJazzCds = CD.cdList.stream().allMatch(CD::isJazz); // (2) false
boolean noJazzCds = CD.cdList.stream().noneMatch(CD::isJazz); // (3) false

Given the following predicates:

Predicate<CD> eq2015 = cd -> cd.year().compareTo(Year.of(2015)) == 0;
Predicate<CD> gt2015 = cd -> cd.year().compareTo(Year.of(2015)) > 0;

The query at (4) determines that no CDs were released in 2015. The queries at (5)
and (6) are equivalent. If all CDs were released after 2015, then none were released
in or before 2015 (negation of the predicate gt2015).

boolean noneEQ2015 = CD.cdList.stream().noneMatch(eq2015); // (4) true
boolean allGT2015 = CD.cdList.stream().allMatch(gt2015); // (5) true
boolean noneNotGT2015 = CD.cdList.stream().noneMatch(gt2015.negate()); // (6) true

The code below uses the anyMatch() method on an int stream to determine whether
any year is a leap year.

IntStream yrStream = IntStream.of(2018, 2019, 2020);
IntPredicate isLeapYear = yr -> Year.of(yr).isLeap();
boolean anyLeapYear = yrStream.anyMatch(isLeapYear);
out.println("Any leap year: " + anyLeapYear); // true

Example 16.10 illustrates using the allMatch() operation to determine whether a
square matrix—that is, a two-dimensional array with an equal number of columns
as rows—is an identity matrix. In such a matrix, all elements on the main diagonal
have the value 1 and all other elements have the value 0. The methods isIdentity-
MatrixLoops() and isIdentityMatrixStreams() at (1) and (2) implement this test in
different ways.

The method isIdentityMatrixLoops() at (1) uses nested loops. The outer loop pro-
cesses the rows, whereas the inner loop tests that each row has the correct values. The
outer loop is a labeled loop in order to break out of the inner loop if an element in a
row does not have the correct value—effectively achieving short-circuit execution.

The methods may not evaluate the predicate on all elements if it is not neces-
sary for determining the result; that is, they are short-circuit operations.
If the stream is empty, the predicate is not evaluated.
The anyMatch() method returns false if the stream is empty.
The allMatch() and noneMatch() methods return true if the stream is empty.
There is no guarantee that these operations will terminate if applied to an infi-
nite stream.

16.7: TERMINAL STREAM OPERATIONS 951

The method isIdentityMatrixStreams() at (2) uses nested numeric streams, where
the outer stream processes the rows and the inner stream processes the elements in
a row. The allMatch() method at (4) in the inner stream pipeline determines that all
elements in a row have the correct value. It short-circuits the execution of the inner
stream if that is not the case. The allMatch() method at (3) in the outer stream pipe-
line also short-circuits its execution if its predicate to process a row returns the
value false. The stream-based implementation for the identity matrix test expresses
the logic more clearly and naturally than the loop-based version.

Example 16.10 Identity Matrix Test

import static java.lang.System.out;

import java.util.Arrays;
import java.util.stream.IntStream;

public class IdentityMatrixTest {
 public static void main(String[] args) {
 // Matrices to test:
 int[][] sqMatrix1 = { {1, 0, 0}, {0, 1, 0}, {0, 0, 1} };
 int[][] sqMatrix2 = { {1, 1}, {1, 1} };
 isIdentityMatrixLoops(sqMatrix1);
 isIdentityMatrixLoops(sqMatrix2);
 isIdentityMatrixStreams(sqMatrix1);
 isIdentityMatrixStreams(sqMatrix2);
 }

 private static void isIdentityMatrixLoops(int[][] sqMatrix) { // (1)
 boolean isCorrectValue = false;
 outerLoop:
 for (int i = 0; i < sqMatrix.length; ++i) {
 for (int j = 0; j < sqMatrix[i].length; ++j) {
 isCorrectValue = j == i ? sqMatrix[i][i] == 1
 : sqMatrix[i][j] == 0;
 if (!isCorrectValue) break outerLoop;
 }
 }
 out.println(Arrays.deepToString(sqMatrix)
 + (isCorrectValue ? " is ": " is not ") + "an identity matrix.");
 }

 private static void isIdentityMatrixStreams(int[][] sqMatrix) { // (2)
 boolean isCorrectValue =
 IntStream.range(0, sqMatrix.length)
 .allMatch(i -> IntStream.range(0, sqMatrix[i].length) // (3)
 .allMatch(j -> j == i // (4)
 ? sqMatrix[i][i] == 1
 : sqMatrix[i][j] == 0));
 out.println(Arrays.deepToString(sqMatrix)
 + (isCorrectValue ? " is ": " is not ") + "an identity matrix.");
 }
}

952 CHAPTER 16: STREAMS

Output from the program:

[[1, 0, 0], [0, 1, 0], [0, 0, 1]] is an identity matrix.
[[1, 1], [1, 1]] is not an identity matrix.
[[1, 0, 0], [0, 1, 0], [0, 0, 1]] is an identity matrix.
[[1, 1], [1, 1]] is not an identity matrix.

Finding the First or Any Element

The findFirst() method can be used to find the first element that is available in the
stream. This method respects the encounter order, if the stream has one. It always
produces a stable result; that is, it will produce the same result on identical pipe-
lines based on the same stream source. In contrast, the behavior of the findAny()
method is nondeterministic. Counterparts to these methods are also defined by the
numeric stream interfaces.

In the code below, the encounter order of the stream is the positional order of the
elements in the list. The first element returned by the findFirst() method at (1) is
the first element in the CD list.

Optional<CD> firstCD1 = CD.cdList.stream().findFirst(); // (1)
out.println(firstCD1.map(CD::title).orElse("No first CD.")); // (2) Java Jive

Since such an element might not exist—for example, the stream might be empty—
the method returns an Optional<T> object. At (2), the Optional<CD> object returned
by the findFirst() method is mapped to an Optional<String> object that encapsu-
lates the title of the CD. The orElse() method on this Optional<String> object
returns the CD title or the argument string if there is no such CD.

If the encounter order is not of consequence, the findAny() method can be used, as
it is nondeterministic—that is, it does not guarantee the same result on the same

Optional<T> findFirst()

This terminal operation returns an Optional describing the first element of this
stream, or an empty Optional if the stream is empty.
This method may return any element if this stream does not have any encoun-
ter order.
It is a short-circuit operation, as it will terminate the execution of the stream
pipeline as soon as the first element is found.
This method throws a NullPointerException if the element selected is null.

Optional<T> findAny()

This terminal operation returns an Optional describing some element of the
stream, or an empty Optional if the stream is empty. This operation has nonde-
terministic behavior.
It is a short-circuit operation, as it will terminate the execution of the stream
pipeline as soon as any element is found.

16.7: TERMINAL STREAM OPERATIONS 953

stream source. On the other hand, it provides maximal performance on parallel
streams. At (3) below, the findAny() method is free to return any element from the
parallel stream. It should not come as a surprise if the element returned is not the
first element in the list.

Optional<CD> anyCD2 = CD.cdList.stream().parallel().findAny(); // (3)
out.println(anyCD2.map(CD::title).orElse("No CD.")); // Lambda Dancing

The match methods only determine whether any elements satisfy a Predicate, as
seen at (5) below. Typically, a find terminal operation is used to find the first ele-
ment made available to the terminal operation after processing by the intermediate
operations in the stream pipeline. At (6), the filter() operation will filter the jazz
music CDs from the stream. However, the findAny() operation will return the first
jazz music CD that is filtered and then short-circuit the execution.

boolean anyJazzCD = CD.cdList.stream().anyMatch(CD::isJazz); // (5)
out.println("Any Jazz CD: " + anyJazzCD); // Any Jazz CD: true

Optional<CD> optJazzCD = CD.cdList.stream().filter(CD::isJazz).findAny(); // (6)
optJazzCD.ifPresent(out::println); // <Jaav, "Java Jam", 6, 2017, JAZZ>

The code below uses the findAny() method on an IntStream to find whether any
number is divisible by 7.

IntStream numStream = IntStream.of(50, 55, 65, 70, 75, 77);
OptionalInt intOpt = numStream.filter(n -> n % 7 == 0).findAny();
intOpt.ifPresent(System.out::println); // 70

The find operations are guaranteed to terminate when applied to a finite, albeit
empty, stream. However, for an infinite stream in a pipeline, at least one element
must be made available to the find operation in order for the operation to termi-
nate. If the elements of an initial infinite stream are all discarded by the intermedi-
ate operations, the find operation will not terminate, as in the following pipeline:

Stream.generate(() -> 1).filter(n -> n == 0).findAny(); // Never terminates.

Counting Elements

The count() operation performs a functional reduction on the elements of a stream,
as each element contributes to the count which is the single immutable value
returned by the operation. The count() operation reports the number of elements
that are made available to it, which is not necessarily the same as the number of
elements in the initial stream, as elements might be discarded by the intermediate
operations.

The code below finds the total number of CDs in the streams, and how many of
these CDs are jazz music CDs.

long numOfCDS = CD.cdList.stream().count(); // 5
long numOfJazzCDs = CD.cdList.stream().filter(CD::isJazz).count(); // 3

954 CHAPTER 16: STREAMS

The count() method is also defined for the numeric streams. Below it is used on an
IntStream to find how many numbers between 1 and 100 are divisible by 7.

IntStream numStream = IntStream.rangeClosed(1, 100);
long divBy7 = numStream.filter(n -> n % 7 == 0).count(); // 14

Finding Min and Max Elements

The min() and max() operations are functional reductions, as they consider all ele-
ments of the stream and return a single value. They should only be applied to a
finite stream, as they will not terminate on an infinite stream. These methods are
also defined by the numeric stream interfaces for the numeric types, but without
the specification of a comparator.

Both methods return an Optional, as the minimum and maximum elements might
not exist—for example, if the stream is empty. The code below finds the minimum
and maximum elements in a stream of CDs, according to their natural order. The
artist name is the most significant field according to the natural order defined for
CDs (p. 883).

Optional<CD> minCD = CD.cdList.stream().min(Comparator.naturalOrder());
minCD.ifPresent(out::println); // <Funkies, "Lambda Dancing", 10, 2018, POP>
out.println(minCD.map(CD::artist).orElse("No min CD.")); // Funkies

Optional<CD> maxCD = CD.cdList.stream().max(Comparator.naturalOrder());
maxCD.ifPresent(out::println); // <Jaav, "Java Jive", 8, 2017, POP>
out.println(maxCD.map(CD::artist).orElse("No max CD.")); // Jaav

In the code below, the max() method is applied to an IntStream to find the largest
number between 1 and 100 that is divisible by 7.

IntStream iStream = IntStream.rangeClosed(1, 100);
OptionalInt maxNum = iStream.filter(n -> n % 7 == 0).max(); // 98

long count()

This terminal operation returns the count of elements in this stream—that is,
the length of this stream.
This operation is a special case of a functional reduction.
The operation does not terminate when applied to an infinite stream.

Optional<T> min(Comparator<? super T> cmp)
Optional<T> max(Comparator<? super T> cmp)

These terminal operations return an Optional with the minimum or maximum
element of this stream according to the provided Comparator, respectively, or an
empty Optional if this stream is empty. It throws a NullPointerException if the
minimum element is null.
These operations are a special case of a functional reduction.
These operations do not terminate when applied to an infinite stream.

16.7: TERMINAL STREAM OPERATIONS 955

If one is only interested in the minimum and maximum elements in a collection,
the overloaded methods min() and max() of the java.util.Collections class can be
more convenient to use.

Implementing Functional Reduction: The reduce() Method

A functional reduction combines all elements in a stream to produce a single immu-
table value as its result. The reduction process employs an accumulator that repeat-
edly computes a new partial result based on the current partial result and the
current element in the stream. The stream thus gets shorter by one element. When
all elements have been combined, the last partial result that was computed by the
accumulator is returned as the final result of the reduction process.

The following terminal operations are special cases of functional reduction:

• count(), p. 953.
• min(), p. 954.
• max(), p. 954.
• average(), p. 1000.
• sum(), p. 1001.

The overloaded reduce() method can be used to implement new forms of func-
tional reduction.

Optional<T> reduce(BinaryOperator<T> accumulator)

This terminal operation returns an Optional with the cumulative result of apply-
ing the accumulator on the elements of this stream: e1 ⊕ e2 ⊕ e3 ..., where each
ei is an element of this stream and ⊕ is the accumulator. If the stream is empty,
an empty Optional is returned.

The accumulator must be associative—that is, the result of evaluating an expres-
sion is the same, regardless of how the operands are grouped to evaluate the
expression. For example, the grouping in the expression below allows the sub-
expressions to be evaluated in parallel and their results combined by the accu-
mulator:
ei ⊕ ej ⊕ ek ⊕ el == (ei ⊕ ej) ⊕ (ek ⊕ el)

where ei, ej, ek, and el are operands, and ⊕ is the accumulator. For example,
numeric addition, min, max, and string concatenation are associative opera-
tions, whereas subtraction and division are nonassociative.

The accumulator must also be a non-interfering and stateless function (p. 909).
Note that the method reduces a Stream of type T to a result that is an Optional
of type T.
A counterpart to the single-argument reduce() method is also provided for the
numeric streams.

956 CHAPTER 16: STREAMS

The idiom of using a loop for calculating the sum of a finite number of values is
something that is ingrained into all aspiring programmers. A loop-based solution
to calculate the total number of tracks on CDs in a list is shown below, where the
variable sum will hold the result after the execution of the for(:) loop:

int sum = 0; // (1) Initialize the partial result.
for (CD cd : CD.cdList) { // (2) Iterate over the list.
 int numOfTracks = cd.noOfTracks(); // (3) Get the current value.
 sum = sum + numOfTracks; // (4) Calculate new partial result.
}

T reduce(T identity, BinaryOperator<T> accumulator)

This terminal operation returns the cumulative result of applying the accumula-
tor on the elements of this stream: identity ⊕ e1 ⊕ e2 ⊕ e3 ..., where ei is an
element of this stream, and ⊕ is the accumulator. The identity value is the initial
value to accumulate. If the stream is empty, the identity value is returned.

The identity value must be an identity for the accumulator—for all ei, identity
⊕ ei == ei. The accumulator must be associative.
The accumulator must also be a non-interfering and stateless function (p. 909).
Note that the method reduces a Stream of type T to a result of type T.
A counterpart to the two-argument reduce() method is also provided for the
numeric streams.

<U> U reduce(
 U identity,
 BiFunction<U,? super T,U> accumulator,
 BinaryOperator<U> combiner)

This terminal operation returns the cumulative result of applying the accumulator
on the elements of this stream, using the identity value of type U as the initial
value to accumulate. If the stream is empty, the identity value is returned.

The identity value must be an identity for the combiner function. The accumula-
tor and the combiner function must also satisfy the following relationship for
all u and t of type U and T, respectively:
 u © (identity ⊕ t) == u ⊕ t

where © and ⊕ are the accumulator and combiner functions, respectively.
The combiner function combines two values during stream processing. It may
not be executed for a sequential stream, but for a parallel stream, it will com-
bine cumulative results of segments that are processed concurrently.

Both the accumulator and the combiner must also be non-interfering and stateless
functions (p. 909).
Note that the accumulator has the function type (U, T) -> U, and the combiner
function has the function type (U, U) -> U, where the type parameters U and T
are always the types of the partial result and the stream element, respectively.
This method reduces a Stream of type T to a result of type U.
There is no counterpart to the three-argument reduce() method for the numeric
streams.

16.7: TERMINAL STREAM OPERATIONS 957

Apart from the for(:) loop at (2) to iterate over all elements of the list and read the
number of tracks in each CD at (3), the two necessary steps are:

• Initialization of the variable sum at (1)
• The accumulative operation at (4) that is applied repeatedly to compute a new

partial result in the variable sum, based on its previous value and the number of
tracks in the current CD

The loop-based solution above can be translated to a stream-based solution, as
shown in Figure 16.11. All the code snippets can be found in Example 16.11.

In Figure 16.11, the stream created at (6) internalizes the iteration over the ele-
ments. The mapToInt() intermediate operation maps each CD to its number of
tracks at (7)—the Stream<CD> is mapped to an IntStream. The reduce() terminal oper-
ation with two arguments computes and returns the total number of tracks:

• Its first argument at (8) is the identity element that provides the initial value for
the operation and is also the default value to return if the stream is empty. In
this case, this value is 0.

• Its second argument at (9) is the accumulator that is implemented as a lambda
expression. It repeatedly computes a new partial sum based on the previous
partial sum and the number of tracks in the current CD, as evident from

Figure 16.11 Reducing with an Initial Value

Stream<CD> IntStream int

mapToInt() reduce()

cd0cd1cd4 cd3 cd2

cd1cd4 cd3 cd2

cd4 cd3 cd2

cd4 cd3

cd4

// Query: Find the total number of CD tracks.
int totNumOfTracks = CD.cdList // (5)
 .stream() // (6)
 .mapToInt(CD::noOfTracks) // (7)
 .reduce(0, // (8)
 (sum, numOfTracks) -> sum + numOfTracks); // (9)

Contents of
CD.cdList

10

8

6

10

8

8

14

24

32

42

0

(a) Using the reduce() method with an initial value

(b) Stream pipeline

+

+

+

+

+

stream()

Final
result

Partial
result

Initial
value

+ Accumulator

958 CHAPTER 16: STREAMS

Figure 16.11. In this case, the accumulator is an IntBinaryOperator whose func-
tional type is (int, int) -> int. Note that the parameters of the lambda expres-
sion represent the partial sum and the current number of tracks, respectively.

The stream pipeline in Figure 16.11 is an example of a map-reduce transformation on
a sequential stream, as it maps the stream elements first and then reduces them.
Typically, a filter operation is also performed before the map-reduce transformation.

Each of the following calls can replace the reduce() method call in Figure 16.11, as
they are all equivalent:

reduce(0, (sum, noOfTracks) -> Integer.sum(sum, noOfTracks))
reduce(0, Integer::sum) // Method reference
sum() // Special functional reduction, p. 1001.

In Example 16.11, the stream pipeline at (10) prints the actions taken by the accu-
mulator which is now augmented with print statements. The output at (3) shows
that the accumulator actions correspond to those in Figure 16.11.

The single-argument reduce() method only accepts an accumulator. As no explicit
default or initial value can be specified, this method returns an Optional. If the
stream is not empty, it uses the first element as the initial value; otherwise, it
returns an empty Optional. In Example 16.11, the stream pipeline at (13) uses the
single-argument reduce() method to compute the total number of tracks on CDs.
The return value is an OptionalInt that can be queried to extract the encapsulated
int value.

OptionalInt optSumTracks0 = CD.cdList // (13)
 .stream()
 .mapToInt(CD::noOfTracks)
 .reduce(Integer::sum); // (14)
out.println("Total number of tracks: " + optSumTracks0.orElse(0)); // 42

We can again augment the accumulator with print statements as shown at (16) in
Example 16.11. The output at (5) shows that the number of tracks from the first CD
was used as the initial value before the accumulator is applied repeatedly to the
rest of the values.

Example 16.11 Implementing Functional Reductions

import static java.lang.System.out;

import java.util.Comparator;
import java.util.Optional;
import java.util.OptionalInt;
import java.util.function.BinaryOperator;

public final class FunctionalReductions {
 public static void main(String[] args) {

// Two-argument reduce() method:
 {

16.7: TERMINAL STREAM OPERATIONS 959

 out.println("(1) Find total number of tracks (loop-based version):");
 int sum = 0; // (1) Initialize the partial result.
 for (CD cd : CD.cdList) { // (2) Iterate over the list.
 int numOfTracks = cd.noOfTracks(); // (3) Get the next value.
 sum = sum + numOfTracks; // (4) Calculate new partial result.
 }
 out.println("Total number of tracks: " + sum);
 }

 out.println("(2) Find total number of tracks (stream-based version):");
 int totNumOfTracks = CD.cdList // (5)
 .stream() // (6)
 .mapToInt(CD::noOfTracks) // (7)
 .reduce(0, // (8)
 (sum, numOfTracks) -> sum + numOfTracks); // (9)
 // .reduce(0, (sum, noOfTracks) -> Integer.sum(sum, noOfTracks));
 // .reduce(0, Integer::sum);
 // .sum();
 out.println("Total number of tracks: " + totNumOfTracks);
 out.println();

 out.println("(3) Find total number of tracks (accumulator logging): ");
 int totNumOfTracks1 = CD.cdList // (10)
 .stream()
 .mapToInt(CD::noOfTracks)
 .reduce(0, // (11)
 (sum, noOfTracks) -> { // (12)
 int newSum = sum + noOfTracks;
 out.printf("Accumulator: sum=%2d, noOfTracks=%2d, newSum=%2d%n",
 sum, noOfTracks, newSum);
 return newSum;
 }
);
 out.println("Total number of tracks: " + totNumOfTracks1);
 out.println();

// One-argument reduce() method:

 out.println("(4) Find total number of tracks (stream-based version):");
 OptionalInt optSumTracks0 = CD.cdList // (13)
 .stream()
 .mapToInt(CD::noOfTracks)
 .reduce(Integer::sum); // (14)
 out.println("Total number of tracks: " + optSumTracks0.orElse(0));
 out.println();

 out.println("(5) Find total number of tracks (accumulator logging): ");
 OptionalInt optSumTracks1 = CD.cdList // (15)
 .stream()
 .mapToInt(CD::noOfTracks)
 .reduce((sum, noOfTracks) -> { // (16)
 int newSum = sum + noOfTracks;
 out.printf("Accumulator: sum=%2d, noOfTracks=%2d, newSum=%2d%n",
 sum, noOfTracks, newSum);
 return newSum;
 });

960 CHAPTER 16: STREAMS

 out.println("Total number of tracks: " + optSumTracks1.orElse(0));
 out.println();

// Three-argument reduce() method:

 out.println("(6) Find total number of tracks (accumulator + combiner): ");
 Integer sumTracks5 = CD.cdList // (17)
 // .stream() // (18a)
 .parallelStream() // (18b)
 .reduce(Integer.valueOf(0), // (19) Initial value
 (sum, cd) -> sum + cd.noOfTracks(), // (20) Accumulator
 (sum1, sum2) -> sum1 + sum2); // (21) Combiner
 out.println("Total number of tracks: " + sumTracks5);
 out.println();

 out.println("(7) Find total number of tracks (accumulator + combiner): ");
 Integer sumTracks6 = CD.cdList // (22)
// .stream() // (23a)
 .parallelStream() // (23b)
 .reduce(0,
 (sum, cd) -> { // (24) Accumulator
 Integer noOfTracks = cd.noOfTracks();
 Integer newSum = sum + noOfTracks;
 out.printf("Accumulator: sum=%2d, noOfTracks=%2d, "
 + "newSum=%2d%n", sum, noOfTracks, newSum);
 return newSum;
 },
 (sum1, sum2) -> { // (25) Combiner
 Integer newSum = sum1 + sum2;
 out.printf("Combiner: sum1=%2d, sum2=%2d, newSum=%2d%n",
 sum1, sum2, newSum);
 return newSum;
 }
);
 out.println("Total number of tracks: " + sumTracks6);
 out.println();

 // Compare by CD title.
 Comparator<CD> cmpByTitle = Comparator.comparing(CD::title); // (26)
 BinaryOperator<CD> maxByTitle =
 (cd1, cd2) -> cmpByTitle.compare(cd1, cd2) > 0 ? cd1 : cd2; // (27)

 // Query: Find maximum Jazz CD by title:
 Optional<CD> optMaxJazzCD = CD.cdList // (28)
 .stream()
 .filter(CD::isJazz)
 .reduce(BinaryOperator.maxBy(cmpByTitle)); // (29a)
 // .reduce(maxByTitle); // (29b)
 // .max(cmpByTitle); // (29c)
 optMaxJazzCD.map(CD::title).ifPresent(out::println);// Keep on Erasing
 }
}

16.7: TERMINAL STREAM OPERATIONS 961

Possible output from the program:

(1) Find total number of tracks (loop-based version):
Total number of tracks: 42
(2) Find total number of tracks (stream-based version):
Total number of tracks: 42

(3) Find total number of tracks (accumulator logging):
Accumulator: sum= 0, noOfTracks= 8, newSum= 8
Accumulator: sum= 8, noOfTracks= 6, newSum=14
Accumulator: sum=14, noOfTracks=10, newSum=24
Accumulator: sum=24, noOfTracks= 8, newSum=32
Accumulator: sum=32, noOfTracks=10, newSum=42
Total number of tracks: 42

(4) Find total number of tracks (stream-based version):
Total number of tracks: 42

(5) Find total number of tracks (accumulator logging):
Accumulator: sum= 8, noOfTracks= 6, newSum=14
Accumulator: sum=14, noOfTracks=10, newSum=24
Accumulator: sum=24, noOfTracks= 8, newSum=32
Accumulator: sum=32, noOfTracks=10, newSum=42
Total number of tracks: 42

(6) Find total number of tracks (accumulator + combiner):
Total number of tracks: 42

(7) Find total number of tracks (accumulator + combiner):
Accumulator: sum= 0, noOfTracks=10, newSum=10
Accumulator: sum= 0, noOfTracks=10, newSum=10
Accumulator: sum= 0, noOfTracks= 8, newSum= 8
Combiner: sum1= 8, sum2=10, newSum=18
Combiner: sum1=10, sum2=18, newSum=28
Accumulator: sum= 0, noOfTracks= 6, newSum= 6
Accumulator: sum= 0, noOfTracks= 8, newSum= 8
Combiner: sum1= 8, sum2= 6, newSum=14
Combiner: sum1=14, sum2=28, newSum=42
Total number of tracks: 42

Keep on Erasing

The single-argument and two-argument reduce() methods accept a binary operator
as the accumulator whose arguments and result are of the same type. The three-
argument reduce() method is more flexible and can only be applied to objects. The
stream pipeline below computes the total number of tracks on CDs using the three-
argument reduce() method.

Integer sumTracks5 = CD.cdList // (17)
 .stream() // (18a)
// .parallelStream() // (18b)
 .reduce(Integer.valueOf(0), // (19) Initial value
 (sum, cd) -> sum + cd.noOfTracks(), // (20) Accumulator
 (sum1, sum2) -> sum1 + sum2); // (21) Combiner

962 CHAPTER 16: STREAMS

The reduce() method above accepts the following arguments:

• An identity value: Its type is U. In this case, it is an Integer that wraps the value
0. As before, it is used as the initial value. The type of the value returned by the
reduce() method is also U.

• An accumulator: It is a BiFunction<U,T,U>; that is, it is a binary function that
accepts an object of type U and an object of type T and produces a result of type
U. In this case, type U is Integer and type T is CD. The lambda expression imple-
menting the accumulator first reads the number of tracks from the current CD
before the addition operator is applied. Thus the accumulator will calculate the
sum of Integers which are, of course, unboxed and boxed to do the calculation.
As we have seen earlier, the accumulator is repeatedly applied to sum the
tracks on the CDs. Only this time, the mapping of a CD to an Integer is done
when the accumulator is evaluated.

• A combiner: It is a BinaryOperator<U>; that is, it is a binary operator whose argu-
ments and result are of the same type U. In this case, type U is Integer. Thus the
combiner will calculate the sum of Integers which are unboxed and boxed to
do the calculation.
In the code above, the combiner is not executed if the reduce() method is
applied to a sequential stream. However, there is no guarantee that this is
always the case for a sequential stream. If we uncomment (18b) and remove
(18a), the combiner will be executed on the parallel stream.

That the combiner in the three-argument reduce() method is executed for a parallel
stream is illustrated by the stream pipeline at (22) in Example 16.11, that has been
augmented with print statements. There is no output from the combiner when the
stream is sequential. The output at (7) in Example 16.11 shows that the combiner
accumulates the partial sums created by the accumulator when the stream is parallel.

Parallel Functional Reduction

Parallel execution is illustrated in Figure 16.12. Multiple instances of the stream
pipeline are executed in parallel, where each pipeline instance processes a segment
of the stream. In this case, only one CD is allocated to each pipeline instance. Each
pipeline instance thus produces its partial sum, and the combiner is applied in par-
allel on the partial sums to combine them into a final result. No additional synchro-
nization is required to run the reduce() operation in parallel.

Figure 16.12 also illustrates why the initial value must be an identity value. Say we
had specified the initial value to be 3. Then the value 3 would be added multiple
times to the sum during parallel execution. We also see why both the accumulator
and the combiner are associative, as this allows for any two values to be combined
in any order.

When the single-argument and two-argument reduce() methods are applied to a
parallel stream, the accumulator also acts as the combiner. The three-argument
reduce() method can usually be replaced with a map-reduce transformation, making
the combiner redundant.

16.7: TERMINAL STREAM OPERATIONS 963

Figure 16.12 Parallel Functional Reduction

// Query: Find total number of CD tracks.
Integer sumTracks5 = CD.cdList // (17)
 .parallelStream() // (18b)
 .reduce(Integer.valueOf(0), // (19) Initial value
 (sum, cd) -> sum + cd.noOfTracks(), // (20) Accumulator
 (sum1, sum2) -> sum1 + sum2); // (21) Combiner

(a) Using the Stream.reduce() method on a parallel stream

(b) Parallel functional reduction

Stream<CD>

reduce()parallel-
Stream()

parallel-
Stream()

parallel-
Stream()

parallel-
Stream()

parallel-
Stream()

cd0 8 8+

Stream<CD>

reduce()

cd1 6 6+

Stream<CD>

reduce()

cd2 10 10+

Stream<CD>

reduce()

cd4 10 10

0

+

Stream<CD>

reduce()

cd3 8 8+

+ 14

42

0

0

0

0

+ 18

+ 28

+

+ Accumulator

Combiner

+

964 CHAPTER 16: STREAMS

We conclude the discussion on implementing functional reductions by implement-
ing the max() method that finds the maximum element in a stream according to a
given comparator. A comparator that compares by the CD title is defined at (26). A
binary operator that finds the maximum of two CDs when compared by title is
defined at (27). It uses the comparator defined at (26). The stream pipeline at (28)
finds the maximum of all jazz music CDs by title. The method calls at (29a), (29b),
and (29c) are equivalent.

Comparator<CD> cmpByTitle = Comparator.comparing(CD::title); // (26)
BinaryOperator<CD> maxByTitle =
 (cd1, cd2) -> cmpByTitle.compare(cd1, cd2) > 0 ? cd1 : cd2; // (27)

Optional<CD> optMaxJazzCD = CD.cdList // (28)
 .stream()
 .filter(CD::isJazz)
 .reduce(BinaryOperator.maxBy(cmpByTitle)); // (29a)
// .reduce(maxByTitle); // (29b)
// .max(cmpByTitle); // (29c)
optMaxJazzCD.map(CD::title).ifPresent(out::println); // Keep on Erasing

The accumulator at (29a), returned by the BinaryOperator.maxBy() method, will
compare the previous maximum CD and the current CD by title to compute a new
maximum jazz music CD. The accumulator used at (29b) is implemented at (27). It
also does the same comparison as the accumulator at (29a). At (29c), the max()
method also does the same thing, based on the comparator at (26). Note that the
return value is an Optional<CD>, as the stream might be empty. The Optional<CD> is
mapped to an Optional<String>. If it is not empty, its value—that is, the CD title—
is printed.

The reduce() method does not terminate if applied to an infinite stream, as the
method will never finish processing all stream elements.

Implementing Mutable Reduction: The collect() Method

The collect(Collector) method accepts a collector that encapsulates the functions
required to perform a mutable reduction. We discuss predefined collectors imple-
mented by the java.util.stream.Collectors class in a later section (p. 978). The code
below uses the collector returned by the Collectors.toList() method that accumu-
lates the result in a list (p. 980).

List<String> titles = CD.cdList.stream()
 .map(CD::title).collect(Collectors.toList());
// [Java Jive, Java Jam, Lambda Dancing, Keep on Erasing, Hot Generics]

The collect(supplier, accumulator, combiner) generic method provides the general
setup for implementing mutable reduction on stream elements using different
kinds of mutable containers—for example, a list, a map, or a StringBuilder. It uses
one or more mutable containers to accumulate partial results that are combined into
a single mutable container that is returned as the result of the reduction operation.

16.7: TERMINAL STREAM OPERATIONS 965

We will use Figure 16.13 to illustrate mutable reduction performed on a sequential
stream by the three-argument collect() method. The figure shows both the code
and the execution of a stream pipeline to create a list containing the number of
tracks on each CD. The stream of CDs is mapped to a stream of Integers at (3), where
each Integer value is the number of tracks on a CD. The collect() method at (4)
accepts three functions as arguments. They are explicitly defined as lambda
expressions to show what the parameters represent and how they are used to per-
form mutable reduction. Implementation of these functions using method refer-
ences can be found in Example 16.12.

• Supplier: The supplier is a Supplier<R> that is used to create new instances of a
mutable result container of type R. Such a container holds the results computed
by the accumulator and the combiner. In Figure 16.13, the supplier at (4)
returns an empty ArrayList<Integer> every time it is called.

<R,A> R collect(Collector<? super T,A,R> collector)

This terminal operation performs a reduction operation on the elements of this
stream using a Collector (p. 978).
A Collector encapsulates the functions required for performing the reduction.
The result of the reduction is of type R, and the type parameter A is the interme-
diate accumulation type of the Collector.

<R> R collect(
 Supplier<R> supplier,
 BiConsumer<R,? super T> accumulator,
 BiConsumer<R,R> combiner)

This terminal operation performs a mutable reduction on the elements of this
stream. A counterpart to this method is also provided for numeric streams.

The supplier creates a new mutable container of type R—which is typically
empty. Elements are incorporated into such a container during the reduction
process. For a parallel stream, the supplier can be called multiple times, and
the container returned by the supplier must be an identity container in the sense
that it does not mutate any result container with which it is merged.

The accumulator incorporates additional elements into a result container: A
stream element of type T is incorporated into a mutable container of type R.
The combiner merges two values that are mutable containers of type R. It must
be compatible with the accumulator. There is no guarantee that the combiner is
called if the stream is sequential, but definitely comes into play if the stream is
parallel.

Both the accumulator and the combiner must also be non-interfering and stateless
functions (p. 909).
With the above requirements on the argument functions fulfilled, the collect()
method will produce the same result regardless of whether the stream is
sequential or parallel.

966 CHAPTER 16: STREAMS

• Accumulator: The accumulator is a BiConsumer<R, T> that is used to accumulate
an element of type T into a mutable result container of type R. In Figure 16.13,
type R is ArrayList<Integer> and type T is Integer. The accumulator at (5) mutates
a container of type ArrayList<Integer> by repeatedly adding a new Integer
value to it, as illustrated in Figure 16.13b. It is instructive to contrast this accu-
mulator with the accumulator for sequential functional reduction illustrated in
Figure 16.11, p. 957.

• Combiner: The combiner is a BiConsumer<R, R> that merges the contents of the
second argument container with the contents of the first argument container,
where both containers are of type R. As in the case of the reduce(identity,
accumulator, combiner) method, the combiner is executed when the collect()
method is called on a parallel stream.

Parallel Mutable Reduction

Figure 16.14 shows the stream pipeline from Figure 16.13, where the sequential
stream (2a) has been replaced by a parallel stream (2b); in other words, the
collect() method is called on a parallel stream. One possible parallel execution of
the pipeline is also depicted in Figure 16.14b. We see five instances of the pipeline
being executed in parallel. The supplier creates five empty ArrayLists that are used

Figure 16.13 Sequential Mutable Reduction

Stream<CD> Stream<Integer>

map() collect()

cd0cd1cd4 cd3 cd2

cd1cd4 cd3 cd2

cd4 cd3 cd2

cd4 cd3

cd4

// Query: Create a list with the number of tracks on each CD.
List<Integer> tracks = CD.cdList // (1)
 .stream() // (2a)
 .map(CD::noOfTracks) // (3)
 .collect(() -> new ArrayList<>(), // (4) Supplier
 (cont, noOfTracks) -> cont.add(noOfTracks),// (5) Accumulator
 (cont1, cont2) -> cont1.addAll(cont2)); // (6) Combiner

Contents of
CD.cdList

10

8

6

10

8

(a) Using the Stream.collect() method on a sequential stream

(b) Sequential mutual reduction

A

A

A

A

A

stream() [] S

S Supplier

[8]

[8, 6]

[8, 6, 10]

[8, 6, 10, 8]

[8, 6, 10, 8, 10]

A Accumulator

16.7: TERMINAL STREAM OPERATIONS 967

Figure 16.14 Parallel Mutable Reduction

// Query: Create a list with the number of tracks on each CD.
List<Integer> tracks = CD.cdList // (1)
 .parallelStream() // (2b)
 .map(CD::noOfTracks) // (3)
 .collect(() -> new ArrayList<>(), // (4) Supplier
 (cont, noOfTracks) -> cont.add(noOfTracks), // (5) Accumulator
 (cont1, cont2) -> cont1.addAll(cont2)); // (6) Combiner

(a) Using the Stream.collect() method on a parallel stream

(b) Parallel mutable reduction

8 [8]

[8, 6]

[6]

[10]

[10]

[8]

A

6 A

10 A

10 A

8 A

C

C

[]

[]

[]

[]

[]

C

C

C

A Accumulator

Combiner

[10, 8]

[10, 8, 10]

[8, 6,
 10, 8,
 10]

cd0

collect()parallel-
Stream()

Stream<CD> Stream<Integer>

map()

8

cd1

collect()parallel-
Stream()

Stream<CD> Stream<Integer>

map()

6

cd2

collect()parallel-
Stream()

Stream<CD> Stream<Integer>

map()

10

cd3

collect()parallel-
Stream()

Stream<CD> Stream<Integer>

map()

8

cd4

collect()parallel-
Stream()

Stream<CD> Stream<Integer>

map()

10

S

S

S

S

S

S Supplier

968 CHAPTER 16: STREAMS

as partial result containers by the accumulator, and are later merged by the com-
biner to a final result container. The containers created by the supplier are mutated
by the accumulator and the combiner to perform mutable reduction. The partial
result containers are also merged in parallel by the combiner. It is instructive to
contrast this combiner with the combiner for parallel functional reduction that is
illustrated in Figure 16.12, p. 963.

In Example 16.12, the stream pipeline at (7) also creates a list containing the num-
ber of tracks on each CD, where the stream is parallel, and the lambda expressions
implementing the argument functions of the collect() method are augmented
with print statements so that actions of the functions can be logged. The output
from this parallel mutable reduction shows that the combiner is executed multiple
times to merge partial result lists. The actions of the argument functions shown in
the output are the same as those illustrated in Figure 16.14b. Of course, multiple
runs of the pipeline can show different sequences of operations in the output, but
the final result in the same. Also note that the elements retain their relative position
in the partial result lists as these are combined, preserving the encounter order of
the stream.

Although a stream is executed in parallel to perform mutable reduction, the merg-
ing of the partial containers by the combiner can impact performance if this is too
costly. For example, merging mutable maps can be costly compared to merging
mutable lists. This issue is further explored for parallel streams in §16.9, p. 1009.

Example 16.12 Implementing Mutable Reductions

import java.util.ArrayList;
import java.util.List;
import java.util.Set;
import java.util.TreeSet;
import java.util.stream.Stream;

public final class Collecting {
 public static void main(String[] args) {

 // Query: Create a list with the number of tracks on each CD.
 System.out.println("Sequential Mutable Reduction:");
 List<Integer> tracks = CD.cdList // (1)
 .stream() // (2a)
// .parallelStream() // (2b)
 .map(CD::noOfTracks) // (3)
 .collect(() -> new ArrayList<>(), // (4) Supplier
 (cont, noOfTracks) -> cont.add(noOfTracks), // (5) Accumulator
 (cont1, cont2) -> cont1.addAll(cont2)); // (6) Combiner
// .collect(ArrayList::new, ArrayList::add, ArrayList::addAll); // (6a)
// .toList();
 System.out.println("Number of tracks on each CD (sequential): " + tracks);
 System.out.println();

 System.out.println("Parallel Mutable Reduction:");
 List<Integer> tracks1 = CD.cdList // (7)

16.7: TERMINAL STREAM OPERATIONS 969

// .stream() // (8a)
 .parallelStream() // (8b)
 .map(CD::noOfTracks) // (9)
 .collect(// (10)
 () -> { // (11) Supplier
 System.out.println("Supplier: Creating an ArrayList");
 return new ArrayList<>();
 },
 (cont, noOfTracks) -> { // (12) Accumulator
 System.out.printf("Accumulator: cont:%s, noOfTracks:%s",
 cont, noOfTracks);
 cont.add(noOfTracks);
 System.out.printf(", mutCont:%s%n", cont);
 },
 (cont1, cont2) -> { // (13) Combiner
 System.out.printf("Combiner: con1:%s, cont2:%s", cont1, cont2);
 cont1.addAll(cont2);
 System.out.printf(", mutCont:%s%n", cont1);
 });
 System.out.println("Number of tracks on each CD (parallel): " + tracks1);
 System.out.println();

 // Query: Create an ordered set with CD titles, according to natural order.
 Set<String> cdTitles = CD.cdList // (14)
 .stream()
 .map(CD::title)
 .collect(TreeSet::new, TreeSet::add, TreeSet::addAll);// (15)
 System.out.println("CD titles: " + cdTitles);
 System.out.println();

 // Query: Go bananas.
 StringBuilder goneBananas = Stream // (16)
 .iterate("ba", b -> b + "na") // (17)
 .limit(5)
 .peek(System.out::println)
 .collect(StringBuilder::new, // (18)
 StringBuilder::append,
 StringBuilder::append);
 System.out.println("Go bananas: " + goneBananas);
 }
}

Possible output from the program:

Sequential Mutable Reduction:
Number of tracks on each CD (sequential): [8, 6, 10, 8, 10]

Parallel Mutable Reduction:
Supplier: Creating an ArrayList
Accumulator: cont:[], noOfTracks:8, mutCont:[8]
Supplier: Creating an ArrayList
Accumulator: cont:[], noOfTracks:6, mutCont:[6]
Combiner: con1:[8], cont2:[6], mutCont:[8, 6]
Supplier: Creating an ArrayList
Accumulator: cont:[], noOfTracks:10, mutCont:[10]
Supplier: Creating an ArrayList

970 CHAPTER 16: STREAMS

Accumulator: cont:[], noOfTracks:8, mutCont:[8]
Combiner: con1:[10], cont2:[8], mutCont:[10, 8]
Supplier: Creating an ArrayList
Accumulator: cont:[], noOfTracks:10, mutCont:[10]
Combiner: con1:[10, 8], cont2:[10], mutCont:[10, 8, 10]
Combiner: con1:[8, 6], cont2:[10, 8, 10], mutCont:[8, 6, 10, 8, 10]
Number of tracks on each CD (parallel): [8, 6, 10, 8, 10]

CD titles: [Hot Generics, Java Jam, Java Jive, Keep on Erasing, Lambda Dancing]

ba
bana
banana
bananana
banananana
Go bananas: babanabananabanananabanananana

Example 16.12 also shows how other kinds of containers can be used for mutable
reduction. The stream pipeline at (14) performs mutable reduction to create an
ordered set with CD titles. The supplier is implemented by the constructor refer-
ence TreeSet::new. The constructor will create a container of type TreeSet<String>
that will maintain the CD titles according to the natural order for Strings. The accu-
mulator and the combiner are implemented by the method references TreeSet::add
and TreeSet::addAll, respectively. The accumulator will add a title to a container of
type TreeSet<String> and the combiner will merge the contents of two containers
of type TreeSet<String>.

In Example 16.12, the mutable reduction performed by the stream pipeline at (16)
uses a mutable container of type StringBuilder. The output from the peek() method
shows that the strings produced by the iterate() method start with the initial
string "ba" and are iteratively concatenated with the postfix "na". The limit() inter-
mediate operation truncates the infinite stream to five elements. The collect()
method appends the strings to a StringBuilder. The supplier creates an empty
StringBuilder. The accumulator and the combiner append a CharSequence to a
StringBuilder. In the case of the accumulator, the CharSequence is a String—that is, a
stream element—in the call to the append() method. But in the case of the combiner,
the CharSequence is a StringBuilder—that is, a partial result container when the
stream is parallel. One might be tempted to use a string instead of a StringBuilder,
but that would not be a good idea as a string is immutable.

Note that the accumulator and combiner of the collect() method do not return a
value. The collect() method does not terminate if applied to an infinite stream, as
the method will never finish processing all the elements in the stream.

Because mutable reduction uses the same mutable result container for accumulat-
ing new results by changing the state of the container, it is more efficient than a
functional reduction where a new partial result always replaces the previous par-
tial result.

16.7: TERMINAL STREAM OPERATIONS 971

Collecting to an Array

The overloaded method toArray() can be used to collect or accumulate into an
array. It is a special case of a mutable reduction, and as the name suggests, the
mutable container is an array. The numeric stream interfaces also provide a coun-
terpart to the toArray() method that returns an array of a numeric type.

The zero-argument method toArray() returns an array of objects, Object[], as
generic arrays cannot be created at runtime. The method needs to store all the ele-
ments before creating an array of the appropriate length. The query at (1) finds the
titles of the CDs, and the toArray() method collects them into an array of objects,
Object[].

Object[] objArray = CD.cdList.stream().map(CD::title)
 .toArray(); // (1)
//[Java Jive, Java Jam, Lambda Dancing, Keep on Erasing, Hot Generics]

The toArray(IntFunction<A>) method accepts a generator function that creates an
array of type A, (A[]), whose length is passed as a parameter by the method to the
generator function. The array length is determined from the number of elements
in the stream. The query at (2) also finds the CD titles, but the toArray() method
collects them into an array of strings, String[]. The method reference defining the
generator function is equivalent to the lambda expression (len -> new String[len]).

String[] cdTitles = CD.cdList.stream().map(CD::title)
 .toArray(String[]::new); // (2)
//[Java Jive, Java Jam, Lambda Dancing, Keep on Erasing, Hot Generics]

Examples of numeric streams whose elements are collected into an array are
shown at (3) and (4). The limit() intermediate operation at (3) converts the infinite
stream into a finite one whose elements are collected into an int array.

int[] intArray1 = IntStream.iterate(1, i -> i + 1).limit(5).toArray();// (3)
// [1, 2, 3, 4, 5]
int[] intArray2 = IntStream.range(-5, 5).toArray(); // (4)
// [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]

Not surprisingly, when applied to infinite streams the operation results in a fatal
OutOfMemoryError, as the method cannot determine the length of the array and keeps
storing the stream elements, eventually running out of memory.

Object[] toArray()

This terminal operation returns an array containing the elements of this
stream. Note that the array returned is of type Object[].

<A> A[] toArray(IntFunction<A[]> generator)

This terminal operation returns an array containing the elements of this
stream. The provided generator function is used to allocate the desired array.
The type parameter A is the element type of the array that is returned. The size
of the array (which is equal to the length of the stream) is passed to the gener-
ator function as an argument.

972 CHAPTER 16: STREAMS

int[] intArray3 = IntStream.iterate(1, i -> i + 1) // (5)
 .toArray(); // OutOfMemoryError!

If the sole purpose of using the toArray() operation in a pipeline is to convert
the data source collection to an array, it is far better to use the overloaded
Collection.toArray() methods. For one thing, the size of the array is easily deter-
mined from the size of the collection.

CD[] cdArray1 = CD.cdList.stream().toArray(CD[]::new); // (6) Preferred.
CD[] cdArray2 = CD.cdList.toArray(new CD[CD.cdList.size()]); // (7) Not efficient.

Like any other mutable reduction operation, the toArray() method does not termi-
nate when applied to an infinite stream, unless it is converted into a finite stream
as at (3) above.

Collecting to a List

The method Stream.toList() implements a terminal operation that can be used to
collect or accumulate the result of processing a stream into a list. Compared to the
toArray() instance method, the toList() method is a default method in the Stream
interface. The default implementation returns an unmodifiable list; that is, elements
cannot be added, removed, or sorted. This unmodifiable list is created from the
array into which the elements are accumulated first.

If the requirement is an unmodifiable list that allows null elements, the Stream.to-
List() is the clear and concise choice. Many examples of stream pipelines encoun-
tered so far in this chapter use the toList() terminal operation.

List<String> titles = CD.cdList.stream().map(CD::title).toList();
// [Java Jive, Java Jam, Lambda Dancing, Keep on Erasing, Hot Generics]
titles.add("Java Jingles"); // UnsupportedOperationException!

Like any other mutable reduction operation, the toList() method does not termi-
nate when applied to an infinite stream, unless the stream is converted into a finite
stream.

Functional Reductions Exclusive to Numeric Streams

In addition to the counterparts of the methods in the Stream<T> interface, the fol-
lowing functional reductions are exclusive to the numeric stream interfaces

default List<T> toList()

Accumulates the elements of this stream into a List, respecting any encounter
order the stream may have. The returned List is unmodifiable (§12.2, p. 649),
and calls to any mutator method will always result in an UnsupportedOperation-
Exception. The unmodifiable list returned allows null values.
See also the toList() method in the Collectors class (p. 980).
The Collectors.toCollection(Supplier) method is recommended for greater
control.

16.7: TERMINAL STREAM OPERATIONS 973

IntStream, LongStream, and DoubleStream. These reduction operations are designed to
calculate various statistics on numeric streams.

In the methods below, NumType is Int, Long, or Double, and the corresponding numtype is
int, long, or double. These statistical operations do not terminate when applied to an
infinite stream:

Summation

The sum() terminal operation is a special case of a functional reduction that calcu-
lates the sum of numeric values in a stream. The stream pipeline below calculates
the total number of tracks on the CDs in a list. Note that the stream of CD is mapped
to an int stream whose elements represent the number of tracks on a CD. The int
values are cumulatively added to compute the total number of tracks.

int totNumOfTracks = CD.cdList
 .stream() // Stream<CD>
 .mapToInt(CD::noOfTracks) // IntStream
 .sum(); // 42

The query below sums all even numbers between 1 and 100.

int sumEven = IntStream
 .rangeClosed(1, 100)
 .filter(i -> i % 2 == 0)
 .sum(); // 2550

The count() operation is equivalent to mapping each stream element to the value 1
and adding the 1s:

int numOfCDs = CD.cdList
 .stream()
 .mapToInt(cd -> 1) // CD => 1
 .sum(); // 5

For an empty stream, the sum is always zero.

double total = DoubleStream.empty().sum(); // 0.0

numtype sum()

This terminal operation returns the sum of elements in this stream. It returns
zero if the stream is empty.

OptionalDouble average()

This terminal operation returns an OptionalDouble that encapsulates the arith-
metic mean of elements of this stream, or an empty Optional if this stream is
empty.

NumTypeSummaryStatistics summaryStatistics()

This terminal operation returns a NumTypeSummaryStatistics describing various
summary data about the elements of this stream.

974 CHAPTER 16: STREAMS

Averaging

Another common statistics to calculate is the average of values, defined as the
sum of values divided by the number of values. A loop-based solution to calculate
the average would explicitly sum the values, count the number of values, and
do the calculation. In a stream-based solution, the average() terminal operation can
be used to calculate this value. The stream pipeline below computes the average
number of tracks on a CD. The CD stream is mapped to an int stream whose values
are the number of tracks on a CD. The average() terminal operation adds the number
of tracks and counts the values, returning the average as a double value encapsu-
lated in an OptionalDouble.

OptionalDouble optAverage = CD.cdList
 .stream()
 .mapToInt(CD::noOfTracks)
 .average();
System.out.println(optAverage.orElse(0.0)); // 8.4

The reason for using an Optional is that the average is not defined if there are no
values. The absence of a value in the OptionalDouble returned by the method means
that the stream was empty.

Summarizing

The result of a functional reduction is a single value. This means that for calculat-
ing different results—for example, count, sum, average, min, and max—requires
separate reduction operations on a stream.

The method summaryStatistics() does several common reductions on a stream in a sin-
gle operation and returns the results in an object of type NumTypeSummaryStatistics,
where NumType is Int, Long, or Double. An object of this class encapsulates the count,
sum, average, min, and max values of a stream.

The classes IntSummaryStatistics, LongSummaryStatistics, and DoubleSummaryStatistics
in the java.util package define the following constructor and methods, where NumType
is Int (but it is Integer when used as a type name), Long, or Double, and the corresponding
numtype is int, long, or double:

NumTypeSummaryStatistics()

Creates an empty instance with zero count, zero sum, a min value as Num-
Type.MAX_VALUE, a max value as NumType.MIN_VALUE, and an average value of zero.

double getAverage()

Returns the arithmetic mean of values recorded, or zero if no values have been
recorded.

long getCount()

Returns the count of values recorded.

16.7: TERMINAL STREAM OPERATIONS 975

The summaryStatistics() method is used to calculate various statistics for the
number of tracks on two CDs processed by the stream pipeline below. Various get
methods are called on the IntSummaryStatistics object returned by the summary-
Statistics() method, and the statistics are printed.

IntSummaryStatistics stats1 = List.of(CD.cd0, CD.cd1)
 .stream()
 .mapToInt(CD::noOfTracks)
 .summaryStatistics();
System.out.println("Count=" + stats1.getCount()); // Count=2
System.out.println("Sum=" + stats1.getSum()); // Sum=14
System.out.println("Min=" + stats1.getMin()); // Min=6
System.out.println("Max=" + stats1.getMax()); // Max=8
System.out.println("Average=" + stats1.getAverage()); // Average=7.0

The default format of the statistics printed by the toString() method of the
IntSummaryStatistics class is shown below:

System.out.println(stats1);
//IntSummaryStatistics{count=2, sum=14, min=6, average=7.000000, max=8}

Below, the accept() method records the value 10 (the number of tracks on CD.cd2)
into the summary information referenced by stats1. The resulting statistics show
the new count is 3 (=2 +1), the new sum is 24 (=14+10), and the new average is 8.0
(=24.0/3.0). However, the min value was not affected but the max value has
changed to 10.

stats1.accept(CD.cd2.noOfTracks()); // Add the value 10.
System.out.println(stats1);
//IntSummaryStatistics{count=3, sum=24, min=6, average=8.000000, max=10}

numtype getMax()

Returns the maximum value recorded, or NumType.MIN_VALUE if no values have
been recorded.

numtype getMin()

Returns the minimum value recorded, or NumType.MAX_VALUE if no values have
been recorded.

numtype getSum()

Returns the sum of values recorded, or zero if no values have been recorded.
The method in the IntSummaryStatistics and LongSummaryStatistics classes
returns a long value. The method in the DoubleSummaryStatistics class returns a
double value.

void accept(numtype value)

Records a new value into the summary information, and updates the various
statistics. The method in the LongSummaryStatistics class is overloaded and can
accept an int value as well.

void combine(NumTypeSummaryStatistics other)

Combines the state of another NumTypeSummaryStatistics into this one.

976 CHAPTER 16: STREAMS

The code below creates another IntSummaryStatistics object that summarizes the
statistics from two other CDs.

IntSummaryStatistics stats2 = List.of(CD.cd3, CD.cd4)
 .stream()
 .mapToInt(CD::noOfTracks)
 .summaryStatistics();
System.out.println(stats2);
//IntSummaryStatistics{count=2, sum=18, min=8, average=9.000000, max=10}

The combine() method incorporates the state of one IntSummaryStatistics object into
another IntSummaryStatistics object. In the code below, the state of the IntSummary-
Statistics object referenced by stats2 is combined with the state of the IntSummary-
Statistics object referenced by stats1. The resulting summary information is
printed, showing that the new count is 5 (=3 +2), the new sum is 42 (=24+18), and
the new average is 8.4 (=42.0/5.0). However, the min and max values were not
affected.

stats1.combine(stats2); // Combine stats2 with stats1.
System.out.println(stats1);
//IntSummaryStatistics{count=5, sum=42, min=6, average=8.400000, max=10}

Calling the summaryStatistics() method on an empty stream returns an instance of
the IntSummaryStatistics class with a zero value set for all statistics, except for the
min and max values, which are set to Integer.MAX_VALUE and Integer.MIN_VALUE,
respectively. The IntSummaryStatistics class provides a zero-argument constructor
that also returns an empty instance.

IntSummaryStatistics emptyStats = IntStream.empty().summaryStatistics();
System.out.println(emptyStats);
//IntSummaryStatistics{count=0, sum=0, min=2147483647, average=0.000000,
//max=-2147483648}

The summary statistics classes are not exclusive for use with streams, as they pro-
vide a constructor and appropriate methods to incorporate numeric values in
order to calculate common statistics, as we have seen here. We will return to calcu-
lating statistics when we discuss built-in collectors (p. 978).

Summary of Terminal Stream Operations

The terminal operations of the Stream<T> class are summarized in Table 16.5. The
type parameter declarations have been simplified, where any bound <? super T> or
<? extends T> has been replaced by <T>, without impacting the intent of a method.
A reference is provided to each method in the first column.

The last column in Table 16.5 indicates the function type of the corresponding
parameter in the previous column. It is instructive to note how the functional inter-
face parameters provide the parameterized behavior of an operation. For example,
the method allMatch() returns a boolean value to indicate whether all elements of a
stream satisfy a given predicate. This predicate is implemented as a functional
interface Predicate<T> that is applied to each element in the stream.

16.7: TERMINAL STREAM OPERATIONS 977

The interfaces IntStream, LongStream, and DoubleStream define analogous methods to
those shown for the Stream<T> interface in Table 16.5. Methods that are only defined
by the numeric stream interfaces are shown in Table 16.6.

Table 16.5 Terminal Stream Operations

Method name
(ref.)

Any type
parameter
+
return type Functional interface parameters

Function type
of parameters

forEach (p. 948) void (Consumer<T> action) T -> void

forEachOrdered
(p. 948)

void (Consumer<T> action) T -> void

allMatch (p. 949) boolean (Predicate<T> predicate) T -> boolean

anyMatch (p. 949) boolean (Predicate<T> predicate) T -> boolean

noneMatch (p.
949)

boolean (Predicate<T> predicate) T -> boolean

findAny (p. 952) Optional<T> ()

findFirst (p.
952)

Optional<T> ()

count (p. 953) long ()

max (p. 954) Optional<T> (Comparator<T> cmp) (T,T) -> int

min (p. 954) Optional<T> (Comparator<T> cmp) (T,T) -> int

reduce (p. 955) Optional<T> (BinaryOperator<T> accumulator) (T,T) -> T

reduce (p. 955) T (T identity,
 BinaryOperator<T> accumulator)

T -> T,
(T,T) -> T

reduce (p. 955) <U> U (U identity,
 BiFunction<U,T,U> accumulator,
 BinaryOperator<U> combiner)

U -> U,
(U,T) -> U,
(U,U) -> U

collect (p. 964) <R,A> R (Collector<T,A,R> collector) Parameter is
not a functional
interface.

collect (p. 964) <R> R (Supplier<R> supplier,
 BiConsumer<R,T> accumulator,
 BiConsumer<R,R> combiner)

() -> R,
(R,T) -> void,
(R,R) -> void

toArray (p. 971) Object[] ()

toArray (p. 971) <A> A[] (IntFunction<A[]> generator) int -> A[]

toList (p. 972) List<T> ()

978 CHAPTER 16: STREAMS

16.8 Collectors

A collector encapsulates the functions required for performing reduction: the sup-
plier, the accumulator, the combiner, and the finisher. It can provide these func-
tions since it implements the Collector interface (in the java.util.stream package)
that defines the methods to create these functions. It is passed as an argument to
the collect(Collector) method in order to perform a reduction operation. In con-
trast, the collect(Supplier, BiConsumer, BiConsumer) method requires the functions
supplier, accumulator, and combiner, respectively, to be passed as arguments in the
method call.

Details of implementing a collector are not necessary for our purposes, as we will
exclusively use the extensive set of predefined collectors provided by the static fac-
tory methods of the Collectors class in the java.util.stream package (Table 16.7,
p. 1005). In most cases, it should be possible to find a predefined collector for the task
at hand. The collectors use various kinds of containers for performing reduction—
for example, accumulating to a map, or finding the minimum or maximum ele-
ment. For example, the Collectors.toList() factory method creates a collector that
performs mutable reduction using a list as a mutable container. It can be passed to
the collect(Collector) terminal operation of a stream.

It is a common practice to import the static factory methods of the Collectors class
in the code so that the methods can be called by their simple names.

import static java.util.stream.Collectors.*;

However, the practice adopted in this chapter is to assume that only the Collectors
class is imported, enforcing the connection between the static methods and the
class to be done explicitly in the code. Of course, static import of factory methods
can be used once familiarity with the collectors is established.

import java.util.stream.Collectors;

The three-argument collect() method is primarily used to implement mutable
reduction, whereas the Collectors class provides collectors for both functional and
mutable reduction that can be either used in a stand-alone capacity or composed
with other collectors.

Table 16.6 Additional Terminal Operations in the Numeric Stream Interfaces

Method name (ref.) Return type

average (p. 949) OptionalNumType, where NumType is Int, Long, or Double

sum (p. 949) numtype, where numtype is int, long, or double

summaryStatistics (p.
974)

NumTypeSummaryStatistics, where NumType is Int, Long, or Double

16.8: COLLECTORS 979

One group of collectors is designed to collect to a predetermined container, which is
evident from the name of the static factory method that creates it: toCollection,
toList, toSet, and toMap (p. 979). The overloaded toCollection() and toMap() meth-
ods allow a specific implementation of a collection and a map to be used, respec-
tively—for example, a TreeSet for a collection and a TreeMap for a map. In addition,
there is the joining() method that creates a collector for concatenating the input
elements to a String—however, internally it uses a mutable StringBuilder (p. 984).

Collectors can be composed with other collectors; that is, the partial results from
one collector can be additionally processed by another collector (called the down-
stream collector) to produce the final result. Many collectors that can be used as a
downstream collector perform functional reduction such as counting values, find-
ing the minimum and maximum values, summing values, averaging values, and
summarizing common statistics for values (p. 998).

Composition of collectors is utilized to perform multilevel grouping and partitioning
on stream elements (p. 985). The groupingBy() and partitionBy() methods return
composed collectors to create classification maps. In such a map, the keys are deter-
mined by a classifier function, and the values are the result of a downstream collec-
tor, called the classification mapping. For example, the CDs in a stream could be
classified into a map where the key represents the number of tracks on a CD and
the associated value of a key can be a list of CDs with the same number of tracks.
The list of CDs with the same number of tracks is the result of an appropriate
downstream collector.

Collecting to a Collection

The method toCollection(Supplier) creates a collector that uses a mutable con-
tainer of a specific Collection type to perform mutable reduction. A supplier to cre-
ate the mutable container is specified as an argument to the method.

The following stream pipeline creates an ArrayList<String> instance with the titles
of all CDs in the stream. The constructor reference ArrayList::new returns an empty
ArrayList<String> instance, where the element type String is inferred from the con-
text.

ArrayList<String> cdTitles1 = CD.cdList.stream() // Stream<CD>
 .map(CD::title) // Stream<String>
 .collect(Collectors.toCollection(ArrayList::new));
//[Java Jive, Java Jam, Lambda Dancing, Keep on Erasing, Hot Generics]

static <T,C extends Collection<T>> Collector<T,?,C>
 toCollection(Supplier<C> collectionFactory)

Returns a Collector that accumulates the input elements of type T into a new
Collection of type C, in encounter order. A new empty Collection of type C is
created by the collectionFactory supplier, thus the collection created can be of
a specific Collection type.

980 CHAPTER 16: STREAMS

Collecting to a List

The method toList() creates a collector that uses a mutable container of type List
to perform mutable reduction. This collector guarantees to preserve the encounter
order of the input stream, if it has one. For more control over the type of the list,
the toCollection() method can be used. This collector can be used as a downstream
collector.

The following stream pipeline creates a list with the titles of all CDs in the stream
using a collector returned by the Collectors.toList() method. Although the
returned list is modified, this is implementation dependent and should not be
relied upon.

List<String> cdTitles3 = CD.cdList.stream() // Stream<CD>
 .map(CD::title) // Stream<String>
 .collect(Collectors.toList());
//[Java Jive, Java Jam, Lambda Dancing, Keep on Erasing, Hot Generics]
titles.add("Java Jingles"); // OK

Collecting to a Set

The method toSet() creates a collector that uses a mutable container of type Set to
perform mutable reduction. The collector does not guarantee to preserve the
encounter order of the input stream. For more control over the type of the set, the
toCollection() method can be used.

The following stream pipeline creates a set with the titles of all CDs in the stream.

Set<String> cdTitles2 = CD.cdList.stream() // Stream<CD>
 .map(CD::title) // Stream<String>
 .collect(Collectors.toSet());
//[Hot Generics, Java Jive, Lambda Dancing, Keep on Erasing, Java Jam]

static <T> Collector<T,?,List<T>> toList()
static <T> Collector<T,?,List<T>> toUnmodifiableList()

Return a Collector that accumulates the input elements of type T into a new
List or an unmodifiable List of type T, respectively, in encounter order.
The toList() method gives no guarantees of any kind for the returned list.
The unmodifiable list returned does not allow null values.
See also the Stream.toList() terminal operation (p. 972).

static <T> Collector<T,?,Set<T>> toSet()
static <T> Collector<T,?,Set<T>> toUnmodifiableSet()

Return an unordered Collector that accumulates the input elements of type T
into a new Set or an unmodifiable Set of type T, respectively.

16.8: COLLECTORS 981

Collecting to a Map

The method toMap() creates a collector that performs mutable reduction to a muta-
ble container of type Map.

The collector returned by the method toMap() uses either a default map or one that
is supplied. To be able to create an entry in a Map<K,U> from stream elements of type
T, the collector requires two functions:

• keyMapper: T -> K, which is a Function to extract a key of type K from a stream ele-
ment of type T.

• valueMapper: T -> U, which is a Function to extract a value of type U for a given
key of type K from a stream element of type T.

Additional functions as arguments allow various controls to be exercised on the
map:

• mergeFunction: (U,U) -> U, which is a BinaryOperator to merge two values that are
associated with the same key. The merge function must be specified if collision
of values can occur during the mutable reduction, or a resounding exception
will be thrown.

static <T,K,U> Collector<T,?,Map<K,U>> toMap(
 Function<? super T,? extends K> keyMapper,
 Function<? super T,? extends U> valueMapper)

static <T,K,U> Collector<T,?,Map<K,U>> toMap(
 Function<? super T,? extends K> keyMapper,
 Function<? super T,? extends U> valueMapper,
 BinaryOperator<U> mergeFunction)

static <T,K,U,M extends Map<K,U>> Collector<T,?,M> toMap(
 Function<? super T,? extends K> keyMapper,
 Function<? super T,? extends U> valueMapper,
 BinaryOperator<U> mergeFunction,
 Supplier<M> mapSupplier)

Return a Collector that accumulates elements of type T into a Map whose keys
and values are the result of applying the provided key and value mapping
functions to the input elements.
The keyMapper function produces keys of type K, and the valueMapper function
produces values of type U.

In the first method, the mapped keys cannot have duplicates—an Illegal-
StateException will be thrown if that is the case.
In the second and third methods, the mergeFunction binary operator is used to
resolve collisions between values associated with the same key, as supplied to
Map.merge(Object, Object, BiFunction).
In the third method, the provided mapSupplier function returns a new Map into
which the results will be inserted.

982 CHAPTER 16: STREAMS

• mapSupplier: () -> M extends Map<K,V>, which is a Supplier that creates a map
instance of a specific type to use for mutable reduction. The map created is a
subtype of Map<K,V>. Without this function, the collector uses a default map.

Figure 16.15 illustrates collecting to a map. The stream pipeline creates a map of
CD titles and their release year—that is, a Map<String, Year>, where K is String and
V is Year. The keyMapper CD::title and the valueMapper CD::year extract the title
(String) and the year (Year) from each CD in the stream, respectively. The entries
are accumulated in a default map (Map<String, Year>).

What if we wanted to create a map with CDs and their release year—that is, a
Map<CD, Year>? In that case, the keyMapper should return the CD as the key—that is,
map a CD to itself. That is exactly what the keyMapper Function.identity() does in
the pipeline below.

Map<CD, Year> mapCDToYear = CD.cdList.stream()
 .collect(Collectors.toMap(Function.identity(), CD::year)); // Map<CD, Year>

As there were no duplicates of the key in the previous two examples, there was no
collision of values in the map. In the list dupList below, there are duplicates of CDs
(CD.cd0, CD.cd1). Executing the pipeline results in a runtime exception at (1).

List<CD> dupList = List.of(CD.cd0, CD.cd1, CD.cd2, CD.cd0, CD.cd1);
Map<String, Year> mapTitleToYear1 = dupList.stream()
 .collect(Collectors.toMap(CD::title, CD::year)); // (1)
// IllegalStateException: Duplicate key 2017

Figure 16.15 Collecting to a Map

Stream<CD>

Map<String,Year>
collect()

cd0cd1cd4 cd3 cd2

cd1cd4 cd3 cd2

cd4 cd3 cd2

cd4 cd3

cd4

//Query: Create a map of CD titles and their release year.
Map<String, Year> mapTitleToYear = CD.cdList.stream()
 .collect(Collectors.toMap(CD::title, CD::year));

Contents of
the cdList

(a) Using the Collectors.toMap() method

(b) Stream pipeline

<"Java Jive" , 2017>

<"Keep on Erasing", 2018>

<"Lambda Dancing" , 2018>

<"Java Jam" , 2017>

<"Hot Generics" , 2018>

Title Year

16.8: COLLECTORS 983

The collision values can be resolved by specifying a merge function. In the pipeline
below, the arguments of the merge function (y1, y2) -> y1 at (1) have the same value
for the year if we assume that a CD can only be released once. Note that y1 and y2
denote the existing value in the map and the value to merge, respectively. The
merge function can return any one of the values to resolve the collision.

Map<String, Year> mapTitleToYear2 = dupList.stream()
 .collect(Collectors.toMap(CD::title, CD::year, (y1, y2) -> y1)); // (1)

The stream pipeline below creates a map of CD titles released each year. As more
than one CD can be released in a year, collision of titles can occur for a year. The
merge function (tt, t) -> tt + ":" + t concatenates the titles in each year separated
by a colon, if necessary. Note that tt and t denote the existing value in the map and
the value to merge, respectively.

Map<Year, String> mapTitleToYear3 = CD.cdList.stream()
 .collect(Collectors.toMap(CD::year, CD::title,
 (tt, t) -> tt + ":" + t));
//{2017=Java Jive:Java Jam, 2018=Lambda Dancing:Keep on Erasing:Hot Generics}

The stream pipeline below creates a map with the longest title released each year.
For greater control over the type of the map in which to accumulate the entries, a
supplier is specified. The supplier TreeMap::new returns an empty instance of a
TreeMap in which the entries are accumulated. The keys in such a map are sorted in
their natural order—the class java.time.Year implements the Comparable<Year>
interface.

TreeMap<Year, String> mapYearToLongestTitle = CD.cdList.stream()
 .collect(Collectors.toMap(CD::year, CD::title,
 BinaryOperator.maxBy(Comparator.naturalOrder()),
 TreeMap::new));
//{2017=Java Jive, 2018=Lambda Dancing}

The merge function specified is equivalent to the following lambda expression,
returning the greater of two strings:

(str1, str2) -> str1.compareTo(str2) > 0 ? str1 : str2

Collecting to a ConcurrentMap

If the collector returned by the Collectors.toMap() method is used in a parallel
stream, the multiple partial maps created during parallel execution are merged by
the collector to create the final result map. Merging maps can be expensive if keys
from one map are merged into another. To address the problem, the Collectors
class provides the three overloaded methods toConcurrentMap(), analogous to the
three toMap() methods, that return a concurrent collector—that is, a collector that
uses a single concurrent map to perform the reduction. A concurrent map is thread-
safe and unordered. A concurrent map implements the java.util.concurrent.Concur-
rentMap interface, which is a subinterface of java.util.Map interface (§23.7, p. 1482).

Using a concurrent map avoids merging of maps during parallel execution, as a
single map is created that is used concurrently to accumulate the results from the
execution of each substream. However, the concurrent map is unordered—any

984 CHAPTER 16: STREAMS

encounter order in the stream is ignored. Usage of the toConcurrentMap() method is
illustrated by the following example of a parallel stream to create a concurrent map
of CD titles released each year.

ConcurrentMap<Year, String> concMapYearToTitles = CD.cdList
 .parallelStream()
 .collect(Collectors.toConcurrentMap(CD::year, CD::title,
 (tt, t) -> tt + ":" + t));
//{2017=Java Jam:Java Jive, 2018=Lambda Dancing:Hot Generics:Keep on Erasing}

Joining

The joining() method creates a collector for concatenating the input elements of
type CharSequence to a single immutable String. However, internally it uses a muta-
ble StringBuilder. Note that the collector returned by the joining() methods per-
forms functional reduction, as its result is a single immutable string.

The stream pipelines below concatenate CD titles to illustrate the three overloaded
joining() methods. The CharSequence elements are Strings. The strings are concate-
nated in the stream encounter order, which is the positional order for lists. The
zero-argument joining() method at (1) performs string concatenation of the CD
titles using a StringBuilder internally, and returns the result as a string.

String concatTitles1 = CD.cdList.stream() // Stream<CD>
 .map(CD::title) // Stream<String>
 .collect(Collectors.joining()); // (1)
//Java JiveJava JamLambda DancingKeep on ErasingHot Generics

The single-argument joining() method at (2) concatenates the titles using the spec-
ified delimiter.

String concatTitles2 = CD.cdList.stream()
 .map(CD::title)
 .collect(Collectors.joining(", ")); // (2) Delimiter
//Java Jive, Java Jam, Lambda Dancing, Keep on Erasing, Hot Generics

static Collector<CharSequence,?,String> joining()
static Collector<CharSequence,?,String> joining(CharSequence delimiter)
static Collector<CharSequence,?,String> joining(CharSequence delimiter,
 CharSequence prefix,
 CharSequence suffix)

Return a Collector that concatenates CharSequence elements into a String. The
first method concatenates in encounter order. So does the second method, but
this method separates the elements by the specified delimiter. The third
method in addition applies the specified prefix and suffix to the result of the
concatenation.

The wildcard ? is a type parameter that is used internally by the collector.
The methods preserve the encounter order, if the stream has one.
Among the classes that implement the CharSequence interface are the String,
StringBuffer, and StringBuilder classes.

16.8: COLLECTORS 985

The three-argument joining() method at (3) concatenates the titles using the spec-
ified delimiter, prefix, and suffix.

String concatTitles3 = CD.cdList.stream()
 .map(CD::title)
 .collect(Collectors.joining(", ", "[", "]")); // (3) Delimiter, Prefix, Suffix
//[Java Jive, Java Jam, Lambda Dancing, Keep on Erasing, Hot Generics]

Grouping

Classifying elements into groups based on some criteria is a very common opera-
tion. An example is classifying CDs into groups according to the number of tracks
on them (this sounds esoteric, but it will illustrate the point). Such an operation can
be accomplished by the collector returned by the groupingBy() method. The method
is passed a classifier function that is used to classify the elements into different
groups. The result of the operation is a classification map whose entries are the dif-
ferent groups into which the elements have been classified. The key in a map entry
is the result of applying the classifier function on the element. The key is extracted
from the element based on some property of the element—for example, the num-
ber of tracks on the CD. The value associated with a key in a map entry comprises
those elements that belong to the same group. The operation is analogous to the
group-by operation in databases.

There are three versions of the groupingBy() method that provide increasingly more
control over the grouping operation.

static <T,K> Collector<T,?,Map<K,List<T>>> groupingBy(
 Function<? super T,? extends K> classifier)

static <T,K,A,D> Collector<T,?,Map<K,D>> groupingBy(
 Function<? super T,? extends K> classifier,
 Collector<? super T,A,D> downstream)

static <T,K,D,A,M extends Map<K,D>> Collector<T,?,M> groupingBy(
 Function<? super T,? extends K> classifier,
 Supplier<M> mapSupplier,
 Collector<? super T,A,D> downstream)

The Collector returned by the groupingBy() methods implements a group-by
operation on input elements to create a classification map.
The classifier function maps elements of type T to keys of some type K. These
keys determine the groups in the classification map.

The collector returned by the single-argument method produces a classifica-
tion map of type Map<K, List<T>>. The keys in this map are the results from
applying the specified classifier function to the input elements. The input ele-
ments that map to the same key are accumulated into a List by the default
downstream collector Collector.toList().

986 CHAPTER 16: STREAMS

Figure 16.16 illustrates the groupingBy() operation by grouping CDs according
to the number of tracks on them. The classifier function CD::noOfTracks extracts
the number of tracks from a CD that acts as a key in the classification map
(Map<Integer, List<CD>>). Since the call to the groupingBy() method in Figure 16.16
does not specify a downstream collector, the default downstream collector
Collector.to-List() is used to accumulate CDs that have the same number of
tracks. The number of groups—that is, the number of distinct keys—is equal to the
number of distinct values for the number of tracks on the CDs. Each distinct value
for the number of tracks is associated with the list of CDs having that value as the
number of tracks.

The two-argument method accepts a downstream collector, in addition to the
classifier function. The collector returned by the method is composed with
the specified downstream collector that performs a reduction operation on the
input elements that map to the same key. It operates on elements of type T and
produces a result of type D. The result of type D produced by the downstream
collector is the value associated with the key of type K. The composed collector
thus results in a classification map of type Map<K, D>.

The three-argument method accepts a map supplier as its second parameter. It
creates an empty classification map of type M that is used by the composed col-
lector. The result is a classification map of type M whose key and value types
are K and D, respectively.

Figure 16.16 Grouping

Stream<CD>

collect()

cd0cd1cd4 cd3 cd2

cd4 cd2

cd4 cd2

cd4 cd3

cd4

// Query: Group by number of tracks.
Map<Integer, List<CD>> map11 = CD.cdList.stream()
 .collect(Collectors.groupingBy(CD::noOfTracks)); // (1)

Contents of
CD.cdList

(a) Using the Collectors.groupBy() method

(b) Stream pipeline

No. of tracks List of CDs

Map<Integer,List<CD>>

<6 , []>cd1

<8 , [,]>cd0 cd3

<10 , [,]>cd2 cd4

cd1cd3

cd3

16.8: COLLECTORS 987

The three stream pipelines below result in a classification map that is equivalent to
the one in Figure 16.16. The call to the groupingBy() method at (2) specifies the
downstream collector explicitly, and is equivalent to the call in Figure 16.16.

Map<Integer, List<CD>> map22 = CD.cdList.stream()
 .collect(Collectors.groupingBy(CD::noOfTracks, Collectors.toList())); // (2)

The call to the groupingBy() method at (3) specifies the supplier TreeMap:new so that
a TreeMap<Integer, List<CD>> is used as the classification map.

Map<Integer, List<CD>> map33 = CD.cdList.stream()
 .collect(Collectors.groupingBy(CD::noOfTracks, // (3)
 TreeMap::new,
 Collectors.toList()));

The call to the groupingBy() method at (4) specifies the downstream collector
Collector.toSet() that uses a set to accumulate the CDs for a group.

Map<Integer, Set<CD>> map44 = CD.cdList.stream()
 .collect(Collectors.groupingBy(CD::noOfTracks, Collectors.toSet())); // (4)

The classification maps created by the pipelines above will contain the three entries
shown below, but only the groupingBy() method call at (3) can guarantee that the
entries will be sorted in a TreeMap<Integer, List<CD>> according to the natural order
for the Integer keys.

{
6=[<Jaav, "Java Jam", 6, 2017, JAZZ>],
8=[<Jaav, "Java Jive", 8, 2017, POP>,
 <Genericos, "Keep on Erasing", 8, 2018, JAZZ>],
10=[<Funkies, "Lambda Dancing", 10, 2018, POP>,
 <Genericos, "Hot Generics", 10, 2018, JAZZ>]
}

In general, any collector can be passed as a downstream collector to the
groupingBy() method. In the stream pipeline below, the map value in the classifica-
tion map is a count of the number of CDs having the same number of tracks. The
collector Collector.counting() performs a functional reduction to count the CDs
having the same number of tracks (p. 998).

Map<Integer, Long> map55 = CD.cdList.stream()
 .collect(Collectors.groupingBy(CD::noOfTracks, Collectors.counting()));
//{6=1, 8=2, 10=2}

Multilevel Grouping

The downstream collector in a groupingBy() operation can be created by another
groupingBy() operation, resulting in a multilevel grouping operation—also known as
a multilevel classification or cascaded grouping operation. We can extend the multi-
level groupingBy() operation to any number of levels by making the downstream
collector be a groupingBy() operation.

988 CHAPTER 16: STREAMS

The stream pipeline below creates a classification map in which the CDs are first
grouped by the number of tracks in a CD at (1), and then grouped by the musical
genre of a CD at (2).

Map<Integer, Map<Genre, List<CD>>> twoLevelGrp = CD.cdList.stream()
 .collect(Collectors.groupingBy(CD::noOfTracks, // (1)

 Collectors.groupingBy(CD::genre))); // (2)

Printing the contents of the resulting classification map would show the following
three entries, not necessarily in this order:

{
6={JAZZ=[<Jaav, "Java Jam", 6, 2017, JAZZ>]},
8={JAZZ=[<Genericos, "Keep on Erasing", 8, 2018, JAZZ>],
 POP=[<Jaav, "Java Jive", 8, 2017, POP>]},
10={JAZZ=[<Genericos, "Hot Generics", 10, 2018, JAZZ>],
 POP=[<Funkies, "Lambda Dancing", 10, 2018, POP>]}
}

The entries of the resulting classification map can also be illustrated as a two-
dimensional matrix, as shown in Figure 16.16, where the CDs are first grouped into
rows by the number of tracks, and then grouped into columns by the musical
genre. The value of an element in the matrix is a list of CDs which have the same
number of tracks (row) and the same musical genre (column).

The number of groups in the classification map returned by the above pipeline is
equal to the number of distinct values for the number of tracks, as in the single-
level groupingBy() operation. However, each value associated with a key in the outer
classification map is now an inner classification map that is managed by the second-
level groupingBy() operation. The inner classification map has the type Map<Genre,
List<CD>>; in other words, the key in the inner classification map is the musical
genre of the CD and the value associated with this key is a List of CDs with this
musical genre. It is the second-level groupingBy() operation that is responsible for
grouping each CD in the inner classification map. Since no explicit downstream
collector is specified for the second-level groupingBy() operation, it uses the default
downstream collector Collector.toList().

We can modify the multilevel groupingBy() operation to count the CDs that have
the same musical genre and the same number of tracks by specifying an explicit
downstream collector for the second-level groupingBy() operation, as shown at (3).

Figure 16.17 Multilevel Grouping as a Two-Dimensional Matrix

cd1

cd3

cd2

cd0

cd4

[] []

JAZZ POP

No. of tracks

Genre

10

8

6

[] []

[]

16.8: COLLECTORS 989

The collector Collectors.counting() at (3) performs a functional reduction by accu-
mulating the count for CDs with the same number of tracks and the same musical
genre in the inner classification map (p. 998).

Map<Integer, Map<Genre, Long>> twoLevelGrp2 = CD.cdList.stream()
 .collect(Collectors.groupingBy(CD::noOfTracks,
 Collectors.groupingBy(CD::genre,
 Collectors.counting()))); // (3)

Printing the contents of the resulting classification map produced by this multi-
level groupingBy() operation would show the following three entries, again not nec-
essarily in this order:

{6={JAZZ=1}, 8={JAZZ=1, POP=1}, 10={JAZZ=1, POP=1}}

It is instructive to compare the entries in the resulting classification maps in the
two examples illustrated here.

To truly appreciate the groupingBy() operation, the reader is highly encouraged to
implement the multilevel grouping examples in an imperative style, without using
the Stream API. Good luck!

Grouping to a ConcurrentMap

If the collector returned by the Collectors.groupingBy() method is used in a parallel
stream, the partial maps created during execution are merged to create the final
map—as in the case of the Collectors.toMap() method (p. 983). Merging maps can
carry a performance penalty. The Collectors class provides the three groupingBy-
Concurrent() overloaded methods, analogous to the three groupingBy() methods,
that return a concurrent collector—that is, a collector that uses a single concurrent
map to perform the reduction. The entries in such a map are unordered. A concur-
rent map implements the java.util.concurrent.ConcurrentMap interface (§23.7,
p. 1482).

Usage of the groupingByConcurrent() method is illustrated by the following example
of a parallel stream to create a concurrent map of the number of CDs that have the
same number of tracks.

ConcurrentMap<Integer, Long> map66 = CD.cdList
 .parallelStream()
 .collect(Collectors.groupingByConcurrent(CD::noOfTracks,
 Collectors.counting()));
//{6=1, 8=2, 10=2}

Partitioning

Partitioning is a special case of grouping. The classifier function that was used for
grouping is now a partitioning predicate in the partitioningBy() method. The predi-
cate function returns the boolean value true or false. As the keys of the resulting
map are determined by the classifier function, the keys are determined by the par-
titioning predicate in the case of partitioning. Thus the keys are always of type

990 CHAPTER 16: STREAMS

Boolean, implying that the classification map can have, at most, two map entries. In
other words, the partitioningBy() method can only create, at most, two partitions
from the input elements. The map value associated with a key in the resulting map
is managed by a downstream collector, as in the case of the groupingBy() method.

There are two versions of the partitioningBy() method:

Figure 16.18 illustrates the partitioningBy() operation by partitioning CDs accord-
ing to the predicate CD::isPop that determines whether a CD is a pop music CD.
The result of the partitioning predicate acts as the key in the resulting map of type
Map<Boolean, List<CD>>. Since the call to the partitioningBy() method in Figure 16.18
does not specify a downstream collector, the default downstream collector Collec-
tor.toList() is used to accumulate CDs that map to the same key. The resulting
map has two entries or partitions: one for CDs that are pop music CDs and one for
CDs that are not. The two entries of the resulting map are also shown below:

{false=[<Jaav, "Java Jam", 6, 2017, JAZZ>,
 <Genericos, "Keep on Erasing", 8, 2018, JAZZ>,
 <Genericos, "Hot Generics", 10, 2018, JAZZ>],
 true=[<Jaav, "Java Jive", 8, 2017, POP>,
 <Funkies, "Lambda Dancing", 10, 2018, POP>]}

The values in a partition can be obtained by calling the Map.get() method:

List<CD> popCDs = map1.get(true);
List<CD> nonPopCDs = map1.get(false);

The stream pipeline at (2) is equivalent to the one in Figure 16.18, where the down-
stream collector is specified explicitly.

Map<Boolean, List<CD>> map2 = CD.cdList.stream()
 .collect(Collectors.partitioningBy(CD::isPop, Collectors.toList())); // (2)

static <T> Collector<T,?,Map<Boolean,List<T>>> partitioningBy(
 Predicate<? super T> predicate)

static <T,D,A> Collector<T,?,Map<Boolean,D>> partitioningBy(
 Predicate<? super T> predicate,
 Collector<? super T,A,D> downstream)

The collector returned by the first method produces a classification map of
type Map<Boolean, List<T>>. The keys in this map are the results from applying
the partitioning predicate to the input elements. The input elements that map
to the same Boolean key are accumulated into a List by the default downstream
collector Collector.toList().

The second method accepts a downstream collector, in addition to the parti-
tioning predicate. The collector returned by the method is composed with the
specified downstream collector that performs a reduction operation on the
input elements that map to the same key. It operates on elements of type T and
produces a result of type D. The result of type D produced by the downstream
collector is the value associated with the key of type Boolean. The composed
collector thus results in a resulting map of type Map<Boolean, D>.

16.8: COLLECTORS 991

We could have composed a stream pipeline to filter the CDs that are pop music
CDs and collected them into a list. We would have to compose a second pipeline
to find the CDs that are not pop music CDs. However, the partitioningBy() method
does both in a single operation.

Analogous to the groupingBy() method, any collector can be passed as a down-
stream collector to the partitioningBy() method. In the stream pipeline below, the
downstream collector Collector.counting() performs a functional reduction to
count the number of CDs associated with a key (p. 998).

Map<Boolean, Long> map3 = CD.cdList.stream()
 .collect(Collectors.partitioningBy(CD::isPop, Collectors.counting()));
//{false=3, true=2}

Multilevel Partitioning

Like the groupingBy() method, the partitioningBy() operation can be used in mul-
tilevel classification. The downstream collector in a partitioningBy() operation can
be created by another partitioningBy() operation, resulting in a multilevel partition-
ing operation—also known as a cascaded partitioning operation. The downstream
collector can also be a groupingBy() operation.

In the stream pipeline below, the CDs are partitioned at (1): one partition for CDs
that are pop music CDs, and one for those that are not. The CDs that are associated
with a key are grouped by the year in which they were released. Note that the CDs

Figure 16.18 Partitioning

Stream<CD>

collect()

cd0cd1cd4 cd3 cd2

cd1cd4 cd3 cd2

cd4 cd3 cd2

cd4 cd3

cd4

// Query: Partition by whether it is a pop music CD.
Map<Boolean, List<CD>> map1 = CD.cdList.stream()
 .collect(Collectors.partitioningBy(CD::isPop)); // (1)

Contents of
CD.cdList

(a) Using the Collectors.partitionBy() method

(b) Stream pipeline

Map<Boolean,List<CD>>

<TRUE ,[,]>cd0 cd2

<FALSE,[, ,]>cd1 cd3 cd4

992 CHAPTER 16: STREAMS

that were released in a year are accumulated into a List by the default downstream
collector Collector.toList() that is employed by the groupingBy() operation at (2).

Map<Boolean, Map<Year, List<CD>>> map1 = CD.cdList.stream()
 .collect(Collectors.partitioningBy(CD::isPop, // (1)
 Collectors.groupingBy(CD::year))); // (2)

Printing the contents of the resulting map would show the following two entries,
not necessarily in this order.

{false={2017=[<Jaav, "Java Jam", 6, 2017, JAZZ>],
 2018=[<Genericos, "Keep on Erasing", 8, 2018, JAZZ>,
 <Genericos, "Hot Generics", 10, 2018, JAZZ>]},
 true={2017=[<Jaav, "Java Jive", 8, 2017, POP>],
 2018=[<Funkies, "Lambda Dancing", 10, 2018, POP>]}}

Filtering Adapter for Downstream Collectors

The filtering() method of the Collectors class encapsulates a predicate and a down-
stream collector to create an adapter for a filtering operation. (See also the filter()
intermediate operation, p. 912.)

The following code uses the filtering() operation at (2) to group pop music CDs
according to the number of tracks on them. The groupingBy() operation at (1) cre-
ates the groups based on the number of tracks on the CDs, but the filtering() oper-
ation only allows pop music CDs to pass downstream to be accumulated.

// Filtering downstream from grouping.
Map<Integer, List<CD>> grpByTracksFilterByPopCD = CD.cdList.stream()
 .collect(Collectors.groupingBy(CD::noOfTracks, // (1)
 Collectors.filtering(CD::isPop, Collectors.toList()))); // (2)

Printing the contents of the resulting map would show the entries below, not nec-
essarily in this order. Note that the output shows that there was one or more CDs
with six tracks, but there were no pop music CDs. Hence the list of CDs associated
with key 6 is empty.

{6=[],
 8=[<Jaav, "Java Jive", 8, 2017, POP>],
 10=[<Funkies, "Lambda Dancing", 10, 2018, POP>]}

However, if we run the same query using the filter() intermediate stream opera-
tion at (1) prior to grouping, the contents of the result map are different, as shown
below.

static <T,A,R> Collector<T,?,R> filtering(
 Predicate<? super T> predicate,
 Collector<? super T,A,R> downstream)

Returns a Collector that applies the predicate to input elements of type T to
determine which elements should be passed to the downstream collector. This
downstream collector accumulates them into results of type R, where the type
parameter A is the intermediate accumulation type of the downstream collector.

16.8: COLLECTORS 993

// Filtering before grouping.
Map<Integer, List<CD>> filterByPopCDGrpByTracks = CD.cdList.stream()
 .filter(CD::isPop) // (1)
 .collect(Collectors.groupingBy(CD::noOfTracks, Collectors.toList()));

Contents of the result map show that only entries that have a non-empty list as a
value are contained in the map. This is not surprising, as any non-pop music CD is
discarded before grouping, so only pop music CDs are grouped.

{8=[<Jaav, "Java Jive", 8, 2017, POP>],
 10=[<Funkies, "Lambda Dancing", 10, 2018, POP>]}

There are no surprises with partitioning, regardless of whether filtering is done
before or after the partitioning, as partitioning always results in a map with two
entries: one for the Boolean.TRUE key and one for the Boolean.FALSE key. The code
below partitions CDs released in 2018 according to whether a CD is a pop music
CD or not.

// Filtering downstream from partitioning.
Map<Boolean, List<CD>> partbyPopCDsFilterByYear = CD.cdList.stream() // (1)
 .collect(Collectors.partitioningBy(CD::isPop,
 Collectors.filtering(cd -> cd.year().equals(Year.of(2018)),
 Collectors.toList()))); // (2)

// Filtering before partitioning.
Map<Boolean, List<CD>> filterByYearPartbyPopCDs = CD.cdList.stream() // (2)
 .filter(cd -> cd.year().equals(Year.of(2018)))
 .collect(Collectors.partitioningBy(CD::isPop, Collectors.toList()));

Both queries at (1) and (2) above will result in the same entries in the result map:

{false=[<Genericos, "Keep on Erasing", 8, 2018, JAZZ>,
 <Genericos, "Hot Generics", 10, 2018, JAZZ>],
 true=[<Funkies, "Lambda Dancing", 10, 2018, POP>]}

Mapping Adapter for Downstream Collectors

The mapping() method of the Collectors class encapsulates a mapper function and a
downstream collector to create an adapter for a mapping operation. (See also the map()
intermediate operation, p. 921.)

static <T,U,A,R> Collector<T,?,R> mapping(
 Function<? super T,? extends U> mapper,
 Collector<? super U,A,R> downstream)

Returns a Collector that applies the mapper function to input elements of type T
and provides the mapped results of type U to the downstream collector that accu-
mulates them into results of type R.

In other words, the method adapts a downstream collector accepting elements of
type U to one accepting elements of type T by applying a mapper function to each
input element before accumulation, where type parameter A is the intermedi-
ate accumulation type of the downstream collector.

994 CHAPTER 16: STREAMS

The mapping() method at (1) creates an adapter that accumulates a set of CD titles
in each year for a stream of CDs. The mapper function maps a CD to its title so that
the downstream collector can accumulate the titles in a set.

Map<Year, Set<String>> titlesByYearInSet = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::year,
 Collectors.mapping(// (1)
 CD::title, // Mapper
 Collectors.toSet()))); // Downstream collector
System.out.println(titlesByYearInSet);
// {2017=[Java Jive, Java Jam],
// 2018=[Hot Generics, Lambda Dancing, Keep on Erasing]}

The mapping() method at (2) creates an adapter that joins CD titles in each year for
a stream of CDs. The mapper function maps a CD to its title so that the down-
stream collector can join the titles.

Map<Year, String> joinTitlesByYear = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::year,
 Collectors.mapping(// (2)
 CD::title,
 Collectors.joining(":"))));
System.out.println(joinTitlesByYear);
// {2017=Java Jive:Java Jam,
// 2018=Lambda Dancing:Keep on Erasing:Hot Generics}

The mapping() method at (3) creates an adapter that counts the number of CD tracks
for each year for a stream of CDs. The mapper function maps a CD to its number
of tracks so that the downstream collector can count the total number of tracks.

Map<Year, Long> TotalNumOfTracksByYear = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::year,
 Collectors.mapping(// (3)
 CD::noOfTracks,
 Collectors.counting())));
System.out.println(TotalNumOfTracksByYear); // {2017=2, 2018=3}

Flat Mapping Adapter for Downstream Collectors

The flatMapping() method of the Collectors class encapsulates a mapper function
and a downstream collector to create an adapter for a flat mapping operation. (See also
the flatMap() intermediate operation, p. 924.)

static <T,U,A,R> Collector<T,?,R> flatMapping(
 Function<? super T,? extends Stream<? extends U>> mapper,
 Collector<? super U,A,R> downstream)

Returns a Collector that applies the specified mapper function to input elements
of type T and provides the mapped results of type U to the downstream collector
that accumulates them into results of type R.

16.8: COLLECTORS 995

Given the lists of CDs below, we wish to find all unique CD titles in the lists. A
stream of CD lists is created at (1). Each CD list is used to create a stream of CDs
whose elements are flattened into the output stream of CDs at (2). Each CD is then
mapped to its title at (3), and unique CD titles are accumulated into a set at (4).
(Compare this example with the one in Figure 16.9, p. 925, using the flatMap()
stream operation.)

// Given lists of CDs:
List<CD> cdListA = List.of(CD.cd0, CD.cd1);
List<CD> cdListB = List.of(CD.cd0, CD.cd1, CD.cd1);

// Find unique CD titles in the given lists:
Set<String> set =
 Stream.of(cdListA, cdListB) // (1) Stream<List<CD>>
 .collect(Collectors.flatMapping(List::stream, // (2) Flatten to Stream<CD>
 Collectors.mapping(CD::title, // (3) Stream<String>
 Collectors.toSet()))); // (4) Set<String>

Set of unique CD titles in the CD lists:

[Java Jive, Java Jam]

The collectors returned by the flatMapping() method are designed to be used in
multilevel grouping operations (p. 987), such as downstream from groupingBy() or
partitionBy() operations. Example 16.13 illustrates such a use with the groupingBy()
operation.

In Example 16.13, the class RadioPlaylist at (1) represents a radio station by its
name and a list of CDs played by the radio station. Three CD lists are constructed
at (2) and used to construct three radio playlists at (3). The radio playlists are stored
in a common list of radio playlists at (4). A query is formulated at (5) to find the
unique titles of CDs played by each radio station. Referring to the line numbers in
Example 16.13:

(6) A stream of type Stream<RadioPlaylist> is created from the list radioPlaylists
of type RadioPlaylist.

(7) The radio playlists are grouped according to the name of the radio station
(String).

(8) Each radio playlist of type RadioPlaylist is used as the source of a stream, which
is then flattened into the output stream of type Stream<CD> by the flatMapping()
operation.

(9) Each CD in the stream is mapped to its title.

That is, the method adapts a downstream collector accepting elements of type U
to one accepting elements of type T by applying a flat mapping function to each
input element before accumulation, where type parameter A is the intermedi-
ate accumulation type of the downstream collector.

The flat mapping function maps an input element to a mapped stream whose
elements are flattened (p. 924) and passed downstream. Each mapped stream is
closed after its elements have been flattened. An empty stream is substituted
if the mapped stream is null.

996 CHAPTER 16: STREAMS

(10) Each unique CD title is accumulated into the result set of each radio station
(Set<String>).

The query at (5) uses four collectors. The result map has the type Map<String,
List<String>>. The output shows the unique titles of CDs played by each radio sta-
tion.

Example 16.13 Flat mapping

import java.util.List;

// Radio station with a playlist.
public class RadioPlaylist { // (1)
 private String radioStationName;
 private List<CD> Playlist;

 public RadioPlaylist(String radioStationName, List<CD> cdList) {
 this.radioStationName = radioStationName;
 this.Playlist = cdList;
 }

 public String getRadioStationName() { return this.radioStationName; }
 public List<CD> getPlaylist() { return this.Playlist; }
}

import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.stream.Collectors;

public class CollectorsFlatMapping {
 public static void main(String[] args) {
 // Some lists of CDs: (2)
 List<CD> cdList1 = List.of(CD.cd0, CD.cd1, CD.cd1, CD.cd2);
 List<CD> cdList2 = List.of(CD.cd0, CD.cd0, CD.cd3);
 List<CD> cdList3 = List.of(CD.cd0, CD.cd4);

 // Some radio playlists: (3)
 RadioPlaylist pl1 = new RadioPlaylist("Radio JVM", cdList1);
 RadioPlaylist pl2 = new RadioPlaylist("Radio JRE", cdList2);
 RadioPlaylist pl3 = new RadioPlaylist("Radio JAR", cdList3);

 // List of radio playlists: (4)
 List<RadioPlaylist> radioPlaylists = List.of(pl1, pl2, pl3);

 // Map of radio station names and set of CD titles they played: (5)
 Map<String, Set<String>> map = radioPlaylists.stream() // (6)
 .collect(Collectors.groupingBy(RadioPlaylist::getRadioStationName, // (7)
 Collectors.flatMapping(rpl -> rpl.getPlaylist().stream(), // (8)
 Collectors.mapping(CD::title, // (9)
 Collectors.toSet())))); // (10)
 System.out.println(map);
 }
}

16.8: COLLECTORS 997

Output from the program (edited to fit on the page):

{Radio JAR=[Hot Generics, Java Jive],
 Radio JVM=[Java Jive, Lambda Dancing, Java Jam],
 Radio JRE=[Java Jive, Keep on Erasing]}

Finishing Adapter for Downstream Collectors

The collectingAndThen() method encapsulates a downstream collector and a finisher
function to allow the result of the collector to be adapted by the finisher function.

In the call to the collectAndThen() method at (1), the collector Collectors.maxBy() at
(2) produces an Optional<Integer> result that is the maximum CD by number of
tracks in each group. The finisher function at (3) extracts the value from the
Optional<Integer> result, if there is one; otherwise, it returns 0. The collectAndThen()
method adapts the Optional<Integer> result of its argument collector to an Integer
value by applying the finisher function.

Map<Year, Integer> maxTracksByYear = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::year,
 Collectors.collectingAndThen(// (1)
 Collectors.maxBy(Comparator.comparing(CD::noOfTracks)), // (2)
 optCD -> optCD.map(CD::noOfTracks).orElse(0))) // (3)
);
System.out.println(maxTracksByYear); // {2017=8, 2018=10}

In the call to the collectAndThen() method at (4), the collector Collectors.averaging-
Double() at (5) produces a result of type Double that is the average number of tracks
in each group. The finisher function at (6) maps the Double average value to a string
with the specified number format.

Map<Genre, String> avgTracksByGenre = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::genre,
 Collectors.collectingAndThen(// (4)
 Collectors.averagingDouble(CD::noOfTracks), // (5)
 d -> String.format("%.1f", d))) // (6)
);
System.out.println(avgTracksByGenre); // {JAZZ=8.0, POP=9.0}

static <T,A,R,RR> Collector<T,A,RR> collectingAndThen(
 Collector<T,A,R> downstream,
 Function<R,RR> finisher)

Returns a Collector that performs the operation of the downstream collector on
input elements of type T, followed by applying the finisher function on the
result of type R produced by the downstream collector. The final result is of type
RR, the result of the finisher function. In other words, the method adapts a col-
lector to perform an additional finishing transformation.

998 CHAPTER 16: STREAMS

Downstream Collectors for Functional Reduction

The collectors we have seen so far perform a mutable reduction to some mutable con-
tainer, except for the functional reduction implemented by the joining() method
(p. 984). The Collectors class also provides static factory methods that implement
collectors which perform functional reduction to compute common statistics, such
as summing, averaging, finding maximum and minimum values, and the like.

Like any other collector, the collectors that perform functional reduction can also
be used in a standalone capacity as a parameter of the collect() method and as a
downstream collector in a composed collector. However, these collectors are most
useful when used as downstream collectors.

Collectors performing functional reduction have counterparts in terminal opera-
tions for streams that provide equivalent reduction operations (Table 16.8, p. 1008).

Counting

The collector created by the Collectors.counting() method performs a functional
reduction to count the input elements.

In the stream pipeline at (1), the collector Collectors.counting() is used in a stand-
alone capacity to count the number of jazz music CDs.

Long numOfJazzCds1 = CD.cdList.stream().filter(CD::isJazz)
 .collect(Collectors.counting()); // (1) Standalone collector
System.out.println(numOfJazzCds1); // 3

In the stream pipeline at (2), the collector Collectors.counting() is used as a down-
stream collector in a grouping operation that groups the CDs by musical genre and
uses the downstream collector to count the number of CDs in each group.

Map<Genre, Long> grpByGenre = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::genre,
 Collectors.counting())); // (2) Downstream collector
System.out.println(grpByGenre); // {POP=2, JAZZ=3}
System.out.println(grpByGenre.get(Genre.JAZZ)); // 3

The collector Collectors.counting() performs effectively the same functional
reduction as the Stream.count() terminal operation (p. 953) at (3).

long numOfJazzCds2 = CD.cdList.stream().filter(CD::isJazz)
 .count(); // (3) Stream.count()
System.out.println(numOfJazzCds2); // 3

static <T> Collector<T,?,Long> counting()

The collector returned counts the number of input elements of type T. If there
are no elements, the result is Long.valueOf(0L). Note that the result is of type
Long.
The wildcard ? represents any type, and in the method declaration, it is the
type parameter for the mutable type that is accumulated by the reduction
operation.

16.8: COLLECTORS 999

Finding Min/Max

The collectors created by the Collectors.maxBy() and Collectors.minBy() methods
perform a functional reduction to find the maximum and minimum elements in
the input elements, respectively. As there might not be any input elements, an
Optional<T> is returned as the result.

The natural order comparator for CDs defined at (1) is used in the stream pipelines
below to find the maximum CD. The collector Collectors.maxBy() is used as a
standalone collector at (2), using the natural order comparator to find the maxi-
mum CD. The Optional<CD> result can be queried for the value.

Comparator<CD> natCmp = Comparator.naturalOrder(); // (1)

Optional<CD> maxCD = CD.cdList.stream()
 .collect(Collectors.maxBy(natCmp)); // (2) Standalone collector
System.out.println("Max CD: "
 + maxCD.map(CD::title).orElse("No CD.")); // Max CD: Java Jive

In the pipeline below, the CDs are grouped by musical genre, and the CDs in
each group are reduced to the maximum CD by the downstream collector
Collectors.maxBy() at (3). Again, the downstream collector uses the natural order
comparator, and the Optional<CD> result in each group can be queried.

// Group CDs by musical genre, and max CD in each group.
Map<Genre, Optional<CD>> grpByGenre = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::genre,
 Collectors.maxBy(natCmp))); // (3) Downstream collector
System.out.println(grpByGenre);
//{JAZZ=Optional[<Jaav, "Java Jam", 6, 2017, JAZZ>],
// POP=Optional[<Jaav, "Java Jive", 8, 2017, POP>]}

System.out.println("Title of max Jazz CD: "
 + grpByGenre.get(Genre.JAZZ)
 .map(CD::title)
 .orElse("No CD.")); // Title of max Jazz CD: Java Jam

The collectors created by the Collectors.maxBy() and Collectors.minBy() methods
are effectively equivalent to the max() and min() terminal operations provided by
the stream interfaces (p. 954), respectively. In the pipeline below, the max() terminal
operation reduces the stream of CDs to the maximum CD at (4) using the natural
order comparator, and the Optional<CD> result can be queried.

Optional<CD> maxCD1 = CD.cdList.stream()
 .max(natCmp); // (4) max() on Stream<CD>.
System.out.println("Title of max CD: "
 + maxCD1.map(CD::title)
 .orElse("No CD.")); // Title of max CD: Java Jive

static <T> Collector<T,?,Optional<T>> maxBy(Comparator<? super T> cmp)
static <T> Collector<T,?,Optional<T>> minBy(Comparator<? super T> cmp)

Return a collector that produces an Optional<T> with the maximum or mini-
mum element of type T according to the specified Comparator, respectively.

1000 CHAPTER 16: STREAMS

Summing

The summing collectors perform a functional reduction to produce the sum of the
numeric results from applying a numeric-valued function to the input elements.

The collector returned by the Collectors.summingInt() method is used at (1) as a
standalone collector to find the total number of tracks on the CDs. The mapper
function CD::noOfTracks passed as an argument extracts the number of tracks from
each CD on which the functional reduction is performed.

Integer sumTracks = CD.cdList.stream()
 .collect(Collectors.summingInt(CD::noOfTracks)); // (1) Standalone collector
System.out.println(sumTracks); // 42

In the pipeline below, the CDs are grouped by musical genre, and the number of
tracks on CDs in each group summed by the downstream collector is returned by
the Collectors.summingInt() method at (2).

Map<Genre, Integer> grpByGenre = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::genre,
 Collectors.summingInt(CD::noOfTracks))); // (2) Downstream collector
System.out.println(grpByGenre); // {POP=18, JAZZ=24}
System.out.println(grpByGenre.get(Genre.JAZZ)); // 24

The collector Collectors.summingInt() performs effectively the same functional
reduction at (3) as the IntStream.sum() terminal operation (p. 973).

int sumTracks2 = CD.cdList.stream() // (3) Stream<CD>
 .mapToInt(CD::noOfTracks) // IntStream
 .sum();
System.out.println(sumTracks2); // 42

Averaging

The averaging collectors perform a functional reduction to produce the average of
the numeric results from applying a numeric-valued function to the input elements.

static <T> Collector<T,?,NumType> summingNumType(
 ToNumTypeFunction<? super T> mapper)

Returns a collector that produces the sum of a numtype-valued function applied
to the input elements. If there are no input elements, the result is zero. The
result is of NumType.
NumType is Int (but it is Integer when used as a type name), Long, or Double, and
the corresponding numtype is int, long, or double.

static <T> Collector<T,?,Double> averagingNumType(
 ToNumTypeFunction<? super T> mapper)

Returns a collector that produces the arithmetic mean of a numtype-valued func-
tion applied to the input elements. If there are no input elements, the result is
zero. The result is of type Double.
NumType is Int, Long, or Double, and the corresponding numtype is int, long, or double.

16.8: COLLECTORS 1001

The collector returned by the Collectors.averagingInt() method is used at (1) as a
standalone collector to find the average number of tracks on the CDs. The mapper
function CD::noOfTracks passed as an argument extracts the number of tracks from
each CD on which the functional reduction is performed.

Double avgNoOfTracks1 = CD.cdList.stream()
 .collect(Collectors
 .averagingInt(CD::noOfTracks)); // (1) Standalone collector
System.out.println(avgNoOfTracks1); // 8.4

In the pipeline below, the CDs are grouped by musical genre, and the downstream
collector Collectors.averagingInt() at (2) calculates the average number of tracks
on the CDs in each group.

Map<Genre, Double> grpByGenre = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::genre,
 Collectors.averagingInt(CD::noOfTracks) // (2) Downstream collector
));
System.out.println(grpByGenre); // {POP=9.0, JAZZ=8.0}
System.out.println(grpByGenre.get(Genre.JAZZ)); // 8.0

The collector created by the Collectors.averagingInt() method performs effectively
the same functional reduction as the IntStream.average() terminal operation (p. 974)
at (3).

OptionalDouble avgNoOfTracks2 = CD.cdList.stream() // Stream<CD>
 .mapToInt(CD::noOfTracks) // IntStream
 .average(); // (3)
System.out.println(avgNoOfTracks2.orElse(0.0)); // 8.4

Summarizing

The summarizing collector performs a functional reduction to produce summary
statistics (count, sum, min, max, average) on the numeric results of applying a
numeric-valued function to the input elements.

The collector Collectors.summarizingInt() is used at (1) as a standalone collector to
summarize the statistics for the number of tracks on the CDs. The mapper function
CD::noOfTracks passed as an argument extracts the number of tracks from each CD
on which the functional reduction is performed.

IntSummaryStatistics stats1 = CD.cdList.stream()
 .collect(
 Collectors.summarizingInt(CD::noOfTracks) // (1) Standalone collector
);

static <T> Collector<T,?,NumTypeSummaryStatistics> summarizingNumType(
 ToNumTypeFunction<? super T> mapper)

Returns a collector that applies a numtype-valued mapper function to the input
elements, and returns the summary statistics for the resulting values.
NumType is Int (but it is Integer when used as a type name), Long, or Double, and
the corresponding numtype is int, long, or double.

1002 CHAPTER 16: STREAMS

System.out.println(stats1);
// IntSummaryStatistics{count=5, sum=42, min=6, average=8.400000, max=10}

The IntSummaryStatistics class provides get methods to access the individual
results (p. 974).

In the pipeline below, the CDs are grouped by musical genre, and the downstream
collector created by the Collectors.summarizingInt() method at (2) summarizes the
statistics for the number of tracks on the CDs in each group.

Map<Genre, IntSummaryStatistics> grpByGenre = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::genre,
 Collectors.summarizingInt(CD::noOfTracks))); // (2) Downstream collector
System.out.println(grpByGenre);
//{POP=IntSummaryStatistics{count=2, sum=18, min=8, average=9.000000, max=10},
// JAZZ=IntSummaryStatistics{count=3, sum=24, min=6, average=8.000000, max=10}}

System.out.println(grpByGenre.get(Genre.JAZZ)); // Summary stats for Jazz CDs.
// IntSummaryStatistics{count=3, sum=24, min=6, average=8.000000, max=10}

The collector returned by the Collectors.summarizingInt() method performs effec-
tively the same functional reduction as the IntStream.summaryStatistics() terminal
operation (p. 974) at (3).

IntSummaryStatistics stats2 = CD.cdList.stream()
 .mapToInt(CD::noOfTracks)
 .summaryStatistics(); // (3)
System.out.println(stats2);
// IntSummaryStatistics{count=5, sum=42, min=6, average=8.400000, max=10}

Reducing

Collectors that perform common statistical operations, such as counting, averag-
ing, and so on, are special cases of functional reduction that can be implemented
using the Collectors.reducing() method.

static <T> Collector<T,?,Optional<T>> reducing(BinaryOperator<T> bop)

Returns a collector that performs functional reduction, producing an Optional
with the cumulative result of applying the binary operator bop on the input ele-
ments: e1 bop e2 bop e3 ..., where each ei is an input element. If there are no
input elements, an empty Optional<T> is returned.
Note that the collector reduces input elements of type T to a result that is an
Optional of type T.

static <T> Collector<T,?,T> reducing(T identity, BinaryOperator<T> bop)

Returns a collector that performs functional reduction, producing the cumula-
tive result of applying the binary operator bop on the input elements: identity
bop e1 bop e2 ..., where each ei is an input element. The identity value is the
initial value to accumulate. If there are no input elements, the identity value is
returned.
Note that the collector reduces input elements of type T to a result of type T.

16.8: COLLECTORS 1003

Collectors returned by the Collectors.reducing() methods effectively perform
equivalent functional reductions as the reduce() methods of the stream interfaces.
However, the three-argument method Collectors.reducing(identity, mapper, bop)
performs a map-reduce operation using a mapper function and a binary operator bop,
whereas the Stream.reduce(identity, accumulator, combiner) performs a reduction
using an accumulator and a combiner (p. 955). The accumulator is a BiFunction<U,T,U>
that accumulates a partially accumulated result of type U with an element of type
T, whereas the bop is a BinaryOperator<U> that accumulates a partially accumulated
result of type U with an element of type U.

The following comparators are used in the examples below:

// Comparator to compare CDs by title.
Comparator<CD> cmpByTitle = Comparator.comparing(CD::title); // (1)
// Comparator to compare strings by their length.
Comparator<String> byLength = Comparator.comparing(String::length); // (2)

The collector returned by the Collectors.reducing() method is used as a standalone
collector at (3) to find the CD with the longest title. The result of the operation is an
Optional<String> as there might not be any input elements. This operation is equiv-
alent to using the Stream.reduce() terminal operation at (4).

Optional<String> longestTitle1 = CD.cdList.stream()
 .map(CD::title)
 .collect(Collectors.reducing(
 BinaryOperator.maxBy(byLength))); // (3) Standalone collector
System.out.println(longestTitle1.orElse("No title"));// Keep on Erasing

Optional<String> longestTitle2 = CD.cdList.stream() // Stream<CD>
 .map(CD::title) // Stream<String>
 .reduce(BinaryOperator.maxBy(byLength)); // (4) Stream.reduce(bop)

The collector returned by the one-argument Collectors.reducing() method is used
as a downstream collector at (5) to find the CD with the longest title in each group
classified by the year a CD was released. The collector at (5) is equivalent to the col-
lector returned by the Collectors.maxBy(cmpByTitle) method.

Map<Year, Optional<CD>> cdWithMaxTitleByYear = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::year,

static <T,U> Collector<T,?,U> reducing(
 U identity,
 Function<? super T,? extends U> mapper,
 BinaryOperator<U> bop)

Returns a collector that performs a map-reduce operation. It maps each input
element of type T to a mapped value of type U by applying the mapper function,
and performs functional reduction on the mapped values of type U by applying
the binary operator bop. The identity value of type U is used as the initial value
to accumulate. If the stream is empty, the identity value is returned.
Note that the collector reduces input elements of type T to a result of type U.

1004 CHAPTER 16: STREAMS

 Collectors.reducing(// (5) Downstream collector
 BinaryOperator.maxBy(cmpByTitle))
));
System.out.println(cdWithMaxTitleByYear);
// {2017=Optional[<Jaav, "Java Jive", 8, 2017, POP>],
// 2018=Optional[<Funkies, "Lambda Dancing", 10, 2018, POP>]}
System.out.println(cdWithMaxTitleByYear.get(Year.of(2018))
 .map(CD::title).orElse("No title")); // Lambda Dancing

The collector returned by the three-argument Collectors.reducing() method is
used as a downstream collector at (6) to find the longest title in each group classi-
fied by the year a CD was released. Note that the collector maps a CD to its title.
The longest title is associated with the map value for each group classified by the
year a CD was released. The collector will return an empty string (i.e., the identity
value "") if there are no CDs in the stream. In comparison, the collector
Collectors.mapping() at (7) also maps a CD to its title, and uses the downstream col-
lector Collectors.maxBy(byLength) at (7) to find the longest title (p. 993). The result
in this case is an Optional<String>, as there might not be any input elements.

Map<Year, String> longestTitleByYear = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::year,
 Collectors.reducing("", CD::title, // (6) Downstream collector
 BinaryOperator.maxBy(byLength))
));
System.out.println(longestTitleByYear); // {2017=Java Jive, 2018=Keep on Erasing}
System.out.println(longestTitleByYear.get(Year.of(2018))); // Keep on Erasing

Map<Year, Optional<String>> longestTitleByYear2 = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::year,
 Collectors.mapping(CD::title, // (7) Downstream collector
 Collectors.maxBy(byLength))
));
System.out.println(longestTitleByYear2);
// {2017=Optional[Java Jive], 2018=Optional[Keep on Erasing]}
System.out.println(longestTitleByYear2.get(Year.of(2018))
 .orElse("No title.")); // Keep on Erasing

The pipeline below groups CDs according to the year they were released. For each
group, the collector returned by the three-argument Collectors.reducing() method
performs a map-reduce operation at (8) to map each CD to its number of tracks and
accumulate the tracks in each group. This map-reduce operation is equivalent to
the collector returned by the Collectors.summingInt() method at (9).

Map<Year, Integer> noOfTracksByYear = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::year,
 Collectors.reducing(// (8) Downstream collector
 0, CD::noOfTracks, Integer::sum)));
System.out.println(noOfTracksByYear); // {2017=14, 2018=28}
System.out.println(noOfTracksByYear.get(Year.of(2018)));// 28

16.8: COLLECTORS 1005

Map<Year, Integer> noOfTracksByYear2 = CD.cdList.stream()
 .collect(Collectors.groupingBy(
 CD::year,
 Collectors.summingInt(CD::noOfTracks))); // (9) Special case collector

Summary of Static Factory Methods in the Collectors Class

The static factory methods of the Collectors class that create collectors are summa-
rized in Table 16.7. All methods are static generic methods, except for the over-
loaded joining() methods that are not generic. The keyword static is omitted, as
are the type parameters of a generic method, since these type parameters are evi-
dent from the declaration of the formal parameters to the method. The type param-
eter declarations have also been simplified, where any bound <? super T> or <?
extends T> has been replaced by <T>, without impacting the intent of a method. A
reference is also provided for each method in the first column.

The last column in Table 16.7 indicates the function type of the corresponding
parameter in the previous column. It is instructive to note how the functional inter-
face parameters provide the parameterized behavior to build the collector
returned by a method. For example, the method averagingDouble() returns a collec-
tor that computes the average of the stream elements. The parameter function
mapper with the functional interface type ToDoubleFunction<T> converts an element
of type T to a double when the collector computes the average for the stream ele-
ments.

Table 16.7 Static Methods in the Collectors Class

Method name
(ref.) Return type

Functional interface
parameters

Function
type of
parameters

averagingDouble
(p. 1000)

Collector<T,?,Double> (ToDoubleFunction<T>
 mapper)

T -> double

averagingInt
(p. 1000)

Collector<T,?,Double> (ToIntFunction<T>
 mapper)

T -> int

averagingLong
(p. 1000)

Collector<T,?,Double> (ToLongFunction<T>
 mapper)

T -> long

collectingAndThen
(p. 997)

Collector<T,A,RR> (Collector<T,A,R>
 downstream,
 Function<R,RR>
 finisher)

(T,A) -> R,

R -> RR

counting
(p. 998)

Collector<T,?,Long> ()

filtering
(p. 992)

Collector<T,?,R> (Predicate<T>
 predicate,
 Collector<T,A,R>
 downstream)

T -> boolean,

(T,A) -> R

1006 CHAPTER 16: STREAMS

flatMapping
(p. 994)

Collector<T,?,R> (Function<T,
 Stream<U>>
 mapper,
 Collector<U,A,R>
 downstream)

T->Stream<U>,

(U,A) -> R

groupingBy
(p. 985)

Collector<T,?,
 Map<K,List<T>>>

(Function<T,K>
 classifier)

T -> K

groupingBy
(p. 985)

Collector<T,?,Map<K,D>> (Function<T,K>
 classifier,
 Collector<T,A,D>
 downstream)

T -> K,

(T,A) -> D

groupingBy
(p. 985)

Collector<T,?,Map<K,D>> (Function<T,K>
 classifier,
 Supplier<Map<K,D>>
 mapSupplier,
 Collector<T,A,D>
 downstream)

T -> K,

()->Map<K,D>,

(T,A) -> D

joining
(p. 984)

Collector
 <CharSequence,?,String>

()

joining
(p. 984)

Collector
 <CharSequence,?,String>

(CharSequence
 delimiter)

joining
(p. 984)

Collector
 <CharSequence,?,String>

(CharSequence
 delimiter,
 CharSequence prefix,
 CharSequence suffix)

mapping
(p. 993)

Collector<T,?,R> (Function<T,U>
 mapper,
 Collector<U,A,R>
 downstream)

T -> U,

(U,A) -> R

maxBy
(p. 999)

Collector<T,?,Optional<T>> (Comparator<T>
 comparator)

(T,T) -> T

minBy
(p. 999)

Collector<T,?,Optional<T>> (Comparator<T>
 comparator)

(T,T) -> T

partitioningBy
(p. 989)

Collector<T,?,
 Map<Boolean,List<T>>>

(Predicate<T>
 predicate)

T -> boolean

partitioningBy
(p. 989)

Collector<T,?,
 Map<Boolean,D>>

(Predicate<T>
 predicate,
 Collector<T,A,D>
 downstream)

T -> boolean,

(T,A) -> D

Table 16.7 Static Methods in the Collectors Class (Continued)

Method name
(ref.) Return type

Functional interface
parameters

Function
type of
parameters

16.8: COLLECTORS 1007

reducing
(p. 1002)

Collector<T,?,Optional<T>> (BinaryOperator<T>
 op)

(T,T) -> T

reducing
(p. 1002)

Collector<T,?,T> (T identity,
 BinaryOperator<T>
 op)

T -> T,
(T,T) -> T

reducing
(p. 1002)

Collector<T,?,U> (U identity,
 Function<T,U>
 mapper,
 BinaryOperator<U>
 op)

U -> U,
T -> U,

(U,U) -> U

summarizingDouble
(p. 1001)

Collector<T,?,
 DoubleSummaryStatistics>

(ToDoubleFunction<T>
 mapper)

T -> double

summarizingInt
(p. 1001)

Collector<T,?,
 IntSummaryStatistics>

(ToIntFunction<T>
 mapper)

T -> int

summarizingLong
(p. 1001)

Collector<T,?,
 LongSummaryStatistics>

(ToLongFunction<T>
 mapper)

T -> long

summingDouble
(p. 978)

Collector<T,?,Double> (ToDoubleFunction<T>
 mapper)

T -> double

summingInt
(p. 978)

Collector<T,?,Integer> (ToIntFunction<T>
 mapper)

T -> int

summingLong
(p. 978)

Collector<T,?,Long> (ToLongFunction<T>
 mapper)

T -> long

toCollection
(p. 979)

Collector<T,?,C> (Supplier<C>
 collFactory)

() -> C

toList
toUnmodifiableList
(p. 980)

Collector<T,?,List<T>> ()

toMap
(p. 981)

Collector<T,?,Map<K,U>> (Function<T,K>
 keyMapper,
 Function<T,U>
 valueMapper)

T -> K,

T -> U

toMap
(p. 981)

Collector<T,?,Map<K,U>> (Function<T,K>
 keyMapper,
 Function<T,U>
 valueMapper,
 BinaryOperator<U>
 mergeFunction)

T -> K,

T -> U,

(U,U) -> U

Table 16.7 Static Methods in the Collectors Class (Continued)

Method name
(ref.) Return type

Functional interface
parameters

Function
type of
parameters

1008 CHAPTER 16: STREAMS

Table 16.8 shows a comparison of methods in the stream interfaces that perform
reduction operations and static factory methods in the Collectors class that imple-
ment collectors with equivalent functionality.

toMap
(p. 981)

Collector<T,?,Map<K,U>> (Function<T,K>
 keyMapper,
 Function<T,U>
 valueMapper,
 BinaryOperator<U>
 mergeFunction,
 Supplier<Map<K,U>>
 mapSupplier)

T -> K,

T -> U,

(U,U) -> U,

()-> Map<K,U>

toSet
toUnmodifiableSet
(p. 980)

Collector<T,?,Set<T>> ()

Table 16.8 Method Comparison: The Stream Interfaces and the Collectors Class

Method names in the
stream interfaces Static factory method names in the Collectors class

collect (p. 964) collectingAndThen (p. 997)

count (p. 953) counting (p. 998)

filter (p. 912) filtering (p. 992)

flatMap (p. 924) flatMapping (p. 994)

map (p. 921) mapping (p. 993)

max (p. 954) maxBy (p. 999)

min (p. 954) minBy (p. 999)

reduce (p. 955) reducing (p. 1002)

toList (p. 972) toList (p. 980)

average (p. 972) averagingInt, averagingLong, averagingDouble (p. 1001)

sum (p. 972) summingInt, summingLong, summingDouble (p. 978)

summaryStatistics
(p. 972)

summarizingInt, summarizingLong, summarizingDouble
(p. 1001)

Table 16.7 Static Methods in the Collectors Class (Continued)

Method name
(ref.) Return type

Functional interface
parameters

Function
type of
parameters

16.9: PARALLEL STREAMS 1009

16.9 Parallel Streams

The Stream API makes it possible to execute a sequential stream in parallel without
rewriting the code. The primary reason for using parallel streams is to improve
performance, but at the same time ensuring that the results obtained are the same,
or at least compatible, regardless of the mode of execution. Although the API goes
a long way to achieve its aim, it is important to understand the pitfalls to avoid
when executing stream pipelines in parallel.

Building Parallel Streams

The execution mode of an existing stream can be set to parallel by calling the
parallel() method on the stream (p. 933). The parallelStream() method of the
Collection interface can be used to create a parallel stream with a collection as
the data source (p. 897). No other code is necessary for parallel execution, as the data
partitioning and thread management for a parallel stream are handled by the API
and the JVM. As with any stream, the stream is not executed until a terminal opera-
tion is invoked on it.

The isParallel() method of the stream interfaces can be used to determine
whether the execution mode of a stream is parallel (p. 933).

Parallel Stream Execution

The Stream API allows a stream to be executed either sequentially or in parallel—
meaning that all stream operations can execute either sequentially or in parallel. A
sequential stream is executed in a single thread running on one CPU core. The ele-
ments in the stream are processed sequentially in a single pass by the stream oper-
ations that are executed in the same thread (p. 891).

A parallel stream is executed by different threads, running on multiple CPU cores
in a computer. The stream elements are split into substreams that are processed by
multiple instances of the stream pipeline being executed in multiple threads. The
partial results from processing of each substream are merged (or combined) into a
final result (p. 891).

Parallel streams utilize the Fork/Join Framework (§23.3, p. 1447) under the hood
for executing parallel tasks. This framework provides support for the thread man-
agement necessary to execute the substreams in parallel. The number of threads
employed during parallel stream execution is dependent on the CPU cores in the
computer.

Figure 16.12, p. 963, illustrates parallel functional reduction using the three-argument
reduce(identity, accumulator, combiner) terminal operation (p. 962).

Figure 16.14, p. 967, illustrates parallel mutable reduction using the three-argument
collect(supplier, accumulator, combiner) terminal operation (p. 966).

1010 CHAPTER 16: STREAMS

Factors Affecting Performance

There are no guarantees that executing a stream in parallel will improve the per-
formance. In this subsection we look at some factors that can affect performance.

Benchmarking

In general, increasing the number of CPU cores and thereby the number of threads
that can execute in parallel only scales performance up to a threshold for a given
size of data, as some threads might become idle if there is no data left for them to
process. The number of CPU cores boosts performance to a certain extent, but it is
not the only factor that should be considered when deciding to execute a stream in
parallel.

Inherent in the total cost of parallel processing is the start-up cost of setting up the
parallel execution. At the onset, if this cost is already comparable to the cost of
sequential execution, not much can be gained by resorting to parallel execution.

A combination of the following three factors can be crucial in deciding whether a
stream should be executed in parallel:

• Sufficiently large data size

The size of the stream must be large enough to warrant parallel processing;
otherwise, sequential processing is preferable. The start-up cost can be too pro-
hibitive for parallel execution if the stream size is too small.

• Computation-intensive stream operations

If the stream operations are small computations, then the stream size should be
proportionately large as to warrant parallel execution. If the stream operations
are computation-intensive, the stream size is less significant, and parallel exe-
cution can boost performance.

• Easily splittable stream

If the cost of splitting the stream into substreams is higher than processing
the substreams, employing parallel execution can be futile. Collections like
Array-Lists, HashMaps, and simple arrays are efficiently splittable, whereas
LinkedLists and IO-based data sources are less efficient in this regard.

Benchmarking—that is, measuring performance—is strongly recommended to
decide whether parallel execution will be beneficial. Example 16.14 illustrates a
simple scheme where reading the system clock before and after a stream is exe-
cuted can be used to get a sense of how well a stream performs.

The class StreamBenchmarks in Example 16.14 defines five methods, at (1) through
(5), that compute the sum of values from 1 to n. These methods compute the sum
in various ways. Each method is executed with four different values of n; that is,
the stream size is the number of values for summation. The program prints the
benchmarks for each method for the different values of n, which of course can vary,
as many factors can influence the results—the most significant one being the num-
ber of CPU cores on the computer.

16.9: PARALLEL STREAMS 1011

• The methods seqSumRangeClosed() at (1) and parSumRangeClosed() at (2) perform
the computation on a sequential and a parallel stream, respectively, that are
created with the closeRange() method.

return LongStream.rangeClosed(1L, n).sum(); // Sequential stream
...
return LongStream.rangeClosed(1L, n).parallel().sum(); // Parallel stream

Benchmarks from Example 16.14:
 Size Sequential Parallel
 1000 0.05681 0.11031
 10000 0.06698 0.13979
 100000 0.71274 0.52627
1000000 7.02237 4.37249

The terminal operation sum() is not computation-intensive. The parallel stream
starts to show better performance when the number of values approaches
100000. The stream size is then significantly large for the parallel stream to
show better performance. Note that the range of values defined by the argu-
ments of the rangeClosed() method can be efficiently split into substreams, as its
start and end values are provided.

• The methods seqSumIterate() at (3) and parSumIterate() at (4) return a sequential
and a parallel sequential stream, respectively, that is created with the iterate()
method.

return LongStream.iterate(1L, i -> i + 1).limit(n).sum(); // Sequential
...
return LongStream.iterate(1L, i -> i + 1).limit(n).parallel().sum(); // Parallel

Benchmarks from Example 16.14:
 Size Sequential Parallel
 1000 0.08645 0.34696
 10000 0.35687 1.27861
 100000 3.24083 11.38709
1000000 29.92285 117.87909

The method iterate() creates an infinite stream, and the limit() intermediate
operation truncates the stream according to the value of n. The performance of
both streams degrades fast when the number of values increases. However, the
parallel stream performs worse than the sequential stream in all cases. The val-
ues generated by the iterate() method are not known before the stream is exe-
cuted, and the limit() operation is also stateful, making the process of splitting
the values into substreams inefficient in the case of the parallel stream.

• The method iterSumLoop() at (5) uses a for(;;) loop to compute the sum.
Benchmarks from Example 16.14:
 Size Iterative
 1000 0.00586
 10000 0.02330
 100000 0.22352
1000000 2.49677

Using a for(;;) loop to calculate the sum performs best for all values of n com-
pared to the streams, showing that significant overhead is involved in using
streams for summing a sequence of numerical values.

1012 CHAPTER 16: STREAMS

In Example 16.14, the methods measurePerf() at (6) and xqtFunctions() at (13) create
the benchmarks for functions passed as parameters. In the measurePerf() method,
the system clock is read at (8) and the function parameter func is applied at (9). The
system clock is read again at (10) after the function application at (9) has com-
pleted. The execution time calculated at (10) reflects the time for executing the
function. Applying the function func evaluates the lambda expression or the method
reference implementing the LongFunction interface. In Example 16.14, the function
parameter func is implemented by method references that call methods, at (1) through
(5), in the StreamBenchmarks class whose execution time we want to measure.

public static <R> double measurePerf(LongFunction<R> func, long n) { // (6)
 // ...
 double start = System.nanoTime(); // (8)
 result = func.apply(n); // (9)
 double duration = (System.nanoTime() - start)/1_000_000; // (10) ms.
 // ...
}

Example 16.14 Benchmarking

import java.util.function.LongFunction;
import java.util.stream.LongStream;
/*
 * Benchmark the execution time to sum numbers from 1 to n values
 * using streams.
 */
public final class StreamBenchmarks {

 public static long seqSumRangeClosed(long n) { // (1)
 return LongStream.rangeClosed(1L, n).sum();
 }

 public static long paraSumRangeClosed(long n) { // (2)
 return LongStream.rangeClosed(1L, n).parallel().sum();
 }

 public static long seqSumIterate(long n) { // (3)
 return LongStream.iterate(1L, i -> i + 1).limit(n).sum();
 }

 public static long paraSumIterate(long n) { // (5)
 return LongStream.iterate(1L, i -> i + 1).limit(n).parallel().sum();
 }

 public static long iterSumLoop(long n) { // (5)
 long result = 0;
 for (long i = 1L; i <= n; i++) {
 result += i;
 }
 return result;
 }

16.9: PARALLEL STREAMS 1013

 /*
 * Applies the function parameter func, passing n as parameter.
 * Returns the average time (ms.) to execute the function 100 times.
 */
 public static <R> double measurePerf(LongFunction<R> func, long n) { // (6)
 int numOfExecutions = 100;
 double totTime = 0.0;
 R result = null;
 for (int i = 0; i < numOfExecutions; i++) { // (7)
 double start = System.nanoTime(); // (8)
 result = func.apply(n); // (9)
 double duration = (System.nanoTime() - start)/1_000_000; // (10)
 totTime += duration; // (11)
 }
 double avgTime = totTime/numOfExecutions; // (12)
 return avgTime;
 }

 /*
 * Executes the functions in the varargs parameter funcs
 * for different stream sizes.
 */
 public static <R> void xqtFunctions(LongFunction<R>... funcs) { // (13)
 long[] sizes = {1_000L, 10_000L, 100_000L, 1_000_000L}; // (14)

 // For each stream size ...
 for (int i = 0; i < sizes.length; ++i) { // (15)
 System.out.printf("%7d", sizes[i]);
 // ... execute the functions passed in the varargs parameter funcs.
 for (int j = 0; j < funcs.length; ++j) { // (16)
 System.out.printf("%10.5f", measurePerf(funcs[j], sizes[i]));
 }
 System.out.println();
 }
 }

 public static void main(String[] args) { // (17)

 System.out.println("Streams created with the rangeClosed() method:");// (18)
 System.out.println(" Size Sequential Parallel");
 xqtFunctions(StreamBenchmarks::seqSumRangeClosed,
 StreamBenchmarks::paraSumRangeClosed);

 System.out.println("Streams created with the iterate() method:"); // (19)
 System.out.println(" Size Sequential Parallel");
 xqtFunctions(StreamBenchmarks::seqSumIterate,
 StreamBenchmarks::paraSumIterate);

 System.out.println("Iterative solution with an explicit loop:"); // (20)
 System.out.println(" Size Iterative");
 xqtFunctions(StreamBenchmarks::iterSumLoop);
 }
}

1014 CHAPTER 16: STREAMS

Possible output from the program:

Streams created with the rangeClosed() method:
 Size Sequential Parallel
 1000 0.05681 0.11031
 10000 0.06698 0.13979
 100000 0.71274 0.52627
1000000 7.02237 4.37249
Streams created with the iterate() method:
 Size Sequential Parallel
 1000 0.08645 0.34696
 10000 0.35687 1.27861
 100000 3.24083 11.38709
1000000 29.92285 117.87909
Iterative solution with an explicit loop:
 Size Iterative
 1000 0.00586
 10000 0.02330
 100000 0.22352
1000000 2.49677

Side Effects

Efficient execution of parallel streams that produces the desired results requires the
stream operations (and their behavioral parameters) to avoid certain side effects.

• Non-interfering behaviors

The behavioral parameters of stream operations should be non-interfering
(p. 909)—both for sequential and parallel streams. Unless the stream data
source is concurrent, the stream operations should not modify it during the
execution of the stream. See building streams from collections (p. 897).

• Stateless behaviors

The behavioral parameters of stream operations should be stateless (p. 909)—
both for sequential and parallel streams. A behavioral parameter implemented
as a lambda expression should not depend on any state that might change dur-
ing the execution of the stream pipeline. The results from a stateful behavioral
parameter can be nondeterministic or even incorrect. For a stateless behavioral
parameter, the results are always the same.
Shared state that is accessed by the behavior parameters of stream operations in
a pipeline is not a good idea. Executing the pipeline in parallel can lead to race
conditions in accessing the global state, and using synchronization code to pro-
vide thread-safety may defeat the purpose of parallelization. Using the three-
argument reduce() or collect() method can be a better solution to encapsulate
shared state.
The intermediate operations distinct(), skip(), limit(), and sorted() are state-
ful (p. 915, p. 915, p. 917, p. 929). See also Table 16.3, p. 938. They can carry extra

16.9: PARALLEL STREAMS 1015

performance overhead when executed in a parallel stream, as such an opera-
tion can entail multiple passes over the data and may require significant data
buffering.

Ordering

An ordered stream (p. 891) processed by operations that preserve the encounter
order will produce the same results, regardless of whether it is executed sequen-
tially or in parallel. However, repeated execution of an unordered stream—
sequential or parallel—can produce different results.

Preserving the encounter order of elements in an ordered parallel stream can incur
a performance penalty. The performance of an ordered parallel stream can be
improved if the ordering constraint is removed by calling the unordered() interme-
diate operation on the stream (p. 932).

The three stateful intermediate operations distinct(), skip(), and limit() can
improve performance in a parallel stream that is unordered, as compared to one
that is ordered (p. 915, p. 915, p. 917). The distinct() operation need only buffer
any occurrence of a duplicate value in the case of an unordered parallel stream,
rather than the first occurrence. The skip() operation can skip any n elements in the
case of an unordered parallel stream, not necessarily the first n elements. The
limit() operation can truncate the stream after any n elements in the case of an
unordered parallel stream, and not necessarily after the first n elements.

The terminal operation findAny() is intentionally nondeterministic, and can return
any element in the stream (p. 952). It is specially suited for parallel streams.

The forEach() terminal operation ignores the encounter order, but the forEachOrdered()
terminal operation preserves the order (p. 948). The sorted() stateful intermediate
operation, on the other hand, enforces a specific encounter order, regardless of
whether it executed in a parallel pipeline (p. 929).

Autoboxing and Unboxing of Numeric Values

As the Stream API allows both object and numeric streams, and provides support
for conversion between them (p. 934), choosing a numeric stream when possible
can offset the overhead of autoboxing and unboxing in object streams.

As we have seen, in order to take full advantage of parallel execution, composition
of a stream pipeline must follow certain rules to facilitate parallelization. In sum-
mary, the benefits of using parallel streams are best achieved when:

• The stream data source is of a sufficient size and the stream is easily splittable
into substreams.

• The stream operations have no adverse side effects and are computation-
intensive enough to warrant parallelization.

1016 CHAPTER 16: STREAMS

Review Questions

16.1 Given the following code:

import java.util.*;

public class RQ1 {
 public static void main(String[] args) {
 List<String> values = Arrays.asList("X", "XXX", "XX", "XXXX");
 int value = values.stream()

 .mapToInt(v -> v.length())
 .filter(v -> v != 4)

 .reduce(1, (x, y) -> x * y);
 System.out.println(value);
 }
}

What is the result?
Select the one correct answer.
(a) 4
(b) 6
(c) 24

(d) The program will throw an exception at runtime.

16.2 Which statement is true about the Stream methods?
(a) The filter() method discards elements from the stream that match the given

Predicate.
(b) The findFirst() method always returns the first element in the stream.
(c) The reduce() method removes elements from the stream that match the given

Predicate.
(d) The sorted() method sorts the elements in a stream according to their natural

order, or according to a given Comparator.

16.3 Given the following code:

import java.util.stream.*;

public class RQ3 {
 public static void main(String[] args) {
 IntStream values = IntStream.range(0, 5);
 // (1) INSERT CODE HERE
 System.out.println(sum);
 }
}

Which of the following statements when inserted independently at (1) will result
in a compile-time error?
Select the two correct answers.
(a) int sum = values.reduce(0, (x, y) -> x + y);
(b) int sum = values.parallel().reduce(0, (x, y) -> x + y);

REVIEW QUESTIONS 1017

(c) int sum = values.reduce((x, y) -> x + y).orElse(0);
(d) int sum = values.reduce(0, (x, y) -> x + y).orElse(0);
(e) int sum = values.parallel().reduce((x, y) -> x + sum).orElse(0);
(f) int sum = values.sum();

16.4 Given the following code:

import java.util.stream.*;

public class RQ4 {
 public static void main(String[] args) {
 IntStream values = IntStream.range(0, 5);
 // (1) INSERT CODE HERE
 System.out.println(value);
 }
}

Which of the following statements, when inserted independently at (1), will result
in the value 4 being printed?
Select the two correct answers.
(a) int value = values.reduce(0, (x, y) -> x + 1);
(b) int value = values.reduce((x, y) -> x + 1).orElse(0);
(c) int value = values.reduce(0, (x, y) -> y + 1);
(d) int value = values.reduce(0, (x, y) -> y);
(e) int value = values.reduce(1, (x, y) -> y + 1);
(f) long value = values.count();

16.5 Given the following code:

import java.util.*;
import java.util.stream.*;

public class RQ5 {
 public static void main(String[] args) {
 List<String> values = List.of("AA", "BBB", "C", "DD", "EEE");
 Map<Integer, List<String>> map = null;
 // (1) INSERT CODE HERE
 map.forEach((i, s) -> System.out.println(i + " " + s));
 }
}

Which statement when inserted independently at (1) will result in the output
1 [C]?
Select the one correct answer.
(a) map = values.stream()

 .collect(Collectors.groupingBy(s -> s.length(),
 Collectors.filtering(s -> !s.contains("C"),
 Collectors.toList())));

(b) map = values.stream()
 .collect(Collectors.groupingBy(s -> s.length(),
 Collectors.filtering(s -> s.contains("C"),
 Collectors.toList())));

1018 CHAPTER 16: STREAMS

(c) map = values.stream()
 .filter(s -> !s.contains("C"))
 .collect(Collectors.groupingBy(s -> s.length(),
 Collectors.toList()));

(d) map = values.stream()
 .filter(s -> s.contains("C"))
 .collect(Collectors.groupingBy(s -> s.length(),
 Collectors.toList()));

16.6 Given the following code:

import java.util.stream.*;

public class RQ7 {
 public static void main(String[] args) {
 Stream<String> values = Stream.generate(() -> "A");
 boolean value = values.peek(v -> System.out.print("B"))
 .takeWhile(v -> !v.equals("A"))
 .peek(v -> System.out.print("C"))
 .anyMatch(v -> v.equals("A"));
 System.out.println(value);
 }
}

What is the result?
Select the one correct answer.
(a) Btrue
(b) Ctrue
(c) BCtrue
(d) Bfalse
(e) Cfalse
(f) BCfalse

16.7 Given the following code:

import java.util.stream.*;

public class RQ9 {
 public static void main(String[] args) {
 IntStream.range('a', 'e')
 .mapToObj(i -> String.valueOf((char) i).toUpperCase())
 .filter(s -> "AEIOU".contains(s))
 .forEach(s -> System.out.print(s));
 }
}

What is the result?
Select the one correct answer.
(a) A
(b) AE
(c) BCD

(d) The program will fail to compile.

REVIEW QUESTIONS 1019

16.8 Given the following code:

import java.util.stream.*;

public class RQ10 {
 public static void main(String[] args) {
 IntStream.range(0, 5)
 .filter(i -> i % 2 != 0)
 .forEach(i -> System.out.println(i));
 }
}

Which of the following statements will produce the same result as the program?
Select the two correct answers.
(a) IntStream.rangeClosed(0, 5)

 .filter(i -> i % 2 != 0)
 .forEach(i -> System.out.println(i));

(b) IntStream.range(0, 10)
 .takeWhile(i -> i < 5)
 .filter(i -> i % 2 != 0)
 .forEach(i -> System.out.println(i));

(c) IntStream.range(0, 10)
 .limit(5)
 .filter(i -> i % 2 != 0)
 .forEach(i -> System.out.println(i));

(d) IntStream.generate(() -> {int x = 0; return x++;})
 .takeWhile(i -> i < 4)
 .filter(i -> i % 2 != 0)
 .forEach(i -> System.out.println(i));

(e) var x = 0;
IntStream.generate(() -> return x++)
 .limit(5)
 .filter(i -> i % 2 != 0)
 .forEach(i -> System.out.println(i));

16.9 Given the following code:

import java.util.function.*;
import java.util.stream.*;

public class RQ11 {
 public static void main(String[] args) {
 Stream<String> abc = Stream.of("A", "B", "C");
 Stream<String> xyz = Stream.of("X", "Y", "Z");
 String value = Stream.concat(xyz, abc).reduce((a, b) -> b + a).get();
 System.out.println(value);
 }
}

What is the result?
Select the one correct answer.
(a) ABCXYZ
(b) XYZABC

1020 CHAPTER 16: STREAMS

(c) ZYXCBA
(d) CBAZYX

16.10 Which statement produces a different result from the other statements?
Select the one correct answer.
(a) Stream.of("A", "B", "C", "D", "E")

 .filter(s -> s.compareTo("B") < 0)
 .collect(Collectors.groupingBy(s -> "AEIOU".contains(s)))
 .forEach((x, y) -> System.out.println(x + " " + y));

(b) Stream.of("A", "B", "C", "D", "E")
 .filter(s -> s.compareTo("B") < 0)
 .collect(Collectors.partitioningBy(s -> "AEIOU".contains(s)))
 .forEach((x, y) -> System.out.println(x + " " + y));

(c) Stream.of("A", "B", "C", "D", "E")
 .collect(Collectors.groupingBy(s -> "AEIOU".contains(s),
 Collectors.filtering(s -> s.compareTo("B") < 0,
 Collectors.toList())))
 .forEach((x, y) -> System.out.println(x + " " + y));

(d) Stream.of("A", "B", "C", "D", "E")
 .collect(Collectors.partitioningBy(s -> "AEIOU".contains(s),
 Collectors.filtering(s -> s.compareTo("B") < 0,
 Collectors.toList())))
 .forEach((x, y) -> System.out.println(x + " " + y));

16.11 Given the following code:

import java.util.stream.*;

public class RQ13 {
 public static void main(String[] args) {
 Stream<String> strings = Stream.of("i", "am", "ok").parallel();
 IntStream chars = strings.flatMapToInt(line -> line.chars()).sorted();
 chars.forEach(c -> System.out.print((char)c));
 }
}

What is the result?
Select the one correct answer.
(a) iamok
(b) aikmo
(c) amiok

(d) The result from running the program is unpredictable.
(e) The program will throw an exception at runtime.

16.12 Which of the following statements are true about the Stream methods?
Select the two correct answers.
(a) The filter() method accepts a Function.
(b) The peek() method accepts a Function.
(c) The peek() method accepts a Consumer.

REVIEW QUESTIONS 1021

(d) The forEach() method accepts a Consumer.
(e) The map() method accepts a Predicate.
(f) The max() method accepts a Predicate.
(g) The findAny() method accepts a Predicate.

16.13 Which Stream methods are terminal operations?
Select the two correct answers.
(a) peek()
(b) forEach()
(c) map()
(d) filter()
(e) sorted()
(f) min()

16.14 Which Stream methods have short-circuit execution?
Select the two correct answers.
(a) collect()
(b) limit()
(c) flatMap()
(d) anyMatch()
(e) reduce()
(f) sum()

16.15 Given the following code:

import java.util.stream.*;

public class RQ17 {
 public static void main(String[] args) {
 Stream<String> values = Stream.of("is", "this", "", null, "ok", "?");
 // (1) INSERT CODE HERE
 System.out.println(c);
 }
}

Which statement inserted independently at (1) produces the output 6?
Select the one correct answer.
(a) long c = values.count();
(b) long c = values.collect(Collectors.counting());
(c) int c = values.mapToInt(v -> 1).reduce(0, (x, y) -> x + 1);
(d) long c = values.collect(Collectors.reducing(0L, v -> 1L, Long::sum));
(e) int c = values.mapToInt(v -> 1).sum();

(f) Insert any of the above.

16.16 Which code produces identical results?
Select the two correct answers.
(a) Set<String> set1 = Stream.of("XX", "XXXX", "", null, "XX", "X")

 .filter(v -> v != null)
 .collect(Collectors.toSet());

1022 CHAPTER 16: STREAMS

set1.stream()
 .mapToInt(v -> v.length())
 .sorted()
 .forEach(v -> System.out.print(v));

(b) Set<Integer> set2 = Stream.of("XX", "XXXX", "", null, "XX", "X")
 .map(v -> (v == null) ? 0 : v.length())
 .filter(v -> v != 0)
 .collect(Collectors.toSet());
set2.stream()
 .sorted()
 .forEach(v -> System.out.print(v));

(c) List<Integer> list1 = Stream.of("XX", "XXXX", "", null, "XX", "X")
 .map(v -> (v == null) ? 0 : v.length())
 .filter(v -> v != 0)
 .toList();
list1.stream()
 .sorted()
 .forEach(v -> System.out.print(v));

(d) List<Integer> list2 = Stream.of("XX", "XXXX", "", null, "XX", "X")
 .map(v -> (v == null) ? 0 : v.length())
 .filter(v -> v != 0)
 .distinct()
 .toList();
 list2.stream()
 .sorted()
 .forEach(v -> System.out.print(v));

This page intentionally left blank

1753

Index

Symbols
- 63
-- 69
^ 78, 82
^= 79
_ 36, 1103
, 1125
; 101
: 157, 340, 1100, 1287
:: 724
! 78, 1101
!= 75, 426
? 580, 582, 588
? extends T 581, 589
? super T 582, 589
?: 90
. 9, 127, 128, 326, 338, 1125, 1288
.. 1289
... 136, 141
' 37, 38
" 39
""" 458
[] 92, 118, 120
{} 101, 119, 354
@ 1558, 1563
@Deprecated 1580
@Documented 1574
@FunctionalInterface 1579
@Inherited 1574
@Override 198, 224, 241, 618, 1578
@param 100, 112
@Repeatable 1575
@Retention 1567
@return 184
@SafeVarargs 632, 650, 659, 863, 1585
@SuppressWarnings 1582

@SuppressWarnings("unchecked") 627, 632
@Target 1569
@throws 390
* 58, 61, 330
*= 66
/ 61, 62, 1287
/* and */ 40
/** and */ 41
// 40
/= 66
\ 38, 1101, 1287
& 78, 82
&& 80
&= 79
1101, 1125, 1146
% 61, 62
%= 66
+ 63, 67
+ concatenation 448
++ 69
+= 66
< 74, 1146
<< 86, 87
<<= 90
<= 74
<> 567, 570, 646
-= 66
= 54, 1100
== 75, 426, 433
-> 92, 160, 679
> 74
>= 74
>> 86, 88
>>= 90
>>> 86, 89
>>>= 90
| 78, 82, 399, 1146

1754 INDEX

|= 79
|| 80
~ 82

Numerics
0 1125

A
ability interfaces

see marker interfaces
abrupt method completion 367
absolute adjusters 1035
absolute path 1288
absolute values 478
abstract

interfaces 239
methods 240, 675

abstract 239, 240, 675
abstract classes 218

abstract methods 224
considered incomplete 222
declaring 219
extending 220
incomplete 219
polymorphic references 220
UML class diagram 219

abstract data type 565
abstract keyword 219, 224
abstract method declarations 675

in enum types 294
in interfaces 240

abstract methods 224
declaration 224
implementing 224
method header 224
overloading 225
overriding 224

abstraction 5, 13
access modifiers 99, 100, 109, 345
access order 841, 842
accessibility 10, 19, 352, 1173

access modifiers 345
anonymous classes 525
local classes 512, 513
members 347, 352
modifiers 493
non-static member classes 504
static member classes 498
top-level types 345
UML notation 348

accessibility for class members
package 347, 351
private 351
protected 350
public 350

accessibility for top-level types
package 345
public 345

accessibility rules 1174
accessor methods see get methods
accounting currency formatting 1118
acquisition order 1461
activation frame 534

see method execution 365
actual parameter 128
actual parameter list 127, 265
actual type parameters 569
adapter 992, 993, 994
adding to class 191
additive operators 63
aggregate module 1168
aggregate of values 300
aggregate operations 881
aggregation 13, 16, 194

hierarchy 195
algorithms 783
aliases 55, 76, 130

see also symbolic link
all-or-none model 1474
ambiguous call 202, 266
analyzing program code 1620
and operator 83
AND-ing 86
AnnotatedElement 1588
Annotation 1557
annotation 1557

@ 1563
applying annotation type 1563
declaration annotation 1571
default values 1565
marker annotation 1563
metadata 1557
normal annotation 1563
processing 1587
single-element annotation 1563
type annotations 1572

annotation type 1557, 1558
@ 1558
access modifier 1559
annotation type element 1560
containing annotation type 1576
declaring 1558

INDEX 1755

marker annotation type 1560
member declarations 1559
multi-element annotation type 1561
repeatable annotation type 1576
simple name 1559
single-element annotation type 1560
syntax 1558

annotation type declaration
see annotation type

annotation type element 1560
access modifier 1561
attributes 1560
default values 1562
element type 1561
method declaration 1560
optional annotation element 1562
required annotation element 1562
value() element 1560, 1561

annotations 239
@Deprecated 1580
@FunctionalInterface 675, 1579
@Override 198, 618
@SafeVarargs 632
@SuppressWarnings("unchecked") 627

anonymous arrays 122, 126
[] 122

anonymous classes 494, 521, 571, 690
accessing members in enclosing context

525
compared with lambda expressions 692
declaration 521
event listeners 521
extending an existing class 521
hiding members in enclosing context 525
implementing an interface 523
in non-static context 521
in static context 521
instantiation 524
objects on the fly 521
referencing instances 524
shadowing local variables 525, 692
using qualified this 525, 693

anti-symmetric 762
API (application programming interface) 2
apostrophe 38
application 19
architecture neutral 4
argument

see actual parameter
arguments to main method 141
arithmetic compound assignment

operators 66

ArithmeticException 372
arity 136, 695
array constructor references 725, 731
array creation expression 119, 122, 143
array element initializer 1564
array initializer 119, 120, 122, 126, 146
array list 802
array mismatch 871
array operations 798
array store check 260, 627
array store check report

false positive 631
array types 579

see arrays
ArrayBlockingQueue 1496
ArrayDeque 823
ArrayIndexOutOfBoundsException 121, 372,

397
ArrayList 450, 802

add collection 651
add element 647, 651
autoboxing 654
capacity 646
clear list 652
comparison with arrays 662
constructing 646
constructors 648
converting to array 658
element search 656
filtering 688
import 646
inheritance hierarchy 645
initial capacity 647
insertion order 644
list of lists 648
membership test 655
modifying 651
nested lists 648
object value equality 656
open range-view operations 645
ordered 644
position-based access 645
positional index 655
positional order 644
positional retrieve 655
querying 655
references 646
remove collection 652
remove element 652
replace element 652
size 646, 655
subtype relationship 648

1756 INDEX

text representation 647
trim to size 653
type-safety 646, 648
unchecked conversion warning 646
zero-based index 644

Arrays 868
creating streams 898

arrays 117, 425
[] 118, 119, 120
{} 119
anonymous 122, 126
array creation expression 119
array initialize list 119, 122
array initializer 120, 126
array name 118
array size 119
array store check 260, 627
ArrayIndexOutOfBoundsException 121
binary search 866
bounds 121
collection operations 798
common prefix 870, 871
comparators 867
comparing 868
construction 119
converting to list 659
declarations 118
default initialization 118, 119
dynamic 645, 802
element access expression 120
element default value 260
element type 118
elements 117, 120
equality 868
filling 873
index 117
index expression 120
initialization 119, 124
initializing 873
iterating over 176
iterating over an array 121
length 118
lexicographic comparison 869
mismatch 871
multidimensional 122, 124
objects 425
proper prefix 871, 872
ragged 124
reference 118, 121, 260
searching 866
sequential streams 898

sorting 865
subtype covariance 259
text representation 873
using 120

arrays of arrays 118, 124
multidimensional 124

ArrayStoreException 260, 372, 648, 658, 798,
799

array-valued single-element annotation
1566

arrow notation (->) 160
arrow operator (->) 92
ascending-order key set 847
ASCII 37, 42
AssertionError 374
assessor methods

see get methods
assignable 47, 264
assignment

widening reference 584
assignment compatible 47, 264, 646
assignment conversions 47
assignment operator 8
assignments

arithmetic compound operators 66
bitwise 85
cascading 55
compound operators 79, 85
expression statement 55
extended operator 90
implicit narrowing 56
multiple 55
numeric conversions 56
operator 50, 54
primitive values 54
references 55
widening reference conversions 196

association 16
aggregation 194
composition 195
realization 244

associativity 51, 52
asynchronous 1370
atomic actions 1455, 1456, 1469

CAS: Compare and Set 1457
atomic classes 1457
atomic move 1308
atomic operation 1305, 1339
atomic variables 1456

atomic actions 1456
AtomicInteger 1457, 1458

INDEX 1757

atomicity 1455
AtomicMoveNotSupportedException 1313
at-sign 1558
attributes 1512
attributes see properties
AttributeView interface 1334
autoboxing 430

for(:) statement 177
see boxing conversion

AutoCloseable 409, 412, 536, 1234, 1244,
1519

streams 889
automatic garbage collection 533
automatic memory management 533
automatic module 1206, 1207

naming 1207
Automatic Resource Management (ARM)

411
automatic variables see local variables
auxiliary methods 252
available time zones 1073

B
backing collection 856
backslash 38
backspace 38
backtrace 405
backward compatibility 565
bags 804
balanced tree 788, 789, 812
barrier

see cyclic barrier
barrier action 1471
barrier point 1471
base 33, 431, 435
base case 1448
base class 191
base name 1102
basic collection operations 790
basic for statement 174
basic map operations 831
basic statement 1523
BasicFileAttributes interface 1330
BasicFileAttributeView interface 1334
Before Current Era (BCE) 1029
behavior 675
behavior parameterization 675
behavioral parameters 909
BiConsumer functional interface 709

primitive type specializations 711

BiFunction interface 717, 718
composing two-arity functions 718
primitive type specializations 719

big numbers 484, 485
BigDecimal

customizing formatting 1125
formatting 1117
parsing 1119
rounding 1122

BigDecimal class 485
BigInteger 485
binary

numeric promotion 50
operators 50
shift operators 86

binary files 1238, 1239, 1240
binary operator 52
binary representation

see binary values
binary search

arrays 866
lists 861

binary values 1238, 1239, 1240
BinaryOperator interface 721, 722

composing binary operators 721
primitive type specializations 722

bind parameter 1526
bind variable 1526
binding of method call 205, 227
BiPredicate functional interface 703
bit mask 84
bit masking 86
bit patterns 54
bit shifting 86
bitwise

and operator 83
assignment 85
complement 83
compound assignment 85
operators 82
or operator 83
shifting 86
xor 83

bitwise AND
& 82

bitwise complement
~ 82

bitwise exclusive OR
^ 82

bitwise OR
| 82

1758 INDEX

bitwise XOR
^ 82

blank final local variables 232
blank final variables 135, 229, 231
block 161, 166, 169
block scope 169, 355, 684
BLOCKED state 1382
blocking collection 1483
blocking operations 1234, 1405
blocking queues 1495
BlockingDeque 1496, 1498
BlockingQueue 1496, 1497
blocks 101, 354

scope 354
try 377

boilerplate code 409, 691
Boolean

condition 152
Boolean wrapper class 437
booleans 41, 43

casting 49
expressions 74
literals 37

BooleanSupplier functional interface 699
bounded collection 1483
bounded instance method references

727
bounded type parameters

constraint 591
bounded wildcard 581
bounds

constraint 591
boxing conversions 45
break statement 157, 180
bridge method 615, 764
BS see backspace
buckets 753
buffered readers 1251

creating streams 1252
end of stream 1252
reading text lines 1252

buffered writers 1250
BufferedReader class 1242, 1315

streams 902
BufferedWriter class 1243, 1316
buffering streams 1238
building abstractions 13
built-in functional interfaces

java.util.function package 695
BiConsumer 709
BiFunction 717, 718
BinaryOperator 721, 722

BiPredicate 703
BooleanSupplier 699
Consumer 709
DoubleBinaryOperator 722
DoubleConsumer 709
DoubleFunction 712
DoublePredicate 703
DoubleSupplier 699
DoubleToIntFunction 713
DoubleToLongFunction 713
DoubleUnaryOperator 720
Function 712
IntBinaryOperator 722
IntConsumer 709
IntFunction 712
IntPredicate 703
IntSupplier 699
IntToDoubleFunction 713
IntToLongFunction 712
IntUnaryOperator 720
LongBinaryOperator 722
LongConsumer 709
LongFunction 712
LongPredicate 703
LongSupplier 699
LongToDoubleFunction 713
LongToIntFunction 713
LongUnaryOperator 720
ObjDoubleConsumer 709
ObjIntConsumer 709
ObjLongConsumer 709
Predicate 703
Supplier 699
ToDoubleBiFunction 718
ToDoubleFunction 712
ToIntBiFunction 718
ToIntFunction 712
ToLongBiFunction 718
ToLongFunction 712
UnaryOperator 720

built-in synchronization
see intrinsic locking

bulk map operations 839
bulk operations on collections 790
bulk task execution 1439
bundling resources 1102
byte 32, 42
byte streams 1233

reading bytes 1234
writing bytes 1234

bytecode 4, 21
bytecode verification 1611

INDEX 1759

C
C++ 4
cached thread pool 1426
caching 358
call by reference 131
call by value 131
call chaining 128
call signature 266
call stack

see JVM stack 365
callable statement 1530

stored functions 1530
stored procedures 1530

callee 127
caller 127, 184
candidate bundle name 1108
capacity 646
capture conversion 606
capture of 605
carriage return 38, 39
CAS: Compare and Set 1457
cascaded grouping 987
cascaded partitioning 991
cascading assignments 55
cascading if-else statements 155
case constants 156, 157, 160
case labels 156, 157, 160
case sensitivity 30
case-insensitive ordering 771
cast 631

references 281
cast operator 45, 48, 50, 57, 66, 67, 76, 143,

269
casting 47, 48

see also conversions
catch clause 377

multi- 397
rethrowing exception 401
uni- 376

catching exceptions 365
catch-or-declare rule 388
catch-or-specify requirement 388
cause 405
ceiling entry 846
ceiling key 846
chaining 555

constructors 213, 555
new operator 507

chaining exceptions 405
changing list contents 863
char 42
character case 448

character encoding 1241
see also character sets

character sequences
see strings and string builders

character set
ASCII 37, 42, 1241
ISO Latin-1 37, 42
Unicode 37, 42, 1241

character streams 1233, 1241
character encoding 1241
end of stream 1243
reading characters 1243
writing characters 1244

Character wrapper class 437
character-based device

console 1256
characters 42

literals 37
searching for 451, 466

CharSequence interface 444, 450, 901
charsets

see also character sets
checked exceptions 374
child class 191
child threads 1373, 1378, 1454
choice format 1146, 1148

limits 1146
subformat pattern 1146
syntax 1146

ChoiceFormat 1115, 1148
choosing between String and StringBuilder

class 464
ChronoField enum type 1036, 1046, 1079

list of enum constants 1046
ChronoUnit enum type 1040, 1041, 1044,

1081, 1082
list of enum constants 1044

Class 1588
Class class 426
class design 1611
class file 21
class file name 497
class hierarchy

see inheritance hierarchy
class initialization 230
class literals 636
class lock 1380, 1391, 1392
class method 13
class path 337, 1206

absolute pathnames 340
entries order 340
entry-separator character 340
fully qualified package name 340

1760 INDEX

path-separator character 340
relative pathnames 340
search in a named package 339
searching for classes 337
whitespace 340

class search path
see class path

class variable 13
class versioning 1273
ClassCastException 271, 372, 1105
classes

abstract 218
accessibility 345
adding to 191
anonymous 492, 494, 521
base 191
body 99
child 191
class file name 497
concrete 218, 220, 226
constructors 109
contract 218, 242
declaration context 493
declarations 99, 325
definitions 6, 8
derived 191
diagram 11, 12
encapsulation 324
extending 191, 225
final 225, 358
final vs. abstract 226
fully qualified name 337
fully qualified package name 328
generalized 194
grouping 326
header 99
immutable 356
implementation 218
implementing interfaces 240
incomplete 219
initialization 230, 557
inner see inner classes
instances 8
local 492, 494, 512
members 9
methods 115
name 326
nested see nested classes
non-static member 492, 494, 501
Object 425
on-the-fly 492
parent 191

partial implementation 218
records 299
runtime 426
scope 352
sealed 312
searching for 337
specialized 194
static fields 113
static members 113, 494, 495
static methods 115
static variables 113
subclass 13, 191
superclass 13, 191
top-level 491, 494
utility 115
wrappers 425, 429

class-level lock
see class lock

ClassLoader class 425
ClassNotFoundException 371
CLASSPATH environment variable

see class path
-classpath option

see class path
clauses

catch 377
extends 191
finally 377, 382
implements 240
permits 312
throws 388

cleaning up 536
clean-up code 382, 1378
client 10
Cloneable interface 427
CloneNotSupportedException 427
cloning objects 427
Closeable 412
closing an I/O stream 1234, 1239, 1240
closing delimiter 458
code corruption 1606
code injection 1605
code migration

bottom-up strategy 1209
top-down strategy 1210

code optimizations 229
Code Ranch (www.coderanch.com) 1616
code reuse 3, 191, 195
codebase 1608
Collection 644
Collection interface 784
collections 586, 644, 783, 784

INDEX 1761

adding elements 863
array operations 798
ArrayList 802
as single entity 644
basic operations 790, 831
bulk operations 790, 839
Cloneable 787
compare with streams 888
data structures 788
duplicate elements 801, 804
elements 644, 783
filtering 796
first element 810, 811, 1486
HashSet 806
implementations 783, 785, 788
interfaces 783
iteration 791, 792
iteration order 795
iterators 793
last element 810, 811, 1486
LinkedHashSet 806
LinkedList 802
List 802
lists 801
map views 839
maximum 862
minimum 862
NavigableSet 810
optional operations 790
ordered 644, 789, 801
parallel streams 897
range-views 801, 810, 811, 1486
retaining elements 791
sequential streams 897
Serializable 787
Set 804
shuffle elements 860
sorted 789
SortedSet 810, 811
sorting 644
subset 810, 811, 1486
text representation 795
thread-safety 802, 840
TreeSet 812, 847
unmodifiable view 856
unordered 789
unsupported operations 831
utility methods 783
Vector 802
views 656, 810, 811, 839, 1486

collections framework 783
Collections utility class 858, 861
Collector interface 890, 978

Collectors 890, 978
importing 978

collectors 948, 964, 978
averaging 1000
classification mapping 979
classification maps 979
classifier function 979
collecting to a Collection 979
collecting to a ConcurrentMap 983
collecting to a List 980
collecting to a Map 981

key mapper 981
map supplier 982
merge function 981
value mapper 981

collecting to a Set 980
comparison with terminal operations

1008
composing 979
concurrent 983, 989
counting 998
downstream 979, 985, 986, 992, 993,

994, 997, 998
filtering 992

downstream collector 992
predicate 992

finding min/max 999
finishing 997

downstream collector 997
finisher function 997

flat mapping 994
downstream collector 994
mapper function 994

functional reduction 998, 1002
grouping 979, 985

classification map 985
classifier function 985
default downstream collector 985
downstream collector 986
map supplier 986
multilevel 987
to a ConcurrentMap 989

joining to a string 984
mapping 993

downstream collector 993
mapper function 993

partitioning 979, 989
classification map 990
default downstream collector

990
downstream collector 990
multilevel 991
partitioning predicate 989

1762 INDEX

reducing 1002
binary operator 1002, 1003
identity value 1002, 1003
mapper function 1003

summarizing 1001
summary of 1005
summing 1000

colon notation (:) 156
columns 1512
command line 21, 141
command prompt 21
commands

java 21
javac 20

comments 40
common memory space 1367
common prefix 870, 871
communication 127
compact canonical record constructor 304,

306
compact form styles 1120
compact number formatting 1120
compact number parsing 1121
compact strings 440
CompactNumberFormat 1115
Comparable interface 432, 447, 761

compareTo 761
comparable objects 761
Comparator interface

compare 769
functional interface 769

comparators 761
conditional 765, 771, 773
reverse order 859

comparing objects 426, 744, 769
see also equality

comparing strings 447
comparison 74
compilation unit 328

deriving permitted direct types 317
compiler

-Xlint:unchecked option 577
compiler optimizations 1453
compiling and running a service 1203
compiling Java source code 20
complement

~ 83
completes abruptly

see exception propagation 367
component fields 302
component list 300
composite object 13

composition 16, 195
see aggregation

compound declaration 146
compound messages

conditional formatting 1145
formatting 1143
handling plurals 1146

compound mutually exclusive operations
1480

compound state 1382
compound statement 101
concatenation of strings 448
concatenation operator 67
concise try-with-resources 411
concrete class 218
concrete method 226
concrete parameterized types 580
concrete type 573, 580, 586
concurrency 1368, 1540
concurrent activities 1367
concurrent collections 1482, 1483

blocking 1483
bounded 1483
duplicate elements 1483
happens-before relationship 1483
non-blocking 1483
ordering 1484
unbounded 1483

concurrent collector 983, 989
concurrent maps 983, 989, 1490

segments 1491
ConcurrentHashMap 1491
ConcurrentLinkedDeque 1486, 1487
ConcurrentLinkedQueue 1486, 1487
ConcurrentMap 983, 989, 1491
ConcurrentModificationException 658, 795,

796
ConcurrentNavigableMap 1492
ConcurrentSkipListMap 1491
ConcurrentSkipListSet 1486
condition

Boolean 152
expressions 152

conditional 74
operators 90
statements 152

conditional and operator 80
pattern variable 277

conditional comparator 765, 771, 773
conditional expressions 90

associativity 92
nested 92

INDEX 1763

precedence 91
short-circuit evaluation 91
side effects 91

conditional formatting 1115, 1145
conditional operators 80
conditional or operator 80

pattern variable 277
conditions 74
configuration 5
configuration data 1100
congruent 762
connecting punctuation character 30
connection 1519
Console 1153
console 1256

formatted prompting 1257
printing formatted values 1257
reading password 1256

Console class 1256
const 32
constant 546
constant expression 47, 56, 69, 157, 229,

546, 1562
labels 157

constant field values
case labels 162

constant string expressions 162
constant values 32, 229
constant variable 56, 229, 546
constants 254
constant-specific class bodies

using anonymous classes 294
constituent objects 13
constituents 16
constraints 1512
constructing array 119
constructor chaining 210, 213, 555
constructor references 725, 730
constructors 7, 109

access modifier 109
accessibility 352
body 109
canonical 302
chaining 210, 213
class name 109
declaration 99
default 110
header 109
implicit default 110
local declarations 109
no-argument 110, 210, 213
non-zero argument 111, 214

overloading 112
superclass constructor 110

constructs 30
high-level 30
loops see iteration statements
synchronized statements 1391, 1392

Consumer functional interface 709
composing consumers 710
primitive type specializations 711

contained annotation type 1562
containers 586

see also collections
containing annotation type 1562, 1576
contains characters 452
context switching 1368
contextual keywords 31

non-sealed 312
permits 312
sealed 312, 315
yield 164

continue statement 182
contract 6, 195, 218, 240, 324
control flow

break 157, 180
continue 182
do-while 173
for(;;) 174
for(:) 176
if 152
if-else 153
iteration see iteration statements
loops see iteration statements
return 184
statements 101
switch expression 164
switch statement 155
throw 386
transfer statements 179
while 172
yield 164

control transfer 179
conversion categories 47
conversion contexts 47
conversions 261

assignment 47
contexts 46
explicit 43
identity 67
implicit 43
implicit narrowing 67
method invocation 48
narrowing reference 270, 585, 605

1764 INDEX

numeric promotions 49
parameters 129
reference casting 269
string concatenation 68
to strings 454
truncation 57
type-safe 264
unsafe casts 271
widening reference 196, 270, 584

converting values 431, 432, 434, 435, 437,
454

copy-on-write collections 1501
CopyOnWriteArrayList 1502
CopyOnWriteArraySet 1502, 1503
CopyOption interface 1301
Core Collections Interfaces 786, 1485, 1495
core interfaces 783
Core Map Interfaces 787
core stream interfaces 890
count-down latch 1474
CountDownLatch 1474
counter-controlled loops 174
country codes 1097
covariant return 197, 201, 619
-cp option

see class path
CPU core 1009
CR see carriage return
crab 176
CREATE statement 1514
creating

objects 92
threads 1370

creating a runtime image 1204
creating modular JAR 1189
creating records 303
critical section 1388
CRUD operations 1514
currency 1096, 1116

currency symbol 1126
formatting 1116, 1119

currency formatter 1117, 1119
currency symbol 30, 1126
current directory 1289

. 338, 1288
system property 1292

Current Era (CE) 1029
current object 106
currying functions 723

partial application 723
cursor 801, 1534
cyclic barrier 1471

all-or-none model 1474

barrier action 1471
barrier point 1471

CyclicBarrier 1471

D
-d option 335
daemon 1377, 1402
dangling references 533
Data Definition Language (DDL) 1514
data encryption 1604
data integrity 1606
Data Manipulation Language (DML) 1514
Data Query Language (DQL) 1514
data source 884
data streams 1236, 1238
data structures 644, 788
data types see types
database capabilities 1543
database connection 1519
database cursor 1534, 1540
Database Management System (DBMS) 1512
database protocol 1520
database transactions 1545
DataFormat 1115
DataInputStream class 1235
DataOutputStream class 1236
Date 1024, 1078, 1141
date 761, 1096

see temporal objects
date fields 1024
date units 1040
DateFormat 1141
date-time

see temporal objects
date-time formatters

format styles 1132
immutability 1128
ISO-based default 1127, 1129
ISO-based predefined 1127, 1129
letter pattern 1134
parsing 1128
pattern letters 1134, 1135
pattern-based 1134
style-based 1127, 1131
thread-safety 1128

DateTimeException 373, 1025, 1033, 1075
DateTimeFormatter 1115, 1127
DateTimeParseException 374, 1051, 1058,

1066, 1131, 1134
daylight saving time (DST) 1073, 1082

time gap 1082
time overlap 1082

INDEX 1765

time zone rules 1082, 1084
vs. standard time 1082

DayOfWeek enum type 1033
DBMS 1512
DDL 1514
DDL operations 1514
deadlocks 1408
decimal separator 1125
DecimalFormat 1115, 1125
declaration 99
declaration annotations 1571
declaration context 493, 1571
declaration statement 8, 65, 70, 81, 102,

103, 176
declaration-before-reading rule 547
declarations

arrays 92, 118
classes 99, 325
interfaces 325
local 101
main method 141
methods 100
multidimensional arrays 122
packages 325, 328
statements 101
variable arity method 136

declare-before-use rule 572
declared type 203, 264

see static type
declared-type parameters 680
declaring see declarations
decoupling 283
decrement operator 69
deep copying 426
deep reflection 1191
default

constructor 110
exception handler 367
values 103, 541, 555

default 246
label 156, 161, 166
method 246

default accessibility for class members
see package accessibility for class

members
default accessibility for top-level types

see package accessibility for top-level
types

default constructor 110
default downstream collectors 985
default file system 1289

default locale 1098, 1099, 1104, 1107, 1109,
1119

default method 246, 675, 676
conflict resolution 248
multiple inheritance of implementation

248
overriding 247

default ordering
see natural order

default package 328
default resource bundle 1102, 1103, 1109,

1110
default values 1562, 1565
defensive copying 359
deferred execution 679, 684
definite assignment analysis 105, 232
definitions

interfaces 238
polymorphism 278

DelayQueue 1496
DELETE statement 1516
delimiters 1120
Denial of Service (DoS) 1602
dependency cycles 1172
deprecated 429
deprecated code

@Deprecated 1580
deprecation warning 1581
ordinarily deprecated 1580
terminally deprecated 1580

deprecation warning 1581, 1583
Deque 821
deque 785, 788

ArrayDeque 823
Deque 821
FIFO queue 821
head 821
LinkedList 823
tail 821

Derby database 1520
connection 1520

derived class 191
deserialization 1611
deserialization of objects 1261
destination directory 335, 1187, 1219
destination object 1152
destination of data 1233
destination stream 25
destructive collection operations 791
diagrams

class 6

1766 INDEX

object 9
see also UML

diamond operator (<>) 570
dictionary 785
dictionary order 447
difference 804
direct sealed superclass 313
direct superclass 211
directory

copy entire directory 1352
see also directory entry

directory entry 1288
accessing individual file attributes 1321
atomic move 1313
copy entire directory 1352
copy options 1308
copying 1308
copying using I/O streams 1311
creating 1339
creating regular directories 1342, 1343
creating regular files 1339, 1340
creating streams 1345
creating symbolic links 1342
creating temporary directories 1342,

1344
creating temporary files 1339, 1341
creation time 1324
deleting 1307
denotes same as another entry 1306
determining existence 1305
determining file accessibility 1324
determining kind of entry 1323
determining last modification time 1324
determining owner 1325
determining size 1323
handling POSIX file permissions 1325
hidden 1324
last access time 1324
last modified time 1324
managing file attributes 1321
moving and renaming 1312
reading and writing bytes 1318
reading and writing character data 1315
stream to read text lines 1346

directory hierarchy
breadth-first traversal 1348
cyclic path dependency 1352
depth 1347
depth-first traversal 1348
finding/searching 1354
limit traversal by depth 1351
root 1347
siblings 1347

traversal strategies 1348
walking/traversing 1350

directory-level separator 1189
DirectoryNotEmptyException 1307
disjunct collections 808
dispensing canned advice application 1179
distance of shift 86
distributed 4
divide-and-conquer

base case 1448
forking 1448
joining 1448
parallel processing 1448

divide-and-conquer algorithm 868
divide-and-conquer paradigm 1447
dividend 62
division

floating-point 62
integer 62

division operator
/ 62

divisor 62
DML 1514
documentation 40
documentation comment 40

tags 40
documenting see documentation
Domain Name System (DNS) 327, 1171
DosFileAttributes interface 1330, 1333
DosFileAttributeView interface 1334, 1338
dot 326
double 36, 42
double quote 38
DoubleBinaryOperator interface 722
DoubleConsumer functional interface 709
double-ended queues

deque 821
DoubleFunction interface 712
DoublePredicate functional interface 703
DoubleStream interface 889
DoubleSummaryStatistics 890
DoubleSupplier functional interface 699
DoubleToIntFunction interface 713
DoubleToLongFunction interface 713
DoubleUnaryOperator interface 720

composing unary operators 721
doubly linked list 788
do-while statement 173
downcasting 45
downstream collectors 979, 986, 1003

default 985
filtering adapter 992
finishing adapter 997

INDEX 1767

flat mapping adapter 994
mapping adapter 993

DQL 1514
dropping stream elements 910, 913
duplicate elements 801, 804
duplicating objects 427
duration

accessing units 1067
comparable 1068
compared with period 1072
creating 1065
equality 1068
get methods 1067
immutable 1057, 1064
ISO format 1067
parsing 1066
plus/minus methods 1069
supported ChronoUnits 1066, 1068, 1070
temporal arithmetic 1069
thread-safe 1057, 1064
time-based 1057, 1064
unit conversion 1068
with methods 1069

Duration class 1064
see duration

dynamic 4
dynamic arrays 645
dynamic binding

see dynamic method lookup
dynamic method lookup 206, 278, 283
dynamic type 196, 203
dynamically resizable arrays 802

E
eager execution 887
effectively final 514, 687
element type 118
element type values for @Target 1569
elements 117, 644, 783
elements of collections 783
eligible for garbage collection 534
ellipsis 136
else clause matching 155
embedded applications 2
empty set 804
empty statement 101
empty string 441
encapsulation 3, 324, 326, 501, 1163, 1606

nested types 493
encapsulation of implementation 195
enclosing class 492, 500, 502

enclosing context 493, 500, 505
enclosing instance 493, 498, 524
enclosing object reference 503
encoding of characters 1241
encounter order 891
end of file

see end of I/O stream
end of file (EOF) 371
end of I/O stream 1234, 1240, 1243, 1252,

1253, 1261
ends with characters 452
enhanced for loop 172
enterprise applications 2
entries 785, 830
entry point 19, 22, 141, 1189, 1190, 1191,

1212
entry set 831, 1380, 1388
enum class

see enum types
enum constants 287

symbolic names 287
values 287

enum types 163, 256, 287, 332, 635
abstract method declarations 294
accessibility 345
canonical form 288
constant-specific class bodies 294
declaring 288
enum constants 287
enum constructors 290
equality 293
final methods 293
implementing interfaces 298
implicit static methods 292
in switch expression 297
inherited methods 293
initializer blocks 291
local 494, 519
members 290
named constants 287
natural order 293
nested 492
ordinal value 163, 293
permitted direct subtypes 316
selector expression 156
static member 494, 495
top-level 491, 494
using 289

enumerated types
see enum types

EOFException 371
epoch 1024, 1049

1768 INDEX

epoch-second 1049
equality 75, 426, 744

equals method 77, 426, 744
object value 77
objects 77
primitive values 75
reference values 76

equals method 77, 426, 744
equivalence relation 746
equivalent collections 808
erasure 613, 616, 619

of the supertype method 621
same 620

Error 374
escape character 1101
escape sequences 38, 459
essential whitespace 462
evaluation order 52, 80

arithmetic expressions 59
evaluation short-circuits 80
event listeners

anonymous classes 521
exact integer arithmetic functions 481
exam 1615

multiple-choice 1621
Oracle exam attempt 1617
program 1618
questions 1619
registration 1616
result 1619

exam objectives
OCP Java SE 11 1629
OCP Java SE 17 1623

exam question assumptions
OCP Java SE 17 1619

Exception 370, 372
exception handler 365

see also exceptions
exception handling

advantages 416
exception type 388
exceptions 365, 376

ArrayStoreException 798
backtrace 405
cause 405
chaining 405
checked 371
ClassNotFoundException 1262
ConcurrentModificationException 795
customized 375
default handler 367
detail message 370

EOFException 1238
FileNotFoundException 1236
handler 365
IllegalThreadStateException 1378
IOException 1234, 1243
propagation 365
rethrowing 401
situations 370
suppressed 415
throw 386
throwing see throwing exceptions
thrown by JVM 370
thrown by method 100
thrown programmatically 370
throws 388
types 368
uncaught 367
unchecked 374
UnsupportedOperationException 790

exchanging information 127
execution 1370
execution paths 1367
execution stack

see JVM stack
Executor 1424
executor 1423
Executor Framework 1423
executor service 1427

bulk task execution 1439
creating 1429, 1431
executor lifecycle 1427
shutdown 1429, 1431, 1433
submitting tasks 1429, 1431
task cancellation 1444
task execution policy 1426
tasks 1423
termination 1429, 1431, 1433
thread pool 1425

Executors 1424, 1425
ExecutorService 1427
explicit garbage collection 537
explicit module 1206, 1208
explicit referencing 515
exploded module 1181
exploded module directory 1181
exponent 36
exponential functions 480
exports directive 1169, 1171, 1178

accessibility 1173
exports-to directive 1178
expression statements 55, 70, 101, 160,

175, 176, 682

INDEX 1769

expressions 166
actual parameters 128
boolean 74
conditional 90
deterministic evaluation 50
return 184
statements 101
switch expression 164
throw 386
yield 164

extending 521
inner class 508
interfaces 244
Thread 1375

extends 581, 589, 591
bounded type parameters 591
constraint 591

extends clause 13, 191
extensibility 1607
extensions

.class 21

.java 21, 22
external iteration 889
extracting substrings 453, 466

F
fairness 1408
fairness policy 1461, 1470

acquisition order 1461
fallback 1110
fall-through 156, 157, 165
false literal 32, 37
fetch size 1536
FF see form feed
field declarations 99
field hiding 203, 231
field initialization 555
fields 6

final 229
hiding from superclass 203
shadowing by local variables 114

FIFO queue 821
file 761

see also directory entry
file attribute views 1329, 1333, 1334

view name 1328
file attributes 1321

accessing by attribute name 1327
accessing by bulk operations 1328
accessing individually 1321
file attribute name format 1328

file attribute views 1329
file attributes interfaces 1330

file attributes interfaces 1328, 1330
File class 1290, 1292
file extension 1288

.properties 1103
file name 325
file path 335

separator character 335
file streams 1236
file system 1233, 1287

accessing 1610
default 1289

file system resources 1345
file visit option 1349
FileAlreadyExistsException 1309, 1339
FileAttribute interface 1339
FileAttributeView interface 1334
FileInputStream class 1235
FileNotFoundException 371
FileOutputStream class 1236
FileOwnerAttributeView interface 1334
FileReader class 1243
files

binary 1238
low-level I/O streams 1236
not found 1236

Files class 1287
method characteristics 1304
streams 903

FileSystem class 1289
FileSystems class 1289
FileTime class 1324
FileVisitOption enum type 1349
FileWriter class 1244
filtering 688
filtering adapter 992
filtering streams 910

using a Predicate 912
FilterInputStream class 1235
FilterOutputStream class 1236
filters 910

see also I/O filter streams
final

effectively 525, 692
variables 525, 692

final fields 229, 230
hiding 231

final instance fields
initialization 231

final keyword 225
final local variables 229, 231

1770 INDEX

final members 225
final methods 226

binding of method call 227
final parameters 135, 232
final static fields

initialization 231
manifest constant 231

final variables 229
blank 229
constant variables 229
definite assignment analysis 232
definitely assigned 232
definitely unassigned 233
fields 229
local variables 229
object state 229

finalize method 427
finally clause 377, 382
finishing adapter 997
finite streams 892

extracting lines from a String 902
from a BufferedReader 902
from a CharSequence 901
from arrays 898
from collections 897
from factory methods in the Files class

903
from specified values 893
from the Random class 900

first element 810, 811, 1486
first map entry 846
fixed arity method 136
fixed arity method call 140
Fixed Thread Pool 1426
fixed-size list view 659
flat mapping adapter 994
float 36, 42
floating-point 41

double 42
float 42
literals 36

floating-point arithmetic 60
floating-point data types 36
floating-point division 62
floating-point remainder 63
floor entry 846
floor key 846
flow control see control flow
flushing I/O streams 1234
for(;;) statement 174

backward 175
collections 794

forward 175
iterating over array 121
iterator 794

for(:) statement 176, 795
iterating over array 121

for-each loop 172
Fork/Join Framework 1009, 1447
forking 1448
fork-join pool 1449
ForkJoinPool 1448
ForkJoinTask 1448
form feed 38, 39
formal parameters 100, 109, 128, 265, 354

modifier 100
name 100
type 100

formal type parameter 567
Format class 1115
format elements 1140

format style 1140
format type 1140

format specifications 25, 457
format specifiers 25, 1247
format style 1127, 1132, 1140
format type 1140
FormatStyle enum type 1127, 1131
formatted output 24

format specifiers 25
formatted prompting 1257
formatted string 457
formatted values

Console 1257
PrintStream 1247
PrintWriter 1247

Formatter 1152
formatter

destination object 1152
formatting 39, 1115
formatting date and time values 1127
formatting messages 1139

conditional formatting 1145
formatting numbers/currency values 1116
forward reference 541, 542, 545, 551, 555
fractional signed numbers 41
frame stack

see JVM stack
framework for collections 783
full permissions 1343
fully 1191
fully qualified class name 337, 1189, 1190,

1191
fully qualified name 314, 345, 497

INDEX 1771

fully qualified package name 326, 328, 329
fully qualified type name 326, 331
function 684
function arrow -> 679
Function interface 712

composing functions 715
function type 683
functional interface

@FunctionalInterface 675, 1579
abstract method 675
built-in functional interfaces 695
function type 683
functional method 675
primitive values 696
target type 682
see also lambda expressions

functional method 675
functional programming 5
functional reduction 955, 956, 972, 984,

998
functional requirements (FRs) 1600
FunctionalInterface annotation 675
functionality 675
functional-style programming 675
functional-style programming paradigm 3
functions

currying functions 723

G
garbage collection 536, 537

automatic 533
facilitate 537

general abstractions 194
general contract

compareTo() 762
equals() 746
hashCode() 756

general loops 174
generalization 13
generalized classes 194
generic class 567, 568
generic instance method 594
generic interface 572
generic method 593, 610, 657

calling 594
generic method call

inference 594
generic static method 594
generic subtype method 621
generic type 567, 645

extending 573
implementing 598

generics 147
arrays 627
casting 625
class literals 636
collections 578
constructors 593
enums 635
erasure 613, 620
exception handling 632
inherited methods 620
instanceof operator 624
JVM 565
method signature 615
methods 593
nested classes 633
non-reifiable types 624
overloading 615, 616
overriding 615, 617
reifiable types 623, 624
subsignature 616
type erasure 576, 613
variable arity parameter 630
wildcards 579

GESS 590
get methods 300, 302, 358, 590, 975, 1032,

1099, 1531, 1534, 1536, 1537
get operation 586
getter methods see get methods
GMT (Greenwich Mean Time) 1073
goto 32
grammar rules 30
grant 1608
graph

nodes 1166
unidirectional edges 1166

grouping 326
grouping separator 1125
groups of objects 783
GUI applications 1378

H
half-open interval 865, 867, 1145
handle-or-declare rule 388
handles see references
happens-before relationship 1414, 1454

transitivity 1414
hard link

see symbolic link
has-a relationship 194
hash code 108, 426, 753, 754
hash function 753
hash sign 1101

1772 INDEX

hash table 754, 788, 789
see map

hash value 426
see hash code

hashing 753
collision 753
hash code 753

HashSet 806
Haskell Curry 724
head map view 845, 846
head set view 810, 811, 1486
heap 533, 1370
heap pollution 1585
heap pollution warning 630, 650, 659, 805,

833, 863
helper methods 252
heuristics 756
hidden members

accessing 505, 506
hiding internals 324
hierarchical file system 1233
higher entry 846
higher key 846
high-level I/O streams 1233
high-performance 5
holdability 1540
horizontal tab 38
hotspots 5
HT see horizontal tab
human time 1049

I
I/O buffering 1238
I/O filter streams 1235, 1236, 1238
I/O package 1233
I/O streams 1233

buffering 1238
chaining 1238
closing 1234, 1239, 1240
end of stream 1240
files 1236
filter streams 1238
flushing 1234
high-level 1233
input filter streams 1235
low-level 1233
of binary values 1236, 1238
of characters 1241
of objects 1236
output filter streams 1236
skipping bytes 1238

IANA Time Zone Database 1073
IDE (integrated development

environment) 1616
idempotent method 408, 413
identifiers 30

variable 102
identity container 965
identity conversion 46, 67
identity of object 8
identity() function 982
IEEE 754-1985 42
if block 152
if-else statement 153

scope of pattern variable 276
illegal thread state 1378
IllegalArgumentException 372, 810, 1134
IllegalStateException 373, 794
immediately enclosing instance 492
immutability 1453, 1607
immutable 302, 796, 1024, 1075
immutable classes

in Java SE platform documentation 356
immutable object pattern

see immutable objects
immutable objects 429, 440

advantages 360
caching 358
consistency of state 358
defensive copying 359
guidelines 358
state 356
static factory method 359
thread-safety 356

immutable primitive values 356
immutable strings 440
implementation inheritance 245
implementations 6, 193, 324

collections 783
inheritance hierarchy 226

implementations of collections 785
implementing

Comparable 761
Comparator 769
equals 744
hashCode 753
interfaces 240

implements clause 240
implicit canonical record constructor 302
implicit default constructor 110
implicit dependency 1167, 1172, 1216
implicit inheritance 191
implicit narrowing conversions 67

INDEX 1773

implied dependency 1175
import 345

declaration 329
see also static import
single-type-import declaration 329
statement 325
type-import-on-demand declaration 330

importing
enum constants 332
nested types 498
reference types 329
static members 331

in lockstep 797
IN parameters 1530
incidental whitespace 462
increment operator 69
indenting lines 456
index 117
index expression 120
IndexOutOfBoundsException 400, 444, 445,

454, 465, 467, 468, 651, 652, 655
individual array elements 120
individual module compilation 1186
inequality 75

see also equality
inferred-type lambda parameters 147
inferred-type parameters 680
infinite loop 176
infinite streams 892

building with generator functions 894
from the Random class 900

infinity 60, 432
negative 60
positive 60

information hiding 324
inheritance 13, 194, 238

hierarchy 193, 507
serialization 1270
subtype–supertype relationship 195

inheritance of implementation 238
inheritance of type 238
initial capacity 647
initial state of object 555
initialization

arrays 119, 124
code 120
default values 103
for statement 174
objects 8
references 102
variables 102

initialization expression 102, 142

initializer 540
declaration-before-reading rule 542
static 541, 542, 553, 554, 557

initializer blocks
instance 551
static 545

initializer expression 103, 229, 230, 540
static 543

initializers
declaration order 545
exception handling 549
forward references 545
non-static block 99
non-static field 99
static block 99
static field 99
using class name 547
using simple name 545

initializing see initialization
inlining 227
inner classes 491, 492

anonymous 492, 494, 521
local 492, 494, 512
non-static member 492, 494
qualified superclass constructor

invocation 509
synchronization 1392

INOUT parameters 1532
input 1233
input stream 1233
input validation 1605
InputStream abstract class 1234
InputStreamReader class 1243
INSERT statement 1515
insertion order 644, 789, 807, 842
insertion point 861, 867
instance

members 13
methods 13, 101, 106
variable initialization 103
variables 13, 106
see also object

instance initializer blocks 551
local variable type inference 552

instance methods 9
instance variables 8, 555
instanceof operators 92, 269, 274, 624
instanceof pattern match operator 274

pattern variable 275
type pattern 275

instanceof type comparison operator 270,
281

1774 INDEX

instant
accessing fields 1052
comparing 1053
convert to temporal objects 1056
creating 1049
creating from date-time 1051
current instant 1050
epoch 1049
epoch-second 1049
immutable 1049
ISO format 1050
max value 1049
min value 1049
nano-of-second 1049
parsing 1051
plus/minus methods 1054
representation 1049
supported ChronoFields 1054
supported ChronoUnits 1056
temporal arithmetic 1054
text representation 1051
thread-safe 1049
timestamps 1049
with methods 1054
zero UTC offset 1049

Instant class
see instant

instant timeline 1074
instantiation 8

anonymous classes 524
local classes 517
non-static member classes 502
parameterized type 569
static member classes 495

int 32, 42
IntBinaryOperator interface 722
IntConsumer functional interface 709
integer arithmetic 59
integer bitwise operators 82
integer constant expressions 48
integer data types 32
integer division 62
integer remainder operation 62
integers 41

and operator 83
byte 42
complement 83
data types 41
int 42
literals 32
long 42
or operator 83
representation 54

short 42
types 41
xor 83

integral types 41, 42, 44
interface constant antipattern 332
interface-based 787
interfaces

abstract 239
abstract methods 240
accessibility 345
body 238
collection core 783
constants 254
contract 240
declarations 325
default methods 246
evolution 250
extending 244
functional interfaces 675
header 238
implementing 240, 298, 523
inheriting from multiple interfaces 621
initialization 557
local 494, 519
markers 239
member declarations 238, 239
multiple inheritance of implementation

248
nested 491, 492
overriding default methods 247
partial implementation 242
private methods 252
public methods from Object class 245
realization 244
references 246
static member 494, 495
static methods 251
subinterfaces 244
superinterfaces 244
top-level 491, 494
UML 244
UML stereotype 244
variables 254
with single abstract method 678

intermediate stream operations 885, 905
examining elements 920
filtering streams 912
flattening streams 924
input stream 885
lazy execution 887
mapping streams 921
non-interfering behavioral parameters

910

INDEX 1775

order of 908
output stream 885
replacing each element with multiple

elements 927
selecting distinct elements 915
setting execution mode 933
setting stream as unordered 932
short-circuit execution 908, 917, 918
skipping elements 915
sorting streams 929
stateful operations 908
stateless behavioral parameters 910
stateless operations 908
truncating a stream 917

internal iteration 889
internal packages 1171
internationalization 1096
interned strings 440, 442
interned values 433
interpackage accessibility 324
interrupt handling 1393

interrupt status 1393
InterruptedException 1393
spurious wakeup 1399

InterruptedException 1393
interruptible locking 1462, 1467
intersection 804
IntFunction interface 712
IntPredicate functional interface 703
intrinsic lock

see object lock
intrinsic locking 1388, 1460
IntStream interface 889
IntSummaryStatistics 890
IntSupplier functional interface 699
IntToDoubleFunction interface 713
IntToLongFunction interface 712
IntUnaryOperator interface 720

composing unary operators 721
invocation

parameterized type 569
invocation stack

see JVM stack
invoker 184
invoking garbage collection 537
IOException 371
is-a relationship 194, 195
ISO 8859-1 encoding scheme 439
ISO Latin-1 37, 42
ISO standard 1127, 1129
Iterable interface 450, 657, 792, 795
iteration 174, 792
iteration order 795

iteration statements 172
next iteration 182
termination 172, 181

iterators 645, 657, 793, 797
fail-fast 794, 1485
ListIterator 801
ordered collection 796
snapshot-style 1484
sorted collection 796
unordered collection 796
weakly consistent 1484

J
Jakarta EE (Enterprise Edition) 2
JAR 1163, 1189
jar tool 1189
java 21
Java Application Launcher 21

see JDK tool java
Java Archive

see JAR
Java Archive Tool

see JDK tool jar
Java bytecode 21
Java Card 2
Java Class Dependency Analyzer Tool

see JDK tool jdeps
Java Collections Framework 644
Java compilation unit 1168
Java Database Connectivity

 see JDBC
Java Development Kit (JDK) 2
Java ecosystem 2
Java EE (Enterprise Edition) 2
Java Language Compiler 20

see JDK tool javac
Java Linker

see JDK tool jlink
Java ME (Micro Edition) 2
Java Platform Module System 1163
Java Platforms 2
Java Runtime Environment (JRE) 3
Java SE (Standard Edition) 2
Java Shell Tool (jshell) 23
Java Virtual Machine (JVM) 2
java.base module 1167, 1214
java.io package 1233, 1290
java.lang.annotation package 1557
java.lang.Record class 304
java.lang.reflect package 1587
java.math package 485
java.net package 1290

1776 INDEX

java.nio package 1287
java.nio.file package 1287
java.nio.file.attribute package 1324
java.se module 1168
java.sql package 1517
java.text package 1115
java.time package 1024, 1115
java.time.format package 1115
java.util package 644
java.util.concurrent package 1424
java.util.function package 695
javac 20
Javadoc comment 40

@param tag 100, 112
@return tag 184
@throws tag 390

javadoc tool 40
JDBC 1517
JDBC API 1517
JDBC drivers 1517

legacy drivers 1522
JDBC interfaces 1519
JDBC resources 1518
JDBC URL 1519
JDK 1616

licencing 3
JDK tools

jar 1189, 1211, 1212, 1213, 1221
java 21, 1189, 1212, 1213, 1220
javac 20, 1186, 1219
javadoc 40
jdeps 1167, 1214, 1222
jlink 1204, 1222
jmod 1166
jshell 23
summary of operations 1218

JMOD archive 1166
JMOD files 1213
join

starvation 1412
joining 1448
joining threads 1383
JPMS 1163
just-in-time (JIT) 4
JVM 534, 537

heap 1370
JVM stack 1370
method area 1370
program counter (PC) 1370
runtime constant pool 1370
runtime data areas 1369

JVM stack 365, 534, 1370

K
key 866
key insertion order 841
key objects 785
key sets 831, 847
key sorting 845
key-based lookup 1104
keys 830
keystore 1608
key–value entries 754
key–value pairs 1102
keywords 31

abstract 219, 240, 675
boolean 43
break statement 180
byte 42
case 156, 160, 164
catch 377
char 42
class 99, 238
contextual words 31
continue 182
default 156, 161, 166, 246
do 173
double 42
else 153
extends 191, 581, 589, 591
final 135, 225, 232, 312, 358, 400, 410,

1456
finally 382
float 42
for 174, 176
if 152
implements 240
import 329, 345
instanceof 92, 270, 274, 281, 624
int 42
interface 238
long 42
new see new operator
null 49, 77, 269
package 328, 345
private 351
protected 350
public 350
reserved words 31
return 184
short 42
static 19, 113, 251, 331, 495, 545
super 110, 201, 206, 211, 248, 507, 582
switch 155, 164

INDEX 1777

synchronized 1388, 1456
this 106, 504
throw 386
throws 388
try 377
unused words 31
void 19, 429
volatile 1454
while 172, 173

keywords (contextual)
exports 31, 1169, 1177
module 31, 1177
non-sealed 31
open 31, 1177
opens 31, 1177
permits 31
provides 31, 1177
record 31
requires 31, 1170, 1175, 1177
sealed 31
to 31, 1177
transitive 31, 1177
uses 31, 1177
var 31
with 31, 1177
yield 31

keywords (reserved)
const 32
goto 32

L
labeled break statement 181
labels 179, 181

break 181
case constants 156, 160
constant expressions 157
default 156, 161, 166
labeled statement 179
switch statement 156, 160

lambda body 679, 681
lambda expressions 679, 691

access class members 685
block scope 684, 686
compared with anonymous classes 692
contexts providing target types 733
declared-type parameters 680
deferred execution 679, 684
expression 681
expression statement 682
function 684
function arrow -> 679
implicitly typed 680

inferred-type parameters 680
lambda body 679, 681
lambda parameters 680
non-void return 681
parameter list 679
shadowing members 685
single expression 681
statement block 682
target type 682
target typing 684
type checking 682
using this and super 685
variable capture 687
var-type inferred parameters 680
void return 681

lambda parameters 680
language codes 1097
language tag 1118
last element 810, 811, 1486
last map entry 846
latch

see count-down latch
late binding

see dynamic method lookup
LATIN-1 encoding scheme 439, 440
lazy execution 887, 907
least significant bit 34
left associativity 51
left shift 86
legacy class 566
legacy code 565
legacy supertypes 619
legal assignments 264
length method 445, 902
letter pattern 1134
lexical nesting 496
lexical scope

see block scope
lexical tokens 30
lexicographic array comparison 869
lexicographic comparison 869
lexicographical ordering 447
LF see linefeed
lifetime 535

see scope 106
limits 1146
line continuation 38
line separator 25, 1246
line terminator 39, 445
linear implementation inheritance 193
linear inheritance 237
line-continuation character 1186
linefeed 38

1778 INDEX

lines of text 1252
LinkageError 374
linked data structures 566
linked list 788, 802
LinkedBlockingDeque 1496
LinkedBlockingQueue 1496
LinkedHashSet 806
LinkedList 647, 802, 815, 823
LinkedTransferQueue 1496
LinkOption enum type 1301
List 645, 801
list views 656, 659, 660
listing observable modules 1212
ListIterator 801
lists 784, 801, 802

ArrayList 802
binary search 861
changing contents 863
copying 863
LinkedList 802
List 801
ListIterator 801
positional 785
replacing elements 862, 863
reverse order 859
sorted 861
sorting 858, 859
sublist view 656
sublists 862
unmodifiable 649, 801
unmodifiable views 856
Vector 802
views 659
see also ArrayList

literals 32
boolean 37
character 37
default type 32, 36
double 36
escape sequences 38
false 37
float 36
floating-point 36
integer 32
null 32
predefined 31
prefix 33
quoting 37
scientific notation 36
string 39
suffix 32, 36
true 37

live threads 1383
livelock 1410
liveness 1408
local 102, 104, 519

block 492
chaining of constructors 210, 555
classes 494, 512
enum types 492, 494
interfaces 492, 494
record classes 492, 494
variables 106, 354

local classes 492, 494, 512
accessing local declarations 513
accessing members in enclosing context

515
declaration 512
hiding members from enclosing context

515
in non-static context 512
in static context 512
instantiation 517
scope 512
shadowing local variables 514
using qualified this 515

local date
conversion to Date 1088, 1141

local date-time
conversion to Date 1088, 1141
converting to instant 1051

local declarations 101
local enum types 519
local interfaces 519
local record class 519
local scope 169
local time 1073

conversion to Date 1088, 1141
local timeline 1074
local variable type inference 142, 410

arrays 143
instance initializer blocks 552
parameterized types 571
static initializer blocks 545, 547

local variables 109, 142
block scope 684

LocalDate
see temporal objects

LocalDateTime class
see temporal objects

Locale 1096
locale 448, 1096

country codes 1097
country name 1098

INDEX 1779

default 1098
language codes 1097
language name 1098
predefined 1097

locale qualifiers 1098
locale-sensitive 1115
locale-sensitive operations 1096
localization 1096
localizing an application 1105
localizing information 324
LocalTime class

see temporal objects
locations

see class path
Lock 1461
lock 1380

acquire 1380, 1388
class 1391
entry set 1380, 1388
release 1380

lock acquisition
starvation 1412

logarithm 480
logical 277
logical AND

& 78
logical complement

! 78
logical complement (!) operator

pattern variable 277
logical exclusive OR

^ 78
logical inclusive OR

| 78
logical XOR

^ 78
long 32, 42

suffix 32
LongBinaryOperator interface 722
LongConsumer functional interface 709
LongFunction interface 712
LongPredicate functional interface 703
LongStream interface 889
LongSummaryStatistics 890
LongSupplier functional interface 699
LongToDoubleFunction interface 713
LongToIntFunction interface 713
LongUnaryOperator interface 720

composing unary operators 721
loop body 172, 174
loop condition 172, 174
loop variable 174

loops see iteration statements
loss of precision 44
lower bound 581
lower bounded wildcard

? super T 582
lower bounded wildcard references 589
lower entry 846
lower key 846
low-level I/O streams 1233
LTS (long-term support) release 3

M
magnitude 44
main memory 1453
main method 21, 141

arguments 141
modifiers 141

main thread 1373, 1378
Main-Class attribute 1212
MANIFEST.MF file 1212
many-to-one relation 830
Map 831
map

key–value entries 754
map views 839
Map.Entry 833, 846
mapping adapter 993
mappings 785

see entries 785
map-reduce operation 1003
map-reduce transformation 958
maps 785, 830

access order 841
entries 785
iteration 839
key insertion order 841
key-based operations 831, 835
Map 831, 840
map views 839
mappings 785
multimap 597
NavigableMap 845
ordering mode 841
replacing values 839
SortedMap 845
submap view 846
text representation 841
TreeMap 847
unmodifiable 832
unmodifiable views 857
views 839

1780 INDEX

marker annotation 1563, 1565
marker annotation type 1560
marker interfaces 239, 1262
marker parameter 1526, 1530
mask

see bit mask
Math class 108, 478
math constants 478
mathematical set 804
MAX_VALUE constant 434
maximum value 479
member declarations 99, 307
member type declarations 99

non-static member class 492
static member class 492
static member enum type 492
static member interface 492
static record class 492

members 6, 352
access 106
accessibility 347
default values 103
inheritance 191
modified 191
of objects 9
scope 352
shorthand 107
static 10
terminology 13
variables see fields

memory consistency errors 1414
memory management 533
memory organization 533
MessageFormat 1115
meta-annotation 1559, 1567

@Documented 1574
@Inherited 1574
@Repeatable 1575
@Retention 1567
@Target 1569

metadata 239, 1557
META-INF directory 1211, 1212
method area 1370
method call 9, 100, 127

chaining 467, 469
fixed arity 140
variable arity 139

method chaining 906, 1036, 1042, 1060,
1069

method declaration 99
variable arity parameter 630

method header 224

method invocation conversions 48, 265
method modifiers 100
method naming conventions 1025
method overloading 108, 202, 225
method overriding 202, 224, 226, 556

covariant return 201
method references 724, 725

bounded instance method references 727
static method references 726
unbounded instance method references

729
method signature 101, 196
method type 683
methods 6

@Override 198
abstract 224, 240, 675
abstract method declarations 240
advisory 1385, 1387
ambiguous call 202, 266
automatic variables see local variables
behavior 675
binding of method call 205
blocks 101
body 100
bridge 615
call chaining 128
call see method call
calling variable arity method 137
chained 449
clone 426
concrete 226
declaration 100, 128
default 246
dynamic lookup 283
equals 77, 426, 744
exceptions 100
final 226
finalize 427
fixed arity 136
functional 675
generic 593
getClass 426
header 100
hiding 226
hiding static methods 203
implementation 224
invocation see method call
local declarations 101
local variables
locale-sensitive 1099
main see main method
method invocation conversions 265

INDEX 1781

method type 683
modifiers 100
most specific 266, 655
mutually exclusive 1391
name 127
objects 106
overloaded resolution 265
overloading see method overloading
overriding see method overriding
overriding vs. overloading 202
parameters 100
return 184
return value 100
signature 101, 108, 202, 616
static 115, 251
subsignature 617
synchronized 1388
termination 184
throws clause 388
toString 426
variable arity 136

migration to modules 1209
MIN_VALUE constant 434
minimizing overhead 536
minimum value 478
MissingResourceException 374, 1104
mixing raw types and generic types 575
mobile applications 2
modifiers

abstract 240
access 345
default 246
final 225
static 251

modular JAR 1189, 1206
creating 1189
describe a JAR 1213
extract contents 1212
list contents 1211
listing observable modules 1212
Main-Class attribute 1212
MANIFEST.MF file 1212
META-INF directory 1211, 1212
running from 1191

modular JDK 3, 1164
goals 1165
java.base module 1167, 1214
java.se module 1168

modular JDK installation 1165
module application directory structure 1180
module declaration 1168

module as contextual keyword 1169
module dependency 1170

module descriptor 1169, 1187
module directives 1169

exports directive 1169, 1171, 1178
exports-to directive 1178
opens directive 1178, 1191, 1192
opens-to directive 1178, 1195
overview of directives 1177
provides-with directive 1178, 1200
qualified export 1178
requires directive 1169, 1170, 1177
requires static directive 1177
requires transitive directive 1175, 1177
unqualified export 1169, 1178
uses directive 1178, 1202

module graph 1166, 1172, 1180, 1217
acyclic 1172
dependency cycles 1172
implicit dependency 1167, 1172
implied dependency 1175
module dependency 1170
sink nodes 1172

module name 1171
module path 1206
module resolution 1172, 1186
module root directory 1181
module-info.java file 1181
modules 1168

accessibility 1173
accessibility rules 1170, 1174
aggregate module 1168
automatic 1206, 1207
benefits 1163
comparison 1208
creating modular JAR 1189
dependencies 1166
explicit 1206, 1208
exploded module 1181
exploded module directory 1181
exploring modules 1211
implicit dependency 1216
individual module compilation 1186
internal packages 1171
migration to 1209
modular JAR 1189
module application directory structure

1180
module declaration 1168
module descriptor 1169
module graph 1166
module name 1171
module resolution 1186
module root directory 1181
module-info.java file 1181

1782 INDEX

multi-module compilation 1187
named 1208
non-standard modules 1166
open modifier 1178
platform modules 1166
principle exported package 1171
public API 1163, 1170, 1174
readability 1173
readable 1170
reliable configuration 1163
running from a modular JAR 1191
services 1196
standard modules 1166
stronger encapsulation 1163
system modules 1212
unnamed 1206
viewing dependencies 1214

monitor 1380
entry set 1380
lock 1380

monitor lock
 see object lock

Month enum type 1028
most specific method 266, 655
multi-catch clause 397

final parameter 400
multicore architectures 5
multidimensional arrays 122, 124
multi-element annotation type 1561
multilevel classification 987
multilevel grouping 987
multilevel partitioning 991
multimap 597
multi-module compilation 1187
multi-paradigm programming 3
multiple assignments 55
multiple bounds 592
multiple catch clauses 376, 397
multiple inheritance of implementation

193, 238, 248
multiple inheritance of type 238
multiple-line comment 40
multiplication operator

* 61
multiplicative operators 61
multisets 804
multitasking 1367
multithreaded 5
multithreaded programming 1368
mutability 661
mutable character sequences 464
mutable containers 947, 964
mutable objects 359

mutable reduction 971, 972
mutable containers 964
see also collectors

mutator method see set methods
mutex

see lock
mutual exclusion 1455
mutually comparable 858, 861, 867
mutually exclusive

actions 154
locks 1380

MVC design pattern 1179

N
name 30
name clash 620, 621, 622
name elements 1288
name separator in path 1288, 1291
named constants 231
named modules 314, 1208
named package 314
namespaces 109, 1171
naming conventions of paths 1288
NaN (Not-a-Number) 61, 432, 1606
nano-of-second 1049
narrower range 44
narrowing conversions

primitive 44
reference 45

narrowing reference conversions 196, 270,
585, 605

natural logarithms 478, 480
natural order 761, 858, 865
natural ordering 865
navigable map 785

first entry 846
last entry 846
range-views 846
views 846

navigable set 784, 810
ceiling 812, 1487
floor 812, 1487
higher 812, 1487
iterator 812, 1487
lower 812, 1487

NavigableMap 845
NavigableSet 810
navigation methods 845

closest match 811
nbsp

see non-breaking space
negative zero 61

INDEX 1783

nested classes 492
anonymous 492, 494, 521
class file name 497
fully qualified name 497
generic 633
local 492, 494, 512
non-static member 492, 494, 501
qualified name 496
static member 491, 494, 495
synchronization 1392

nested enum types
local 494
static member 491, 494

nested interfaces 491
static member 494

nested lists 648
nested loops 126
nested parameterization 575
nested parameterized types 608
nested record classes 492

local 494
static member 494

nested type declaration 491
nested types 491

accessibility 493
enclosing context 493
enclosing instance 493
importing 498

nested wildcards 584
new operator 8, 92, 109, 119, 507, 521, 555

qualified class instance creation
expression 502

NEW state 1382, 1386
newline see linefeed
NIO.2 1287
NL see newline
no-argument constructor 110, 210, 213
NoClassDefFoundError 374
nodes 566, 1166
non-access method modifier 99, 100
non-associativity 50
non-atomic operation 1455
non-blocking collection 1483
non-blocking lock-free synchronization

1457
non-breaking space (nbsp) 1117, 1120
non-functional requirements (NFRs) 1600
non-interfering behavioral parameters 910
non-modular JARS

see plain JARs
non-observable substate 1382
non-reifiable types 623, 631

non-runnable states 1383
non-standard modules 1166
non-static code 100

see non-static context 99
non-static context 99, 100
non-static field 13
non-static field initializers 99
non-static initializer block 99
non-static member classes 494

access hidden members 505
access in enclosing context 504
declaration 501
fully qualified name 497
hiding in enclosing context 507
inheritance 507
instantiation 502
qualified class instance creation

expression 502, 503
qualified name 496
qualified superclass constructor

invocation 509
qualified this 504

non-static nested classes
see inner classes

non-static type 568
non-varargs call

see fixed arity call
non-void return 681
non-zero argument constructor 111, 214
normal annotation 1563

array element initializer 1564
element-value pair 1563
single-element array-valued element-

value pair 1564
normal canonical record constructor 304,

305
normal execution 366
normal non-canonical record constructor

305, 307
normal threads 1377
NoSuchElementException 793, 811, 815
NoSuchFileException 1307
Not-a-Number

see NAN
notifying threads 427, 1396
NotSerializableException 371
null literal 32

casting 49
equality comparison 77

null reference 32
casting 269

nulling references 536

1784 INDEX

NullPointerException 373
null-safe 743
Number class 434
number format pattern symbols 1125
number formatter 1117, 1119

accounting currency 1118
compact form 1120
currency 1116, 1117
numbers 1116
percentage 1116, 1117

number formatting
accounting currency 1118
compact form 1120
compact form styles 1120
pattern symbols 1125
static factory methods 1116
string pattern 1125

number systems
base 33
decimal 33
hexadecimal 33
octal 33
radix 33

NumberFormat 1115, 1116
NumberFormatException 373, 397, 431
numbers 1096, 1116

formatting 1116
numeric optional classes 944
numeric promotions 49

assignment 56
binary 50
unary 49

numeric streams 885, 892
averaging 974
from a range 898
from arrays 898
from the Random class 900
functional reduction 972
summary statistics 972, 974
summation 973

numeric types 41
numeric wrapper classes 434
numerical literals

using underscore 36

O
ObjDoubleConsumer functional interface 709
Object class 193, 425
object creation 1270
object graph 1266
object hierarchy 195

object lock 1380, 1388, 1391, 1397, 1398,
1399, 1408

Object lock rule 1414
object reference equality 745
object references 8, 102
object serialization

see serialization
object state 8, 109, 131, 555

immutable 356, 1453
object streams 885, 892
object type see dynamic type
object value equality 745
ObjectInputStream class 1235
object-level lock

see object lock
object-oriented programming 6
object-oriented programming paradigm 3
ObjectOutputStream class 1236, 1261
objects 8

aggregate 16
alive 534
arrays 118
behaviors 6
callee 127
caller 127
Class class 426
cleaning up 536
cloning 427
communication 127
comparing 426, 744, 769
compound 534
constituent 16, 534
constructing 555
contract 324
creation 1270
decoupling 283
deserialization 1261
eligible 536
equality 77, 426, 744
exchanging information 127
garbage collection 533
I/O streams 1236
identity 8
immutable 429
implementation 324
initial state 555
initialization 8, 109
initializer block 551
internals 324
lifetime 535
members 9
methods 106

INDEX 1785

Object class 425
persistence 1261
properties 6
reachable 533, 534
reading 1261
serialization 1261
services 324
state 229
state see object state
value equality 77
wait set for threads 1396
writing 1261

Objects class
comparing objects 743
computing hash code 743
null-safe methods 743

ObjIntConsumer functional interface 709
ObjLongConsumer functional interface 709
observable modules 1213
on/off latch 1475
one’s complement 34
one-arity 695
one-dimensional arrays 118
one-shot tasks 1440
one-to-many mapping 924, 927
one-to-one mapping 921
one-to-one transformation 927
online proctored exam 1618
on-the-fly classes 492
open modifier 1178, 1196
open module 1196
open package 1192
open range-view operations 801
opening delimiter 458
OpenOption interface 1301
opens directive 1178, 1191, 1192
opens-to directive 1178, 1195
operands 48

evaluation order 52
operations 6

put 586
read 586
write 586

operators 50
- 58, 63
-- 69
^ 78, 82
^= 79, 85
! 78
!= 75, 76
? : 90
. 9, 326

[] 92, 120
* 58, 61
*= 66
/ 58, 61, 62
/= 66
& 78, 82
&& 80
&= 79, 85
% 58, 61, 62
%= 66
+ 58, 63, 67
++ 69
+= 66
< 74
<< 86, 87
<<= 90
<= 74
-= 66
= 54
== 75, 76
-> 92
> 74
>= 74
>> 86, 88
>>= 90
>>> 86, 89
>>>= 90
| 78, 82
|= 79, 85
|| 80
~ 82
arithmetic compound assignment 66
assignment 50, 54
associativity 50
binary 50
bitwise 82, 86
boolean 74, 75, 78
cast 50
comparisons 74
compound assignment 79, 85
conditional 80, 90
decrement 69
dot 9
equality 75
execution order 52
extended assignments 90
floating-point 60
floating-point division 62
floating-point remainder 63
increment 69
instanceof 92
instanceof pattern match operator 274

1786 INDEX

instanceof type comparison operator 270
integer 82
integer arithmetic 59
integer division 62
integer remainder 62
logical 78
multiplicative 61
new see new operator
overflow 60
overloaded 59, 62
postfix 50
precedence 50
relational 74
shift 86
short-circuited 80
string concatenation 67
ternary 50
unary 50, 61
unary - 61
unary + 61

optimizations 5
optional annotation element 1562, 1566
Optional class 890, 940

absence of a value 940
creating 941
declaring and returning 940
querying 943
see also numeric optional classes 944

optional dependency 1177
optional operations 790
OptionalDouble 890, 944
OptionalInt 890, 944
OptionalLong 890, 944
optionally bounded collections 1483
or operator 83
Oracle CertView 1617
Oracle exam attempt 1617
Oracle JDK 3
Oracle MyLearn 1617
ordered collections 784, 801
ordered streams 891

extracting lines from a String 902
from a BufferedReader 902
from a CharSequence 901
from factory methods in the Files class

903
ordering mode 841
ordinal value 163, 293
OUT parameters 1530
outer instance 508, 509
OutOfMemoryError 374, 538
output 24, 1233
output stream 1233

OutputStream abstract class 1234
OutputStreamWriter class 1244
overflow 34, 60
overflow errors 481
overloaded 59
overloaded method resolution 265
overloaded methods

ambiguous call 202
overloading 616

constructors 112
method resolution 265
methods 108, 202

overloading vs. overriding 202
override criteria 617
override-equivalent 616, 621
overriding 390, 621

@Override 618, 1578
covariant return
equals 77, 744
hashCode 753
methods 202
override-equivalent 616
toString 68

overriding vs. overloading 202

P
package accessibility for class members

347, 351
package accessibility for top-level types 345
package directory 335
package statement 325, 328, 345
package-private accessibility for class

members
see package accessibility for class

members
package-private accessibility for top-level

types
see package accessibility for top-level

types
packages 326

classpath 339
declaration 325
definition 328
destination directory 335
hierarchy 326
java.io 1233
java.lang 425
java.util 783
location 339
members 326
package directory 335
root 339

INDEX 1787

running code from 337
shorthand 329
statement see package statement
unnamed 328
using 329

palindromes 688
parallel processing 1448
parallel streams 891, 1009

autoboxing 1015
behavioral parameters 910
benchmarking 1010
building parallel streams 934, 1009
collecting to a ConcurrentMap 983
computation-intensive operations 1010
concatenating 896
concurrent collectors 983, 989
data size 1010
determine if parallel 934
encounter order 953
execution 962, 966, 1009
factors affecting performance 1010
from collections 897
grouping to a ConcurrentMap 989
ordered 892
ordering 1015
parallel functional reduction 962
parallel mutable reduction 966
setting parallel execution mode 933, 934
shared state 1014
side effects 910, 948

non-interfering behaviors 1014
stateless behaviors 1014

splittable 1010
stateful operations 911, 912, 1014, 1015
unordered 892

parallelism 1368
parameter list see formal parameters
parameter passing

by value 128
variable arity 136

parameterized types 569, 607
as formal parameters 609

parameters 100
actual 128
array elements 134
effectively final 400
final 135, 232, 400
fixed arity 136
formal see formal parameters
implicit 106
main method 141
passing 127

primitives 129
program 141
references 130
this 106
variable arity 136

parent class 191
parent directory (..) 1289
parent resource bundle 1108
parentheses 50
ParseException 371
parsing 1115

compact number form 1121
currency values 1119
date and time 1127
numbers 1119
percentage values 1120
using patterns 1150

parsing numeric values 434
partial application 723
partial implementation 218, 242
partly synchronizing a method 1391
pass by value 128
passing

parameters 127
references 130
variable arity parameter 136

passwords
reading from console 1256

path 1288
comparing with another path 1303
constructing relative path to another

path 1300
converting 1297
converting to a real path 1302
converting to an absolute path 1298
creating 1290, 1291
interoperability with File class 1292
interoperability with URI class 1293
name elements 1288
name separator 1288, 1291
naming conventions 1288
normalizing 1299
querying 1294
resolving with another path 1299

Path interface 1287
see also path

paths
see class path

paths of execution 1367
path-separator character 340
pattern letters 1127, 1134, 1135
pattern match operator 274

1788 INDEX

pattern matching 274
pattern symbols 1125
pattern variable 275

cannot shadow local variable 276
declare final 276
scope 275, 276
shadow a field 276

patterns
format elements 1140

percentage 1116, 1117
formatting 1116, 1119

percentage formatter 1117, 1120
performance 5
period 1057

compared with duration 1072
creating 1057
date-based 1057, 1064
equality 1060
get methods 1059
immutable 1057
normalization 1061
parsing 1058
period-based loop 1062
plus/minus methods 1061
supported ChronoUnits 1060
temporal arithmetic 1061
text representation 1058, 1067
thread-safe 1057
with methods 1060

Period class 1057
see period

periodic tasks 1441
permits clause 312
permitted direct subclasses 312

accessibility 314
contract 313
extending direct sealed superclass 313
final 313
locality 314
non-sealed 313
sealed 314

permitted direct subtypes
contract 316
enum types 316
record classes 316

permute elements 860
persistence

see serialization
plain data 299
plain data class 299
plain data objects 299
plain JAR 1189, 1206

Plain Old Java Objects (POJOs) 299
platform modules 1166
plurals 1146
poison value 1499
POJOs 299
polled locking 1462, 1467
polymorphic method 593
polymorphism 260, 278, 282, 518
polynomial 759
portability 4
Portable Operating System Interface

(POSIX) 1325
positional order 644
position-based access 801
positive zero 61
POSIX file permissions

enum type 1326
full permissions 1343
group 1326
others 1326
owner 1326
read (r), write (w), execute (x) 1325
string format 1326

PosixFileAttributes interface 1330, 1332
PosixFileAttributeView interface 1334, 1336
PosixFilePermission enum type 1325
PosixFilePermissions class 1326
postfix operators 50
power 480
precedence rules 51
precision 56
predefined literals 31
predicate 689
Predicate functional interface 703

composing predicates 704
primitive type specializations 706

preempted threads 1386
preemptive scheduling 1386
prefix 33

0 33
0x 33

prepared statement 1526
substitutional parameterization 1526

primitive data types 41
see primitive types

primitive types 44
autoboxing 430
unboxing 432
see also primitive values

primitive values
assignment 54
binary representation 1238

INDEX 1789

equality 75
passing 129

principle exported package 1171
principle of least privilege (PoLP) 1611
print writers 1245

formatted values 1247
text representation of values 1246

printing values 24
PrintWriter class 1244
priorities 1385
priority

priority queue 816
priority heap 788, 816
priority of thread 1385

starvation 1412
priority queue 787, 788, 815
PriorityBlockingQueue 1496
PriorityQueue 815
private members 351
privileged code 1609
privileges 1609
PRNG

see pseudorandom number generators
483

procedural programming paradigm 3
process of elimination 1619
process-based multitasking 1367
processes 1367
program

application 19
arguments 141
command line 141
compiling 20
correctness 1385
formatting 39
performance 1385
running 21
single-file source-code 21

program arguments 141
program counter (PC) 1370
program output 24
programmatic locking 1460

interruptible locking 1462, 1467
lock acquisition 1460
lock disciplines 1460
polled locking 1462, 1467
read-write locking 1466
reentrant 1465
reentrant locking 1461
timed locking 1462, 1467
unconditional locking 1467

programming to interfaces 647, 1196

proleptic year 1029
promotion 49
proper prefix 871, 872
properties 6

see also class members
properties file

comment 1101
escaping whitespace 1101
key–value pair syntax 1100
key–value pairs 1100
properties 1100
property list 1100
text file 1101
see also Properties table
see also property resource file

Properties table 1102
property

key–value pair 1100
see also properties file
see also Properties table
see also property resource file

property list 1100
see also properties file
see also property resource file

property resource file 1103
.properties file extension 1103
naming scheme 1103
properties 1103
see also properties file
see also resource bundle

PropertyResourceBundle 1105, 1108
protected members 350
provides-with directive 1178, 1200
pseudorandom generator 1422
pseudorandom number generators 900

 see Math class
 see Random class

pseudorandom numbers 482, 483
public 19
public API 1163, 1170, 1174
public members 350
punctuators 32

Q
qualified class instance creation expression

502, 503
qualified export 1176

see exports-to directive
qualified name 251, 492, 496, 497, 500, 501
qualified opens directive

see opens-to directive

1790 INDEX

qualified superclass constructor invocation
509

qualified this 504, 515
query results 1533
Queue 814
queue 785, 788

capacity-restricted 815
FIFO 821
head 814
LinkedList 815
PriorityQueue 815
Queue 814
unbounded 815

quotation mark 38, 39
quotient 62

R
race conditions 1014, 1389
radix

prefix 33
see base 431

ragged arrays 124
raised to power 480
random access by index 802
Random class 482, 1422
random numbers 482
random order 860
range

character values 42
floating-point values 42
integer values 42

range of values for date fields 1029
range of values for time fields 1028
range-view 656, 801, 810, 811, 846, 1486
ranking criteria 644
raw types 571, 575, 860

unchecked warnings 575
read lock 1466
read operation 541
readability 1173
readable 1170
readers 1241
Read-Evaluate-Print Loop (REPL) 23
reading binary values 1238
reading bytes 1234
reading characters 1249, 1250
reading data 1233
ReadLock 1466
read-write lock

fairness policy 1470
read lock 1466

reentrant 1470
write lock 1466

read-write locking 1466
realization 244
reclaiming memory 533
record classes 168, 299, 300, 882

augmenting 304
basic syntax 300
compact canonical record constructor

304, 306
component fields 302
component list 300
generating methods of the Object class

303
generic 311
get methods 300, 302
immutable 302
implementing interfaces 310
implicit canonical record constructor 302
local 494, 519
member declarations 307
nested 311, 492
normal canonical record constructor 304,

305
normal non-canonical record constructor

305, 307
permitted direct subtypes 316
permitted in sealed interfaces 311
record construction 303
record elements 300
record header 300
record name 300
record serialization 310
restrictions 304
serialization 1263
shallowly immutable 302
static member 494
top-level 494

record components 300
record header 300
record name 300
recursive type bound 591, 613
RecursiveAction 1448
RecursiveTask 1448
reduced graph 1167
reducing complexity 324
reduction operations 947
reentrant 1465
reentrant locking 1461

fairness policy 1461
reentrant synchronization 1390
ReentrantLock 1461

INDEX 1791

reference types 99, 102, 195, 491
classes 99
enum types 287, 288
interface types 237, 246

reference values 8
reference variables 102
references 8, 11, 102, 113, 127

abstract types 221
aliases 76, 130
array 118, 121, 260
assignment 55
casting 49, 269
dangling 533
downcasting 45
dynamic type 196
equality 76
field 534
local 534
narrowing conversions 45
null see null reference
parameterized types 569
passing 130
raw types 588
reachable 533, 534
static type 196
super 206, 515
this 106, 515
upcasting 45
widening conversions 45

reflection 629, 1165, 1178
Reflection API 1587
reflective access 1191
reifiable types 623
relational databases 1512
relational model 1512
relational operators 74
relational tables

columns 1512
constraints 1512
rows 1512

relative adjusters 1040
relative path 1288
reliability 5
reliable configuration 1163
remainder 62
remainder operator

% 62
remove whitespace 453
repeatable annotation type 1576
replacing characters 452
required annotation element 1562
requires directive 1169, 1170, 1177

readability 1173

requires static directive 1177
requires transitive directive 1175, 1177
reserved keywords 31
reserved literals

false 32, 37
null see null reference
true 32, 37

resizable arrays 787, 788, 802
resource

see resource bundle
resource bundle 1102

base name 1102
candidate bundle name 1108
default resource bundle 1102, 1103,

1109, 1110
fallback 1110
key-based lookup 1104
key–value pairs 1102
locating resources 1107
naming convention 1102
parent resource bundle 1108
property resource file 1103
resource 1102
resource bundle class 1103
result bundle 1108

resource bundle class 1103
resource bundle family 1102

see also resource bundle
resource declaration statement 410
resource leakage 407
resource variable

final 410
ResourceBundle 1102, 1103
resources 407, 536
restricted type name var 100
result bundle 1108
result set 1533

concurrency 1539, 1540, 1541
concurrency mode 1541
cursor 1534
customizing 1539
extracting column values 1536
fetch size 1536
holdability 1539, 1540, 1541
holdable 1540
metadata 1543
navigational direction 1539, 1540
scrollable 1539
type 1539, 1540
updatability 1539, 1540

retaining elements 791
retention policy values for @Retention 1568
rethrowing exceptions 401

1792 INDEX

return statement 184
@return tag 184

return type
covariant

return value 10
reuse of code 191, 195
reverse DNS 327, 1171
reverse-order key set 847
reverse-order view 847
rhyming order 771
right associativity 52
rightmost bit 34
ripple effect 195
robustness 5, 416, 1607
role relationship 195
root

see inheritance hierarchy
root component 1287
root node 1287
round method 479
rounding functions 478
rounding mode 1122
rounding numbers 479
round-robin scheduling 1386
rows 1512
Runnable functional interface 1370, 1371,

1376, 1424
RUNNABLE state 1382
Running 1203
running a Java application 21
running from a modular JAR 1191
running from a runtime image 1205
runtime

bounds checking 121
runtime checks 48, 648
Runtime class 425, 537
runtime class 426
runtime constant pool 1370
runtime data areas 1369
runtime environment 533, 1100
runtime image 3, 1204
runtime stack

see JVM stack
runtime type

see dynamic type
RuntimeException 372, 397

S
scheduled executor service

scheduling one-shot tasks 1440
scheduling periodic tasks 1441

scheduled thread pool 1427

ScheduledExecutorService 1440
schedulers 1386
schema 1293
scientific notation 36
scope 352

block 354
catch clause 381, 410
class 352
disjoint 355

scope of local variables 324
sealed classes 312

direct sealed superclass 313
in compilation unit 317
permits clause 312
permitted direct subclasses 312, 313

sealed interfaces
direct sealed superinterface 315
in compilation unit 317
permits clause 315
permitted direct subtypes 315

searching 783, 856
arrays 866
collections 861

searching in string 451
searching in string builder 466
secure 5
secure coding 1600
security guidelines 1610
security policies 1608
security threats 1602
SecurityManager class 425
seed 484
SELECT statement 1515
selection statements 152
selector expression 160
self-reference 146
self-referential data structure 566
semantic definition 30
semicolon 101
sensitive information leakage 1603
separators 32, 51
sequence 784
sequential I/O 1233
sequential streams 891

execution 958
extracting lines from a String 902
from a BufferedReader 902
from a CharSequence 901
from arrays 898
from collections 897
from factory methods in the Files class 903
ordered 891
unordered 891

INDEX 1793

serial access 1478
serialization 1261

customizing 1268
inheritance 1270
serialVersionUID 1275
transient fields 1267
versioning 1273

serialVersionUID 1275
service 1178, 1196
service consumer 1178, 1197, 1202
service interface 1196, 1197
service loader 1197, 1200
service locator 1178, 1197, 1200
service provider 1178, 1197, 1199
service provider interface

see service interface
ServiceLoader class 1197
ServiceProvider.Provider interface 1200
services 324
Set 804
set 754, 784

capacity 807
HashSet 806
LinkedHashSet 806
load factor 807
NavigableSet 810
Set 804
SortedSet 810
TreeSet 812
unmodifiable 804, 805
unmodifiable views 856

set methods 358
set operation 586
setter methods see set methods
SHA-256 digest algorithm 1603
shadowing fields by local variables 114
shadowing local variables 514
shadowing members 685
shallow copying 426
shallowly immutable 302
shared field 1453
shared memory 1369
shift

compound operators 90
distance 86
left 86
operators 86

shifting 86
short 32, 42
short cut

see symbolic link
short-circuit 80

evaluation 80

short-circuit execution 908, 947, 952
shuffle elements 860
sign bit 86
sign fill 86
signature 108, 202, 616
signed shift 86
simple

assignment operator 54
if 152
statement 101

simple name 345
simple type name 326
SimpleFormat 1115
simplicity 4
single implementation inheritance 193
single inheritance of implementation 193
single quote (') 37, 38
single source file 22
single static import 331
single thread executor 1426
single thread scheduled executor 1427
single-element annotation 1563, 1565

array-valued single-element annotation
1566

optional annotation element 1566
single-element array-valued single-

element annotation 1566
value() element 1565

single-element annotation type 1560
single-file source-code program 21
single-line comment 7, 40
singleton 1256
single-valued maps 830
sink nodes 1172
skeletal source file 325
skip list 1492
sleeping 1395
software security 1600
sorted map 785

comparator 845
sorted set 784, 810, 811

comparator 811
half-open interval 810

SortedMap 845
SortedSet 810
sorting 783, 856, 929
sorting arrays 865
sorting lists 858
source

file 20, 328
file name 325
file structure 325

source directory 1219

1794 INDEX

source of data 1233
SP see space
space 38
spaces 39
spawning threads 1378
special character values 38
specialization 13
specialized classes 194
spurious wakeup 1399
SQL 1514
SQL injection 1525, 1605
SQL statement API

basic statement 1523
callable statements 1530
prepared statement 1526

SQL statements 1522
SQLException 371, 1518
square root 480
stability guarantee 911, 930
stack

generic 598
LIFO deque 821

stack frame
see method execution

stack trace 367, 370, 415
see method execution

StackOverflowError 374
stacks 815
standard error stream 370, 1255
standard input stream 1255
standard modules 1166

JMOD archive 1166
standard out 24
standard output stream 1255
standard time 1082
StandardCopyOption enum type 1308
starting threads 1371
starvation 1412
state see object state
stateful operations 908
stateless behavioral parameters 910
stateless operations 908
statement block 682
statement terminator 1514
statements 101

break 180
compound 101
conditional 152
continue 182
control flow 101
control transfer 179
declaration 65, 70, 81, 101
do-while 173

empty 101
expression 70, 101
for(;;) 174
for(:) 176
if 152
if-else 153
iteration 172
labeled 179
resource declaration 410
return 184
selection 152
simple 101
simple if 152
switch statement 155, 160
synchronized 1391, 1392
throw 386
transfer 179
try 377
try-with-resources 407
while 172
yield 164

static
members see static members
methods 11, 13, 101
variable initialization 103
variables see static variables

static 10, 251, 331
static code

see static context 99, 100
static context 99, 100
static factory method 359, 1116
static field initializers 99
static fields 13, 113
static import 331

conflicts 334
on demand 331
shadow static members 333
single static import 331

static initializer blocks 99, 545
declaration order 545
exception handling 549
local variable type inference 545, 547

static keyword 113, 545
static fields 113
static methods 115

static local enum types 492, 494
static local interfaces 492, 494
static local nested types

see static local types 491
static local record classes 492, 494
static local types 491

enum types 492, 494
interfaces 492, 494

INDEX 1795

record classes 492, 494
see local enum types
see local interfaces
see local record class

static member classes 494, 495
class file name 497
declaration 495
direct access 498
fully qualified name 497
instantiation 497
qualified name 496
UML class diagram 498

static member enum types 494
static member interfaces 494
static member record classes 494
static member types 491

static member class 491
static member enum type 492
static member interface 491
static member record class 492

static members 10, 11, 13
static method references 726
static methods 115

hiding from superclass 203
static nested classes

see static member types
static nested enum types

see static member enum types
static nested interfaces

see static member interfaces
static nested record class

see static member record class
static nested types

see static member types
static type 196
static variables 11, 13, 106
stored functions 1530

IN parameter 1530
INOUT parameter 1532
OUT parameter 1530

stored procedures 1530
IN parameter 1530
INOUT parameter 1532
OUT parameter 1530

stream 798
transformations 905

Stream API 889
BaseStream interface 889
building streams 890
Collector interface 890
Collectors 890
DoubleStream interface 889

IntStream interface 889
LongStream interface 889
Stream interface 889

Stream interface 889
stream mapping 906
stream operations 881

non-interfering behavioral parameters
910

stateless behavioral parameters 910
stream pipelines

composing 886
executing 887

streams 881
see also I/O streams
aggregate operations 881
building from a BufferedReader 902
building from a CharSequence 901
building from a range 898
building from arrays 898
building from collections 897
building from directory entries 1345
building from specified values 893
building from the Random class 900
building using factory methods in the

Files class 903
collecting into a list 972
collecting into an array 971
compare with collections 888
concatenating 895
conversion 934
counting elements 953
data source 884
dropping elements 910, 913
empty 893
encounter order 891
examining elements 920
execution mode 933
extracting lines from a String 902
filtering 910
finding first/any 952
finding min/max 954
finite 892
flattening 924
functional reduction 953, 954, 955, 964,

972
infinite 892
intermediate operations 885, 905, 908
lazy execution 907
mapping 905, 921
map-reduce transformations 905
matching operations 949
method chaining 906

1796 INDEX

mutable reduction 947, 964
see also collectors

numeric 885, 892
numeric summary statistics 972
object 885, 892
operations with side effects 946, 948
ordered 891
parallel streams 891, 962, 966, 1009
reduction operations 947, 964
replacing each element with multiple

elements 927
searching operations 947
selecting distinct elements 915
sequential 891
sequential execution 958
setting as unordered 932
short-circuit execution 908, 947, 952
skipping elements 915
sorting 929
stability guarantee 911, 930
stateful operations 908
stateless operations 908
Stream API 889
stream mapping 906
stream operations 881
stream pipelines 886
taking elements 910, 913
terminal stream operations 885, 946
truncating 917
unordered 891

strictfp 58
string builders 69

appending 467
capacity 464, 470
compareTo 467
construction 465
copying characters 465
deleting 468
extracting substrings 466
individual characters 465
inserting 468
joining 450
length 465
mutable 464
reading characters 465
replacing 468
reversing 469
searching 466
setting length 470
substrings 466
trimming 470

String class
see strings

string conversion 46, 68, 455
string literal pool 440

interned 440
string literals 440

case labels 162
hash value 162
interned 440

string pattern 1125
StringBuffer legacy class

thread-safe 464
StringBuilder class

see string builders
strings

capacity 470
changing case 448
compact 440
compareTo 447
comparing 444, 447, 761
concatenation 67, 448
concatenation operator + 69
contains 452
conversions 455
convert to character array 445
copying characters 445
creating 440
empty 441, 444
ends with 452
equals 447
extracting lines 902
extracting substrings 453
finding index 451
formatted 457
ignoring case in comparison 447
immutable 440
indenting lines 456
individual characters 445, 465
initializing 440
integer stream 444
internal representation 439
interned 440, 442
joining 450, 843, 984
length 444, 445
lexicographical ordering 447
literals 39, 440
natural order 761
read character at index 444, 445
repeating 449
replacing 452
searching 451
selector expression 156
starts with 452
streams 901, 902
string literal pool 440

INDEX 1797

stripping 453
substrings 453
text blocks 458
thread-safe 440
transforming 455
trimming 453

strongly typed language 48
Structured Query Language 1514
style-based formatter for dates and times

1131
subclass 13, 15, 191
subdirectories 1287
subformat pattern 1146
subinterface 244
sublist 656
submap view 845, 846
sub-maps 1491
subsequence 444
subset 804, 808, 810, 811, 1486
subsignature 617
substitutional parameterization 1526
substring searching 451, 466
substrings 451, 453, 466
subtags 1098
subtype bivariance 581
subtype contravariance 581
subtype covariance 259, 260, 580, 581
subtype invariance 581
subtype notation <: 584
subtype relationship 648
subtypes 242, 278, 581, 592
subtype–supertype relationship 45, 195
suffix

D 36
F 36
L 32

super 248
construct 211
keyword 201, 206
reference 206

superclass 13, 191
superclass constructor 110
superinterfaces 244
superset 808
supertypes 242, 278, 582
Supplier functional interface 699

primitive type specializations 700
suppressed exceptions 370, 415
suppressed warnings

deprecation warnings 1583
unchecked warnings 1583

switch block
local variable scope 169

switch rules 160
switch expression 164

arrow notation 166
case labels 164
colon notation 164
comparison with switch statement 169
default clause 166
exhaustive 165, 166, 167
fall-through 165
local variable scope 169
return multiple values 168
yield statement 164, 166

switch rules 160
mutually exclusive 161

switch statement 155
arrow notation 160
break 157
case labels 156
colon notation 155, 157
comparison with switch expression 169
default clause 156, 161
enum types 163
execution 156
exhaustive 163
fall-through 156
local variable scope 169
selector expression 160
using strings 162

switching between threads 1368
symbolic link 1289, 1304
synchronization 1387
synchronized

keyword 1388
methods 1388
starvation 1412
statements 1391, 1392
vs. volatile 1456

synchronized block 1391
synchronized collections 1477

compound mutually exclusive
operations 1480

serial access 1478
underlying collection 1477

synchronized method 1388
synchronized views of collections

see synchronized collections
SynchronousQueue 1496
syntactically legal 30
System 425

out 24
reassigning standard streams 1255
standard streams 1255

system clock 1030

1798 INDEX

system default zone ID 1074
system modules 1212

T
TAB see horizontal tab
table definition 1513
tabs 39
tabulators 39
tagging interface

see marker interfaces
tags 40
tail map view 845, 846
tail set view 810, 811, 1486
taking stream elements 910, 913
target directory 1187
target parallelism level 1426
target reference 724
target type 570, 682
target typing 684
task 1367, 1423
task cancellation 1444
task execution policy 1426
TCL 1514
telephone directory order 447
temporal arithmetic 1040, 1054, 1061, 1069
temporal fields 1027
temporal objects

access specific temporal values 1032, 1077
before/after methods 1034
combining date and time 1030
common methods 1026
comparing 1034
conversion to Date 1088
creating 1027, 1075
date 1024
date fields 1024
date units 1040
date-time 1024
fields 1024, 1025
formatting 1127
get methods 1032, 1077
immutable 1024, 1075
method naming convention 1026
parsing 1127
plus/minus methods 1040, 1081
range of values for date fields 1029
range of values for time fields 1028
temporal arithmetic 1040, 1061, 1062,

1071, 1080
temporal fields 1027, 1036
thread-safe 1024, 1075

time 1024
time fields 1024
time units 1040
with methods 1035, 1078
zoned date-time 1024, 1074

TemporalAmount interface 1061
see also Duration
see also Period

TemporalField interface
see also ChronoField

TemporalUnit interface
see also ChronoUnit

terminal stream operations 885, 946
averaging 974
collecting into a list 972
collecting into an array 971
counting elements 953
eager execution 887
finding first/any 947, 952
finding min/max 954
functional reduction 947, 953, 954, 955,

972
accumulator 956, 957, 962
combiner 956, 962
identity value 956, 957, 962
parallel execution 962
sequential execution 958

matching operations 947, 949
mutable reduction 947, 964, 971, 972

accumulator 965
combiner 965
parallel stream execution 966
sequential stream execution 965
supplier 965
see also collectors

operations with side effects 946, 948
reduction operations 947, 964

see also collectors
searching operations 947
short-circuit operations 947, 952
summary statistics 972, 974
summation 973

TERMINATED state 1382, 1405
terminating loops 180
ternary conditional expressions

see also conditional expressions 90
ternary conditional operator 50, 90
text block 458

closing delimiter 458
content 458
escape sequences 459
essential whitespace 462

INDEX 1799

incidental whitespace 462
indentation 462
opening delimiter 458

text files
reading from 1249
stream to read lines 1346
writing to 1247

text representation 426
this

reference 106
this keyword

qualified form 504
with new 503

this() constructor call 209, 555
thousands separator 1125
Thread class 1370
thread coordination 1396
thread execution

runtime organization 1369
thread interference 1373, 1389
thread interruption rule 1415
thread lifecycle 1380
thread of execution 1367
thread pool 1423, 1425
thread safety 1368
Thread start rule 1414
Thread termination rule 1414
thread-based multitasking 1367
thread-local variable 1453
ThreadLocalRandom 1422
threads 5, 425, 534, 1402

acquire lock 1388
alive 1377, 1383
BLOCKED state 1382
blocking operation 1405
child 1373, 1378
class 1370
code executed 1371
controlling termination 1405
creation 1370
current thread 1372
daemon 1377
deadlocks 1408
death 367
deprecated methods 1408
determining state 1381
entry set for 1380
exception propagation 367
extending Thread 1375
fairness 1408
happens-before relationship 1414
IllegalThreadStateException 1378
interrupt status 1393

interrupted 1399
InterruptedException 1393
joining 1383, 1402
JVM stack 534
live 534
livelock 1410
liveness 1408
main thread 1373, 1378
names 1372
NEW state 1382, 1386
non-observable substate 1382
non-runnable state 1383
normal 1377
notification 1396, 1398
notifying 427, 1396
Object lock rule 1414
priorities 1385
priority 1383
run() method 1372
Runnable 1370, 1371, 1376
RUNNABLE state 1382
running 1375
running thread 1383
scheduler 1385
shared field 1453
shared memory 1369
sleeping 1383, 1395
spawning 1378
spurious wakeup 1399
start() method 1372
starting 1371, 1375, 1386
starvation 1412
states 1381
switching 1368
synchronization 1387
synchronized 1388
synchronized method 1388
tasks 1423
TERMINATED state 1382, 1405
termination 1405
Thread class 1370
thread coordination 1396
Thread interruption rule 1415
thread lifecycle 1380
Thread start rule 1414
thread status 1378
Thread termination rule 1414
thread-local 1453
TIMED_WAITING state 1382
transitions 1381
Volatile field rule 1414, 1454
wait set for 1397
waiting 427, 1396

1800 INDEX

WAITING state 1382
yielding 1383, 1386

thread-safe 464, 645, 789, 1024, 1075
immutable classes 356

thread-safe code 1387, 1451
thread-safe collection 1477
thread-safety 356

atomic variables 1456
immutability 1453
intrinsic locking 1460
programmatic locking 1460
synchronized collections 1477
unmodifiable collections 1477
volatile fields 1453

throw statement 386
Throwable 368, 405, 425
throw-and-catch paradigm 365
throwing exceptions 365
throws clause 388

and rethrowing 402
time fields 1024
time gap 1082
time overlap 1082
time standard 1073
time units 1040, 1421
time zone 1024

local time 1073
see zone ID

time zone offset 1073
time zone rules 1074, 1082, 1084
timed locking 1462, 1467
TIMED_WAITING state 1382
timeline 1024

instant 1074
local 1074

time-sliced scheduling 1386
timestamps 1049
TimeUnit 1421
ToDoubleBiFunction interface 718
ToDoubleFunction interface 712
ToIntBiFunction interface 718
ToIntFunction interface 712
tokens 30
ToLongBiFunction interface 718
ToLongFunction interface 712
top-level classes 491, 494
top-level enum types 491, 494
top-level interfaces 491, 494
top-level record classes 491, 494
top-level types 491
toString method 426, 431, 432
total order 761
total ordering 865

Transaction Control Language (TCL) 1514
transactions 1545

auto-commit mode 1545
commit 1545
rollback 1545
savepoint 1545

transfer statements 179
TransferQueue 1496, 1498
transforming strings 455
transient fields 1267
transitive relation 194
transitive relationship 1414
tree 1287

traversal 1347
tree map 847
tree set 812, 847
TreeMap 847
trees 788
TreeSet 812
trim method 453
true literal 32, 37
truth-values 37, 43
try block 377
try-catch-finally construct 375
try-with-resources 147, 407, 1519

basic 410
concise syntax 411
extended 410
header 410
var in header 410

tuples 1512
two’s complement 33, 34, 86
two-arity 695
type annotation 1572
type cast 48
type cast expression 269
type checking 682
type comparison operator 270
type contexts 1572
type declarations 325

nested types 491
top-level types 491, 494

type erasure 576, 613, 622
type hierarchy 45, 195
type import

see import
type inference 142
type information 565
type instance 569
type parameter constraints 591
type parameters 633

actual 569
bounds 591

INDEX 1801

formal 567
recursive bounds 611
restrictions 568

type pattern 275
type variables 567
type witness 594, 595, 928
types

arrays 579
boolean 41, 43
byte 32, 42
casting 48
char 42
classes see classes
comparison 270
compatibility 48
double 42
exceptions 368
float 42
floating-point 41, 42
int 32, 42
integers 41
integral types 41
long 32, 42
numeric types 41
parsing 434
short 32, 42
unrelated 570
wrappers 429
see also classes

type-safe 264
type-safety 646, 648
typeValue method 432, 434

U
UML 6

accessibility 348
aggregation 16
classes 6
inheritance 14
see also diagrams

UML class diagram
non-static member classes 508
static member classes 498

UML notation for members 348
UN M.49 three-digit area code 1096
unary arithmetic operators 61
unary numeric promotion 49
unary operators 50
UnaryOperator interface 720

composing unary operators 720
primitive type specializations 721

unbounded collections 1483
unbounded instance method references 729
unbounded type parameter 581, 583
unbounded type references 590
unbounded wildcard

? 581, 582
unbounded wildcard references 588
unboxing 432

do-while statement 173
for(;;) statement 174
for(:) statement 177
if statement 152
if-else statement 153
switch statement 156
while statement 173

unboxing conversions 45
uncaught exceptions 367
unchecked 627, 630
unchecked array creation warning 630
unchecked call warning 576, 588
unchecked cast warning 625, 627
unchecked conversion warning 571, 576,

585, 627, 646
unchecked conversions 46
unchecked exceptions 374
unchecked generic array creation warning

630, 650, 659, 805, 833, 863
unchecked warnings 45, 575, 576, 1583

@SuppressWarnings("unchecked") 627
call warning 576, 588
cast warning 625
conversion warning 576
generic array creation warning 630
heap pollution warning 630, 1585
unchecked generic array warning 1585

unconditional locking 1467
underflow 34, 61
underlying collection 1477
uni-catch clause 376, 397

effectively final parameter 400
Unicode 37, 42, 437, 447, 1241
Unicode character encoding 1101
Unicode locale/language extension 1118
unidirectional edges 1166
Unified Modeling Language see UML
Uniform Resource Identifier (URI) 1290
union 804
union of alternatives 399
unmodifiable 660
unmodifiable collections 649, 805, 857, 1477
unmodifiable lists 649, 660, 801
unmodifiable maps 832

1802 INDEX

unmodifiable sets 805
unmodifiable view of a collection 856, 857
unmodifiable view of a list 856
unmodifiable view of a map 857
unmodifiable view of a navigable map 857
unmodifiable view of a navigable set 856
unmodifiable view of a set 856
unmodifiable view of a sorted map 857
unmodifiable view of a sorted set 856
unmodifiable views 856, 857
unmodifiable views of collections 1477
unnamed module 314, 1206
unnamed package 314
unordered streams 891

from the Random class 900
unqualified export 1178

see exports directive
unreachable code 381, 401
unsafe casts 271
unsigned integer 435
unsupported operations 790, 831
UnsupportedOperationException 373, 794, 797
UnsupportedTemporalTypeException 1033,

1062, 1068, 1070, 1075, 1131
unused keywords 31
upcasting 45
updatability 1539
update expression 174
UPDATE statement 1515
upper bound 581, 591
upper bounded wildcard

? extends T 581
upper bounded wildcard references 589
URI class 1290, 1293

schema 1293
user threads

see normal thread
uses directive 1178, 1202
using arrays 120
using packages 329
using variables 102
UTC (Coordinated Universal Time) 1073
UTC/Greenwich 1073

Z 1073
UTF-16 encoding scheme 439, 440
utility class 115, 251, 360

V
value collection 831
value obfuscation 1603
value objects 785

value() element 1560, 1561, 1565
valueOf method 430, 431, 455
values 34, 830

constants 32
overflow 34
underflow 34
wrap-around 34
see also variables

var 571
var declaration

see local variable type inference
varargs

variable arity 136
varargs method

see variable arity method
varargs parameter

see variable arity parameter
variable arity argument 659, 863
variable arity call 139
variable arity method 136
variable arity parameter 136, 630, 863, 1304

generic array creation 630
heap pollution 630

variable capture 687
variable declarations 102, 354
variable initialization 11, 102, 104
variables 8, 102

blank final 135
blank final local 231, 232
constant values 229
default values 103
effectively final 687
final 229
identifiers 102
in interfaces 254
initialization see variable initialization
lifetime 106
local 142, 354
parameters 100, 128
reference variable 102
references 102
static 11

var-type inferred parameters 680
Vector 802
vector 802
Venn diagrams 791
versioning 1273
view of a list 656, 660
viewing dependencies 1214

class-level dependencies 1216
module-level dependencies 1216
package-level dependencies 1214

INDEX 1803

views 810, 839
virtual method invocation

see dynamic method lookup
Virtual Private Network (VPN) 1601
VirtualMachineError 374
visibility 1454
visibility modifiers

see access modifiers
void 19, 184, 429
void return 681
Void wrapper class 429
volatile

vs. synchronized 1456
Volatile field rule 1414, 1454
volatile fields 1453

visibility 1454
volume name 1287

W
wait set 1396, 1397

starvation 1412
waiting 1396

timeout 1399
WAITING state 1382
waiting threads 427
WHERE clause 1515, 1516
while statement 172
whitespace 39, 453, 454
whole–part relationship 194
widening conversions

primitive 44
references 45

widening reference conversions 196, 270,
584

wider range 44
wildcard parameterized types 584

type hierarchy 581, 582, 583
wildcard types 580

see wildcards
wildcards 579, 580

? 588
? extends T 589
? super T 589
assignment 584
bounded 581
capture 604
capture conversion 606
nested 607
parameterized types 584
restrictions 584
subtype relationships 579
type hierarchy 581, 582, 583

withers 1035
work stealing pool 1426

target parallelism level 1426
worker threads 1423
wrapper 1233
wrapper classes 41, 425, 426, 429, 744, 754,

761
interned values 433

wrapper type 45, 46, 59, 70
write lock 1466
write operation 542
WriteLock 1466
writers 1241
writing binary values 1238
writing bytes 1234
writing characters 1238, 1249, 1253
writing data 1233

X
xor 83

Y
yield statement 164, 166
yielding 1386

Z
Z 1073
zero

negative 61
positive 61

zero fill shift 86
zero-arity 695
zero-based index 644, 801
zone ID 1073

available zone IDs 1073
system default 1074

zoned date-time
accessing time zone 1077
accessing time zone offset 1077
conversion to Date 1088
converting to different time zone 1079
converting to instant 1078
see also daylight saving time (DST)
see temporal objects

ZonedDateTime class 1072, 1074
see temporal objects
see zoned date-time

ZoneId class 1072
ZoneOffset class 1072

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents Overview
	Contents
	Figures
	Tables
	Examples
	Foreword
	Preface
	Writing This Book
	About This Book
	Using This Book
	Book Website
	Request for Feedback
	About the Authors
	Acknowledgments

	16 Streams
	16.1 Introduction to Streams
	16.2 Running Example: The CD Record Class
	16.3 Stream Basics
	16.4 Building Streams
	16.5 Intermediate Stream Operations
	16.6 The Optional Class
	16.7 Terminal Stream Operations
	16.8 Collectors
	16.9 Parallel Streams
	Review Questions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'PDFX-1a2001_LSC'] [Based on 'PDFX-1a2001'])
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

