JavaScript

No experience necessary!

Third Edition

’.D Kirupa Chinnathambi

FREE SAMPLE CHAPTER | @ © ©

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137959167
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137959167
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137959167

JavaScript’

Third Edition

ABSOLUTE

JavaScript™ Absolute Beginner’s Guide,
Third Edition
Copyright © 2023 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-13: 978-0-13-795916-7
ISBN-10: 0-13-795916-8

Library of Congress Control Number: 2022914516
ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Pearson cannot attest to the accu-
racy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Editor-in-Chief
Mark Taub
Director, ITP Product

Management
Brett Bartow

Acquisitions Editor
Kim Spenceley

Development Editor
Chris Zahn
Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Bart Reed

Indexer
Ken Johnson

Proofreader
Barbara Mack

Technical Editor
Trevor McCauley

Editorial Assistant
Cindy Teeters

Designer
Chuti Prasertsith

Compositor
codeMantra

Graphics
Vived Graphics

http://www.pearson.com/permissions
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Pearson’s Commitment to Diversity,
Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not lim-
ited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orienta-
tion, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the
potential to deliver opportunities that improve lives and enable economic mobil-
ity. As we work with authors to create content for every product and service, we
acknowledge our responsibility to demonstrate inclusivity and incorporate
diverse scholarship so that everyone can achieve their potential through learn-
ing. As the world’s leading learning company, we have a duty to help drive
change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

« Everyone has an equitable and lifelong opportunity to succeed through
learning

 Our educational products and services are inclusive and represent the rich
diversity of learners

 Our educational content accurately reflects the histories and experiences
of the learners we serve

« Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you
about any concerns or needs with this Pearson product so that we can investi-
gate and address them.

« Please contact us with concerns about any potential bias at https://
www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

Credits

Figures 1.2a-c, 11.2-11.8, Chapter 35 — Screenshots of
Chrome browser: Google LLC

Figures 1.2d, Chapter 43 - Screenshot of smileys: Twitter, Inc.

Figure 1.2e: GitHub, Inc.

Figures 1.2f, 34.1: Netflix, Inc.

Figures 1.5-1.8, Chapter 36 - Screenshot of an Excel sheet: Microsoft

Figures 5.1, 9.7, Chapter 41 - Screenshot of JavaScript file:
Dropbox, Inc.

Figure 11.1: Randall Munroe

Chapter 43 — Screenshots of using an emoji and Character Viewer on
Mac: Apple Inc

Many illustrations and screenshots use emojis from Twitter's Twemoji
set: https://twemoji.twitter.com/

Cover Image: rozdesign/Shutterstock

https://twemoji.twitter.com/Cover
https://twemoji.twitter.com/Cover

Contents at a Glance

Part |

- O VoK NO U DN WN

-_— -

Part Il

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Part I

27
28
29
30
31

INtrOdUCTION ..o 1
Hello, World! ... 5

The Basic Stuff

Values and Variables ... 15
FUNCHIONS ... 23
Conditional Statements: if, else, and switch...................................... 39
Looping with for, while, and do...whilel ... 57
Commenting Your Code...FTWI ... 71
TUMEIS o 79
Variable Scope ... 85
ClOSUIES ... 95
Where Should Your Code Live? ... 109
Console Logging BasiCs ... 123

It's an Object-Oriented World

Of Pizza, Types, Primitives, and Objects................... 135
ATTAYS o 145
SHIINGS L 161
Combining Strings and Variables ... 173
When Primitives Behave Like Objects ... 179
NUMDEIS - 185
Getters and Setters. ... 201
A Deeper Look at Objects ... 211
UsiNG Classes ..o 231
Extending Built-in Objects...............c. 247
Arrow FUNCHIONS ..o 259
Making Sense of this and More ... 265
Booleans and the Stricter === and !== Operators..................... 277
Null and Undefined................oooiii 283
All About JSON (JavaScript Object Notation)................... 287

Working with the DOM

JS, the Browser, and the DOM ... 303
Finding Elements in the DOM ... 315
Modifying DOM Elements ... 321
Styling Our Content...........ooiii 337

Using CSS Custom Properties.................. 345

vi

32 Traversing the DOM.........oo i 353
33 Creating and Removing DOM Elements ... 363
34 Quickly Adding Many Elements into the DOM ... 381
35 In-Browser Developer Tools ... 397

Part IV Dealing with Events

36 EVENTS. o 417
37 Event Bubbling and Capturing ... 429
38 Mouse Events.. ... 443
39 Keyboard EVeNnts ... 457
40 Page Load Events and Other Stuff ... 467
41 Loading Script Files Dynamically ... 481
42 Handling Events for Multiple Elements............................. 491

Part V Totally Useful Topics that Only Make Sense Now

43 Using Emojis in HTML, CSS, and JavaScript ... 501
44 Making HTTP/Web Requests in JavaScript ... 511
45 Accessing the Webcam............... 529
46 Array and Object Destructuring...........occooooiiiiiiiiii 539
47 Storing Data Using Web Storage ... 549
48 Variable and Function Hoisting...............cocoiiii 559
49 Working with Sets ... 565
50 CONCIUSION ..ot 577
GlOSSANY ... 581
INA@X 585

Reader Services

Register your copy of JavaScript™ Absolute Beginner’s Guide,
Third Edition at informit.com for convenient access to downloads,
updates, and corrections as they become available. To start the reg-
istration process, go to informit.com/register and log in or create an
account*. Enter the product ISBN, 9780137959167, and click Sub-
mit. Once the process is complete, you will find any available bonus
content under Registered Products.

*Be sure to check the box that you would like to hear from us
in order to receive exclusive discounts on future editions of this
product.

http://informit.com
http://informit.com/register

vii

Table of Contents

Introduction ... 1
Parlez-Vous JavaScript?..... ... 2
Contacting Me/Getting Help ... 2

N o =Y [L T T LY o e | RN 5
What Is JavaSCript? ... 7
What JavaScript Looks Like ... 8

Hello, Worldl . 9

The HTML DOCUMENT ..o 9
Statements, Expressions, and Functions.....................oo 12

| The Basic Stuff

2 Values and Variables...........ccoociiiiiiiiiiiniiiiiiic 15
Using Variables ..., 16
More Variable Stuff................. 18

Naming Variables ... 18
More on Declaring and Initializing Variables................................... 19

B T 1T et Ao o V-3 23
What Is @ FUNCHON? ..o 26
A Simple FUNCHION ... 26
Creating a Function That Takes Arguments ... 30
Creating a Function That Returns Data..................cooooiiiiii 35

The Return Keyword ..., 35
Exiting the Function Early.............. 36
Function Expressions ... 36

4 Conditional Statements: if, else, and switchcoeeivvviiinniiinniinnnnnnn. 39

The [f/Else Statement. ... 40
Meet the Conditional Operators ... 43
Creating More Complex Expressions. ... 46

Variations on the If/Else Statement ... 47

viii

SWItCh Statements ... 49
Using a Switch Statement................oi 49
Similarity to an If/Else Statement ...l 53

Deciding Which to Use ... 55

Looping with for, while, and do...whilel............cccooeuviiiinnnniinnnnnniinnnnnnnn. 57

THE fOr LOOP ..o 59

The Starting Point.... ... 62
THE STEP o 62
The Condition (aka How Long to Keep Looping)..............ccooo, 63
Putting It All Together. ... 64

Some for Loop Examples ... 64
Breaking @ LoOp ... 65
SKipPING @n [terationo 65
Going Backwards. ... 66
You Don't Have to Use Numbers ..., 66
Oh No He Didnth ..o 66

The Other LOOPS ..., 67
The While LOOP ..o, 67
The do...while LOOP. ..., 68

Commenting Your Code...FTW......ccccoiiiiiiiiiiiiiiiecccieeeee 71

What Are CommMENTS? ... 72
Single-Line CoMMENTS. ... 73
Multiline CommENTS ... 74

Commenting Best Practices ... 76

TIMEIS ceeiiiiiiiii e 79

Delaying with setTimeout ... 80
Looping with setlnterval ... 81
Animating Smoothly with requestAnimationFrame......................... 83

Variable SCOPE... .ttt e eeeerrreereeee e e e e e e s e e snanneeeeees 85

Global SCOPE ... 86

LoCal SCOPE ... 88

Miscellaneous Scoping Shenanigans ..., 89
BlOCK SCOPING ...t 89
How JavaScript Processes Variables....................iii, 93

ClOSUIS oo 94

10

1

ClOSUIES ..ttt an s s sas s aa e s ane e e 95
Functions Within Functions ... 96
When the Inner Functions Aren't Self-Contained ... 100
Where Should Your Code Live?........coouiiiiuiiiieiininiiineiiinienneeinnecnnns 109
Approach #1: All the Code Lives in Your HTML Document 113
Approach #2: The Code Lives in a Separate File ... 114
The JavaScript File ... 114
Referencing the JavaScript File ... 115
So, Which Approach to Use? ... 118
Yes, My Code Will Be Used on Multiple Documents! ... 118
No, My Code Is Used Only Once on a Single HTML Document! 120
Console Logging Basics.........cccoiuiiiiiiiiiiiiiiiiiicccnieccccneccccieee s 123
Meet the CoNSOle. ... 124
Displaying the Console..................iiiii 126
If You Want to Follow AloNG ..., 127
Console Logging 10T ... 128
Meet the log Method ... 128
Going Beyond Predefined Text ... 130
Displaying Warnings and Errors..................oiiiiii 131

Il It's an Object-Oriented World

12

13

Of Pizza, Types, Primitives, and Objectscccceoeuviirrvinniiriiinnncciiiinneennn. 135
Let's First Talk About Pizza..................... i 136
From Pizza to JavaScript! ... 139
What Are ObJects? ... 141
The Predefined Objects Roaming Around in JavaScript ... 142
N - PN 145
Creating @N ATITAY ..o 146
Accessing Array Values ... 147
AddiNg HEMS ..o 149

ReMOVING HEMIS ..o 151

14

15

16

17

FINing [HeMIS ..o 152

MErgiNg AITAYS ..o 152
Mapping, Filtering, and Reducing Arrays ..., 153
The Old School Way ..., 153
Modifying Each Array ltem with map............. 154
Filtering [tems ... 156
Getting One Value from an Array of ltems..............ii 157
More on the Callback Function Arguments ... 159
A Short Foray into Functional Programming.................o 160
SENGS coeii e 161
THE BaSICS. ..o 162
String Properties and Methods ... 163
Accessing Individual Characters ... 163
Combining (aka Concatenating) Strings ..., 165
Getting Substrings Out of Strings ... 166
Splitting a String with spIlit ... 168
Finding Something Inside a String ... 169
Uppercasing and Lowercasing Strings ..., 171
Combining Strings and Variables............ccccccooiiiiiniiinnniiiin, 173
OUP SETUP ..o 174
Using the + Operator (aka String Concatenation)..................cc 175
Template Literals (aka String Interpolation) ... 175
When Primitives Behave Like Objectsccccceiviiuiiiiiiinniciniiiiecinninnees 179
Strings Aren’t the Only Problem 180
Let's Pick on Strings ANYWay ... 180
Why This Matters ..., 182
NUMbErS...iiiii 185
Using @ NUMDEr ... 186
OPEIATONS ... 187
Doing Simple Math ... 187
Incrementing and Decrementing ... 188

Hexadecimal and Octal Values ... 190

18

19

20

21

Xi

Special Values—Infinity and NaN ... 190
IR 190
INBN L 191

The Math Object ... 191
The CoNStants ... 192
Rounding Numbers........... 193
Trigonometric FUNCiONS ... 194
Powers and Square Roots. ... 195
Getting the Absolute Value................................ 196

Random NUMDbErs ... 196

Getters and Setters ... 201

A Tale of Two Properties. ... 202

Meet Getters and Setters ... 205
Shout GENErator 206
LOging ACEIVITY. ..ot 206
Property Value Validation ... 207

A Deeper Look at Objects.......cceeeeiiiiiiiiiiiiiiiiiiiiiiciiinicccceecccanes 211

Meet the OBJECt ... 212
Creating ObJECES ... 213
AddINg Properties ..o 213
Removing Properties........................... 217
What Is Going on Behind the Scenes? ... 218

Creating Custom ObjJECtS ... 222

The this Keyword ... 226

USING Classes....ccooiuuiiiiiiiiiiiiiiiiiiccctteccccc s 231

The Class Syntax and Object Creation ... 232
Creating an Object. ... 232
Meet the CONSErUCTOr. ... 234
What Goes Inside the Class ... 236

Extending OBjJeCtS ... 240

Extending Built-in Objects.......ccccceiiiiiuuiiiiiiiiiiiiniiiiciniieecinneeecnnnnees 247

Say Hello to prototype Again, Sort Ofl................... 249

Using a Subclassing Approach.................i 253

Extending Built-in Objects Is Controversial ... 255
You Don't Control the Built-in Object’s Future ... 256

Some Functionality Should Not Be Extended or Overridden................ 256

Xii

22

23

24

25

26

Arrow FUNCLIONSuuviiiiiiiiiiiiiiiiiiitttrtneeecccccccrree s 259
What Are Arrow FUNCEIONS?.........o i 260
Starting with the Basics................. 260
Of Arguments and Parenthesis ... 261
To Curly Bracket or Not to Curly Bracket ... 261
Putting It All Together........... 263
Making Sense of this and More........ccccceeieieriiiiiiiiiiiiiiinieeniineecneeees 265
The this Keyword 1071 ... 266
When this Just Ain"t Right ... 268
Using a Redefined Version of the this Keyword................... 271
Arrow Functions and Their Lexical Scope ... 273
One Method to Bind Them All ... 274
Booleans and the Stricter === and !== Operators.......cccccceecuuurriinniunces 277
The Boolean ObjJeCt ..o 278
The Boolean FUNCiON ... 278
Strict Equality and Inequality Operators..................................... 281
Null and Undefinedcooouiiiiiiiiiiiniiiiiiiniiinetccnececccnec s 283
UL e 284
UNdefined ... 284
All About JSON (JavaScript Object Notation).........ccceevuveeeriiineeceniinnnes 287
WHhat 1S JSONT?. oo 288
Looking Inside a JSON Object ..o 292
Property Names ... 292
The Values ... 293
Reading JSON Data.........ooooiiiiiiiiiiiiii e 297
Parsing JSON-Looking Data into Actual JSON ... 299
Writing JSON Data?.......ooo 300

Il Working with the DOM

27

JS, the Browser, and the DOM..........ivieiiiiiiiieeeetceeeeceeeeeeeeeeeeeeseneeennnes 303
What HTML, CSS, and JavaScript Do ..., 304

HTML Defines the Structure ... 304

28

29

30

31

32

xiii

Prettify My World, CSS! ... 306
It's JavaScript Timel ... 307
Meet the Document Object Model ..., 309
The Window ObJeCt ... 311
The Document Object ... 312
Finding Elements in the DOM........ccccovuiiiiiiniiiiniiiiniiciniccnec e 315
Meet the querySelector Family...................... 316
QUENYSElECTON . 317
querySelectorAll ... 317
It Really Is the CSS Selector Syntax.............coooiiiiii 318
Modifying DOM Elements.........cccceeviimuiiiiiiienieiiiinnieiiiineeesecneeeesesnnees 321
DOM Elements Are Objects, Sort Ofl............................... 322
Let's Actually Modify DOM Elements................ooiiiii 324
Changing an Element's Text Value ... 326
Attribute Values ... 328
Basics of Attribute ACCESS ... 328
Custom ALLribUES ... 330
Styling OUr Contentccciviiiuiiiiiiiiiiiiiiiiecnnreee et seaeee e aaree e 337
Why Would We Set Styles Using JavaScript?................... 338
A Tale of Two Styling Approaches ... 338
Setting the Style Directly ... 339
Adding and Removing Classes Using JavaScript ... 340
Going Further ... 343
Using CSS Custom Propertiesccouueeeeeiiiiiiiiiiiiiinnnnneeeeeeceiennnnnnnnnnnen 345
What Are CSS Custom Properties/Variables?.................................. 346
Setting Complex Values Easily.................i 348
Traversing the DOMccoiiiiiiiiieiiiriereeeeeeeeeeeeeccennnneeeeeeeeeeeesssesssnnnnns 353
Finding Your Way Around...............o 354
Dealing with Siblings and Parents...................i 356
Let's Have Some Kids! ... 357
Putting It All Together ... 358
Checking If @ Child EXIStS ..o 359
Accessing All the Child Elements.................... 359

Walking the DOM.......o. 360

Xiv

33

34

35

Creating and Removing DOM Elements..........cccocueervuiiinueiinniiinnecnnnneen. 363
Creating Elements ... 364
Removing Elements ... 372
Cloning ElemeNnts ... 374
Quickly Adding Many Elements into the DOMccccccevvnnniiiinnnnnnnnn. 381
General ApProach ... 383
EXAMIPIE o 383
Getting Started ... 384
The innerHTML Approach ..., 388
The DocumentFragment Approach ... 391
Removing Elements (Emptying an Entire Subtree)...................... 395
In-Browser Developer Tools.......ceuuuuuuiieiiiiiiiiiiiieeeeeiiieteee s 397
Meet the Developer TOOIS. ..., 398
Inspecting the DOM ... 400
Debugging JavaScript ... 405
Meet the CoNnsOole...........i i 411
Inspecting OBjJECTS ... 412
Logging MeSSages ..o it 414

IV Dealing with Events

36

37

EVENTS..ouiiiiiiiiiiiiteecc e 417
What Are EVENTS? ..o 418
Events and JavaScrippt ... 420

Listening for EVENTS ... 420

Reacting to Events ... 422
A Simple EXample ..o 423
The Event Arguments and the Event Type. ... 426
Event Bubbling and Capturingcccceeiiiiiiiiiniiiiiiniicccccieecccnes 429
Event Goes Down, Event Goes Up ... 430

Meet the Phases ... 434

38

39

40

XV

WO Car@S? ... 437
Event, Interrupted ... 438
Mouse EVENtSccuiiiiiiiiiiiiicttieeccteccce e 443
Meet the Mouse EVENts ..., 444
Clicking Once and Clicking TWice ... 444
Mousing Over and Mousing Out...............ooiiiiiiii 446
The Very Click-Like Mousing Down and Mousing Up Events ... 448
The Event Heard Again...and Again...and Again! ... 449
The Context IMENU ... 450
The MouseEvent Properties ..., 451
The Global Mouse Position..................i 451
The Mouse Position Inside the Browser ... 452
Detecting Which Button Was Clicked....................... 453
Dealing with the Mouse Wheel ... 454
Keyboard EVENtSccoivvvuiiiiiiieiiiiiiiiiieiiitccnnietececnntec s ssnese s snaees 457
Meet the Keyboard Events................. ... 458
Using These EVENTS ... 459
The Keyboard Event Properties....................oiiii, 460
Some EXamPles ... 461
Checking That a Particular Key Was Pressed ... 461
Doing Something When the Arrow Keys Are Pressed......................... 462
Detecting Multiple Key Presses ... 462
Page Load Events and Other Stuff..........ccccceiniiiiniiiiiiiiiniiiiniienceeee 467
The Things That Happen During Page Load ..., 468
Stage NUMEro Uno ... 469
Stage NUMEro Dos...........oooiiii 469
Stage NUMEro Three ... 470
The DOMContentLoaded and load Events...................coooiiii 471
Scripts and Their Location in the DOM ... 473
Script Elements: async and defer ... 477
ASYNIC o 477

XVi

41

42

Loading Script Files Dynamicallyccccceeevvuiiniuiininiininiinieicninieinaeennns 481
The Basic TeChniqUe ..., 482
Running Our Dynamically Loaded Script First ..., 486
Running Dependent Code After Our Script File Has Loaded.................... 488
Handling Events for Multiple Elements.........cccoccceviuiininiininieninnecncneennn. 491
How t0 Do All TRIS ..o 493
A Terrible Solution........... 494
A Good SOIUTION. ..o 495
Putting It All Together ... 498

V Totally Useful Topics that Only Make Sense Now

43

44

45

Using Emojis in HTML, CSS, and JavaScript.....cccccocceeeiiiiueieiiiinnreeniinnnees 501
What Are Emojis Exactly? ... 502
Emojis in HTIML. oo 503
Using the Emoji Directly ... 504
Specifying the Emoji Codepoint...............ooiiiiiiii 505
Making HTTP/Web Requests in JavaScript......ccccoevvuveriiiinreeriiinnnnceninnnees 511
The EXample ... 513
Meet FetCh ... 514
Diving into the Code ... 514
Wrapping Up the Example ... 518
Meet XMLHttpRequest ... 520
Creating the ReqUest ... 521
Sending the ReqUEST ... 522
Asynchronous Stuff and Events................ii 523
Processing the ReqUEST ... 523
Processing the Request...for Realz!................................ 526
Accessing the Webcam........ccoovvvvmiiiieiiiiiiiiiiiiiiiiiieccccccceneane 529
The EXamPle ..o 530
Overview of How This Works ... 531
Adding the Code.........oiiiii 532

Examining the Code ... 535

Xvii

46 Array and Object Destructuringccceveuveeivueciniueiinniecnieccnnnrecnnnecnneees 539
Destructuring Examples ... 541
General Overview Using Arrays ... 541
Destructuring with Objects ... 544

47 Storing Data Using Web Storage.....ccoocueeivvinniiiininnecciininneccnninnneccnnnn, 549
How Web Storage Works ..., 550
What Exactly Goes on Inside ... 550

Web Storage Data Is Tied to Your Domain ... 552
Getting Your Code ON ... 552
Adding Data.......oo 552
Retrieving Data ... 554
Removing Data ... 555
Dealing with File Size ... 556
Detecting Support for Web Storage ... 556

What About Session Storage? ... 557

48 Variable and Function Hoistingccccciiiiiiiiiiiiiiiiiiiccnciecccee 559
JavaScript and Compiler Behavior ... 560
Variable Declarations ... 561
Function Declarations ... 562

Some Hoisting QUIrKS ... 562

49 Working With Sets ..o 565
Creating a Set, Part [566
Adding Items 10 @ Set.....oi i 567
How Checking for Duplicates Works.................oi 567
Creating a Set, Part 2. 569
Checking the Size of Our Set............ 570
Deleting Items from @ Set ... 571
Checking If an [tem EXIStS ..o 572
Looping Through Items in @ Set ..., 572
Entries, Keys, and Values ... 573

50 ConcluSion ..o 577
GlOSSANY ..o 581

Xviii

About the Author

Kirupa Chinnathambi has spent most of his life trying to teach others to love web
development as much as he does. In 1999, before blogging was even a word,

he started posting tutorials on kirupa.com. In the years since then, he has written
hundreds of articles, written a few books (none as good as this one, of coursel),
and recorded a bunch of videos you can find on YouTube. When he isn't writing
or talking about web development, he spends his waking hours helping make
developers happy and productive as a Product Manager at Google. In his non-
waking hours, he is probably sleeping, joining Meena in running after their
daughter Akira, protecting himself from Pixel (aka a T-rex in an unassuming cat'’s
body)...or writing about himself in the third person.

You can find him on Twitter, Facebook, LinkedIn, and the interwebs at large. Just
search for his name in your favorite search engine.

About the Technical Editor

Trevor McCauley: friend.

Dedication

To Meena!

(Who still laughs at the jokes found in these pages despite having read them a bazillion
times!)

http://kirupa.com

XiX

Acknowledgments

As | found out, getting a book like this out the door is no small feat. It involves a
bunch of people in front of (and behind) the camera who work tirelessly to turn my
ramblings into the beautiful pages you are about to see. To everyone at Pearson
who made this possible, thank you!

With that said, there are a few people I'd like to explicitly call out. First, I'd like to
thank Mark Taber for giving me this opportunity so many years ago, Kim Spenceley
for carrying forward Mark’s work in the second and third editions, Chris Zahn for
meticulously ensuring everything is human-readable, Bart Reed for his excellent
copyediting, Mandie Frank for keeping the project on track, and Loretta Yates for
helping make the connections that made all of this happen. The technical content
of this book has been reviewed in great detail by my long-time friends and online
collaborators, Kyle Murray (1% edition), Trevor McCauley (1, 2" and 3 edi-
tions), Steve Mills (3™ edition), and Dillion Megida (3" edition). | can’t thank them
enough for their thorough (and frequently, humorous!) feedback.

Lastly, I'd like to thank my parents for having always encouraged me to pursue
creative hobbies like painting, writing, playing video games, and writing code.
| wouldn't be half the rugged indoorsman | am today without their support. ©

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator.
We value your opinion and want to know what we're doing right, what we could
do better, what areas you'd like to see us publish in, and any other words of
wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did
or didn’t like about this book—as well as what we can do to make our
books better.

Please note that we cannot help you with technical problems related to the topic
of this book.

When you write, please be sure to include this book’s title and author as well as
your name and email address. We will carefully review your comments and share
them with the author and editors who worked on the book.

Email: community@informit.com

mailto:community@informit.com

This page intentionally left blank

IN THIS CHAPTER

VALUES AND VARIABLES

In JavaScript, every piece of data we provide or use is considered to con-
tain a value. In our example from the previous chapter, we might think of

hello, world! as just some words we pass in to the alert function:

16

JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To JavaScript, however, these words have a specific representation under the cov-
ers. They are considered values. We may not have thought much about that when
we were typing those words, but when we are in JavaScript Country, every piece
of data we touch is considered a value.

Now, why is knowing this important? It is important because we will be working
with values a whole lot. Working with them in a way that doesn't drive you insane
is a good thing. There are just two things we need to simplify our life working with
values:

* We need to identify them easily.

* We need to reuse them throughout our application without unnecessarily
duplicating them.

Those two things are provided by what we are going to be spending the rest of
our time on: variables. Let's learn all about them here.

Using Variables

A variable is an identifier for a value. Instead of typing hello, world!, every time
we want to use that phrase in our application, we can assign that phrase to a vari-
able and use that variable whenever we need to use hello, world! again. This will
make more sense in a few moments—I promisel!

There are several ways to use variables. For most cases, the best way is by relying
on the let keyword followed by the name you want to give your variable, like so:

let myText

In this line of code, we declare a variable called myText. Right now, our variable
has simply been declared. It doesn’t contain anything of value. It is merely an
empty shell.

Let's fix that by initializing our variable to a value like, say, hello, world!, as shown
here:

let myText = "hello, world!";

At this point, when this code runs, our myText variable will have the value hello,
world! associated with it. Let's put all of this together as part of a full example.
If you still have hello_world.htm open from earlier, replace the contents of your

CHAPTER 2 VALUES AND VARIABLES 17

<scripts> tag with the following, or you can create a new HTML file and add the
following contents into it:

Notice that we are no longer passing in the hello, world! text to the alert
function directly. Instead, we are now passing in the variable name myText
instead. The end result is the same. When this script runs, an alert with hello,
world! will be shown. What this change allows us to do is have one place in our
code where hello, world! is being specified. If we wanted to change hello, world!
to The dog ate my homework!, all we would have to do is just make one change
to the phrase specified by the myText variable:

18 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Throughout our code, wherever we reference the myText variable, we will now
see the new text appear. Although this is hard to imagine as being useful for
something as simple as what we have right now, for larger applications, the
convenience of having just one location where we can make a change that gets
reflected everywhere is a major time-saver. You'll see more less-trivial cases of the
value variables provide in subsequent examples.

More Variable Stuff

What we learned in the previous section will take us far in life. At least, it will in the
parts of our life that involve getting familiar with JavaScript. We won't dive too much
further into variables here—we'll do all of that as part of future chapters where the
code is more complex and the importance of variables is more obvious. With that
said, there are a few odds and ends we should cover before calling it a day.

Naming Variables

We have a lot of freedom in naming our variables however we see fit. Ignoring
what names we should give things based on philosophical/cultural/stylistic prefer-
ences, from a technical point of view, JavaScript is very lenient on what characters
can go into a variable name.

This leniency isn't infinite, so we should keep the following points in mind when
naming our variables:

e Variables can be as short as one character, or they can be as long as you
want—think thousands and thousands of characters.

e Variables can start with a letter, underscore, or dollar sign ($). They can't start
with a number.

e Outside of the first character, our variables can be made up of any combina-
tion of letters, underscores, numbers, and $ characters. We can also mix and
match lowercase and uppercase letters to our heart's content.

* Spaces are not allowed.

Here are some examples of valid variable names:

let myText;
let §;

let r8;

let counter;

let s$field;

CHAPTER 2 VALUES AND VARIABLES 19

let thisIsALongVariableName butItCouldBeLonger;
let sabc;
let 0ldSchoolNamingScheme;

To see if a variable name is valid, check out the really awesome and simple
JavaScript Variable Name Validator at https://bit.ly/namevalidator.

Outside of valid names, there are other things to focus on as well, such as naming
conventions, how many people commonly name variables, and other things you
identify with a name. We will touch on these items in other chapters.

More on Declaring and Initializing Variables

One of the things you will learn about JavaScript is that it is a very forgiving and
easy-to-work-with language.

Declaring a Variable Is Optional

For example, we don't have to use the let keyword to declare a variable. We
could just do something like the following:

myText = "hello, world!";
alert (myText) ;

Notice the myText variable is being used without formally being declared with the
let keyword. While not recommended, this is completely fine. The end result is that
we have a variable called myText. The only thing is that by declaring a variable this
way, we are declaring it globally. Don’t worry if the last sentence makes no sense.
We'll look at what globally means when talking about variable scope later.

Declaring and Initializing on Separate Lines Is Cool
There is one more thing to call out, and that is this: The declaration and initializa-
tion of a variable do not have to be part of the same statement. We can break
them up across multiple statements:

let myText;
myText = "hello, world!";
alert (myText) ;

https://bit.ly/namevalidator

20 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In practice, we will find ourselves breaking up our declaration and initialization of
variables all the time.

Changing Variable Values and the const Keyword

Lastly, we can change the value of a variable declared via 1et to whatever we
want, whenever we want:

let myText;

myText "hello, world!";

myText = 99;
myText = 4 * 10;
myText = true;
myText = undefined;

alert (myText) ;

If you have experience working with languages that are more strict and don’t
allow variables to store a variety of data types, this leniency is one of the features
people both love and hate about JavaScript. With that said, JavaScript does pro-
vide a way for you to restrict the value of a variable from being changed after you
initialize it. That restriction comes in the form of the const keyword, which we can
declare and initialize our variables with:

const siteURL = "https://www.google.com";
alert (siteURL) ;

By relying on const, we can’t change the value of siteURL to something other
than https://www.google.com. JavaScript will complain if we try to do that. There
are some gotchas with using the const keyword, but it does a great job overall in
preventing accidental modifications of a variable. We'll cover those pesky gotchas
in bits and pieces when the time is right.

TIP Jump Ahead—Variable Scoping

Now that you know how to declare and initialize variables, a very
important topic is that of visibility. You need to know when and

(

where a variable you declared can actually be used in your code.
The catch-all phrase for this is variable scope. If you are curious
to know more about it, you can jump ahead and read Chapter 8,
“Variable Scope.”

https://www.google.com"
https://www.google.com

CHAPTER 2 VALUES AND VARIABLES 21

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

Symbols

&& operators, 44

* (multiplication) operators,
187-188

/ (division) operators, 187-188

' (backtick) character, string
interpolation (template
literals), 175-177

, (commas), destructuring
arrays, 542-543

{} (curly brackets), arguments,
261-262

== (equality) operators, 44,
281-282, 286

=== operators
null primitives, 284
undefined primitives,
285-286

I= (inequality) operators, 44,
281-282, 286

- (minus sign) operator, 186,
187-188

() (parentheses), arguments,
261

% (percentage) operators,
187-188

|| operators, 44

+ operators, 162, 165-166,
175, 187-188

' (single quotation mark),
strings, 162, 163

" (double quotation marks),
strings, 162, 163

> operators, 44
>= operators, 44
< operators, 44
<= operators, 44

A

absolute values, 196
accessing

array values, 147-148
child elements, DOM, 359
HTML element attributes,
328-330
individual characters in
strings, 163-165
webcams, 529-530
adding code, 532-535
constraints, 532-536
examining code, 535-537
example of, 530-531
overview, 531-532
stopping streams, 537

accessor properties, 202-204
addEventListener function, 420,

422
capturing events, 422
event handler, 421
event names, 421
sources, 420

adding

classes, 340-342
data to Web Storage,
552-555
elements, DOM
DocumentFragment
objects, 391-395
general approach,
383-388
innerHTML, 388-390
items to
arrays, 149-150
sets, 567
properties, to objects,
213-217
values in classes, 342

Index

Ajax (Asynchronous JavaScript
and XML), HTTP requests,
512-513

alert function, 124

altKey property, keyboard
events, 460

animation, requestAnimation
Frame function, 83-84

arguments
arrow functions, 261, 263
curly brackets ({}), 261-262
events, 426-427
functions, creating in, 30-34
mismatched number of, 34
parentheses (()), 261

arrays, 153-154
adding items, 149-150
callback functions, 156, 159
creating, 146-147
destructuring, 541-542, 546
commas (,), 542-543
declarations, 543-544
destructuring arrays,
543-544
variables, 543
filtering items, 156-157
finding items, 152
JSON objects, 296-297
mapping items, 154-156
merging, 152-153
objects, 143, 180
reducing item values,
157-159
removing items, 151-152
values, accessing, 147-148

arrow functions, 259, 263, 274
defined, 260
lexical scope, 273

586 ARROW KEYS, KEYBOARD EVENTS

arrow keys, keyboard events,
462

assignments, destructuring
arrays, 543-544

async script element, 477
author’s website, 579

B

backtick (') character, string
interpolation (template
literals), 175-177

backwards in loops, going, 66

best practices, comments,
76-77

bind method, 274-275
block scoping, 89-92
Boolean functions, 278-280
Boolean logic, 47

Boolean objects, 143, 180,
277-278

Boolean values, JSON objects,
295

bracket notation, object
properties, 214-215

breaking loops, 65

browsers
developer tools, 397
debugging JavaScript,
405-412
displaying, 398-400
DOM inspection,
400-405
logging messages,
414-415
object inspection,
412-413
variable scope, 413-414
View Source command,
402-405
mouse positioning, 452-453
webcam access, 529-530
adding code, 532-535
constraints, 532-536
examining code, 535-537
example of, 530-531

overview, 531-532
stopping streams, 537

bubbling events, 435-436,
437-438

built-in objects, extending,
247-248
controversy, 255-257
functionality, 256
future of, 256
online resources, 257
prototype inheritance,
249-253
subclasses, 247-248

buttons
id values, 130-131
mouse events, 453-454

C

callback functions, 156, 159
calling functions, 26, 29-30

cameras (web), accessing,
529-530

adding code, 532-535
constraints, 532-536
examining code, 535-537
example of, 530-531
overview, 531-532
stopping streams, 537

capturing events, 422,
434-435, 437-438

cascading rules, CSS, 347
changing
text values in DOM
elements, 326-328
variable values, 20

CharCode property, keyboard
events, 460-462

checking
for duplicates in sets,
567-569

existence of
children, DOM, 357-358
class values, 343

items in sets, 572

size of sets, 570-571

children, DOM, 355-356,
357-358
accessing elements of, 359
checking existence of,
357-358
null properties, 357-358

choosing event phases,
436-437

Chrome developer tools
(Google), 398
Console
debugging JavaScript,
405-412
logging messages,
414-415
variable scope, 413-414
debugging JavaScript,
405-412
displaying, 398-400
DOM inspections, 400-405
object inspections, 412-413
View Source command,
402-405

classes, 231-232
adding/removing, 340-342
components of, 236-239
constructors, 234-236
functions, appearance of,

239
inside of, 236-239
objects, creating, 232-234
objects, extending, 240-244,
247-248
controversy, 255-257
functionality, 256
future of, 256
online resources, 257
prototype inheritance,
249-253
subclasses, 247-248
subclasses, extending
objects, 247-248
syntax, 236-239
values
adding/removing,
340-342
checking existence of
class values, 343
online resources, 343
toggling, 342-343

DATASET PROPERTY, CUSTOM HTML ELEMENT ATTRIBUTES

click events, 421, 444-445, 446

cloning elements, DOM,
374-378

closures, 95-100
codepoints, emojis, 505-508

coding
duplicate code, 118-120
emojis, 174
location/placement of code,
109-112
HTML documents,
113-114
in separate files, 114-116
in multiple documents,
118-120
in a single document, 120

combining (concatenating)
strings, 162, 165-166,
173-174
interpolation (template
literals), 175-177
plus sign (+) operators,
175
variables, 173-174
interpolation (template
literals), 175-177
plus sign (+) operators,
175
commas (,), destructuring
arrays, 542-543

comments
best practices, 76-77
defined, 72-73
JSDoc-style comments, 75
multiline comments, 74-75
single-line comments, 73-74
whitespace, 76-77

compilers, behavior of,
560-561

complex expressions, if/else
statements, 46-47

concatenating (combining)
strings, 162, 165-166,
173-174
interpolation (template
literals), 175-177
plus sign (+) operators,
175

variables, 173-174
interpolation (template
literals), 175-177
plus sign (+) operators,
175
conditional operators, 43-46

conditional statements, 39-40
if statements, 40-43, 46-47
if/else statements, 40-43

complex expressions,
46-47
switch statement
similarities, 53-55
using, 55-56
if/else-if/else statements,
47-48
if-only statements, 47
switch statements, 49-53
if/else statement
similarities, 53-55
using, 55-56
true/false evaluations,
42-43, 46-48, 53-54, 56

conditions, for loops, 63

configuring buttons, mouse
events, 453-454

Console, 124-125, 127-128
debugging JavaScript,
411-412
displaying, 126, 412
logging, 128
displaying warnings/
errors, 131-134
id values of buttons,
130-131
log method, 128-130
messages, 414-415
variable scope, 413-414

const Keyword, 20

constants, math objects,
192-193

constraints, 532-536
constructors, 234-236

content, styling, 337-339
classes
adding/removing,
340-342
toggling values, 342-343

587

setting styles directly,
339-340

contextmenu events, 450-451

CSS (Cascading Style Sheets),
2-3
cascading rules, 347
custom properties/variables
defined, 346-348
setting complex values,
348-351
updating, 349
emojis, 506-507
selector syntax, 318-319
styling web pages, 306-307
ctrlKey property, keyboard
events, 460

curly brackets ({}), arguments,
261-262

custom HTML element
attributes, 330-334

custom objects, creating,
222-226

custom properties/variables,
CSS
defined, 346-348
setting complex values,
348-351
updating, 349

D

data properties, 201-204

data storage, Web Storage,
550

adding data, 552-555
coding, 552
domains, 552
file sizes, 556
operation of, 550-551
removing data, 555
retrieving data, 554-555
session storage, 557-558
support, 556-557

data-* attributes, HTML,
333-334

dataset property, custom HTML
element attributes, 332-333

588 DATE OBJECTS

date objects, 143, 180
dblclick events, 421, 445-446
dead zones, hoisting, 563

debugging JavaScript
Console, 411-412
developer tools, 405-412

declarations, destructuring
arrays, 543-544

declaring
numbers, 186-187
variables, 16, 19-20
hoisting, 561
using variables without
declaring, 88-89

decrementing
for loops, 66
variables, 188-189

defer sync element, 477-478

defining web page structures
with HTML, 304-306

delays, setTimeout function,
80-81

deleting items from sets,
571-572

destructuring, 539-541
arrays, 541-542, 546
commas (,), 542-543
declarations, 543-544
destructuring arrays,
543-544
variables, 543
objects, 544-547

developer tools, 397
Console
debugging JavaScript,
405-412
logging messages,
414-415
variable scope, 413-414
debugging JavaScript,
405-412
displaying, 398-400
inspecting
DOM, 400-405
objects, 412-413
View Source command,
402-405

displaying
Console, 412
console, 126
developer tools, 398-400
errors, 131-134
warnings, 131-134

division (/) operators, 187-188
document objects, 312-313

DocumentFragment objects,
adding DOM elements,
391-395

documents
coding in
multiple documents,
118-120
a single document, 120
HTML documents, loca-
tion/placement of code,
113-114

document.write function, 59

DOM (Document Object
Model), 309, 360, 364
children, 355-356, 357-358
accessing elements of,
359
checking existence of,
357-358
null properties, 357-358
document objects, 312-313
elements
adding large amounts
of elements,
DocumentFragment
objects, 391-395
adding large amounts
of elements, general
approach, 383-388
adding large amounts of
elements, innerHTML,
388-390
changing text values,
326-328
cloning, 374-378
creating, 364-370
emptying subtrees,
395-396
events for multiple
elements, 492-498
inserting, 368-372

modifying, 324-326
as objects, 322-324
removing, 372-373,
395-396
finding elements in, 316
CSS selector syntax,
318-319
querySelector function,
317
querySelectorAll function,
317-318
hierarchy of, 353-356
inspecting, 400-405
navigating, 354-356
nodes, 309-311
parents, 355-357
querySelector function, 317
querySelectorAll function,
317-318
scripts, locating, 473-476
siblings, 355-357
subtrees, emptying, 395-396
window objects, 311

domains, Web Storage, 552

DOMContentLoaded events,
421, 471-473

DOMMouseScroll events, 421,
454-455

dot notation, object properties,
214

double quotation marks (“),
strings, 162, 163

do.while loops, 68-69

down/up, events, 430-434

duplicate code, 118-120

duplicates, checking for in sets,
567-569
dynamically loading scripts,
482-486
running dependent code,
488-489
running scripts, 486-488

E

element attributes, HTML
accessing, 328-330
custom attributes, 330-334

data-* attributes, 333-334
reading, 329

removing, 330

setting, 329-330

values, 328

elements, DOM
adding large amounts of
elements
DocumentFragment
objects, 391-395
general approach,
383-388
innerHTML, 388-390
changing text values,
326-328
cloning, 374-378
creating, 364-370
emptying subtrees, 395-396
events for multiple elements,
492-498
inserting, 368-372
modifying, 324-326
as objects, 322-324
removing, 372-373,
395-396
emojis
codepoints, specifying,
505-508
in coding, 174
CSS, 506-507
defined, 501-503
direct usage of, 504-505
HTML, 503-506
JavaScript, 507

emptying subtrees, DOM,
395-396

entries, sets, 574

equality (==) operators, 44,
281-282, 286

errors, displaying, 131-134

events
addEventListener function,
420, 422

capturing events, 422
event handler, 421
event names, 421
sources, 420

arguments, 426-427

FALSE EVALUATIONS, CONDITIONAL STATEMENTS 589

bubbling events, 435-436,
437-438
capturing, 422, 434-435,
437-438
contextmenu events,
450-451
defined, 418-419
DOMContentLoaded events,
421, 471-473
event handler, 421
example of, 423-425
going up/down, 430-434
HTTP requests, 523
interrupting, 438-441
JavaScript, 420
keyboard events, 458
arrow keys, 462
keydown events, 421,
458
keypress events, 458-459
keyup events, 421, 458
multiple key presses,
462-466
particular key presses,
461-462
properties, 460-466
listening for, 420-422, 427,
437
load events, 421
mouse events, 444
browser positioning,
452-453
button configurations,
453-454
click events, 421,
444-445, 446
contextmenu events,
450-451
dblclick events, 421,
445-446
DOMMouseScroll events,
421, 454-455
global mouse position,
451-452
mousedown events,
448-449
mouseenter events, 447
mouseleave events, 447
mousemove events, 421,
449

mouseout events, 421,
446-447
mouseover events, 421,
446-447
mouseup events,
448-449
mousewheel events, 421,
454-455
for multiple elements,
492-498
phases of, 434-437
choosing, 436-437
not specifying, 437
preventDefault function,
440-441
reacting to, 422-423
removing event listeners,
427
scroll events, 421
stopping, 438-441
stopPropagation function,
438-440
types of, 426-427

existence of items in sets,
checking, 572

exiting functions early, 36

expressions
complex expressions, if/else
statements, 46-47
defined, 14
evaluation order, 187-188
functions, 36-38, 562-563
hoisting, 562-563
extending objects, 240-244,
247-248
controversy, 255-257
functionality, 256
future of, 256
online resources, 257
prototype inheritance,
249-253
subclasses, 247-248

F

false evaluations, conditional
statements, 42-43, 46-48,
53-54, 56

590 FALSE/TRUE VALUES

false/true values
Boolean functions, 278-280
Boolean objects, 277-278
equality (==) operators,
281-282
inequality (!=) operators,
281-282
fetch API, HTTP requests,
514-520

files

JavaScript files, referencing,

115-116

sizes, Web Storage, 556
filling loops

incompletely, 66-67

without numbers, 66
filtering array items, 156-157
finding

elements in DOM, 316

CSS selector syntax,
318-319

querySelector function,
317

querySelectorAll function,

317-318
items in arrays, 152
scripts in DOM, 473-476
something inside strings,
169-171

for loops, 59-62, 64
backwards, going, 66
breaking, 65
conditions, 63
decrementing, 66
examples of, 65-67
filling

incompletely, 66-67
without numbers, 66
skipping iterations, 65-66

starting points, 62
steps, 62

function objects, 143, 180

functional programming, 160

functions
addEventListener function,

420, 422
capturing events, 422
event handler, 421

event names, 421
sources, 420
alert function, 124
appearance in classes, 239
arguments, creating
functions with, 30-34
arrow functions, 259, 263,
274
defined, 260
lexical scope, 273
bind method, 274-275
Boolean functions, 278-280
callback functions, 156, 159
calling, 26, 29-30
classes, appearance of
functions, 239
closures, 95-100
declaring, hoisting, 562
defined, 13, 26
document.write function, 59
expressions, 36-38, 562-563
“hello world” example,
13,25
calling functions, 29-30
functions with arguments,
30-34
returning data, 35-38
simple functions, 26-30
hoisting
declaring functions, 562
expressions, 562-563
IIFE, 37-38
inner functions, functions
that aren't self-contained,
100-106
preventDefault function,
440-441
querySelector function, 317
querySelectorAll function,
317-318
requestAnimation Frame
function, 83-84
returning data, 35
exiting early, 36
expressions, 35
return keyword, 35-36
self-contained, functions that
aren’'t, 100-106
setInterval function, 81-83
setTimeout function, 80-81

simple functions, 26-30

stopPropagation function,
438-440

trigonometric functions,
194.0345

within functions, 96-100

G

getters/setters, 205-206
logging activity, 206-207
property values validation,

207-208
shout generators, 206

global mouse position, mouse
events, 451-452

global scope, 86-88

Google Chrome developer
tools, 398
Console
debugging JavaScript,
405-412
logging messages,
414-415
variable scope, 413-414
debugging JavaScript,
405-412
displaying, 398-400
DOM inspections, 400-405
object inspections, 412-413
View Source command,
402-405

H

handling events, 421

"hello world” example, 9,
13-14, 15-16

functions, 13, 25, 26-27
arguments, 30-34
calling, 29-30
returning data, 35-38
simple functions, 26-30

HTML document, 9-12

statements, 12

strings, 13

variables, 16-18, 24-25
changing values, 20

declaring, 16, 19-20
initializing, 16, 19-20
naming, 18-19
help, online resources, 579,
101.0025

hexadecimal numbers, 190

hoisting, 94
compiler behavior, 560-561
declaring
functions, 562
variables, 561
defined, 559-560
functions
declaring, 562
expressions, 562-563
ReferenceErrors, 563
temporal dead zones, 563

HTML (HyperText Markup
Language), 2-3, 304
defining web page
structures, 304-306
designing for data, 390-391
element attributes
accessing, 328-330
custom attributes,
330-334
data-* attributes,
333-334
reading, 329
removing, 330
setting, 329-330
values, 328
emojis, 503-506
“hello world” example, 9-12
innerHTML, adding DOM
elements, 388-390
location/placement of code,
113-114
styling web pages with CSS,
306-307
HTTP requests, 512-513
example of, 513
fetch API, 514-520
XMLHttpRequest objects,
520-521
creating requests,
521-522
events, 523

JSON (JAVASCRIPT OBJECT NOTATION)

processing requests,
523-527

running asynchronously,
523

sending requests,
522-523

id values of buttons, 130-131
if statements, 40-43, 46-47

if/else statements, 40-43
complex expressions, 46-47
switch statement similarities,

53-55
using, 55-56

if/else-if/else statements, 47-48
if-only statements, 47

IIFE (Immediately Invoked
Function Expressions), 37-38

in-browser developer tools, 397
Console
debugging JavaScript,
405-412
logging messages,
414-415
variable scope, 413-414
debugging JavaScript,
405-412
displaying, 398-400
inspecting
DOM, 400-405
objects, 412-413
View Source command,
402-405

incompletely filling loops,
66-67

incrementing/decrementing
variables, 188-189

indexing, strings, 169-171

indexOf method, strings,
169-170

individual characters, accessing
in strings, 163-165

inequality (!=) operators, 44,
281-282, 286

591

Infinity values, 190

inheritance, prototype, 229,
249-253

initializing variables, 16, 19-20

inner functions, functions that
aren’t self-contained, 100-106

innerHTML, adding DOM
elements, 388-390

inserting elements, DOM,
368-372
inspecting
DOM, 400-405
objects, 412-413

interpolation (template literals),
strings, 175-177

interrupting events, 438-441

intervals, setinterval function,
81-83

iterations (loops), skipping,
65-66

iterators, keys, 574

J

JavaScript
appearance of, 8-9
debugging
Console, 411-412
developer tools, 405-412
defined, 7-8
emojis, 507
events, 420
expression evaluation order,
187-188
flexibility of, 7
popularity of, 7-8
predefined objects, 142-144
referencing files, 115-116
types
overview, 139-141
pizza example, 136-139
variables, processing, 93-94

JSDoc-style comments, 75

JSON (JavaScript Object
Notation)
arrays, 296-297

592

Boolean values, 295

defined, 287-292

null values, 297

numbers, 294

object values, 295-296

objects, property names,
292-293

parsing JSON-looking data
into actual JSON, 299-300

reading data, 297-299

strings, 293-294

syntax of, 287-292

values (overview), 293

writing data, 300

K

keyboard events, 458
arrow keys, 462
keydown events, 458
keypress events, 458-459
keyup events, 458
multiple key presses,
462-466
particular key presses,
461-462
properties, 460-461
KeyCode property, keyboard
events, 460-462

keydown events, 421
keys, sets, 573-574
keyup events, 421

L

lastindexOf method, strings,
170

lexical scope, arrow functions,
273

listening for events, 420-422,
427, 437

literal syntax, object, 213
load events, 421

loading
scripts dynamically, 482-486

JSON (JAVASCRIPT OBJECT NOTATION)

running dependent code,
488-489

running scripts, 486-488

web pages, 468-469

async script element, 477

defer sync element,
482-486

DOMContentLoaded
events, 471-473

script location in DOM,
473-476

stages of, 469-471

local scope, 88

locating scripts in DOM,
473-476

location/placement of code,
109-112
HTML documents, 113-114
<script> tags, 117
in separate files, 114-116

log method, 128-130

logging
activity, 206-207
Console, 128

displaying warnings/
errors, 131-134

id values of buttons,
130-131

log method, 128-130

‘messages, 414-415

loops

defined, 58

do.while loops, 68-69

for loops, 59-62, 64
breaking, 65
conditions, 63
decrementing, 66
examples of, 65-67
filling incompletely, 66-67
filling without numbers,

66

going backwards, 66
skipping iterations, 65-66
starting points, 62
steps, 62

sets, 572-573

while loops, 67-68

lowercasing strings, 171

M

mapping array items, 154-156

match method, strings,
170-171

math objects, 143, 180,
191-193

merging arrays, 152-153
messages, logging, 414-415

MetaKey property, keyboard
events, 460

minus sign (-) operator, 186,
187-188

modifying DOM elements,
324-326

mouse events, 444

browser positioning,
452-453

button configurations,
453-454

click events, 421, 444-445,
446

contextmenu events,
450-451

dblclick events, 421,
445-446

DOMMouseScroll events,
421, 454-455

global mouse position,
451-452

mousedown events,
448-449

mouseenter events, 447

mouseleave events, 447

mousemove events, 421,
449

mouseout events, 421,
446-447

mouseover events, 421,
446-447

mouseup events, 448-449

mousewheel events, 421,
454-455

multiline comments, 74-75

multiple documents, coding in,
118-120

multiple elements, events for,
492-498

multiple key presses, keyboard
events, 462-466

multiplication (*) operators,
187-188

N

naming variables, 18-19

NaN (Not a Number) values,
191

navigating DOM, 354-356
negative numbers, 186

nested objects, properties,
216-217

nodes, DOM, 309-311
null primitives, 284

null properties, children (DOM),
357-358

null values, JSON objects, 297
number objects, 143, 180

numbers

absolute values, 196

declaring, 186-187

division (/) operators,
187-188

expression evaluation order,
187-188

filling loops without
numbers, 66

hexadecimal numbers, 190

incrementing/decrementing
variables, 188-189

Infinity values, 190

JSON objects, 294

math objects, 191-193

minus sign (-) operator, 186,
187-188

multiplication (*) operators,
187-188

NaN values, 191

negative numbers, 186

Number method, 191

octal numbers, 190

percentage (%) operators,
187-188

plus sign (+) operators,
187-188

powers, 195-196

random numbers, 196-198

rounding numbers, 193-194

square roots, 195-196

strings, going to numbers,
191

trigonometric functions,
194.0345

using, 186

0)

objects, 212

array objects, 143, 180
behind the scenes
operations, 218-221
Boolean objects, 143, 180,
277-278
built-in objects, extending,
247-248
controversy, 255-257
functionality, 256
future of, 256
online resources, 257
prototype inheritance,
249-253
subclasses, 247-248
classes, creating objects,
232-234
creating, 213, 232-234
custom objects, creating,
222-226
date objects, 143, 180
destructuring, 544-547
document objects, 312-313
DocumentFragment objects,
adding DOM elements,
391-395
DOM elements as objects,
322-324
extending, 240-244,
247-248
controversy, 255-257
functionality, 256
future of, 256
online resources, 257

OBJECTS 593

prototype inheritance,
249-253
subclasses, 247-248
function objects, 143, 180
inspecting, 412-413
JSON objects
arrays, 296-297
Boolean values, 295
null values, 297
numbers, 294
property names, 292-293
strings, 293-294
values, 295-296
values (overview), 293
literal syntax, 213
math objects, 143, 180,
191-193
nested objects, properties,
216-217
number objects, 143, 180
predefined objects, 142-144
primitives
converting to objects,
182-183
object behavior as,
180-183
properties
adding to objects,
213-217
bracket notation,
214-215
dot notation, 214
nested objects, 216-217
removing, 217-218
this keyword, 226-229
undefined properties, 218
prototype chains, 220-221
prototype inheritance, 229,
249-253
RegExp objects, 143, 180
string objects, 143, 180
this keyword, 226-229
window objects, 311
XMLHttpRequest objects,
520-521
creating requests,
521-522
events, 523
processing requests,
523-527

594 OBJECTS

running asynchronously,
523

sending requests,
522-523

octal numbers, 190

online resources
author'’s website, 579
built-in objects, 257
class values, 343
help, 101.0025

operators
=== operators
null primitives, 284
undefined primitives,
285-286
conditional operators, 43-46
equality (==) operators,
281-282, 286
incrementing/decrementing
variables, 188-189
inequality (!=) operators,
281-282, 286

P

parentheses (()), arguments,
261

parents, DOM, 355-357

parsing, 117, 299-300

particular key presses, keyboard
events, 461-462

percentage (%) operators,
187-188

pizza example, types, 136-139

placement/location of code,
109-112
HTML documents, 113-114
<script> tags, 117
in separate files, 114-116
plus sign (+) operators, 162,
165-166, 175, 187-188
positioning mouse
browser positioning,
452-453
global positioning, 451-452
powers/square roots, 195-196
predefined objects, 142-144

preventDefault function,
440-441
primitives
converting to objects,
182-183
null primitives, 284
object behavior as, 180-183
undefined primitives,
284-286
properties
accessor properties,
202-204
CSS custom properties/
variables
defined, 346-348
setting complex values,
348-351
updating, 349
data properties, 201-204
dataset property, custom
HTML element attributes,
332-333
JSON objects, 292-293
keyboard events, 460-461
objects
adding properties to
objects, 213-217
bracket notation,
214-215
dot notation, 214
nested objects, 216-217
removing properties,
217-218
this keyword, 226-229
undefined properties, 218
removing, 217-218
undefined properties, 218
value validation, 207-208

prototype chains, objects,
220-221

prototype inheritance, 229,
249-253

Q

querySelector function, 317

querySelectorAll function,
317-318

quotation marks, strings, 162,
163

R

random numbers, 196198
reacting to events, 422-423

reading
HTML element attributes,
329
JSON data, 297-299
values, data properties, 202

reducing item values, arrays,
157-159

ReferenceErrors, 563

referencing JavaScript files,
115-116

RegExp objects, 143, 180

removing

classes, 340-342

data from Web Storage, 555

elements, DOM, 372-373,
395-396

event listeners, 427

HTML element attributes,
330

items from arrays, 151-152

properties, 217-218

values from classes, 342

requestAnimation Frame
function, 83-84

requests, HTTP, 512-513
example of, 513
fetch API, 514-520
XMLHttpRequest objects,
520-521
creating requests,
521-522
events, 523
processing requests,
523-527
running asynchronously,
523
sending requests,
522-523
resources, online
author's website, 579
built-in objects, 257
class values, 343

retrieving data from Web
Storage, 554-555

return keyword, 35-36

returning data with functions,
35
exiting early, 36
expressions, 35
return keyword, 35-36

rounding numbers, 193-194

S

scope
block scoping, 89-92
global scope, 86-88
local scope, 88
variable scope, 413-414
block scoping, 89-92
global scope, 86-88
local scope, 88
scoping variables, 20
<script> tags
location/placement of code,
117
parsing, 117
scripts
async script element, 477
defer sync element, 477-478
loading dynamically, 482-
486
running dependent code,
488-489
running scripts, 486-488
locating in DOM, 473-476

scroll events, 421

self-contained functions that
aren't, 100-106

separate files, location/
placement of code in,
114-116

session storage, Web Storage,
557-558
setnterval function, 81-83
sets, 565-566
adding items, 567
checking
for duplicates, 567-569

existence of items, 572
size of sets, 570-571

creating, 566, 569-570

deleting items, 571-572

entries, 574

existence of items in sets,
checking, 572

iterators, 574

keys, 573-574

loops, 572-573

size of, 570-571

values, 573-574

setters/getters, 205-206

logging activity, 206-207

property values validation,
207-208

shout generators, 206

setTimeout function, 80-81

setting HTML element
attributes, 329-330

shiftkey property, keyboard
events, 460

shout generators, 206
siblings, DOM, 355-357
simple functions, 26-30

single documents, coding in,
120

single quotation marks ('),
strings, 162, 163

single-line comments, 73-74

skipping iterations, loops,
65-66

slice method, strings, 167

smooth animation, request-
Animation Frame function,
83-84

sources, addEventListener
function, 420

split method, 168-169
splitting, strings, 168-169
square roots/powers, 195-196
starting points, for loops, 62

statements
conditional statements,
39-40
if statements, 40-48
if/else statements, 40-48

STRINGS 595

true/false evaluations,
42-43, 46-48, 53-54,
56
defined, 12
"hello world” example, 12
if statements, 40-43, 46-47
if/else statements, 40-43
complex expressions,
46-47
switch statement
similarities, 53-55
using, 55-56
if/else-if/else statements,
47-48
if-only statements, 47
switch statements, 49-53
if/else statement
similarities, 53-55
using, 55-56

steps for loops, 62

stopping
events, 438-441
webcam streams, 537

stopPropagation function,
events, 438-440

storing data, Web Storage, 550
adding data, 552-555
coding, 552
domains, 552
file sizes, 556
operation of, 550-551
removing data, 555
retrieving data, 554-555
session storage, 557-558
support, 556-557

string objects, 143, 180

strings
backtick (') character,

175-177
combining (concatenating),
162, 165-166, 173-174
interpolation (template
literals), 175-177
plus sign (+) operators,
175
defined, 13
finding something inside
strings, 169-171

596 STRINGS

"hello world” example, 13
indexing, 169-171
indexOf method, 169-170
individual characters,
accessing in strings,
163-165
interpolation (template
literals), 175-177
JSON objects, 293-294
lastindexOf method, 170
lowercasing, 171
match method, 170-171
numbers, going to, 191
plus sign (+) operators, 162,
165-166, 175
quotation marks, 162, 163
splitting, 168-169
substrings, 166-167
slice method, 167
substr method, 167-168
template literals (string
interpolation), 175-177
uppercasing, 171
visualizing, 162-163
styling
content, 337-339
adding/removing classes,
340-342
setting class styles
directly, 339-340
toggling class values,
342-343
web pages with CSS,
306-307

subclasses, extending objects,
253-255

substr method, strings,
167-168

substrings, getting out of
strings, 166-167
slice method, 167
substr method, 167-168
subtrees (DOM), emptying,
395-396
support, Web Storage, 556-557
switch statements, 49-53
if/else statement similarities,
53-55
using, 55-56

syntax
CSS selector syntax,
318-319
objects, 213

T

template literals (string
interpolation), 175-177

temporal dead zones, hoisting,
563

text values, changing in DOM
elements, 326-328

this keyword, 226-229,
266-267
redefined, 271-273
variable scope, 268-271

timers, 79-80
requestAnimation Frame
function, 83-84
setInterval function, 81-83
setTimeout function, 80-81

toggling class values, 342-343

trigonometric functions,
194.0345

true/false evaluations
conditional statements,
42-43, 46-48, 53-54, 56
equality (==) operators,
281-282
inequality (I=) operators,
281-282
true/false values
Boolean functions, 278-280
Boolean objects, 277-278
types
defined, 141-142
overview, 139-141
pizza example, 136-139

U

Ul (User Interface), developing,
81

undefined primitives, 284-286
undefined properties, 218

updating, CSS custom
properties/variables, 349

up/down, events, 430-434
uppercasing strings, 171

\'/

validation, property values,
207-208

values
absolute values, 196
array values, accessing,
147-148
class values
adding/removing,
340-342
toggling, 342-343
classes
checking existence of
class values, 343
online resources, 343
HTML element attributes,
328
JSON objects, 295-296
arrays, 296-297
Boolean values, 295
null values, 297
numbers, 294
overview, 293
strings, 293-294
property values validation,
207-208
reading/writing values, data
properties, 202
reducing item values, arrays,
157-159
sets, 573-574
text values, changing in
DOM elements, 326-328

variable scope, 413-414
block scoping, 89-92
closures, 95-100
global scope, 86-88
local scope, 88
this keyword, 268-271

variables
changing values, 20

combining (concatenating),
173-174
interpolation (template
literals), 175-177
plus sign (+) operators,
175
CSS custom properties/
variables
defined, 346-348
setting complex values,
348-351
updating, 349
declaring, 16, 19-20
hoisting, 561
using variables without
declaring, 88-89
destructuring
arrays, 543
objects, 546-547
“hello world” example,
16-18, 24-25
changing values, 20
declaring, 16, 19-20
initializing, 16, 19-20
naming, 18-19
hoisting, 94
initializing, 16, 19-20
interpolation (template
literals), 175-177
naming, 18-19
processing in JavaScript,
93-94
scoping, 20
template literals (string
interpolation), 175-177
using without declaring,
88-89

View Source command,
402-405

visualizing, strings, 162-163

XMLHTTPREQUEST OBJECTS 597

w

warnings, displaying, 131-134
web browsers
developer tools, 397

debugging JavaScript,
405-412

displaying, 398-400

DOM inspection,
400-405

logging messages,
414-415

object inspection,
412-413

variable scope, 413-414

View Source command,
402-405

mouse positioning, 452-453
webcam access, 529-530

adding code, 532-535
constraints, 532-536
examining code, 535-537
example of, 530-531
overview, 531-532
stopping streams, 537

web pages
building, 9
defining structures with

HTML, 304-306

loading, 468-469

async script element, 477

defer sync element,
477-478

DOMContentLoaded
events, 471-473

script location in DOM,
473-476

stages of, 469-471

Web Storage, 550
adding data, 552-555
coding, 552
domains, 552
file sizes, 556
operation of, 550-551
removing data, 555
retrieving data, 554-555
session storage, 557-558
support, 556-557
webcams, accessing, 529-530
adding code, 532-535
constraints, 532-536
examining code, 535-537
example of, 530-531
overview, 531-532
stopping streams, 537

websites, author's website, 579
while loops, 67-68
whitespace in comments, 76-77
window objects, 311
writing

JSON data, 300

values, data properties, 202

X-Y-Z

XMLHttpRequest objects,
520-521
creating requests, 521-522
events, 523
processing requests,
523-527
running asynchronously, 523
sending requests, 522-523

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	2 Values and Variables
	Using Variables
	More Variable Stuff
	Naming Variables
	More on Declaring and Initializing Variables

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	Q
	S
	T
	U
	V
	W
	X
	Y
	Z

