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Preface to the 
� Second Edition �

The first edition of this book was published in September 1999. With 
much delight I realized that I had finally written a book that would 
never need revising! This was in stark contrast to my first book, 

which was about programming applications for Microsoft Windows. That 
one had already gone through five editions in just ten years. My second 
book on the OS/2 Presentation Manager (the what?) became obsolete much 
more quickly. But Code, I was certain, would last forever.

My original idea with Code was to start with very simple concepts but 
slowly build to a very deep understanding of the workings of digital com-
puters. Through this steady progression up the hill of knowledge, I would 
employ a minimum of metaphors, analogies, and silly illustrations, and 
instead use the language and symbols of the actual engineers who design 
and build computers. I also had a very clever trick up my sleeve: I would use 
ancient technologies to demonstrate universal principles under the assump-
tion that these ancient technologies were already quite old and would never 
get older. It was as if I were writing a book about the internal combustion 
engine but based on the Ford Model T. 

I still think that my approach was sound, but I was wrong in some of 
the details. As the years went by, the book started to show its age. Some of 
the cultural references became stale. Phones and fingers supplemented key-
boards and mice. The internet certainly existed in 1999, but it was nothing 
like what it eventually became. Unicode—the text encoding that allows a 
uniform representation of all the world’s languages as well as emojis—got 
less than a page in the first edition. And JavaScript, the programming lan-
guage that has become pervasive on the web, wasn’t mentioned at all.

Those problems would probably have been easy to fix, but there existed 
another aspect of the first edition that continued to bother me. I wanted 
to show the workings of an actual CPU—the central processing unit that 



viii Code

forms the brain, heart, and soul of a computer—but the first edition didn’t 
quite make it. I felt that I had gotten close to this crucial breakthrough but 
then I had given up. Readers didn’t seem to complain, but to me it was a 
glaring flaw.

That deficiency has been corrected in this second edition. That’s why it’s 
some 70 pages longer. Yes, it’s a longer journey, but if you come along with 
me through the pages of this second edition, we shall dive much deeper into 
the internals of the CPU. Whether this will be a more pleasurable experi-
ence for you or not, I do not know. If you feel like you’re going to drown, 
please come up for air. But if you make it through Chapter 24, you should 
feel quite proud, and you’ll be pleased to know that the remainder of the 
book is a breeze. 

The Companion Website
The first edition of Code used the color red in circuit diagrams 
to indicate the flow of electricity. The second edition does that 
as well, but the workings of these circuits are now also illus-
trated in a more graphically interactive way on a new website 
called CodeHiddenLanguage.com. 

You’ll be reminded of this website occasionally throughout the pages of 
this book, but we’re also using a special icon, which you’ll see in the margin 
of this paragraph. Hereafter, whenever you see that icon—usually accom-
panying a circuit diagram—you can explore the workings of the circuit on 
the website. (For those who crave the technical background, I programmed 
these web graphics in JavaScript using the HTML5 canvas element.) 

The CodeHiddenLanguage.com website is entirely free to use. There is 
no paywall, and the only advertisement you’ll see is for the book itself. In 
a few of the examples, the website uses cookies, but only to allow you to 
store some information on your computer. The website doesn’t track you 
or do anything evil.

I will also be using the website for clarifications or corrections of mate-
rial in the book. 

The People Responsible
The name of one of the people responsible for this book is on the cover; 
some others are no less indispensable but appear inside on the copyright 
and colophon pages. 

In particular, I want to call out Executive Editor Haze Humbert, who 
approached me about the possibility of a second edition uncannily at pre-
cisely the right moment that I was ready to do it. I commenced work in 
January 2021, and she skillfully guided us through the ordeal, even as the 
book went several months past its deadline and when I needed some reas-
surance that I hadn’t completely jumped the shark. 

http://CodeHiddenLanguage.com
http://CodeHiddenLanguage.com
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The project editor for the first edition was Kathleen Atkins, who also 
understood what I was trying to do and provided many pleasant hours of 
collaboration. My agent at that time was Claudette Moore, who also saw 
the value of such a book and convinced Microsoft Press to publish it.

The technical editor for the first edition was Jim Fuchs, who I remem-
ber catching a lot of embarrassing errors. For the second edition, technical 
reviewers Mark Seemann and Larry O’Brien also caught a few flubs and 
helped me make these pages better than they would have been otherwise. 

I thought that I had figured out the di�erence between “compose” and 
“comprise” decades ago, but apparently I have not. Correcting errors like 
that was the invaluable contribution of copy editor Scout Festa. I have 
always relied on the kindness of copyeditors, who too often remain anony-
mous strangers but who battle indefatigably against imprecision and abuse 
of language.

Any errors that remain in this book are solely my responsibility.
I want to again thank my beta readers of the first edition: Sheryl Canter, 

Jan Eastlund, the late Peter Goldeman, Lynn Magalska, and Deirdre 
Sinnott (who later became my wife). 

The numerous illustrations in the first edition were the work of the late 
Joel Panchot, who I understand was deservedly proud of his work on this 
book. Many of his illustrations remain, but the need for additional circuit 
diagrams inclined me to redo all the circuits for the sake of consistency. 
(More technical background: These illustrations were generated by a pro-
gram I wrote in C# using the SkiaSharp graphics library to generate Scal-
able Vector Graphics files. Under the direction of Senior Content Producer 
Tracey Croom, the SVG files were converted into Encapsulated PostScript 
for setting up the pages using Adobe InDesign.)

And Finally
I want to dedicate this book to the two most important women in my life. 

My mother battled adversities that would have destroyed a lesser person. 
She provided a strong direction to my life without ever holding me back. 
We celebrated her 95th (and final) birthday during the writing of this book. 

My wife, Deirdre Sinnott, has been essential and continues to make me 
proud of her achievements, her support, and her love.

And to the readers of the first edition, whose kind feedback has been 
extraordinarily gratifying. 

Charles Petzold
May 9, 2022
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Pearson’s Commitment to 
Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity 
of all learners. We embrace the many dimensions of diversity, including but 
not limited to race, ethnicity, gender, socioeconomic status, ability, age, 
sexual orientation, and religious or political beliefs. 

Education is a powerful force for equity and change in our world. It 
has the potential to deliver opportunities that improve lives and enable 
economic mobility. As we work with authors to create content for every 
product and service, we acknowledge our responsibility to demonstrate 
inclusivity and incorporate diverse scholarship so that everyone can achieve 
their potential through learning. As the world’s leading learning company, 
we have a duty to help drive change and live up to our purpose to help more 
people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed 
through learning.

• Our educational products and services are inclusive and represent 
the rich diversity of learners.

• Our educational content accurately reflects the histories and 
experiences of the learners we serve.

• Our educational content prompts deeper discussions with 
learners and motivates them to expand their own learning 
(and worldview).

While we work hard to present unbiased content, we want to hear from 
you about any concerns or needs with this Pearson product so that we can 
investigate and address them. 

• Please contact us with concerns about any potential bias at 
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html
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Chapter Six

Logic with Switches

W hat is truth? Aristotle thought that logic had something to do 
with it. The collection of his teachings known as the Organon
(which dates from the fourth century BCE) is the earliest exten-

sive writing on the subject of logic. To the ancient Greeks, logic was a 
means of analyzing language in the search for truth and thus was consid-
ered a form of philosophy. The basis of Aristotle’s logic was the syllogism. 
The most famous syllogism (which isn’t actually found in the works of 
Aristotle) is

All men are mortal;
Socrates is a man;

Hence, Socrates is mortal.

In a syllogism, two premises are assumed to be correct, and from these a 
conclusion is deduced.

The mortality of Socrates might seem straightforward enough, but there 
are many varieties of syllogisms. For example, consider the following two 
premises, proposed by the 19th-century mathematician Charles Dodgson 
(also known as Lewis Carroll):

All philosophers are logical;
An illogical man is always obstinate.

The conclusion—Some obstinate persons are not philosophers—isn’t 
obvious at all. Notice the unexpected and disturbing appearance of the 
word some.

For over two thousand years, mathematicians wrestled with Aristotle’s 
logic, attempting to corral it using mathematical symbols and operators. 
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Prior to the 19th century, the only person to come close was Gottfried 
Wilhelm von Leibniz (1648–1716), who dabbled with logic early in life but 
then went on to other interests (such as independently inventing calculus at 
the same time as Isaac Newton).

And then came George Boole.
George Boole was born in England in 1815 into 

a world where the odds were certainly stacked 
against him. Because he was the son of a shoe-
maker and a former maid, Britain’s rigid class 
structure would normally have prevented Boole 
from achieving anything much di�erent from his 
ancestors. But aided by an inquisitive mind and 
his helpful father (who had strong interests in sci-
ence, mathematics, and literature), young George 
gave himself the type of education that was nor-
mally the privilege of upper-class boys; his stud-
ies included Latin, Greek, and mathematics. As a 
result of his early papers on mathematics, in 1849 
Boole was appointed the first Professor of Mathematics at Queen’s College, 
Cork, in Ireland.

Several mathematicians in the mid-1800s had been working on a mathe-
matical definition of logic (most notably Augustus De Morgan), but it was 
Boole who had the real conceptual breakthrough, first in the short book 
The Mathematical Analysis of Logic, Being an Essay Towards a Calculus 
of Deductive Reasoning (1847) and then in a much longer and more ambi-
tious text, An Investigation of the Laws of Thought on Which Are Founded 
the Mathematical Theories of Logic and Probabilities (1854), more conve-
niently referred to as The Laws of Thought. Boole died in 1864, at the age 
of 49, after hurrying to class in the rain and contracting pneumonia.

The title of Boole’s 1854 book suggests an ambitious motivation: Boole 
believed that the human brain uses logic to think, so if we were to find a 
way to represent logic with mathematics, we would also have a mathemat-
ical description of how the brain works. But Boole’s mathematics can be 
studied without necessarily buying in to his neuropsychology. 

Boole invented a whole di�erent kind of algebra that was eventually 
called Boolean algebra to distinguish it from conventional algebra.

In conventional algebra, letters are often used to stand for numbers. 
These are called operands, and they are combined in various ways with 
operators, most often + and ×. For example:

A = 3 × (B + 5)

When we do conventional algebra, we follow certain rules. These rules 
have probably become so ingrained in our practice that we no longer think 
of them as rules and might even forget their names. But rules indeed under-
lie all the workings of any form of mathematics.
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The first rule is that addition and multiplication are commutative. That 
means we can switch around the symbols on each side of the operators:

A + B = B + A
A × B = B × A

By contrast, subtraction and division are not commutative.
Addition and multiplication are also associative, that is

A + (B + C) = (A + B) + C
A × (B × C) = (A × B) × C

And finally, multiplication is said to be distributive over addition:

A × (B + C) = (A × B) + (A × C)

Another characteristic of conventional algebra is that it always deals 
with numbers, such as pounds of tofu or numbers of ducks or distances that 
a train travels or the seconds of a day. 

It was Boole’s genius to make algebra more abstract by divorcing it from 
concepts of number. In Boolean algebra, the operands refer not to numbers 
but instead to classes. A class is simply a group of things, similar to what in 
later times came to be known as a set.

Let’s talk about cats. Cats can be either male or female. For convenience, 
we can use the letter M to refer to the class of male cats and F to refer to 
the class of female cats. Keep in mind that these two symbols do not repre-
sent numbers of cats. The number of male and female cats can change by 
the minute as new cats are born and old cats (regrettably) pass away. The 
letters stand for classes of cats—cats with specific characteristics. Instead 
of referring to male cats, we can just say “M.”

We can also use other letters to represent the color of the cats. For exam-
ple, T can refer to the class of tan cats, B can be the class of black cats, W 
the class of white cats, and O the class of cats of all “other” colors—all cats 
not in the class T, B, or W.

Finally (at least as far as this example goes), cats can be either neutered 
or unneutered. Let’s use the letter N to refer to the class of neutered cats 
and U for the class of unneutered cats.

In conventional (numeric) algebra, the operators + and × are used to 
indicate addition and multiplication. In Boolean algebra, the same + and × 
symbols are used, and here’s where things might get confusing. Everybody 
knows how to add and multiply numbers in conventional algebra, but how 
do we add and multiply classes?

Well, we don’t actually add and multiply in Boolean algebra. Instead, the 
+ and × symbols mean something else entirely.

The + symbol in Boolean algebra means a union of two classes. A union 
of two classes is everything in the first class combined with everything in 
the second class. For example, B + W represents the class of all cats that are 
either black or white.
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The × symbol in Boolean algebra means an intersection of two classes. 
An intersection of two classes is everything that is in both the first class 
and the second class. For example, F × T represents the class of all cats that 
are both female and tan. As in conventional algebra, we can write F × T as 
F·T or simply FT (which is what Boole preferred). You can think of the two 
letters as two adjectives strung together: “female tan” cats.

To avoid confusion between conventional algebra and Boolean algebra, 
sometimes the symbols ∪ and ∩ are used for union and intersection instead 
of + and ×. But part of Boole’s liberating influence on mathematics was to 
make the use of familiar operators more abstract, so I’ve decided to stick 
with his decision not to introduce new symbols into his algebra.

The commutative, associative, and distributive rules all hold for Boolean 
algebra. What’s more, in Boolean algebra the + operator is distributive over 
the × operator. This isn’t true of conventional algebra:

W + (B × F) = (W + B) × (W + F)

The union of white cats and black female cats is the same as the intersec-
tion of two unions: the union of white cats and black cats, and the union of 
white cats and female cats. This is somewhat di¬cult to grasp, but it works.

Three more symbols are necessary to complete Boolean algebra. Two 
of these symbols might look like numbers, but they’re really not because 
they’re treated a little di�erently than numbers. The symbol 1 in Boolean 
algebra means “the universe”—that is, everything we’re talking about. In 
this example, the symbol 1 means “the class of all cats.” Thus,

M + F = 1

This means that the union of male cats and female cats is the class of all 
cats. Similarly, the union of tan cats and black cats and white cats and other 
colored cats is also the class of all cats:

T + B + W + O = 1

And you achieve the class of all cats this way, too:

N + U = 1

The 1 symbol can be used with a minus sign to indicate the universe 
excluding something. For example,

1 – M

is the class of all cats except the male cats. The universe excluding all male 
cats is the same as the class of female cats:

1 – M = F
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The third symbol that we need is the 0 (zero), and in Boolean algebra the 
0 means an empty class—a class of nothing. The empty class results when 
we take an intersection of two mutually exclusive classes—for example, 
cats that are both male and female:

F × M = 0

Notice that the 1 and 0 symbols sometimes work the same way in Bool-
ean algebra as in conventional algebra. For example, the intersection of all 
cats and female cats is the class of female cats:

1 × F = F

The intersection of no cats and female cats is the class of no cats:

0 × F = 0

The union of no cats and all female cats is the class of female cats:

0 + F = F

But sometimes the result doesn’t look the same as in conventional 
algebra. For example, the union of all cats and female cats is the class of 
all cats:

1 + F = 1

This doesn’t make much sense in conventional algebra.
Because F is the class of all female cats, and (1 − F) is the class of all cats 

that aren’t female, the union of these two classes is 1:

F + (1 − F) = 1

And the intersection of the two classes is 0:

F × (1 − F) = 0

Historically, this formulation represents an important concept in logic: 
It’s called the law of contradiction, and it indicates that something can’t be 
both itself and the opposite of itself.

Where Boolean algebra really looks di�erent from conventional algebra 
is in a statement like this:

F × F = F

The statement makes perfect sense in Boolean algebra: The intersection 
of female cats and female cats is still the class of female cats. But it sure 
wouldn’t look quite right if F referred to a number. Boole considered

X2 = X
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to be the single statement that di�erentiates his algebra from conventional 
algebra. Another Boolean statement that looks funny in terms of conven-
tional algebra is this:

F + F = F

The union of female cats and female cats is still the class of female cats.
Boolean algebra provides a mathematical method for solving the syllo-

gisms of Aristotle. Let’s look at the first two-thirds of that famous syllogism 
again, but now using gender-neutral language:

All persons are mortal;
Socrates is a person.

We’ll use P to represent the class of all persons, M to represent the class 
of mortal things, and S to represent the class of Socrates. What does it 
mean to say that “all persons are mortal”? It means that the intersection 
of the class of all persons and the class of all mortal things is the class of 
all persons:

P × M = P

It would be wrong to say that P × M = M, because the class of all mortal 
things includes cats, dogs, and elm trees.

Saying, “Socrates is a person” means that the intersection of the class 
containing Socrates (a very small class) and the class of all persons (a much 
larger class) is the class containing Socrates:

S × P = S

Because we know from the first equation that P equals (P × M), we can 
substitute that into the second equation:

S × (P × M) = S

By the associative law, this is the same as

(S × P) × M = S

But we already know that (S × P) equals S, so we can simplify by using 
this substitution:

S × M = S

And now we’re finished. This formula tells us that the intersection of 
Socrates and the class of all mortal things is S, which means that Socrates 
is mortal. If we found instead that (S × M) equaled 0, we’d conclude that 
Socrates wasn’t mortal. If we found that (S × M) equaled M, the conclusion 
would have to be that all mortals were Socrates!
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Using Boolean algebra might seem like overkill for proving this obvi-
ous fact (particularly considering that Socrates demonstrated his mortal-
ity 2400 years ago), but Boolean algebra can also be used to determine 
whether something satisfies a certain set of criteria. 

Perhaps one day you walk into a pet shop and say to the salesperson, “I 
want a male cat, neutered, either white or tan; or a female cat, neutered, 
any color but white; or I’ll take any cat you have as long as it’s black.” And 
the salesperson says to you, “So you want a cat from the class of cats repre-
sented by the following expression:

(M × N × (W + T)) + (F × N × (1 − W)) + B

Right?” And you say, “Yes! Exactly!”
In verifying that the salesperson is correct, you might want to represent 

the concepts of union and intersection using the words OR and AND. I’m 
capitalizing these words because the words normally represent concepts in 
English, but they can also represent operations in Boolean algebra. When 
you form a union of two classes, you’re actually accepting things from the 
first class OR the second class. And when you form an intersection, you’re 
accepting only those things in both the first class AND the second class. In 
addition, you can use the word NOT wherever you see a 1 followed by a 
minus sign. In summary,

• + (a union) can also mean OR.
• × (an intersection) can also mean AND.
• 1 − (the universe without something) means NOT.

So the expression can also be written like this:

(M AND N AND (W OR T)) OR (F AND N AND (NOT W)) OR B

This is very nearly what you said. Notice how the parentheses clarify 
your intentions. You want a cat from one of three classes:

(M AND N AND (W OR T))
OR

(F AND N AND (NOT W))
OR
B

With this formula written down, the salesperson can perform something 
called a Boolean test. This involves another variation of Boolean algebra, 
where the letters refer to properties or characteristics or attributes of cats, 
and they can be assigned the numbers 0 or 1. The numeral 1 means Yes, 
True, this particular cat satisfies these criteria, while the numeral 0 means 
No, False, this cat doesn’t satisfy these criteria. 
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First the salesperson brings out an unneutered tan male. Here’s the 
expression of acceptable cats:

(M × N × (W + T)) + (F × N × (1 − W)) + B

And here’s how it looks with 0s and 1s substituted:

(1 × 0 × (0 + 1)) + (0 × 0 × (1 − 0)) + 0

Notice that the only symbols assigned 1s are M and T because the cat is 
male and tan.

What we must do now is simplify this expression. If it simplifies to 1, 
the cat satisfies your criteria; if it simplifies to 0, the cat doesn’t. While 
we’re simplifying the expression, keep in mind that we’re not really adding 
and multiplying, although generally we can pretend that we are. Most of 
the same rules apply when + means OR and × means AND. (Sometimes in 
modern texts the symbols ∧ and ∨ are used for AND and OR instead of × 
and +. But here’s where the + and × signs perhaps ease the job, because the 
rules are similar to conventional algebra.)

When the × sign means AND, the possible results are

0 × 0 = 0
0 × 1 = 0
1 × 0 = 0
1 × 1 = 1

In other words, the result is 1 only if both the left operand AND the right 
operand are 1. This operation works exactly the same way as regular multi-
plication, and it can be summarized in a little table. The operation is shown 
in the upper-left corner, and the possible combinations of operators are 
shown in the top row and the left column:

AND 0 1

0 0 0

1 0 1

When the + sign means OR, the possible results are

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

The result is 1 if either the left operand OR the right operand is 1. This 
operation produces results very similar to those of regular addition, except 
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that in this case 1 + 1 equals 1. (If a cat is tan or if a cat is tan means that 
it’s tan.) The OR operation can be summarized in another little table:

OR 0 1

0 0 1

1 1 1

We’re ready to use these tables to calculate the result of the expression

(1 × 0 × 1) + (0 × 0 × 1) + 0 = 0 + 0 + 0 = 0

The result 0 means No, False, this kitty won’t do.
Next the salesperson brings out a neutered white female. The original 

expression was

(M × N × (W + T)) + (F × N × (1 − W)) + B

Substitute the 0s and 1s again:

(0 × 1 × (1 + 0)) + (1 × 1 × (1 − 1)) + 0

And simplify it:

(0 × 1 × 1) + (1 × 1 × 0) + 0 = 0 + 0 + 0 = 0

And another poor kitten must be rejected.
Next the salesperson brings out a neutered gray female. (Gray qualifies 

as an “other” color—not white or black or tan.) Here’s the expression:

(0 × 1 × (0 + 0)) + (1 × 1 × (1 − 0)) + 0

Now simplify it:

(0 × 1 × 0) + (1 × 1 × 1) + 0 = 0 + 1 + 0 = 1

The final result 1 means Yes, True, a kitten has found a home. (And it was 
the cutest one too!)

Later that evening, when the kitten is curled up sleeping in your lap, you 
wonder whether you could have wired some switches and a lightbulb to 
help you determine whether particular kittens satisfied your criteria. (Yes, 
you are a strange kid.) Little do you realize that you’re about to make a cru-
cial conceptual breakthrough. You’re about to perform some experiments 
that will unite the algebra of George Boole with electrical circuitry and 
thus make possible the design and construction of digital computers. But 
don’t let that intimidate you.
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To begin your experiment, you connect a lightbulb and battery as you 
would normally, but you use two switches instead of one:

The world icon in the outer margin indicates that an interactive version 
of the circuit is available on the website CodeHiddenLanguage.com.

Switches connected in this way—one right after the other—are said to 
be wired in series. If you close the left switch, nothing happens:

Similarly, if you leave the left switch open and close the right switch, 
nothing happens. The lightbulb lights up only if both the left switch and the 
right switch are closed, as shown here:

http://CodeHiddenLanguage.com
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The key word here is and. Both the left switch and the right switch must 
be closed for the current to flow through the circuit.

This circuit is performing a little exercise in logic. In e�ect, the lightbulb 
is answering the question “Are both switches closed?” We can summarize 
the workings of this circuit in the following table:

Left Switch Right Switch Lightbulb
Open Open Not lit
Open Closed Not lit

Closed Open Not lit
Closed Closed Lit

If you think of the switches and the lightbulb as Boolean operators, then 
these states can be assigned numbers of 0 and 1. A 0 can mean “switch is 
open” and a 1 can mean “switch is closed.” A lightbulb has two states; a 
0 can mean “lightbulb is not lit” and a 1 can mean “lightbulb is lit.” Now 
let’s simply rewrite the table:

Left Switch Right Switch Lightbulb
0 0 0
0 1 0
1 0 0
1 1 1

Notice that if we swap the left switch and the right switch, the results 
are the same. We really don’t have to identify which switch is which. So 
the table can be rewritten to resemble the AND and OR tables that were 
shown earlier:

Switches 
in Series 0 1

0 0 0

1 0 1

And indeed, this is the same as the AND table. Check it out:

AND 0 1

0 0 0

1 0 1

This simple circuit is actually performing an AND operation in Boolean 
algebra.
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Now try connecting the two switches a little di�erently:

These switches are said to be connected in parallel. The di�erence 
between this and the preceding connection is that this lightbulb will light 
if you close the top switch:

or close the bottom switch:
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or close both switches:

The lightbulb lights if the top switch or the bottom switch is closed. The 
key word here is or.

Again, the circuit is performing an exercise in logic. The lightbulb 
answers the question “Is either switch closed?” The following table sum-
marizes how this circuit works:

Left Switch Right Switch Lightbulb
Open Open Not lit
Open Closed Lit

Closed Open Lit
Closed Closed Lit

Again, using 0 to mean an open switch or an unlit lightbulb and 1 to 
mean a closed switch or a lit lightbulb, this table can be rewritten this way:

Left Switch Right Switch Lightbulb
0 0 0
0 1 1
1 0 1
1 1 1

Again, it doesn’t matter if the two switches are swapped, so the table can 
also be rewritten like this:

Switches 
in Parallel 0 1

0 0 1

1 1 1
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And you’ve already guessed that this is the same as the Boolean OR:

OR 0 1

0 0 1

1 1 1

This means that two switches in parallel are performing the equivalent of 
a Boolean OR operation.

When you originally entered the pet shop, you told the salesperson, 
“I want a male cat, neutered, either white or tan; or a female cat, neutered, 
any color but white; or I’ll take any cat you have as long as it’s black,” and 
the salesperson developed this expression:

(M × N × (W + T)) + (F × N × (1 − W)) + B

Now that you know that two switches wired in series perform a logical 
AND (which is represented by a × sign) and two switches in parallel per-
form a logical OR (which is represented by the + sign), you can wire up 
eight switches like so:

Each switch in this circuit is labeled with a letter—the same letters as 
in the Boolean expression. W means NOT W and is an alternative way to 
write 1 − W. Indeed, if you go through the wiring diagram from left to right 
starting at the top and moving from top to bottom, you’ll encounter the 
letters in the same order in which they appear in the expression. Each × sign 
in the expression corresponds to a point in the circuit where two switches 
(or groups of switches) are connected in series. Each + sign in the expres-
sion corresponds to a place in the circuit where two switches (or groups of 
switches) are connected in parallel.
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As you’ll recall, the salesperson first brought out an unneutered tan 
male. Close the appropriate switches:

Although the M, T, and NOT W switches are closed, we don’t have a 
complete circuit to light up the lightbulb. Next the salesperson brought out 
a neutered white female:

Again, the right switches aren’t closed to complete a circuit. But finally, 
the salesperson brought out a neutered gray female:
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And that’s enough to complete the circuit, light up the lightbulb, and 
indicate that the kitten satisfies all your criteria.

George Boole never wired such a circuit. He never had the thrill of see-
ing a Boolean expression realized in switches, wires, and lightbulbs. One 
obstacle, of course, was that the incandescent lightbulb wasn’t invented 
until 15 years after Boole’s death. But the telegraph had been invented 
ten years before the publication of Boole’s The Laws of Thought, and an 
important part of the telegraph system was a simple device that could per-
form operations of logic with much more agility than mere switches could. 
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Chapter Eleven

Bit by Bit by Bit

A story dating from at least the 1950s tells of a man traveling home 
after a stint in a distant prison. He doesn’t know if he’ll be wel-
comed back, so he requests a sign in the form of some cloth tied 

around a branch of a tree. In one version of the story, the man is traveling 
by train to his family, and he hopes to see a white ribbon on an apple tree. 
In another, he’s traveling by bus to his wife, and he’s looking for a yellow 
handkerchief on an oak tree. In both versions of the story, the man arrives 
to see the tree covered with hundreds of these banners, leaving no doubt of 
his welcome. 

The story was popularized in 1973 with the hit song “Tie a Yellow Rib-
bon Round the Ole Oak Tree,” and since then, displaying a yellow ribbon 
has also become a custom when family members or loved ones are away 
at war.

The man who requested that yellow ribbon wasn’t asking for elaborate 
explanations or extended discussion. He didn’t want any ifs, ands, or buts. 
Despite the complex feelings and emotional histories that would have been 
at play, all the man really wanted was a simple yes or no. He wanted a yel-
low ribbon to mean “Yes, even though you messed up big time and you’ve 
been in prison for three years, I still want you back with me under my 
roof.” And he wanted the absence of a yellow ribbon to mean “Don’t even 
think about stopping here.”

These are two clear-cut, mutually exclusive alternatives. Equally e�ec-
tive as the yellow ribbon (but perhaps more awkward to put into song lyrics) 
would be a tra�c sign in the front yard: perhaps “Merge” or “Wrong Way.”

Or a sign hung on the door: “Open” or “Closed.” 
Or a flashlight in the window, turned on or o�.
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You can choose from lots of ways to say yes or no if that’s all you need 
to say. You don’t need a sentence to say yes or no; you don’t need a word, 
and you don’t even need a letter. All you need is a bit, and by that I mean 
all you need is a 0 or a 1.

As you discovered in the two previous chapters, there’s nothing all that 
special about the decimal number system that we normally use for count-
ing. It’s pretty clear that we base our number system on ten because that’s 
the number of fingers we have. We could just as reasonably base our num-
ber system on eight (if we were cartoon characters) or four (if we were 
lobsters) or even two (if we were dolphins).

There’s nothing special about the decimal number system, but there is
something special about binary, because binary is the simplest number sys-
tem possible. There are only two binary digits—0 and 1. If we want some-
thing simpler than binary, we’ll have to get rid of the 1, and then we’ll be 
left with just a 0, and we can’t do much of anything with just that.

The word bit, coined to mean binary digit, is surely one of the loveliest 
words invented in connection with computers. Of course, the word has the 
normal meaning, “a small portion, degree, or amount,” and that normal 
meaning is perfect because one binary digit is a very small quantity indeed.

Sometimes when a word is invented, it also assumes a new meaning. 
That’s certainly true in this case. Beyond the binary digits used by dolphins 
for counting, the bit has come to be regarded in the computer age as the 
basic building block of information.

Now that’s a bold statement, and of course, bits aren’t the only things 
that convey information. Letters and words and Morse code and Braille 
and decimal digits convey information as well. The thing about the bit is 
that it conveys very little information. A bit of information is the tiniest 
amount of information possible, even if that information is as important 
as the yellow ribbon. Anything less than a bit is no information at all. But 
because a bit represents the smallest amount of information possible, more 
complex information can be conveyed with multiple bits. 

“Listen, my children, and you shall hear / Of the midnight ride of Paul 
Revere,” wrote Henry Wadsworth Longfellow, and while he might not 
have been historically accurate when describing how Paul Revere alerted 
the American colonies that the British had invaded, he did provide a 
thought-provoking example of the use of bits to communicate important 
information:

He said to his friend “If the British march
By land or sea from the town to-night,
Hang a lantern aloft in the belfry arch

Of the North Church tower as a signal light—
One, if by land, and two, if by sea…”
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To summarize, Paul Revere’s friend has two lanterns. If the British are 
invading by land, he will put just one lantern in the church tower. If the 
British are coming by sea, he will put both lanterns in the church tower.

However, Longfellow isn’t explicitly mentioning all the possibilities. He 
left unspoken a third possibility, which is that the British aren’t invading 
just yet. Longfellow implies that this circumstance will be conveyed by the 
absence of lanterns in the church tower.

Let’s assume that the two lanterns are actually permanent fixtures in the 
church tower. Normally they aren’t lit:

This means that the British aren’t yet invading. If one of the lanterns is lit,

or

the British are coming by land. If both lanterns are lit,

the British are coming by sea.
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Each lantern is a bit and can be represented by a 0 or 1. The story of the 
yellow ribbon demonstrates that only one bit is necessary to convey one of 
two possibilities. If Paul Revere needed only to be alerted that the British 
were invading and not where they were coming from, one lantern would 
have su�ced. The lantern would have been lit for an invasion and unlit for 
another evening of peace.

Conveying one of three possibilities requires another lantern. Once that 
second lantern is present, however, the two bits allow communicating one 
of four possibilities:

00 = The British aren’t invading tonight.
01 = They’re coming by land.
10 = They’re coming by land.
11 = They’re coming by sea.

What Paul Revere did by sticking to just three possibilities was actually 
quite sophisticated. In the lingo of communication theory, he used redun-
dancy to o�set the e�ect of noise. The word noise is used in communi-
cation theory to refer to anything that interferes with communication. A 
bad mobile connection is an obvious example of noise that interferes with 
a phone communication. Communication over the phone is usually suc-
cessful even in the presence of noise because spoken language is heavily 
redundant. We don’t need to hear every syllable of every word in order to 
understand what’s being said.

In the case of the lanterns in the church tower, noise can refer to the 
darkness of the night and the distance of Paul Revere from the tower, both 
of which might prevent him from distinguishing one lantern from the other. 
Here’s the crucial passage in Longfellow’s poem:

And lo! As he looks, on the belfry’s height
A glimmer, and then a gleam of light!

He springs to the saddle, the bridle he turns,
But lingers and gazes, till full on his sight

A second lamp in the belfry burns!

It certainly doesn’t sound as if Paul Revere was in a position to figure out 
exactly which one of the two lanterns was first lit.

The essential concept here is that information represents a choice among 
two or more possibilities. When we talk to another person, every word we 
speak is a choice among all the words in the dictionary. If we numbered 
all the words in the dictionary from 1 through 351,482, we could just as 
accurately carry on conversations using the numbers rather than words. 
(Of course, both participants would need dictionaries in which the words 
are numbered identically, as well as plenty of patience.)
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The flip side of this is that any information that can be reduced to a 
choice among two or more possibilities can be expressed using bits. Need-
less to say, there are plenty of forms of human communication that do not
represent choices among discrete possibilities and that are also vital to our 
existence. This is why people don’t form romantic relationships with com-
puters. (Let’s hope not, anyway.) If you can’t express something in words, 
pictures, or sounds, you’re not going to be able to encode the information 
in bits. Nor would you want to.

For over a decade toward the end of the 20th century, the film crit-
ics Gene Siskel and Robert Ebert demonstrated a use of bits in the TV 
program they hosted, called At the Movies. After delivering their more 
detailed movie reviews they would issue a final verdict with a thumbs-up 
or a thumbs-down.

If those two thumbs are bits, they can represent four possibilities:

00 = They both hated it.
01 = Siskel hated it; Ebert loved it.
10 = Siskel loved it; Ebert hated it.
11 = They both loved it.

The first bit is the Siskel bit, which is 0 if Siskel hated the movie and 1 if 
he liked it. Similarly, the second bit is the Ebert bit.

So back in the day of At the Movies, if your friend asked you, “What was 
the verdict from Siskel and Ebert about that new movie Impolite Encoun-
ter?” instead of answering, “Siskel gave it a thumbs-up and Ebert gave it 
a thumbs-down” or even “Siskel liked it; Ebert didn’t,” you could have 
simply said, “One zero,” or if you converted to quaternary, “Two.” As long 
as your friend knew which was the Siskel bit and which was the Ebert bit, 
and that a 1 bit meant thumbs-up and a 0 bit meant thumbs-down, your 
answer would be perfectly understandable. But you and your friend have 
to know the code.

We could have declared initially that a 1 bit meant a thumbs-down and 
a 0 bit meant a thumbs-up. That might seem counterintuitive. Naturally, 
we like to think of a 1 bit as representing something a�rmative and a 
0 bit as the opposite, but it’s really just an arbitrary assignment. The only 
requirement is that everyone who uses the code must know what the 0 and 
1 bits mean.

The meaning of a particular bit or collection of bits is always understood 
contextually. The meaning of a yellow ribbon around a particular oak tree 
is probably known only to the person who put it there and the person who’s 
supposed to see it. Change the color, the tree, or the date, and it’s just a 
meaningless scrap of cloth. Similarly, to get some useful information out 
of Siskel and Ebert’s hand gestures, at the very least we need to know what 
movie is under discussion.
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If while watching At the Movies you maintained a list of the films and 
how Siskel and Ebert voted with their thumbs, you could have added 
another bit to the mix to include your own opinion. Adding this third bit 
increases the number of di�erent possibilities to eight:

000 = Siskel hated it; Ebert hated it; I hated it.
001 = Siskel hated it; Ebert hated it; I loved it.
010 = Siskel hated it; Ebert loved it; I hated it.
011 = Siskel hated it; Ebert loved it; I loved it.
100 = Siskel loved it; Ebert hated it; I hated it.
101 = Siskel loved it; Ebert hated it; I loved it.
110 = Siskel loved it; Ebert loved it; I hated it.
111 = Siskel loved it; Ebert loved it; I loved it.

One bonus of using bits to represent this information is that we know 
that we’ve accounted for all the possibilities. We know there can be eight 
and only eight possibilities and no more or fewer. With 3 bits, we can count 
only from zero to seven. There are no more three-digit binary numbers. As 
you discovered toward the end of the previous chapter, these three-digit 
binary numbers can also be expressed as octal numbers 0 through 7.

Whenever we talk about bits, we often talk about a certain number of 
bits. The more bits we have, the greater the number of di�erent possibilities 
we can convey.

It’s the same situation with decimal numbers, of course. For example, 
how many telephone area codes are there? The area code is three deci-
mal digits long, and if all the combinations of three digits are used (which 
they aren’t, but we’ll ignore that), there are 103, or 1000, codes, ranging 
from 000 through 999. How many seven-digit phone numbers are possible 
within the 212 area code? That’s 107, or 10,000,000. How many phone 
numbers can you have with a 212 area code and a 260 prefix? That’s 104, 
or 10,000.

Similarly, in binary the number of possible codes is always equal to 2 to 
the power of the number of bits:

Number of Bits Number of Codes
1 21 = 2
2 22 = 4
3 23 = 8
4 24 = 16
5 25 = 32
6 26 = 64
7 27 = 128
8 28 = 256
9 29 = 512
10 210 = 1024
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Every additional bit doubles the number of codes.
If you know how many codes you need, how can you calculate how 

many bits you need? In other words, how do you go backward in the pre-
ceding table?

The math you need is the base-two logarithm. The logarithm is the 
opposite of the power. We know that 2 to the 7th power equals 128. The 
base-two logarithm of 128 equals 7. To use more mathematical notation, 
this statement

27 = 128

is equivalent to this statement:

log2128 = 7

So if the base-two logarithm of 128 is 7 and the base-two logarithm of 
256 is 8, then what’s the base-two logarithm of numbers in between 128 
and 256—for example, 200? It’s actually about 7.64, but we really don’t 
have to know that. If we needed to represent 200 di�erent things with bits, 
we’d need 8 bits, just as when Paul Revere needed two lanterns to convey 
one of three possibilities. Going strictly by the mathematics, the number of 
bits required for Paul Revere’s three possibilities is the base-two logarithm 
of 3, or about 1.6, but in a practical sense, he needed 2.

Bits are often hidden from casual observation deep within our elec-
tronic appliances. We can’t see the bits encoded inside our computers, or 
streaming through the wires of our networks, or in the electromagnetic 
waves surrounding Wi-Fi hubs and cell towers. But sometimes the bits are 
in clear view.

Such was the case on February 18, 2021, when the Perseverance rover 
landed on Mars. The parachute seen in a photograph from the rover was 
assembled from 320 orange and white strips of fabric arranged in four 
concentric circles:
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It didn’t take long for Twitter users to decode the pattern. The key is to 
divide the strips of fabric into groups of seven containing both orange and 
white. These groups of seven strips are always separated by three white 
strips. The areas consisting of consecutive orange strips are ignored. In this 
diagram, each group of seven strips is surrounded by a heavy black line:
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Each of these groups is a binary number with a white strip representing 
0 and an orange strip representing 1. Right above the inner circle is the 
first group. Going clockwise, these seven strips encode the binary number 
0000100, or decimal 4. The 4th letter of the alphabet is D. The next one 
going clockwise is 0000001, or decimal 1. That’s an A. Next is 0010010, 
or decimal 18. The 18th letter of the alphabet is R. Next is 00000101, or 
decimal 5, which is an E. The first word is DARE. 

Now jump to the next outer level. The bits are 0001101, or decimal 13, 
the letter M. When you finish, you’ll spell out three words, a phrase that 
originated with Teddy Roosevelt and that has become the uno�cial motto 
of the NASA Jet Propulsion Laboratory. 
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Around the outer circle are some encoded numbers as well, revealing 
the latitude and longitude of the Jet Propulsion Laboratory: 34°11′58″N 
118°10′31″W. With the simple coding system used here, there’s nothing 
that distinguishes letters and numbers. The numbers 10 and 11 that are 
part of the geographic coordinates could be the letters J and K. Only the 
context tells us that they’re numbers.

Perhaps the most common visual display of binary digits is the ubiqui-
tous Universal Product Code (UPC), that little barcode symbol that appears 
on virtually every packaged item that we purchase. The UPC is one of 
dozens of barcodes used for various purposes. If you have the printed ver-
sion of this book, you’ll see on the back cover another type of barcode that 
encodes the book’s International Standard Book Number, or ISBN.

Although the UPC inspired some paranoia when it was first introduced, 
it’s really an innocent little thing, invented for the purpose of automating 
retail checkout and inventory, which it does fairly successfully. Prior to the 
UPC, it wasn’t possible for supermarket registers to provide an itemized 
sales receipt. Now it’s commonplace.
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Of interest to us here is that the UPC is a binary code, although it might 
not seem like one at first. It might be interesting to decode the UPC and 
examine how it works.

In its most common form, the UPC is a collection of 30 vertical black 
bars of various widths, divided by gaps of various widths, along with some 
digits. For example, this is the UPC that appears on the 10¾-ounce can of 
Campbell’s Chicken Noodle Soup:

0 7000 0125115

That same UPC appeared in the first edition of this book. It hasn’t 
changed in over 20 years!

We’re tempted to try to visually interpret the UPC in terms of thin bars 
and black bars, narrow gaps and wide gaps, and indeed, that’s one way to 
look at it. The black bars in the UPC can have four di�erent widths, with 
the thicker bars being two, three, or four times the width of the thinnest 
bar. Similarly, the wider gaps between the bars are two, three, or four times 
the width of the thinnest gap.

But another way to look at the UPC is as a series of bits. Keep in mind 
that the whole barcode symbol isn’t exactly what the scanner “sees” at the 
checkout counter. The scanner doesn’t try to interpret the numbers printed 
at the bottom, for example, because that would require a more sophis-
ticated computing technique, known as optical character recognition, or 
OCR. Instead, the scanner sees just a thin slice of this whole block. The 
UPC is as large as it is to give the checkout person something to aim the 
scanner at. The slice that the scanner sees can be represented like this:

This looks almost like Morse code, doesn’t it? In fact, the original inven-
tion of scannable barcodes was partially inspired by Morse code.

As the computer scans this information from left to right, it assigns a 1 
bit to the first black bar it encounters and a 0 bit to the next white gap. The 
subsequent gaps and bars are read as a series of 1, 2, 3, or 4 bits in a row, 
depending on the width of the gap or the bar. The correspondence of the 
scanned barcode to bits is simply:

10100011010110001001100100011010001101000110101010111001011001101101100100111011001101000100101
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So the entire UPC is simply a series of 95 bits. In this particular example, 
the bits can be grouped as follows:

Bits Meaning
101 Left-had guard pattern

0001101

Left-side digits

0110001
0011001
0001101
0001101
0001101

01010 Center guard pattern

1110010

Right-side digits

1100110
1101100
1001110
1100110
1000100

101 Right-hand guard pattern

The first 3 bits are always 101. This is known as the left-hand guard 
pattern, and it allows the computer-scanning device to get oriented. From 
the guard pattern, the scanner can determine the width of the bars and 
gaps that correspond to single bits. Otherwise, the UPC would have to be a 
specific size on all packages.

The left-hand guard pattern is followed by six groups of 7 bits each. 
You’ll see shortly how each of these is a code for a numeric digit 0 through 9. 
A 5-bit center guard pattern follows. The presence of this fixed pattern 
(always 01010) is a form of built-in error checking. If the computer scanner 
doesn’t find the center guard pattern where it’s supposed to be, it won’t 
acknowledge that it has interpreted the UPC. This center guard pattern is 
one of several precautions against a code that has been tampered with or 
badly printed.

The center guard pattern is followed by another six groups of 7 bits each, 
which are then followed by a right-hand guard pattern, which is always 
101. This guard pattern at the end allows the UPC code to be scanned 
backward (that is, right to left) as well as forward.

So the entire UPC encodes 12 numeric digits. The left side of the UPC 
encodes six digits, each requiring 7 bits. You can use the following table to 
decode these bits:
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Left-Side Codes
0001101 = 0 0110001 = 5
0011001 = 1 0101111 = 6
0010011 = 2 0111011 = 7
0111101 = 3 0110111 = 8
0100011 = 4 0001011 = 9

Notice that each 7-bit code begins with a 0 and ends with a 1. If the 
scanner encounters a 7-bit code on the left side that begins with a 1 or ends 
with a 0, it knows either that it hasn’t correctly read the UPC code or that 
the code has been tampered with. Notice also that each code has only two 
groups of consecutive 1 bits. This implies that each digit corresponds to 
two vertical bars in the UPC code.

Examine these codes more closely, and you’ll discover that they all have 
an odd number of 1 bits. This is another form of error and consistency 
checking, known as parity. A group of bits has even parity if it has an even 
number of 1 bits and odd parity if it has an odd number of 1 bits. Thus, all 
of these codes have odd parity.

To interpret the six 7-bit codes on the right side of the UPC, use the 
following table:

Right-Side Codes
1110010 = 0 1001110 = 5
1100110 = 1 1010000 = 6
1101100 = 2 1000100 = 7
1000010 = 3 1001000 = 8
1011100 = 4 1110100 = 9

These codes are the opposites or complements of the earlier codes: 
Wherever a 0 appeared is now a 1, and vice versa. These codes always 
begin with a 1 and end with a 0. In addition, they have an even number of 
1 bits, which is even parity.

So now we’re equipped to decipher the UPC. Using the two preced-
ing tables, we can determine that the 12 decimal digits encoded in the 
10¾-ounce can of Campbell’s Chicken Noodle Soup are

0 51000 01251 7

This is very disappointing. As you can see, these are precisely the same 
numbers that are conveniently printed at the bottom of the UPC. (This 
makes a lot of sense: If the scanner can’t read the code for some reason, 
the person at the register can manually enter the numbers. Indeed, you’ve 
undoubtedly seen this happen.) We didn’t have to go through all that work 
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to decode the numbers, and moreover, we haven’t come close to revealing 
any secret information. Yet there isn’t anything left in the UPC to decode. 
Those 30 vertical lines resolve to just 12 digits.

Of the 12 decimal digits, the first (a 0 in this case) is known as the 
number system character. A 0 means that this is a regular UPC code. If the 
UPC appeared on variable-weight grocery items such as meat or produce, 
the code would be a 2. Coupons are coded with a 5.

The next five digits make up the manufacturer code. In this case, 51000 
is the code for the Campbell Soup Company. All Campbell products have 
this code. The five digits that follow (01251) are the code for a particular 
product of that company—in this case, the code for a 10 ¾-ounce can of 
Chicken Noodle Soup. This product code has meaning only when com-
bined with the manufacturer’s code. Another company’s chicken noodle 
soup might have a di�erent product code, and a product code of 01251 
might mean something totally di�erent from another manufacturer.

Contrary to popular belief, the UPC doesn’t include the price of the item. 
That information has to be retrieved from the computer that the store uses 
in conjunction with the checkout scanners.

The final digit (a 7 in this case) is called the modulo check character. 
This character enables yet another form of error checking. You can try 
it out: Assign each of the first 11 digits (0 51000 01251 in our example) 
a letter:

A BCDEF GHIJK

Now calculate the following:

3 × (A + C + E + G + I + K) + (B + D + F + H + J)

and subtract that from the next highest multiple of 10. In the case of Camp-
bell’s Chicken Noodle Soup, we have

3 × (0 + 1 + 0 + 0 + 2 + 1) + (5 + 0 + 0 + 1 + 5) = 3 × 4 + 11 = 23

The next highest multiple of 10 is 30, so

30 − 23 = 7

and that’s the modulo check character printed and encoded in the UPC. 
This is a form of redundancy. If the computer controlling the scanner 
doesn’t calculate the same modulo check character as the one encoded in 
the UPC, the computer won’t accept the UPC as valid.

Normally, only 4 bits would be required to specify a decimal digit from 
0 through 9. The UPC uses 7 bits per digit. Overall, the UPC uses 95 bits 
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to encode only 11 useful decimal digits. Actually, the UPC includes blank 
space (equivalent to nine 0 bits) at both the left and right sides of the guard 
pattern. That means the entire UPC requires 113 bits to encode 11 decimal 
digits, or over 10 bits per decimal digit!

Part of this overkill is necessary for error checking, as we’ve seen. A 
product code such as this wouldn’t be very useful if it could be easily altered 
by a customer wielding a felt-tip pen.

The UPC also benefits by being readable in both directions. If the first 
digits that the scanning device decodes have even parity (that is, an even 
number of 1 bits in each 7-bit code), the scanner knows that it’s interpreting 
the UPC code from right to left. The computer system then uses this table 
to decode the right-side digits:

Right-Side Codes in Reverse
0100111 = 0 0111001 = 5
0110011 = 1 0000101 = 6
0011011 = 2 0010001 = 7
0100001 = 3 0001001 = 8
0011101 = 4 0010111 = 9

And this table for the left-side digits:

Left-Side Codes in Reverse
1011000 = 0 1000110 = 5
1001100 = 1 1111010 = 6
1100100 = 2 1101110 = 7
1011110 = 3 1110110 = 8
1100010 = 4 1101000 = 9

These 7-bit codes are all di�erent from the codes read when the UPC is 
scanned from left to right. There’s no ambiguity.

One way to cram more information in a scannable code is to move to 
two dimensions. Instead of a string of thick and thin bars and spaces, cre-
ate a grid of black and white squares. 

The most common two-dimensional barcode is probably the Quick 
Response (QR) code, first developed in Japan in 1994 and now used for a 
variety of purposes.

Creating your own QR code is free and easy. Several websites exist for 
that very purpose. Software is also readily available that can scan and 
decode QR codes through a camera on a mobile device. Dedicated QR 
scanners are available for industrial purposes, such as tracking shipments 
or taking inventory in warehouses.  
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Here’s a QR code that encodes the URL of the website for this book, 
CodeHiddenLanguage.com:

If you have an app on your mobile device that can read QR codes, you 
can point it at that image and go to the website.

QR codes consist of a grid of squares that are called modules in the 
o�cial QR specification. This particular QR code has 25 modules hori-
zontally and vertically, which is a size called Version 2. Forty di�erent sizes 
of QR codes are supported; Version 40 has 177 modules horizontally and 
vertically. 

If each little block is interpreted as a bit—0 for white and 1 for black—a 
grid of this size potentially encodes 25 times 25, or 625 bits. But the real 
storage capability is about a third of that. Much of the information is 
devoted to a mathematically complex and sophisticated scheme of error 
correction. This protects the QR code from tampering and can also aid in 
recovering data that might be missing from a damaged code. I will not be 
discussing QR code error correction.

Mostly obviously, the QR code also contains several fixed patterns that 
assist the QR scanner in properly orienting the grid. In the following image, 
the fixed patterns are shown in black and white, and everything else is 
shown in gray:

http://CodeHiddenLanguage.com:
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The three large squares at the corners are known as finder patterns; the 
smaller square toward the lower right is known as an alignment pattern. 
These assist the QR code reader in properly orienting the code and com-
pensating for any distortion. The horizontal and vertical sequences of alter-
nating black and white cells near the top and at the left are called timing 
patterns and are used for determining the number of cells in the QR code. 
In addition, the QR code must be entirely surrounded by a quiet zone, 
which is a white border four times as wide as a cell. 

Programs that create a QR code have several options, including di�erent 
systems of error correction. Information required for a QR code reader to 
perform this error correction (and other tasks) is encoded in 15 bits called 
format information. These 15 bits appear twice in the QR code. Here are 
those 15 bits labeled 0 through 14 on the right and bottom of the upper-left 
finder pattern, and repeated below the upper-right finder pattern and to the 
right of the lower-left finder pattern:
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Bits are sometimes labeled with numbers like this to indicate how they 
constitute a longer value. The bit labeled 0 is the least significant bit and 
appears at the far right of the number. The bit labeled 14 is the most signif-
icant bit and appears at the left. If white cells are 0 bits and black cells are 
1 bits, here is that complete 15-bit number:

111001011110011

Why is bit 0 the least significant bit? Because it occupies the position 
in the full number corresponding to 2 to the zero power. (See the top of 
page 109 if you need a reminder of how bits compose a number.) 

The actual numeric value of this 15-bit number is not important, because 
it consolidates three pieces of information. The two most significant bits 
indicate one of four error-correction levels. The ten least significant bits 
specify a 10-bit BCH code used for error correction. (BCH stands for the 
inventors of this type of code: Bose, Chaudhuri, and Hocquenghem. But I 
promised I wouldn’t discuss the QR code error correction!)

In between the 2-bit error-correction level and the 10-bit BCH code are 
three bits that are not used for error correction. I’ve highlighted those three 
bits in bold:

111001011110011

It turns out that QR code readers work best when there are approxi-
mately an equal number of black and white squares. With some encoded 
information, this will not be the case. The program that creates the QR 
code is responsible for selecting a mask pattern that evens out the number 
of black and white squares. This mask pattern is applied to the QR code to 
flip selected cells from white or black, or black to white, and hence the bits 
that they represent from 0 to 1 and from 1 to 0.
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The documentation of the QR code defines eight di�erent mask patterns 
that can be specified by the eight 3-bit sequences 000, 001, 010, 011, 100, 
101, 110, and 111. The value in the QR code that we’re examining is 100, 
and that corresponds to a mask pattern consisting of a series of horizontal 
lines alternating every other row:

Every cell in the original QR code that corresponds to a white area in 
this mask remains unchanged. Every cell that corresponds to a black area 
must be flipped from white to black, or from black to white. Notice that the 
mask avoids altering the fixed areas and the QR information area. Here’s 
what happens when this mask is applied to the original QR code:
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The mask doesn’t change the fixed and information areas. Otherwise, 
if you compare this image with the original QR code, you’ll see that the 
top row is reversed in color, the second row is the same, the third row is 
reversed, and so on.

Now we’re ready to start digging into the actual data. Begin with the 
four bits in the lower-right corner. In the following image, those cells are 
numbered 0 through 3, where 3 is the most significant bit and 0 is the least 
significant bit:

These four bits are known as the data type indicator, and they indicate 
what kind of data is encoded in the QR code. Here are a few of the possible 
values:

Date-Type Indicator Meaning
0001 Numbers only
0010 Uppercase letters and numbers
0100 Text encoded as 8-bit values
1000 Japanese kanji

The value for this QR code is 0100, meaning that the data consists of 
8-bit values that encode text. 

The next item is stored in the eight cells above the data type indicator. 
These eight bits are numbered 0 through 7 in this illustration:
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This value is 00011010, which is 26 in decimal. That’s the number of 
characters encoded in the QR code. 

The order of these characters is systematic but weird. The characters 
begin right above the character count. Each character usually—though not 
always—occupies an area that is two cells wide and four cells tall, and the 
characters wind through the grid like this:

Not all characters occupy areas that are two cells wide and four cells 
tall. Fortunately, the o�cial QR specification is quite precise about how 
the bits are oriented when the area is not rectangular. In this next image, 
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the cells for each of the 26 characters are outlined in red, and the cells are 
numbered 0 through 7, where 0 denotes the least significant bit and 7 the 
most significant bit:

The QR specification indicates that text is encoded in the QR code using 
8-bit values defined in a standard known as ISO/IEC 8859. That’s a fancy 
term for a variation of the American Standard Code for Information Inter-
change (ASCII), which I’ll be discussing in more detail in Chapter 13. 

The first character is 01110111, which is the ASCII code for w. The next 
character up is the same. The next character extends to the left, but it is 
also another w. Now proceed down the next two pairs of columns. The 
next character is 00101110, which is the period, then 01000011, the upper-
case C followed by 01101111, o. The next character straddles the next pair 
of rows. It’s 01100100: d. The next character begins below the alignment 
pattern and continues above it. The ASCII code is 01100101, which is e. 
Continue in this way to spell out www.CodeHiddenLanguage.com.

That’s it. Most of what’s left in the QR code is devoted to error correction. 
Codes such as the UPC and QR certainly look forbidding at first glance, 

and people might be forgiven for assuming that they encode secret (and per-
haps devious) information. But in order for these codes to be widely used, 
they must be well documented and publicly available. The more that they’re 
used, the more potentially valuable they become as another extension of 
our vast array of communication media. 

Bits are everywhere, but toward the end of my discussion of the QR 
code, I referred to “8-bit values.” There’s a special word for 8-bit values. 
You may have heard of it.

http://www.CodeHiddenLanguage.com
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Byron, Augusta Ada, 186, 379, 432
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ASCII characters and, 159
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hexadecimal system and, 140–141, 143
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De Morgan’s laws for, 90
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hardware as, 311
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BCD (binary-coded decimal), 242–243, 
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BDOS (Basic Disk Operating System), 418
Bell 103, 452
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Berners-Lee, Tim, 454
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Morse code, 6, 12, 149–150
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shift and escape codes in, 19
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adding machines for, 169–182
adding/multiplying, 111–112, 391
bits as digits in, 116, 118
counting in, 236
decimal equivalents, 112–113, 441
digital revolution via, 111
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hexadecimals and, 142, 143
octal equivalents, 113–114
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subtraction and, 200–202
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coining of term, 116
hidden messages in, 123–126
memory and, 285
multiples of, 139
possibilities conveyed by, 121–123
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sum and carry, 170–171
UPC barcodes, 126–131
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blocks, 431
BOM (byte order mark), 164
Boole, George, 42, 44, 49, 56
Boolean algebra, 42–56, 90, 323, 439
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bootstrap loader, 417
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code description, 14–19
communication via, 3, 150
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Grade 2, 17–19
invention of, 13–14

Braille, Louis, 13, 16, 17
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RAM, 285–287, 291
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wiring, 67–88

control signals, 295, 355–378
conventional algebra, 42, 43–44, 45–46
counters, 192, 236–237, 382
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binary number, 236
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417–419, 422, 426
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components, 319, 356–359
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function of, vii–viii, 316, 402
machine cycles, 360–362
movement of bytes in, 335–348
program for, 317–319
speed of, 316

current, 27, 28, 264
cycles, 360–362, 379
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D
daguerreotypes, 57
data

bytes following codes as, 339
communication long-distance, 451–452
level-triggered flip-flop, 220–225
memory as code and, 315, 319

data bus, 346, 355
Data In, 221–231, 235, 238, 268–274, 287
Data Out, 272–287, 292, 293, 297, 298
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debugging, 433, 440
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binary conversions, 109–113, 441
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Code: The Hidden Language of Computer 
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CodeHiddenLanguage.com, viii, 132, 454, 

455, 456
codes 

ASCII, 153–158
Baudot codes, 150–153
binary. see binary codes
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coding and, 425–445
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errors in, 17
keyboard, 406–407
language as, 91
Morse code, 2–6, 7–12
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around corners, 31–33, 38
bits for, 123–126
development of, 1–2, 3
long-distance digital, 451–452
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compilers, 429, 430, 432
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chips, 192–196
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microprocessors in, 312–313
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Dummer, Geo¡rey, 192

E
earth, grounding via, 35–38
EBCDIC (Extended BCD Interchange Code), 
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Enable signal, 280, 281, 304
encapsulation, 176
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math + hardware as, 65
NAND gates, 84–86
NOR gates, 81–84
OR gates, 76–78
rules governing, 80
silicon chip, 194
speed and, 376
technology progression of, 196
transistors for, 191–192
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M
MAC addresses, 453, 454
machine codes, 317–319, 413–414
Macintosh, 421–422, 423
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floating-point arithmetic, 441–445
logic and, 42
logic gates and, 65
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megabytes, 284
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symbol for, 173
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wiring, 76–78

OR operators, 90, 324–326
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oscillators, 216, 232, 235, 237, 263, 296, 368
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adding machine, 171
AND gate, 74–75
bu¡er, 88
devices, 67
frequency divider, 235
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NAND gate, 86, 174
NOR gate, 84
OR gate, 78, 174
relay, 70–71
R-S flip-flop, 220–225
telegraph, 62

overflow, 203–204, 209, 402
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parity, 129
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Paterson, Tim, 419
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Pearson Education, Inc., x
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peripherals, 315, 403–412
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phones, 423
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color of, 144
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video display, 403–405, 420–421

plain text files, 157–158
PNG (Portable Network Graphics), 409
ports, I/O, 406
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potential, 27, 28, 38
precedence codes, 19
prime number algorithm, 439
program counter, 348, 350, 351, 358, 360
programmers, 419, 428, 430
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Nelson, Ted, 450, 451, 454
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neutrons, 23
nibbles, 140, 160, 396, 397
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noise, 120
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flip-flop, 217–220, 268
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wiring, 81–84
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floating-point, 441–445
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113–114, 139–141, 271
Ohm, Georg Simon, 27
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servers, 453, 457
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short circuits, 28, 278–279
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signal amplification, 68, 88, 189
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solid-state electronics, 190, 412
sound, 409–411
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relay, 63
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cascaded, 71–75
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electrically triggered, 68–69
series of, 71–75
telegraph, 62–63
wiring, 67–88, 214

repetition, 379
reset, 368, 371, 414
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insulators, 26–27
ohms measuring, 28–29
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restart instructions, 407
RET statement, 395–402
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Ritchie, Dennis, 423
ROM (read-only memory), 261–262, 264, 416
ROM matrices, 373, 375, 376, 389
Roman numerals, 93–94
rotate instructions, 394–395
routers, 453, 455
routines, 395–398
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R-S (Reset-Set) flip-flops, 220–225
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S
saving data, 225
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Von Neumann, John, 188

W
Watt, James, 29
web browsers, 456
websites, 454–455
Wells, H. G., 447, 451, 457, 459
Wilson, Flip, 422
Windows, 160, 161, 423
wires

adding machine, 171–172
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connectivity via, 22, 26
flip-flop, 217–220
internet, 452–453
resistance and length of, 38–39, 61
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triggering relays with, 68–69
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Wozniak, Steve, 313
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Xerox, 421
XOR gates, 175–176, 204–205, 250–251
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Zuse, Conrad, 183
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tablets, 423
tags, 434, 454
Takeover switch, 286, 287, 291
TCP/IP, 455
telegraph, the

bidirectional, 31–33
computer hardware and, 7
invention of, 58–61
relays/repeaters, 62
wire length for, 39

telephone system, 68
teletypewriters, 150, 152
ten, 92, 94–97, 99
tens’ complement, 207
terabytes, 284
terminals, battery, 25–26
text

changing case, 323–327
character encoding, 149
editor, 426
memory for, 405–406
plain text files, 157–158, 159
word wrapping, 157–158

Thompson, Ken, 423
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Tide-Predicting Machine, 184
Torvalds, Linus, 424
touchscreen, 408
transistors, 189–192, 265, 278–281
transmission errors, 17
triggering relays, 68–69
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tri-state bu¡ers, 280–281, 292, 304, 308, 332, 
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tungsten, 22
Turing, Alan, 386, 387
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