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Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions 
used in the IOS Command Reference. The Command Reference describes these  
conventions as follows:

■■ Boldface indicates commands and keywords that are entered literally as shown. In 
actual configuration examples and output (not general command syntax), boldface 
indicates commands that are manually input by the user (such as a show command).

■■ Italic indicates arguments for which you supply actual values.

■■ Vertical bars (|) separate alternative, mutually exclusive elements.

■■ Square brackets ([ ]) indicate an optional element.

■■ Braces ({ }) indicate a required choice.

■■ Braces within brackets ([{ }]) indicate a required choice within an optional element.
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Foreword
Storage infrastructure has changed considerably in the past few years due to the  
adoption of all-flash storage through technologies like NVMe and NVMe over Fabrics 
(NVMe-oF), which have made storage devices even faster. Today, performance at  
millions of input/output per second (IOPS), response times in microseconds, and 
throughput of hundreds of gigabytes per second are the new norm. Together with 
demanding applications for AI/ML use cases, 5G connectivity, and business-critical 
transactional workloads, this ultra-fast storage can transfer huge amounts of data with 
requirements for much lower response times.

These realities are stress-testing existing storage networks running older and lower-
performance technologies such as rotational disks. The confluence of old and new also 
has the potential to increase the likelihood of network congestion and prevent the full 
capabilities of the newer technologies from being realized. Congestion has been a key 
concern for storage networks around the globe. At Cisco, we have seen this to be the top 
reason customers open support tickets and raise concerns in various other forms.

Paresh and Ed have been at the forefront of dealing with these issues. They have 
helped hundreds of customers design their storage networks with features resulting in 
congestion prevention and improved detection. They hold several patents in this field and 
have developed tools for congestion detection that are used by hundreds of customers 
and Cisco engineers alike. They are active storage technology evangelists who speak 
frequently at industry events and hold the distinction of being Cisco Live Distinguished 
Speakers. They have traveled worldwide to train customers and partners on this topic.

I’m excited that they chose to write about their first-hand experience with network 
congestion. A few things clearly stand out to me in this book.

It covers basic topics like flow control and goes deeper into advanced subjects like 
troubleshooting and prevention methods. This approach makes the book useful for newer 
users as well as experts.

This book covers many commonly used transports for storage networks, including Fibre 
Channel, TCP over lossy Ethernet, and RDMA over converged (lossless) Ethernet (RoCE). 
This provides a consistent approach to users, regardless of the transport under use, and 
facilitates learning.

The most unique aspect of this book is the multiple case studies that not only cover 
various real-world situations but also show step-by-step demonstrations of handling 
congestion issues.

The education in this book is one of a kind and will benefit users for years to come.

Yousuf Khan 
Vice President, Technical Marketing, Cisco
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Introduction
Congestion is perhaps the most critical problem in storage networks around the world. 
Over the years, we have worked with thousands of users to help them in detecting, trou-
bleshooting, and preventing congestion in storage networks. Our common observation is 
that most users lack a thorough understanding of this subject, and honestly, there is not 
much educational content that explains this subject practically. On one end, application 
developers are assuming unlimited access to storage, and the underlying infrastructure 
details are less relevant to them. On the other end are storage infrastructure teams that 
handle storage management and allocation. In between, the network teams deal with 
connectivity with limited visibility in the I/O operations flowing through the network. 
This lack of awareness results in delayed detection and solution. Early congestion  
symptoms are often ignored until application performance is severely degraded, leading 
to loss of revenue for organizations and long working hours for administrators.

However, eliminating congestion completely may not be worth the effort in most 
production networks. A more realistic aim, however, should be to reduce the severity of 
congestion so that application performance is acceptable.

Any network that is being used for reading data and writing data to a remote storage 
device is a storage network for the purposes of this book. Remote storage can be inside a 
SAN storage array, NAS device, public cloud, or even commodity servers being used with 
a software-defined storage (SDS) solution or a distributed file system such as Hadoop 
Distributed File System (HDFS).

The impact of congestion in these networks is much more severe than in a general-
purpose network because applications can’t proceed if data access is slow. Although 
reducing or eliminating congestion in storage networks has always been a top priority, 
in the past decade, the massive increase in data, together with the wide adoption of all-
flash storage, has made congestion even more prominent in data centers around the world. 
In addition, newer technologies like NVMe and NVMe over Fabrics are expected to 
increase network utilization to unprecedented levels.

Congestion in storage networks goes by many names. Fibre Channel users typically 
call it slow drain, even though, as you will see, this term covers merely a subset of the 
problems. In lossless Ethernet networks, the term PFC storm has emerged in the past 
few years, essentially referring to the same phenomenon. Among the TCP/IP networking 
community, TCP’s built-in flow-control and congestion-control mechanisms are well 
known. This book explains all these concepts and explains their relevance for storage 
traffic. More importantly, the focus is on the actions that users can take to detect, 
troubleshoot, and prevent congestion in storage networks.

Who This Book Is For
In addition to explaining how technology works, this book focuses on the practical use 
of technology. It takes a practical approach to solving problems within the constraints 
and challenges of the real world, where “just upgrade” is not a solution or at least cannot 



﻿    xxxiii

be applied quickly. It explains why some solutions, despite being technically viable,  
cannot be applied because they don’t align with the business or operations goals. We 
wrote this book for users of the technology, products, and solutions. At Cisco, we call 
them customers. In particular, this book is for these particular customers:

■■ Those who operate, design, or maintain a network that carries block, file, or object 
storage traffic

■■ Those who have experienced congestion in storage networks and are trying to  
educate themselves on this subject

■■ Those who want to learn the data-plane details of Fibre Channel, lossless Ethernet, 
and TCP

■■ Those who have a storage background but not much experience with TCP/IP  
networks

■■ Those who have TCP/IP background but not much experience in handling storage 
traffic

■■ Those who want to learn how different types of transports and networks handle 
storage traffic

■■ Those who are thinking about NVMe over Fabrics and are curious about its  
implications on network congestion

What This Book Is Not For
The focus of this book is on a particular topic—congestion—within a specific technol-
ogy segment—storage networks. It is not a general book on storage networks. It does 
not explain how to design, configure, and operate a storage network. Those are detailed 
topics and probably require dedicated books.

In addition, this book is not intended to help you make a buying decision. In other words, 
we do not want to make it a protocol war. Fibre Channel, lossless Ethernet (FCoE, RoCE, 
and RoCEv2), and TCP have their use cases and serve their purposes when used correctly.

Keep in mind that this book is less focused on the control plane than on the data plane. 
It does not explain routing protocols, discovery mechanisms, security policies, Fibre 
Channel zoning, and so on. In addition, FICON and InfiniBand are beyond the scope of 
this book.

Finally, internal architecture and congestion within end devices, such as servers, host 
operating systems, storage arrays, and NAS devices, is beyond the scope of this book.

Prerequisites for This Book
If you are reading this book, you have probably experienced congestion in storage  
networks or one of its variants, such as slow drain, overutilization, or PFC storms.
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We can’t say this is a beginner’s book. A basic understanding of storage architecture and 
its networks will be helpful. Those who have a limited background in these technologies 
can still benefit from this book without worrying about how these networks are 
configured. For example, this book does not explain configuration of zoning in Fibre 
Channel fabrics. Likewise, it does not explain configuration of quality of service in IP/
Ethernet networks for transporting storage traffic.

The Case Studies in This Book
This book provides a number of case studies, and all of them are real. Over the years,  
we have worked with thousands of organizations to detect, troubleshoot, and prevent 
congestion in their production networks. We feature just a few selected case studies that 
we believe can help the entire community.

Focus on Block-Storage Traffic in a Network
This book focuses on block-storage traffic in a network for two reasons. First, block 
storage has the most stringent requirements among all types of storage traffic. If a net-
work meets the requirements of block storage, it can very well exceed the requirements 
for file and object storage. Second, all types of storage traffic result in similar traffic  
patterns on a network. What you learn from block-storage networks for congestion  
management you can apply to other types of networks.

Fibre Channel Coverage
This is a book on Fibre Channel as much as it is on Ethernet and TCP. It actually dedi-
cates more pages to Fibre Channel chapters than to Ethernet and TCP chapters—for a 
couple of reasons:

■■ Fibre Channel networks continue to be the most common networks for carrying 
block-storage traffic.

■■ Even if you do not use Fibre Channel, there is a lot to learn from it because Fibre 
Channel is used by all types of organizations around the world for transporting 
block-storage traffic. In addition, Fibre Channel has the longest history of transport-
ing storage traffic among all the types of networks. It would be smart to learn from 
it and carry forward the same best practices.

Do not judge the lossless Ethernet and TCP chapters just by their page count. Many 
sections in those chapters refer to the earlier Fibre Channel chapters for details because 
the upper-layer protocols (SCSI and NVMe) are the same, regardless of the transport 
type. Their page counts would have been much higher had the earlier Fibre Channel 
chapters not already explained specific details.

Despite many claims and predictions, the reality is that Fibre Channel continues to be the 
most used network type for block-storage traffic in most data centers around the world.



﻿    xxxv

Consider these facts: According to 2022 numbers, the Fibre Channel switching total 
addressable market (TAM) is worth approximately $2 billion annually. This TAM has not 
changed much in the past 15 years. In fact, every 4 to 5 years, the TAM increases by 5% 
to 8% due to speed upgrades (16 GFC to 32 GFC to 64 GFC). More importantly, Fibre 
Channel SANs account for only 10% to 15% of the overall external storage systems’ 
expense, which was approximately $31 billion in 2022, and a vast majority of external 
storage devices connect to Fibre Channel SANs. There are investments also in servers 
and adapters that connect to the external storage arrays via Fibre Channel SANs. Besides 
having a stable market, Fibre Channel also has a future roadmap. As of this writing, the 
single-lane 128 GFC standard has been approved, and the 256 GFC standard is being 
developed.

We work with all kinds of organizations around the world that have hundreds of 
thousands of Fibre Channel ports deployed in their production environments. They 
use Fibre Channel SANs for critical Tier 1 workloads. We don’t see these organizations 
moving away from Fibre Channel anytime soon—or even in the long term.

There are not many books on Fibre Channel. There are even fewer books explaining its 
practical use. These are the key reasons that many users lack a thorough understanding of 
congestion management. Hence, detecting, troubleshooting, and preventing congestion 
can be difficult for them. What is unknown is often perceived to be difficult.

Consider the following points:

■■ Fibre Channel and other variants of storage networks are rarely taught in colleges 
and universities. Hence, new industry talent does not get an opportunity to learn it.

■■ Basic books and courses on data communication start with three types of networks: 
LANs, WANs, and SANs. These days, almost everybody grows up seeing LANs 
around them, such as home and school Wi-Fi networks. They also see the Internet, 
which is a kind of WAN. However, people don’t get an opportunity to work with 
SANs until they get in jobs that involve managing these environments.

■■ The so-called cloud wave has overshadowed other technologies, resulting in a  
narrative that storage networks and related technologies are irrelevant. Hence, new 
industry talent does not see a return on investment in learning it.

When new talent takes a job of managing storage infrastructure and networks, the 
learning options are limited. Existing books are dated. Theoretical explanations do 
not tend to focus on the practical details of managing production networks. Vendor 
documentation is geared toward product usage. Protocol specifications are difficult to 
read and aimed at product developers instead of users. For years, we have seen a demand 
from thousands of users for education on this topic. It just took us a while to execute our 
plan of writing this book.
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How This Book Is Organized
Chapter 1, “Introduction to Congestion in Storage Networks,” provides an overview 
of types of storage, storage protocols, their transports, and networks in a data center. It 
clarifies high-level concepts about NVMe over Fabric, quality of service (QoS), and con-
gestion management in storage networks. This chapter also covers some questions that 
we have been asked over the years and our responses to them.

Chapter 2, “Understanding Congestion in Fibre Channel Fabrics,” covers the following:

■■ Fibre Channel B2B flow control

■■ Sources of congestion, such as end devices, ISLs, and switches

■■ Causes of congestion, such as slow drain, overutilization, bit errors, and lack of  
credits on ISLs

■■ Effects of bit errors on congestion, details of data transmission on Fibre Channel 
fabrics, and data-plane counters for monitoring the health of links

■■ Forward Error Correction (FEC) and how it can provide insights for predicting  
congestion issues

■■ B2B credit loss recovery and B2B state change mechanisms

This chapter also provides a case study of an online retailer to illustrate the importance 
of proactive monitoring in storage networks.

Chapter 3, “Detecting Congestion in Fibre Channel Fabrics,” covers the following:

■■ Congestion detection workflow and explains what, where, and how to detect  
congestion

■■ Congestion detection metrics such as TxWait, Slowport-monitor, and credit loss, 
with examples of Cisco MDS switches

■■ Automatic alerting and examples of the Port-Monitor feature on Cisco MDS switches

■■ Congestion detection on remote monitoring platforms, such as Cisco Nexus 
Dashboard Fabric Controller (NDFC) and custom-built apps like the MDS Traffic 
Monitor (MTM) app

■■ Metric export mechanisms for monitoring congestion

■■ Congestion detection on long-distance links

This chapter also discusses the pitfalls of monitoring network traffic and congestion.

Chapter 4, “Troubleshooting Congestion in Fibre Channel Fabrics,” covers the 
following:

■■ Congestion severities, levels, and symptoms

■■ The types of victims, such as direct victims, indirect victims, and same-path victims
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■■ Congestion detection methodology and a detailed workflow

■■ Hints and tips for troubleshooting congestion

■■ Cisco MDS NX-OS commands for troubleshooting congestion

This chapter demonstrates troubleshooting congestion in production networks with the 
help of multiple case studies.

Chapter 5, “Solving Congestion with Storage I/O Performance Monitoring,” covers the 
following:

■■ The importance of storage I/O performance monitoring

■■ How and where to monitor storage I/O performance

■■ The basics of Cisco SAN Analytics

■■ I/O flows in Fibre Channel fabrics

■■ The basics of I/O flow metrics and some use cases

■■ SCSI and NVMe I/O operations and their effects on network traffic patterns and 
congestion

This chapter demonstrates the use of Cisco SAN Analytics in finding the root cause and 
predicting the likeliness of congestion by gaining I/O flow-level visibility into storage 
networks.

Chapter 6, “Preventing Congestion in Fibre Channel Fabrics,” covers the following:

■■ Various approaches to eliminating or reducing congestion in storage networks

■■ Congestion recovery through disconnection of a culprit device

■■ Congestion recovery through early dropping of frames, using the congestion-drop 
timeout and no-credit-drop timeout features on Cisco MDS switches

■■ Congestion segregation through the use of techniques for segregating traffic to 
dedicated links or virtual links

■■ Automatic changing of traffic assignments for virtual links, using features such as the 
congestion isolation feature on Cisco MDS switches

■■ Congestion prevention using rate limiters on storage arrays

■■ Congestion prevention through the use of Dynamic Ingress Rate Limiting (DIRL) on 
Cisco MDS switches

■■ Congestion prevention through notification of end devices using Fibre Channel 
Fabric Performance Impact Notification (FPIN) frames and congestion signals

■■ Network design considerations, such as reducing the link speed of storage ports, 
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moving from edge–core–edge to collapsed-core designs, increasing traffic  
localization, and splitting large fabrics into smaller islands

In addition to providing a detailed explanation of various congestion prevention 
approaches, this chapter also demonstrates them in action and provides a case study of a 
bank preventing congestion in its storage networks.

Chapter 7, “Congestion Management in Ethernet Storage Networks,” covers the 
following:

■■ Link-Level Flow Control (LLFC) and Priority Flow Control (PFC) in Layer 2 and 
Layer 3 networks, as well as the pause thresholds

■■ Ethernet flow control versus Fibre Channel flow control

■■ Congestion due to slow drain, overutilization of links, bit errors, and long-distance 
links in various network designs, such as a spine–leaf network

■■ Congestion detection metrics, such as the duration and the number of times traffic is 
paused, frame drops, bit errors, and link utilization

■■ I/O operations in FCoE and RoCE networks and their effects on network traffic and 
congestion

■■ Congestion troubleshooting in converged Ethernet networks with one or more  
no-drop traffic classes

■■ PFC storms

■■ Congestion prevention using pause timeout and PFC watchdog

■■ RoCEv2 Congestion Management (RCM)

■■ Congestion management when transporting lossless traffic in VXLAN

This chapter also explains the details of troubleshooting congestion in converged 
Ethernet networks when lossy and lossless traffic share the same network and the effect 
of one traffic type on the other.

Chapter 8, “Congestion Management in TCP Storage Networks,” covers the following:

■■ Congestion in TCP storage networks with a spine–leaf network design

■■ I/O operations using iSCSI and NVMe/TCP and their effects on network traffic and 
congestion

■■ Congestion prevention in TCP storage networks, with an explanation of the practical 
use of Explicit Congestion Notification (ECN)

■■ Switch buffer management and active queue management mechanisms like Weighted 
Random Early Detection (WRED) and Approximate Fair Dropping (AFD)

■■ Congestion management with FCIP
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This chapter focuses on block-storage traffic, especially for two types of users: those 
who have Fibre Channel experience but not much TCP/IP experience and those who 
have TCP/IP experience but not much experience handling storage traffic. This chapter 
provides a simplified explanation of TCP’s reliable delivery, flow control, and congestion 
control and compares these concepts with Fibre Channel and lossless Ethernet networks. 
This chapter also provides an overview of nonstandard TCP implementations, such as 
DCTCP.

Chapter 9, “Congestion Management in Cisco UCS Servers,” covers the following:

■■ Cisco UCS architecture, traffic flow, and flow control

■■ Congestion in a UCS domain

■■ The UCS Traffic Monitoring (UTM) app and its use in detecting and troubleshooting 
congestion in UCS servers

Even for those who do not use Cisco UCS, this chapter presents an excellent learning 
opportunity about congestion management in converged networks that carry lossless and 
lossy traffic on shared links. It discusses how congestion can be detected with minimal 
information using techniques like time-based trending and comparative analysis, and it 
provides case studies.

Credit
Figure 5.1: Dell Inc
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This chapter explains the use of storage I/O performance monitoring for handling  
network congestion problems.

This chapter covers the following topics:

■■ Why Monitor Storage I/O Performance?

■■ How and Where to Monitor Storage I/O Performance.

■■ Cisco SAN Analytics Architecture

■■ Understanding I/O Flows in a Storage Network

■■ I/O Flow Metrics

■■ I/O Operations and Network Traffic Patterns

■■ Case studies

Why Monitor Storage I/O Performance?
Storage I/O performance monitoring provides advanced insights into network traffic, 
which can then be used to accurately address network congestion. This information is in 
addition to what the network ports already provide by counting the number of packets 
sent and received, the number of bytes sent and received, and link errors. In addition, 
storage I/O performance monitoring brings visibility to the upper layers of the stack and 
can explain why a network has or lacks traffic by providing the following information:

■■ The upper-layer protocol—SCSI or NVMe—that generated the network traffic

■■ Upper-layer protocol errors such as SCSI queue full, reservation conflict, NVMe 
namespace not ready, and so on

Solving Congestion with 
Storage I/O Performance 
Monitoring

Chapter 5
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■■ IOPS, throughput, I/O size, and so on

■■ How long I/O operations take to complete, the delay caused by storage arrays, and 
the delay caused by hosts

This performance can also be monitored for every flow, giving granular insights into the 
traffic on a network port. This flow-level performance monitoring is extremely useful 
because most production environments are virtualized. When a host causes congestion 
due to overutilization of its link, the network can detect this condition, as explained in 
earlier chapters. In addition, storage I/O performance monitoring can detect the cause of 
the high amount of traffic and which virtual machine (VM) is asking for it.

Likewise, when a host causes congestion due to slow drain, investigating the SCSI- and 
NVMe-level performance and error metrics can explain why the host has become slower 
in processing the traffic. It is also possible to determine whether a particular VM has 
caused the entire host to slow down. In addition, storage I/O performance monitoring 
can also predict the likeliness of network congestion. These and many more benefits of 
storage I/O performance monitoring are explained in this chapter, and case studies are 
provided.

Storage I/O performance monitoring is a detailed subject. Its use cases involve application 
and storage performance insights, storage provisioning recommendations, infrastructure 
optimization, change management, audits, reporting, and so on. The scope of this book, 
however, is limited only to congestion use cases. We recommend continuing your educa-
tion on this topic beyond this book. Refer to the References section later in this chapter.

This chapter focuses on the SCSI and NVMe protocols in the block-storage stack for 
performance monitoring. But these protocols initiate I/O operations only when an 
application wants them to read or write data. Therefore, monitoring higher layers in the 
stack, up to the application layer, can provide even more insights into why the network 
has traffic. Application-level monitoring, however—such as that provided by the Cisco 
AppDynamics observability platform—is beyond the scope of this book. This is another 
area that we recommend to continue your education outside this book.

How and Where to Monitor Storage I/O Performance
At a high level, storage I/O performance can be monitored within a host, in storage arrays, 
or in a network. These are three viable options because an I/O operation passes through 
many layers within the initiator (host), the target (storage array), and multiple switches in 
the network. This section explains these approaches briefly, but the primary focus of this 
chapter is on monitoring storage I/O performance in the network.

Storage I/O Performance Monitoring in the Host

Most operating systems, such as Linux, Windows, and ESXi, monitor storage I/O perfor-
mance. Example 5-1 shows an example of monitoring storage I/O performance in Linux 
by using the iotop command.
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Example 5-1  Storage I/O Performance Monitoring in Linux

 

[root@stg-tme-lnx-b200-7 ~]# iotop

 

Total DISK READ :      36.30 M/s | Total DISK WRITE :      36.85 M/s

Actual DISK READ:      36.31 M/s | Actual DISK WRITE:      36.80 M/s

  TID  PRIO  USER     DISK READ  DISK WRITE  SWAPIN     IO>    COMMAND

  941 be/3 root        0.00 B/s    0.00 B/s  0.00 %  3.31 % [jbd2/dm-101-8]

46303 be/4 root        6.42 M/s    6.37 M/s  0.00 %  1.93 % fio config_fio_1

  542 be/3 root        0.00 B/s    0.00 B/s  0.00 %  1.89 % [jbd2/dm-22-8]

26496 rt/4 root        0.00 B/s    0.00 B/s  0.00 %  1.26 % multipathd

46383 be/4 root        7.13 M/s    7.11 M/s  0.00 %  0.42 % fio config_fio_1

46284 be/4 root       11.96 M/s   12.34 M/s  0.00 %  0.00 % fio config_fio_1

46384 be/4 root        5.19 M/s    5.40 M/s  0.00 %  0.00 % fio config_fio_1

46402 be/4 root        5.61 M/s    5.63 M/s  0.00 %  0.00 % fio config_fio_1

For the purpose of dealing with network congestion, monitoring storage I/O performance 
within hosts involves the following considerations:

■■ Per-path storage I/O performance should be monitored because although multiple 
paths that perform at different levels exist between the host and the storage array, 
the host may, by default, report only cumulative performance.

■■ Metrics from thousands of hosts should be collected and presented in a single 
dashboard for early detection of congestion.

■■ Collecting the metrics from hosts may require dedicated agents, and there is 
overhead involved in maintaining them.

■■ Different implementations on different operating systems, such as Linux, Windows, 
and ESXi, may take non-uniform approaches to collecting the same metrics.

■■ Be aware that measuring the performance within hosts makes the measurements 
prone to issues on a particular host. Is the “monitored” end device “monitoring” 
itself? What happens when it gets congested or becomes a slow-drain device?

■■ Because of organizational silos, hosts and storage arrays may be managed by  
different teams.

Storage I/O Performance Monitoring in a Storage Array

Most arrays monitor storage I/O performance. For example, Figure 5-1 shows I/O perfor-
mance on a Dell EMC PowerMax storage array.
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Figure 5-1  Storage I/O Performance Monitoring on a Dell EMC PowerMax Storage 
Array

The metrics collected by the storage arrays can be used for monitoring I/O performance, 
but this approach involves similar challenges to the host-centric approach, as explained in 
the previous section.

Storage I/O Performance Monitoring in a Network

I/O operations are encapsulated within frames for transporting the frames via a storage 
network. The network switches only need to look up the headers to send the frames 
toward their destination. In other words, a network, for its typical function of frame 
forwarding, need not know what’s inside the frame. However, monitoring storage I/O 
performance in the network requires advanced capability on the switches for inspecting 
the transport (such as Fibre Channel) header, and upper-layer protocol (such as SCSI and 
NVMe) headers.

Cisco SAN Analytics monitors storage I/O performance natively within a network 
because it is integrated by design with Cisco MDS switches. As Fibre Channel frames 
are switched between the ports of an MDS switch, the ASICs (application-specific inte-
grated circuits) inspect the FC and NVMe/SCSI headers and analyze them to collect I/O 
performance metrics such as the number of I/O operations per second, how long the 
I/O operations are taking to complete, how long the I/O operations are spending in the 
storage array, how long the I/O operations are spending in the hosts, and so on. Cisco 
SAN Analytics does not inspect the frame payload because there is no need for it, as the 
metrics can be calculated by inspecting only the headers.
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Cisco SAN Analytics, because of its network-centric approach and unique architecture, 
has the following merits for monitoring storage I/O performance:

■■ Vendor neutral: Cisco SAN Analytics is not dependent on server vendor (HPE, 
Cisco, Dell, and so on), host OS vendor (Red Hat, Microsoft, VMware, and so on), 
or storage array vendor (Dell EMC, HPE, IBM, Hitachi, Pure, NetApp, and so on).

■■ Not dependent on end-device type: Cisco SAN Analytics is not dependent on any 
of the following:

■■ Server architecture: Rack-mount, blade, and so on

■■ OS type: Linux, Windows, or ESXi

■■ Storage architecture: All-flash, hybrid, non-flash, and so on

Legacy end devices can also benefit because no changes are needed on them, such 
as installation of an agent or firmware updates.

■■ No dependency on the monitoring architecture of end devices: Different products 
use different logic for collecting similar metrics. For example, some storage arrays 
collect I/O completion time on the front-end ports, whereas other storage arrays 
collect it on the back-end ports. Different host operating systems may collect I/O 
completion time at different layers in the host stack. Cisco SAN Analytics doesn’t 
have this dependency.

■■ Flow-level monitoring: Cisco SAN Analytics monitors performance for every 
flow separately. When a culprit switchport is detected, flow-level metrics help in 
pinpointing the issue to an exact initiator, target, virtual machine, or LUN/ 
namespace ID.

■■ Flexibility of location of monitoring: Cisco SAN Analytics can monitor storage  
I/O performance at any of the following locations:

■■ Host-connected switchports: Close to apps and servers

■■ Storage-connected switchports: Close to storage arrays

■■ ISL ports: Flow-level granularity in the core of the network

■■ Granular: Cisco SAN Analytics monitors storage I/O performance at a low  
granularity—microseconds for on-switch monitoring and seconds for exporting 
metrics from the switch.

This chapter focuses on using Cisco SAN Analytics for addressing congestion in storage 
networks, although the education and case studies can be used with host-centric and 
storage array-centric approaches as well.
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Cisco SAN Analytics Architecture
Cisco SAN Analytics architecture can be divided into three components (see Figure 5-2):

■■ Traffic inspection by ASICs on Cisco MDS switches

■■ Metric calculation by an onboard network processing unit (NPU) or by the ASIC

■■ Streaming of flow metrics to an external analytics and visualization engine for end-
to-end visibility

Cisco MDS 9000
Switches

Storage Network

Streaming telemetry—a mechanism for
exporting millions of metrics in open format—
to external receiver such as SAN Insights

Hosts Storage Arrays

Traffic Inspection

•   Integrated traffic TAPs in ASIC
•   No impact on traffic switching
•   Inspects only headers, not data

•   On-switch metric calculation by
    correlating multiple frames
•   Metrics are accumulated in an on-switch
    hierarchical and relational database

Metric Calculation

Cisco SAN Analytics Architecture

Metric Export

Figure 5-2  Cisco SAN Analytics Architecture

Traffic Inspection

Traffic inspection is integrated by design into Fibre Channel ASICs. In addition to switch-
ing the frames between the switchports, these ASICs can inspect the traffic in ingress 
and egress directions without any performance or feature penalty. In other words, traffic 
access points (TAPs) are built into the ASICs.
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This approach is secure because the ASICs inspect only the Fibre Channel and SCSI/
NVMe headers of the relevant frames. The frame payload (application data) is not 
inspected.

These ASICs are custom designed by Cisco, and they are exclusively used in MDS 
switches. Cisco Nexus switches and UCS fabric interconnects, despite supporting FC 
ports on selective models, use a different ASIC and thus don’t offer SAN Analytics.

Metric Calculation

After inspecting the frame headers, Cisco MDS switches calculate the metrics by corre-
lating multiple frames with common attributes, such as frames belonging to the same I/O 
operation and frames belonging to the same flow.

The metric calculation logic in the 32 Gbps MDS switches resides in an onboard network 
processing unit (NPU), which is a powerful packet processor. In 64 Gbps MDS switches, 
the metric calculation logic resides within the ASIC itself, although the NPU continues to 
exist on the switches. Regardless of this architectural detail, the overall metric calculation 
logic remains the same.

Cisco MDS switches accumulate the metrics in a hierarchical and relational database for 
on-switch visibility or export to a remote receiver.

 

Note  At the time of this writing, Cisco SAN Analytics does not collect I/O flow metrics 
in FICON environments.

Metric Export

Cisco SAN Analytics is designed to inspect every flow that passes through a storage net-
work in an always-on fashion. As a result, it collects millions of metrics per second. A tra-
ditional approach (such as SNMP) for exporting a large number of metrics may not work 
at this scale, and thus, Cisco introduced streaming telemetry for this purpose. In addition 
to being efficient, streaming telemetry exports metrics in open format, which simplifies 
third-party integrations.

The receiver of streaming telemetry can use I/O flow metrics from multiple switches to 
provide fabric-wide and end-to-end visibility into a single pane of glass for long-term 
metric retention, trending, correlation, predictions, and so on. SAN Insights is an example 
of such a receiver and is a feature in Cisco Nexus Dashboard Fabric Controller (NDFC), 
formerly known as Cisco Data Center Network Manager (DCNM). Figure 5-3 shows the 
SAN Insights dashboard, which provides many ready-made use cases, such as automatic 
learning, baselining, and deviation calculations for up to 1 million I/O flows per NDFC 
server as of release 12.1.2. This high scale gives visibility into issues anywhere in the  
fabric.
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Figure 5-3  SAN Insights Dashboard in Cisco NDFC
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Understanding I/O Flows in a Storage Network
Without considering I/O flows, a network is only aware of the frames in ingress and 
egress directions. Categorizing network traffic into I/O flows helps in correlating it 
with initiators, targets, and the logical unit number (LUN) for SCSI I/O operations and 
namespace ID (NSID) for NVMe I/O operations. In addition, storage performance can 
be monitored for every I/O flow individually to get detailed insights into the traffic. For 
example, when a switchport is 90% utilized, throughput per I/O flow can tell which initia-
tor, target, and LUN/namespace are the top consumers.

I/O Flows in Fibre Channel Fabrics

The following can be the I/O flow types in a Fibre Channel fabric:

■■ Port flow: Traffic belonging to all the I/O operations that pass through a network 
port makes a port flow. It can an SCSI port flow for SCSI traffic or an NVMe port 
flow for NVMe traffic.

■■ VSAN flow: A port of a Cisco Fibre Channel switch may carry traffic in one or 
more VSANs. Hence, a port flow can be further categorized into one or more VSAN 
flows.

■■ Initiator flow: Traffic belonging to all the I/O operations that are initiated by an  
initiator makes an initiator flow.

■■ Target flow: Traffic belonging to all the I/O operations that are destined for a target 
makes a target flow.

■■ Initiator-target (IT) flow: Traffic belonging to all the I/O operations between a pair 
of initiator and target makes an IT flow.

■■ Initiator-target-LUN (ITL) flow: Traffic belonging to all the I/O operations between 
an initiator, a target, and a logical unit makes an ITL flow. An ITL flow is applicable 
only for SCSI I/O operations.

■■ Initiator-target-namespace (ITN) flow: Traffic belonging to all the I/O operations 
between an initiator, a target, and a namespace makes an ITN flow. An ITN flow is 
applicable only for NVMe I/O operations.

■■ Target-LUN (TL) flow: Traffic belonging to all the I/O operations that are destined 
for a target port and a specific logical unit makes a TL flow. A TL flow is applicable 
only for SCSI I/O operations.

■■ Target-namespace (TN) flow: Traffic belonging to all the I/O operations that are 
destined to a target port and a specific namespace makes a TN flow. A TN flow is 
applicable only for NVMe I/O operations.

The definition of an I/O flow can also be extended to a virtual entity (VE), such as a vir-
tual machine (VM) on the host. When combined with an ITL or ITN flow, the end-to-end 
flow becomes a VM-ITL flow or a VM-ITN flow. There are at least two approaches for 
achieving this visibility into the VMs.
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The first approach needs support from hosts, and in some cases even from storage arrays, 
for tagging the VM identifier in the frame header. Although Cisco SAN Analytics on 
MDS switches supports VM-ITL and VM-ITN flows, because of the dependency on the 
end devices, most production deployments are not ready for it at the time of this writing.

The second approach uses the APIs from VMware vCenter to provide the correlation 
between the VM and the initiator and LUN (or namespace) from the ITL (or ITN) flow. 
The benefit of this approach, unlike the first approach, is that upgrading the end devices 
is not mandatory. Cisco SAN Insights uses this approach in NDFC 12.1.2 onward.

In environments where even the read-only access to VMware vCenter cannot be added to 
NDFC, this approach can still be used for manually correlating ITL or ITN flows with the 
VMs. The use of this approach is demonstrated further in the section “Case Study 3: An 
Energy Company That Eliminated Congestion Issues,” later in this chapter.

This chapter focuses only on ITL flows that are natively available on the Cisco MDS 
switches without any dependency on the end devices and NDFC. The environments with 
VM-ITL flows made available using either of the two approaches mentioned earlier can 
benefit by expanding ITL flows in the same way that port flows are expanded to IT flows 
and ITL flows.

To understand the I/O flows and how they help in gaining granular details about a  
network, consider the example in Figure 5-4. Two initiators, I-1 and I-2, connect to two 
targets, T-1, and T-2, via a fabric of Switch-1 and Switch-2. The ISL port on Switch-1 
(Port-3) reports an ingress throughput of 800 MBps. After enabling SAN Analytics,  
Port-3 can categorize network traffic into multiple types of I/O flows and monitor the 
performance of every flow.

With
SAN Analytics Port Flow

Without
SAN Analytics

Switch-1 Switch-2
T-2

I-1
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Figure 5-4  I/O Flows and Flow-Level Metrics Using Cisco SAN Analytics



Understanding I/O Flows in a Storage Network    349

SAN Analytics can find the following details:

■■ The 800 MBps throughput on Port-3 on Switch-1 is because of SCSI read  
I/O operations.

■■ Port-3 may have two VSANs: VSAN 100 and VSAN 200 (not shown in Figure 5-4). 
The VSAN flows provide a further breakdown of the port flow throughput, such as 
a read throughput of 600 MBps for VSAN 100 and a read throughput of 200 MBps 
for VSAN 200.

■■ I-1’s read throughput via Port-3 is 300 MBps, whereas I-2’s read throughput via Port-
3 is 500 MBps.

■■ T-1’s read throughput via Port-3 is 250 MBps, whereas T-2’s read throughput via  
Port-3 is 550 MBps.

■■ Port-3 has four IT flows: I1-T1, I1-T2, I2-T1, and I2-T2. The read throughput for each 
is as follows:

■■ I1-T1: 100 MBps

■■ I1-T2: 200 MBps

■■ I2-T1: 150 MBps

■■ I2-T2: 350 MBps

■■ Port-3 has eight ITL flows. I-1 uses LUN-1 and LUN-2, whereas I-2 uses LUN-3 and 
LUN-4. The read throughput for each is as follows:

■■ I1-T1-L1: 60 MBps

■■ I1-T1-L2: 40 MBps

■■ I1-T2-L1: 120 MBps

■■ I1-T2-L2: 80 MBps

■■ I2-T1-L3: 100 MBps

■■ I2-T1-L4: 50 MBps

■■ I2-T2-L3: 200 MBps

■■ I2-T2-L4: 150 MBps

As is evident from this example, the hierarchical and relational definitions of I/O flows 
help create a precise breakdown of traffic on a switchport. During congestion, the per-
flow metrics, such as throughput, help in pinpointing the root cause of the exact entity, 
such as initiator, target, LUN, or namespace. Without per-flow storage I/O performance 
monitoring, as provided by Cisco SAN Analytics, such detailed insights are not possible.
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I/O Flows Versus I/O Operations

I/O flows shouldn’t be confused with I/O operations. An I/O flow is identified by end-
to-end tuples such as initiator, target, LUN, or namespace (ITL or ITN flows). In contrast, 
I/O operations transfer data within an I/O flow. For example, when Initiator-1 initiates 
100 read I/O operations per second to LUN-1 on Target-1, the ITL flow is identified as 
Initiator-1–Target-1–LUN-1, whereas there were 100 I/O operations per second.

An I/O flow is created only after an initial exchange of I/O operations between the iden-
tifying tuples. Later, if the initiator doesn’t read or write data, the I/O flows may still 
exist, but no I/O operations flow through it, which results in zero IOPS for these I/O 
flows.

I/O Flow Metrics
The I/O flow metrics collected by Cisco SAN Analytics can be classified into the follow-
ing categories:

■■ Flow identity metrics: These metrics identify a flow, such as switchport, initiator, 
target, LUN, or namespace.

■■ Metadata metrics: The metadata metrics provide additional insights into the traffic. 
For example:

■■ VSAN count: Number of VSANs carrying traffic on a switchport.

■■ Initiator count: Number of initiators exchanging I/O operations behind a  
switchport.

■■ Target count: Number of targets exchanging I/O operations behind a switchport.

■■ IT flow count: Number of pairs of initiators and targets exchanging I/O opera-
tions via a switchport.

■■ TL and TN flow count: Number of pairs of targets and LUNs/namespaces behind 
a switchport exchanging I/O operations.

■■ ITL and ITN flow count: Number of pairs of initiators, targets, and LUNs/
namespaces exchanging I/O operations via a switchport.

■■ Metric collection time: Start time and the end time for I/O flow metrics during a 
specific export. This metric helps in knowing the precise duration when a metric 
was calculated at the link.

■■ Latency metrics: Latency metrics identify the total time taken to complete an I/O 
operation and the time taken to complete various steps of an I/O operation. For 
example:

■■ Exchange Completion Time (ECT): Total time taken to complete an I/O operation.

■■ Data Access Latency (DAL): Time taken by a target to send the first response to 
an I/O operation. DAL is one component of ECT that’s caused by the target.
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■■ Host Response Latency (HRL): Time taken by an initiator to send the response 
after learning that the target is ready to receive data for a write I/O operation. 
HRL is one component of ECT that’s caused by the initiator.

■■ Performance metrics: These metrics measure the performance of I/O operations. 
For example:

■■ IOPS: Number of read and write I/O operations completed per second.

■■ Throughput: Amount of data transferred by read and write operations, in bytes 
per second.

■■ Outstanding I/O: The number of read and write I/O operations that were initiated 
but are yet to be completed.

■■ I/O size: The amount of data requested by a read or write I/O operation.

■■ Error metrics: The error metrics indicate errors in read and write I/O operations (for 
example, Aborts, Failures, Check condition, Busy condition, Reservation Conflict, 
Queue Full, LBA out of range, Not ready, and Capacity exceeded).

An exhaustive explanation of all these metrics is beyond the scope of this chapter. This 
chapter is just a starting point for using end-to-end I/O flow metrics in solving congestion 
and other storage performance issues.

Latency Metrics

Latency is a generic term to convey storage performance. But as Figure 5-5 and Figure 5-6 
show, there are multiple latency metrics, each conveying a specific meaning. Latency  
metrics are measured in time (microseconds, milliseconds, and so on).
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Figure 5-5  Latency Metrics for a Read I/O Operation
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Figure 5-6  Latency Metrics for a Write I/O Operation

Exchange Completion Time

Exchange Completion Time (ECT) is the time taken to complete an I/O operation. It is a 
measure of the time difference between the command (CMND) frame and the response 
(RSP) frame. In Fibre Channel, an I/O operation is carried out by an exchange, and hence 
it’s called Exchange Completion Time, but ECT can also be known as I/O completion time.

ECT is an overall measure of storage performance. In general, the lower the ECT, the  
better. This is because lower ECTs result in improved application performance.

At the same time, a direct correlation between ECT and application performance is not 
straightforward because it’s dependent on the application I/O profile. In general, when 
application performance degrades and if ECT increases (degrades) at the same time, the 
reason for the performance degradation is the slower I/O performance.

Data Access Latency

Data Access Latency (DAL) is the time taken by a storage array in sending the first 
response after receiving a command (CMND) frame. For a read I/O operation, DAL is 
calculated as the time difference between the command (CMND) frame and the first-
data (DATA) frame. For a write I/O operation, DAL is calculated as the time difference 
between the command (CMND) frame and the transfer-ready (XFER_RDY) frame.

When a target receives a read I/O operation, if the data requested is not in cache, the 
target must first read the data from the storage media, which takes time. The amount of 
time it takes to retrieve the data from the media depends on several factors, such as  
overall system utilization and the type of storage media being used. Likewise, when a  
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target receives a write I/O operation, it must process all the other operations ahead of 
this operation, which takes time. An increase in these time values leads to a large DAL.

In most cases, it’s best to investigate DAL while troubleshooting higher ECT because 
DAL may tell why ECT increased. An increase in ECT and also in DAL indicates a slow-
down within the storage array.

Host Response Latency

Host Response Latency (HRL), for a write I/O operation, is the time taken by a host in 
sending the data after receiving the transfer ready. It is calculated as the time difference 
between the transfer-ready frame and the first data frame.

Because read I/O operations do not have transfer ready, HRL is not calculated for them.

In most cases, it’s best to investigate HRL while troubleshooting higher-write ECTs 
because HRL may tell why ECT increased. An increase in write ECT and also in HRL 
indicates a slowdown within the host.

Using Latency Metrics

The following are important details to remember about latency metrics, such as ECT, 
DAL, and HRL, when addressing congestion in a storage network:

■■ A good way of using ECT is to monitor it for a long duration and find any devia-
tions from the baseline. For example, consider two applications with an average ECT 
of 200 µs and 400 µs over a week. The I/O flow path of the first application gets 
congested, resulting in an increased ECT of 400 µs. At this moment, although both 
applications have the same ECT, only the first application may be degraded, while 
the second application remains unaffected, even though their ECT values are the 
same.

■■ ECT measures the overall storage performance, but it doesn’t convey the source of 
the delay, which can be the host, network, or storage array. The delay caused by the 
host is measured by HRL, whereas the delay caused by the storage array is measured 
by DAL.

■■ The delay caused by the network may be the direct result of congestion. For exam-
ple, when a host-connected switchport has high TxWait, the frames can’t be deliv-
ered to it in a timely fashion. As a result, the time taken to complete the I/O opera-
tions (ECT) increases.

■■ Although an increase in TxWait (or a similar network congestion metric) increases 
ECT, the reverse may not be correct. ECT may increase even when the network isn’t 
congested. ECT is an end-to-end metric. It may increase due to delays caused by 
hosts, network, or storage. The block I/O stack within a host involves multiple layers. 
Similarly, an I/O operation undergoes many steps within a storage array. The delay 
caused by any of these layers increases ECT.
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■■ Network congestion is one of the reasons for higher ECT. However, it’s not the only 
reason. Other network issues may increase ECT even without congestion (for exam-
ple, network traffic flowing through suboptimal paths, long-distance links, or poorly 
designed networks).

■■ All latency metrics increase under network congestion. This increase is seen in all the 
I/O flows whose paths are affected by congestion.

■■ While considering dual fabrics with active/active multipath, if only one fabric is con-
gested, only the I/Os using the congested fabric report increases in ECT. The average 
increase in the ECT as reported by the host may or may not show this difference, 
depending on how much ECT degrades. For example, consider an application that 
measures I/O completion time (ECT) as 200 µs. The application accesses storage via 
Fabric-A and Fabric-B. ECT over Fabric-A is 180 µs, whereas ECT over Fabric-B is 
220 µs. If Fabric-A becomes congested, resulting in an increase in ECT from 180  
to 270 µs (50% deviation), the average ECT as measured by the application increases 
to 245 µs, which is only a 22% increase.

How can you verify if an increase in ECT for an application is because of congestion or 
not? Here are some suggestions:

■■ Check the metrics for the ports (such as TxWait) in the end-to-end data path.

■■ Check the ECT of the I/O flows that use the same network path as the switchport. 
If ECT increases just for one I/O flow but the rest of the I/O flows don’t show an 
increase, it is not a network congestion issue because the network doesn’t do any 
preferential treatment for I/O flows. A fabric just understands the frames, and all 
frames are equal for it.

■■ Investigate other metrics, like I/O size, IOPS, and so on. A common example is an 
increase in I/O size because larger I/O size operations take longer to complete. Also, 
find any SCSI and NVMe errors and link-level errors.

The Location for Measuring Latency Metrics

Cisco SAN Analytics calculates latency metrics by taking the time difference between 
relevant frames on the analytics-enabled switchports on MDS switches. As a result, the 
absolute value of these metrics may differ by a few microseconds, depending on the 
exact location of the measurement. For example, the ECT reported by a storage- 
connected switchport may be a few microseconds lower than the ECT reported by a 
host-connected switchport. This is because the storage-connected switchport sees the 
command frame a few microseconds after the host-connected switchport does, and it 
sees the response frames a few microseconds earlier than the host-connected switchport. 
When the time difference between the command frame and the response frame on the 
storage port is considered, it comes out to be less than the time difference between the 
command frame and the response frame on the host-connected switchport.
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This difference in the value of latency metrics based on the location of measurement is 
marginal. It may be a matter of discussion in an academic exercise, but for any real-world 
production environment, the difference is very small, increases complexity, makes it hard 
for various teams to understand the low-level details, and doesn’t change the end result.

What is more important is to understand that in lossless networks, congestion spreads 
from end to end quickly. If this congestion increases ECT by 50% on the storage- 
connected switchport, the same percentage increase will be seen on the host-connected 
port also, although the absolute values may differ.

What happens if the congestion is only severe enough that the effect is limited to stor-
age ports or host ports? In production environments, the spread of congestion can’t be 
predicted. More importantly, if the congestion has not spread from end to end, it’s not 
severe enough to act on. In such cases, it is best to monitor and use the metrics for future 
planning, but without an end-to-end spread, the effect of congestion is limited to a small 
subset of the fabric.

Performance Metrics

Performance metrics convey the rate of I/O operations, their pattern, and the amount of 
data transferred.

I/O Operations per Second (IOPS)

IOPS, as its name suggests, is the number of read or write I/O operations per second. 
Typically, IOPS is a function of the application I/O profile and the type of storage. For 
example, transactional applications have higher IOPS requirements than do backup appli-
cations. Also, SSDs provide higher IOPS than do HDDs.

It is not possible to infer the network traffic directly from IOPS. An I/O operation may 
result in a few or many frames, depending on the data transferred by that I/O operation. 
Likewise, the throughput caused by I/O operations depends on the amount of data trans-
ferred by those I/O operations. Hence, it’s difficult to predict the effect of higher IOPS 
on network congestion without accounting for I/O size, explained next.

On the other hand, network congestion typically results in reduced IOPS because the 
network is unable to deliver the frames to their destinations in a timely fashion or can 
transfer fewer frames.

I/O Size

The amount of data transferred by an I/O operation is known as its I/O size. I/O size is 
a function of the application’s I/O profile. For example, a transactional application may 
have an I/O size of 4 KB, whereas a backup job may use an I/O size of 1 MB.

This I/O size metric in the context of storage I/O performance monitoring or SAN 
Analytics is different from the amount of data that an application wants to transfer as 
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part of an application-level transaction or operation. For example, an application may 
want to transfer 1 MB of data, but the host may decide to request this data using four 
I/O operations, each of size 256 KB. This difference is worth understanding, especially 
while investigating various layers within a host.

I/O size is encoded in the command frame of I/O operations. It has no dependency on 
network health. As a result, I/O size doesn’t change with or without congestion.

Large I/O size results in a higher number of frames, which in turn leads to higher network 
throughput. For example, a 2 KB read I/O operation results in just one Fibre Channel 
data frame of size 2 KB, whereas a 64 KB read I/O operation results in 32 Fibre Channel 
frames of size 2 KB. Because of this, I/O size directly affects the network link utilization 
and thus provides insights into why a host port or a host-connected switchport may be 
highly utilized. For example, a host link may not be highly utilized with an I/O size of 16 
KB. But the same link may get highly utilized and thus become the source of congestion 
when the I/O size spikes to 1 MB.

To understand the effect of I/O size on link utilization, consider the example in  
Figure 5-7. Two hosts, Host-1, and Host-2, connect to the switchports at 8 GFC to access 
storage from multiple arrays. Both servers are doing 10,000 read I/O operations per 
second (IOPS). However, the I/O sizes used by the two servers are different. Host-1 uses 
an I/O size of 4 KB, whereas Host-2 uses an I/O size of 128 KB.
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Read IOPS: 10,000
I/O Size: 4 KB

Read IOPS: 10,000
I/O Size: 128 KB

40 MBps
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The Result
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Congestion Due to Overutilization

32 GFC

32 GFC

Figure 5-7  Detecting and Predicting the Cause of Congestion Using I/O Size
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Host-1, with 10,000 IOPS and 4 KB I/O size, results in a throughput of 40 MBps, whereas 
Host-2, with 10,000 IOPS and 128 KB I/O size, results in a throughput of 1280 MBps. As 
evident, 1280 MBps can’t be transported via an 8 GFC link because its maximum data 
rate is 800 MBps. As a result, Host-2’s read I/O traffic causes congestion due to overuti-
lization. Host-1 doesn’t cause congestion even though its read IOPS is the same as Host-
2’s. I/O size is the differentiating factor here.

Throughput

Throughput is a generic term that has different meanings for different people. For mea-
suring storage performance, throughput is measured as the amount of data transferred 
by I/O operations, in megabytes per second (MBps). On the other hand, for measuring 
network performance, throughput is measured in frames transferred per second and the 
amount of data transferred by those frames, in gigabits per second (Gbps).

 

Note  Pay attention to measuring storage performance in bytes (B) per second and 
network performance in bits (b) per second and don’t forget to convert from bytes to bits 
or vice versa.

Another important detail to remember is that the read and write I/O throughput may 
have a marginal difference when measured on the end devices versus on the network. 
Applications measure the total amount of data that they exchange with the storage vol-
umes. However, the network throughput differs slightly because I/O operations have 
headers, such as Fibre Channel headers and SCSI/NVMe headers. For all practical pur-
poses, this marginal difference can be ignored. Be aware that the throughput reported by 
various entities may differ but don’t get carried away by these marginal differences.

Outstanding I/O

Outstanding I/O is the number of I/O operations that were initiated but are yet to be 
completed. In other words, an initiator sent a command frame, but it hasn’t received a 
response frame yet. Outstanding I/O is also known as open I/O or active I/O.

In production environments, there are always new I/Os being originated while the  
previous I/Os are being completed because the applications may be multithreaded or 
multiprocessed. Also, keeping some I/O operations open helps in a performance boost.

Outstanding I/O is directly related to the queue-depth value on a host as well as similar 
values on storage arrays. Different entities have different thresholds for outstanding I/O. 
For example, a host may stop initiating new I/O operations when the outstanding I/O 
reaches a threshold, such as 32. Likewise, a target may reject new incoming I/O opera-
tions when a large number of I/O operations (such as 2048) are already open (or out-
standing), and the target is still processing them.

Congestion in a storage network may be a side effect of a large number of outstanding 
I/O operations.
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I/O Operations and Network Traffic Patterns
Traffic in a storage network is the direct result of an application initiating a read or write 
I/O operation. Because of this, network traffic patterns can be better understood by 
analyzing the application I/O profile, such as the timing, size, type, and rate of I/O opera-
tions. Essentially, the application I/O profile helps in understanding why the network has 
traffic.

Read I/O Operation in a Fibre Channel Fabric

Figure 5-8 shows a SCSI or NVMe read I/O operation in a Fibre Channel fabric. A host 
initiates a read I/O operation using a read command, which the host encapsulates in a 
Fibre Channel frame and sends out its port. The host-connected switchport receives the 
frame and sends them to the next hop, based on the destination in the frame header. The 
network of switches, in turn, delivers this frame to the target. Such a frame that carries a 
read command is called a read command frame (CMND).
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Figure 5-8  SCSI or NVMe Read I/O Operation in a Fibre Channel Fabric

The target, after receiving the read command frame, sends the data to the host in one or 
more FC frames. These frames that carry data are called data frames (DATA). The exact 
number of data frames returned by the target depends on the I/O size of the read com-
mand. A full-size FC frame can transfer up to 2048 bytes (2 KB) of data. Hence, the tar-
get sends one data frame if the read I/O size is less than or equal to 2 KB. The size of this 
frame depends on the data carried by it plus the overhead of the header. However, when 
the I/O size is larger than 2 KB, the target sends the data in multiple frames. Typically, all 
these frames are full-size FC frames carrying 2 KB worth of data. If the size requested is 
not a multiple of 2 KB, then the last frame is smaller than 2 KB. For example, an I/O size 
of 4 KB results in two full-size FC frames. But if the I/O size is 5 KB, the target may send 



I/O Operations and Network Traffic Patterns    359

two full-size FC frames, each carrying 2 KB, and a third frame carrying any remaining 
data, which is 1 KB.

After sending all the data to the host, the target indicates the completion of the I/O oper-
ations by sending a response, which carries the status. A frame that carries a response is 
called a response frame (RSP).

Some implementations can optimize the read I/O operations by sending the last data and 
the response in the same frame if their combined size is below 2 KB. These optimized 
read I/O operations may not always have dedicated response frames. Regardless of the 
type of read I/O operation, their result on network traffic remains the same.

Write I/O Operation in a Fibre Channel Fabric

Figure 5-9 shows a SCSI or NVMe write I/O operation in a Fibre Channel fabric. A host 
initiates a write I/O operation using a write command, which the host encapsulates in a 
Fibre Channel frame and sends out its port. The host-connected switchport receives the 
frame and sends it to the next hop, based on the destination in the frame header. The 
network of switches, in turn, delivers this frame to the target. Such a frame that carries a 
write command is called a write command frame (CMND).
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Figure 5-9  SCSI or NVMe Write I/O Operation in a Fibre Channel Fabric

The target, after receiving the write command frame, prepares to receive the data and 
sends a frame to the host indicating that it is ready to receive all or some of the write 
data. This is called a transfer-ready frame (XFER_RDY). A transfer-ready frame carries 
the amount of data that the target is ready to receive in one sequence or burst. Refer to 
Chapter 2, “Understanding Congestion in Fibre Channel Fabrics,” for more details on a 
Fibre Channel sequence. Typically, this size is the same as the size requested by the write 
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command frame. But sometimes, the target may not have the resources to receive all the 
data that the host wants to write in a single sequence. For example, a host may want to 
write 4 MB of data, which it specifies in the write command frame. The target, however, 
may have the resources to accept only 1 MB of data at a time. Hence, the target sends 1 
MB as the burst length in the transfer-ready frame.

The host, after receiving the transfer-ready frame, sends the data to the host in one or 
more FC frames. These frames are called data frames (DATA). The exact number of data 
frames returned by the host depends on the burst size of the transfer-ready frame. It fol-
lows the same rules as explained previously for the read I/O operations. The difference 
for write I/O operations is that multiple sequences of transfer-ready may be involved if 
the target chooses to return a burst size that is less than the write command I/O size.

After receiving all the data that the host requested to write in this I/O operation (which 
may have been in multiple sequences due to the target sending one or multiple transfer-
ready frames), the target indicates the completion of the I/O operations by sending a 
response, which carries the status. A frame that carries a response is called a response 
frame (RSP).

Some implementations can optimize the write I/O operations by eliminating the transfer-
ready frame. In such cases, the target informs the initiator, during the process login 
(PRLI) state, that it will always keep the resources ready to receive a minimum size (first 
burst) of data. The initiator sends the data frames immediately after sending the write 
command frames, without waiting for the transfer-ready frames to arrive. Regardless of 
the type of write I/O operation, the result on network traffic is the same.

Network Traffic Direction

Table 5-1 shows the direction of traffic as a result of a read I/O operation in Figure 5-8.  
Figure 5-10 shows the traffic directions on various network ports due to different 
sequences of read and write I/O operations.

Table 5-1  Traffic Direction in a Storage Network Because of Read I/O Operation

Frame 
Type

Host 
Port

Host-
Connected 
Switchport

ISL Port on 
Host-Edge 
Switch

ISL Port on 
Storage-Edge 
Switch

Storage-
Connected 
Switchport

Storage 
Port

Read I/O 
command 
frame

Egress Ingress Egress Ingress Egress Ingress

Read I/O 
data frame

Ingress Egress Ingress Egress Ingress Egress

Read I/O 
response 
frame

Ingress Egress Ingress Egress Ingress Egress
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Figure 5-10  Network Traffic Direction Because of Read and Write I/O Operations

Table 5-2 explains the direction of traffic because of a write I/O operation in  
Figure 5-9. Figure 5-10 shows the traffic directions on various network ports due to  
different sequences of read and write I/O operations.

Table 5-2  Traffic Direction in a Storage Network Because of Write I/O Operation

Frame 
Type

Host 
Port

Host-
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Switchport
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ready
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As is clear from Table 5-1 and Table 5-2, egress traffic on the host port, which is the same 
as the ingress traffic on the host-connected switchport, is due to:

■■ Read I/O command frames

■■ Write I/O command frames

■■ Write I/O data frames

Similarly, ingress traffic on the host port, which is the same as the egress traffic on the 
host-connected switchport, is due to:

■■ Read I/O data frames

■■ Read I/O response frames

■■ Write I/O transfer-ready frames

■■ Write I/O response frames

Typically, a network switch doesn’t need to know the type of a frame (command, data, 
transfer-ready, or response frame) in order to send the frame toward its destination. 
However, without knowing the type of the frame, the real cause of throughput can’t be 
explained. This is another reason for monitoring storage I/O performance by using SAN 
Analytics.

Network Traffic Throughput

The previous section explains the direction of traffic for read and write I/O operations. 
But not all the frames are of the same size. Read and write I/O data frames are large and 
usually occur in larger quantities. Hence, they are the major contributors to link utiliza-
tion. Other frames, such as read and write I/O command frames, response frames, and 
write I/O transfer-ready frames, are small and relatively few. Hence, they cause much 
lower link utilization. Table 5-3 shows the typical sizes of different frame types for SCSI 
and NVMe I/O operations.

Table 5-3  Typical Sizes of Frames for SCSI and NVMe I/O Operations

FC Frame Type FC Frame Size Using SCSI FC Frame Size Using NVMe

Read command 
frame

68 bytes 68 bytes

Read data frame I/O size of 2 KB or larger typically 
results in full-size FC frames  
(2148 bytes). Smaller I/O size  
operations result in smaller  
frame sizes. 

I/O size of 2 KB or larger typically 
results in full-size FC frames  
(2148 bytes). Smaller I/O size 
operations result in smaller frame 
sizes.

Read response  
frame

60 bytes 60 bytes
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FC Frame Type FC Frame Size Using SCSI FC Frame Size Using NVMe

Write command 
frame

68 bytes 132 bytes

Write transfer- 
ready frame

48 bytes 48 bytes

Write data frame I/O size of 2 KB or larger typically 
results in full-size FC frames  
(2148 bytes). Smaller I/O size opera-
tions result in smaller frame sizes.

I/O size of 2 KB or larger typically 
results in full-size FC frames (2148 
bytes). Smaller I/O size operations 
result in smaller frame sizes.

Write response 
frame

60 bytes 68 bytes

Correlating I/O Operations, Traffic Patterns, and Network Congestion

The directions and sizes of various frames in a storage network lead to the following  
conclusions:

■■ Read and write data frames are the major cause of link utilization. Other frames, 
such as command frames and response frames, are small, and their throughput is 
negligible compared to that of data frames.

■■ Read and write data frames flow only after (or as the result of) command frames.

■■ A command frame, based on the size of the requested data (called I/O size),  
can generate many data frames.

■■ Most data frames of an I/O operation are full sized, except the last frame in the 
sequence.

■■ Read data frames flow from storage (target) to hosts (initiators), whereas write data 
frames flow from hosts to storage.

■■ When a host-connected switchport is highly utilized in the egress direction, it’s 
mostly due to read data frames. Likewise, when a storage-connected switchport is 
highly utilized in the egress direction, it’s mostly due to write data frames.

■■ The key reason for congestion due to slow drain from hosts and due to overutiliza-
tion of the host link is the multiple concurrent large-size read I/O command frames 
from the host. In other words, the host is asking for more data than it can process or 
than can be sent to it on its link.

■■ The key reason for congestion due to slow drain from a storage port or due to overuti-
lization of the storage link is the total amount of data being requested by the storage 
array via multiple concurrent write I/O transfer-ready frames. In other words, the storage 
array is asking for more data than it can process or than can be sent to it on its link.

These conclusions are extremely useful in understanding the reason for congestion 
caused by a culprit device or the effect of congestion on the victim devices. These  
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conclusions also explain that host port or switchport monitoring can detect congestion, 
whereas storage I/O performance monitoring can give insights into why the congestion 
exists.

For example, Figure 5-11 illustrates congestion due to overutilization of the host links 
because of large-size read I/O operations. The host connects at 32 GFC. It initiates 5000 
read I/O operations per second (IOPS), each requesting to read 1 MB of data from vari-
ous targets. To initiate these I/O operations, the host sends 5000 command frames per 
second, each 68 bytes, which leads to the host port’s egress throughput of 2.8 Mbps 
(5000 × 68 B × 8 bits per byte), which is the same as the ingress throughput on the host-
connected switchport. Because the maximum data rate of a 32 GFC port is 28.025 Gbps, 
these command frames result in 0.01% utilization, which is negligible.

The targets, after receiving these command frames, send the data for every I/O operation 
in approximately 512 full-size frames (2048 bytes per frame). For 5000 IOPS, the targets 
send 2,560,000 frames/second (5000 × 512), each 2148 bytes (including the header). 
These data frames lead to a throughput of 44 Gbps (2,560,000 × 2148 bytes × 8 bits  
per byte). But the host can receive only 28.025 Gbps on the 32 GFC link. This condition 
results in congestion due to overutilization of the host link. The key point to understand 
is that the ingress utilization of the host-connected switchport is negligible, yet this mini-
mal throughput results in 100% egress utilization. From the perspective of the network, 
these are just the percentage utilizations of the links. Only after getting insight into the 
I/O operations can the real reason for the link utilization be explained.

TargetHost

Target

Target

RX TX RX TX

Read IOPS: 5000
I/O Size: 1 MB

Desired throughput of 44 Gbps because of 512 data frames per I/O
operation leading to 2,560,000 data frames/s each of size 2148 Bytes

2.8 Mbps
0.01 % Utilization

28 Gbps
100% Utilization

32 GFC

Figure 5-11  Congestion Due to Overutilization Because of Large-Size Read I/O 
Operations



Although the read I/O data frames make the most of the egress traffic on a host- 
connected switchport, these data frames are just a consequence of the read I/O command 
frames that were sent by the host port. Because limiting the rate of read I/O command 
frames can lower the rate of read I/O data frames, limiting the rate of ingress traffic on 
the host-connected switchport can lower the rate of egress traffic on this port. This logic 
forms the foundation of Dynamic Ingress Rate Limiting, which is a congestion prevention 
mechanism explained in Chapter 6, “Preventing Congestion in Fibre Channel Fabrics.”

Case Study 1: A Trading Company That Predicted Congestion Issues 
Using SAN Analytics

A trading company has thousands of devices connected to a Fibre Channel fabric, and it 
has multiple such fabrics. Because of the large scale, the company has always had minor 
congestion issues. However, the severity and number of such issues increased as the compa-
ny deployed all-flash storage arrays. In an investigation, they found that the newer conges-
tion issues were due to the overutilization of the host links. Most hosts were connected to 
the fabric at 8 GFC. The older storage arrays were connected at 16 GFC. But the newer all-
flash arrays were connected at 32 GFC, which increased the speed mismatch between the 
hosts and the storage. As explained in Chapter 1, “Introduction to Congestion in Storage 
Networks,” this speed mismatch, combined with the high performance of all-flash arrays, 
was the root cause of the increased occurrences of congestion issues.

The trading company understood the problem and its root cause. It also understood that 
the real solution was to upgrade the hosts because doing so would eliminate the speed 
mismatch with the all-flash storage arrays, essentially removing one major cause of con-
gestion due to overutilization of the host links. But, due to finite human resources, the 
company could only upgrade a few hundred hosts every month. At this pace, it would 
take many years to upgrade all the hosts, and the company would be subjected to con-
gestion issues during this time. While the company could not speed up this change, it 
wanted to have a prioritized list of the hosts that were most likely to cause congestion. 
Instead of upgrading a host randomly or in an order that didn’t consider the likeliness of 
congestion, following this methodology would allow the company to minimize conges-
tion issues.

Background

The trading company uses storage arrays from two major vendors. The hosts include 
almost all kinds of servers (such as blade and rack-mount servers) from all major vendors. 
The company uses all major operating systems for hosting hundreds of applications.

The trading company uses Cisco MDS switches (mostly modular directors) in its Fibre 
Channel fabrics. Most connections were capable of running at 16 GFC. However, 
while deploying all-flash arrays, they upgraded the storage connections to 32 GFC. 
For management and monitoring of the fabric, the company uses Cisco Data Center 
Network Manager (DCNM), which has since been rebranded as Nexus Dashboard Fabric 
Controller (NDFC).
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Initial Investigation: Finding the Cause and Source of Congestion

The trading company used the following tools for detecting and investigating congestion 
issues:

■■ Alerts from Cisco MDS switches: The company had enabled alerts for Tx B2B 
credit unavailability by using the TxWait counter and alerts for high link utilization 
by using the Tx-datarate counter. As the company deployed all-flash arrays, the num-
ber of alerts generated due to TxWait didn’t change, but the number of alerts due to 
Tx-datarate increased.

■■ Traffic trends, seasonality, and peak utilization using DCNM: After receiving the 
alerts from the MDS switches, the trading company used the historic traffic patterns 
in DCNM. The host ports that generated Tx-datarate alerts showed increased peak 
utilization. This increased utilization coincided with the time when the company 
deployed all-flash storage arrays.

These two mechanisms are explained in detail in Chapter 3, “Detecting Congestion in 
Fibre Channel Fabrics.”

A Better Host Upgrade Plan

The trading company designed the host upgrade plan using two steps:

Step 1.	 Detect the hosts that were already causing congestion and upgrade them first.

Step 2.	 Predict what hosts were most likely to cause congestion and upgrade them next.

Step 1: Detect Congestion

The trading company detected the hosts that needed urgent attention, as explained ear-
lier, in the section “Initial Investigation: Finding the Cause and Source of Congestion.” 
These were the first ports to be upgraded, and the company prioritized upgrading the 
ports with slower speeds. But only a small percentage of the hosts made it to this list, and 
the company still wanted a prioritized list of the other hosts.

Step 2: Predict Congestion

The next step in designing a host upgrade plan (that is, a priority list of hosts) was finding 
the hosts that were most likely to cause congestion due to overutilization of their links.

In addition, the company wanted to find the hosts that were causing congestion but that 
could not be detected in Step 1. Any detection approach has a minimum time granular-
ity. Events that are sustained for a shorter duration than the minimum time granularity 
often remain undetected. For example, even if congestion is detected at a granularity of 
1 second, many congestion issues that are sustained for microseconds (sometimes called 
microcongestion) can’t be detected. This is common with the all-flash storage arrays that 
have response times in microseconds. Because of this, the usual detection mechanisms 
used in Step 1 can’t predict the likelihood of congestion.
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This is where the insights obtained by using SAN Analytics help. The trading company 
enabled SAN Analytics on all its storage ports. Although only the storage ports inspected 
the traffic, the visibility from SAN Analytics was end-to-end at a granularity of every ini-
tiator, target, and logical unit (LUN) or ITL flow.

After collecting I/O flow metrics for a week, the company took the following steps (see 
Figure 5-12):

Step 1.	 The company extracted the read I/O size, write I/O size, read IOPS, and write 
IOPS for all the hosts.

Step 2.	 The company made sorted lists of the hosts according to read I/O size and 
read IOPS. In other words, the company found the hosts with the largest 
read I/O size and highest read IOPS. Write I/O size and write IOPS were not 
considered because, as mentioned in the section “Correlating I/O Operations, 
Traffic Patterns, and Network Congestion,” most traffic due to write I/O 
operations flows from hosts to targets and does not lead to congestion due to 
overutilization of the host link.

Step 3.	 The company assumed that the hosts at the top of the list were more likely 
to cause congestion of their links and upgraded these hosts before upgrading 
the hosts with smaller read I/O sizes and lower IOPS.

Hosts
(Initiators)

Storage
Arrays

(Targets)

Hosts Peak I/O Size
Host-100 4 MB

Host-401 4 MB

Host-222 1 MB

Host-110 512 KB

Host-56 512 KB

… …

… …

Host-40 1 KB

Host-31 1 KB

Host-22 512 B

Host-5 512 B

Hosts
(Initiators)

Descending
Order

Hosts with larger read I/O size are more likely to cause
congestion due to over utilization of their links

Switches

Figure 5-12  Sorted List of Hosts Based on Peak Read I/O Size for Predicting 
Congestion Due to Overutilization

A key consideration in predicting congestion is to focus on the peak values instead of the 
average values of the I/O flow metrics. This is because high average values indicate that 
the real-time values are sustained for a while. In this case, sustained traffic could have 
been detected by the Tx-datarate alert in Step 1, which has a granularity of 10 seconds. 
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But the Tx-datarate counter could miss occasional spikes in traffic that are sustained only 
for a few milliseconds or even seconds. Such conditions can be found or even predicted 
by focusing on the peak values of the I/O flow metrics.

Another consideration is to prioritize the I/O size metric over the IOPS metric—for two 
key reasons. First, as explained earlier in this chapter, in the section “I/O Size,” I/O size is 
determined by the application or the host, and it is not affected by network congestion. 
In contrast, IOPS is reduced during network congestion. The second reason is that I/O 
size is an absolute metric, which means it is directly collected from the frame headers. As 
a result, its peak value is not affected by averaging. In contrast, IOPS is a derived metric 
from the average number of I/O operations over a duration such as 30 seconds. Even the 
most granular value of IOPS must be calculated over a duration, which makes it an aver-
age value. This goes against the benefit of the peak values explained earlier.

For collecting data, the trading company used a custom-developed collector that polled 
the metrics for initiator flows every 30 seconds from the MDS switches and then used 
the peak values in 6-hour ranges. It was a custom development because this use case was 
very specific, and it was unavailable ready-made at that time on the MDS switches or SAN 
Insights. The raw metrics were available, but they were not available in an easy-to-interpret 
format. The custom development gave the company the easy-to-interpret format it wanted. 
This enhancement was later integrated with Cisco NX-OS running on MDS switches and it 
is available by default.

Example 5-2 shows the output of a similar custom development that is based on the 
ShowAnalytics command on MDS switches. It shows a sorted list of initiators according 
to their read I/O sizes. The ShowAnalytics command is a presentation layer for the raw 
flow metrics, and it is written in Python. Many use cases are available ready-made, and 
their functionality can be enhanced even further by users. More details are available at 
https://github.com/Cisco-SAN/ShowAnalytics-Examples/tree/master/004-advanced- 
top-iosize. Example 5-2 shows a modified version of the ShowAnalytics command.

Example 5-2  Finding I/O Sizes of Hosts by Using SAN Analytics

 

MDS# python bootflash:analytics-top-iosize.py --top --key RIOSIZE

 

+--------+------------------------------------------+-------------------+

|  PORT  |        VSAN|Initiator|Target|LUN         |      IO SIZE      |

+--------+------------------------------------------+-------------------+

|        |                                          |   Read  |  Write  |

| fc1/35 | 20|0x320076|0x050101|002c-0000-0000-0000 |  1.2 MB |32.0 KB  |

| fc1/34 | 20|0x320076|0x050041|000c-0000-0000-0000 |  1.1 MB |32.0 KB  |

| fc1/33 | 20|0x320076|0x050021|002f-0000-0000-0000 |  1.0 MB |25.6 KB  |

| fc1/35 | 20|0x320076|0x050101|001b-0000-0000-0000 |  1.0 MB |48.0 KB  |

| fc1/33 | 20|0x320076|0x050021|0017-0000-0000-0000 | 992.0 KB|27.4 KB  |

| fc1/33 | 20|0x320076|0x050021|0026-0000-0000-0000 | 992.0 KB|32.0 KB  |

| fc1/33 | 20|0x320076|0x050021|0022-0000-0000-0000 | 960.0 KB|32.0 KB  |

| fc1/34 | 20|0x320076|0x050041|0025-0000-0000-0000 | 960.0 KB|28.0 KB  |

| fc1/35 | 20|0x320076|0x050101|001a-0000-0000-0000 | 960.0 KB|32.0 KB  |

| fc1/34 | 20|0x320076|0x050041|0014-0000-0000-0000 | 928.0 KB|32.0 KB  |

+--------+------------------------------------------+-------------------+

https://github.com/Cisco-SAN/ShowAnalytics-Examples/tree/master/004-advanced-top-iosize
https://github.com/Cisco-SAN/ShowAnalytics-Examples/tree/master/004-advanced-top-iosize


Case Study 1 Summary

The trading company reduced its congestion issues by designing a two-step host upgrade 
plan. In Step 1, the company used the congestion detection capabilities of Cisco MDS 
switches and DCNM (NDFC). In Step 2, it used the predictive capabilities of SAN 
Analytics. Instead of upgrading the hosts randomly, the company prioritized upgrad-
ing the hosts that were more likely to cause congestion based on the peak read I/O size 
values. By following this plan, the company lowered the severity of congestion, and the 
number of such issues was only a fraction of what it had been at the beginning of the 
upgrade cycle, when the company started deploying all-flash arrays.

Case Study 2: A University That Avoided Congestion Issues by 
Correcting Multipathing Misconfiguration

A university observed congestion issues in its storage networks. After enabling alerting 
on the MDS switches, the university concluded that the congestion was due to the over-
utilization of a few host links.

The university monitored the read and write I/O throughput on these hosts by using 
the host-centric approach described earlier in this chapter, in the section “Storage I/O 
Performance Monitoring in the Host.” The throughput reported by the operating system 
(Linux) was much lower than the combined capacity of the host ports. This led the uni-
versity to believe that ample network capacity was still available.

The university wanted to know why these hosts caused congestion due to overutilization 
even though the I/O throughput was less than the available capacity. Finding the reason 
for the congestion would pave the way to a solution.

Background

The university used the Port-Monitor feature to automatically detect congestion and 
generate alerts on Cisco MDS switches. It also enabled SAN Analytics and exported the 
metrics to DCNM/NDFC SAN Insights for long-term trending and end-to-end correlation 
of the I/O flow metrics.

Investigation

The university measured the host I/O throughput at the operating system, which was the 
combined throughput, but it had not measured the per-path I/O throughput. This was 
important because its hosts were connected to the storage arrays via two independent and 
redundant Fibre Channel fabrics (Fab-A and Fab-B). Most of its hosts have two HBAs, 
each with two ports (for a total of four ports). The first port on both HBAs connects to 
Fab-A, whereas the second port on both HBAs connects to Fab-B (see Figure 5-13).

The university used SAN Analytics to find the throughput per path, which is also avail-
able in DCNM SAN Insights. It found that although the combined throughput reported 
by SAN Insights was the same as the throughput measured at the operating system, the 

I/O Operations and Network Traffic Patterns    369



370    Chapter 5: Solving Congestion with Storage I/O Performance Monitoring

per-path throughput was not uniformly balanced. The ports connected to Fab-A were 
up to four times more utilized than the ports connected to Fab-B. When the host I/O 
throughput spiked, the increase seen on the ports connected to Fab-A was up to four 
times more than the increase seen on the ports connected to Fab-B. During this spike, the 
ports connected to Fab-A operated at full capacity, while the ports connected to Fab-B 
were underutilized. This was the reason for congestion due to the overutilization of host 
links in Fab-A.

Fab-B

Storage Arrays
(Targets)

Host
(Initiator)

Fab-A

Host I/O
Throughput

Per-Path
Throughput = X

Per-Path
Throughput = 4X

Underutilized
Link

Congestion Due
to Overutilization

Figure 5-13  Per-Path Throughput Monitoring Helps in Finding Multipathing 
Misconfiguration

In Figure 5-13, traffic imbalance among the four host links can also be detected by mea-
suring the utilization of host ports or their connected switchports. But if the hosts are 
within a blade server chassis, finding this traffic imbalance is not possible just by measur-
ing port utilization. For example, in Cisco UCS architecture, the links that connect to 
the MDS switches can carry traffic for up to 160 servers, each with multiple initiators. 
Finding the throughput per initiator is possible only after getting flow-level visibility, as 
provided by SAN Analytics.

Figure 5-14 shows per-path throughput for the host and an end-to-end topology in 
DCNM/NDFC.

The root cause of this congestion was the misconfiguration of multipathing on these 
hosts. The university solved this congestion issue by correcting the multipathing mis-
configuration on these hosts. SAN Analytics played a key role in finding the root 
cause because it was able to show a host’s combined throughput as well as the per-path 
throughput.
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Figure 5-14  Ready-Made View of the per-Path Throughput of Hosts in NDFC/DCNM 
SAN Insights

Case Study 2 Summary

Using SAN Analytics, a university was able to find non-uniform traffic patterns that led 
to congestion due to overutilization of a few links while other links were underutilized. 
The insights provided by SAN Analytics pinpointed a problem at the host multipathing 
layer. The university solved the congestion issues by correcting the multipathing miscon-
figuration, which resulted in uniform utilization of the available paths.

Case Study 3: An Energy Company That Eliminated Congestion 
Issues

An energy company observed high TxWait values on its storage-connected switchports, 
which means the storage arrays had a slower processing rate than the traffic being deliv-
ered to them (that is, slow drain). Thus, the storage ports slowed down the sending of R_
RDY primitives, leading to zero remaining-Tx-B2B-credits on the connected switchports, 
which led to high TxWait values.

The company observed the high TxWait values across all of its storage ports. No specific 
storage array stood out. Also, the TxWait spikes were observed throughout the peak busi-
ness hours. The company couldn’t pinpoint the high TxWait values to any specific hour.
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The energy company wanted to know the reason for the high TxWait values on its  
storage-connected switchport. Knowing the root cause of this problem would allow them 
to find a solution before the issue became a business-impacting problem.

Background

The energy company uses storage arrays from a few major vendors. Its hosts include 
almost all kinds of servers (such as blade and rack-mount servers) from all major vendors. 
Most of its servers are virtualized using a leading hypervisor. The company uses Cisco 
MDS switches in its Fibre Channel fabrics. It used the Port-Monitor feature to automati-
cally detect congestion and generate alerts for TxWait and other counters. However, not 
many alerts were generated because the TxWait values measured by the switchports were 
lower than the configured thresholds.

The energy company polls the TxWait value from all switchports every 30 seconds by 
using the MDS Traffic Monitoring (MTM) app (refer to Chapter 3). Cisco NDFC/DCNM 
Congestion Analysis also provides this information.

Investigation

The energy company needed more details to proceed with the investigation of high TxWait 
values on the storage-connected switchport because the existing data points were not con-
clusive. There were no specific time patterns or locations to pinpoint. TxWait values were 
observed throughout business hours randomly across all the storage-connected switch-
ports. Also, some team members suspected issues within storage arrays. However, this pos-
sibility was ruled out because high TxWait values on the connected switchports were seen 
from all the storage arrays that had different vendors and different architectures.

The energy company took the following steps in investigating this issue:

Step 1.	 The company enabled SAN Analytics on the storage-connected switchports 
and allowed the I/O flow metrics to be collected for a week.

Step 2.	 Next, the company correlated TxWait values with ECT values on the storage 
ports. The ECT pattern matched with the TxWait pattern, which was expect-
ed because high TxWait values cause a delay in frame transmission, which in 
turn leads to longer exchange completion times.

Step 3.	 The company also tried matching the pattern of IOPS and throughput, but 
that didn’t lead to any new revelations.

Step 4.	 The company correlated TxWait with I/O size. It didn’t observe any matching 
patterns with read I/O size. However, it noticed that the time pattern of the 
spikes in write I/O size was an exact match with the time pattern of the spikes 
in TxWait.
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Step 5.	 The company believed the spikes in write I/O size could explain the spikes in 
TxWait on the storage ports. It used this reasoning:

■■ Typically, the write I/O size was in the range 512 bytes to 64 KB. During 
the spikes, the write I/O size increased to 1 MB. A 64 KB write I/O opera-
tion results in 32 full-size Fibre Channel frames, and a 1 MB write I/O 
operation results in 512 full-size Fibre Channel frames.

■■ Most traffic due to a write I/O operation flows from hosts to storage ports.

■■ The spike in write I/O size caused a burst of frames toward the storage 
arrays.

■■ It was possible that the storage arrays could not process the burst of the 
frames in a timely manner and used the B2B flow control mechanism to 
slow down the ingress frame rate. The storage arrays reduced the rate of 
sending R_RDY primitives, leading to zero remaining-Tx-B2B-credits on 
the connected switchport, which led to high TxWait values.

Step 6.	 After determining that the large write I/O operations were the reason for the 
TxWait values on storage-connected switchports, the company wanted to 
resolve this issue. It had to find which hosts (initiators) and possibly which 
applications used the large-size write I/O operations.

Step 7.	 The company used SAN Analytics to find the write I/O size for every  
initiator-target-LUN (ITL) flow on the storage-connected switchports. This 
detailed information was enough to find the hosts (initiators) that initiated the 
large-size write I/O operations.

Step 8.	 Using SAN Analytics, the company found that these ITL flows had been 
active, and they had been doing write I/O operations with typical I/O sizes in 
the range 512 bytes to 64 KB. The write I/O size spiked to 1 MB just before 
these ITL flows stopped showing any I/O activity. In other words, the IOPS 
and throughput of these ITL flows dropped to zero right after the spike in 
write I/O size to 1 MB. It was an interesting pattern that was commonly seen 
on all the ITL flows that showed spikes in write I/O size to 1 MB.

Step 9.	 The company located the servers by using the initiator value from the ITL 
flows. Because these servers were virtualized, the company used the LUN 
value from the ITL flow to locate the datastore and a virtual disk on the 
hypervisor. However, it couldn’t find any data store or a virtual disk that was 
associated with the LUN value.

Step 10.	 Because the data from SAN Analytics showed nonzero IOPS for the ITL 
flows, the company was confident that these hosts used the storage volume 
associated with the LUN. Initially, it thought that it was not seeing all the 
information from the hosts. But later it was suspected that probably all these 
hosts stopped using the LUN. Not using the LUN coincided with the traffic 
pattern where the ITL flows showed no I/O activity right after a spike in the 
write I/O size.
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Step 11.	 The company suspected some cleanup mechanism before freeing up the disks. 
The application and virtualization teams found that, as per the company’s 
compliance guidelines, explicit (eager) zeros are written before the volumes 
are freed up.

Step 12.	 The company found that many applications were short-lived. When such 
applications are provisioned, the company creates virtual machines and allo-
cates storage. As soon as an application is shut down, the virtual machine 
resources are freed. During this process, the company wipes all the data and 
then writes (eager) zeros on the volumes.

Step 13.	 Next, the company found the disk cleanup process. The hypervisor docu-
mentation made it clear that this cleanup process of writing zeros used an I/O 
size of 1 MB. This value matched with the write I/O size value shown by SAN 
Analytics on the storage-connected switchport that reported spikes in TxWait 
values. This also explained why no I/O activity was seen right after the write 
I/O size spiked.

Step 14.	 The company concluded that the disk cleanup process was the root cause of 
the spikes in write I/O size, which in turn caused the spikes in TxWait values 
on the storage-connected switchports. To test this idea, the company followed 
the same sequence of deploying an application followed by shutting it down. 
When the virtual machine was freed, the company could match the time-
stamps on the hypervisor with the spike in write I/O size for the correspond-
ing ITL flow on the storage port, as reported by SAN Analytics. Connecting 
these end-to-end dots between the storage network and the application 
gave the company a clear understanding of the root cause of the problem. 
However, the problem was not yet solved. Because of the compliance guide-
lines, the company couldn’t stop the disk cleanup process. Also, changing the 
default write I/O size of the disk cleanup process was perceived to be risky.

Step 15.	 The company’s final approach, which aligned with its compliance guidelines 
and was agreed upon by all the teams, was to avoid cleaning up the virtual 
machines during peak business hours. The company changed the workflow 
to not free up the virtual machine immediately after the application was shut 
down. Rather, it delayed the cleanup process until off-peak (late-night) hours.

Step 16.	 The company verified this change by using the TxWait values on switchports 
and write I/O size, as reported by SAN Analytics. It didn’t see spikes in 
TxWait values anymore. It saw spikes in write I/O size, but now TxWait values 
didn’t increase, probably because the overall load on the storage arrays was 
low during the off-peak hours, and thus, the spike of the write I/O size for 
some flows didn’t cause processing delays with the storage arrays.

Figure 5-15 shows a TxWait graph in NDFC/DCNM Congestion Analysis. This graph has 
a granularity of 60 seconds. TxWait of 30 seconds in this graph translates to 50% TxWait.
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Figure 5-15  TxWait in NDFC/DCNM Congestion Analysis

Figure 5-16 shows a write I/O size time-series graph in NDFC/DCNM SAN Insights. 
Notice the sudden spike and timestamp.

Figure 5-16  Write I/O Size Spike in NDFC/DCNM SAN Insights

Figures 5-15 and 5-16 are close representations, but they are not sourced from the  
environment of the energy company. They are shown here to illustrate how the spikes in 
TxWait values and I/O size can be found and used.
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Case Study 3 Summary

Using SAN Analytics, the energy company was able to find the root cause of high 
TxWait values on the storage-connected switchports and eliminate this congestion issue. 
First, it found that the spike in TxWait values was caused by the spike in write I/O size. 
Then it found the culprit ITL flows and used the initiator and LUN values to locate the 
hosts and the virtual machine. Finally, it used the traffic pattern—zero I/O activity just 
after a spike in write I/O size—to conclude that the disk cleanup process was the root 
cause of the spike in write I/O size. Based on this conclusion, the company solved the 
problem by delaying the disk cleanup until off-peak hours. This simple step eliminated 
congestion (TxWait spikes) from the company’s storage-connected switchports, which 
essentially led to better overall storage performance. This performance optimization 
wouldn’t have been possible without the insights provided by SAN Analytics.

Case Study 4: A Bank That Eliminated Congestion Through 
Infrastructure Optimization

A bank had an edge–core design in a storage network that connects thousands of  
devices. It often received a high egress utilization alert from a switchport connected to 
Host-1. The high-utilization condition persisted for a few minutes, and it happened a few 
times every day. While this switchport reported high egress utilization, congestion was 
seen on the ISL ports, as confirmed using TxWait values on the ISL ports of the upstream 
switch.

The bank had a large server farm, and many servers were underutilized. It was believed 
that high egress utilization on the switchport connected to Host-1 could be eliminated by 
moving some of the workloads to another server. However, instead of randomly moving 
a workload to another server (which would be a hit-or-miss approach), the bank wanted 
to make a data-driven decision to make the right change in one attempt. Every change is 
expensive, and the cost multiplies quickly in large environments.

Background

The bank used storage arrays from a few major vendors. Its hosts deployment included 
almost all kinds of servers (such as blade and rack-mount servers). Most of its servers 
were virtualized using a leading hypervisor. The bank used Cisco MDS switches in its 
Fibre Channel fabrics. It had enabled automatic monitoring and alerting using the  
Port-Monitor feature on MDS switches.

Using the high egress utilization (Tx-datarate) alerts, the bank was able to find the  
following information:

■■ When the congestion started: This was based on the timestamp of the Port-Monitor 
alerts.

■■ How long the congestion lasted: This was determined by finding the difference in 
timestamps between the rising and falling threshold events.
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■■ Where the source of congestion was located: Port-Monitor alerts reported which 
switch and switchport were highly utilized. The FLOGI database (via the NX-OS 
command show flogi database) showed that the affected switchport was connected 
to Host-1.

■■ The congestion severity: This was reported by the Tx-datarate counter on the 
switchport that connected Host-1 and TxWait on the ISL ports of the upstream 
switch (refer to Chapter 4, “Troubleshooting Congestion in Fibre Channel Fabrics”).

Investigation

The bank needed more details to make a data-driven change to reduce the high ingress 
utilization of the Host-1 port, which is the same as the egress utilization of the connected 
switchport. Although the metrics from the switchport and the alerts from the Port-
Monitor showed high utilization, granular flow level details were not available.

The bank wanted to move some workload from Host-1 to the other underutilized servers. 
But it didn’t know which workload to move and to which server.

The bank went through the following steps in investigating this issue:

 

Note  For the sake of simplicity, this explanation limits the scope to only four servers 
(Host-1 through Host-4).

Step 1.	 The bank enabled SAN Analytics on the host-connected switchports and ran 
it for a week while the same pattern of overutilization and congestion repeat-
ed. This helped in collecting end-to-end I/O flow metrics.

Step 2.	 Using SAN Analytics, the bank found the number of targets (using IT flows) 
and the number of logical units (storage volumes, or LUNs) (using ITL flows) 
that each server was doing I/O operations with. Table 5-4 shows the findings.

Table 5-4  Distribution of IT and ITL Flows of the Servers

Server Name Number of IT Flows Number of ITL Flows Number of LUNs  
(ITL flows / IT flows)

Host-1 4 40 10

Host-2 4 20 5

Host-3 4 12 3

Host-4 4 80 20

Dividing the number of ITL flows by the number of IT flows gave the bank 
the number of LUNs that each server was doing I/O operations with. The 
results indicated that Host-1 was accessing a higher number of LUNs than 
were Host-2 and Host-3. Host-4’s LUN number was double that of Host-1, yet 
it didn’t cause utilization as high as for Host-1.
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Step 3.	 The bank found the throughput for every ITL flow. It focused on read I/O 
throughput because most egress traffic on host-connected switchports results 
from read I/O operations. After sorting the ITL flows on the Host-1 con-
nected switchport as per the read I/O throughput, the bank found an ITL flow 
that had a throughput much higher than the other ITL flows. Also, the pat-
tern of spikes and dips of the read I/O throughput of this ITL flow matched 
the egress utilization on the Host-1 connected switchport. Clearly, this ITL 
flow was the major cause of the high utilization of the switchport and, conse-
quently, the reason for congestion on the ISL.

Step 4.	 The bank wanted to find the workload that was using this ITL flow. Host-1 
was virtualized, with many virtual machines. The bank used the LUN value 
of the ITL flow to find the datastore. It found the virtual disk that was cre-
ated using this datastore and found the virtual machines that were using that 
virtual disk. To verify that it had located the correct virtual machine, the bank 
used the I/O throughput as reported by the operating system of the VM and 
matched it with the throughput reported by SAN Analytics for the detected 
ITL flow.

Step 5.	 After locating the high-throughput virtual machine on Host-1, the bank want-
ed to find the best server to which this virtual machine could be moved. Was 
it Host-2, Host-3, or Host-4?

Step 6.	 The bank ruled out Host-4 because it already had a greater number of ITL 
flows. The remaining possible options were Host-2 with 20 ITL flows, and 
Host-3 with 12 ITL flows.

Step 7.	 The bank found more metrics reported by SAN Analytics. Table 5-5 shows 
these findings.

Table 5-5  I/O Flow Metrics from SAN Analytics for Host-2 and Host-3

Server Name Peak Egress Utilization of the 
Connected Switchport

Peak IOPS Peak Read I/O Size

Host-2 30% 10,000 16 KB

Host-3 40% 2000 64 KB

	 It was important to use the peak values in order to make the right decisions 
because congestion issues are more severe under peak load. Based on this 
data, the bank decided to move the high-throughput virtual machine from 
Host-1 to Host-2 because of its lower utilization and lower read I/O size. 
Had it made the decision based on the number of ITL counts alone, the 
bank would have chosen Host-3, which was not the best choice. By using the 
insights provided by SAN Analytics, the bank was able to make a data-driven 
decision.

The bank continued to monitor the servers and repeated these steps for further 
optimization.
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Case Study 4 Summary

The bank received high egress utilization alerts from one of the host-connected switch-
ports, which led to congestion on the ISL. It resolved this issue by moving a high-
throughput workload/VM from this host to other underutilized hosts. To make this 
change, the bank used SAN Analytics to find the number of IT flows and ITL flows. It 
then found the throughput per flow and sorted the flows according to throughput to 
find the culprit flow. Next, the bank located the virtual machine by using the LUN value 
from the ITL flow and correlated it with the datastore and virtual disk on the hypervisor. 
Finally, it analyzed the peak throughput, IOPS, and I/O sizes of the other servers to find 
the best host for the high-throughput workload.

The insights provided by SAN Analytics helped the bank resolve this issue with only one 
change.

Summary
Storage I/O performance monitoring provides advanced insights into network traffic, and 
these insights can be used to accurately solve network congestion. Cisco SAN Analytics, 
which takes a network-centric approach to storage I/O performance monitoring, provides 
end-to-end visibility into I/O operations between virtual machines, initiators, targets, and 
LUNs/namespaces. The per-flow performance metrics from SAN Analytics help in deter-
mining network traffic patterns. For example, the throughput on a port can be predicted 
by using the I/O size of the read and write operations. Also, most throughput due to 
read I/O operations is in the direction from storage (target) to hosts (initiators), whereas 
most throughput due to write I/O operations is in the direction from hosts to storage. 
Although the read and write I/O data frames make the most of the traffic, these data 
frames are just a consequence of the read and write I/O command frames that are sent 
from the hosts to the target. These details help in detecting and predicting congestion 
issues, and they also help in preventing them by using mechanisms like Dynamic Ingress 
Rate Limiting, as explained in Chapter 6.

This chapter explains the practical usage of SAN Analytics via four case studies. The 
steps explained in these case studies can be reused in other environments for detecting 
and predicting congestion issues.

Finally, storage I/O performance monitoring and SAN Analytics are detailed subjects, and 
these tools can achieve a lot more than detecting and predicting congestion in storage 
networks. We recommend continuing your education on this topic outside this book.
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