CompTIA® Linux+ XK0-005 Cert Guide

Companion Website and Pearson Test Prep Access Code

Access interactive study tools on this book’s companion website, including practice test software, review exercises, Key Term flash card application, a study planner, and more!

To access the companion website, simply follow these steps:

3. Answer the security question to validate your purchase.
4. Go to your account page.
5. Click on the Registered Products tab.

When you register your book, your Pearson Test Prep practice test access code will automatically be populated with the book listing under the Registered Products tab. You will need this code to access the practice test that comes with this book. You can redeem the code at PearsonTestPrep.com. Simply choose Pearson IT Certification as your product group and log in to the site with the same credentials you used to register your book. Click the Activate New Product button and enter the access code. More detailed instructions on how to redeem your access code for both the online and desktop versions can be found on the companion website.

If you have any issues accessing the companion website or obtaining your Pearson Test Prep practice test access code, you can contact our support team by going to pearsonitp.echelp.org.
This page intentionally left blank
Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world’s leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

- Everyone has an equitable and lifelong opportunity to succeed through learning
- Our educational products and services are inclusive and represent the rich diversity of learners
- Our educational content accurately reflects the histories and experiences of the learners we serve
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.
Contents at a Glance

Introduction xliii

Part I: System Management (Obj. 1.1 - 1.7)
CHAPTER 1 Understanding Linux Fundamentals 3
CHAPTER 2 Managing Files and Directories 43
CHAPTER 3 Configuring and Managing Storage 101
CHAPTER 4 Managing Processes and Services 139
CHAPTER 5 Using Network Tools and Configuration Files 185
CHAPTER 6 Building and Installing Software 225
CHAPTER 7 Managing Software Configurations 281

Part II: Security (Obj. 2.1 - 2.5)
CHAPTER 8 Understanding Linux Security Best Practices 321
CHAPTER 9 Implementing Identity Management 353
CHAPTER 10 Implementing and Configuring Firewalls 379
CHAPTER 11 Using Remote Connectivity for System Management 405
CHAPTER 12 Understanding and Applying Access Controls 427

Part III: Scripting, Containers, and Automation (Obj. 3.1 - 3.5)
CHAPTER 13 Automating Tasks via Shell Scripting 463
CHAPTER 14 Perform Basic Container Operations 523
CHAPTER 15 Performing Basic Version Control Using Git 539
CHAPTER 16 Understanding Infrastructure as Code 573
CHAPTER 17 Understanding Containers, Cloud, and Orchestration 597

Part IV: Troubleshooting (Obj. 4.1 - 4.5)
CHAPTER 18 Analyzing and Troubleshooting Storage Issues 619
CHAPTER 19 Analyzing and Troubleshooting Network Resource Issues 667
CHAPTER 20 Analyzing and Troubleshooting CPU and Memory Issues 701
CHAPTER 21 Analyzing and Troubleshooting User and File Permissions 725
CHAPTER 22 Analyzing and Troubleshooting Common Problems Using Systemd 743
CHAPTER 23 Final Preparation 765
APPENDIX A Answers to the “Do I Know This Already?” Quizzes and Review Questions 773
 Glossary 790
 Index 809

Online Elements
APPENDIX B Study Planner
Table of Contents

Introduction xliii

Part I: System Management (Obj. 1.1 - 1.7)

Chapter 1 Understanding Linux Fundamentals 3

“Do I Know This Already?” Quiz 3

Foundation Topics 6

Filesystem Hierarchy Standard 6

What Goes Where in the FHS 6

The Root of the Filesystem 6

Where to Put Programs 7

Basic Boot Process 8

What Is the Boot Process? 8

System Boot Options 9

initrd and initramfs 9

Booting with UEFI 10

Booting via PXE 11

Booting via NFS 12

Booting via ISO 13

Boot Loaders and Files 14

GRUB Legacy 15

GRUB2 15

Changes Made for GRUB2 15

GRUB2 Command Names 16

Installing GRUB2 17

Using the GRUB2 Command Line 18

Demystifying Kernel Images 19

Configuring GRUB2 20

Common Commands at Boot Time 21

When Kernels Panic 22

Identifying a Kernel Panic 22

Getting More Information 22

Kernel Panic Causes 23
Chapter 2 Managing Files and Directories 43
“Do I Know This Already?” Quiz 43
Foundation Topics 46
File and Directory Operations 46
 Tips for Working with Linux Files 46
 Basic Navigation 47
 Advanced Navigation 48
 Listing Files and Directories 49
 Touching Files 50
 Copying Files and Directories 51
 Moving Objects 54
 Creating and Removing Directories 56
 Removing Objects 57
File Metadata and File Types 57
 Determining File Types 57
 The file Command 57
 Displaying File Metadata 58
 The stat Command 58
Soft and Hard Links 60
 Linking Files 60
 Symbolic Links 61
 Hard Links 62
File Compression, Archiving, and Backup 63
 Using tar 64
 Using Compression Utilities 66
 Using tar with Compression Utilities 67
 Taking Pity on the Unarchiver 70
 Useful Creation Options 71
 Listing Archive Files 71
 Using cpio 72
 Using the dd Command 73
 Compression Tools 75
 Backing Up Is Hard to Do 76
 Backup Types 76
 Other Backup Types 77
Chapter 4 Managing Processes and Services 139

“Do I Know This Already?” Quiz 139

Foundation Topics 142

Managing Processes 142

Viewing Processes 142

What’s the Diff? 143

The htop Command 144

The free Command 145

Blocks and Buffers 146

Pages, Slabs, and Caches 146

Interpreting Displayed Information from free 147

Sending Signals to Processes 148

Killing Processes by PID 149

Using pgrep and pkill to Send Signals 150

Killing Processes Using Other Criteria 152

Finding What Is Using a Resource 153

Introducing lsof 153

Using lsof 154

Job Control 155

Managing Process Priorities 157

systemd 159

What’s Different About systemd? 159

Units in systemd 161

Unit File Directory Locations 161

systemd Environment Variables 162

systemd Targets and Runlevels 163

Wants and Requires 163

Booting with systemd 164

Commands to Manage systemd 165

The State of Services/Units 165

Listing Services 166

Enabling and Disabling Services 166
Chapter 6 Building and Installing Software 225

“Do I Know This Already?” Quiz 226

Foundation Topics 228

Package Management 228
 The Most Common Package Types 228
 Package Managers 229
 Debian Package Management 229
 Managing Local Debian Packages 230
 Installing Packages with dpkg 231
 Removing Packages 231
 Dependency Issues 232
 Querying Packages 233
 Reconfiguring Packages 234
 Using Repositories 235
 What Is a Repository? 236
 Viewing Configured Repositories 236
 Adding Repositories 238
 Installing Remote Packages 239
 Working with the Cache 241
 Upgrading the System 241
 Removing Packages 242
 Graphical Managers 242
 RPM and YUM Package Management 243
 The RPM Database 243
 RPM Package Files 244
 Package Name Conventions 244
 The rpm Command 245
 Validation of Packages 246
 Installation of Packages 246
 Additional Installation Options 247
 Verifying a Package’s Integrity 248
 Freshening vs. Upgrading 249
 Removing Packages 250
 Other Removal Options 251
Querying Packages 252
Package Management with YUM 255
Installing Packages 255
Fetching Updates 257
Finding Packages to Install 258
Configuring YUM 259
Dandified YUM 262
ZYpp 262
Installing Software Packages with zypper 263
Removing a Package with zypper 265
Managing Repositories 265
Sandboxed Applications 268
What Is a Sandboxed App? 268
App Sandbox Applications 269
Flatpak 269
AppImage 269
Snapd 270
System Updates 270
Updating the Kernel 270
Choosing an Update Method 271
Reboot Methods 271
Manual Update 271
Update with Package Manager 272
Linux Kernel Utilities 272
No Reboot Method 273
Live Kernel Patching Overview 274
Issues with Live Patching 274
The Live Patch Process 274
Summary 275
Exam Preparation Tasks 276
Review All Key Topics 276
Define Key Terms 277
Review Questions 277
Chapter 7 Managing Software Configurations 281

“Do I Know This Already?” Quiz 281

Foundation Topics 283

Updating Configuration Files 283

 Restart or Reload? 283

 Restarting a Service 283

 Reloading a Service 283

Grace Under Pressure 284

Dealing with RPM Configurations 284

Rage About Your Machine 285

Two Methods to Retain the Original Configuration File 285

Handling .rpmsave and .rpmnew Files 286

Repository Configuration Files 287

Repository Configuration File Overview 288

 The APT Configuration File 288

 The YUM Configuration File 288

 The DNF Configuration File 289

Actual Repository Files 289

 The YUM Repo Files 289

 The APT Repo Files 289

Configuring Kernel Options 289

 Viewing Kernel Parameters 290

 Doing It the Manual Way 290

 Getting Used to Using sysctl 291

 Ways to Set Kernel Parameters 291

 Using the sysctl.conf File 291

 Using the sysctl Command Directly 291

 Using /etc/sysctl.conf 292

 Using the sysctl Command to Load Parameters 292

Understanding Kernel Modules 293

Managing Kernel Modules 294

Loading and Unloading Modules Manually 296

 The modprobe Command 298

Configuring Common System Services 300

 Secure Shell (SSH) 301
Network Time Protocol (NTP) 301
NTP Expressed Through Chrony 302
The timedatectl Command 303
System Logging with Syslog 304
Representing Locales 304
Fallback Locales 306
Contents of a Locale 306
The localectl Command 307
How Linux Uses the Locale 307
systemd and syslog 308
syslog 309
The logger Command 312
Configuring syslogd 312
Key File Locations 313
Other syslog Implementations 314
Summary 315
Exam Preparation Tasks 316
Review All Key Topics 316
Define Key Terms 317
Review Questions 317

Part II: Security (Obj. 2.1 - 2.5)

Chapter 8 Understanding Linux Security Best Practices 321
“Do I Know This Already?” Quiz 321
Foundation Topics 323
Public Key Infrastructure 323
 Purpose of Certificates 323
 Certificate Authentication 323
 Self-Signed Certificates 323
 Certificate Authorities 323
Private Keys 324
Public Keys 324
Encryption and Hashing 324
Digital Signatures 325
Certificate Use Cases 325
Authentication 326
 Multifactor Authentication 326
 Tokens 326
 OTP 327
 Biometrics 327
 LDAP 327
 Pluggable Authentication Modules (PAMs) 327
 Password Policies 328
 Password Length 329
 LDAP Integration 329
 User Lockouts 329
 The /etc/pam.d Directory 330
 pam_tally2 and faillock 330
 System Security Services Daemon 331
 Single Sign-On (SSO) 332

Linux Hardening 333
 The nmap Command 333
 The nc Command 338
 Secure Boot and UEFI 340
 System Logging Configurations 340
 Using umask 340
 Disabling/Removing Insecure Services 342
 Enforcing Password Strength 343
 Setting Password Parameters 343
 Aging Your Passwords 344
 No Wire Hangers (Group Passwords) 345
 Removing Unused Packages 345
 Tuning Kernel Parameters 347
 Securing Service Accounts 347
 Configuring the Host Firewall 348

Summary 348
Exam Preparation Tasks 349
Review All Key Topics 349
Define Key Terms 350
Review Questions 350
Chapter 9 Implementing Identity Management 353

“Do I Know This Already?” Quiz 353

Foundation Topics 355

Account Creation and Deletion 355

User Account Fundamentals 355

What Accounts Are What? 355

Regular User Accounts 356

User Entries in /etc/passwd 357

Special Login Files 357

pam_tally2 and faillock 358

Group Accounts 358

Group Entries in /etc/group 360

Group Passwords 360

Adding Users and Groups 361

Adding Users with useradd 361

useradd Defaults 362

skel Templates 362

Adding Groups with groupadd 364

Modifying Users and Groups 364

Modifying User Accounts with usermod 364

Modifying Groups with groupmod 365

Removing Users and Groups 366

Removing Users 366

Removing Groups 367

The Shadow Suite 368

Encrypted Passwords and Shadow Fields 368

/etc/shadow File Permissions 369

Changing Passwords 370

Aging Passwords 370

A Login Shell Session 371

A Non-Login Shell Session 372

User Identity Query Options 372

Summary 374

Exam Preparation Tasks 375
Chapter 10 Implementing and Configuring Firewalls 379

“Do I Know This Already?” Quiz 379

Foundation Topics 382

Common Firewall Technologies 382
 iptables: Old and Reliable, but Complicated 383
 nftables: Newer, Tighter, More Dynamic 383
 firewalld: Newer, Flexible, Easier to Use 384
 UFW: Uncomplicated Indeed 384

Understanding iptables 385
 Overview of Filtering Packets 385
 Important Terms 388
 Using iptables to Filter Incoming Packets 389
 Filtering by Protocol 391
 Multiple Criteria 392
 Filtering Based on Destination 392
 Changing the Default Policy 393
 Revisiting the Original Rules 394
 Saving the Rules 394
 Using iptables to Filter Outgoing Packets 395
 Stateful Rules 396
 Logging Rules 396
 Implementing NAT 397

Additional Firewall Technologies 398
 The fail2ban Service 398
 DenyHosts 400
 IPset 400

Summary 400

Exam Preparation Tasks 401

Review All Key Topics 401
Define Key Terms 401
Review Questions 402
Chapter 11 Using Remote Connectivity for System Management 405

“Do I Know This Already?” Quiz 405

Foundation Topics 408

SSH (Secure Shell) 408

SSH Components 408

Tunneling 414

X11 Forwarding 414

Port Forwarding 415

Executing Commands as Another User 416

The sudo Command 416

The sudoedit Command 417

User Privilege Escalation 418

The su Command 419

PolicyKit 420

The pkexec Command 420

Summary 421

Exam Preparation Tasks 422

Review All Key Topics 422

Define Key Terms 423

Review Questions 423

Chapter 12 Understanding and Applying Access Controls 427

“Do I Know This Already?” Quiz 427

Foundation Topics 429

File Permissions 429

Permission Trio Bits 429

Manipulating Permissions 432

Octal Mode 432

Symbolic Mode 433

File and Directory Ownership 434

Changing File Ownership 435

Changing Group Ownership 436

Understanding and Using umask 437

Permission Granularity Issues 437

Special Bit Permissions 438
Part III: Scripting, Containers and Automation (Obj. 3.1 - 3.5)

Chapter 13 Automating Tasks via Shell Scripting 463

“Do I Know This Already?” Quiz 463
Foundation Topics 466
Shell Script Elements 466
 Globbing 467
Environment Variables and Settings 469
 The PATH Variable 471
 The SHELL Variable 472
 Variable Expansion 472
 Running a Script 473
 Good Script Design 474
Working with Input/Output Streams 475
 Standard In 475
 Standard Out 475
 Standard Error 476
 Find Errors on Demand 476
 Here Documents 477
 Redirection of Streams 478
 Redirecting Standard Input 478
 Redirecting Standard Output 478
 Redirecting Standard Error 479
 Redirection Redux 480
 Understanding /dev/tty 480
 Pipes 481
 Executing Multiple Commands 483
 Multiple Command Operators 483
 Command Substitution 484
 Splitting Streams with the tee Command 485
 Processing Output with the xargs Command 485
Shell Script Elements 487
 Using the Output of Another Command 487
 Conditionals 488
 Testing Files 490
 An Easier Test Syntax 490
Finding and Pulling a Container Image 526
Finding a Suitable Image 526
Pulling an Image 527
Viewing and Inspecting Images 528
Viewing Local Images 528
Inspecting a Local Image 529
Running an Image as a Container 529
Assigning a Container-Friendly Name 529
Detaching from and Attaching to Containers 530
Exiting and Ending Execution of a Container 530
Removing a Container 531
Viewing Container Logs 531
Exposing and Mapping Ports 532
Container Image Operations 533
 build Command 533
 push Command 533
 pull Command 534
 list Command 534
 rmi Command 534
Summary 534
Exam Preparation Tasks 535
Review All Key Topics 535
Define Key Terms 535
Review Questions 536

Chapter 15 Performing Basic Version Control Using Git 539
“Do I Know This Already?” Quiz 539
Foundation Topics 541
Version Control Concepts 541
 The First Generation 541
 The Second Generation 542
 What Is a Merge? 542
 The Third Generation 543
Using Git for Version Control 546
 Installing Git 546
IaC Utility Choices 581
Ansible 581
Puppet and Chef 583
Puppet 583
Chef 583
SaltStack 584
Salt Architecture 584
Salt Master Options 584
Salt Configuration Locations 585
Salt State Files 585
Terraform 586
Coding 586
Planning 587
Applying 588
Continuous Integration/Continuous Deployment 588
How Can It Be Solved? 588
Continuous Integration 588
Continuous Delivery 589
CI/CD Use Cases 589
Advanced Git Topics 590
merge 590
rebase 590
Pull Requests 591
Summary 591
Exam Preparation Tasks 592
Review All Key Topics 592
Define Key Terms 593
Review Questions 593

Chapter 17 Understanding Containers, Cloud, and Orchestration 597
“Do I Know This Already?” Quiz 597
Foundation Topics 600
Kubernetes Benefits and Application Use Cases 600
What Is Kubernetes, Really? 600
The High-Level Structure of Kubernetes 601
What Is a Container Registry? 614
What About Bigger Teams? 614
What Are My Container Registry Options? 614

Summary 614
Exam Preparation Tasks 615
Review All Key Topics 615
Define Key Terms 616
Review Questions 616

Part IV: Troubleshooting (Obj. 4.1 - 4.5)

Chapter 18 Analyzing and Troubleshooting Storage Issues 619
“Do I Know This Already?” Quiz 619
Foundation Topics 623
High Latency Issues 623
 High Latency Overview 623
 Causes and Symptoms of High Latency 623
 Diagnosing and Fixing High Latency 624
 Diagnosing with the top Command 624
 Diagnosing with the vmstat Command 625
 Fixing the Problem 626
Low Throughput Issues 627
 Low Throughput Overview 627
 Causes and Symptoms of Low Throughput 627
 Diagnosing and Fixing Low Throughput 628
 Diagnosing with the df Command 628
 Diagnosing with the iostat Command 629
Input/Output Operations per Second Scenarios 631
 IOPS Overview 632
 Scenario 1: Transferring Ten 500MB Files 632
 Scenario 2: Transferring 5,000 1MB Files 632
 Why IOPS Are Effectively Irrelevant 632
Capacity Issues 633
 Causes and Symptoms of Capacity Issues 633
 Diagnosing and Fixing Capacity Issues 634
 Diagnosing with the df Command 634
Contents

Diagnosing with the `du` Command 636
Diagnosing with the `find` Command 637

Filesystem Issues 638
Filesystem Corruption Overview 638
Causes and Symptoms of Filesystem Corruption 639
Diagnosing and Fixing Filesystem Corruption 639
Diagnosing and Fixing Filesystem Corruption with the `fsck` Command 640
Summary 642
Filesystem Mismatch Overview 642
Causes and Symptoms of File Mismatch 642
Diagnosing and Fixing File Mismatch 642
Diagnosing a Mismatch Issue 642
Fixing a Mismatch Issue 643

I/O Scheduler Issues 643
I/O Scheduler Overview 644
Types of I/O Schedulers 644
Viewing and Setting I/O Schedulers 645
Viewing the Current I/O Scheduler 645
Setting the Current I/O Scheduler 646
Making the I/O Scheduler Change Persistent 646

Device Issues 647
NVMe Issues Overview 647
Causes and Symptoms of NVMe Issues 647
Diagnosing and Fixing NVMe Issues 648
Using the `nvme` Command-Line Tool 648
Solid-State Drive Issues Overview 649
Causes and Symptoms of SSD Issues 649
Diagnosing and Fixing SSD Issues 650
SSD Trim 651
Garbage Collection 651
The TRIM Helper 652

RAID Issues 652
Causes and Symptoms of RAID Failures 653
Diagnosing and Fixing RAID Failures 653
Overview of Tools 653
Monitoring and Alerting with smartd 654
Checking Device Health with smartctl 654
Monitoring RAID Array Health 655
Monitoring RAID Array Health with mdadm 656
LVM Issues 656
LVM Troubleshooting Overview 656
Causes and Symptoms of LVM Issues 657
Diagnosing and Fixing LVM Issues 657
Mount Option Issues 659
Mounting Options Overview 659
Causes and Symptoms of Mount Options Issues 659
Diagnosing and Fixing Mount Option Issues 660
Understanding Mount Option Gotchas 660
What Are All These UUIDs in My fstab? 660
What Is This errors= Option? 661
Exam Preparation Tasks 663
Review All Key Topics 663
Define Key Terms 664
Review Questions 664

Chapter 19 Analyzing and Troubleshooting Network Resource Issues 667
“Do I Know This Already?” Quiz 667
Foundation Topics 670
Network Configuration Issues 670
Causes and Symptoms of Network Configuration Issues 670
Diagnosing and Fixing Network Configuration Issues 670
Diagnosing Subnets with the ip Command 670
Diagnosing Routes Using the ping Command 672
Diagnosing Routes Using the ip route Command 672
Diagnosing Routes Using the traceroute Command 673
Firewall Issues 674
Firewall Refresher 674
What Could Possibly Go Wrong? 675
Causes and Symptoms of Firewall Issues 675
Diagnosing and Fixing Firewall Issues 676
Chapter 20 Analyzing and Troubleshooting CPU and Memory Issues 701

“Do I Know This Already?” Quiz 701

Foundation Topics 704

Runaway and Zombie Processes 704
 Runaway Processes 704
 What Causes Runaway Processes? 704
 Reserving Some CPU for Non-Realtime Processes 704
 Identifying a Runaway Process 705
 Ending a Runaway Process 705
 Zombie Processes 705
 What Causes Zombie Processes? 706
 Are Zombie Processes Bad? 706
 Removing Zombie Processes 706

High CPU Utilization/Load Average/Run Queues 707
 High CPU Utilization 707
 High Load Average 707
 Viewing System Load Details with the uptime Command 708
 High Run Queues 708
 Viewing System Load Details with the iotop Command 710

CPU Times and CPU Process Priorities 711
 Measuring CPU Time 711
 Important CPU Time Terms 712
 CPU Process Priorities 713

Memory Exhaustion and Out of Memory 713
 What Is Out of Memory (OOM)? 714
 Memory Leaks 716
 The Process Killer 716

Swapping 717
 Swap, Caching, and Buffers 717
Blocks and Buffers 718
Pages, Slabs, and Caches 718
How Much Swap Is Enough? 719
Hardware 719
Viewing CPU Info 719
Viewing Memory Info 720
Summary 720
Exam Preparation Tasks 721
Review All Key Topics 721
Define Key Terms 721
Review Questions 721

Chapter 21 Analyzing and Troubleshooting User and File Permissions 725
“Do I Know This Already?” Quiz 725
Foundation Topics 728
User Login Issues 728
 Inspecting Account Details 728
 ID Please 728
 Get Entity 729
 Case-Sensitivity 730
 Has the User Ever Logged In? 730
 The last Command 730
 The lastlog Command 730
User File Access Issues 731
 Group Issues 732
 Context Issues 732
 Permission Issues 732
 ACL Issues 733
 Attribute Issues 733
 Policy/Non-Policy Issues 734
Password Issues 735
 The faillog Command 735
 /etc/security.access.conf 736
Privilege Elevation Issues 736
Quota Issues 736
Possible Files or Entirety of Blocks? 737
Converting to Usable Numbers 737
Summary 738
Exam Preparation Tasks 739
Review All Key Topics 739
Define Key Terms 739
Review Questions 739

Chapter 22 Analyzing and Troubleshooting Common Problems Using Systemd 743
“Do I Know This Already?” Quiz 743
Foundation Topics 745
Unit Files 745
Service Unit File Issues 745
Networking Services 746
ExecStart and ExecStop 747
Before and After 747
Type 748
User 749
Requires and Wants 749
Timer Unit File Issues 750
OnCalendar 750
OnBootSec 750
Unit 750
Time Expressions 750
Mount Unit File Issues 750
Naming Conventions 751
What 751
Where 751
Type 751
Options 752
Target Unit File Issues 752
Default 752
Multiuser 754
Network-online 754
Graphical 754
About the Author

Ross Brunson has more than 30 years of experience as a Linux and open-source trainer, training manager, and certification architect, and is the author of the now-classic *LPIC-1 Exam Cram 2*, several iterations of the *CompTIA Linux+ Cert Guide*, and dozens of technical courses for major organizations.

Ross is currently the Education Architect at Grafana Labs (www.grafana.com), where he focuses on building a learning framework and training offerings that help employees and customers make the best use of Grafana to observe, troubleshoot, and maintain their environments.

Previously, Ross was a Senior Technical Training Engineer for NGINX, where he completely redid the Fundamentals learning track, authored a number of Getting Started guides, and taught a number of customer engagements to help new NGINX customers take full advantage of the platform.

Before NGINX, Ross enjoyed a few years at Linux Academy/A Cloud Guru where as a Senior Training Architect, he authored the SUSE Certified Administrator and Engineer courses, did the Red Hat Certified System Administrator Labs, created many additional courses on systemd, VIM and the screen command, and wrote and reviewed way too many exam questions.

Ross has also put in a tour of duty as the Certification Architect at SUSE, where he helped redesign and modernize the entire certification program. He has also spent five years as the Director of Member Services for the Linux Professional Institute, where he contributed to placing several LPI courses into the Cisco Networking Academy, conducted dozens of train-the-trainer sessions, and provided sales enablement support for the worldwide Master Affiliate network, spanning more than 100 countries and nearly a million certified professionals.

Ross holds a number of key IT certifications and is author of several successful technical books and dozens of technical courses for major organizations (including the first U.S. LPI Certification Bootcamps). He is skilled at both contributing to and building community around IT products.

Ross lives in Paradise Valley, Montana, with his family and enjoys traveling far and wide, participating in hiking, winter sports, photography, and playing the drums with great vigor (although not everyone around him appreciates it).
Dedication

My heartfelt thanks to all of my mentors and friends who have helped me get where I am: Andres Fortino, Arnold Villeneuve, Ken Haug, Ted Jordan, Edward Denzler, and many more. I am eternally grateful for the love and support of my wife and daughter, who understand what it means when “daddy is writing” and still love me anyway.

I also want to shout out to all our previous edition readers who made this book likely and possible. I love the emails and photos of you all and your certifications; it really makes a difference when we get something that lets us know we are somehow making even a tiny difference in someone’s career and life.

I want to hear from YOU. Let me know what you liked, what I can improve, and how you’re doing. Please send pics of you and your study tools, you and your certification, and so on...

—Ross E. Brunson, July 2023

Acknowledgments

This book is a result of the concerted efforts of many dedicated people, without whom this book would not be a reality. I would like to thank the technical reviewer, Casey Boyles, whose efforts and patience made this a better book for all to use, and to Chris Cleveland, who helped me navigate the adjustments to new CompTIA Linux+ versions over the years.

Much thanks to William (Bo) Rothwell for the courseware and writing MACHINE that he is, and for being a great author and technical editor over these many years—I couldn’t have done it without you, buddy!

Thanks also to Nancy Davis, Executive Editor, for her help and continuous support during the development of this book. I wish to also express my appreciation to Mary Beth Ray, executive editor at Pearson/Cisco Press (retired), for her confidence in me throughout years of working on book projects.

Much thanks to Ellie Bru for both her superb editorial skills and acumen, but especially her good humor and geek-wrangling skills; it is a pleasure to work with her on every book!

In addition, many thanks to Dr. James Stanger for being such a great supporter of the world of Linux and open source. He’s a good friend and a hugely relevant person in the world of getting our customers and attendees the skills they need!

It has been a huge undertaking to pull together all the pieces of this project. It is due to the dedication of those mentioned above that this book is not only large in scope but high in quality. It is my sincerest hope that our combined efforts will help you, the readers and users of this book, achieve your goals in an IT career.
About the Technical Reviewer

Casey Boyles started working in the IT field more than 28 years ago and quickly began to work with distributed application and database development. Casey later moved on to technical training and development; he specializes in full stack Internet application development, database architecture, and systems security. Casey typically spends his time smoking cigars while “reading stuff and writing stuff.”

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: community@informit.com

Reader Services

Register your copy of CompTIA Linux+ XK0-005 Cert Guide at www.pearsonitcertification.com for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to www.pearsonitcertification.com/register and log in or create an account*. Enter the product ISBN 9780137866885 and click Submit. When the process is complete, you will find any available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.
Introduction

In mid-2022, CompTIA released a new version of the Linux+ certification exam, labeled XK0-005. To throw a monkey wrench is to goof up or confuse or sabotage. The gears of other content authors may be messed up by this change, but I remain unaffected.

In particular, the new exam version has more DevOps-related and cloud-specific topic areas, allocates more space to Git and containers, and adds the revised Troubleshooting domain, which covers significant space on the exam and comprises approximately 28% of the scoring.

Most of the Linux+ exam will be multiple choice, much like the previous exams. However, you should also be prepared for a handful of scenario questions in which you will be asked to answer some questions based on a particular situation. In addition, you'll encounter some simulation questions, where you're running what appears to be a command-line terminal and you have to answer the question by actually typing the right commands and so forth. (Please note, you can use the commandname help option for all of these simulation questions, which will really help you puzzle out what the questions require!)

Use this book as a reference to all of the key exam-testable topics. This book provides an excellent roadmap on your journey to learning Linux and passing the Linux+ certification exam.

Study hard and study well. Pore over the exam objectives, and if you don't know something, I guarantee that you will see it on the exam, so make sure to locate the topic or term in this book's TOC or index and read the relevant material.

Good luck!
—Ross E. Brunson, July 5, 2023

Goals and Methods

The number-one goal of this book is a simple one: to help you pass the CompTIA Linux+ XK0-005 certification exam.

Because the CompTIA Linux+ certification exam now stresses problem-solving abilities and reasoning more than memorization of terms and facts, my goal is to help you master and understand the required objectives for the exam.
To aid you in mastering and understanding the Linux+ certification exam objectives, this book uses the following methods:

- **Opening topics list:** The list at the beginning of each chapter defines the topics to be covered in the chapter, followed by identification of the corresponding CompTIA Linux+ objective.

- **Foundation Topics:** The body of the chapter explains the topics from both hands-on and theory-based standpoints, including in-depth descriptions, tables, and figures that help you build your knowledge so that you can pass the Linux+ exam. The chapters are broken down into several topics each.

- **Key Topics:** Key Topics icons indicate important figures, tables, and lists of information that you should know for the exam. They are interspersed throughout the chapter and are listed in table format at the end of the chapter.

- **Key Terms:** Key terms without definitions are listed at the end of each chapter. Write down the definition of each term and check your work against the key terms in the glossary.

- **Review Questions:** These quizzes and answers with explanations are meant to gauge your knowledge of the subjects covered in the chapter. If an answer to a question doesn’t come readily to you, be sure to review that portion of the chapter.

- **Practice Exams:** The practice exams are included in the Pearson Test Prep practice test software. These exams test your knowledge and skills in a realistic testing environment. Take them after you have read through the entire book. Master one, then move on to the next.

The Linux+ Domains and Objectives

The Linux+ XK0-005 exam consists of the following domains and objectives:

1.0 **System Management** *(32% of the exam)*

1.1 Summarize Linux fundamentals

1.2 Given a scenario, manage files and directories

1.3 Given a scenario, configure and manage storage using the appropriate tools

1.4 Given a scenario, configure and use the appropriate processes and services

1.5 Given a scenario, use the appropriate networking tools or configuration files

1.6 Given a scenario, build and install software

1.7 Given a scenario, manage software configurations
2.0 Security (21% of the exam)

2.1 Summarize the purpose and use of security best practices in a Linux environment
2.2 Given a scenario, implement identity management
2.3 Given a scenario, implement and configure firewalls
2.4 Given a scenario, configure and execute remote connectivity for system management
2.5 Given a scenario, apply the appropriate access controls

3.0 Scripting, Containers, and Automation (19% of the exam)

3.1 Given a scenario, create simple shell scripts to automate common tasks
3.2 Given a scenario, perform basic container operations
3.3 Given a scenario, perform basic version control using Git
3.4 Summarize common infrastructure as code technologies
3.5 Summarize container, cloud, and orchestration concepts

4.0 Troubleshooting (28% of the exam)

4.1 Given a scenario, analyze and troubleshoot storage issues
4.2 Given a scenario, analyze and troubleshoot network resource issues
4.3 Given a scenario, analyze and troubleshoot central processing unit (CPU) and memory issues
4.4 Given a scenario, analyze and troubleshoot user access and file permissions
4.5 Given a scenario, use systemd to diagnose and resolve common problems with a Linux system.

Be sure to visit CompTIA's web page at https://certification.comptia.org/certifications/linux to ensure that you have the latest information for the CompTIA Linux+ exam.

How This Book Maps to the Exam Objectives

All exam objectives are covered in this book and each chapter is devoted to a specific exam objective. But, in the interest of presenting a logical learning path, the order of the content in each chapter does not exactly match the order of the topics listed within the corresponding objective. To help you focus on the exam objectives for
which you might need some additional learning and preparation, this table shows you which chapters cover the various exam objectives:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Exam Objective(s) Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1, “Understanding Linux Fundamentals”</td>
<td>1.1</td>
</tr>
<tr>
<td>Chapter 2, “Managing Files and Directories”</td>
<td>1.2</td>
</tr>
<tr>
<td>Chapter 3, “Configuring and Managing Storage”</td>
<td>1.3</td>
</tr>
<tr>
<td>Chapter 4, “Managing Processes and Services”</td>
<td>1.4</td>
</tr>
<tr>
<td>Chapter 5, “Using Network Tools and Configuration Files”</td>
<td>1.5</td>
</tr>
<tr>
<td>Chapter 6, “Building and Installing Software”</td>
<td>1.6</td>
</tr>
<tr>
<td>Chapter 7, “Managing Software Configurations”</td>
<td>1.7</td>
</tr>
<tr>
<td>Chapter 8, “Understanding Linux Security Best Practices”</td>
<td>2.1</td>
</tr>
<tr>
<td>Chapter 9, “Implementing Identity Management”</td>
<td>2.2</td>
</tr>
<tr>
<td>Chapter 10, “Implementing and Configuring Firewalls”</td>
<td>2.3</td>
</tr>
<tr>
<td>Chapter 11, “Using Remote Connectivity for System Management”</td>
<td>2.4</td>
</tr>
<tr>
<td>Chapter 12, “Understanding and Applying Access Controls”</td>
<td>2.5</td>
</tr>
<tr>
<td>Chapter 13, “Automating Tasks via Shell Scripting”</td>
<td>3.1</td>
</tr>
<tr>
<td>Chapter 14, “Performing Basic Container Operations”</td>
<td>3.2</td>
</tr>
<tr>
<td>Chapter 15, “Performing Basic Version Control Using Git”</td>
<td>3.3</td>
</tr>
<tr>
<td>Chapter 16, “Understanding Infrastructure as Code”</td>
<td>3.4</td>
</tr>
<tr>
<td>Chapter 17, “Understanding Containers, Cloud, and Orchestration”</td>
<td>3.5</td>
</tr>
<tr>
<td>Chapter 18, “Analyzing and Troubleshooting Storage Issues”</td>
<td>4.1</td>
</tr>
<tr>
<td>Chapter 19, “Analyzing and Troubleshooting Network Resource Issues”</td>
<td>4.2</td>
</tr>
<tr>
<td>Chapter 20, “Analyzing and Troubleshooting CPU and Memory Issues”</td>
<td>4.3</td>
</tr>
<tr>
<td>Chapter 21, “Analyzing and Troubleshooting User and File Permissions”</td>
<td>4.4</td>
</tr>
<tr>
<td>Chapter 22, “Analyzing and Troubleshooting Common Problems Using Systemd”</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Book Features

To help you customize your study time using this book, the core chapters have several features that help you make the best use of your time:

- **Foundation Topics**: These core sections of each chapter explain the concepts that are important to the chapter.

- **Exam Preparation Tasks**: This section lists a series of study activities that you should do at the end of the chapter:
 - **Review All Key Topics**: The Key Topic icon appears next to the most important items in the “Foundation Topics” section of the chapter. The “Review All Key Topics” activity lists the key topics from the chapter, along with their page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic, so be sure to review them.
 - **Define Key Terms**: Although the Linux+ exam is unlikely to ask an open-ended question such as “Define this term,” the exam does require that you learn and know a lot of industry-related terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your definition to the glossary definition at the end of the book.
 - **Review Questions**: Confirm that you understand the content that is covered in the chapter by answering these questions and reading the answer explanations.

- **Web-Based Practice Exams**: The companion website includes the Pearson Cert IT certification test engine, which allows you to take practice exams. Use it to prepare with a sample exam and to pinpoint topics where you need more study.

What's New?

If you are used to the objectives of the older Linux+ exam and the content of the previous version of this book, you should read the following which describes how both the exam objectives and the layout of this book have changed.

For more information about how the CompTIA Linux+ certification can help your career or to download the latest official objectives, access CompTIA’s Linux+ web page at https://www.comptia.org/certifications/linux.
As the Linux+ objectives are now presented in an order that makes sense from a
learning perspective, this book is patterned with each chapter taking on an objective
topic in its entirety. (Thanks, CompTIA!)

However, as a long-time technical instructor who likes things to make sense even
within a chapter, I have taken some liberties with the in-chapter order of each objec-
tive’s contents, to ensure that everything flows nicely as you read and study so that
you truly understand the subtopics.

You might be wondering how different the current Linux+ exam compares to the
previous version.

As mentioned earlier in this Introduction, the main changes are

- An expanded focus on DevOps and cloud topics
- The new Troubleshooting section

Finally, as with most other CompTIA exams, you can expect a handful of scenario
questions. In many cases, you will be asked to configure or manage a system using
several steps or to describe a collection of Linux features and how they relate to each
other. Note this that is not new, but worth mentioning.

In addition, look for the newer simulation questions, which are just like a Linux ter-
mental session, and if you don’t already know how to do these, you will by the end of
this book!

The rest of the questions will be multiple-choice questions that require you to
choose one, choose two, choose three, or choose all that apply.

Who Should Read This Book?

The CompTIA Linux+ certification exam will verify the successful candidate has
the knowledge and skills required to configure, manage, operate, and troubleshoot
Linux on-premises and cloud-based server environments, while using security best
practices, scripting, containerization, and automation.

The level of knowledge and skills expected of the examinee is equivalent to at least
12 months of hands-on experience working with Linux servers in a junior Linux
support engineer or junior cloud/DevOps support engineer job role. Additionally,
CompTIA does specifically mention that having the experience of passing the A+,
Network+, and Server+ exams is considered a recommended prerequisite for taking
the Linux+ exam.

This book is for you if you are attempting to attain a position in the IT field or if
you want to keep your skills sharp or perhaps retain your job if your company
mandates that you take the latest Linux+ exam.
Strategies for Exam Preparation

Strategies for exam preparation will vary depending on your existing skills, knowledge, and equipment available. The ideal exam preparation would consist of building a few virtual machines from scratch and installing and configuring the operating systems covered.

The next best step you can take is to read through the chapters in this book, jotting notes down with key concepts or configurations on a notepad. Each chapter contains a quiz near the end of the chapter that you can use to test your knowledge of the chapter’s topics.

Try all of the commands you see, look through the configuration files, experiment on your virtual machines, and use the snapshot and rollback feature that is on every virtualization software’s toolbar these days—it’ll make for a much more pleasant experience when you can try out commands and then revert to a previous snapshot.

After you have read through the book, take a look at the current exam objectives for the CompTIA Linux+ certification exam, listed at https://www.comptia.org/certifications/linux. If there are any areas shown in the certification exam outline that you would still like to study, find the appropriate sections in this book and review them.

When you feel confident in your skills, attempt the practice exams included on this book’s companion website. As you work through a practice exam, note the areas where you lack confidence and review those concepts or configurations in the book. After you have reviewed the areas, work through the practice exam a second time and rate your skills. Keep in mind that the more you work through the practice exams, the more familiar the questions will become.

After you have worked through each practice exam a second time and feel confident with your skills, schedule the real CompTIA Linux+ (XK0-005) exam through Pearson VUE (https://home.pearsonvue.com/). To prevent the information from evaporating out of your mind, you should typically take the exam within a week of when you consider yourself ready to take the exam.

My usual advice for all my certification classes and courses stands: Drink a liter of water and have a nice ripe banana before you go take the exam. The exam is a long one, and you need your brain to function well; the water will help keep that computer in between your ears humming along, and the nutrients (particularly the niacin) in the banana will help you concentrate.

I can’t tell you how many pictures of readers I have been sent with their liter of water, a banana, a newly achieved certification, and a BIG SMILE!

In fact, look me up on LinkedIn, at https://www.linkedin.com/in/rossbrunson/, and message me with your picture of your water, banana, and certification! I’ll be sure to include you in any giveaways of book copies and so forth.
Companion Website

Register this book to get access to the Pearson IT certification test engine and other study materials, as well as additional bonus content. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam. Be sure to check the box indicating that you would like to hear from us to receive updates and exclusive discounts on future editions of this product or related products.

To access this companion website, follow these steps:

Step 1. Go to www.pearsonitcertification.com/register and log in or create a new account.

Step 2. Enter the ISBN: 9780137866885.

Step 3. Answer the challenge question as proof of purchase.

Step 4. Click the Access Bonus Content link in the Registered Products section of your account page to be taken to the page where your downloadable content is available.

Please note that many of the companion content files—especially image and video files—are very large.

If you are unable to locate the files for this title by following these steps, please visit www.pearsonITcertification.com/contact and select the Site Problems/Comments option. Our customer service representatives will assist you.

Pearson Test Prep Practice Test Software

As noted previously, this book comes complete with the Pearson Test Prep practice test software, including two full exams. These practice tests are available to you either online or as an offline Windows application. To access the practice exams that were developed with this book, please see the instructions below.

How to Access the Pearson Test Prep (PTP) App

You have two options for installing and using the Pearson Test Prep application: a web app and a desktop app. To use the Pearson Test Prep application, start by finding the registration code that comes with the book. You can find the code in these ways:

- You can get your access code by registering the print ISBN (9780137866885) on pearsonitcertification.com/register. Make sure to use the print book ISBN, regardless of whether you purchased an eBook or the print book. After you register the book, your access code will be populated on your account page.
under the Registered Products tab. Instructions for how to redeem the code are available on the book’s companion website by clicking the Access Bonus Content link.

- Premium Edition: If you purchase the Premium Edition eBook and Practice Test directly from the Pearson IT Certification website, the code will be populated on your account page after purchase. Just log in at pearsonitcertification.com, click Account to see details of your account, and click the digital purchases tab.

NOTE After you register your book, your code can always be found in your account under the Registered Products tab.

Once you have the access code, to find instructions about both the PTP web app and the desktop app, follow these steps:

Step 1. Open this book’s companion website as shown earlier in this Introduction under the heading, “Companion Website.”

Step 2. Click the **Practice Exams** button.

Step 3. Follow the instructions listed there for both installing the desktop app and using the web app.

Note that if you want to use the web app only at this point, just navigate to pearsontestprep.com, log in using the same credentials used to register your book or purchase the Premium Edition, and register this book’s practice tests using the registration code you just found. The process should take only a couple of minutes.

Customizing Your Exams

When you are in the exam settings screen, you can choose to take exams in one of three modes:

- **Study Mode:** This mode allows you to fully customize your exams and review answers as you are taking the exam. This is typically the mode you use first to assess your knowledge and identify information gaps.

- **Practice Exam Mode:** This mode locks certain customization options in order to present a realistic exam experience. Use this mode when you are preparing to test your exam readiness.

- **Flash Card Mode:** This mode strips out the answers and presents you with only the question stem. This mode is great for late-stage preparation, when you really want to challenge yourself to provide answers without the benefit
of seeing multiple-choice options. This mode does not provide the detailed score reports that the other two modes provide, so it is not the best mode for helping you identify knowledge gaps.

In addition to these three modes, you can select the source of your questions. You can choose to take exams that cover all of the chapters, or you can narrow your selection to just a single chapter or the chapters that make up specific parts in the book. All chapters are selected by default. If you want to narrow your focus to individual chapters, simply deselect all the chapters then select only those on which you wish to focus in the Objectives area.

You can also select the exam banks on which to focus. Each exam bank comes complete with a full exam of questions that cover topics in every chapter. You can have the test engine serve up exams from all four banks or just from one individual bank by selecting the desired banks in the exam bank area.

There are several other customizations you can make to your exam from the exam settings screen, such as the time allowed to take the exam, the number of questions served up, whether to randomize questions and answers, whether to show the number of correct answers for multiple-answer questions, and whether to serve up only specific types of questions. You can also create custom test banks by selecting only questions that you have marked or questions on which you have added notes.

Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should always have access to the latest version of the software as well as the exam data. If you are using the Windows desktop version, every time you launch the software while connected to the Internet, it checks if there are any updates to your exam data and automatically downloads any changes that were made since the last time you used the software.

Sometimes, due to a number of factors, the exam data might not fully download when you activate your exam. If you find that figures or exhibits are missing, you might need to manually update your exams. To update a particular exam you have already activated and downloaded, simply select the Tools tab, and click the Update Products button. Again, this is only an issue with the desktop Windows application.

If you wish to check for updates to the Windows desktop version of the Pearson Test Prep exam engine software, simply select the Tools tab and click the Update Application button. Doing so enables you to ensure that you are running the latest version of the software engine.
Credits

Figure 4-1-Figure 4-3, Figure 4-5, Figure 5-5: Linus Torvalds
Figure 5-6, Figure 5-7: Wireshark Foundation
Figure 6-1, Figure 7-3, Figure 15-9, Figure 15-10, Figure 18-1-Figure 18-17,
Figure 19-2-Figure 19-6, Figure 20-1, Figure 22-1: Canonical Ltd
Figure 6-2: Debian
Figure 6-3-Figure 6-10, Figure 7-1: SUSE
Figure 7-2: Microsoft
Figure 13-2: The GNOME Project
Figure 13-3-Figure 13-6: KDE
Figure 14-1-Figure 14-4: Red Hat, Inc
Figure 15-7-Figure 15-8: Atlassian
Figure 18-18: Gparted
Cover credit: Quardia/Shutterstock
 CHAPTER 11

Using Remote Connectivity for System Management

Used to be that you could just move your chair and work on a server system, way back in the day, but so very quickly that changed to having all the servers in the server room somewhere else, and not wanting to walk there, or even being in the location or even city or country as the servers!

Having grown up in the era of computing when using Telnet (an unsecure remote connectivity option that preceded SSH) and clear-text FTP was commonplace, I’ve witnessed the evolution of the world of remote networking from a much kinder and gentler place in which hacking was not very common to the current situation in which hacking is a persistent threat and secure terminal access to connect to remote systems safely and reliably to do work, mainly administering them, is an absolute requirement.

Today, you must have SSH installed and configured to be the most secure you can make it, as described in this chapter. You also need to know the importance of using passphrase authentication instead of password authentication to connect to a remote server or group of servers.

Another topic of great importance discussed in this chapter is the concept of privilege elevation or, as the Linux+ exam objectives state, “executing commands as another user.” This requires you to have an understanding of several different tools, both for the exam and as a responsible systems administrator.

The elevation of privilege is even more appropriate in conjunction with SSH because typically you should never allow the root user to sign in over SSH. Gaining access to root-restricted resources means you need to elevate yourself to having root access or equivalent when you get to the other system.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess whether you should read this entire chapter or simply jump to the “Exam Preparation Tasks” section for review. If you are in doubt, read the entire chapter. Table 11-1 outlines the major headings in this chapter and the corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes and Review Questions.”
Table 11-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions Covered in This Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH (Secure Shell)</td>
<td>1–3</td>
</tr>
<tr>
<td>Executing Commands as Another User</td>
<td>4–6</td>
</tr>
</tbody>
</table>

CAUTION The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of the self-assessment. Giving yourself credit for an answer you correctly guess skews your self-assessment results and might provide you with a false sense of security.

1. You want to use a more secure tool than rpc to remotely copy data across the network. Which of the following tools would you use?
 a. ssh-add
 b. sftp
 c. ssh-agent
 d. scp

2. You want to disable Secure Shell logins for all users except the root user. Which of the following files would you create to make this happen?
 a. /etc/nossh
 b. /etc/nologin
 c. /etc/disablessh
 d. /etc/sshrootonly

3. The process of allowing remote-running GUI-based applications to display locally when connected to the remote system via SSH is called ________.
 a. Remote Display
 b. SSH GUI Mode
 c. X11 Forwarding
 d. Tunnel Mode
4. Which command allows you to execute commands as another user, but only if you know the other user’s password?
 a. runas
 b. pkexec
 c. sudo
 d. su

5. Which option to the su command allows you to fully take on the user’s account settings, including settings that are applied during the login process?
 a. -a
 b. -u
 c. -l
 d. -r

6. Which file is used to configure sudo access?
 a. /etc/config/sudo.config
 b. /etc/default/sudoers
 c. /etc/sudo
 d. /etc/sudoers
Foundation Topics

SSH (Secure Shell)

As mentioned at the beginning of the chapter, the Telnet protocol sends passwords and data in clear text and shouldn’t be trusted for important sessions and tasks. The Secure Shell (SSH) suite includes a protocol, a daemon, and client utilities that make your host-to-host shell sessions much more secure—about as secure as being at the physical console.

One of the features that makes SSH desirable as a remote protocol is its end-to-end encryption, which encrypts not only the username and password but also all communications.

The SSH suite replaces telnet, as well as rsh, rexec, rcp, and other unsecure utilities. You can use SSH to connect for a shell session, or you can use the scp command to remotely transfer files through the secure pipe that SSH builds between the hosts.

SSH Components

SSH includes a number of programs and files:

- **sshd**: Used for remote shell sessions on another host, it replaces the telnet, rsh, and rexec commands.
- **scp**: Used for remote copying operations, it replaces the rcp command.
- **ssh-agent**: Runs as a wrapper to the user’s session and provides authentication when requested.
- **ssh-add**: Loads the user’s key(s) into the agent.

The SSH package configuration files are somewhat scattered. SSH daemon and global configuration files are kept in the `/etc/ssh` directory, and local or user-specific configuration files are kept in the `~/.ssh` directory for each user.

The global configuration files include

- **/etc/sshd/sshd_config**: This is the main configuration for the sshd daemon.
- **/etc/ssh/ssh_host_[dr]sa_key**: These files, the `ssh_host_dsa_key` file and the `ssh_host_rsa_key` file, are in the same directory and are the private parts of the host’s key structure and should be protected from public view. The
permissions for these files are 600 or rw for the root user and no permissions for anyone else.

- /etc/ssh/ssh_host_[dr]sa_key.pub: These files, the ssh_host_dsa_key.pub file and the ssh_host_rsa_key.pub file, are in the same directory and are the public parts of the host’s key structure. These must be world-readable and write-only by the root user or set to 644.

- /etc/nologin: This isn’t a part of SSH. However, if it’s present, no one can log in via SSH except the root user. Non-root users see the contents of the /etc/nologin file and then are denied access to the system.

A couple of special file pairs affect how SSH works, particularly the /etc/ssh/ssh_known_hosts and ~/.ssh/known_hosts files. The global file (/etc/ssh/ssh_known_hosts) is used to check the public key of a host attempting to attach via SSH. The local file (~/.ssh/known_hosts) is the file from which the client gets the public key of the remote server. If a new connection is begun to a previously unknown host, the user sees a message saying that the host is unknown and asking whether the user wants to store the host’s key in his known hosts file. If the user answers in the affirmative, the host’s public key is added to the ~/.ssh/known_hosts file.

The /etc/ssh/ssh_known_hosts file should be world-readable and root-writable. The ~/.ssh/known_hosts file must be owned by and writable for the user.

A file of interest, the ~/.ssh/authorized_keys file, affects only a particular user’s environment. This file is used to store the public keys that can be used for logging in as this user. These keys are matched with the keys presented by an ssh or scp client upon login request.

The SSH client utilities are versatile, with a number of options available to customize the experience. You just need to know the basics for the Linux+ exam, but this section includes a few fun options.

The SSH client command is used to replace the RSH and Telnet programs specifically. Its syntax is as follows:

```
# ssh -l username remotehost
```

If you don’t specify a username with the -l option, the ssh command assumes that you want to use the name of the account with which you are locally logged in. For example, if you are logged in as the user ross and you execute the ssh command without the -l option, the command attempts to log you in as ross on the remote system.
For example, I could attach to the host mp3server as the user snuffy with this command:

```
# ssh -l snuffy mp3server
```

If I have not connected to this server before, I get a message similar to what's shown here:

```
The authenticity of host 'mp3server (192.168.33.44)' can't be established.
Are you sure you want to continue connecting (yes/no)?
```

If I answer yes, the host's public key is added to my ~/.ssh/known_hosts file and looks something like this:

```
192.168.3.44 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAIAEAlgF1B9VqPFKWA2UzNM+ac/U81Tk9R8OOfUkekVJxw
j6nqCISPyyV2iJwaukcVVaVAQ+JR3EhvOvqFHoSg4yzBSUKj8aUBYoeRSGj7PCD+vyWy119
22HgxWw2vMBAO/Was81T4Z6Q6jxOD0qN0Hcr1FeU7qb0CrKjQDM08H0jk0=
```

Rather than work with RCP or FTP for file transfer work, I tend to use SCP. The `scp` command uses the SSH protocol and encrypts the files sent from one host to another host. For example, if I wanted to transfer `file1` from my root user's home directory on my machine to the same location on a host named remotehost, I could use the following command:

```
# scp /root/file1 root@remotehost:/root/file1
```

The system would prompt me with the RSA key question (as shown in the previous `ssh` example) if I have not connected to this system previously from this account. I would be prompted for the password, and then the system would transfer the files. The output from a file transfer looks like this:

```
root@192.168.1.73's password:
mypubkey.txt 100% |***************************| 1379 00:00
```

You can copy files from your host to another host, as shown previously, or copy files from a remote host to your system by reversing the source and target specifications.

You can even copy files from one remote system to another remote system. For example, the following command recursively copies the `/data` directory and all its contents from the remote1 host to the remote2 host after prompting you for the password for both hosts:

```
# scp -r root@remotel:/data root@remote2:/data
```
Another use of the SSH protocol is to log in to a host and use SSH to forward the output from an X client back to your display. This feature, which can be specifically invoked with the -x option, is referred to as an **X11 tunnel**.

SSH allows for skipping the password prompt when signing on between computers, which can be convenient if you use the **ssh** or **scp** command frequently and don’t mind the possibility that someone could sit down at your accidentally unlocked station and have her way with your network!

NOTE
There has been a lot of talk about why it’s important to delete `.rhosts` files from user directories. Basically, if you have a user who has a hostname in her `.rhosts` file and that host also has the user’s hostname in its `/etc/hosts.equiv` file, that user can log in without a password by using the **rlogin** command. This would be a security risk, so my advice is to delete these files with the following command:

```
# find /home -iname .rhosts -exec rm -f {} \;
```

This deletes all `.rhosts` files it finds in users’ home directories and does not prompt you for each deletion.

NOTE
The system-wide configuration for the SSH client is kept in the `/etc/ssh/ssh_config` file, while each user’s individual configuration file for the SSH client is kept in the user’s `~/.ssh/config` file.

The following example shows the steps required to enable SSH use without a password. In this example I have two machines, fattyre and murphy, both of which are Linux workstations with the necessary SSH software loaded, as per the defaults. This demonstration assumes that fattyre and murphy are both in each other’s `/etc/hosts` files or resolvable via DNS.

Here’s how you can enable SSH use without passwords:

Step 1.
Log in to fattyre as the root user.

Step 2.
For this example, create a new user named user1:

```
useradd -m user1
```

Step 3.
Set user1’s password with the **passwd** command to whatever you want:

```
passwd user1
```

Step 4.
Switch to the user1 user account:

```
su - user1
```
Step 5. Create and set the permissions for the .ssh directory:
 mkdir .ssh ; chmod 700 .ssh

Step 6. Generate an RSA key by using the ssh-keygen command:
 ssh-keygen -b 1024 -t rsa

Step 7. When prompted for the location for the file, press Enter to accept the default.

Step 8. When prompted for a passphrase, enter
 seatec astronomy

Step 9. Reenter the passphrase when prompted.

Step 10. Change to the .ssh directory and set the permissions on the id_rsa.pub file:
 cd .ssh ; chmod 644 id_rsa.pub

Step 11. Copy the id_rsa.pub file to a new file called authorized_keys:
 cp id_rsa.pub authorized_keys

NOTE The next steps take place on the host murphy.

Step 12. From the host murphy, ensure that you can contact the host fattyre with a ping:
 ping fattyre

Step 13. Sign on to the host murphy as the root user.

Step 14. Add a user named user2:
 useradd -m user2

Step 15. Set the password for user2:
 passwd user2

Step 16. Enter the password twice to confirm it.

Step 17. Switch to the user2 account:
 su - user2

Step 18. Make a directory and set its permissions with the following command:
 mkdir .ssh ; chmod 700 .ssh

NOTE The next steps take place on the host fattyre.
Step 19. From the host fattyre, connect to the murphy host as user2:

\[
\text{ssh -l user2 murphy}
\]

Step 20. When prompted about the RSA key, answer yes and then enter user2’s password.

Step 21. While logged in as user2 on the host murphy via SSH, copy the authorized_keys file from the fattyre host with the following command:

\[
\text{scp user1@fattyre:~/.ssh/authorized_keys ~/.ssh}
\]

The output of the scp program should look similar to this:

\[
\text{authorized_keys 100% |*********| 236 00:00}
\]

Step 22. Exit user2 on the host murphy and return to being user1 on fattyre.

Step 23. On fattyre as user1, invoke the ssh-agent as a wrapper to your shell:

\[
\text{ssh-agent $SHELL}
\]

Step 24. Add your key to the agent:

\[
\text{ssh-add}
\]

Step 25. When prompted for the passphrase, enter the following:

\[
\text{no more tears}
\]

You then see output similar to this:

\[
\text{Identity added: /home/ssha/.ssh/id_rsa (/home/ssha/.ssh/id_rsa)}
\]

Step 26. Try to log in as user2 on murphy and watch what happens:

\[
\text{ssh -l user Murphy}
\]

You shouldn’t see any password prompt; you should see only the confirmation of where you last logged in from:

\[
\text{Last login: Wed May 26 13:46:55 from fattyre}
\]

Step 27. If you do see a prompt for the passphrase, enter no more tears as you did before.

This is all it takes to get two accounts and machines set up to use SSH utilities without having to enter anything but the ssh-agent command along with the passphrase. Remember that ssh-agent resides in memory and wraps a security blanket around your shell session, answering any SSH-related security requests for you. The ssh-add utility is for adding key information into the agent and doesn’t have to be run again as long as your key information remains the same.
NOTE The `ssh-copy-id` command is also a possible choice for sending a user’s authorized key to another server. For example, to have the user zakkw’s authorized key exist on the Eternal server, you could use the command

```
# ssh-copy-id -i ~/zakkw/.ssh/keyfile zakkw@eternal
```

This will copy the user zakkw’s file to the remote server and install it into the `authorized_keys` file, prompting for a password to authenticate the process.

Ideally, this would be performed by the root user for both systems and assumes that you are on a remote system from the Eternal server.

Tunneling

One of the greatest features of SSH is that it can tunnel—provide a conduit from inside one network, and even behind a firewall, through to another network. In many cases, using tunneling can enable you to do things that either your network administrator doesn’t want you to do or you need to do because of an overly restrictive policy, such as at a coffee shop or Internet cafe.

Let’s talk about some of the various scenarios where tunneling can come in handy.

X11 Forwarding

X is complex and hard to set up sometimes, and it might seem that tunneling X from another machine to show on yours would be hard too, but X11 forwarding is fairly straightforward due to the magical properties of ssh tunneling.

Let’s say you have a Linux system named cygnusx1 on which you want to run an application in the GUI environment, but you want that application that runs on the remote host to display on your local system.

Here’s a possible set of steps you might take:

Step 1. On a Mac, download and install XQuartz (https://www.xquartz.org).

Step 2. Run the command `ssh -X ursulak@cygnusx1`.

Step 3. After a shell opens in the terminal on the remote host (cygnusx1), run the app.

Step 4. In a second or two, the remote application, running as a process on the remote host, will display on your system as if it were being run locally.

This is just an example of how forwarding X11 applications from the host they are running on to your local system would work. All sorts of things could go wrong, but
that topic is beyond the scope of the Linux+ exam. The main thing is to understand the concept of X11 forwarding, which we have more than adequately covered.

Port Forwarding

Port forwarding is typically used in scenarios in which there is a need to get around some overly strict or controlling network or firewall. Keep in mind, though, that often there are very good reasons for those restrictions and rules being in place, so be responsible and don’t willingly cause issues using port forwarding.

Using SSH to forward ports takes several paths, but the main concept is the same: you are using the ssh client on one system to tunnel out to the ssh server on another system and cause services that are represented by a port on the latter system to be mapped, or to appear to be connected, to the other system.

In general, port forwarding occurs in three main ways:

- **Local port forwarding**: This enables you to cause a remote port to be mapped to, and to appear as if it were on, your local system. Kind of like mounting an NFS share locally, mapping a port from a remote system to yours locally effectively makes your local system appear as if it is providing that service.

- **Remote port forwarding**: Flip the scenario around and allow your local system resources to be used by a remote machine. For example, I might map a remote system’s port 8080 to my local 5500 port, and anyone connecting to that remote server on the 8080 port will get transported to my local port and service.

- **Dynamic port forwarding**: The term *dynamic port forwarding*, also known as dynamic SOCKS proxying, is a method used to securely tunnel network traffic through a remote server or proxy. Sometimes you don’t want to explicitly assign ports and just want the SOCKS proxy on your system to use dynamically assigned local ports and handle all the details. Think of a situation where you need to access ports and protocols that are not allowed through a convention center’s network setup. You can use what is effectively a VPN/proxy to drill through the local restrictive network stack and connect to and communicate freely with your desired target hosts, services, and ports.

NOTE The beauty of using SSH tunneling for these purposes is that you don’t have to worry that by doing so you are exposing the local network or system unnecessarily; you’re using the very secure SSH protocols and stack to do all of this!
Executing Commands as Another User

There are times when you need to execute a command as a different user account. For example, if you log in to the system as a non-root user, but need to execute a command with root privileges.

This section describes methods of running commands as different user accounts, including the sudo command, the su command and the pkexec command.

The sudo Command

The problem with the su command is that to provide a user with elevated privileges, you need to provide the user with the root password, which would give that user full administrative access to the system.

Often you want to allow a regular user to execute some commands, but not all commands, as the root user. For example, if a network error occurs on a user’s workstation, you might want that user to be allowed to restart the networking service. On some systems, this can be accomplished by executing the following command:

```
# /etc/rc.d/init.d/network restart
```

To execute this command successfully, the user needs to have root privileges. This is where you either give the user the root password (which is not recommended) or you give limited root access the correct and reasonable way, via the sudo command and its partner tools.

Instead of providing the user with the root password, you can set up the sudo command to allow the user to run just the necessary command. To do this, you need to log in as the root user and then execute the visudo command.

```
# visudo
```

This command allows you to edit the /etc/sudoers file, the file that allows you to provide root access for specific commands to specific users. The visudo command automatically assumes that you want to use the vi editor to edit this file. To use a different editor, such as the nano editor, execute a command like the following:

```
# export EDITOR=nano
```

NOTE Why use the visudo command instead of editing the /etc/sudoers file directly? The visudo command performs some error checking when you exit the editor to make sure you didn’t make formatting mistakes.
The sudoedit Command

One of the conundrums of granting a user access to edit a configuration file is that if you are using vi/vim, you are essentially giving the user the ability to run any command as root.

To prevent a user from gaining shell access with a simple set of keystrokes from vi/vim while running it as root, there exists the sudoedit command, which is really just a symbolic link to a function contained in the sudo command.

The sudoedit command lets you allow a user to use any editor, not just vi/vim. It also enables the user to edit the using sudo access, rather than having to log in to the root user account.

When a user edits a file by using the sudoedit functionality, a temporary copy of the file(s) is made, and it is owned by the user in question. Since the user is now the owner of the temporary file(s), he can successfully edit the file(s) without having root access. Upon saving the file(s), the temporary copy owned by the user is copied back to the original file location, and the original ownership is restored; the now unnecessary temporary copy is discarded.

To configure sudoedit, add the following line to the /etc/sudoers file:

%newsudo ALL = sudoedit /some/path/to/a/file

Configure the newsudo group in /etc/sudoers to have the users you want to use sudoedit, and then all they need to do is run the command:

sudoedit /path/to/that/file

The /etc/sudoers file has many options. For the Linux+ certification exam, you just need to know how to provide a user with the ability to execute commands as the root user. For example, if you want a user account with the name ross to be able to run all commands as the root user, add the following line:

ross ALL=(ALL) ALL

To limit a user to a specific command, such as the /etc/rc.d/init.d/network command, add the following line:

ross ALL=(ALL) /etc/rc.d/init.d/network

For a user to execute a command as root, she needs to use the sudo command. The syntax is as follows:

sudo /etc/rc.d/init.d/network restart
The user is then prompted for her own password (not the root password). If the correct password is given and the access is permitted based on an entry in the /etc/sudoers file, the command is executed as the root user. If the user attempts to execute a command that she is not authorized to execute, an error message appears on the screen, and the attempt is logged.

User Privilege Escalation

Users on a Linux system come in the following types, and it is important to know all three types, which type you are logged in, and how to escalate or deescalate your privileges at will by switching from one type to another:

- **Root**: This is the root user, who is the super user and the most privileged user on the system. There should be only one of them, characterized by the name root and the UID (user ID) 0.

- **Standard**: Otherwise known as “regular” or “normal” users, these are the rank-and-file users on the system; they have no special privileges and typically have UIDs that range from 1000 and higher.

- **Service**: These are the accounts that have to exist to ensure that every service or daemon on the system is running as a user, since every process must have a user attached. These accounts are never signed into; they exist in the /etc/passwd file and may even have /bin/nologin as the specified shell.

The best security practice is to avoid logging in as the root user unless you need to perform specific administration commands. In most cases, you should not log in as the root user directly but rather should gain root access by executing either the su command or the sudo command.

NOTE The wheel group is an odd thing on the Linux system these days. Traditionally used on Unix systems to allow users to gain root access, the wheel group is often now tied directly to having sudo access.

If the wheel group is configured to have privileged access via sudo and the /etc/sudoers file, then adding a user to the wheel group gives the user those privileges. For example, in our openSUSE system, the wheel group is set up to be able to allow members of that group to execute any command, just as the root would be able to:

```
wheel  ALL=(ALL) ALL
```
This entry is normally commented out, but it would be very easy to remove the single # comment in front of it in the default file to enable the wheel group (and its members) to have full administrative access to the system.

The su Command

To gain access to another user account with the **su** command, use the following syntax:

```
**su** account_name
```

For example, to switch to the root account, execute the following command:

```
# su root
```

This provides you with a non-login shell for the root user. Typically you want a login shell because it provides you with the full user environment (environment variables, shell customizations, and so on). This can be accomplished by using the `-l` option or just a `-` option:

```
# su - root
# su -l root
```

To gain access to a regular user account, you must provide the account name. However, if you don’t provide an account name, the **su** command assumes that you want to switch to the root account. As a result, the following commands are all the same:

- **su** - root
- **su** -l root
- **su** -
- **su** -l

When switching from the root account to a regular user account, no password is required. This means the root user can switch to a regular user account to test that account’s features (or troubleshoot problems for the user) without having to change that user’s password.

To switch from a regular user account to any other account, you must know the password of the account you are switching to.

NOTE Some distributions’ versions of the **su** command allow for the use of X and remote X; simply use the **sux** command instead of the **su** command. This is most notably present on the openSUSE and SUSE Linux Enterprise distributions.
PolicyKit

PolicyKit, also known as polkit, is a system service in Linux that provides a framework for controlling system-wide privileges and permissions.

PolicyKit exists to provide application-level definition and handling of unprivileged access to privileged processes. For example, you might use PolicyKit to provide a user the ability (and the rights) to perform a task by executing a command with elevated privileges. If you think that sounds like the sudo command, it's understandable, because they both have fairly similar goals.

One difference is that PolicyKit is a little easier to use, and certainly less tedious, because you don't have to preface almost everything you do with the sudo command.

NOTE The name PolicyKit is used in this book to match the Linux+ exam objectives, but the current package has been renamed Polkit. One of the main positives of PolicyKit is that it's a central place for defining and accessing policies that allow unprivileged users to perform what would normally be privileged actions.

The PolicyKit local configuration is kept in /etc/polkit-1/localauthority and uses the common method of include files that contain PolicyKit configuration and end either in .conf or, for the more specialized files, .pkla.

The following are examples of the types of actions PolicyKit can be configured for:

- Allow the user to configure wireless connections
- Make it possible to mount and unmount USB and other detached media devices
- Let the user manage shutdown, reboot, and hibernate events
- Make devices accessible that are traditionally difficult to access, such as system audio

The pexec Command

With the previous discussion of the PolicyKit package, pexec makes a lot more sense, as it's the most common way to utilize the PolicyKit rules.

The pexec command, when used to run another command, will execute that command as the targeted user. The user can be specified, but if it is not, pexec attempts to execute the target command as the root user.

For example, to execute the lemmy.sh script as the root user, you would type

pexec lemmy.sh
Since a user is not specified, the default for `pkexec` is to attempt to run the subsequent command, script, or executable as the root user.

Summary

This chapter focused on how to remotely and securely connect with systems for the purposes of administering them, using the SSH suite of technologies and the various `ssh`-prefaced commands you learned about in this chapter.

You also learned about the methods for privilege elevation, or running commands or acting as another user, such as `su`, `sudo`, and `pkexec`.
Exam Preparation Tasks

As mentioned in the section “Goals and Methods” in the Introduction, you have a couple of choices for exam preparation: the exercises here, Chapter 23, “Final Preparation,” and the exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topic icon in the left margin of the page. Table 11-2 lists these key topics and the page number on which each is found.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Programs and files that SSH includes</td>
<td>408</td>
</tr>
<tr>
<td>List</td>
<td>SSH global configuration files</td>
<td>408</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Description of the ~/.ssh/authorized_keys file</td>
<td>409</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Example syntax for connecting to a remote system via the ssh command</td>
<td>409</td>
</tr>
<tr>
<td>Note</td>
<td>Example of deleting all the .rhosts files on a given system</td>
<td>411</td>
</tr>
<tr>
<td>Step list</td>
<td>Enabling SSH use without passwords</td>
<td>411</td>
</tr>
<tr>
<td>Section</td>
<td>Tunneling</td>
<td>414</td>
</tr>
<tr>
<td>Note</td>
<td>Reason to use the visudo command instead of editing /etc/sudoers directly</td>
<td>416</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Using the sudoedit command to allow a user to use any editor</td>
<td>417</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Switching to the root account using the su command</td>
<td>419</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Example of using the pkexec command to run a script as an different user</td>
<td>420</td>
</tr>
</tbody>
</table>
Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

ssh, ssh-add, /etc/ssh/sshd_config, known_hosts, ssh_config, ssh-keygen, ssh-copy-id, tunneling, X11 forwarding, port forwarding, dynamic forwarding, privilege escalation, su, sudo, visudo, /etc/sudoers, sudoedit, PolicyKit, pkexec

Review Questions

The answers to these review questions are in Appendix A.

1. After configuring the PolicyKit rules for your system, what command would you use to use those rules when executing a target command that your current user doesn’t have rights to execute alone?
 a. sudo
 b. pkexec
 c. suexec
 d. execit

2. When configuring the sudo command, what is the full path and filename of its primary configuration file?

3. You are able to access a remote system using just a passphrase for authentication. What must you have copied from your system to the remote system in order for this to happen?
 a. Your personal public key
 b. The system’s public key
 c. The wheel group’s public key
 d. The remote user’s private key

4. When configuring your system to allow or deny certain groups or users to sign in via SSH, what is the full path and filename of the configuration file where these settings are kept?

5. If you invoke the `ssh` command with the `-X` option, what are you likely to be doing after you sign on to the remote system?
 a. Just standard commands
 b. Running xeyes locally and displaying remotely
 c. Running X11 on the remote system and displaying locally
 d. Running remote X apps that display locally

6. Which of the following commands is specifically designed to make it more secure to edit files when using `sudo` to elevate your privileges?
 a. `sudovim`
 b. `visudo`
 c. `sudoedit`
 d. `nanobot`
Index

Symbols

&& (double ampersands), shell scripting, 483–484
/

block storage, 30
checking, 126–127
CIFS, 133
FHS
 overview, 6
 /root directory, 6–7
 /usr directory, 7–8
FUSE, 31
 applications/uses of, 32
 purpose for using, 31
 user requests, 32
managing
 Btrfs tools, 128–130
 EXT2/3/4 tools, 127
 fsck tool, 126–127
 tune2fs command, 128
 XFS commands, 130–131
manually mounting, 121
/proc, 36
 dmidecode command, 37–38
 ls* commands, 36–37
/root directory, 6–7
troubleshooting
corruption, 638–642
mismatches, 642–643
unmounting, 121–122
/usr directory, 7–8
.

(periods) in filenames, 46–47
| (pipes), shell scripting, 481–483
; (semicolons), shell scripting, 483

Numbers

1 command, 21
2 command, 21
3 command, 21
4 command, 21
5 command, 21

A

aa-complain command, 457
aa-disable command, 456
aa-unconfined command, 457
access
 ACL, 445–446
 masks, 447–448
 setting, 446–447
 troubleshooting, 733
 viewing, 446
AppArmor, 456
 aa-complain command, 457
 aa-disable command, 456
 aa-unconfined command, 457
directories, 457
command-line utilities, 457
troubleshooting, 731–732
context-based access, 448–456
file access, troubleshooting,
 731–732
ACL, 733
attribute issues, 733–734
blocks, 737–738
corruption, 638–642
context issues, 732
groups, 732
non-policy issue, 734–735
passwords, 735–736
permissions, 732–733
policy issues, 734–735
privilege elevation, 736
quotas, 736–738
file attributes, 442
displaying, 442–443
key attributes, 443
removing, 443–444
setting, 443
group file access issues, troubleshooting, 732
LDAP, 327, 329
Pearson Test Prep practice exams, 769–770
permissions, 429
chmod command, 432–434
finding files by permissions, 444–445
granularity issues, 437–438
ownership, 434–436
SGID permissions, 438–439, 440–441
special bit permissions, 438–439
sticky bit permissions, 438–439
SUID permissions, 438–440
trio bits, 429–432
troubleshooting, 732–733
restricting cron job access, 177
user access, troubleshooting
file access issues, 731–738
login issues, 728–731
accounts
group accounts
adding users to, 364
etc/group files, 358–361
GID, 358–360
group passwords, 345, 360
modifying users in, 364–365
primary groups, 358
removing, 367
secondary groups, 358
UPG, 359
user accounts, 355–358
adding users, 361–363
etc/passwd files, 355–361
modifying users in, 364–365
removing, 366–367
ACL (Access Control Lists), 445–446
masks, 447–448
setting, 446–447
troubleshooting, 733
viewing, 446
ad hoc cron jobs, running, 178–180
adding
repositories, 238–239, 266
users to
accounts, 361–363
group accounts, 364
advanced directory navigation, 48–49
aging passwords, 344–345
ambassador containers, 603
ampersands (&&), shell scripting, 483–484
analyzing/troubleshooting
bandwidth, 686–687
capacity issues
causes/symptoms, 633–634
diagnosing, 634–638
fixing, 634–638
collisions, 680–683
dropped packets, 680–683
errors= option, 661–663
filesystems
corruption, 638–642
mismatches, 642–643
firewalls
causes/symptoms, 675–676
diagnosing issues, 676–678
fixing issues, 676–679
high latency issues, 670
causes/symptoms, 623
diagnosing, 624–626
fixing, 626–627
overview, 623
interfaces
collisions, 680–683
dropped packets, 680–683
I/O schedulers, 645–647
IOPS, 631
irrelevancy of, 632–633
overview, 632–633
link status
data link layer, 685
physical layer, 684–685
low throughput
causes/symptoms, 627–628
diagnosing, 628–631
fixing, 628–631
overview, 627
LVM
causes/symptoms, 657
diagnosing, 657–659
fixing, 657–659
overview, 656–657
mount options
causes/symptoms, 659
diagnosing, 660–663
errors= option, 661–663
fixing, 660–663
overview, 659
UUID, 660–661
name resolution, 687–689
networks
bandwidth, 686–687
configuration issues, 670–674
firewalls, 675–679
interfaces, 679–683
link status, 684–685
remote system tests, 689–696
NVMe
causes/symptoms, 647–648
diagnosing, 648–649
fixing, 648–649
overview, 647
RAID, 652
array health, 655–656
causes/symptoms, 653
device health, 654
diagnosing, 653–656
fixing, 653–656
monitoring, 654–656
SSD
causes/symptoms, 649–650
diagnosing, 650
fixing, 650
overview, 649
SSD TRIM, 651–652
storage issues
capacity issues, 633–638
filesystems, 638–643
high latency, 623–627
I/O schedulers, 643–647
IOPS, 631–633
low throughput, 627–631
LVM, 656–659
mount options, 659–662
NVMe, 647–649
RAID, 652–656
SSD, 649–652
UUID, 660–661
Ansible, 581–583
apm command, 21
AppArmor, 456
aa-complain command, 457
aa-disable command, 456
aa-unconfined command, 457
directories, 457
ApplImage, 269
apps (applications)
crashes, 756–758
sandboxed applications, 268, 269
ApplImage, 269
defined, 268
Flatpak, 269
Snapd, 270
troubleshooting, 756–758
APT
configuration files, 288
repository files, 289
archiving files, 63–64
listing, 71–72
tar command, 64–66, 71
arguments (shell scripting), accepting,
499–500
arp command, 194, 198–199
at command, 178–179
attaching to containers, 530
attributes (files), 442
displaying, 442–443
key attributes, 443
removing, 443–444
setting, 443
troubleshooting, 733–734
audit2allow command, 455–456
authentication, 326
biometrics, 327
certificates, 323
LDAP, 327, 329
MFA, 326–327
OTP, 327
PAM, 327–329
configuring, 330–331
LDAP integration, 329
SSDD, 331–332
user lockouts, 329–330
SSO, 332–333
awk command, 92–94, 500–501
B
backups, 76
clones, 77
differential backups, 76–77
full backups, 76
images, 77
incremental backups, 76
snapshots, 77
bandwidth
analyzer, 686
latency, 686
troubleshooting, 686–687
.bash_profile scripts, 371
basic directory navigation, 47–48
batch command, 179–180
Before/After directives, 747–748
bfq I/O schedulers, 645
bg command, 149, 156
bind mounts, 606–607
biometric authentication, 327
BIOS boot process, 14
blkid command, 106–108
block devices, 23
blocks
file access issues, 737–738
memory, 718
processes, 146
storage, 30
bodily preparations, final exam, 768
booleans, SELinux, 452–454
boot process, 9
basics, 8
BIOS, 14
boot loaders and files, 14
common commands, 21–22
defined, 8
dracut framework, 10
GRUB, 14–15
GRUB2
changes made, 15–16
command line, 18–19
command names, 16–17
configuring, 20
installing, 17–18
kernel images, 19
initramfs method, 10
initrd method, 9–10
ISO files, 13–14
MBR, 14
NFS, 12–13
PXE, 11–12
stages of, 8
systemd command, 164–165
UEFI, 10–11
bootstrapping, 612–613
bounce signals, 149
branches, version control, 556–558, 561–563
bridging networks, 609–610
Btrfs tools, 128–130
budgeting time, final exam, 767
buffers
memory, 718
processes, 146
build command, 533
Buildah, 533–534
bunzip2 command, 75–76
bzip2 command, 75
C

caches
memory, 718
processes, 146
Calico, 609
capacity issues
causes/symptoms, 633–634
diagnosing, 634–638
fixing, 634–638
case sensitivity, user login issues, 730
case statements, 493–495
cat command, 655
cd command, 47–48
CD (Continuous Delivery), 589
CD (Continuous Deployment), 589
certificates, PKI
authentication, 323
authorities, 323–324
HTTPS, 325
purpose of, 323
self-signed certificates, 323
SSL, 325–326
use cases, 325–326
cfq I/O schedulers, 644
cache persistent I/O schedulers, 646–647
changing
default firewall policies, 393–394
file ownership, 435–436
group ownership, 436
passwords, 370–374
text, vim, 88
chapter-ending review tools, final exam, 772
character devices, 23
chattr command, 442, 443
check ins/outs, version control, 542–544
checking filesystems, 126–127
Chef, 583
chgrp command, 436
chmod command, 432
octal mode, 432–433
SUID permissions, 438–439
symbolic mode, 433–434
choosing kernel update methods, 271
chown command, 435–436
chrony command, 302–303
CI/CD (Continuous Integration/Continuous Deployment), 588–590
CIFS (Common Internet File System), 133
Gillium, 609
clones, 77, 548
cloud-init, 613
collisions, troubleshooting, 680–683
columns, cutting, 502–503
Command mode, vim, 83–84, 86–87, 89
command-line utilities, 457
commands
executing as another user, 416
 su command, 419
 sudo command, 416
 sudoedit command, 417–418
shell scripting
 multiple command operators, 483–484
 substituting commands, 484–485
 using output of another command, 487–488
committing files, 543, 544–545
comparing versions, 560
compressed files, package management, 228
compressing files, 66–70, 75–76
conditional, shell scripting, 488–489
configuration changes, IaC, 579–580
configuring
 APT configuration files, 288
crontabs, 170–173
 nicknames, 175
 output, 174–175
 PATH issues, 173–174
dates/time zones, 303–304
DNF configuration files, 289
Git, 549–552
GRUB2, 20
ifcfg-* files, 195–196
kernel, 289
 modules, 293–300
 setting kernel parameters, 291–293
 viewing kernel parameters, 290–291
name resolution, 200–202
networks, troubleshooting, 670–674
network-scripts, 195–196
NTP, 301–303
PAM, 330–331
repositories
 APT repository files, 289
 configuration files, 287–289
 YUM repository files, 287–288
RPM packages, 284–287
services, 300–301
 NTP, 301–303
 SSH, 301
software
 dates/time zones, 303–304
 kernel options, 289–300
 repository configuration files, 287–289
 repository files, 289
 RPM packages, 284–287
 services, 300–304
 updating configuration files, 283–284
SSH, 301
time-zones, troubleshooting, 759–760
YUM
 configuration files, 288
 packages, 259–262
connectivity, remote
 pkexec command, 420–421
 PolicyKit, 420
 SSH, 408
 components of, 408–414
 executing commands as another user, 416–418, 419
 global configuration files, 408–409
 package configuration files, 408
 port forwarding, 415
 SSH client command, 409–410
 ssh-agent command, 413
 ssh-copy-id command, 414
 tunneling, 414–415
 user privilege escalation, 418–419
 using without passwords, 411–413
 X11 forwarding, 414–415
 X11 tunnels, 411
containers, 525
 attaching to, 530
 Buildah, 533–534
 detaching from, 530
 ending executions, 530
 exiting executions, 530
build command, 533
finding, 526–527
inspecting, 529
list command, 534
operations, 533–534
pull command, 534
pulling, 527–528
push command, 533–534
rmi command, 534
running as containers, 529
viewing, 528
Kubernetes (K8), 602
ambassador containers, 603
CRI, 602
CRI-O, 602
sidecars, 603
specialized types, 603
logs, viewing, 531–532
naming, 529
networks, 608
bridging networks, 609–610
Docker Swarms, 608–609
host networks, 610–611
overlay networks, 608, 609
swotting NAT, 610
persistent storage, 605, 607
bind mounts, 606–607
Docker volumes, 605–606
PV subsystems, 607–608
PVC subsystems, 608
Podman container tool, 526
ports
exposing, 532–533
mapping, 532–533
registries, 613–614
removing, 531
single-node multicontainers, use cases, 604–605
Skopeo container tool, 526
three-container node example, 605
tools
installing, 525–526
verifying, 526
two-container node examples, 604–605
context issues, troubleshooting, 732
context-based access, SELinux, 448–449
audit2allow command, 455–456
booleans, 452–454
contexts, 454–455
modes, 450–451
policies, 451–452
control plane, Kubernetes (K8), 601–602
convenience crontabs, 176–177
copying
directories, 51–53
files, 51–53
objects between systems
nc command, 81–82
rsync command, 79–80
scp command, 78–79
corrupted filesystems, troubleshooting, 638–642
costs, final exam, 766
cp command, 48–49, 51–53
cpio command, 72–73
CPU
process priorities, 713
times, 711
idle time, 713
iowait time, 713
measuring, 711–712
steal time, 712
system time, 712–713
user time, 712
troubleshooting
high CPU utilization, 707
high load average, 707–708
high run queues, 708–711
process priorities, 713
runaway processes, 704–705
zombie processes, 705–706
viewing hardware information, 719–720
.crashes, apps (applications), 756–758
creating
directories, 56–57
firewall rules, 385–397
LVM, 117
software RAID, 114
variables, shell scripting, 470–471
CRI (Container Runtime Interface), 602
CRI-O (CRI-Open), 602
cron jobs
ad hoc cron jobs, 178–180
restricting access, 177
crontabs
configuring, 170–173
nicknames, 175
output, 174–175
PATH issues, 173–174
convenience crontabs, 176–177
syntax checks, 176
system crontabs, 176
viewing, 175–176
curl command, 218–219
customizing, Pearson Test Prep practice exams, 770–771
cut command, 502–503

D

daemons, systemd command, 160
DAG (Directed Acrylic Graphic), 545
data flow (proper), 211
netstat command, 211–213
tcpdump command, 216–217
Wireshark, 214–216
data link layer (links), troubleshooting, 685
dates/time zones, configuring, 303–304
dd command, 73–74
deadline I/O schedules, 644
Debian

time management, 196–197
packages, 228, 229
dependency issues, 232–233
dpkg command, 231–235
installing, 231
local packages, 230–231
querying, 233–234
reconfiguring, 234–235
removing, 231–232
deleting
lines, vim, 88–89
.rhosts files, 411
text, vim, 88–89
DenyHosts utility, 400
dependency issues, Debian packages, 232–233
detaching from containers, 530
/dev directory
device types, 23–24
storage, 28
/dev/null files, 24
/dev/tty, 480–481
dev/urandom files, 24
/dev/zero files, 24
df command, 125–126
capacity issues, 634–636
low throughput, 628–629
difference execution, version control, 558–563
differential backups, 76–77
dig command, 205–206, 687–688
digital signatures, 325
directories
AppArmor, 457
copying, 51–53
creating, 56–57
/dev
device types, 23–24
storage, 28
.git directory, 555
LDAP, 327, 329
links
hard links, 62–63
soft links, 60–61
symbolic links, 61
listing, 49–50
moving objects, 54–56
navigating
advanced navigation, 48–49
basic navigation, 47–48
ownership, 434–436
removing, 56–57
removing objects, 57
/root, overview, 6–7
SGID permissions, 441
/usr, 7–8
disk partitioning, 108
fdisk command, 108–112
MBR partition tables, 112
parted command, 112–113
partprobe command, 113–114
disk usage/storage, monitoring
df command, 125–126
du command, 124–125
iostat command, 123–124
displaying
DMI table information, 37–38
file attributes, 442–443
file metadata, 58–60
memory, 145
socket information, 191–192
variables, shell scripting, 469–471
DITKA questions, final exam, 772
DMI table information, displaying, 37–38
dmidecode command, 37–38
DNAT (Destination NAT), 397
DNF (Dandified YUM), 262
DNF configuration files, 289
Docker Swarms, 608–609
Docker volumes, 605–606
domains, final exam, 766–767
dontaudit policy, 734–735
downloading software
 curl command, 218–219
 wget command, 218–219
dpkg command, 231–235
dracut framework, boot process, 10
dropped packets, troubleshooting, 680–683
du command, 124–125, 634, 636–637
DVCS (Distributed Version Control Systems), 543–546

e2fsck command, mismatched filesystems, 642–643
earplugs, 767
editing files
 awk command, 92–94
 nano, 90–92
 printf command, 94
 vim, 82–90
egrep command, 510–511
elevated privileges, troubleshooting, 736
enabling services, 166–167
encryption
 LUKS, 123
 PKI, 324–325
ending container executions, 530
enforcing mode, SELinux, 450
environment variables
 shell scripting, 469
 systemd command, 162
errors (shell scripting)
 finding on demand, 476–477
 redirecting, 479–480
 returning error codes, 499
errors= option, troubleshooting, 661–663
/etc/group files, 358–361
/etc/passwd files, 355–361
/etc/profile files, 371
/etc/shadow files, 356, 357, 365, 368–370
/etc/skel files, 361, 362–363
ethtool command, troubleshooting
 interfaces, 681
 links, 684–685

exam preparation
 chapter-ending review tools, 772
domains, 766–767
earplugs, 767
fees, 766
getting rest, 768
ID code, 766
languages, 765
locking up valuables, 768
Pearson Test Prep practice exams, 768
 access, 769–770
 customizing, 770–771
 Premium Edition, 771–772
 updating, 771–772
physical preparations, 768
practice exams, 768–772
questions
 budgeting time, 767
 DITKA questions, 772
 number of, 765
 types of, 765
 required passing score, 765
 study trackers, 767
 suggested review/study plans, 772
 taking notes, 768
 time limit, 765
 tips for preparing, 767–768
 travel time, 768
ExecStart, 747
ExecStop, 747
exiting container executions, 530
expanding variables, shell scripting, 472–473
exposing ports, 532–533
EXT2/3/4 tools, 127
extensions, file, 47

fail2ban service, 398–400
faillog command, 735
fallback locales, 306
fstat command, 108
fdisk command, 108–112
fees, final exam, 766
fg command, 156
fgrep command, 510–511
FHS (Filesystem Hierarchy Standard)
 overview, 6
 /root directory, 6–7
 /usr directory, 7–8
file command, 57–58
files
 access, troubleshooting, 731–732
 ACL, 733
 attribute issues, 733–734
 blocks, 737–738
 context issues, 732
 group access, 732
 non-policy issue, 734–735
 passwords, 735–736
 permissions, 732–733
 policy issues, 734–735
 privilege elevation, 736
 quotas, 736–738
APT
 configuration files, 288
 repository files, 289
archiving, 63–64
 listing, 71–72
 tar command, 64–66, 71
attributes, 442
 displaying, 442–443
 key attributes, 443
 removing, 443–444
 setting, 443
backups, 76
 clones, 77
 differential backups, 76–77
 full backups, 76
 images, 77
 incremental backups, 76
 snapshots, 77
clones, 77
committing, 543, 544–545
compressed files, package management, 228
compressing, 66–70, 75–76
copying, 51–53
 objects between systems, nc command, 81–82
 objects between systems, rsync command, 79–80
 objects between systems, scp command, 78–79
descriptors, shell scripting, 475
DNF configuration files, 289
editing
 awk command, 92–94
 nano, nano, 90–92
 printf command, 94
 vim, 82–90
etc/group files, 358–361
etc/passwd files, 355–361
etc/profile files, 371
etc/shadow files, 356, 357, 365, 368–370
etc/skel files, 361, 362–363
extensions, 47
finding, 515–517
finding by permissions, 444–445
formatting, printf command, 94
global configuration files, SSH, 408–409
hidden files, 46–47
ifcfg-* files, configuring, 195–196
ignoring, Git, 555–556
images, 77
JSON format, 577–579
links
 hard links, 62–63
 soft links, 60–61
 symbolic links, 61
listing, 49–50
 archived files, 71–72
 cpio command, 72–73
 dd command, 73–74
 tar command, 71–72
locking, 541
merging, 562–568
metadata, displaying, 58–60
moving objects, 54–56
naming
 periods (.) in filenames, 46–47
 spaces in filenames, 47
navigating, vim, 85–86
ownership, 434–436
package configuration files, SSH, 408
permissions, 429
 chmod command, 432–434
 finding files by permissions, 444–445
 granularity issues, 437–438
 ownership, 434–436
 SGID permissions, 438–439, 440–441
 special bit permissions, 438–439
 sticky bit permissions, 438–439
 SUID permissions, 438–440
 trio bits, 429–432
 troubleshooting, 732–733
removing objects, 57
files

repository configuration files, 287–289
.rohosts files, deleting, 411
RPM package files, 244–245
saving, vim, 87
snapshots, 77
State files, Salt, 585–586
storage, 30
sysctl files, 291–293
testing, 490–491
touching, 50–51
translating, 502
troubleshooting, 733–734
types of, 57–58
YAML format, 576–577
YUM
configuration files, 288
repository files, 289
filesystem table, 118–121
filesystems (/)
block storage, 30
checking, 126–127
CIFS, 133
FHS
overview, 6
/root directory, 6–7
/usr directory, 7–8
FUSE, 31
applications/uses of, 32
purpose for using, 31
user requests, 32
managing
Btrfs tools, 128–130
EXT2/3/4 tools, 127
fsck tool, 126–127
tune2fs command, 128
XFS commands, 130–131
manually mounting, 121
/proc, 36
dmidecode command, 37–38
ls* commands, 36–37
/root directory, 6–7
troubleshooting
corruption, 638–642
mismatches, 642–643
unmounting, 121–122
/usr directory, 7–8
filtering packets
by destination, 392–393
filtering points, 385–388
important terms, 388–389
incoming packets, 389–391
by multiple criteria, 392
outgoing packets, 395–396
overview, 385–388
by protocol, 391–392
final exams, preparing for
chapter-ending review tools, 772
domains, 766–767
earplugs, 767
fees, 766
going rest, 768
ID code, 766
languages, 765
locking up valuables, 768
Pearson Test Prep practice exams, 768
access, 769–770
customizing, 770–771
Premium Edition, 771–772
updating, 771–772
physical preparations, 768
practice exams, 768–772
questions
budgeting time, 767
DITKA questions, 772
type of, 765
number of, 765
required passing score, 765
required tracking skills, 770
suggested review/study plans, 772
taking notes, 768
time limit, 765
tips for preparing, 767–768
travel time, 768
find command, 48, 634, 637–638
finding
corruption, 638–642
errors on demand, 396–477
files, 515–517
files by permissions, 444–445
firewalls, 382–383
changing default firewall policies, 393–394
defined, 382
DenyHosts utility, 400
fail2ban service, 398–400
firewalld command, 383–384
IPset utility, 400
iptables, 382, 383, 385–397
NAT, 397–398

819
nftables, 383–384
refreshing, 674–675
rules
 creating, 385–397
 logging, 396–397
 saving, 394–395
 stateful firewall rules, 396
 stateless firewall rules, 396
runtime firewalls, 384
services, verifying operation, 678–679
troubleshooting
 causes/symptoms, 675–676
 diagnosing issues, 676–678
 fixing issues, 676–679
ufw, 384–385
first-generation version control, 541–542
Flatpak, 609
for loops, 496–497
force multipliers, vim, 86, 88
for formatting files, printf command, 94
free command, 145, 147–148, 717
freshening, RPM packages, 249–250
fsck command
 checking filesystems, 126–127
 corrupted filesystems, 639–642
full backups, 76
functional tools, IaC, 581
FUSE (Filesystem in Userspace), 31
 applications/uses of, 32
 purpose for using, 31
 user requests, 32

G
getent command, 729
getfacl command, 446–448
getting rest, final exam, 768
GID (Group ID), 358–360
Git, 590
 branches, 556–558, 561–563
 clones, 548
 comparing, versions, 560
 configuring, 549–552
 difference execution, 558–563
 .git directory, 555
 ignoring files, 555–556
 installing, 546–547
 merge command, 590
 PR, 590
 rebase command, 590
 repository hosts, 549
 stages, 548–549
 tags, 552–555
 version control
 DVCS, 543–546
 first generation, 541–542
 merges, 542–543, 544–546
 second generation, 542–543, 544–545
 third generation, 543–546
 vimdiff tool, 567
 whitespace, version control, 560–561
global configuration files, SSH, 408–409
globbing, 467–468
GParted tool, 655
GPT (GUID Partition Tables), 29
granularity issues, permissions, 437–438
graphical package managers, 242
grep command, 498–499, 500–501, 505–514
group accounts
 adding users to, 364
 etc/group files, 358–361
 GID, 358–360
 group passwords, 345, 360
 modifying users in, 364–365
 primary groups, 358
 removing, 367
 secondary groups, 358
 UPG, 359
group file access issues, troubleshooting, 732
group ownership, changing, 436
group passwords, 345
groupadd command, 364
groupdel command, 367
grouppwd command, 364–365
groups command, 732
GRUB (Grand Unified Bootloader), 14–15
GRUB2
 changes made, 15–16
 command line, 18–19
 command names, 16–17
 configuring, 20
 kernel images, 19
gunzip command, 75
gzip command, 75

H
hard links, 62–63
hardening Linux, 333
insecure services, disabling/removing, 342
kernel security, service accounts, 347
passwords
 aging, 344–345
 group passwords, 345
 setting parameters, 343
 strength of, 333–338
umask, 340–342
unused packages, removing, 345–347
vulnerability scans
 nc command, 338–340
 nmap command, 333–338
hardware
 info, listing, 35
tokens, 326
viewing
 CPU information, 719–720
 memory information, 720
hashing, PKI, 324–325
ifcfg command, 194
hddtemp command, 648
heredocs (here documents), 477
hidden files, 46–47
high CPU utilization, troubleshooting, 707
high latency
 causes/symptoms, 623, 670
 diagnosing, 624–626
 fixing, 626–627
 overview, 623
high load average, troubleshooting, 707–708
high run queues, troubleshooting, 708–711
host command, 204–205
host networks, 610–611
hostname command, 194, 197–198
hostnames on systemd systems, 204
hping3 command, troubleshooting, bandwidth
 issues, 686
htop command, 144–145
HTTPS, PKI certificates, 325

I

IaC (Infrastructure as Code), 580
 Ansible, 581–583
 CD, 589
 Chef, 583
 CI/CD, 588–590
configuration changes, 579–580
defined, 579
functional tools, 581
Git, 590
merge command, 590
PR, 590
rebase command, 590
JSON, 577–579
procedural tools, 581
Puppet, 583
SaltStack, 584–586
source control, 580
Terraform, 586–588
YAML, 576–577
ID code, final exam, 766
id command, 372, 728–729
identity management
 GID, 358–360
 UID, 355–358
 user identity query options, 372–374
idle time, 713
ifcfg command, 194
ifcfg-* files, configuring, 195–196
ifconfig command, 194, 195
ignoring files, version control, 555–556
images
 backups, 77
 container images
 build command, 533
 finding, 526–527
 inspecting, 529
 list command, 534
 operations, 533–534
 pull command, 534
 pulling, 527–528
 push command, 533–534
 rmi command, 534
 running as containers, 529
 viewing, 528
incremental backups, 76
init command, 21
initramfs method, boot process, 10
initrd method, boot process, 9–10
inodes, 51
input/output streams, shell scripting, 475
insecure services, disabling/removing, 342
Insert mode, vim, 83–84
inspecting
 container images, 529
 software RAID, 114
installing
 container tools, 525–526
 Debian packages, 231
Git, 546–547
GRUB2, 17–18
packages
remote packages, 239–241
system upgrades, 241–242
with Zypp, 263–265
RPM packages, 246–248
software from source code, 24–25
compilation example, 27–28
components of installations, 26
makefiles, 26–27
tarballs, 25
YUM packages, 255–257, 258–259
integers, testing, 492
interface management, 188
arp command, 194, 198–199
Debian, 196–197
hostname command, 194, 197–198
ifcfg command, 194
ifcfg-* files, 195–196
ifconfig command, 194, 195
ip command, 188–191
iproute2 toolset, 188–189
I/O schedulers
bfq I/O schedulers, 645
cfq I/O schedulers, 644
change persistent I/O schedulers, 646–647
deadline I/O schedules, 644
kyber I/O schedulers, 645
mq-deadline I/O schedulers, 645
multiqueue I/O schedules, 644
none I/O schedulers, 645
noop I/O schedulers, 644
overview, 644
setting, 646
troubleshooting, 643, 645–647
types of, 644–645
viewing, 645
IOPS (Input/Output Operations Per Second), 631
overview, 632–633
iostat command, 123–124, 629–631
iotop command, high latency issues, 626–627
iowait time, 713
ip command, 188–191, 670–672
ip route command, troubleshooting network
configuration issues, 672–673
iproute2 toolset, 188–189
IPSet utility, 400
iptables, packet filtering, 382, 383, 385
by destination, 392–393
filtering points, 385–388
important terms, 388–389
incoming packets, 389–391
by multiple criteria, 392
outgoing packets, 395–396
overview, 385–388
by protocol, 391–392
ISO files, boot process, 13–14
Istio service meshes, 611–612

J
job control, 155–156
join command, 514–515
journaling, troubleshooting, 760
JSON (JavaScript Object Notation), 577–579

K
kernel
configuring, 289
modules, 293–300
setting kernel parameters, 291–293
viewing kernel parameters, 290–291
images, 19
live kernel patching, 273–275
modules, 293–294
lsmod command, 294–295
managing, 294–295
manually loading/unloading, 296–297
modprobe command, 298–300
panic, 22
causes of, 23
getting more information, 22
identifying, 22
security, service accounts, 347
sysctl files, 291–293
updating, 270–271
choosing update methods, 271
Linux kernel utilities, 272–273
manual updates, 271–272
no reboot method, 273–275
package managers, 272
reboot methods, 271–273
viewing parameters, 290–291
kill command, 149–150
killall command, 149–150
killing processes, 149–150, 152–153, 716
Kubernetes (K8)
benefits of, 603–604
containers, 602
ambassador containers, 603
bind mounts, 606–607
bridging networks, 609–610
CRI, 602
CRI-O, 602
Docker Swarms, 608–609
Docker volumes, 605–606
host networks, 610–611
networks, 608–611
overlay networks, 608, 609
persistent storage, 605, 607
PV subsystems, 607–608
PVC subsystems, 608
sidecars, 603
single-node multicontainer use cases, 604–605
specialized types, 603
swotting NAT, 610
three-container node example, 605
two-container node examples, 604–605
control plane, 601–602
defined, 600
high-level structure, 601
nodes, 601, 602
Pods, 601, 602
service meshes, 611
defined, 611
example of, 611–612
Istio service meshes, 611–612
NGINX Service Mesh, 612
kyber I/O schedulers, 645

L
languages, final exam, 765
last command, 730
LastLine mode, vim, 83, 87
lastlog command, 730–731
latency and bandwidth, 686
LDAP (Lightweight Directory Access Protocol), 327, 329
libraries, systemd command, 160
lines (vim), deleting, 88–89
link files, 24
links
hard links, 62–63
soft links, 60–61
symbolic links, 61
troubleshooting, 683–684
data link layer, 685
physical layer, 684–685
Linux hardening, 333
insecure services, disabling/removing, 342
kernel security, service accounts, 347
passwords
aging, 344–345
group passwords, 345
setting parameters, 343
strength of, 333–338
umask, 340–342
unused packages, removing, 345–347
vulnerability scans
nc command, 338–340
nmap command, 333–338
Linux kernel utilities, kernel updates, 272–273
list command, 534
listing
directories, 49–50
files, 49–50
archived files, 71–72
cpio command, 72–73
dd command, 73–74
tar command, 71–72
hardware info, 35
repositories, 266
services, 166
live kernel patching, 273–275
load average (high), troubleshooting, 707–708
loaders and files, boot, 14
loading/unloading kernel modules, 296–297
local Debian packages, managing, 230–231
local variables, shell scripting, 469
locale command, 307
locales
contents of, 306
fallback locales, 306
Linux use of, 307–308
managing

localectl command, 307
representing, 304–305
locking files, 541
locking up valuables, final exam, 768
lockouts, user, 329–330
logger command, 312
logging, firewall rules, 396–397
logging, syslog, 304
configuring, 312–315
descriptor file locations, 313–314
locales
 contents of, 306
 fallback locales, 306
 Linux use of, 307–308
localectl command, 307
log facilities, 309–310
log flows, 310–312
representing, 304
logger command, 312
severity levels, 310
systemd command, 308–315
logical partitions, 29
login issues, troubleshooting, 728
 case sensitivity, 730
 first-time logins, 730
 inspecting account details, 728–729
 last command, 730
 last logins, 730–731
 lastlog command, 730–731
login shells, 371–372
logs, container, 531–532
loops
 for loops, 496–497
 sequences, 497
 until loops, 498
 while loops, 498
low throughput
 causes/symptoms, 627–628
 diagnosing, 628–631
 fixing, 628–631
 overview, 627
ls command, 49–50
ls* command, 36–37
lsattr command, 442–444, 733–734
lsblk command, 105–106
lscpu command, 719–720
lsmod command, 294–295
lsof command, 153–155
lsscsi command, 104–105
LUKS (Linux Unified Key Setup), 123
LVM (Logical Volume Manager)
 creating, 117
 managing, 117–118
 multipathing, 116–117
 overview, 114–116
 troubleshooting
 causes/symptoms, 657
 diagnosing, 657–659
 fixing, 657–659
 overview, 656–657
lvs command, 117–118

M

makefiles, software installations from source
 code, 26–27
managing
 containers, 525
 installing tools, 525–526
 verifying tools, 526
filesytems
 Btrfs tools, 128–130
 EXT2/3/4 tools, 127
 fsck tool, 126–127
 tune2fs command, 128
 XFS commands, 130–131
identity
 GID, 358–360
 UID, 355–358
 user identity query options, 372–374
interfaces, 188
 arp command, 194, 198–199
 Debian, 196–197
 hostname command, 194, 197–198
 ifcfg command, 194
 ifcfg-* files, 195–196
 ifconfig command, 194, 195
 ip command, 188–191
 iproute2 toolset, 188–189
 net-tools suite, 194
 NetworkManager, 192–194
 network-scripts, 195–196
 route command, 194, 199
 ss command, 191–192
 troubleshooting, 679–683
kernel modules, 294–295
LVM, 117–118
packages, 228, 229
common package types, 228
compressed files, 228
Debian packages, 228, 229–235
graphical managers, 242
kernel updates, 272
remote packages, 239–241
removing packages, 242
repositories, 235–239, 265–268
RPM packages, 228, 243–255
system upgrades, 241–242
YUM packages, 255–262
Zypp, 262–268
repositories, with Zypp, 265–268
systemd command, 165–169
manually loading/unloading kernel modules, 296–297
manually mounting filesystems, 121
mapping ports, 532–533
masking services, 169
masks, ACL, 447–448
MASQUERADE, 397
MBR (Master Boot Records), 14, 29, 112
mged command, 653, 656
measuring CPU times, 711–712
mem=xxxxM command, 21–22
memory
blocks, 718
buffers, 718
caches, 718
displaying, 145
exhaustion, 713–714
free command, 145
killing processes, 716
leaks, 716
NVMe, troubleshooting, 647–649
OOM, 714–716
OOM Killer, 716
pages, 718
RAM, swapping, 717–718
reclaiming, 716
slabs, 718
swapping, 717–718, 719
troubleshooting
exhaustion, 713–714
killing processes, 716
leaks, 716
OOM, 714–716
viewing hardware information, 720
merge command, 590
merges, version control, 542–543, 544–546, 562–568
message digests, PKI, 324–325
message line, vim, 83
metadata, displaying, 58–60
MFA (Multifactor Authentication), 326–327
mirroring, RAID, 34
mismatched filesystems, troubleshooting, 642–643
mkdir command, 56
modifying
group accounts, 365–366
user accounts, 364–365
modprobe command, 298–300
modules, kernel, 293–294
lsmod command, 294–295
managing, 294–295
manually loading/unloading, 296–297
modprobe command, 298–300
monitoring
disk usage/storage
 df command, 125–126
du command, 124–125
iostat command, 123–124
networks, 207
proper data flow, 211–217
remote host reachability, 207–211
RAID, 654–656
mount command, 660
mount options, troubleshooting
 causes/symptoms, 659
diagnosing, 660–663
errors= option, 661–663
fixing, 660–663
overview, 659
UUID, 660–661
mount unit files, troubleshooting, 750–752
mounting devices
filesystem table, 118–121
manually mounting filesystems, 121
systemd command, 122–123
unmounting filesystems, 121–122
moving objects, 54–56
mq-deadline I/O schedulers, 645
mtr command, 210–211
multicontainers
single-node multicontainers, use cases, 604–605
three-container node example, 605
two-container node examples, 604–605
multipathd command, 132–133
multipathing
LVM, 116–117
NAS, 132–133
SAN, 132–133
multiple command operators, shell scripting, 483–484
multiple periods (.) in filenames, 46–47
multiqueue I/O schedules, 644
mv command, 54–56

N

name resolution, 199–200
configuring, 200–202
controlling, 202–203
diagram, 200
dig command, 205–206
host command, 204–205
hostnames on systemd systems, 204
nslookup command, 205
troubleshooting, 687–689, 756
whois command, 206–207
naming
containers, 529
files
periods (.) in filenames, 46–47
spaces in filenames, 47
RPM packages, 244–245
nano, nano, 90–92
NAS (Network-Attached Storage), 131–132
multipathing, 132–133
NFS, 133
Samba, 133
NAT (Network Address Translation), 397–398
DNAT, 397
MASQUERADE, 397
SNAT, 397
swotting, 610
navigating
directories
advanced navigation, 48–49
basic navigation, 47–48
files, vim, 85–86
nc command, 81–82, 219–220
netstat command, 211–213, 681–682
net-tools suite, 194
networking services, troubleshooting, 746
NetworkManager, 192–194
networks
bridging networks, 609–610
configuration issues
causes/symptoms, 670
diagnosing, 670–674
fixing, 670–674
troubleshooting, 670–674
container networks, 608
bridging networks, 609–610
Docker Swarms, 608–609
host networks, 610–611
overlay networks, 608, 609
swotting NAT, 610
firewalls, troubleshooting, 674–679
host networks, 610–611
interface management, 188
arp command, 194, 198–199
Debian, 196–197
hostname command, 194, 197–198
ifcfg command, 194
ifcfg-* files, 195–196
ifconfig command, 194, 195
ip command, 188–191
iproute2 toolset, 188–189
net-tools suite, 194
NetworkManager, 192–194
network-scripts, 195–196
route command, 194, 199
ss command, 191–192
monitoring, 207
proper data flow, 211–217
remote host reachability, 207–211
name resolution, 199–200
configuring, 200–202
controlling, 202–203
diagram, 200
dig command, 205–206
host command, 204–205
hostnames on systemd systems, 204
nslookup command, 205
whois command, 206–207
NAS, 131–132
multipathing, 132–133
NFS, 133
Samba, 133
NAT, swotting, 610
overlay networks, 608, 609
remote networking, 217
curl command, 218–219
nc command, 219–220
SSH, 217–218
wget command, 218–219
remote system tests
 legality of, 689
 nmap command, 690–693
 purposes of, 689
 s_client module, 693–696
 service discovery scans, 691–692
 simple system scans, 690–691
 vulnerability scans, 692–693
SAN, 131–132
 multipathing, 132–133
 NFS, 133
 Samba, 133
troubleshooting
 bandwidth, 686–687
 configuration issues, 670–674
 firewalls, 674–679
 interfaces, 679–683
 link status, 684–685
 name resolution, 687–689
 remote system tests, 689–696
NFS (Network File System), 12–13, 133
nftables, 383–384
NGINX Service Mesh, 284, 612
nice command, 157, 161
nicknames, crontab configurations, 175
nmap command
 remote system tests, 690–693
 troubleshooting, firewalls, 676
 vulnerability scans
 nc command, 338–340
 nmap command, 333–338
nmcli command, 192–194
no reboot method, kernel updates, 273–275
nodes, Kubernetes (K8), 601, 602
none I/O schedulers, 645
non-policy issue, troubleshooting, 734–735
noop I/O schedulers, 644
note-taking, final exam, 768
nslookup command, 205
NTP (Network Time Protocol)
 chrony command, 302–303
 configuring, 301–303
 timestamps, 302
number of questions, final exam, 765
NVMe, troubleshooting
 causes/symptoms, 647–648
 diagnosing, 648–649
 fixing, 648–649
 overview, 647
nvme command, 648–649
O
object storage, 31
octal mode, chmod command, 432–433
OnBootSec, 750
OnCalendar, 750
OOM (Out Of Memory), troubleshooting, 714–716
OOM Killer, 716
OTP (One-Time Passwords), 327
output, crontab configurations, 174–175
output streams, shell scripting, 475
overlay networks, 608, 609
ownership, files/directories, 434–436
P
package configuration files, SSH, 408
package management, 228, 229
 common package types, 228
 compressed files, 228
Debian packages, 228, 229
 dependency issues, 232–233
 dpkg command, 231–235
 installing, 231
 local packages, 230–231
 querying, 233–234
 reconfiguring, 234–235
 removing, 231–232
graphical managers, 242
kernel updates, 272
remote packages, installing, 239–241
removing packages, 242
repositories, 235–236
 adding, 238–239
 configured repositories, 236–238
 defined, 236
 listing, 262–263
 viewing configured repositories, 236–238
permissions (files)

- RPM packages, 228, 243
 - files, 244–245
 - freshening, 249–250
 - installing, 246–248
 - naming conventions, 244–245
 - querying, 252–255
 - removing, 250–251
 - rpm command, 245
 - RPM database, 243–244
 - upgrading, 249–250
 - validating, 246
 - verifying integrity, 248–249
- system upgrades, 241–242
- unused packages, removing, 345–347
- YUM packages, 255
 - configuring, 259–262
 - DNF, 262
 - finding packages to install, 258–259
 - installing, 255–257, 258–259
 - updating, 257–258
- ZYpp, 262–263
 - installing packages, 263–265
 - removing packages, 265
 - repositories, 265–268

packets
- dropped, 680–683
- filtering
 - by destination, 392–393
 - filtering points, 385–388
- important terms, 388–389
- incoming packets, 389–391
- by multiple criteria, 392
- outgoing packets, 395–396
- overview, 385–388
- by protocol, 391–392

pages, 146, 718

PAM (Pluggable Authentication Modules), 327–329
 - configuring, 330–331
 - LDAP integration, 329
 - SSDD, 331–332
 - user lockouts, 329–330

panic, kernel, 22
 - causes of, 23
 - getting more information, 22
 - identifying, 22
 - panic=#seconds command, 21

parity, RAID, 35

parted command
 - disk partitioning, 112–113
 - mismatched filesystems, 643

partitions, storage, 28
 - disk partitioning, 108
 - fdisk command, 108–112
 - MBR partition tables, 112
 - parted command, 112–113
 - partprobe command, 113–114
 - GPT, 29
 - logical partitions, 29
 - MBR, 29
 - viewing information
 - blkid command, 106–108
 - fstat command, 108
 - lsblk command, 105–106
 - partprobe command, 113–114
 - passing score, final exam, 765

passwords
 - aging, 344–345
 - changing, 370–374
 - etc/passwd files, 355–361
 - group passwords, 345, 360
 - OTP, 327
 - PAM, 328–329
 - setting parameters, 343–345
 - SSH usage without, 411–413
 - strength of, 343–345
 - troubleshooting, 735–736

paste command, 514–515

PATH issues, crontab configurations, 173–174

PATH variables, 471–472

Pearson Test Prep practice exams, 768
 - access, 769–770
 - customizing, 770–771
 - Premium Edition, 771–772
 - updating, 771–772

periods (.) in filenames, 46–47

permissions (files), 429
 - chmod command, 432
 - octal mode, 432–433
 - SUID permissions, 438–439
 - symbolic mode, 433–434
 - finding files by permissions, 444–445
 - granularity issues, 437–438
 - ownership, 434–436
 - SGID permissions, 438–439, 440–441
 - special bit permissions, 438–439
permissions (files)

sticky bit permissions, 438–439
SUID permissions, 438–440
trio bits, 429–432
troubleshooting, 732–733
permissive mode, SELinux, 450
persistent storage, containers, 605, 607
bind mounts, 606–607
Docker volumes, 605–606
PV subsystems, 607–608
PVC subsystems, 608
pgrep command, 150–152
physical layer (links), troubleshooting, 684–685
physical preparations, final exam, 768
PID, killing processes, 149–150
pidof command, 151
ping command, troubleshooting, 207–208
bandwidth issues, 686
firewalls, 676, 677
name resolution, 687, 689
network configuration issues, 672
pipes (|), shell scripting, 481–483
pkexec command, 420–421
PKI (Public Key Infrastructure), 323
certificates
 authentication, 323
 authorities, 323–324
 HTTPS, 325
 purpose of, 323
 self-signed certificates, 323
 SSL, 325–326
 use cases, 325–326
digital signatures, 325
encryption, 324–325
hashing, 324–325
message digests, 324–325
private keys, 324
public keys, 324
pkill command, 150–152
playbooks, Ansible, 581–583
Podman container tool, 526
Pods, Kubernetes (K8), 601, 602
policies
dontaudit policy, 734–735
SELinux policies, 451–452
troubleshooting, 734–735
PolicyKit, 420
ports
 exposing, 532–533

forwarding, 415
mapping, 532–533
PR (Pull Requests), 591
practice exams, 768–772
preparing for exams
 chapter-ending review tools, 772
domains, 766–767
distillers, 767
fees, 766
getting rest, 768
ID code, 766
languages, 765
locking up valuables, 768
Pearson Test Prep practice exams, 768
access, 769–770
customizing, 770–771
Premium Edition, 771–772
updating, 771–772
physical preparations, 768
practice exams, 768–772
questions
 budgeting time, 767
 DITKA questions, 772
 number of, 765
 types of, 765
required passing score, 765
study trackers, 767
suggested review/study plans, 772
taking notes, 768
time limit, 765
tips for preparing, 767–768
travel time, 768
primary groups, 358
printf command, 94
prioritizing, processes, 157–159, 713
private keys, PKI, 324
privileges
 elevation, troubleshooting, 736
 user privilege escalation, 418–419
/proc filesystem, 36
dmidecode command, 37–38
ls* commands, 36–37
procedural tools, IaC, 581
processes
 blocks, 146
 bounce signals, 149
 buffers, 146
caches, 146
interpreting displayed data from free command, 147–148
job control, 155–156
killing, 149–150, 152–153, 716
pages, 146
prioritizing, 157–159, 713
querying tables, 150–152
resource usage, 153–155
runaway processes, 704–705
sending signals, 148–149
pgrep command, 150–152
pkill command, 150–152
services
 crontab configurations, 170–175
disabling, 166–167
enabling, 166–167
listing, 166
masking, 169
querying status, 167–169
scheduling, 170–180
starting, 167–169
state of, 165
stopping, 167–169
slabs, 146
systemd command, 159–161
 boot process, 164–165
demons, 160
environment variables, 162
libraries, 160
managing, 165–169
requires, 163–164
runlevels, 163
targets, 163
units, 161–162
wants, 163–164
units, state of, 165
viewing, 142
 free command, 145, 147–148
htop command, 144–145
ps command, 142–144
pstree command, 143–144
zombie processes, 150, 705–706
ps command, 142–144
pstree command, 143–144
public keys, PKI, 324
pull command, 534
pulling container images, 527–528
Puppet, 583
push command, 533–534
PV subsystems, 607–608
PVC subsystems, 608
pvs command, 117
PXE boot process, 11–12

Q
qbang, 87
querying
 Debian packages, 233–234
 process tables, 150–152
 RPM packages, 252–255
 service status, 167–169
questions, final exam
 budgeting time, 767
 DITKA questions, 772
 number of, 765
 types of, 765
quitting vim, 87
quotas, troubleshooting, 736–738

R
RAID (Redundant Array of Independent Disks), 32–33
 creating devices, 33–34
 mirroring, 34
 parity, 35
 RAID0, 33
 RAID1, 33
 RAID3, 33
 RAID5, 33
software RAID
 creating, 114
 inspecting, 114
striping, 34–35
troubleshooting, 652
 array health, 655–656
 causes/symptoms, 653
 device health, 654
 diagnosing, 653–656
 fixing, 653–656
 monitoring, 654–656
RAM, swapping, 717–718
rebase command, 590
reboot methods
 kernel updates, 271
 manual updates, 271–272
recipes, Chef, 583
reclaiming memory, 716
reconfiguring Debian packages, 234–235
redirecting streams, 478, 480
/dev/tty, 480–481
standard errors, 479–480
standard input, 478
standard output, 478–479
refreshing
firewalls, 674–675
repositories, 267–268
registries, container, 613–614
regular expressions, shell scripting, 511–514
relative paths, 47, 48, 50
reloading services, 283–284
remote connectivity
pkexec command, 420–421
PolicyKit, 420
SSH, 408
components of, 408–414
executing commands as another user, 416–418, 419
global configuration files, 408–409
package configuration files, 408
port forwarding, 415
SSH client command, 409–410
ssh-agent command, 413
ssh-copy-id command, 414
tunneling, 414–415
user privilege escalation, 418–419
using without passwords, 411–413
X11 forwarding, 414–415
X11 tunnels, 411
remote hosts, reachability (network monitoring), 207
mtr command, 210–211
ping command, 207–208
traceroute command, 208–210
remote networking, 217
curl command, 218–219
nc command, 219–220
SSH, 217–218
wget command, 218–219
remote packages, installing, 239–241
remote system tests
legality of, 689
nmap command, 690–693
purposes of, 689
s_client module, 693–696
service discovery scans, 691–692
simple system scans, 690–691
vulnerability scans, 692–693
removing
containers, 531
Debian packages, 231–232
directories, 56–57
file attributes, 443–444
group accounts, 367
insecure services, 342
objects, 57
packages, 242, 265
Debian packages, 231–232
RPM packages, 250–251
unused packages, 345–347
user accounts, 366–367
renice command, 153, 157–158, 161
replacing text, vim, 88
repositories, 235–236
adding, 238–239, 266
APT repository files, 289
configuration files, 287–288
APT configuration files, 288
DNF configuration files, 289
YUM configuration files, 288
configured repositories, 236–238
defined, 236
hosts, Git, 549
listing, 266
managing with Zypp, 265–268
refreshing, 267–268
viewing configured repositories, 236–238
YUM repository files, 287–288
required passing score, final exam, 765
requires, systemd command, 163–164
Requires directives, 749
resolvectl command, 202–203
resource usage, processes, 153–155
rest (final exam), getting, 768
restarting services, 283
restricting cron job access, 177
review/study plans, final exam, 772
.rhosts files, deleting, 411
rm command, 57
rmdir command, 56–57
rmi command, 534
ro command, 21–22
/root directory, overview, 6–7
route command, 194, 199
routing
 ip route command, 672–673
 traceroute command, 673–674
rpm command, 245
RPM packages, 228, 243
 configuring, 284–287
 files, 244–245
 freshening, 249–250
 installing, 246–248
 naming conventions, 244–245
 querying, 252–255
 removing, 250–251
rpm command, 245
RPM database, 243–244
upgrading, 249–250
validating, 246
verifying integrity, 248–249
rsync command, 79–80
rules (firewalls)
 creating, 385–397
 saving, 394–395
run queues (high), troubleshooting, 708–711
runaway processes, troubleshooting, 704–705
runlevels, systemctl command, 163
running
 ad hoc cron jobs, 178–180
 images as containers, 529
 scripts, 473–474
 services, firewalls, 678–679
runtime firewalls, 384
rw command, 21–22

S
s_client module, remote system tests, 693–696
SaltStack, 584–586
Samba, 133
SAN (Storage Area Networks), 131–132
 multipathing, 132–133
 NFS, 133
 Samba, 133
sandboxed applications, 268, 269
 AppImage, 269
 defined, 268
 Flatpak, 269
 Snapd, 270
saving
 files, vim, 87
 firewall rules, 394–395

scans
 remote systems
 service discovery scans, 691–692
 simple system scans, 690–691
 vulnerability scans, 692–693
 vulnerability scans
 nc command, 338–340
 nmap command, 333–338
scheduling services, 170–180
scoring, final exam, 765
scp command, 78–79
scripts, network-scripts, 195–196
SCSI device information, viewing, 104–105
searching in vim, 89–90
secondary groups, 358
second-generation version control, 542–543, 544–545
security
 authentication, 326
 biometrics, 327
 certificates, 323
 LDAP, 327, 329
 MFA, 326–327
 OTP, 327
 PAM, 327–332
 SSO, 332–333
etc/group files, 358–361
etc/passwd files, 355–361
etc/profile files, 371
etc/shadow files, 356, 357, 365, 368–370
e tc/skel files, 361, 362–363
firewalls, 382–383
 changing default firewall policies, 393–394
 creating rules, 385–397
 defined, 382
 DenyHosts utility, 400
 fail2ban service, 398–400
 firewalld command, 383–384
 IPset utility, 400
 iptables, 382, 383, 385–397, 398
 logging rules, 396–397
 NAT, 397–398
 nftables, 383–384
 packet filtering, 385–397
 refreshing, 674–675
 runtime firewalls, 384
 saving rules, 394–395
security

stateful firewall rules, 396
stateless firewall rules, 396
troubleshooting, 674–679
ufw, 384–385
hardening Linux, 333
disabling/removing insecure services, 342
password strength, 333–338
vulnerability scans, 333–340
identity management
GID, 358–360
UID, 355–358
kernel, service accounts, 347
locking up valuables, final exam, 768
login shells, 371–372
LUKS, 123
passwords
aging, 344–345
changing, 370–374
etc/passwd files, 355–361
group passwords, 345, 360
OTP, 327
PAM, 328–329
setting parameters, 343
SSH usage without, 411–413
strength of, 343–345
troubleshooting, 735–736
PKI, 323
certificates, 323–324, 325–326
digital signatures, 325
encryption, 324–325
hashing, 324–325
message digests, 324–325
private keys, 324
public keys, 324
service accounts, 347
Shadow Suite, 368–370
sed (Stream Editor), 503–505
self-signed certificates, 323
SELinux (Security-Enhanced Linux), 449–450
audit2allow command, 455–456
booleans, 452–454
contexts, 454–455
modes, 450–451
policies, 451–452
semicolons (;), shell scripting, 483
sending signals to processes, 148–149
pgrep command, 150–152
pkill command, 150–152
sequences, loops, 497
service accounts, security, 347
service meshes, 611
defined, 611
example of, 611–612
Istio service meshes, 611–612
NGINX Service Mesh, 612
services
configuring, 300–301
NTP, 301–303
SSH, 301
crontabs, configuring, 170–175
disabling, 166–167
discovery scans, 691–692
enabling, 166–167
fail2ban service, 398–400
firewall operations, troubleshooting,
678–679
insecure services, disabling/removing, 342
listing, 166
masking, 169
networking services, troubleshooting, 746
querying status, 167–169
reloading, 283–284
restarting, 283
scheduling, 170–180
start times, troubleshooting, 760
starting, 167–169
state of, 165
stopping, 167–169
setfacl command, 446
setting
ACL, 446–447
file attributes, 443
I/O schedulers, 646
kernel parameters, 291–293
password parameters, 343
SGID permissions, 438–439, 440–441
Shadow Suite, 368–370
shell scripting
accepting arguments, 499–500
ampersands (&&), 483–484
awk command, 500–501
basics of, 466–467
case statements, 493–495
conditionals, 488–489
cut command, 502–503
cutting columns, 502–503
egrep command, 510–511
fgrep command, 510–511
file descriptors, 475
finding
 errors on demand, 476–477
files, 515–517
globbing, 467–468
good script design, 474–475
grep command, 498–499, 500–501, 505–514
heredocs, 477
input/output streams, 475
interactions with other programs, 498–499
join command, 514–515
loops
 for loops, 496–497
 sequences, 497
 until loops, 498
 while loops, 498
multiple command operators, 483–484
output of another command, using, 487–488
paste command, 514–515
pipes (|), 481–483
processing output, 485–486
regular expressions, 511–514
returning error codes, 499
running scripts, 473–474
semicolons (;), 483
splitting streams, 485
stderr command, 476
stdin command, 475
stdout command, 475–476
stream redirection, 478, 480
/dev/tty, 480–481
 standard errors, 479–480
 standard input, 478
 standard output, 478–479
substituting commands, 484–485
switch statements, 495–496
tee command, 485
testing
 combining multiple tests, 493
files, 490–491
 integers, 492
 strings, 491–492
tr command, 502
translating files, 502
variables
 creating, 470–471
 displaying, 469–471
environment variables, 469
expanding variables, 472–473
local variables, 469
PATH variables, 471–472
SHELL variables, 472
xargs command, 485–486
SHELL variables, 472
sidecars, 603
signals
 bounce signals, 149
 sending to processes, 148–149
 pgrep command, 150–152
 pkill command, 150–152
SIGHUP, 148
SIGINT, 148
SIGKILL, 148
SIGSTOP, 148
SIGTERM, 148
SIGTSTP, 148
signatures, digital, 325
simple system scans, 690–691
single or 1 command, 21
single-node multicontainers, use cases, 604–605
Skopeo container tool, 526
slabs
 memory, 718
 processes, 146
smartctl command, 653, 654
smartd command, 653–654
SMB (Server Message Blocks), 133
Snapd, 270
snapshots, 77
SNAT (Source NAT), 397
sockets, displaying information, 191–192
soft links, 60–61
software
 configuration files, updating, 283–284
dates/time zones, configuring, 303–304
downloading
 curl command, 218–219
 wget command, 218–219
installing from source code, 24–25
 compilation example, 27–28
components of installations, 26
makefiles, 26–27
tarballs, 25
kernel configurations, 289
modules, 293–300
setting kernel parameters, 291–293
viewing kernel parameters, 290–291
kernel updates, 270–271
 choosing update methods, 271
Linux kernel utilities, 272–273
live kernel patching, 273–275
manual updates, 271–272
no reboot method, 273–275
package managers, 272
reboot methods, 271–273
package management, 228, 229
 common package types, 228
 compressed files, 228
 Debian packages, 228
 graphical managers, 242
 kernel updates, 272
 remote packages, 239–241
 removing packages, 242
 repositories, 235–239, 265–268
 RPM packages, 228, 243–255
 system upgrades, 241–242
 YUM packages, 255–262
 Zypp, 262–268
repository configuration files, 287–288
 APT configuration files, 288
 DNF configuration files, 289
 YUM configuration files, 288
repository files
 APT repository files, 289
 YUM repository files, 287–288
RPM packages, configuring, 284–287
sandboxed applications, 268, 269
 AppImage, 269
 defined, 268
 Flatpak, 269
 Snapd, 270
services
 configuring, 300–304
 reloading, 283–284
 restarting, 283
syslog, 304
 configuring, 312–315
 key file locations, 313–314
 locales, 304–308
 log facilities, 309–310
 log flows, 310–312
 logger command, 312
 severity levels, 310
 systemd command, 308–315
software RAID
 creating, 114
 inspecting, 114
software tokens, 326–327
source code, software installations, 24–25
 compilation example, 27–28
 components of installations, 26
 makefiles, 26–27
tarballs, 25
source control, IaC, 580
spaces in filenames, 47
special bit permissions, 438–439
splitting streams, shell scripting, 485
ss command, 191–192
SSD TRIM, 651
 garbage collection, 651–652
 TRIM Helper, 652
SSD, troubleshooting
 causes/symptoms, 649–650
 diagnosing, 650
 fixing, 650
 overview, 649
 SSD TRIM, 651–652
SSDD (System Security Services Daemon), 331–332
SSH (Secure Shell), 217–218, 408
 components of, 408–414
 configuring, 301
 executing commands as another user, 416
 su command, 419
 sudo command, 416
 sudoedit command, 417–418
 global configuration files, 408–409
 package configuration files, 408
 port forwarding, 415
 SSH client command, 409–410
 ssh-agent command, 413
 ssh-copy-id command, 414
 tunneling, 414–415
 user privilege escalation, 418–419
 using without passwords, 411–413
 X11 forwarding, 414–415
 X11 tunnels, 411
SSL (Secure Socket Layer), PKI certificates, 325–326
SSO authentication, 332–333
stages, Git, 548–549
starting services, 167–169, 760
stat command, 58–60, 733
State files, Salt, 585–586
stateful firewall rules, 396
stateless firewall rules, 396
stderr command, 476
stdin command, 475
stdout command, 475–476
steal time, 712
sticky bit permissions, 438
stopping, services, 167–169
storage
administrative tasks, 28
blocks, 30
container persistent storage, 605, 607
bind mounts, 606–607
Docker volumes, 605–606
PV subsystems, 607–608
PVC subsystems, 608
determining hardware, 104–105
/dev directory, 28
disk partitioning, 108
fdisk command, 108–112
MBR partition tables, 112
parted command, 112–113
partprobe command, 113–114
Docker volumes, 605–606
files, 30
filesystem management
Btrfs tools, 128–130
EXT2/3/4 tools, 127
fsck tool, 126–127
tune2fs command, 128
XFS commands, 130–131
LUKS encryption, 123
LVM
creating, 117
managing, 117–118
multipathing, 116–117
overview, 114–116
methods (overview), 29
monitoring
df command, 125–126
du command, 124–125
iostat command, 123–124
mounting devices
filesystem table, 118–121
manually mounting filesystems, 121
systemd command, 122–123
unmounting filesystems, 121–122
NAS, 131–132
multipathing, 132–133
NFS, 133
Samba, 133
objects, 31
partitions, 28
GPT, 29
logical partitions, 29
MBR, 29
viewing information, blkid command, 106–108
viewing information, fstat command, 108
viewing information, lsblk command, 105–106
SAN, 131–132
multipathing, 132–133
NFS, 133
Samba, 133
SCSI storage information, viewing, 104–105
software RAID
creating, 114
inspecting, 114
troubleshooting
capacity issues, 633–638
filesystems, 638–643
high latency, 623–627
I/O schedulers, 643–647
IOPS, 631–633
low throughput, 627–631
LVM, 656–659
mount options, 659–662
NVMe, 647–649
RAID, 652–656
SSD, 649–652
stream redirection, 478, 480
/dev/tty, 480–481
standard errors, 479–480
standard input, 478
standard output, 478–479
strings, testing, 491–492
striping, RAID, 34–35
study trackers, 767
study/review plans, final exam, 772
su command, 419

study trackers, 767
study/review plans, final exam, 772
su command, 419
subdirectories

/system directory, 6–7
/user directory, 7–8
(sub)directory files, 23–24
sudo command, 416
sudoedit command, 417–418
suggested review/study plans, final exam, 772
SUID permissions, 438–440
swapping, 717–718, 719
Swarms, Docker, 608–609
switch statements, 495–496
swotting NAT, 610
symbolic links, 61
symbolic mode, chmod command, 433–434
syntax checks, crontabs, 176
sysctl files, 291–293
sysfs, 37
syslog, 304
configuring, 312–315
key file locations, 313–314
locale
contents of, 306
fallback locales, 306
Linux use of, 307–308
locale command, 307
representing, 304
log facilities, 309–310
log flows, 310–312
logger command, 312
severity levels, 310
systemd command, 308–315
system boot, 9
basics, 8
BIOS, 14
boot loaders and files, 14
common commands, 21–22
defined, 8
dracut framework, 10
GRUB, 14–15
GRUB2
changes made, 15–16
command line, 18–19
command names, 16–17
configuring, 20
installing, 17–18
kernel images, 19
initramfs method, 10
initrd method, 9–10
ISO files, 13–14
MBR, 14
NFS, 12–13
PXE, 11–12
stages of, 8
UEFI, 10–11
system crontabs, 176
system time, 712–713
system updates, 270–271
choosing update methods, 271
Linux kernel utilities, 272–273
live kernel patching, 273–275
manual updates, 271–272
no reboot method, 273–275
package managers, 272
reboot methods, 271–273
system upgrades, package installations, 241–242
systemctl command, 165, 678–679
systemd command, 122–123, 159–161
boot process, 164–165
daemons, 160
environment variables, 162
libraries, 160
managing, 165–169
requires, 163–164
runlevels, 163
syslog, 308–315
targets, 163
troubleshooting
Before/After directives, 747–748
ExecStart, 747
ExecStop, 747
mount unit files, 750–752
networking services, 746
Requires directives, 749
target unit files, 752–756
timer unit files, 750
types, 748–749
unit files, 745–756
users, 749
Wants directives, 749
units, 161–162
wants, 163–164
systemd systems, hostnames, 204
T
tags, Git, 552–555
taking notes, final exam, 768
tar command
archiving files, 64–66, 71–72
compressing files, 66–70
tarballs, 25
target unit files, troubleshooting, 752–756
targets, systemd command, 163
tcpdump command, 216–217
tee command, 485
telnet command, troubleshooting firewalls, 676, 677–678
Terraform, 586–588
testing
 combining multiple tests, shell scripting, 493
 files, 490–491
 integers, 492
remote systems
 legality of, 689
 nmap command, 690–693
 purposes of, 689
 s_client module, 693–696
 service discovery scans, 691–692
 simple system scans, 690–691
 vulnerability scans, 692–693
strings, 491–492
text, vim
 changing, 88
 deleting, 88–89
 replacing, 88
third-generation version control, 543–546
three-container node example, Kubernetes (K8) multicontainers, 605
throughput (low)
 causes/symptoms, 627–628
 diagnosing, 628–631
 fixing, 628–631
 overview, 627
time budgets, final exam, 767
time limit, final exam, 765
time zones/dates, configuring, 303–304
timedatectl command, 303–304
timer unit files, troubleshooting, 750
times, CPU, 711
 idle time, 713
 iowait time, 713
 measuring, 711–712
 steal time, 712
 system time, 712–713
user time, 712
timestamps, NTP, 302
time-zone configurations, troubleshooting, 759–760
tips for exam preparation, 767–768
tload command, 710–711
tokens
 hardware tokens, 326
 software tokens, 326–327
top command, 158–159, 624
touch command, 50–51
touching files, 50–51
tr command, 502
traceroute command, 208–210, 673–674, 686
translating files, 502
travel time, final exam, 768
TRIM Helper, 652
trio bits, permissions, 429–432
troubleshooting
 ACL, 733
 apps (applications), 756–758
 attribute issues, 733–734
 bandwidth, 686–687
 capacity issues
 causes/symptoms, 633–634
 diagnosing, 634–638
 fixing, 634–638
 collisions, 680–683
 context issues, 732
 CPU
 high CPU utilization, 707
 high load average, 707–708
 high run queues, 708–711
 process priorities, 713
 runaway processes, 704–705
 zombie processes, 705–706
 dropped packets, 680–683
 errors= option, 661–663
 file access issues, 731–732
 ACL, 733
 attribute issues, 733–734
 blocks, 737–738
 context issues, 732
 group access, 732
 non-policy issue, 734–735
 passwords, 735–736
 permissions, 732–733
troubleshooting

policy issues, 734–735
privilege elevation, 736
quotas, 736–738
filesystems
corruption, 638–642
mismatches, 642–643
firewalls
causes/symptoms, 675–676
diagnosing issues, 676–678
fixing issues, 676–679
group file access issues, 732
high CPU utilization, 707
high latency issues, 670
causes/symptoms, 623
diagnosing, 624–626
fixing, 626–627
overview, 623
high load average, 707–708
high run queues, 708–711
interfaces
collisions, 680–683
dropped packets, 680–683
I/O schedulers, 645–647
IOPS, 631
irrelevancy of, 632–633
overview, 632–633
journaling, 760
link status, 683–684
data link layer, 685
physical layer, 684–685
login issues, 728
case sensitivity, 730
first-time logins, 730
inspecting account details, 728–729
last command, 730
last logins, 730–731
lastlog command, 730–731
low throughput
causes/symptoms, 627–628
diagnosing, 628–631
fixing, 628–631
overview, 627
LVM
causes/symptoms, 657
diagnosing, 657–659
fixing, 657–659
overview, 656–657
memory
exhaustion, 713–714
killing processes, 716
leaks, 716
mount options
causes/symptoms, 659
diagnosing, 660–663
errors= option, 661–663
fixing, 660–663
overview, 659
UUID, 660–661
name resolution, 687–689, 756
networking services, 746
networks
bandwidth, 686–687
configuration issues, 670–674
firewalls, 675–679
interfaces, 679–683
link status, 684–685
name resolution, 687–689
remote system tests, 689–696
non-policy issue, 734–735
NVMe
causes/symptoms, 647–648
diagnosing, 648–649
fixing, 648–649
overview, 647
OOM, 714–716
passwords, 735–736
permissions (files), 732–733
policy issues, 734–735
privilege elevation, 736
quotas, 736–738
RAID, 652
array health, 655–656
causes/symptoms, 653
device health, 654
diagnosing, 653–656
fixing, 653–656
monitoring, 654–656
runaway processes, 704–705
service start times, 760
SSD
cases/symptoms, 649–650
diagnosing, 650
fixing, 650
overview, 649
SSD TRIM, 651–652
storage
capacity issues, 633–638
filesystems, 638–643
high latency, 623–627
I/O schedulers, 643–647
IOPS, 631–633
low throughput, 627–631
LVM, 656–659
mount options, 659–662
NVMe, 647–649
RAID, 652–656
SSD, 649–652

systemd command
Before/After directives, 747–748
ExecStart, 747
ExecStop, 747
mount unit files, 750–752
networking services, 746
Requires directives, 749
target unit files, 752–756
timer unit files, 750
types, 748–749
unit files, 745–756
users, 749
Wants directives, 749
target unit files, 752–756
timer unit files, 750
time-zone configurations, 759–760
unit files, 745
Before/After directives, 747–748
ExecStart, 747
ExecStop, 747
mount unit files, 750–752
networking services, 746
Requires directives, 749
target unit files, 752–756
timer unit files, 750
types, 748–749
users, 749
Wants directives, 749

user access
file access issues, 731–738
login issues, 728–731
UUID, 660–661
zombie processes, 705–706
tune2fs command, 128
tunneling, 414
port forwarding, 415
X11 forwarding, 414–415
X11 tunnels, 411
two-container node examples, Kubernetes (K8) multicontainers, 604–605

U
UEFI, boot process, 10–11
ufw (Uncomplicated Firewalls), 384–385
UID (User ID), 355–358
umask, 340–342
undo operations, vim, 86–87
unit files, troubleshooting, 745
Before/After directives, 747–748
ExecStart, 747
ExecStop, 747
mount unit files, 750–752
networking services, 746
Requires directives, 749
target unit files, 752–756
timer unit files, 750
types, 748–749
users, 749
Wants directives, 749

units
state of, 165
systemd command, 161–162
unloading kernel modules, 296–297
unmounting filesystems, 121–122
unsecure services, disabling/removing, 342
until loops, 498
unused packages, removing, 345–347

updating
kernel, 270–271
choosing update methods, 271
Linux kernel utilities, 272–273
live kernel patching, 273–275
manual updates, 271–272
no reboot method, 273–275
package managers, 272
reboot methods, 271–273
Pearson Test Prep practice exams, 771–772
software configuration files, 283–284
systems, 270–271
choosing update methods, 271
Linux kernel utilities, 272–273
live kernel patching, 273–275
manual updates, 271–272
no reboot method, 273–275
package managers, 272
reboot methods, 271–273
YUM packages, 257–258

UPG (User Private Groups), 359
upgrading
RPM packages, 249–250
systems, package installations, 241–242
user time, 712
useradd command, 361–363
userdel command, 366–367
usermod command, 364–365
users
accounts
adding, 361–363
group accounts, 364
inspecting details, 728–729
removing, 366–367
UID, 355–358
etc/passwd files, 355–361
executing commands as another user, 416
su command, 419
sudo command, 416
sudoedit command, 417–418
GID, 358–360
group accounts, removing, 367
identity query options, 372–374
lockouts, PAM, 329–330
modifying in
 group accounts, 364–365
 user accounts, 364–365
privilege escalation, 418–419
removing accounts, 366–367
requests, FUSE, 31
troubleshooting
 file access issues, 731–738
 login issues, 728–731
 unit files, 749
 UID, 355–358
/usr directory, 7–8
UUID, troubleshooting, 660–661

V
validating RPM packages, 246
valuables (final exam), locking up, 768
variables, shell scripting
 creating, 470–471
displaying, 469–471
environment variables, 469
expanding variables, 472–473
local variables, 469
PATH variables, 471–472
SHELL variables, 472
verifying
 container tools, 526
 RPM package integrity, 248–249
version control
 branches, 556–563
 check ins/outs, 542–544
 clones, 548
 comparing, versions, 560
 DVCS, 543–546
 first generation, 541–542
 ignoring files, 555–556
 merges, 542–543, 544–546, 562–568
 repository hosts, 549
 second generation, 542–543, 544–545
 stages, 548–549
 tags, 552–555
 third generation, 543–546
 vimdiff tool, 567
 whitespace, 560–561
vga command, 21
vgs command, 117
viewing
 ACL, 446
 container images, 528
 container logs, 531–532
crontabs, 175–176
hardware CPU information, 719–720
hardware memory information, 720
I/O schedulers, 645
kernel parameters, 290–291
partition information
 blkid command, 106–108
 fcstat command, 108
 lsblk command, 105–106
processes, 142
 free command, 145
 htop command, 144–145
 ps command, 142–144
 pstree command, 143–144
repositories (configured), 236–238
SCSI storage information, 104–105
vim, 82–83
 changing text, 88
 Command mode, 83–84, 86–87, 89
 deleting text/lines, 88–89
 editing files, 83–84
 force multipliers, 86, 88
 Insert mode, 83–84
 LastLine mode, 83, 87
 message line, 83
navigating files, 85–86
qbang, 87
quitting, 87
replacing text, 88
saving files, 87
searching in, 89–90
undo operations, 86–87
vimdiff tool, 567
vmlinix, 19
vmlinux, 19
vmstat command
 high latency issues, 625–626
 low throughput, 628
vulnerability scans, 692–693
 nc command, 338–340
 nmap command, 333–338

W
w command, 373–374
wants, systemd command, 163–164
Wants directives, 749
wget command, 218–219
while loops, 498
whitelist policies, 177
whitespace, difference execution, 560–561
whois command, 206–207
Wireshark, proper data flow, 214–216

X
X11 forwarding, 414–415
X11 tunnels, 411
xargs command, 485–486
XFS commands, 130–131

Y
YAML (YAML Ain’t Markup Language), 576–577
YUM
 configuration files, 288
 packages, 255
 configuring, 259–262
 DNF, 262
 finding packages to install, 258–259
 installing, 255–257, 258–259
 updating, 257–258
 repository files, 289

Z
zombie processes, 150, 705–706
ZYpp, 262–263
 installing packages, 263–265
 managing repositories, 265–268
 removing packages, 265