
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137843749
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137843749
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137843749

Praise for Learn Enough Tutorials

“I have nothing but fantastic things to say about @LearnEnough courses. I am just
about finished with the #javascript course. I must say, the videos are mandatory because
@mhartl will play the novice and share in the joy of having something you wrote
actually work!”

—Claudia Vizena

“I must say, this Learn Enough series is a masterpiece of education. Thank you for this
incredible work!”

—Michael King

“I want to thank you for the amazing job you have done with the tutorials. They are
likely the best tutorials I have ever read.”

—Pedro Iatzky

This page intentionally left blank

LEARN ENOUGH

TO BEDANGEROUS

JAVASCRIPT

The Learn Enough series teaches you the developer tools, Web technologies,

and programming skills needed to launch your own applications, get a job as a

programmer, and maybe even start a company of your own. Along the way, you’ll

learn technical sophistication, which is the ability to solve technical problems

yourself. And Learn Enough always focuses on the most important parts of each

subject, so you don’t have to learn everything to get started—you just have to

learn enough to be dangerous. The Learn Enough series includes books and

video courses so you get to choose the learning style that works best for you.

Visit informit.com/learn-enough for a complete list of available publications.

Learn Enough Series from
Michael Hartl

twitter.com/informIT

http://informit.com/learn-enough
http://twitter.com/informIT

LEARN ENOUGH

TO BE DANGEROUS

Michael Hartl

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

JAVASCRIPT

Write Programs, Publish Packages, and
Develop Interactive Websites with JavaScript

Cover image: Philipp Tur/Shutterstock
Figures 1.5-1.9, 4.10, 10.5, 11.2-11.4: GitHub, Inc.
Figure 2.7: Replit, Inc.
Figures 2.14, 3.1, 5.9, 6.4: Courtesy of Mike Vanier
Figures 4.4, 4.5, 4.11, 7.6, 8.5: Regex101
Figures 5.4, 10.4: Google
Figure 7.4: Courtesy of David Heinemeier Hansson
Figure 8.2: OpenJS Foundation
Figure 10.2: Amazon Web Services, Inc.
Figures 10.3, 10.6: Wikimedia Foundation, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022933200

Copyright © 2022 Softcover Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-784374-9
ISBN-10: 0-13-784374-7

ScoutAutomatedPrintCode

mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Contents

Preface xiii

About the Author xvii

Chapter 1 Hello, World! 1

1.1 Introduction to JavaScript 5
1.2 JS in a Web Browser 7

1.2.1 Deployment 10
1.2.2 Exercise 13

1.3 JS in a REPL 14
1.3.1 Browser Console 14
1.3.2 Node Prompt 19
1.3.3 Exercise 20

1.4 JS in a File 21
1.4.1 Exercise 22

1.5 JS in a Shell Script 22
1.5.1 Exercise 24

vii

viii Contents

Chapter 2 Strings 25

2.1 String Basics 25
2.1.1 Exercise 27

2.2 Concatenation and Interpolation 27
2.2.1 The Backtick Syntax 31
2.2.2 Exercises 32

2.3 Printing 33
2.3.1 Exercise 34

2.4 Properties, Booleans, and Control Flow 35
2.4.1 Combining and Inverting Booleans 40
2.4.2 Bang Bang 43
2.4.3 Exercises 44

2.5 Methods 44
2.5.1 Exercises 49

2.6 String Iteration 50
2.6.1 Exercises 53

Chapter 3 Arrays 55

3.1 Splitting 55
3.1.1 Exercises 56

3.2 Array Access 56
3.2.1 Exercises 58

3.3 Array Slicing 58
3.3.1 Exercises 59

3.4 More Array Methods 59
3.4.1 Sorting and Reversing 60
3.4.2 Pushing and Popping 61
3.4.3 Undoing a Split 61
3.4.4 Exercises 62

3.5 Array Iteration 62
3.5.1 Exercises 64

Chapter 4 Other Native Objects 65

4.1 Math and Number 65
4.1.1 More Advanced Operations 66

Contents ix

4.1.2 Math to String 67
4.1.3 Exercises 69

4.2 Dates 69
4.2.1 Exercises 73

4.3 Regular Expressions 73
4.3.1 Regex Methods 75
4.3.2 String Methods 77
4.3.3 Exercises 80

4.4 Plain Objects 81
4.4.1 Exercise 83

4.5 Application: Unique Words 83
4.5.1 Map 87
4.5.2 Exercises 89

Chapter 5 Functions 91

5.1 Function Definitions 91
5.1.1 Sorting Numerical Arrays 92
5.1.2 Fat Arrow 94
5.1.3 Exercise 95

5.2 Functions in a File 95
5.2.1 Exercises 103

5.3 Method Chaining 104
5.3.1 Caveat Emoji 108
5.3.2 Exercises 109

5.4 Iteration for Each 110
5.4.1 Exercises 113

Chapter 6 Functional Programming 115

6.1 Map 116
6.1.1 Exercise 122

6.2 Filter 122
6.2.1 Exercise 125

6.3 Reduce 126
6.3.1 Reduce, Example 1 126
6.3.2 Reduce, Example 2 129

x Contents

6.3.3 Functional Programming and TDD 132
6.3.4 Exercises 133

Chapter 7 Objects and Prototypes 135

7.1 Defining Objects 135
7.1.1 Exercise 139

7.2 Prototypes 139
7.2.1 Exercise 145

7.3 Modifying Native Objects 147
7.3.1 Exercises 152

Chapter 8 Testing and Test-Driven Development 153

8.1 Testing Setup 154
8.1.1 Exercise 159

8.2 Initial Test Coverage 159
8.2.1 Pending Tests 162
8.2.2 Exercises 163

8.3 Red 164
8.3.1 Exercises 171

8.4 Green 172
8.4.1 Exercise 177

8.5 Refactor 177
8.5.1 Publishing the NPM Module 184
8.5.2 Exercises 185

Chapter 9 Events and DOM Manipulation 187

9.1 A Working Palindrome Page 187
9.1.1 Exercise 191

9.2 Event Listeners 192
9.2.1 Exercise 200

9.3 Dynamic HTML 202
9.3.1 Exercise 205

9.4 Form Handling 205
9.4.1 Exercises 210

Contents xi

Chapter 10 Shell Scripts with Node.js 215

10.1 Reading from Files 216
10.1.1 Exercise 218

10.2 Reading from URLs 218
10.2.1 Exercise 223

10.3 DOM Manipulation at the Command Line 224
10.3.1 Exercises 233

Chapter 11 Full Sample App: Image Gallery 235

11.1 Prepping the Gallery 235
11.1.1 Prepping the JavaScript 239
11.1.2 Exercise 241

11.2 Changing the Gallery Image 242
11.2.1 Exercises 246

11.3 Setting an Image as Current 250
11.3.1 Exercise 252

11.4 Changing the Image Info 252
11.4.1 Deploying 256
11.4.2 Exercise 257

11.5 Conclusion 259
11.5.1 Learning More JavaScript 260
11.5.2 Learning a New Language 261

Index 263

This page intentionally left blank

Preface

Learn Enough JavaScript to Be Dangerous is designed to get you started writing practi-
cal and modern JavaScript programs as quickly as possible, using the latest JavaScript
technologies and with a focus on the real tools used every day by software developers.
JavaScript is a big language with correspondingly enormous tutorials. The good news,
though, is that you don’t have to learn everything to get started . . . you just have to
learn enough to be dangerous.

Unlike most JavaScript tutorials, Learn Enough JavaScript to Be Dangerous treats
JavaScript as a general-purpose programming language right from the start, so our exam-
ples won’t be confined to the browser. In addition to interactive HTML websites,
you’ll learn how to write command-line programs and self-contained JavaScript pack-
ages as well. We’ll even have a chance to explore important software development
practices like version control, functional programming, and test-driven development.
The result is a practical narrative introduction to JavaScript—a perfect complement
both to in-browser coding tutorials and to the voluminous but hard-to-navigate
JavaScript reference materials on the Web.

In addition to teaching you specific skills, Learn Enough JavaScript to Be Dangerous
also helps you develop technical sophistication—the seemingly magical ability to solve
practically any technical problem. Technical sophistication includes concrete skills like
version control and HTML, as well as fuzzier skills like Googling the error message
and knowing when to just reboot the darn thing. Throughout this book, we’ll have
abundant opportunities to develop technical sophistication in the context of real-world
examples.

xiii

xiv Preface

Chapter by Chapter
Chapter 1 begins at the beginning with a series of simple “hello, world” programs
using several different techniques, including an “alert” in the browser and a command-
line shell script using Node.js, a fast and widely used execution environment for
JavaScript programs. We’ll even deploy a (very simple) dynamic JavaScript application
to the live Web.

The next three chapters cover some of the most important JavaScript data struc-
tures. Chapter 2 covers strings, Chapter 3 covers arrays, and Chapter 4 covers other
native objects like numbers, dates, and regular expressions. Taken together, these
chapters constitute a gentle introduction to object-oriented programming with JavaScript.

In Chapter 5, you’ll learn the basics of functions, an essential subject for virtually
every programming language. Chapter 6 then applies this knowledge to an elegant
and powerful style of coding known as functional programming.

Chapter 7 shows how to make custom JavaScript objects using the example of
palindromes (which read the same forward and backward). We’ll start off with the sim-
plest palindrome definition possible, and then we’ll extend it significantly in Chapter 8
using a powerful programming technique known as test-driven development. In the pro-
cess, you’ll learn how to create and publish a self-contained JavaScript software package
called an NPM module.

Chapter 9 builds on the palindrome module to make a live website for detecting
palindromes. In the process, we’ll learn about events, DOM manipulation, alerts, prompts,
and an example of an HTML form.

Chapter 10 covers the much-neglected topic of shell scripts using JavaScript. You’ll
learn how to read text both from local files and from live URLs. You’ll also learn how
to extract information from a regular text file as if it were an HTML web page.

Chapter 11 completes the tutorial by showing you how to create a real, industrial-
grade website using HTML, CSS, and JavaScript. The result is an interactive image
gallery that dynamically changes images, CSS classes, and page text in response to user
clicks. We’ll conclude by deploying the full sample website to the live Web.

Additional Features
In addition to the main tutorial material, Learn Enough JavaScript to Be Dangerous
includes a large number of exercises to help you test your understanding and to extend
the material in the main text. The exercises include frequent hints and often include
the expected answers, with community solutions available by separate subscription at
www.learnenough.com.

http://www.learnenough.com

Preface xv

Final Thoughts
Learn Enough JavaScript to Be Dangerous gives you a practical introduction to the
fundamentals of JavaScript, both in its original niche of the web browser and as a
general-purpose programming language. After learning the techniques covered in
this tutorial, and especially after developing your technical sophistication, you’ll know
everything you need to write shell scripts, publish Node packages, and design and
deploy interactive websites with JavaScript. You’ll also be ready for a huge variety of
other resources, including books, blog posts, and online documentation. A particularly
good next step is learning how to make dynamic database-backed web applications,
as covered in Learn Enough Ruby to Be Dangerous and the Ruby on RailsTM Tutorial.

Learn Enough Scholarships
Learn Enough is committed to making a technical education available to as wide a
variety of people as possible. As part of this commitment, in 2016 we created the Learn
Enough Scholarship program (https://www.learnenough.com/scholarship). Scholar-
ship recipients get free or deeply discounted access to the Learn Enough All Access
subscription, which includes all of the Learn Enough online book content, embedded
videos, exercises, and community exercise answers.

As noted in a 2019 RailsConf Lightning Talk (https://youtu.be/AI5wmnzzBqc?
t=1076), the Learn Enough Scholarship application process is incredibly simple: just
fill out a confidential text area telling us a little about your situation. The scholarship
criteria are generous and flexible—we understand that there are an enormous number
of reasons for wanting a scholarship, from being a student, to being between jobs, to
living in a country with an unfavorable exchange rate against the U.S. dollar. Chances
are that, if you feel like you’ve got a good reason, we’ll think so, too.

So far, Learn Enough has awarded more than 2,500 scholarships to aspiring devel-
opers around the country and around the world. To apply, visit the Learn Enough
Scholarship page at www.learnenough.com/scholarship. Maybe the next scholarship
recipient could be you!

Register your copy of Learn Enough JavaScript to Be Dangerous on the InformIT
site for convenient access to updates and/or corrections as they become available.
To start the registration process, go to informit.com/register and log in or create
an account. Enter the product ISBN (9780137843749) and click Submit. Look on
the Registered Products tab for an Access Bonus Content link next to this product,
and follow that link to access any available bonus materials. If you would like to be
notified of exclusive offers on new editions and updates, please check the box to
receive email from us.

https://www.learnenough.com/scholarship
https://youtu.be/AI5wmnzzBqc?t=1076
https://youtu.be/AI5wmnzzBqc?t=1076
http://www.learnenough.com/scholarship
http://informit.com/register

This page intentionally left blank

About the Author

Michael Hartl (www.michaelhartl.com) is the creator of the Ruby on RailsTM Tutorial
(www.railstutorial.org), one of the leading introductions to web development, and
is cofounder and principal author at Learn Enough (www.learnenough.com). Previ-
ously, he was a physics instructor at the California Institute of Technology (Caltech),
where he received a Lifetime Achievement Award for Excellence in Teaching. He is a
graduate of Harvard College, has a Ph.D. in Physics from Caltech, and is an alumnus
of the Y Combinator entrepreneur program.

xvii

http://www.michaelhartl.com
http://www.railstutorial.org
http://www.learnenough.com

This page intentionally left blank

CHAPTER 11
Full Sample App: Image
Gallery

As a final application of our newfound JavaScript powers, in this last chapter we’ll build
on the sample application developed in Learn Enough CSS & Layout to Be Dangerous
(https://www.learnenough.com/css-and-layout). (We’ll be cloning the initial sample
repository, so you’ll be able to complete this chapter even if you didn’t follow the CSS
tutorial.) In particular, we’ll follow a time-honored tradition in JavaScript tutorials
and create an image gallery, which will allow us to display and swap custom images—
in our case, a fancy three-column layout (https://www.learnenough.com/css-and-
layout-tutorial/flex-intro#sec-pages-3col).

After prepping the gallery (Section 11.1), we’ll learn how to change the gallery
image (Section 11.2), set an image as “current” (Section 11.3), and change the image
title and description (Section 11.4). Because our starting point is the professional-
grade website developed in Learn Enough CSS & Layout to Be Dangerous, the result is
unusually polished for a JavaScript tutorial sample gallery (Figure 11.1).

11.1 Prepping the Gallery
To get started with our image gallery, you’ll need to get a copy of the full starting
application (https://github.com/learnenough/le_js_full) for the site. The first step is
to make a personal copy of the app, which you can do using the fork capability at
GitHub (Figure 11.2).

The next step depends on whether or not you currently have a GitHub Pages
site at <username>.github.io. If you don’t have such a repository, you can rename

235

https://www.learnenough.com/css-and-layout
https://www.atlassian.com/git/tutorials/setting-up-a-repository/git-clone
https://www.learnenough.com/r/css_and_layout/flex-intro/pages-3col#sec-pages-3col
https://www.learnenough.com/css-and-layout
https://github.com/learnenough/le_js_full
https://github.com/learnenough/le_js_full
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout-tutorial/flex-intro#sec-pages-3col
https://www.learnenough.com/css-and-layout-tutorial/flex-intro#sec-pages-3col
https://github.com/learnenough/le_js_full
http://siteat<username>.github.io

236 Chapter 11: Full Sample App: Image Gallery

Figure 11.1: This is the gallery we’re looking for.

your app accordingly (Figure 11.3), and it will automatically be available at the URL
<username>.github.io.

Once you’ve renamed the repo, you can clone the gallery app to your local system
using the clone URL from GitHub (Figure 11.4):

$ git clone <clone URL> <username>.github.io

If you already have a repository at <username>.github.io from following Learn
Enough CSS & Layout to Be Dangerous, you should clone the gallery app (without
renaming it) to the default directory by omitting the second argument to git clone:

$ git clone <clone URL> # Command if you already have <username>.github.io

This will create a local repository called le_js_full, which you can use as a reference
for copying over the required files. In particular, you’ll need the gallery index.html
and the large and small images:

https://youtu.be/GO_xfR64qSk
https://www.atlassian.com/git/tutorials/setting-up-a-repository/git-clone
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout

11.1 Prepping the Gallery 237

Figure 11.2: Forking the starting application at GitHub.

Run these commands only if you already have <username>.github.io
from following Learn Enough CSS & Layout to Be Dangerous.
$ cd le_js_full/
$ cp gallery/index.html /path/to/repo/<username>.github.io/gallery/
$ cp -r images/* /path/to/repo/<username>.github.io/images/

(If you already have a repo at <username>.github.io that isn’t the result of following
Learn Enough CSS & Layout to Be Dangerous, I’ll assume you have the requisite technical
sophistication to figure something out on your own.)

In either case, once the app is put together you can run it using the Jekyll
static site builder. The Jekyll setup instructions (https://www.learnenough.com/css-
and-layout-tutorial/struct-layout#sec-jekyll) in Learn Enough CSS & Layout to Be
Dangerous explain how to install Jekyll on your system in case it isn’t installed already.
The short version is that you first need to install Bundler:

https://github.com/learnenough/le_js_full
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/r/css_and_layout/struct-layout/jekyll#sec-jekyll
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout-tutorial/struct-layout#sec-jekyll
https://www.learnenough.com/css-and-layout-tutorial/struct-layout#sec-jekyll

238 Chapter 11: Full Sample App: Image Gallery

Figure 11.3: Renaming to the default GitHub Pages name.

$ gem install bundler -v 2.2.17

Then use the bundle command to install the jekyll gem listed in the Gemfile
included with the repository:

$ bundle _2.2.17_ install

Once Jekyll is installed, you can serve the sample website by using Bundler to execute
the correct version of the jekyll program:

$ bundle exec jekyll serve

At this point, the app will be running on localhost:4000, and should look something
like Figure 11.5.

http://localhost:4000

11.1 Prepping the Gallery 239

Figure 11.4: Getting the clone URL at GitHub.

11.1.1 Prepping the JavaScript

As a final bit of prep, we’ll add a stub for the main gallery function, activateGallery,
which we’ll be filling in throughout the rest of this chapter. Because we’ll be doing
everything in plain JavaScript, there will be no need to include any Node modules,
run browserify, etc. In fact, all we’ll need to do is write a single function.

Our first step is to make a directory and JavaScript file (remember, this is in the
app directory, not js_tutorial):

$ mkdir js
$ touch js/gallery.js

240 Chapter 11: Full Sample App: Image Gallery

Figure 11.5: Our initial sample app.

Just to get started, we’ll add an initial alert to gallery.js (Listing 11.1).

Listing 11.1: A stub gallery file.
js/gallery.js

function activateGallery() {
alert("Hello from the gallery file!");

}

In the head of the file, we’ll include the gallery JavaScript using the src attribute
(Section 5.2), and add an event listener (Section 9.2) to run the gallery activation
function automatically after the DOM is loaded (Listing 9.9). The result appears in
Listing 11.2.

11.1 Prepping the Gallery 241

Listing 11.2: Including the gallery JavaScript.
_includes/head.html

<head>
.
.
.
<link rel="stylesheet" href="/css/main.css">

<script src="/js/gallery.js"></script>
<script>

document.addEventListener("DOMContentLoaded", function() {
activateGallery();

});
</script>

</head>

Now visiting the local gallery page confirms that the JavaScript was loaded
correctly (Figure 11.6).

11.1.2 Exercise

1. Deploy your stub gallery to GitHub Pages and confirm that it works in produc-
tion.

Figure 11.6: Hello from the gallery!

http://localhost:4000/gallery/
http://_includes/head.html

242 Chapter 11: Full Sample App: Image Gallery

Figure 11.7: The initial gallery.

11.2 Changing the Gallery Image
Let’s take a look at the current state of the application. The gallery page has three
columns: one with smaller “thumbnail” images, one with the main image, and one
with the description. As seen in Figure 11.7, in the default state the “current image”
indicator in the thumbnails doesn’t match the main image, and the description doesn’t
match either.

We can see the origins of this mismatch by taking a look at the current HTML
structure of the gallery, which appears as in Listing 11.3.

Listing 11.3: The gallery HTML.
gallery/index.html

1 ---
2 layout: default
3 title: Gallery for Learn Enough JavaScript to Be Dangerous
4 ---
5
6 <div class="gallery col-three">

https://en.wikipedia.org/wiki/Thumbnail
http://gallery/index.html

11.2 Changing the Gallery Image 243

7 <div class="col col-nav gallery-thumbs" id="gallery-thumbs">
8 <div class="current">

9 <img src="/images/small/beach.jpg" alt="Venice Beach"
10 data-large-version="/images/large/beach.jpg"
11 data-title="Venice Beach"
12 data-description="An overhead shot of Venice Beach, California.">
13 </div>
14 .
15 .
16 .
17 <div>
18 <img src="/images/small/turtle.jpg" alt="turtle"
19 data-large-version="/images/large/turtle.jpg"
20 data-title="Sea Turtle"
21 data-description="A friendly sea turtle.">
22 </div>
23 </div>
24 <div class="col col-content">
25 <div class="gallery-photo" id="gallery-photo">
26
27 </div>
28 </div>
29 <div class="col col-aside gallery-info" id="gallery-info">
30 <h3 class="title">Pacific Sunset</h3>
31 <p class="description">A sunset over the Pacific Ocean.</p>

32 </div>
33 </div>

From Listing 11.3, we see that the current image is indicated with a CSS class
current (Line 8), the main image is in an HTML div with CSS id gallery-photo
(Line 25), and the title and description are in a div with CSS id gallery-info
(Line 29). Our task is to dynamically update this HTML (Section 9.3) so that all
three columns match.

Our first task is the biggest one in terms of the user interface, namely, swapping
out the main image when the user clicks on a thumbnail. Our strategy is to put an
event listener (Section 9.2) on each image, and then change the source (src) of the
main display image on click.

To do this, we’ll first create a variable with a list of all the images.1 Inspecting the
HTML source in Listing 11.3, we see that the thumbnail images are all img tags inside

1. As noted briefly in Section 10.3, technically the result of querySelectorAll is a “NodeList” object, not
an array, but we can treat it as an array for the purposes of iteration. Specifically, we can traverse its elements
using the forEach method.

244 Chapter 11: Full Sample App: Image Gallery

a divwith CSS id gallery-thumbs. As a result, we can select all the thumbnails using
method chaining (Section 5.3) by combining querySelector (Section 9.2) to select
the thumbnail div and querySelectorAll (Section 10.3) to select all the images:

let thumbnails = document.querySelector("#gallery-thumbs").
querySelectorAll("img");

Note that JavaScript allows us to break method calls across lines in order to make the
structure clearer and avoid breaking the 80-character limit (Box 2.3).

By iterating through the collection of thumbnails, we can put an event listener
on each one using code like this:

thumbnails.forEach(function(thumbnail) {
thumbnail.addEventListener("click", function() {
// code to set clicked image as main image

});
});

This arranges to listen for the same “click” event we saw in Listing 9.13.
As indicated in the JavaScript comment in the middle of the code sample, the

body of the listener should set the clicked image as the main image. The way we’ll do
this is to set the src attribute of the current display image to the “large” version of
the image clicked. Referring to Listing 11.3, we see that the main image is inside a
div with CSS id gallery-photo, so we can select it by chaining querySelector:

let mainImage = document.querySelector("#gallery-photo").
querySelector("img");

In fact, querySelector is smart enough to let us combine this into a single command:

let mainImage = document.querySelector("#gallery-photo img");

It’s worth noting that there’s an equivalent alternate notation that uses an angle
bracket > to emphasize the nesting relationship between the elements (in this case,
an img element nested inside an element with CSS id gallery-photo):

let mainImage = document.querySelector("#gallery-photo > img");

We’ll use this alternate notation with querySelectorAll in Section 11.2.1.

11.2 Changing the Gallery Image 245

Once we have the main image, we can use the setAttribute method (javascript
dom set attribute src) to change its src attribute:

mainImage.setAttribute("src", newImageSrc);

If you’ve been following along closely, you’re now aware that everything we need
has been created except for newImageSrc, the source of the new image. Happily, the
sample app has already arranged to encode the necessary path in the image tag itself.
Suppose for the sake of argument that we clicked on the Pacific sunset image, whose
HTML looks like this:

<div>
<img src="/images/small/sunset.jpg" alt="sunset"

data-large-version="/images/large/sunset.jpg"
data-title="Pacific Sunset"
data-description="A sunset over the Pacific Ocean.">

</div>

Encoding data in a tag like this is an essential aspect of unobtrusive JavaScript, which
involves never putting JavaScript in the body of the HTML itself. When using these
data attributes on HTML tags, the browser automatically creates a special dataset
attribute, whose values correspond to the HTML source as follows:

data-large-version -> thumbnail.dataset.largeVersion
data-title -> thumbnail.dataset.title
data-description -> thumbnail.dataset.description

In general, the data tag data-foo-bar-baz on HTML element object corre-
sponds to the variable object.dataset.fooBarBaz, where the final attribute is in
CamelCase (Figure 2.3).

We now have everything we need to replace the main image with the clicked
image. If you’d like to give it a go on your own, it makes for an excellent exercise.
As usual, use the debugging console (Box 5.1) if you run into trouble. The answer
appears in Listing 11.4.

Listing 11.4: Setting the main gallery image.
js/gallery.js

// Activates the image gallery.
// The main task is to attach an event listener to each image in the gallery
// and respond appropriately on click.

https://www.google.com/search?q=javascript+dom+set+attribute+src
https://www.google.com/search?q=javascript+dom+set+attribute+src
https://en.wikipedia.org/wiki/Unobtrusive_JavaScript

246 Chapter 11: Full Sample App: Image Gallery

function activateGallery() {
let thumbnails = document.querySelector("#gallery-thumbs").

querySelectorAll("img");
let mainImage = document.querySelector("#gallery-photo img");

thumbnails.forEach(function(thumbnail) {
thumbnail.addEventListener("click", function() {

// Set clicked image as main image.
let newImageSrc = thumbnail.dataset.largeVersion;
mainImage.setAttribute("src", newImageSrc);

});
});

}

In addition to changing the src attribute, we should also change the alt attribute of
the swapped-in image. Adding this detail is left as an exercise (Section 11.2.1).

Scrolling down and clicking on the Pacific sunset image produces the expected
result (Figure 11.8). The agreement with the third-column description, however, is
a coincidence, which can be seen by clicking on any other image (Figure 11.9). In
addition, the orange “current image” indicator matches the main image in the gallery
only if we happen to click on the corresponding thumbnail (Figure 11.10).

11.2.1 Exercises

1. The code in Listing 11.4 swaps in the src of the new large image, but unfortu-
nately the alt attribute is still the default one from Listing 11.3 (Figure 11.11).
Remedy this minor blemish in Listing 11.5 by replacing FILL_IN with the
proper value. Hint: The value of the image src for thumbnail is given by
thumbnail.src, so how do you suppose you get the value of thumbnail’s alt
attribute?

2. As hinted in the main text, it’s possible to change the thumbnails definition in
Listing 11.4 to eliminate method chaining. We begin by noting that the gallery
thumbnails are img tags inside div tags inside an element with CSS id gallery-
thumbs; conveniently, we can indicate “inside” using the right angle bracket >. By
replacing ??? in Listing 11.6 with the appropriate tags, show that we can condense
the definition of thumbnails down to a single line. Note: I generally recom-
mend choosing one convention and sticking with it, but for now we’ll leave the
arguments of querySelectorAll and querySelector inconsistent (one with
angle brackets, one without) to emphasize that either notation works.

11.2 Changing the Gallery Image 247

Figure 11.8: A Pacific sunset.

Listing 11.5: Updating the image alt attribute.
js/gallery.js

// Activates the image gallery.
// The main task is to attach an event listener to each image in the gallery
// and respond appropriately on click.
function activateGallery() {

let thumbnails = document.querySelector("#gallery-thumbs").
querySelectorAll("img");

let mainImage = document.querySelector("#gallery-photo img");

thumbnails.forEach(function(thumbnail) {
thumbnail.addEventListener("click", function() {
// Set clicked image as main image.
let newImageSrc = thumbnail.dataset.largeVersion;
mainImage.setAttribute("src", newImageSrc);
mainImage.setAttribute("alt", FILL_IN);

});
});

}

248 Chapter 11: Full Sample App: Image Gallery

Figure 11.9: The image/description match in Figure 11.8 was a coincidence.

Figure 11.10: The “current image” match here is also a coincidence.

11.2 Changing the Gallery Image 249

Figure 11.11: The alt attribute doesn’t match the image src.

Listing 11.6: Condensing thumbnails into a single line.
js/gallery.js

// Activates the image gallery.
// The main task is to attach an event listener to each image in the gallery
// and respond appropriately on click.
function activateGallery() {

let thumbnails = document.querySelectorAll("#gallery-thumbs > ??? > ???");

let mainImage = document.querySelector("#gallery-photo img");
.
.
.

}

250 Chapter 11: Full Sample App: Image Gallery

11.3 Setting an Image as Current
Section 11.2 represents a major accomplishment: The main task of a photo gallery—
namely, swapping the main display image based on a user’s click—is done. All we need
to do now is change the “current image” indicator in the first column (this section)
and update the image info in the third column (Section 11.4). Both tasks involve a
mix of new and old techniques.

As seen in Listing 11.3, the current image is indicated in the HTML source using
a CSS class called current:

<div class="current">

<img src="/images/small/beach.jpg" alt="Venice Beach"
data-large-version="/images/large/beach.jpg"
data-title="Venice Beach"
data-description="An overhead shot of Venice Beach, California.">

</div>

This arranges for an orange box shadow due to a line in main.css:

.

.

.

.gallery-thumbs .current img {

box-shadow: 0 0 0 5px #ed6e2f;

opacity: 1;

}
.
.
.

Our basic strategy is to add code to the listener in Listing 11.4 that arranges to
remove the current image indicator from the thumbnail it’s on and move it to the
thumbnail that’s been clicked. This is a little trickier than it looks because the class
isn’t on the image—it’s on the div surrounding the image. Luckily, JavaScript lets us
navigate up and down the DOM with ease, so that we can easily access the DOM
element one level up in the tree (Figure 9.6)—the so-called parent node.

In short, our algorithm for changing the current image class is as follows:

1. Find the current thumbnail and remove the current class.

2. Add the current class to the parent of the clicked image.

11.3 Setting an Image as Current 251

Because there’s only one element on the page with class current, we can select
it using querySelector:

document.querySelector(".current");

But how can we remove the class? Ah: javascript dom remove class. This leads us to
the classList method and its attendant remove method:

document.querySelector(".current").classList.remove("current");

There’s a lot of method chaining here, but its meaning is clear enough.
Happily, once we know how to find the parent node of an element (javascript

dom parent node), we can use the corresponding classList.add method (javascript
dom add class) to add the desired class:

thumbnail.parentNode.classList.add("current");

Putting these together means we’re already done! The result appears in Listing 11.7
(which includes the result of solving the exercise in Section 11.2.1).

Listing 11.7: Changing the current class.
js/gallery.js

// Activates the image gallery.
// The main task is to attach an event listener to each image in the gallery
// and respond appropriately on click.
function activateGallery() {

let thumbnails = document.querySelectorAll("#gallery-thumbs > div > img");
let mainImage = document.querySelector("#gallery-photo img");

thumbnails.forEach(function(thumbnail) {
thumbnail.addEventListener("click", function() {
// Set clicked image as display image.
let newImageSrc = thumbnail.dataset.largeVersion;
mainImage.setAttribute("src", newImageSrc);

// Change which image is current.
document.querySelector(".current").classList.remove("current");
thumbnail.parentNode.classList.add("current");

});
});

}

https://www.google.com/search?q=javascript+dom+remove+class
https://www.google.com/search?q=javascript+dom+parent+node
https://www.google.com/search?q=javascript+dom+parent+node
https://www.google.com/search?q=javascript+dom+add+class
https://www.google.com/search?q=javascript+dom+add+class

252 Chapter 11: Full Sample App: Image Gallery

Figure 11.12: Mammoth Mountain.

As a result of the code in Listing 11.7, clicking on a thumbnail automatically
updates the current image indicator, whether the image is Mammoth Mountain in the
Sierras (Figure 11.12) or The Huntington in San Marino, California (Figure 11.13).

11.3.1 Exercise

1. There’s a little duplication in Listing 11.7; in particular, it repeats the string literal
"current". Eliminate this duplication by factoring the string into a variable called
currentClass.

11.4 Changing the Image Info
Our final task is to update the image information (title and description) in the third
column of our gallery. Doing this doesn’t actually require anything we haven’t seen
before—we just have to put things we already know together in a slightly new way,
making this an excellent way to end the tutorial.

https://en.wikipedia.org/wiki/Mammoth_Mountain
https://en.wikipedia.org/wiki/Mammoth_Mountain
https://en.wikipedia.org/wiki/Sierra_Nevada_(U.S.)
http://huntington.org/
https://en.wikipedia.org/wiki/San_Marino,_California

11.4 Changing the Image Info 253

Figure 11.13: The Chinese Garden at The Huntington.

The sequence we’ll follow is simple:

1. Find the DOM elements for the image title and description.

2. Replace the contents with the corresponding data from the clicked image.

To find the necessary DOM elements, we first observe that they are both inside
the div with CSS id gallery-info:

<div class="col col-aside gallery-info" id="gallery-info">

<h3 class="title">Pacific Sunset</h3>
<p class="description">A sunset over the Pacific Ocean.</p>

</div>

Inside that div, both are the first (and only) elements with the title and descrip-
tion classes, respectively, which means we can select them as follows:

let galleryInfo = document.querySelector("#gallery-info");
let title = galleryInfo.querySelector(".title");
let description = galleryInfo.querySelector(".description");

http://www.huntington.org/chinesegarden/
http://huntington.org/

254 Chapter 11: Full Sample App: Image Gallery

Note that I’ve added extra spaces to line up the equals signs, which is a nice (though
not strictly necessary) code formatting practice (Box 2.3).

We can get the corresponding values for the clicked image using the dataset
variable introduced in Section 11.2:

thumbnail.dataset.title

for the title and

thumbnail.dataset.description

for the description.
The final piece of the puzzle is the innerHTML property we first saw in Section 9.3,

which lets us directly update the inner HTML of a DOM element:

title.innerHTML = thumbnail.dataset.title;
description.innerHTML = thumbnail.dataset.description;

Putting everything together gives the final version of the activateGallery
function, shown in Listing 11.8.

Listing 11.8: Updating the image title and description on click.
js/gallery.js

// Activates the image gallery.
// The main task is to attach an event listener to each image in the gallery
// and respond appropriately on click.
function activateGallery() {
let thumbnails = document.querySelectorAll("#gallery-thumbs > div > img");
let mainImage = document.querySelector("#gallery-photo img");
// Image info to be updated
let galleryInfo = document.querySelector("#gallery-info");
let title = galleryInfo.querySelector(".title");
let description = galleryInfo.querySelector(".description");

thumbnails.forEach(function(thumbnail) {
thumbnail.addEventListener("click", function() {

// Set clicked image as display image.
let newImageSrc = thumbnail.dataset.largeVersion;
mainImage.setAttribute("src", newImageSrc);

11.4 Changing the Image Info 255

// Change which image is current.
document.querySelector(".current").classList.remove("current");
thumbnail.parentNode.classList.add("current");

// Update image info.
title.innerHTML = thumbnail.dataset.title;
description.innerHTML = thumbnail.dataset.description;

});
});

}

Our final change involves syncing up the three columns for new visitors, so that
the first column (current image indicator), second column (main image), and third
column (image information) all match. This just involves updating the gallery index
HTML as in Listing 11.9.

Listing 11.9: All three columns synced.
gallery/index.html

layout: default
title: Gallery for Learn Enough JavaScript to Be Dangerous

<div class="gallery col-three">
<div class="col col-nav gallery-thumbs" id="gallery-thumbs">

<div class="current">
<img src="/images/small/beach.jpg" alt="Venice Beach"

data-large-version="/images/large/beach.jpg"
data-title="Venice Beach"
data-description="An overhead shot of Venice Beach, California.">

</div>
.
.
.

</div>
<div class="col col-content">

<div class="gallery-photo" id="gallery-photo">

</div>
</div>
<div class="col col-aside gallery-info" id="gallery-info">

<h3 class="title">Venice Beach</h3>
<p class="description">An overhead shot of Venice Beach, California.</p>

</div>
</div>

http://gallery/index.html

256 Chapter 11: Full Sample App: Image Gallery

Figure 11.14: An overhead shot of Venice Beach, California.

Now all three of our columns agree, whether it’s the Venice Beach pic that greets
new visitors (Figure 11.14), a friendly sea turtle (Figure 11.15), Walt Disney Con-
cert Hall in downtown Los Angeles (Figure 11.16), or the Flavian Amphitheater
(Colosseum) in Rome (Figure 11.17).

11.4.1 Deploying

Because all the necessary files—including all the JavaScript—are completely local to
our project (unlike some of the NPM modules in previous chapters), we can deploy
our app to GitHub Pages with a simple git push:

$ git add -A
$ git commit -m "Finish the JavaScript gallery"
$ git push

Visiting the gallery at <username>.github.io and clicking on an image confirms
it: We’ve deployed our dynamic JavaScript application to the live Web (Figure 11.18)!

https://en.wikipedia.org/wiki/Walt_Disney_Concert_Hall
https://en.wikipedia.org/wiki/Walt_Disney_Concert_Hall
https://en.wikipedia.org/wiki/Colosseum
https://en.wikipedia.org/wiki/Colosseum

11.4 Changing the Image Info 257

Figure 11.15: A friendly sea turtle.

(To learn how to host a GitHub Pages site using a custom domain instead of a github.io
subdomain, see the free tutorial Learn Enough Custom Domains to Be Dangerous
(https://www.learnenough.com/custom-domains).)

11.4.2 Exercise

1. When clicking on a new thumbnail image on the live site (Figure 11.18), you
might notice a slight delay before the main image appears in the center. This is
because, unlike the thumbnails, the large versions haven’t been downloaded yet.

It’s a common practice to prevent this small but annoying delay by
preloading the images in the background to put them into the browser
cache—a task we can accomplish with JavaScript. The trick is to create a new
Image object (javascript image object) and assign it the src of the large image
corresponding to each thumbnail. This forces the browser to download all the
large images before the page is even loaded.

By filling in the code in Listing 11.10 and deploying the result, confirm that
image preloading works, and that the resulting image swapping is snappy and

https://www.learnenough.com/custom-domains
https://www.google.com/search?q=javascript+image+object
http://TolearnhowtohostaGitHubPagessiteusingacustomdomaininsteadofagithub.io
https://www.learnenough.com/custom-domains

258 Chapter 11: Full Sample App: Image Gallery

Figure 11.16: Walt Disney Concert Hall in downtown Los Angeles.

responsive. (Note that we’ve hoisted newImageSrc out of the listener, which is a
big hint about what to use to replace FILL_IN.)

Listing 11.10: Preloading large versions.
js/gallery.js

// Activates the image gallery.
// The main task is to attach an event listener to each image in the gallery
// and respond appropriately on click.
function activateGallery() {
let thumbnails = document.querySelectorAll("#gallery-thumbs > div > img");
let mainImage = document.querySelector("#gallery-photo img");

thumbnails.forEach(function(thumbnail) {
// Preload large images.
let newImageSrc = thumbnail.dataset.largeVersion;
let largeVersion = new Image();
largeVersion.src = FILL_IN;
thumbnail.addEventListener("click", function() {

// Set clicked image as display image.

11.5 Conclusion 259

mainImage.setAttribute("src", newImageSrc);

// Change which image is current.
document.querySelector(".current").classList.remove("current");
thumbnail.parentNode.classList.add("current");

// Update image info.
let galleryInfo = document.querySelector("#gallery-info");
let title = galleryInfo.querySelector(".title");
let description = galleryInfo.querySelector(".description");

title.innerHTML = thumbnail.dataset.title;
description.innerHTML = thumbnail.dataset.description;

});
});

}

11.5 Conclusion
Congratulations! You now know enough JavaScript to be dangerous.

Figure 11.17: The Flavian Amphitheater (Colosseum) in Rome.

260 Chapter 11: Full Sample App: Image Gallery

Figure 11.18: Our JavaScript gallery app on the live Web.

With the skills developed in this tutorial, you now have the preparation to go in
multiple different directions. There are two in particular that I recommend. These
are (1) learning more JavaScript and (2) making sure JavaScript isn’t the only language
you know.

11.5.1 Learning More JavaScript

There are approximately ∞ resources for learning more about JavaScript. Now that
you know the basics, one good thing to focus on is expanding your command of the
language syntax, as well as learning more advanced techniques (such as async/await and
promises) and continuing to develop real applications. Here are a few resources that I’ve
used or that have come highly recommended:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developers.google.com/web/fundamentals/primers/promises

11.5 Conclusion 261

• Codecademy JavaScript (https://www.codecademy.com/learn/introduction-to-
javascript): A guided in-browser introduction to JavaScript that’s highly comple-
mentary to the approach in Learn Enough JavaScript to Be Dangerous.

• Treehouse JavaScript (https://teamtreehouse.com/library/topic:javascript): Well-
regarded interactive tutorials.

• Wes Bos JavaScript (https://javascript30.com/): A free course on vanilla Java-
Script. Wes also offers a large number of premium courses (https://wesbos.com
/courses), many of them focused on JavaScript topics like ES6 and Node.

• Learn JavaScript Essentials (https://medium.com/javascript-scene/learn-
javascript-b631a4af11f2#.lsb25e2f5): An excellent list of resources compiled by
Eric Elliott (https://medium.com/@_ericelliott), including links to additional
courses and books.

11.5.2 Learning a New Language

Ask experienced devs if it’s important to know more than one programming lan-
guage, and the answers will typically range from “yes!” to “extremely, indubitably
yes!” Indeed, there are many reasons not to become a monoglot.

When it comes to building software for the greatest platform ever—the World
Wide Web—the language I recommend (other than JavaScript) is Ruby, a powerful
language designed for “programmer happiness”. In particular, Ruby is the language
of two of the most popular frameworks for making web applications, Sinatra (used at
companies like Disney and Stripe) and Rails (used at companies like GitHub, Hulu,
and Airbnb).

Though suitable for bigger applications, Sinatra is the simpler frame-
work, and is included as part of Learn Enough Ruby to Be Dangerous
(https://www.learnenough.com/ruby). Rails is my preferred framework for making
database-backed web applications, and is thoroughly covered by the Ruby on Rails
Tutorial (https://railstutorial.org/book). Moreover, both can be used with JavaScript,
with Rails/JavaScript integration being especially popular.

As a result, these are the recommended continuations of the Learn Enough
sequence:

• Learn Enough Ruby to Be Dangerous

• Ruby on Rails Tutorial

https://www.codecademy.com/learn/introduction-to-javascript
https://teamtreehouse.com/library/topic:javascript
https://javascript30.com/
https://wesbos.com/courses/
https://medium.com/javascript-scene/learn-javascript-b631a4af11f2#.lsb25e2f5
https://medium.com/@_ericelliott
https://en.wiktionary.org/wiki/indubitably
https://www.quora.com/What-are-the-things-a-person-who-knows-many-programming-languages-can-do-that-other-programmers-cant
https://en.wiktionary.org/wiki/monoglot#English
http://www.disney.com/
https://stripe.com/
https://github.com/
https://www.hulu.com/
https://www.airbnb.com/
https://www.learnenough.com/ruby
https://railstutorial.org/book
https://railstutorial.org/book
https://medium.com/@hpux/rails-5-1-loves-javascript-a1d84d5318b
https://www.learnenough.com/ruby
https://railstutorial.org/book
https://www.codecademy.com/learn/introduction-to-javascript
https://www.codecademy.com/learn/introduction-to-javascript
https://teamtreehouse.com/library/topic:javascript
https://javascript30.com/
https://wesbos.com/courses
https://wesbos.com/courses
https://medium.com/javascript-scene/learn-javascript-b631a4af11f2#.lsb25e2f5
https://medium.com/javascript-scene/learn-javascript-b631a4af11f2#.lsb25e2f5
https://medium.com/@_ericelliott
https://www.learnenough.com/ruby
https://railstutorial.org/book

262 Chapter 11: Full Sample App: Image Gallery

Finally, for people who want the most solid foundation possible in technical sophis-
tication, Learn Enough All Access (https://www.learnenough.com/all-access) is a
subscription service that has special online versions of all the Learn Enough books
and over 40 hours of streaming video tutorials. We hope you’ll check it out!

https://www.learnenough.com/all-access

Index

Symbols
\ (backslash), 75
" (double quotes), 25–29
[] (bracket) notation, 56
!! (bang bang), 43–44
' (single quote), 25
{} (curly braces), 32, 37
(hash symbol), 195
% (modulo operator), 124
/ (slash character), 28–29
! operator, 42, 43
&& operator, 40, 41
+ operator, 27
|| operator, 41

A
accessing

arrays, 56–58
combining arrays, 63
DOM (Document Object Model), 250
string characters, 50

accumulators, 127
activating tools, 16
adding

buttons, 193
comments, 28–29
event listeners, 195
forms, 201, 207, 208
HTML forms, 201

notifications, 203
pending tests, 162–163
proof of concept, 187, 188
stubs, 170
testing, 169

alerts, 4, 34
alt attributes, updating, 247
anonymous functions, 110, 118, 196
applications

code, 165 (see also code)
deploying, 10–13
functions from external files, 102
image gallery (sample application), 235

(see also image gallery)
testing, 153

applying
calculators, 66
native assertions, 169
REPLs (Read-Evaluate-Print Loops), 100
technical sophistication, 28
triple equals, 36

arguments, 22
command-line, 226
functions, 92, 93 (see also functions)

arrays, 55
accessing, 56–58
associative, 81
creating URL-appropriate strings for, 118
filter method, 122–125

263

264 Index

iteration, 62–64, 111, 112
methods, 59–62
popping, 61
pushing, 61
reversing, 60
slicing, 58–59
sorting, 60
sorting numerical, 92–94
splitting, 55–56
undoing splits, 61–62

asserting
applying active assertions, 169
equality, 168

assigning
properties, 135
variables, 29, 31

associative arrays, 81
attributes, 35. See also string properties

src, 100
automated tests, 132, 153, 159–164. See also

testing
auxiliary functions, 120, 121

B
backslash (\), 75
backtick syntax, 31–32
bang bang (!!), 43–44
Bash (Bourne-again shell), 6
block structures, 38
Boole, George, 367
booleans

combining/inverting, 40–43
strings, 35–44

Bourne-again shell. See Bash
bracket ([]), notation, 56
browserify utility, 188, 189, 191
browsers. See also viewing

compatibility, 5
consoles, 14–19, 99
developer tools, 17
JavaScript in, 7–14
languages for, 1

bugfixes, 157
bugs, 166. See also errors; troubleshooting
built-in objects, 3

bundle command, 238
bundles, 189
buttons

adding, 193
wild, 194

button tag, 192, 193, 206

C
calculators, applying, 66
calls, functions, 9
CamelCase, 136
cascading style sheet. See CSS (cascading

style sheet)
chains

methods, 104–110, 180
prototypes, 139

changes, committing to, 11. See also modifying
characters

iteration, 50
pushing, 173
string literals, 25 (see also strings)

charAt method, 52, 53, 173
chmod command, 23
classes

current, 250, 251
equivalence, 124

cloning, 235
code. See also applications

applications, 165
DRY principle, 142
event listeners, 196
formatting, 38–39
palindromes, 153
refactoring, 53, 132, 165, 177–184

columns, 38
combining booleans, 40–43
command lines, DOM manipulation at,

224–233
commands

bundle, 238
chmod, 23
console.log, 18
node, 22, 23, 83
npm, 154, 156
which, 18, 22

Index 265

comments, 28–29. See also words
documentation, 106
JavaScript, 244

comparing numbers, 93
compatibility, browsers, 5
concatenation, 27–32
configuring

Jekyll, 237
JSON (JavaScript Object Notation),

157
repositories, 11
testing, 154–159

console.log, 18, 33, 233
consoles

browsers, 14–19, 99
JavaScript, 18

constants, 66
constructor functions, 135
control, versions, 156
control flow, strings, 35–44
conventions

dates, 71
numbers, 158
regular expressions (regexes/regexps), 74

converting numbers to strings, 67–69
copying

files, 236
shell scripts, 232

counting words, 86, 87
creating. See configuring; formatting
CSS (cascading style sheet), 229

current class, 250, 251
image gallery, 243

curly braces ({}), 32, 37
current, setting images as, 250–252
customizing days of the week, 72

D
dates, 69–73
days of the week

customizing, 72 (see also dates)
factoring in (functions), 96

debugging
JavaScript, 99
printing, 33

tools, 16
default behaviors, 209
defining

functions, 91–95, 96
objects, 3, 135–138
prototypes, 143
TranslatedPhrase objects, 141

deploying applications, 10–13
describe function, 159, 160, 169
detecting palindromes, 136, 138, 154, 155,

187–191, 216
developer tools. See also tools

browsers, 17
MDN (Mozilla Developer Network), 139,

147, 148
documentation

comments, 106
for File System, 216
JSDOM, 228
urllib, 220

Document Object Model. See DOM
(Document Object Model)

document objects, 227
documents, 196
DOM (Document Object Model), 187, 197,

198, 215, 250
finding elements, 253
loading, 198, 199
manipulation, 4
manipulation at command lines, 224–233

dot loads, 106
dot notation, 17
double quotes ("), 25
DRY principle, 142
duplicating code

DRY principle, 142
eliminating, 146–147

dynamic HTML (Hypertext Markup
Language), 202–205, 207. See also HTML
(Hypertext Markup Language)

E
ECMAScript, 5, 31. See also JavaScript
editing GitHub Pages, 12
Eich, Brendan, 5

266 Index

emojis, 108, 109
empty strings, 26
encapsulation, 96
entering long strings, 211, 212
equality, asserting, 168
equivalence classes, 124
errors

messages, 100, 101, 170
syntax, 27
testing, 165

evaluation, short-circuit, 182
events, 4

DOM (Document Object Model), 197, 198
listeners, 187, 192–201

exec method, 76
executable scripts, 22
exponentiation, 66
exporting

modules, 158
Phase objects, 158

expressions, regular. See regular expressions

F
factoring palindrome testers into functions,

195
fat arrow, 94–95
files

copying, 236
creating, 21
functions in, 95–104
JavaScript in, 21–22
reading from, 216–218
standalone JavaScript, 6
testing, 160 (see also testing)

File System, documentation for, 216
filter method, 116, 122–125, 180
floating-point numbers, 65
floats. See floating-point numbers
forEach loops, 110–114, 116, 126, 178, 179
fork capability (GitHub Pages), 235, 237
for loops, 53, 58, 62
formatting. See also configuring

code, 38–39
files, 21
indenting, 98

lists of images, 243
printing, 33–35
quotes, 26
repositories, 11

forms. See also documents
adding, 201, 207, 208
HTML (Hypertext Markup Language), 4,

200, 205–214
submitting, 209

front-end JavaScript programs, 6
functionality, non-standard, 150
functional programming, 3, 95, 115–116,

179, 180
filter method, 122–125
map method, 116–122
reduce method, 126–133
TDD (test-driven development),

132–133
functions, 3. See also methods; objects

anonymous, 110, 118, 196
arguments, 92, 93
auxiliary, 120, 121
calls, 9
console.log, 33
constructor, 135
defining, 91–95, 96
describe, 159, 160, 169
factoring palindrome testers into, 195
fat arrow, 94–95
in files, 95–104
forEach loops, 110–114
it, 159
method chaining, 104–110
nameless, 110
new, 69, 75, 77
palindrome, 104, 107, 132, 137, 140,

141, 142
Phrase, 135, 136, 137, 140, 142
prompt, 190, 205
querySelector, 229
return values, 92
sorting numerical arrays, 92–94
sum, 126
trigonometric, 66
urlify, 120

Index 267

G
general-purpose programming languages, 1
getDay() method, 95
GitHub Pages, 11, 191

editing, 12
fork capability, 235
renaming, 238
saving settings, 14
usernames, 12

Google Translate, 226, 232
Green, testing, 172–177

H
handling HTML forms, 205–214
Hansson, David Heinemeier, 148, 149
hash symbol (#), 195
hello, world!, 6, 8, 9–10

adding proof of concept, 187, 188
live on web pages, 15

HTML (Hypertext Markup Language)
adding forms, 201
button tag, 192, 193, 206
dynamic, 202–205, 207
forms, 4, 200, 205–214
image gallery (sample application), 242–243
methods unrelated to, 47
skeletons, 7, 8

I
identifiers, 29
image gallery (sample application), 235

changing image info, 252–259
deploying, 256–259
fork capability (GitHub Pages), 235, 237
HTML (Hypertext Markup Language),

242–243
modifying images, 242–249
prepping, 235–242
setting images as current, 250–252

images
modifying, 242–249
updating, 254

img tags, 243
includes method, 48, 60

increment statements, 51
indenting, 98. See also formatting

code, 38
indexes, 51
inheritance, 142
initializing NPM (Node Package Manager)

modules, 157
inserting comments, 28–29. See also adding
Inspect Element, activating tools via, 16
installing

Jekyll, 237
Mocha, 154
NPM (Node Package Manager), 219

instances
methods, 57
strings, 44

instantiating objects, 135
integers, summing, 127, 128
interpolation, 27–32

backtick syntax, 31–32
inverting booleans, 40–43
iteration

arrays, 62–64, 111, 112
forEach loops, 110–114
strings, 50–53, 112, 113

it function, 159

J
JavaScript

applications, 10–13 (see also applications)
in browsers, 7–14
comments, 244
consoles, 18
debugging, 99
in files, 21–22
objects, 17 (see also objects)
overview of, 5–7
prepping, 239–240
in REPLs (Read-Evaluate-Print Loops),

14–20
in shell scripts, 22–23
submitting forms, 209

JavaScript Object Notation. See JSON
(JavaScript Object Notation)

268 Index

Jekyll static site builder
configuring, 237
installing, 237

joining, 27. See also concatenation
undoing splits, 61–62

jQuery library, 195
JSDOM

adding, 227 (see also DOM [Document
Object Model])

documentation, 228
JSON (JavaScript Object Notation), 157

K
keys, 81
key–value pairs, 81
keywords, return, 119
Knuth, Donald, 57

L
length property, 35, 36, 52
lengths object, 129
letters method, 168, 169, 173, 174, 178,

180, 181
listeners, events, 187, 192–201. See also events
lists of images, 243
literals, templates, 31–32
LiveScript. See JavaScript
loading

DOMs (Document Object Models),
198, 199

modules, 190
logarithms, 66
long strings, entering, 211, 212
loops

for, 53, 58, 62
alternatives to, 116
forEach, 110–114, 116, 126, 178, 179
indexes, 51
iteration, 50
REPLs (Read-Evaluate-Print Loops), 6

lowercase letters, 46

M
main branch, serving websites from, 13
main gallery images, setting, 245
map method, 116–122

Map object, 87–89
matchers, regex, 172
match method, 78, 85
mathematics

floating-point numbers, 65
mathematical operations, 65–66
+ operators, 27

Math object, 66–67
converting numbers to strings, 67–69

MDN (Mozilla Developer Network), 3, 139,
147, 148

messages, error, 100, 101, 170
methods, 18, 91

arrays, 59–62
chaining, 104–110, 180
charAt, 52, 53, 173
exec, 76
filter, 116, 122–125, 180
getDay(), 95
includes, 48, 60
instances, 57
letters, 168, 169, 173, 174, 178, 180, 181
map, 116–122
match, 78, 85
overriding, 143–144
palindrome, 175
palindromeTester, 209
querySelector, 195
querySelectorAll, 244
reduce, 116, 126–133
regular expressions (regexes/regexps), 75–76
remove, 231
reverse, 108, 109, 137, 150
slice, 59
split, 55, 79
strings, 44–50
toLowerCase, 107
toString(), 67
unrelated to HTML, 47

mixed-cased palindromes, 164
Mocha testing tool

installing, 154
pending tests, 162–163
settings, 154
starting, 156

Index 269

modifying
current class, 250, 251
image info, 252–259
images, 242–249
native objects, 147–152

modules
exporting, 158
installing NPM (Node Package Manager),

219
loading, 190
NPM (Node Package Manager), 4, 153, 157
publishing, 184–186

modulo operator (%), 124
moving processedContent into methods, 140,

150
Mozilla Developer Network. See MDN

(Mozilla Developer Network)

N
nameless functions, 110
names

GitHub Pages, 12, 238
repositories, 236
variables, 29, 30 (see also identifiers)

native assertions, applying, 169
native objects, 65. See also objects

dates, 69–73
Map object, 87–89
mathematical operations, 65–66
Math object, 66–67
modifying, 147–152
numbers, 65–66
plain objects, 81–82
regular expressions, 73–81
unique words, 83–89

Netscape Navigator, 5
networks, MDN. See MDN (Mozilla Developer

Network)
new function, 69, 75, 77
node command, 22, 23, 83
Node.js, 18–20

shell scripts, 215 (see also shell scripts)
Node package Manager. See NPM (Node

Package Manager)
Node REPL, 23, 38, 69, 83, 106. See also

REPLs (Read-Evaluate-Print Loops)

non-standard functionality, 150
notation, 244

bracket ([]), 56
JSON (JavaScript Object Notation), 157

notifications, adding, 203
NPM (Node Package Manager), 4, 6

browserify utility, 188, 189, 191
installing, 219
modules, 153, 157
publishing, 184–186

npm command, 154, 156
null objects, 197
numbers, 65–66

comparing, 93
conventions, 158
converting strings, 67–69
dates, 69–73
floating-point, 65

numerical arrays, sorting, 92–94

O
object-oriented languages, 17, 44
objects

built-in, 3
defining, 3, 135–138
document, 227
functions attached to, 91 (see also functions;

methods)
instantiating, 135
JavaScript, 17
JSON (JavaScript Object Notation), 157
lengths, 129
Map, 87–89
modifying native, 147–152
native, 65 (see also native objects)
null, 197
plain, 81–82
prototypes, 30

operators
+, 27
!, 42, 43
&&, 40, 41
||, 41
modulo operator (%), 124

overriding methods, 143–144

270 Index

P
palindrome function, 104, 107, 132, 137, 140,

141, 142, 175
palindromes

adding forms, 207, 208
adding HTML for results, 202
code, 153
creating pages, 187–191
detecting, 136, 138, 154, 155,

187–191, 216
factoring testers into functions, 195
long strings, 212
mixed-cased, 164
punctuated, 167
testing, 160, 166
translating, 144

palindromeTester method, 209
paragraphs

pulling out, 230
shell scripts, 231

passwords, 40
pasting shell scripts, 232
pending tests, 162–163
Perl, 215
Phrase function, 135, 136, 137, 140, 142
phrases, 3
piping, 232
plain objects, 81–82
popping arrays, 61
powers, 66
prepping

image gallery (sample application), 235–242
JavaScript, 239–240

printing strings, 33–35
processedContent, moving into methods, 140,

150
programming languages

functional programming, 95
general-purpose, 1
HTML (Hypertext Markup Language), 4

(see also HTML [Hypertext Markup
Language])

object-oriented languages, 17
programs. See also applications

front-end JavaScript, 6

hello, world!, 6, 8, 9–10 (see also hello,
world!)

image gallery (see image gallery [sample
application])

wikp, 224
writing, 6

prompt function, 190, 205
prompts, 4

Node.js, 18–20
properties, 82

assigning, 135
length, 35, 36, 52
strings, 35–44

prototype-based languages, 139
prototypes, 139–147

chains, 139
defining, 143
objects, 30, 139 (see also objects)

publishing NPM (Node Package Manager)
modules, 184–186

punctuated palindromes, testing, 167
pushing, 179

arrays, 61
characters, 173

Python, 215

Q
querySelectorAll method, 244
querySelector method, 195, 229

R
Rails, 205
Read-Evaluate-Print Loops. See REPLs

(Read-Evaluate-Print Loops)
reading

from files, 216–218
from URLs, 218–223

Real Programming, 21
Red, testing, 164–172
reduce method, 116, 126–133
refactoring code, 53, 132, 165, 177–184
references

regular expressions, 75
viewing, 230

regex matchers, 172. See also regular expressions
regressions, 165

Index 271

regular expressions (regexes/regexps), 56,
73–81

methods, 75–76
online builders, 74
references, 75
string methods, 77–80

reloading
pages, 101
palindrome function, 107

remove method, 231
renaming

GitHub Pages, 238
repositories, 236

repeating, DRY principle, 142
REPLs (Read-Evaluate-Print Loops), 6, 100.

See also Node REPL
applying calculators, 66
code in, 39
JavaScript in, 14–20
loading files into, 138
quotes and, 26
shell scripts, 217 (see also shell scripts)
strings and, 25

repositories
creating, 11
image gallery, 235, 236 (see also image gallery

[sample application])
resources, MDN (Mozilla Developer Network),

3
result areas, 204
return keyword, 119
return values, 92
reverse method, 108, 109, 137, 150
reversing

arrays, 60
strings, 106

roots, 66
Ruby, 215

S
sample applications. See image gallery (sample

application)
saving GitHub settings, 14
scope, variables, 63
scripting languages, 22, 215

scripts
executable, 22
shell, 4, 6 (see also shell scripts)

script tags, 9
semantic versioning, 158
sequences, string literals, 25. see also strings
settings. See also configuring; formatting

editing GitHub Pages, 12
Mocha, 154
saving (GitHub), 14

shell scripts, 4, 6, 215
Bash (Bourne-again shell), 6
copying, 232
DOM manipulation at command lines,

224–233
JavaScript in, 22–23
paragraphs, 231
pasting, 232
reading from files, 216–218
reading from URLs, 218–223

short-circuit evaluation, 182
Sinatra, 205
single quote ('), 25
slash (/) character, 28–29
slice method, 59
slicing arrays, 58–59
sorting

arrays, 60
numerical arrays, 92–94

split method, 79
splitting

arrays, 55–56
undoing splits, 61–62

src attribute, 100
standalone JavaScript files, 6
starting

image gallery (sample application), 235–242
Mocha, 156

state/length correspondence, troubleshooting,
130, 131

statements
console.log, 233
increment, 51

strict equality, asserting, 168
strings

272 Index

backtick syntax, 31–32
booleans, 35–44
concatenation, 27–32
control flow, 35–44
creating URL-appropriate for arrays, 118
empty, 26
entering, 211, 212
filter method, 122–125
instances, 44
interpolation, 27–32
iteration, 50–53, 112, 113
literals, 25, 30
methods, 44–50
+ operators, 27
overview of, 25–27
printing, 33–35
properties, 35–44
regular expressions (regexes/regexps), 77–80
reversing, 106

stubs, adding, 169
submitting forms, 209
sum function, 126
summing integers, 127, 128
synchronous versions, 216
syntax

backtick, 31–32
defining functions, 96
errors, 27

T
tables, truth, 40, 41
tags. See also HTML (Hypertext Markup

Language)
button, 192, 193, 206
img, 243
script, 9

TDD (test-driven development), 3, 53, 153. See
also testing

functional programming, 132–133
when to use, 165

technical sophistication, 1, 47
applying, 28
definition of, 2–3

templates, literals, 31–32
test-driven development. See TDD (test-driven

development)

testing, 153
adding, 169
breaking, 164
configuring, 154–159
errors, 165
Green, 172–177
initial coverage, 159–164
Mocha (see Mocha)
palindromes, 160, 166
pending tests, 162–163
publishing NPMs (Node Package Managers),

184–186
Red, 164–172
refactoring code, 177–184
when to test, 165

tests
automated, 132
suites, 160, 161, 167 (see also testing)
suites, running, 179

text-to-speech. See TTS (text-to-speech)
thumbnails, 249. See also images
titles, updating images, 254
toLowerCase method, 107
tools

activating, 16
browser consoles, 14–19
browser developer, 17
browserify utility, 188, 189, 191
debugging, 16
Mocha, 154 (see also testing)

toString() method, 67
TranslatedPhrase objects, 141, 142
translating palindromes, 144
trigonometric functions, 66
triple equals, 36
troubleshooting

bugfixes, 157
filtering, 123, 125
state/length correspondence, 130, 131

truth tables, 40, 41
TTS (text-to-speech), 224

U
undoing splits, 61–62
unique words, 83–89

Index 273

updating
alt attributes, 247
images, 254

uppercase letters, 46
urlify function, 120
urllib documentation, 220
URLs (Uniform Resource Locators), reading

from, 218–223
usernames, GitHub Pages, 12. See also names

V
values

boolean, 36 (see also booleans)
key–value pairs, 81

Vanier, Mike, 64, 121, 122
variables, 29

assigning, 29, 31
creating, 110, 111
interpolation, 27–32
names, 29, 30
scope, 63
string concatenation and, 29 (see also

concatenation)
versions, 5

control, 156
semantic versioning, 158
synchronous, 216

viewing
JavaScript, 7–14
references, 230

W
web applications, testing, 153. See also

applications
web inspectors, 230
web pages, viewing JavaScript in, 7–14
which command, 18, 22
wikp program, 224
wild buttons, 194
words

counting, 86, 87
unique, 83–89

writing
comments, 28–29
to console logs, 34
programs, 6
shell scripts, 215 (see also

shell scripts)

Z
zeros, 157
Zip codes, 75, 76, 77

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	About the Author
	Chapter11 Full Sample App: Image Gallery
	11.1 Prepping the Gallery
	11.1.1 Prepping the JavaScript
	11.1.2 Exercise

	11.2 Changing the Gallery Image
	11.2.1 Exercises

	11.3 Setting an Image as Current
	11.3.1 Exercise

	11.4 Changing the Image Info
	11.4.1 Deploying
	11.4.2 Exercise

	11.5 Conclusion
	11.5.1 Learning More JavaScript
	11.5.2 Learning a New Language

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

