
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137843459
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137843459
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137843459

Praise for Learn Enough Tutorials

“Going through Learn Enough Git is wonderful. I am actually learning... I’ve done three
other Git tutorials and still felt so lost. Doing it all now makes so much sense. It’s like
a light bulb.”

—Janelle Staar

“I bought the Learn Enough Command Line to Be Dangerous last fall, and it’s paid off
sooooo many times in my new job. During my first week, I had a manager sitting
right beside me giving me the ‘go here, go there, do this, etc.’ Having watched, read,
and done the exercises, I was confident in getting around the CLI [command-line
interface]—and even had him asking, ‘What was that shortcut?’ For this, I thank you.
Now I need a ‘Learn even more CLI to be dangerouser.”’

—Thomas Thackery

“I must say, this Learn Enough series is a masterpiece of education. Thank you for this
incredible work!”

—Michael King

“I want to thank you for the amazing job you have done with the tutorials. They are
likely the best tutorials I have ever read.”

—Pedro Iatzky

This page intentionally left blank

LEARN ENOUGH

DEVELOPER TOOLS

TO BEDANGEROUS

The Learn Enough series teaches you the developer tools, Web technologies,

and programming skills needed to launch your own applications, get a job as a

programmer, and maybe even start a company of your own. Along the way, you’ll

learn technical sophistication, which is the ability to solve technical problems

yourself. And Learn Enough always focuses on the most important parts of each

subject, so you don’t have to learn everything to get started—you just have to

learn enough to be dangerous. The Learn Enough series includes books and

video courses so you get to choose the learning style that works best for you.

Visit informit.com/learn-enough for a complete list of available publications.

Learn Enough Series from
Michael Hartl

twitter.com/informIT

http://informit.com/learn-enough
http://twitter.com/informIT

LEARN ENOUGH

DEVELOPER TOOLS

TO BEDANGEROUS

Command Line, Text Editor, and
Git Version Control Essentials

Michael Hartl

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover image: Philipp Tur/Shutterstock
Figures 1.1, 1.2, 1.4, 1.6-1.8, 5.4, 5.6-5.9, 5.11, 10.9, 11.8, 11.10, 11.13, A.1: Screenshot © 1995-2021 The
Open Group
Figure 1.3: Screenshot © 2021 The Linux Foundation
Figures 3.3, 7.31, 7.32: Screenshot © Regex101
Figures 5.1, 6.1-6.3, 6.10-6.22, 6.24-6.36, 7.1-7.30, 7.33, 7.34, 7.39, 8.3-8.8, 9.1-9.12, 10.3, 11.3-11.7,
11.15-11.17, 11.22-11.24, 11.26: Screenshot © 2021 GitHub, Inc.
Figures 6.4-6.9, 7.35, A.2-A.7: Screenshot © 2021, Amazon Web Services, Inc.
Figures 7.36-7.38: Screenshot © 2020 Wbond
Figure 8.2: Screenshot © 2021 Apple Inc.
Figures 10.2, 10.6, 11.25: Photo of whale, GUDKOV ANDREY/Shutterstock
Figures 11.12, 11.14, 11.19, 11.21, 11.27: Photo of polar bear, Vaclav Sebek/Shutterstock

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022930143

Copyright © 2022 Softcover Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-784345-9
ISBN-10: 0-13-784345-3

ScoutAutomatedPrintCode

mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Contents

Preface xiii

About the Author xix

PART I COMMAND LINE 1

Chapter 1 Basics 3

1.1 Introduction 5
1.2 Running a Terminal 6

1.2.1 Exercises 10
1.3 Our First Command 10

1.3.1 Exercises 15
1.4 Man Pages 15

1.4.1 Exercises 19
1.5 Editing the Line 20

1.5.1 Exercises 23
1.6 Cleaning Up 23

1.6.1 Exercises 23
1.7 Summary 24

1.7.1 Exercises 24

vii

viii Contents

Chapter 2 Manipulating Files 25

2.1 Redirecting and Appending 26
2.1.1 Exercises 29

2.2 Listing 30
2.2.1 Hidden Files 33
2.2.2 Exercises 34

2.3 Renaming, Copying, Deleting 35
2.3.1 Unix Terseness 38
2.3.2 Exercises 39

2.4 Summary 40
2.4.1 Exercises 40

Chapter 3 Inspecting Files 43

3.1 Downloading a File 43
3.1.1 Exercises 45

3.2 Making Heads and Tails of It 46
3.2.1 Wordcount and Pipes 47
3.2.2 Exercises 48

3.3 Less Is More 49
3.3.1 Exercises 51

3.4 Grepping 52
3.4.1 Exercises 57

3.5 Summary 58
3.5.1 Exercises 58

Chapter 4 Directories 61

4.1 Directory Structure 61
4.1.1 Exercises 64

4.2 Making Directories 64
4.2.1 Exercises 66

4.3 Navigating Directories 66
4.3.1 Exercises 69

4.4 Renaming, Copying, and Deleting Directories 70
4.4.1 Grep Redux 73

Contents ix

4.4.2 Exercises 73
4.5 Summary 74

4.5.1 Exercises 74
4.6 Conclusion 75

PART II TEXT EDITOR 77

Chapter 5 Introduction to Text Editors 79

5.1 Minimum Viable Vim 84
5.2 Starting Vim 85

5.2.1 Exercises 89
5.3 Editing Small Files 89

5.3.1 Exercises 91
5.4 Saving and Quitting Files 91

5.4.1 Exercises 95
5.5 Deleting Content 96

5.5.1 Exercises 96
5.6 Editing Large Files 97

5.6.1 Exercises 101
5.7 Summary 101

5.7.1 Exercises 101

Chapter 6 Modern Text Editors 103

6.1 Choosing a Text Editor 104
6.1.1 Sublime Text 104
6.1.2 Visual Studio Code (VSCode) 105
6.1.3 Atom 105
6.1.4 Exercises 106

6.2 Opening 106
6.2.1 Syntax Highlighting 111
6.2.2 Previewing Markdown 113
6.2.3 Exercises 115

6.3 Moving 117
6.3.1 Exercises 118

6.4 Selecting Text 119

x Contents

6.4.1 Selecting a Single Word 122
6.4.2 Selecting a Single Line 123
6.4.3 Selecting Multiple Lines 124
6.4.4 Selecting the Entire Document 124
6.4.5 Exercises 125

6.5 Cut, Copy, Paste 127
6.5.1 Jumpcut 128
6.5.2 Exercises 132

6.6 Deleting and Undoing 132
6.6.1 Exercises 135

6.7 Saving 135
6.7.1 Exercises 136

6.8 Finding and Replacing 138
6.8.1 Exercises 143

6.9 Summary 143

Chapter 7 Advanced Text Editing 145

7.1 Autocomplete and Tab Triggers 145
7.1.1 Autocomplete 145
7.1.2 Tab Triggers 147
7.1.3 Exercises 151

7.2 Writing Source Code 152
7.2.1 Syntax Highlighting 153
7.2.2 Commenting Out 155
7.2.3 Indenting and Dedenting 156
7.2.4 Goto Line Number 164
7.2.5 80 Columns 164
7.2.6 Exercises 165

7.3 Writing an Executable Script 166
7.3.1 Exercises 174

7.4 Editing Projects 175
7.4.1 Fuzzy Opening 176
7.4.2 Multiple Panes 179
7.4.3 Global Find and Replace 181
7.4.4 Exercises 187

Contents xi

7.5 Customization 188
7.5.1 Exercises 189

7.6 Summary 191
7.7 Conclusion 193

PART III GIT 195

Chapter 8 Getting Started with Git 197

8.1 Installation and Setup 200
8.1.1 Exercises 202

8.2 Initializing the Repo 203
8.2.1 Exercises 204

8.3 Our First Commit 204
8.3.1 Exercises 207

8.4 Viewing the Diff 208
8.4.1 Exercises 209

8.5 Adding an HTML Tag 210
8.5.1 Exercises 215

8.6 Adding HTML Structure 216
8.6.1 Exercises 219

8.7 Summary 220

Chapter 9 Backing Up and Sharing 221

9.1 Signing Up for GitHub 221
9.2 Remote Repo 222

9.2.1 Exercises 226
9.3 Adding a README 227

9.3.1 Exercises 232
9.4 Summary 234

Chapter 10 Intermediate Workflow 235

10.1 Commit, Push, Repeat 235
10.1.1 Exercises 240

10.2 Ignoring Files 241
10.2.1 Exercises 243

xii Contents

10.3 Branching and Merging 243
10.3.1 Rebasing 251
10.3.2 Exercises 251

10.4 Recovering from Errors 252
10.4.1 Exercises 257

10.5 Summary 258

Chapter 11 Collaborating 259

11.1 Clone, Push, Pull 260
11.1.1 Exercises 266

11.2 Pulling and Merge Conflicts 269
11.2.1 Non-conflicting Changes 270
11.2.2 Conflicting Changes 276
11.2.3 Exercises 280

11.3 Pushing Branches 283
11.3.1 Exercises 292

11.4 A Surprise Bonus 292
11.4.1 Exercises 294

11.5 Summary 295
11.6 Advanced Setup 296

11.6.1 A Checkout Alias 297
11.6.2 Prompt Branches and Tab Completion 299
11.6.3 Exercises 300

11.7 Conclusion 302

Appendix Development Environment 305

A.1 Dev Environment Options 306
A.2 Cloud IDE 307
A.3 Native OS Setup 312

A.3.1 macOS 313
A.3.2 Linux 321
A.3.3 Windows 322

A.4 Conclusion 322

Index 323

Preface

Learn Enough Developer Tools to Be Dangerous is designed to teach you three essential
tools for modern software development: the Unix command line, a text editor, and
version control with Git. All three are ubiquitous in the contemporary technology
landscape, and yet there are surprisingly few resources for learning them from scratch
and seeing how they all fit together. Learn Enough Developer Tools to Be Dangerous,
which assumes no prerequisites other than general computer knowledge, was created
to fill this gap.

The skills you’ll learn in this book are valuable whether your interest is in col-
laborating with developers or becoming a developer yourself. No matter what you
want to do—level up in your current job, start a new career, or even start your own
company—Learn Enough Developer Tools to Be Dangerous is a great place to start.

The individual subjects covered by this book are potentially enormous; entire
books can (and have been) written about each of them. But such giant tomes can
be overwhelming, especially for beginners, and they generally involve covering many
things you don’t actually need right away. Instead, this book focuses on the most
important aspects of the respective technologies, grounded in the philosophy that you
don’t have to learn everything to get started—you just have to learn enough to be
dangerous.

In addition to teaching you specific skills, Learn Enough Developer Tools to
Be Dangerous also helps you develop technical sophistication—the seemingly magical

xiii

xiv Preface

ability to solve practically any technical problem. Technical sophistication includes
concrete skills like command lines, text editors, and version control, as well as fuzzier
skills like Googling the error message and knowing when to just reboot the darn
thing. Throughout this book, there are abundant opportunities to develop technical
sophistication in the context of real-world examples.

Finally, although the individual parts of the book are as self-contained as possible,
they are also extensively cross-referenced to show how the different tools fit together.
You’ll learn how to use the command line to launch a text editor, make your changes
in the editor, and then return to the command line to record the changes with Git.
The result is an integrated introduction to the foundations of software development
that’s practically impossible to find anywhere else.

Command Line
Part I of Learn Enough Developer Tools to Be Dangerous, also known as Learn Enough
Command Line to Be Dangerous, is an introduction to the Unix command line for
complete beginners. It doesn’t even assume you know what a “command line” is
(though you’ll still probably learn a thing or two even if you do). In particular, unlike
most command-line tutorials, it doesn’t assume you know how to use a text editor
(which is the subject of Part II). All of this means you need only basic computer skills
(like being able to install new software on your system) to get started.

Like all Learn Enough tutorials, Learn Enough Command Line to Be Dangerous is
structured as a technical narrative, with each step carefully motivated by real-world
uses. Chapter 1 covers the basic notion of a Unix command and shows you how to use
your system to learn more about itself. Chapter 2 shows how to use the command line
to do things like move, rename, and delete files. Chapter 3 shows how to look inside
files (even really big ones), and even how to search through them. Finally, Chapter 4
teaches you how to use the command line to create and navigate directories (folders)
to organize files on your system.

The result of finishing Learn Enough Command Line to Be Dangerous is a mas-
tery of the basics of a tool that is rarely covered explicitly and yet is everywhere in
modern computing. This is especially true of computing in the Unix tradition, which
includes operating systems like Linux, Android, macOS, and iOS (basically everything
but Microsoft Windows, though nowadays even Windows lets you run Linux). This
means you’ll have a big head start if you’re interested in things like web or mobile app
development.

Preface xv

Text Editor
Part II, also known as Learn Enough Text Editor to Be Dangerous, covers a category of
application—known as a text editor—that many people don’t even know exists, and
yet is absolutely essential for professional-grade software development. Text editors
are used to make files containing plain text, which is the document format used for
virtually all Web technologies (like HTML and CSS) and programming languages
(JavaScript, Ruby, Python, etc.). As such, knowledge of a text editor is a necessary
prerequisite for learning those other important subjects.

Because there is such a wide variety of text editors and user preferences, Learn
Enough Text Editor to Be Dangerous focuses on the main features shared by virtually
all editors. Chapter 5 starts by introducing the powerful Vim text editor, which is
available on practically every Unix system in the known universe. Chapter 6 then
introduces so-called “modern” text editors, mainly using the free and open-source
Atom editor but focusing on features shared with other editors like Sublime Text and
Visual Studio Code. As a bonus, this chapter includes an integrated introduction to
the popular Markdown formatting language. Chapter 7 then covers more advanced
subjects like tab triggers and editing source code, and also shows how to write a shell
script to extend the capabilities of the command line covered in Part I.

Git
Part III, also known as Learn Enough Git to Be Dangerous, covers version control with
Git. In line with the approach of the other two parts, Learn Enough Git to Be Dangerous
doesn’t even assume you know what “version control” is (though any familiarity with
the subject will still be helpful). As a software system designed to let you track changes
in projects, version control might have been considered optional as recently as the
early 2000s, but for modern software development it is absolutely essential, and Git
has emerged as the clear winner.

Learn Enough Git to Be Dangerous shows how to use Git by tracking changes in a
real-world project consisting of a small website (thereby giving you get a head start
on web development as well). Chapter 8 shows how to set up a new Git repository as
a container for your project, beginning with a file consisting of some simple HTML
(the markup language of the World Wide Web). Chapter 9 explains how to create a
remote backup for your project at GitHub, a popular site for sharing code. Chapter 10
then shows how to use Git to make and record changes to your project, including
important techniques known as branching and merging. Finally, Chapter 11 shows how
to use Git to collaborate with other users, including learning how to resolve the kinds

xvi Preface

of inevitable file conflicts that arise. As a special bonus, you’ll learn how to use a free
service called GitHub Pages to deploy your site to the live Web.

Additional Features
In addition to the main tutorial material, Learn Enough Developer Tools to Be Dangerous
includes a large number of exercises to help you test your understanding and to extend
the material in the main text. The exercises include frequent hints and often include
the expected answers, with community solutions available by separate subscription at
www.learnenough.com.

For completeness, Learn Enough Developer Tools to Be Dangerous includes an
appendix on setting up a development environment, including instructions for
native systems (macOS, Linux, Windows) and a preconfigured cloud IDE (inte-
grated development environment). This material is also available for free online
at www.learnenough.com/dev-environment, which can be consulted for the most
up-to-date instructions.

Final Thoughts
Learn Enough Developer Tools to Be Dangerous is designed as a foundational text for
modern software development. After learning the developer tools covered in this tuto-
rial, and especially after beginning to develop your technical sophistication, you’ll be
ready for a huge variety of other resources, including books, blog posts, and online
documentation. You’ll also have the prerequisites needed for the other Learn Enough
tutorials: Learn Enough HTML, CSS and Layout to Be Dangerous, Learn Enough Java-
Script to Be Dangerous, and Learn Enough Ruby to Be Dangerous. You can even go on to
learn professional-grade web development with the Ruby on RailsTM Tutorial.

Learn Enough Scholarships
Learn Enough is committed to making a technical education available to as wide a
variety of people as possible. As part of this commitment, in 2016 we created the Learn
Enough Scholarship program (https://www.learnenough.com/scholarship). Scholar-
ship recipients get free or deeply discounted access to the Learn Enough All Access
subscription, which includes all of the Learn Enough online book content, embedded
videos, exercises, and community exercise answers.

As noted in a 2019 RailsConf Lightning Talk (https://youtu.be/AI5wmnzzBqc?t
=1076), the Learn Enough Scholarship application process is incredibly simple: just
fill out a confidential text area telling us a little about your situation. The scholarship

http://www.learnenough.com
http://www.learnenough.com/dev-environment
https://www.learnenough.com/scholarship
https://youtu.be/AI5wmnzzBqc?t=1076
https://youtu.be/AI5wmnzzBqc?t=1076

Preface xvii

criteria are generous and flexible—we understand that there are an enormous number
of reasons for wanting a scholarship, from being a student, to being between jobs, to
living in a country with an unfavorable exchange rate against the U.S. dollar. Chances
are that, if you feel like you’ve got a good reason, we’ll think so, too.

So far, Learn Enough has awarded more than 2,500 scholarships to aspiring devel-
opers around the country and around the world. To apply, visit the Learn Enough
Scholarship page at www.learnenough.com/scholarship. Maybe the next scholarship
recipient could be you!

Register your copy of Learn Enough Developer Tools to Be Dangerous on the InformIT
site for convenient access to updates and/or corrections as they become available.
To start the registration process, go to informit.com/register and log in or create
an account. Enter the product ISBN (9780137843459) and click Submit. Look on
the Registered Products tab for an Access Bonus Content link next to this product,
and follow that link to access any available bonus materials. If you would like to be
notified of exclusive offers on new editions and updates, please check the box to
receive email from us.

http://www.learnenough.com/scholarship
http://informit.com/register

This page intentionally left blank

About the Author

Michael Hartl (https://www.michaelhartl.com/) is the creator of the Ruby on
Rails Tutorial (https://www.railstutorial.org/), one of the leading introductions to
web development, and is cofounder and principal author at Learn Enough
(https://www.learnenough.com/). Previously, he was a physics instructor at the Cal-
ifornia Institute of Technology (Caltech), where he received a Lifetime Achievement
Award for Excellence in Teaching. He is a graduate of Harvard College, has a Ph.D. in
Physics from Caltech, and is an alumnus of the Y Combinator entrepreneur program.

xix

https://www.michaelhartl.com/
https://www.railstutorial.org/
https://www.learnenough.com/

This page intentionally left blank

CHAPTER 11
Collaborating

Now that we’ve covered some of the tools needed to use Git effectively on solo
projects, it’s time to learn about what is perhaps Git’s greatest strength: making it eas-
ier to collaborate with other people. This is especially the case when using repository
hosts like GitHub (https://github.com/) or Bitbucket (https://bitbucket.org/), but it
is also possible to host Git repositories on private servers (sometimes using software
like GitLab (https://about.gitlab.com/) to get many GitHub-like benefits).

Because this tutorial is designed for individual readers, we won’t actually be able
to collaborate with others, but this chapter will explain how you can practice “collab-
orating” with yourself. There are many different collaboration scenarios, and they vary
significantly by team and by project, so we’ll focus on the important case of multiple
collaborators who all have commit rights to a particular repo. This model is appropriate
for teams where everyone can make changes without explicit approval from a project
maintainer.

Open-source projects typically use a different flow involving forking and pull
requests, but the details differ enough that it’s best to defer to the collabora-
tion instructions of each particular project. Consider, for example, the instructions
for contributing to Ruby on Rails (https://guides.rubyonrails.org/contributing_to
_ruby_on_rails.html). With the commands from this tutorial and your technical
sophistication (Box 8.2), you’ll be in a good position to understand and follow such
instructions if you decide to get involved in contributing to open-source software or
other projects under version control with Git.

For reference, important commands from this chapter are summarized in
Section 11.5.

259

https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
https://guides.rubyonrails.org/contributing_to_ruby_on_rails.html
https://guides.rubyonrails.org/contributing_to_ruby_on_rails.html

260 Chapter 11: Collaborating

11.1 Clone, Push, Pull
As an example of a common collaboration workflow, we’ll simulate the case of two
developers working on the same project, in this case the simple website developed in
this tutorial. We’ll start with Alice (Figure 11.1)1 working in the original website
directory, and we’ll create a second directory (website-copy) for her collaborator
Bob (Figure 11.2).2

As a first step, Alice runs git push just to make sure all her changes are on the
remote repository:

Figure 11.1: Alice, working on website.

1. Alice’s Adventures in Wonderland original illustrations by John Tenniel. Colorized image courtesy of The
Print Collector/Alamy Stock Photo.

2. Image courtesy RTRO/Alamy Stock Photo.

11.1 Clone, Push, Pull 261

Figure 11.2: Bob (with son Tim), working on website-copy.

[website (main)]$ git push

In real life, Alice would now need to add Bob as a collaborator on the website
repository, which she could do at GitHub by clicking on Settings > Manage Access
> Invite a collaborator and then put Bob’s GitHub username in the invitation box
(Figure 11.3). Because we’re collaborating with ourselves, we can skip this step.

Once Bob gets the notification that he’s been added to the website repository,
he can go to GitHub to get the clone URL, as shown in Figure 11.4. This URL lets
Bob make a full copy of the repository (including its history) using git clone.

Ordinarily, Bob would probably use his own repos directory, with a project called
website as in Alice’s original, but because we’re only simulating the collaboration
we’ll use the name website-copy for clarity. In addition, when doing something

262 Chapter 11: Collaborating

Figure 11.3: The GitHub page to add collaborators.

a little artificial like this, I like to use a temp directory called ~/tmp,3 so create this
directory if it doesn’t already exist on your system:

$ cd
$ mkdir tmp

Then cd to it and clone the repo to the local directory:

3. The idea behind a temp directory is to have a place to put temporary files that won’t necessarily persist
for long. Many operating systems have a system-wide temp directory (often called /tmp), but I also like to
have one under my home directory for personal use.

11.1 Clone, Push, Pull 263

Figure 11.4: Finding the clone URL at GitHub.

[~]$ cd tmp/
[tmp]$ git clone <clone URL> website-copy
Cloning into 'website-copy'...
[tmp]$ cd website-copy/

Here we’ve included the argument website-copy to git clone, thereby showing
how to use a different name than the original repo, but usually you just run git clone
<clone URL>, which uses the default repo name (in this case, website).

Now we’re ready to open the copy of the project and start making edits:

[website-copy (main)]$ atom .

264 Chapter 11: Collaborating

Figure 11.5: The website and website-copy editors running side by side.

For the purposes of this exercise, I recommend placing the editor windows for
website and website-copy side by side, as shown in Figure 11.5.

To begin the collaboration, we’ll have Bob make a change to the site by wrapping
the tutorial title on the About page in a link, like this:

…

Here the ellipsis … represents the full title of the tutorial, Learn Enough Git to Be Dan-
gerous. The resulting line is too long to display here, but we can wrap it, as shown in
Figure 11.6, with the result as shown in Figure 11.7.

If we look at the diff using git diff, we see the wrapped line (Figure 11.8),
which appears in a browser as shown in Figure 11.9.

Having added the link, Bob can commit his changes and push up to the remote
repository:

https://www.learnenough.com/git-tutorial

11.1 Clone, Push, Pull 265

Figure 11.6: Toggling soft wrap in Atom.

[website-copy (main)]$ git commit -am "Add link to tutorial title"
[website-copy (main)]$ git push

At this point, Bob might send Alice a notification that there’s a change ready, or
Alice might just be diligent about checking for changes. In either case, Alice can get
the changes from the remote origin by running git pull. I suggest opening up a
new tab in your terminal window for Alice’s directory (as shown in Figure 11.10) and
then pull as follows:

[website (main)]$ git pull
remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 2), reused 3 (delta 2), pack-reused 0
Unpacking objects: 100% (3/3), 336 bytes | 168.00 KiB/s, done.

266 Chapter 11: Collaborating

Figure 11.7: The About page with soft wrap activated.

With that, Alice’s project should have Bob’s commit, and her copy of the About page
should be identical to Figure 11.9. (Checking that Bob’s commit is present in the log
is left as an exercise.)

11.1.1 Exercises

1. As Alice, run git log to verify that the commit was pulled down correctly.
Double-check the details using git log -p.

From https://github.com/mhartl/website
cad4761..9a9cecf main -> origin/main

Updating cad4761..9a9cecf
Fast-forward
about.html | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

https://github.com/mhartl/website

11.1 Clone, Push, Pull 267

Figure 11.8: The diff with a wrapped line.

2. The whale picture added in Listing 10.1 (Figure 10.1) requires attribution under
the Creative Commons Attribution-NoDerivs 2.0 Generic license. As Alice, link
the image to the original attribution page, as shown in Listing 11.1. Commit the
result and push to GitHub.

3. As Bob, pull in the changes from the previous exercise. Verify by refreshing the
browser and by running git log -p that Bob’s repo has been properly updated.

268 Chapter 11: Collaborating

Listing 11.1: Linking to the whale image’s attribution page.
~/repos/website/index.html

.

.

.

.
.
.

Figure 11.9: Linking the Git tutorial title on the About page.

11.2 Pulling and Merge Conflicts 269

Figure 11.10: Using a new terminal tab for the original directory.

11.2 Pulling and Merge Conflicts
In Section 11.1, Alice didn’t make any changes while Bob was making his commit, so
there was no chance of conflict, but this is not always the case. In particular, when two
collaborators edit the same file, it is possible that the changes might be irreconcilable.
Git is pretty smart about merging in changes, and in general conflicts are surprisingly
rare, but it’s important to be able to handle them when they occur. In this section,
we’ll consider both non-conflicting and conflicting changes in turn.

270 Chapter 11: Collaborating

11.2.1 Non-conflicting Changes

We’ll start by having Alice and Bob make non-conflicting changes in the same file. Sup-
pose Alice decides to change the top-level heading on the About page from “About”
to “About Us”, as shown in Listing 11.2.

Listing 11.2: Alice’s change to the About page’s h1.
~/repos/website/about.html

<!DOCTYPE html>
<html>

.

.

.
<h1>About Us</h1>

.

.

.
</body>

</html>

After making this change, Alice commits and pushes as usual:

[website (main)]$ git commit -am "Change page heading"
[website (main)]$ git push

Meanwhile, Bob decides to add a new image (Figure 11.11)4 to the About page.
He first downloads it with curl as follows:

4. Image courtesy of Vaclav Sebek/Shutterstock.

11.2 Pulling and Merge Conflicts 271

Figure 11.11: An image for Bob to add to the About page.

[website-copy (main)]$ curl -o images/polar_bear.jpg \
> -L https://cdn.learnenough.com/polar_bear.jpg

(As noted in Section 10.1, you should type the backslash character \ but you shouldn’t
type the literal angle bracket >.) He then adds it to about.html using the img tag, as
shown in Listing 11.3, with the result shown in Figure 11.12.

272 Chapter 11: Collaborating

Listing 11.3: Adding an image to the About page.
~/tmp/website-copy/about.html

<!DOCTYPE html>
<html>

.

.

.

</body>
</html>

Note that Bob has included an alt attribute in Listing 11.3, which is a text alternative
to the image. The alt attribute is actually required by the HTML5 standard, and
including it is a good practice because it’s used by web spiders and by screen readers
for the visually impaired.

Figure 11.12: The About page with an added image.

11.2 Pulling and Merge Conflicts 273

Having made his change, Bob commits as usual:

[website-copy (main)]$ git add -A
[website-copy (main)]$ git commit -m "Add an image"

When he tries to push, though, something unexpected happens, as shown in
Listing 11.4.

Listing 11.4: Bob’s push, rejected.

[website-copy (main)]$ git push
To https://github.com/mhartl/website.git
! [rejected] main -> main (fetch first)

error: failed to push some refs to 'https://github.com/mhartl/website.git'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Because of the changes Alice already pushed, Git won’t let Bob’s push go through:
As indicated by the first highlighted line in Listing 11.4, the push was rejected by
GitHub. As indicated by the second highlighted line, the solution to this is for Bob
to pull:

[website-copy (main)]$ git pull

274 Chapter 11: Collaborating

Even though Alice made changes to about.html, there is no conflict because Git fig-
ures out how to combine the diffs. In particular, git pull brings in the changes from
the remote repo and uses merge to combine them automatically, adding the option to
add a commit message by dropping Bob into the default editor, which on most sys-
tems is Vim (Figure 11.13). (This is just one of many reasons why Learn Enough Text
Editor to Be Dangerous (https://www.learnenough.com/text-editor) covers Minimum
Viable Vim (Section 5.1).) To get the merge to go through, you can simply quit out
of Vim using :q.

We can confirm that this worked by checking the log, which shows both the
merge commit and Alice’s commit from the original copy (Listing 11.5).

Figure 11.13: The default editor for merging from a git pull.

https://www.learnenough.com/text-editor

11.2 Pulling and Merge Conflicts 275

Listing 11.5: The Git log after Bob merges in Alice’s changes. (Exact results will differ.)

[website-copy (main)]$ git log
commit 679afb8771b1893a865c3775a2786390a936db26 (HEAD -> main)
Merge: 7a69702 baafb1b
Author: Michael Hartl <michael@michaelhartl.com>
Date: Thu Apr 1 12:28:00 2021 -0700

Merge branch 'main' of https://github.com/mhartl/website

commit 7a6970229233346ce10cfefb3ace91b1d37c4cb2
Author: Michael Hartl <michael@michaelhartl.com>
Date: Thu Apr 1 12:26:26 2021 -0700

Add an image

commit baafb1bd473d553f1532267edfbbf09faf813bf2 (origin/main, origin/HEAD)
Author: Michael Hartl <michael@michaelhartl.com>
Date: Thu Apr 1 12:25:18 2021 -0700

Change page heading

If Bob now pushes, it should go through as expected:

$ git push

This puts Bob’s changes on the remote repo, which means Alice can pull them in:

mailto:michael@michaelhartl.com
https://github.com/mhartl/website
mailto:michael@michaelhartl.com
mailto:michael@michaelhartl.com

276 Chapter 11: Collaborating

$ git pull

Alice can confirm that her repo now includes Bob’s changes by inspecting the Git log,
which should match the results you got in Listing 11.5. Meanwhile, she can refresh
her browser to see Bob’s cool new ursine addition (Figure 11.14).

11.2.2 Conflicting Changes

Even though Git’s merge algorithms can often figure out how to combine changes
from different collaborators, sometimes there’s no avoiding a conflict. For example,
suppose both Alice and Bob notice that the required alt attribute is missing from the
whale image included in Listing 10.1 and decide to correct the issue by adding one.

Figure 11.14: Confirming that Alice’s repo includes Bob’s added image.

11.2 Pulling and Merge Conflicts 277

First, Alice adds the alt attribute “Breaching whale” (Listing 11.6).

Listing 11.6: Alice’s image alt.
~/repos/website/index.html

<!DOCTYPE html>
<html>

.

.

.

</body>

</html>

She then commits and pushes her change:5

[website (main)]$ git commit -am "Add necessary image alt"
[website (main)]$ git push

5. Listing 11.6 and Listing 11.7 include the attribution link added in the Section 11.1.1 exercises.

278 Chapter 11: Collaborating

Listing 11.7: Bob’s image alt.
~/tmp/website-copy/index.html

<!DOCTYPE html>
<html>

.

.

.

</body>

</html>

Meanwhile, Bob adds his own alt attribute, “Whale” (Listing 11.7), and commits
his change:

[website-copy (main)]$ git commit -am "Add an alt attribute"

If Bob tries to push, he’ll be met with the same rejection message shown in
Listing 11.4, which means he should pull—but that comes at a cost:

[website-copy (main)]$ git pull

remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 2), reused 3 (delta 2), pack-reused 0
Unpacking objects: 100% (3/3), 415 bytes | 207.00 KiB/s, done.
From https://github.com/mhartl/website

679afb8..81c190a main -> origin/main
Auto-merging index.html

https://github.com/mhartl/website

11.2 Pulling and Merge Conflicts 279

CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the result.
[website-copy (main|MERGING)]$

As indicated in the second highlighted line, Git has detected a merge conflict from
Bob’s pull, and his working copy has been put into a special branch state called
main|MERGING.

Bob can see the effect of this conflict by viewing index.html in his text editor,
as shown in Figure 11.15. Supposing Bob prefers Alice’s more descriptive alt text, he
can resolve the conflict by deleting all but the line with alt="Breaching whale", as
seen in Figure 11.16. (In fact, as seen in Figure 11.15, Atom includes two “Use me”
buttons to make it easy to pick one of the options. Clicking on the bottom “Use me”
button gives the same result shown in Figure 11.16.)

After saving the file, Bob can commit his change, which causes the prompt to
revert back to displaying the main branch, and at that point he’s ready to push:

[website-copy (main|MERGING)]$ git commit -am "Use longer alt attribute"
[website-copy (main)]$ git push

Alice’s and Bob’s repos now have the same content, but it’s still a good idea for Alice
to pull in Bob’s merge commit:

[website (main)]$ git pull

Because of the potential for conflict, it’s a good idea to do a git pull before
making any changes on a project with multiple collaborators (or even just being edited
by the same person on different machines). Even then, on a long enough timeline
some conflicts are inevitable, and with the techniques in this section you’re now in a
position to handle them.

280 Chapter 11: Collaborating

Figure 11.15: A file with a merge conflict.

11.2.3 Exercises

1. Change your default Git editor from Vim to Atom. Hint: Google for it. (This is
an absolutely classic application of technical sophistication (Box 8.2): With a well-
chosen Google search, you can often go from “I have no idea how to do this” to
“It’s done” in under 30 seconds.)

2. The polar bear picture added in Listing 11.3 (Figure 11.11) requires attribution
under the Creative Commons Attribution 2.0 Generic license. As Alice, link the
image to the original attribution page, as shown in Listing 11.8. Then run git
commit -a without including -m and a command-line message. This should drop
you into the default Git editor. Quit the editor without including a message, which
cancels the commit.

11.2 Pulling and Merge Conflicts 281

Figure 11.16: The HTML file edited to remove the merge conflict.

3. Run git commit -a again, but this time add the commit message “Add polar
bear attribution link”. Then hit return a couple of times and add a longer message
of your choice. (One example appears in Figure 11.17.) Save the message and exit
the editor.

4. Run git log to confirm that both the short and longer messages correctly appear.
After pushing the changes to GitHub, navigate to the page for the commit to
confirm that both the short and longer messages correctly appear.

5. As Bob, pull in the changes to the About page. Verify by refreshing the browser
and by running git log -p that Bob’s repo has been properly updated.

282 Chapter 11: Collaborating

Figure 11.17: Adding a longer message in a text editor.

Listing 11.8: Linking to the polar bear image’s attribution page.
~/repos/website/about.html

.

.

.

.
.
.

11.3 Pushing Branches 283

11.3 Pushing Branches
In this section, we’ll apply our newfound collaboration skills to get Alice to request a
bugfix from Bob, who will make the correction and then share the result with Alice.
In the process, we’ll learn how to collaborate on branches other than main, thereby
applying the material from Section 10.3 as well.

Recall from Section 10.3 that the trademark character ™ is currently broken on
the About page (Figure 10.7). Alice suspects the fix for this involves adding some
markup to the HTML template for the website’s pages, but she’s already agreed to
attend a tea party (Figure 11.18),6 so she only has time to add a couple of HTML
comments requesting for Bob to add the relevant fix, as shown in Listing 11.9 and
Listing 11.10. (We’ll cover HTML comments further in Learn Enough HTML to Be
Dangerous (https://www.learnenough.com/html).)

Figure 11.18: Alice has a tea party to attend and so asks Bob to fix the website.

6. Alice’s Adventures in Wonderland original illustrations by John Tenniel. Image courtesy of The History
Collection / Alamy Stock Photo.

https://www.learnenough.com/html

284 Chapter 11: Collaborating

Listing 11.9: A stub for the fix to the ™ problem.
~/repos/website/about.html

<!DOCTYPE html>
<html>
<head>

<title>About Us</title>
<!-- Add something here to fix trademark -->

</head>
.
.
.

</html>

Listing 11.10: A stub to add the ™ fix to the index page.
~/repos/website/index.html

<!DOCTYPE html>
<html>
<head>

<title>A whale of a greeting</title>
<!-- Add something here to fix trademark -->

</head>
.
.
.

</html>

Notice that Alice has wisely asked Bob to fix the index page as well (Listing 11.10)
even though the current error only occurs on the About page. This way, any ™
or similar characters added to index.html will automatically work in the future.
(As noted in Section 10.3, having to make such changes in multiple places is
annoying, and it’s also brittle and error-prone. The correct solution is to use tem-
plates, which we’ll cover starting in Learn Enough CSS & Layout to Be Dangerous
(https://www.learnenough.com/css-and-layout).)

https://www.learnenough.com/css-and-layout

11.3 Pushing Branches 285

Alice has decided to follow a common convention and use a separate branch for
the bugfix, which in this case she calls fix-trademark:

[website (main)]$ git checkout -b fix-trademark
[website (fix-trademark)]$

This shows something important: It’s possible to make changes to the working direc-
tory (in this case, the additions from Listing 11.9 and Listing 11.10) before creating a
new branch, as long as those changes haven’t yet been committed.

Having made the new branch for the fix, Alice can make a commit and push up
the branch using git push:

[website (fix-trademark)]$ git commit -am "Add placeholders for the TM fix"
[website (fix-trademark)]$ git push -u origin fix-trademark

Here Alice has used exactly the same push syntax used in Listing 9.1 to push the repo
up to GitHub in the first place, with fix-trademark in place of main.

If Alice sends Bob a note before she heads off to her tea party, Bob will know to
do a git pull to pull in Alice’s changes:

[website-copy (main)]$ git pull

remote: Enumerating objects: 7, done.
remote: Counting objects: 100% (7/7), done.
remote: Compressing objects: 100% (1/1), done.

286 Chapter 11: Collaborating

remote: Total 4 (delta 3), reused 4 (delta 3), pack-reused 0
Unpacking objects: 100% (4/4), 444 bytes | 148.00 KiB/s, done.
From https://github.com/mhartl/website
* [new branch] fix-trademark -> origin/fix-trademark

Already up to date.

Bob can check his local working directory for the fix-trademark branch that Alice
created and pushed, but it isn’t there:

[website-copy (main)]$ git branch
* main

The reason is that the branch is associated with the remote origin, and such
branches aren’t displayed by default. To see it, Bob can use the -a option (for “all”):7

[website-copy (main)]$ git branch -a
* main

remotes/origin/HEAD -> origin/main

remotes/origin/fix-trademark

remotes/origin/main

To start work on fix-trademark on his local copy, Bob just needs to check it out.
By using the same name (i.e., fix-trademark), he arranges for it to be associated
with the upstream branch on GitHub, which means that git push will automatically
push up his changes:

7. In fact, git branch --all works, but when using Git at the command line it’s more common to use
the short forms of the options.

11.3 Pushing Branches 287

[website-copy (main)]$ git checkout fix-trademark
Branch fix-trademark set up to track remote branch fix-trademark from origin.
Switched to a new branch 'fix-trademark'
[website-copy (fix-trademark)]$

At this point, Bob can diff against main to see what he’s dealing with:

[website-copy (fix-trademark)]$ git diff main
diff --git a/about.html b/about.html
index 173e5fe..4d4b780 100644
--- a/about.html
+++ b/about.html
@@ -2,6 +2,7 @@
<html>

<head>
<title>About Us</title>

+ <!-- Add something here to fix trademark -->
</head>
<body>
<h1>About Us</h1>

diff --git a/index.html b/index.html
index 024ada5..d8e946f 100644
--- a/index.html
+++ b/index.html
@@ -2,6 +2,7 @@
<html>

<head>
<title>A whale of a greeting</title>

+ <!-- Add something here to fix trademark -->
</head>
<body>
<h1>hello, world</h1>

Now all Bob has to do is actually implement the fix. If you’d like a challenging exercise
in technical sophistication, try Googling around to see if you can figure out what the
problem might be, and also how you might fix it. In case you’d like to do this, I’ll wait
here while you look…

All right, the problem is that the page doesn’t have the right character encoding to
display non-ASCII characters like ™, ®, or £. The fix involves using a tag called meta

288 Chapter 11: Collaborating

to tell browsers to use a character set (or charset for short) called UTF-8, which will
let our page display anything that’s part of the enormous set of Unicode characters.
The result, which you would not necessarily be able to guess, appears in Listing 11.11
and Listing 11.12.

Listing 11.11: A fix for the ™ problem.
~/tmp/website-copy/about.html

<!DOCTYPE html>
<html>
<head>

<title>About Us</title>
<meta charset="utf-8">

</head>
.
.
.

</html>

Listing 11.12: Adding the ™ fix to the index page.
~/tmp/website-copy/index.html

<!DOCTYPE html>
<html>
<head>

<title>A whale of a greeting</title>
<meta charset="utf-8">

</head>
.
.
.

</html>

Like the img tag introduced in Section 10.1, meta is a void element and so has no
closing tag.

11.3 Pushing Branches 289

Figure 11.19: Confirming a working trademark character.

Having made the change, Bob can confirm the fix by reloading the page in his
browser, as shown in Figure 11.19.

Confident that his solution is correct, Bob can now make a commit and push the
fix up to the remote server:

[website-copy (fix-trademark)]$ git commit -am "Fix trademark character display"
[website-copy (fix-trademark)]$ git push

290 Chapter 11: Collaborating

Figure 11.20: Bob’s reward for a job well-done.

With that, Bob sends a note to Alice that the fix is pushed, and heads out for some
well-deserved rest (Figure 11.20).8

Alice, now back from her tea party, gets Bob’s note and pulls in his fix:

[website (fix-trademark)]$ git pull

She refreshes her browser to confirm that the ™ character displays properly on her
end of things (Figure 11.21), and then merges the changes into main:

8. Image courtesy of Maxim Safronov/Shutterstock.

11.3 Pushing Branches 291

Figure 11.21: Reconfirming the trademark fix before merging.

[website (fix-trademark)]$ git checkout main
[website (main)]$ git merge fix-trademark
[website (main)]$ git push

With the final git push, Alice arranges for the remote main branch on GitHub to
get the fix. (Syncing up Bob’s main branch is left as an exercise (Section 11.3.1).)

Of course, git push publishes the change only to a remote Git repository.
Wouldn’t it be nice if there were a way to confirm that the ™ character—and the
rest of the website—displays correctly on the live Web?

292 Chapter 11: Collaborating

11.3.1 Exercises

1. Bob’s main branch doesn’t currently have Alice’s merge, so check out main as
Bob and do a git pull. Confirm using git log that Alice’s merge commit is
now present.

2. Delete the fix-trademark branch locally. Do you need to use the -D option
(Section 10.3.2), or is -d sufficient?

3. Delete the remote fix-trademark branch on GitHub. Hint: If you get stuck,
Google for it.

11.4 A Surprise Bonus
As hinted at the end of the last section, it would be nice to be able to confirm that
the new character encoding works on a live web page. But this requires knowing
how to deploy a live site to the Web, and that’s beyond the scope of a humble Git
tutorial, right? Amazingly, the answer is no. The reason is that GitHub offers a free
service called GitHub Pages, and any repository at GitHub containing static HTML is
automatically available as a live website.

There is one minor prerequisite to using GitHub Pages, which is that you have to
verify your email address with GitHub. Once you’ve done that, though, all you need
to do is configure your repository to use GitHub Pages on the main branch, which
you can do by going to the settings (Figure 11.22) and then selecting the main option
(Figure 11.23) and saving the changes (Figure 11.24).

That’s it! Our website is now available at the URL

https://<name>.github.io/website/

where <name> is your GitHub username. Since my username is mhartl, my copy of
this tutorial’s website is at mhartl.github.io/website/, as shown in Figure 11.25.

Note that the URL https://<name>.github.io/website/ automatically dis-
plays index.html, which is the usual convention on the Web: The index page is
understood to be the default, so there’s no need to type it in. This is not the case
with other pages, though, and if you follow the link to the About page you’ll see that
the filename appears in the address bar (Figure 11.26). As seen in Figure 11.27, the
trademark character ™ also renders correctly on the live website, just as we hoped it
would.

https://<name>.github.io/website/
http://mhartl.github.io/website/
https://<name>.github.io/website/

11.4 A Surprise Bonus 293

Figure 11.22: The settings for a GitHub repository.

Because static HTML pages by definition don’t change from one page view to the
next, GitHub can cache them efficiently, storing them for the next user who visits the
site. This makes GitHub Pages sites both fast and cheap to serve (which is why GitHub
can afford to offer them for free). You can even configure GitHub Pages to work
with a custom domain, letting you replace <name>.github.io with something like
www.example.com; see the free tutorial Learn Enough Custom Domains to Be Dangerous
(https://www.learnenough.com/custom-domains) to learn how to do it. This com-
bination of high performance and support for custom domains makes GitHub Pages
suitable for production websites—for example, the Learn Enough blog (https://news
.learnenough.com/) is a static website running on a custom domain at GitHub Pages.

The example website in this tutorial is really just a toy, but it’s a great start, and we’ll
build on this foundation to make a nearly industrial-grade website in Learn Enough
HTML to Be Dangerous and a fully industrial-grade site in Learn Enough CSS & Layout
to Be Dangerous.

http://www.example.com
https://www.learnenough.com/custom-domains
https://news.learnenough.com/
https://news.learnenough.com/

294 Chapter 11: Collaborating

Figure 11.23: Serving our website from the main branch.

11.4.1 Exercises

1. On the About page, add a link back to index.html. Commit and push your
change and verify that the link works on the production site.

2. As noted in Section 2.3, two of the most important Unix commands are mv
and rm. Git provides analogues of these commands, which have the same effect
on local files while also arranging to track the changes. Experiment with these
commands via the following sequence: Create a file with some lorem ipsum text,
add & commit it, rename it with git mv & commit, then remove it with git rm
& commit again. Examine the results of git log -p to see how Git handled the
operations.

11.5 Summary 295

Figure 11.24: Saving the new GitHub Pages settings.

3. To practice the process of making a new Git repository, make a second project
called second_website in the repos directory. Create an index.html file with
the content “hello, again!” and follow the steps (starting in Section 8.2) needed
to deploy it to the live Web.

4. Make a third, secret project called secret_project. Touch files called foo, bar,
and baz in the main project directory, and then follow the steps to initialize the
repository and commit the initial results. Then, to practice using a service other
than GitHub, create a free private repository at Bitbucket.

11.5 Summary
Important commands from this chapter are summarized in Table 11.1.

296 Chapter 11: Collaborating

Figure 11.25: A production website at GitHub Pages.

Figure 11.26: An explicit about.html in the address bar.

11.6 Advanced Setup
This section contains some optional advanced Git setup. The main features are adding
an alias for checking out branches, adding the branch name to the Unix prompt, and
enabling branch name tab completion. Following the steps in this section should be
within your capabilities if you completed Learn Enough Command Line to Be Dangerous
(https://www.learnenough.com/command-line) and Learn Enough Text Editor to Be
Dangerous, but they can be tricky, so use your technical sophistication (Box 8.2) if you

https://www.learnenough.com/command-line

11.6 Advanced Setup 297

Figure 11.27: The About page in production.

get stuck. If you’d rather skip these steps for now, you can proceed directly to the
conclusion (Section 11.7).

Note for Mac users: The instructions below assume you are using Bash, as described
in Box 2.3. To learn how to set up your Git system using Z shell instead, see the
Learn Enough blog post “Using Z Shell on Macs with the Learn Enough Tutorials”
(https://news.learnenough.com/macos-bash-zshell).

11.6.1 A Checkout Alias

In Chapter 8, we added global configuration settings for the name and email address
(Listing 8.3) to be included automatically when making commits. Now we’ll add a
third config setting, an alias to make it easier to check out branches.

https://news.learnenough.com/macos-bash-zshell

298 Chapter 11: Collaborating

Table 11.1: Important commands from Chapter 11.
Command Description Example

git clone <URL> Copy repo (incl. full history)
to local disk

$ git clone https://
ex.co/repo.git

git pull Pull in changes from remote
repository

$ git pull

git branch -a List all branches $ git branch -a
git checkout
 Check out remote branch

and configure for
$ git checkout fix-
trademark

Throughout this tutorial, we’ve used git checkout to check out branches (e.g.,
Listing 10.3), but most experienced Git users configure their systems to use the shorter
command git co.9 The way to do this is with a Git alias: Much as the Bash aliases
covered in Section 5.4 let us add commands to our Bash shell, Git aliases let us add
commands to our Git system. In particular, the way to add the co alias is to run the
command shown in Listing 11.13.

Listing 11.13: Adding an alias for git co.

$ git config --global alias.co checkout

In effect, this adds co as a new Git command, and running Listing 11.13 allows us to
replace checkout in commands like

$ git checkout main

with the more compact co command, as follows:

$ git co main

For maximum compatibility with systems that don’t have co configured, this tutorial
has always used the full checkout command, but in real life I nearly always use git co.

9. This choice is no doubt influenced by the analogous command svn co used by Subversion, one of Git’s
main predecessors.

https://ex.co/repo.git
https://ex.co/repo.git

11.6 Advanced Setup 299

11.6.2 Prompt Branches and Tab Completion

In this section, we’ll add two final advanced customizations. First, we’ll arrange for the
command-line prompt to include the name of the current branch. Second, we’ll add
the ability to fill in Git branch names using tab completion (Box 2.4), which is especially
convenient when dealing with longer branch names. Both of these features come as
shell scripts with the Git source code distribution, which can be downloaded as shown
in Listing 11.14.

Listing 11.14: Downloading scripts for branch display and tab completion.

$ curl -o ~/.git-prompt.sh -L https://cdn.learnenough.com/git-prompt.sh
$ curl -o ~/.git-completion.bash \
> -L https://cdn.learnenough.com/git-completion.bash

Here the -o flag arranges to save the files locally under slightly different names from
the ones on the server, prepending a dot . so that the files are hidden (Section 2.2.1)
and saving them in the home directory ~.

After downloading the scripts as in Listing 11.14, on some systems we need to
make them executable, which we can do with the chmod command (Section 7.3):

$ chmod +x ~/.git-prompt.sh
$ chmod +x ~/.git-completion.bash

Next, we need to tell the shell about the new commands, so open up the Bash
profile file in your favorite editor (which for simplicity I’ll assume is Atom):

$ atom ~/.bashrc

Then add the configuration shown in Listing 11.15 to the bottom of the file. Also,
make sure to delete any other lines starting with PS1 (which you’ll have to do if you
modified .bashrc as shown in Listing 6.6).

https://cdn.learnenough.com/git-prompt.sh
https://cdn.learnenough.com/git-completion.bash

300 Chapter 11: Collaborating

Listing 11.15: Adding Git configuration to Bash.
~/.bashrc

.

.

.
Git configuration
Branch name in prompt
source ~/.git-prompt.sh
PS1='[\W$(__git_ps1 " (%s)")]\$ '
export PROMPT_COMMAND='echo -ne "\033]0;${PWD/#$HOME/~}\007"'
Tab completion for branch names
source ~/.git-completion.bash

Note: The vertical dots in Listing 11.15 indicate omitted content and should not be
copied literally. This is the sort of thing you can figure out using your technical sophis-
tication (Box 8.2). Speaking of which, I have hardly any idea of what most of the
code in Listing 11.15 means; part of having technical sophistication means being able
to copy things from the Internet and getting them to work even when you have no
idea what you’re doing (Figure 11.2810).

Once we’ve saved the result of editing .bashrc, we have to source it to make the
changes active (as seen in Listing 5.5):

$ source ~/.bashrc

At this point, the prompt for a Git repository’s default main branch should look
something like this:

[website (main)]$

If you skipped ahead from Section 8.1 to complete this section, you’ll have to wait
until Section 8.2 to see this effect. Checking that tab completion is working is left as
an exercise (Section 11.6.3).

11.6.3 Exercises

1. Create a branch called really-long-branch-name using git co -b.

2. Switch back to the main branch using git co.

10. Image courtesy of Adam Frank/Shutterstock.

11.6 Advanced Setup 301

Figure 11.28: It’s OK—neither does anyone else.

3. Check out the branch really-long-branch-name using tab completion by
typing git checkout r at the command-line prompt.

4. What does your prompt look like? Verify that the correct branch name appears
in the prompt.

5. Check out the main branch using git co m . (This shows that tab completion
works with the co alias set up in Listing 11.13.) What does the prompt look like
now?

6. Use git branch -d r to delete really-long-branch-name, thus verifying
that tab completion works with git branch as well as with git checkout. (In
fact, tab completion works with most relevant Git commands.)

302 Chapter 11: Collaborating

11.7 Conclusion
Congratulations! You now know enough Git to be dangerous—which means, with
Part I and Part II, you know enough developer tools to be dangerous as well.

There’s a lot more to learn, and if you continue down this technical path you’ll
keep getting better at using Git for years to come, but with the material in this tutorial
you’ve got a great start. For now, you’re probably best off working with what you’ve
got, applying your technical sophistication (Box 8.2) when necessary. Once you’ve
gotten a little more experience under your belt, I recommend seeking out additional
resources. Here are some suggestions for getting started:

• Pro Git by Scott Chacon and Ben Straub (https://git-scm.com/book/en/v2)

• Learn Git at Codecademy (https://www.codecademy.com/learn/learn-git)

• Git tutorials (https://www.atlassian.com/git/tutorials) by Atlassian (makers of
Bitbucket)

• Tower Git tutorials (https://www.git-tower.com/learn/)

At this point, you are in an excellent position to collaborate with millions of
software developers around the world. You are also well on your way to becoming
a developer yourself. Regardless of your ultimate goals, you can continue improving
your dev skills with the rest of the core Learn Enough sequence:

1. Learn Enough Developer Tools to Be Dangerous
(a) Part I: Learn Enough Command Line to Be Dangerous

(b) Part II: Learn Enough Text Editor to Be Dangerous

(c) Part III: Learn Enough Git to Be Dangerous (you are here)

2. Web Basics
(a) Learn Enough HTML to Be Dangerous (https://www.learnenough.com

/html)

(b) Learn Enough CSS & Layout to Be Dangerous (https://www.learnenough.com
/css-and-layout)

(c) Learn Enough JavaScript to Be Dangerous (https://www.learnenough.com
/javascript)

3. Application Development
(a) Learn Enough Ruby to Be Dangerous (https://www.learnenough.com/ruby)

(b) Ruby on Rails Tutorial (https://www.railstutorial.org/)

https://git-scm.com/book/en/v2
https://www.codecademy.com/learn/learn-git
https://www.atlassian.com/git/tutorials
https://www.git-tower.com/learn/
https://www.learnenough.com/html
https://www.learnenough.com/html
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/javascript
https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.railstutorial.org/

11.7 Conclusion 303

(c) Learn Enough Action Cable to Be Dangerous (https://www.learnenough.com
/action-cable) (optional)

Good luck!

https://www.learnenough.com/action-cable
https://www.learnenough.com/action-cable

This page intentionally left blank

Index

Symbols
* (star), 32
^ (Ctrl), 20
> (angle bracket), 236, 271
\ (backslash), 236, 271
>: (redirect) operator, 27
>> (append) operator, 27
80-column limit, 164–165

A
About pages, 243

adding images to, 271, 272
links to, 246
opening, 245
soft wraps, 266

absolute paths, 61
access, personal access tokens, 225
accounts, GitHub, 221–222. See also GitHub
adding

collaborators, 262
commit messages, 215, 219
HTML tags, 210–215
images, 235–240, 271, 272
indented lines, 161
links to About pages, 246
paragraphs (HTML), 216
README files, 227–233
repositories to GitHub, 221, 222–227 (see

also GitHub)

structures (HTML), 216–220
tags (HTML), 214

advanced text editing, 145. See also text editors
alerts, macOS terminal, 6
algorithms, SHAs (Secure Hash Algorithms),

207, 255
aliases, defining, 94
alt attributes, 272, 276
Amazon Web Services. See AWS (Amazon Web

Services)
anchor tags, 246
Android, 5
angle bracket (>), 236, 271
appending files, 26–29
append (>>) operator, 27
applications

categories of, 197
developing, 10
Rails Tutorial (Atom), 176
types of, 306
version control, 197

applying
GitHub Pages, 292–294
multiple panes, 179–181
tab triggers, 151
technical sophistication, 222

arguments, 8
Atom, 82, 88, 103

80-column limit, 164–165

323

324 Index

dedenting lines, 163, 164
highlighting syntax, 111–113
installing shell commands, 107
navigating, 117–119
opening files, 118
opening HTML files, 212
previewing markdown, 113–114, 115
Rails Tutorial, 176
README files, 230
Ruby programs in, 154
selecting, 105
selecting documents, 124–125, 126
starting, 106–114

autocomplete, 145–147
cross-references, 146, 147

automating common tasks, 166. See also scripts
AWS (Amazon Web Services), 308, 309

B
backslash (\), 236, 271
bar, 31, 32
Bash, 90. See also scripts

export command, 172
profiles, 95
quitting files, 92
saving files, 137
switching macOS to, 35–36

bash shell, 70
baz, 31, 32
body tags (HTML), 216
boldface text, 79, 81, 245
branching, 243–251

formatting, 285
names (Git), 202, 203, 243
pushing branches, 283–292
rebasing, 251

browsers, consistent behavior across, 247

C
caches, 226, 293
caret (^), 20
case-sensitivity

grepping, 53, 95
less programs, 100

cat command, 27
viewing files, 28

cd command, 65, 66, 68
characters

confirming, 289, 292–294
encoding, 287
non-ASCII, 287
printing, 10

checkout command, 249, 254
cleaning up command lines, 23
clear command, 23
CLIs (command-line interfaces), 5
cloning, 261–266
closing tags (HTML), 213
Cloud9, 103, 308, 309, 310. See also modern

text editors
customizing, 188–191
highlighting syntax, 111–113
IDE (integrated development environment),

107
navigating filesystems, 110
previewing markdown, 113–114
starting, 106–114
word wrap, 112, 113, 114

code. See also source code
80-column limit, 164–165
commenting out, 155–156
dedenting, 156–164
goto line number, 164
hello world, 153
highlighting syntax, 153–155
indenting, 156–164
snippets, 188
writing, 152–166

collaboration, 201, 202, 259
adding collaborators, 262
cloning, 261–266
conflicting changes, 276–280
conflicts, 269–282
non-conflicting changes, 270–276
push, pull, clone, 260–266
pushing branches, 283–292
version control, 198 (see also version control)

columns, 80-column limit, 164–165
combining commands, 69
command line

cleaning up, 23

Index 325

commands, 5
editing, 20–23
man pages, 15–20
mathematics, 18–19
overview of, 3–6
running terminals, 6–10
tab completion, 37–38
troubleshooting, 14–15
writing commands, 10–15
Xcode command-line tools, 314

command-line interfaces. See CLIs
(command-line interfaces)

commands, 5, 8
cat, 27
cd, 65, 66, 68
checkout, 249, 254
clear, 23
combining, 69
cp, 36
curl, 106
diff, 28-29, 208–209
echo, 10, 19, 23, 26, 28, 253
ekill (escalating kill), 168, 169, 170, 171,

173
exit, 23
export, 172
find, 68
formatting, 38–39
Git, 200 (see also Git)
git add, 205
git commit, 206, 208
git status, 205, 206
grep, 52–58, 68, 73
head, 46–48
installing shell commands (Atom), 107
kill, 167
less, 51
lr, 94
ls, 29–34
man, 16 (see also man pages)
mkdir, 64–66
Most Important Vim Command, 87-88, 92
mv, 36, 39
navigating, 99
open, 68

patterns, 11
pwd, 65
redirecting, 47
Redo, 134
rehash, 320
repeating previous, 44–45
rm, 38
rmdir, 71, 72
rm -rf, 72
search (/), 100
source, 95
ssh (secure shell), 6
starting, 10
sudo, 63
tail, 46–48
touch, 31
Undo, 134
Unix, 6
unzip, 175
vim, 85, 90
which, 43, 321
writing, 10–15
x, 96, 97

commenting out code, 155–156
commit messages, 206, 215, 219. See also

committing
commit rights, 259
committing

files, 235–245
repositories, 204–207, 210

common tasks, automating, 166. See also scripts
computers, 3

learning jargon, 25–26
configuring

autocomplete, 145–147
commands, 38–39
development environments, 306, 307
directories, 64–66
files, 32
.gemrc files, 320
Git, 200–202
GitHub, 293
global configuration settings, 201
ignoring files, 241–243
prompts, 9

326 Index

remote repositories, 222–227
tab triggers, 147–152

confirming
characters, 289, 292–294
files, 239, 253, 276

conflicts. See also errors
conflicting changes, 276–280
deleting lines, 279
merging, 269–282
non-conflicting changes, 270–276
pulling, 269–282

content, deleting, 96–97
converting Markdown, 113
copying

commands, 223
Cut/Copy/Paste menu items, 127–132
directories, 70–74
files, 35–39
Jumpcut, 128–132
projects, 221 (see also GitHub)

cp command, 36
credentials, 226
cross-references, 146

autocomplete, 146, 147
Ctrl (^), 20
curl program, 43, 44
customizing

domains, 293
escalating kill scripts, 168
prompts, 138
tab triggers, 149, 150
text editors, 188–191

Cut/Copy/Paste menu items, 127–132
cutting

Cut/Copy/Paste menu items, 127–132
Jumpcut, 128–132

D
debugging, 156

goto line number, 164
dedenting, 156–164
defaults, terminal prompts, 138
define statements, 149
defining tab triggers, 149, 150
def tab trigger, 153

Delete command, 134
deleting

directories, 70–74
files, 35–39
lines, 98, 279
text, 132–135

detecting file types, 171
developing web applications, 10
development environments, 305

cloud IDEs, 307–312
native OS setup, 312–322
options, 306–307

diff command, 28, 208–209
directories, 61. See also files

adding files to, 235
copying, 70–74
creating, 64–66
deleting, 70–74
listing, 30
modifying, 65, 67, 204
moving, 70–74
navigating, 66–70
renaming, 70–74
structures, 61–64
temp, 262
text_files, 71
untracked, 239

displaying. See viewing
documents

editing, 79 (see also text editors)
pasting multiple times, 133
selecting, 124–125, 126

domains, customizing, 293
downloading

files, 43–46
long files, 96

E
echo command, 10, 16, 19, 23, 26, 28, 253
editing

autocomplete, 145–147
command lines, 20–23
fuzzy opening, 176–179
global find and replace, 181–187
HTML (Hypertext Markup Language), 148

Index 327

large files, 97–101
moving windows, 264
projects, 175–188
small files, 89–91
splitting into multiple panes, 179–181
tab triggers, 147–152
text editors, 15, 79–84 (see also text editors)
text in Microsoft Word, 82

ekill (escalating kill) command, 168, 169, 170,
171, 173

elements
of dev environments, 306
void, 236

Emacs, 88
emphasis, text, 80, 81
emulated tabs, 156
encoding characters, 287
ending commands, 12
environment variables, 172
errors, 73

goto line number, 164
recovery, 252–258
syntax highlighting, 155

ESC (escape key), 91, 93, 94
escalating kill scripts, 167, 168, 169, 173
executable scripts

searching, 169
writing, 166–175

exit command, 23
export command, 172
expressions, regular (regexes), 53, 184

F
files

adding to directories, 235
appending, 26–29
committing, 235–245
confirming, 239, 253, 276
conflicts, 270–286 (see also conflicts)
copying, 35–39
creating, 32
deleting, 35–39, 96–97
detecting file types, 171
downloading, 43–46, 96
editing, 97–101

editing small, 89–91
fuzzy opening, 176–179
.gemrc, 320
hidden, 33–34
hierarchies, 61 (see also directories)
ignoring, 241–243
listing, 29–34
modifying, 25–26, 208
modifying system files, 61
moving to end of, 121
opening, 106–114, 118
opening in multiple panes, 182
previewing, 230
quitting, 91–96
README, 227–233
redirecting, 26–29
renaming, 35–39
saving, 91–96, 135–138
searching, 73
temporary, 242
tools, 49–52
unstaged, 205
untracked, 205, 239
viewing, 28, 43, 100 (see also viewing)
viewing HTML, 213
word wrap, 108, 109, 110, 111

filesystems, navigating, 108, 109, 110
find command, 68
finding

clone URLs, 263
global find and replace, 181–187
regexes (regular expressions), 185, 186
results, 183
strings, 140
text, 138–143

Find menu, 138
flags, 9. See also options
folders, 30. See also directories; files

directories, 61
files, 32

foo, 31, 32
forcing file quits, 93
forking, 259
formatting. See also configuring

80-column limit, 164–165

328 Index

autocomplete, 145–147
branching, 285
commands, 38–39
dedenting, 156–164
development environments, 306, 307
directories, 64–66
executable scripts, 166–175
files, 32
functions, 149
goto line number, 164
highlighting syntax, 153–155
indenting, 156–164
new work environments, 311
prompts, 9
remote repositories, 222–227
tab triggers, 147–152
tags, 245
top-level headings (HTML), 211, 213

functions
arguments of, 8
formatting, 149

fuzzy opening, 106, 176–179, 245

G
.gemrc files, 320
Git, 198

adding structures (HTML), 216–220
adding tags (HTML), 210–215
branching, 243–251
branch names, 202, 203
collaboration, 259 (see also collaboration)
commands, 200
committing repositories (repo), 204–207, 210
conflicts, 269–282
error recovery, 252–258
ignoring files, 241–243
initializing repositories (repo), 203–204
installing, 200–202
logs, 274, 275
upgrading, 201, 310
viewing diff, 208–209
viewing SHAs (Secure Hash Algorithms),

255
workflow, 235 (see also workflow)

git add command, 205
git commit command, 206, 208

GitHub, 221
adding README files, 227–233
configuring, 293
creating remote repositories, 222–227
passwords, 226
security, 225
settings, 293
starting, 221–222
templates, 224

GitHub Pages, 292–294
git status command, 205, 206
global configuration settings, 201
grep command, 68, 73
grepping, case-sensitivity, 53, 95
groups, match, 184, 187

H
hashes, 207

SHAs (Secure Hash Algorithms), 255
head command, 46–48
head tags (HTML), 216
hidden files, 33–34
hierarchies

files, 61 (see also directories)
navigating, 65–70

highlighting syntax, 111–113, 153–155, 170,
171

history, version control, 198, 199. See also
version control

holy wars, 88
Homebrew package manager, 316–317
home directories, 62
HTML (Hypertext Markup Language), 81

About pages, 243
adding tags, 210–215, 214
anchor tags, 246
confirming characters, 292–294
converting Markdown, 113
editing, 148
opening, 212
structures, 216–220
tags, 236
templates, 283, 284
top-level headings, 211, 213
viewing, 213

Index 329

HTTP (HyperText Transfer Protocol), 226
Hypertext Markup Language. See HTML

(Hypertext Markup Language)
hypertext references, 246
HyperText Transfer Protocol. See HTTP

(HyperText Transfer Protocol)

I
Identity and Access Management (IAM), 309
IDEs (integrated development environments),

82, 83, 107, 200, 201
cloud IDEs, 307–312
native OS setup, 312–322
options, 306–307
starting, 307, 308, 309

ignoring files, 241–243
images

adding, 235–240, 271, 272
sources, 237
tags, 236

indenting, 156–164
initializing

rbenv, 318
repositories (repo), 203

inserting text, 90, 91. See also adding
insertion mode, 87
installing

Git, 200–202
Homebrew, 316–317
iTerm, 313, 314
rbenv, 317
Ruby, 316, 317–320, 319
shell commands (Atom), 107
Xcode command-line tools, 314

integrated development environment. See IDE
interfaces

CLIs (command-line interfaces), 5
man pages, 16

iOS, 5
italicized text, 245
iTerm, installing, 313, 314

J
jargon, learning, 25–26
Jargon File, 88
Jumpcut, 128–132

K
keyboards

Cut/Copy/Paste menu items, 127, 128
shortcuts, 23, 134, 138, 144
symbols, 21, 104

kill command, 167

L
labels, 146
languages

Python, 159 (see also Python)
Ruby, 152 (see also Ruby;

source code)
large files, editing, 97–101
launching. See starting
less commands, 51
less program, 16, 49–52, 100
limits, 80-column, 164–165
lines

adding, 161
commenting out, 156–164
deleting, 98, 279
selecting multiple, 124
selecting single, 123–124
word wrap, 108, 109, 110, 111

links
adding to About pages, 246
anchor tags, 246
image directories, 239
pasting, 130

Linux, 5, 83
Git (see Git)
running terminals, 7
setup, 321–322
terminal icons, 7

listing
directories, 30
files, 29–34

logs
Git, 275
viewing SHAs (Secure Hash Algorithms),

255
long files, downloading, 96
lr command, 94
ls command, 29–34

330 Index

M
macOS

Git (see Git)
Homebrew, 316–317
menu items, 13
Ruby, 317–320
running terminals, 6–7
setup, 313–321
switching to Bash, 35–36
terminal alerts, 6
Xcode command-line tools, 314

main branch, branching, 244
man command, running, 16
man man, running, 17–18
man pages, 15–20
Markdown

autocomplete, 145, 146
files, 106, 107, 112
previewing, 113–114, 115, 231
selecting links, 129
tab triggers, 147

match groups, 184, 187
matching

regular expressions, 186
text patterns, 184

mathematics, 18–19
menus

Cut/Copy/Paste menu items, 127–132
Find, 138
finding using, 139

merging, 243–251
conflicts, 269–282
non-conflicting changes, 270–276

messages
commit, 206, 219 (see also committing)
rejection, 278

meta, 287, 288
metasyntactic variables, 32
meta usage, 237
Microsoft Windows, 6, 83. See also Windows

Git (see Git)
setup, 322

Microsoft Word, editing text in, 82
Minimum Viable Vim editor, 84–89. See also

text editors

mixing tabs, 157
mkdir command, 64–66
models

collaboration, 259 (see also collaboration)
editors, 86, 87

modern text editors, 103–104
Cut/Copy/Paste menu items, 127–132
deleting text, 132–135
finding text, 138–143
highlighting syntax, 111–113
navigating, 117–119
previewing markdown, 113–114
replacing text, 138–143
saving files, 135–138
selecting text, 119–127
selecting text editors, 104–106
starting, 106–114
undoing text, 132–135

modes
insertion, 87
Vim editor, 87

modifying
collaboration, 265 (see also collaboration)
conflicting changes, 276–280
conflicts, 269–282
Cut/Copy/Paste menu items, 127–132
directories, 65, 67, 204
files, 25–26, 208
ls command, 33
non-conflicting changes, 270–276
system files, 61
windows, 116

more program, 49–52
Most Important Vim Command, 87, 89,

92
mouse

clicking/dragging, 123
moving, 120 (see also selecting text)

moving. See also navigating; selecting
Cut/Copy/Paste menu items, 127–132
directories, 70–74
downloading files, 43–46
to end of files, 121
files, 35–39
goto line number, 164

Index 331

mouse (see also selecting text)
windows, 264

multiple files, opening, 178
multiple lines, selecting, 124
multiple links, pasting, 130
multiple panes

opening files in, 182
splitting text editors into, 179–181

mv command, 36, 39

N
naming

branch names (Git), 202, 203, 243
directories, 70–74

native systems, 307
navigating

commands, 99–100
directories, 66–70
filesystems, 108, 109, 110
fuzzy opening, 176–179
goto line number, 164
modern text editors, 117–119

new work environments, creating, 311
non-ASCII characters, 287
non-conflicting changes, 270–276
normal mode, Vim editors, 87

O
online regex (regular expressions) builders, 55,

56
open command, 68
opening. See also starting

About pages, 245
files, 118
fuzzy opening, 106, 176–179, 245
HTML files, 212
multiple files, 178
in multiple panes, 182
projects, 175
tags (HTML), 213

operating systems, 5, 6
running terminals, 6–10
setup (see setup)

operators
append (>>), 27
redirect (>:), 27

options, 8
development environments, 306–307

OSs (operating systems), 307
native OS setup, 312–322

P
package control, 191
paragraphs (HTML), adding, 216
passwords, GitHub, 226
pasting

Cut/Copy/Paste menu items, 127–132
documents multiple times, 133
Jumpcut, 128–132
links, 130

paths
absolute, 61
relative, 71
system, 169

patterns
commands, 11
ls command, 32
text, 184

personal access tokens, 225
pipes, 47–48, 53
plain text, editing, 79. See also text editors
previewing, 116

files, 230
Markdown, 113–114, 115, 231

printing, 21
characters, 10

processes, 167
grepping, 52–58 (see also grepping)

profiles, Bash, 95
programming languages

Python, 159 (see also Python)
Ruby, 152 (see also Ruby; source code)

programs. See also applications; utilities
bash (Bourne Again SHell), 70
curl, 43, 44
Jumpcut, 128–132
less, 49–52, 100
more, 49–52
Rails Tutorial (Atom), 176
source code, 152–166 (see also source code)
version control, 197

332 Index

projects. See also files
copying, 221 (see also GitHub)
editing, 175–188 (see also editing; text

editors)
fuzzy opening, 176–179
global find and replace, 181–187
opening, 175
shipping, 228
splitting into multiple panes, 179–181
version control (see version control)

prompts, 8
customizing, 138
defaults, 138
defining, 9

protocols, HTTP (HyperText Transfer
Protocol), 226

pulling, 260–266
conflicts, 269–282
non-conflicting changes, 270–276

pull requests, 259
pushing, 222–224, 260–261, 260–266

branches, 283–292
rejections, 273

pwd command, 65
Python, 159

Q
quitting files, 91–96

R
Rails Tutorial (Atom), 176
rbenv

initializing, 318
installing, 317

README files, adding, 227–233
reconfirming fixes, 291. See also confirming;

conflicts
recovery, errors, 252–258
redirecting

commands, 47
files, 26–29

redirect (>:) operator, 27
Redo command, 134
references, hypertext, 246
regexes (regular expressions), 55, 184

matching, 186

searching, 53
rehash command, 320
rejection messages, 278
relative paths, 71
remote origin, 223, 286
remote repositories, 221, 222–227. See also

GitHub
renaming. See also naming

directories, 70–74
files, 35–39

repeating previous commands, 44–45
replacing

global find and replace, 181–187
regexes (regular expressions), 185, 186
text, 138–143

repositories, 200
adding README files, 227–233
adding to GitHub, 221, 222–227 (see also

GitHub)
collaboration, 259 (see also collaboration)
committing, 204–207, 210
initializing, 203–204
main, 244
pushing, 222–224, 260–261
upstream, 286

requests, pull, 259
restarting shell programs, 320. See also starting
results

finding, 183
pipes, 53
searching, 54, 183

rights, commit, 259
rm command, 38
rmdir command, 71, 72
rm -rf command, 72
roles of Unix, 6
root directories, 61, 62
Ruby

commenting out, 155–156
editing projects, 175–188
indenting/dedenting, 156–164
installing, 316, 317–320, 319
programs in Atom, 154
writing source code, 152–166 (see also source

code)

Index 333

Ruby on Rails, 242, 308
running

ls command, 31
Vim editor, 86

S
Save command, 135
saving files, 91–96, 135–138
scripts

ekill (escalating kill), 167, 168, 173
writing executable, 166–175

scrollbars. See also navigating
Sublime Text, 119

searching
executable scripts, 169
files, 73
global find and replace, 181–187
grepping, 52
regexes (regular expressions), 53, 185, 186
results, 54, 183
strings, 50
Sublime Text editor, 190

Secure Hash Algorithms. See SHAs (Secure
Hash Algorithms)

secure shell (ssh) command, 6
security

credentials, 226
GitHub, 225

selecting
Atom, 105
Cut/Copy/Paste menu items, 127–132
entire documents, 124–125, 126
multiple lines, 124
single lines, 123–124
single words, 122–123
Sublime Text editor, 104–105
text, 119–127
text editors, 104–106
VSCode, 105

self-closing tags, 236
settings. See configuring
setup. See also configuring; formatting

Git, 200–202
global configuration settings, 201
Linux, 321–322

macOS, 313–321
Microsoft Windows, 322
native OS setup, 312–322

SHAs (Secure Hash Algorithms), 207, 255
shells, 15

Bash, 70
installing commands (Atom), 107
restarting, 320
scripts, 166 (see also scripts)
switching macOS to Bash, 35–36
tab completion, 37–38

shipping projects, 228
shortcuts, keyboards, 23, 134, 138, 144
signup, GitHub, 221–222
single lines, selecting, 123–124
single words, selecting, 122–123
site templates, 245
small files, editing, 89–91
snippets, code, 188
Softcover, 242
soft wraps, 265, 266
source code

80-column limit, 164–165
commenting out, 155–156
dedenting, 156–164
goto line number, 164
hello world, 153
highlighting syntax, 153–155
indenting, 156–164
writing, 152–166

source command, 95
sources, images, 237
spaces, viewing, 156
splitting text editors into multiple panes,

179–181
Spotlight Search bars (macOS), 6
ssh (secure shell) command, 6
star (*), 32
starting

commands, 10
Git, 200–202
GitHub, 221–222
IDEs (integrated development

environments), 307, 308, 309
modern text editors, 106–114

334 Index

terminals, 6–10
Vim editor, 85–89

statements, define, 149
status, Git, 205, 206
Stephenson, Neal, 5
stopping

files, 91–96
on whitespace, 122

strings
finding, 140
searching, 50

structures
adding (HTML), 216–220
directories, 61–64
tree, 251

subdirectories, 72. See also directories
Sublime Text editor, 83, 88, 103. See also

modern text editors
navigating, 117–119
package control, 191
searching, 189
selecting, 104–105
selecting documents, 124–125, 126
starting, 106–114

sudo command, 62, 63
superusers, 61, 63
support, snippets, 188
symbols, keyboards, 21, 104
syncing branches, 251
syntax

highlighting, 111–113, 153–155, 170, 171
push, 285

system directories, 61
system files, modifying, 61
system paths, 169

T
tabs

completion, 37–38
emulated, 156
mixing, 157
terminal windows, 12
triggers, 145, 147–152, 149, 150, 151, 153

tags
adding HTML, 210–215, 214

anchor, 246
formatting, 245
HTML (Hypertext Markup Language),

236
images, 236
self-closing, 236

tail command, 46–48
technical sophistication, 83–84, 85, 198, 221,

222, 307
temp directories, 262
templates

GitHub, 224
HTML (Hypertext Markup Language), 283,

284
site, 245

temporary files, 242
terminal programs, macOS, 313–314
terminal prompts, defaults, 138
terminals

Linux, 7
macOS, 6–7
menu items, 13
running, 6–10
windows, 8–9, 12
Windows, 7–8

terseness, Unix, 56
text. See also files

boldface, 79, 81, 245
deleting, 132–135
finding, 138–143
inserting, 90, 91
italicized, 245
patterns, 184
replacing, 138–143
saving, 135–138
selecting, 119–127
single words, 122–123
undoing, 132–135
viewing, 46 (see also viewing)

text editors, 15, 79–84
autocomplete, 145–147
comparing to word processors, 81
customizing, 188–191
deleting content, 96–97
editing large files, 97–101

Index 335

editing projects, 175–188
editing small files, 89–91
global find and replace, 181–187
macOS, 313–314
Minimum Viable Vim, 84–89
model editors, 86, 87
modern, 103–104 (see also modern text

editors)
moving windows, 264
saving files, 91–96
searching, 190
selecting, 104–106
splitting into multiple panes, 179–181
tab triggers, 145, 147–152
Vim editor, 82
writing executable scripts, 166–175
writing source code, 152–166

text_files directory, 71
tokens, personal access, 225
tools, 3. See also commands; utilities

editing, 81 (see also text editors)
find, 68
grepping, 52–58
man pages, 15–20
software development, 306 (see also

development environments)
viewing, 49–52
Xcode command-line, 314

top-level headings (HTML), 211,
213

Torvalds, Linus, 199
touch command, 31
tracking version control, 198. See also version

control
tree structures, 251
triggers, tab, 145, 147–152, 153
troubleshooting

command line, 14–15
error recovery, 252–258

typeface, 80
types

of applications, 306
detecting file, 171
of directories, 61

typing. See writing

U
Ubuntu Servers, 312
Undo command, 134
undoing text, 132–135
Unix, 5

commands, 6, 46 (see also commands)
diff command, 28, 29
directories, 61–64 (see also directories)
error recovery, 253
formatting commands, 38–39
Git (see Git)
hidden files, 33–34
ls command, 29–34
mv command, 36, 39
processes, 167
rm command, 38
role of, 6
terseness, 38–39, 56
text editors, 87 (see also text editors)
tools, 49–52
touch command, 31
Unix tradition, 82
which command, 43

unstaged files, 205
untracked files, 205, 239
unzip command, 175
updating, 319
upgrading, 201, 310, 319
upstream repositories, 223, 286
URLs (Uniform Resource Locators), 43, 45,

247, 262, 263
user directories, 61
UTF-8, 288
utilities. See also commands

editing, 81 (see also text editors)
find, 68
grepping, 52–58
viewing, 49–52

V
variables

environment, 172
metasyntactic, 32

VCS (version control systems), 198. See also Git
version control, 197, 198. See also Git

336 Index

technical sophistication, 198
version control systems. See VCS
viewing

diff command, 208–209
files, 28, 43, 100
head command, 46–48
HTML (Hypertext Markup Language),

213
README files, 230
SHAs (Secure Hash Algorithms), 255
spaces, 156
splitting into multiple panes, 179–181
tab triggers, 149
tail command, 46–48
utilities, 49–52

vim command, 85, 90
Vim editor, 82, 84–89

modes, 87
running, 86
starting, 85–89
temporary files, 242

Visual Studio Code. See VSCode
void elements, 236
VSCode, 103. See also modern text editors

selecting, 105
starting, 106–114

W
web applications, developing, 10
websites, 292–294. See also HTML (Hypertext

Markup Language)
which command, 43, 321
whitespace, stopping on, 122
wildcard characters, * (star), 32

windows
finding/replacing, 139
modifying, 116
moving, 264
terminals, 8–9, 12

Windows. See Microsoft Windows
wordcount, 47–48
word processors, 87

comparing to text editors, 81
words, selecting single, 122–123
word wrap, 108, 109, 110, 111, 112, 113, 114
workflow, 235

adding images, 235–240
branching, 243–251
collaboration, 259 (see also collaboration)
error recovery, 252–258
ignoring files, 241–243

World Wide Web, 6
writing

80-column limit, 164–165
commands, 10–15
commenting out, 155–156
dedenting, 156–164
executable scripts, 166–175
goto line number, 164
highlighting syntax, 153–155
indenting, 156–164
source code, 152–166

WYSIWYG (What You See Is What You
Get), 81

X
Xcode command-line tools, 314
x command, 96, 97

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	About the Author
	Chapter 11 Collaborating
	11.1 Clone, Push, Pull
	11.1.1 Exercises

	11.2 Pulling and Merge Conflicts
	11.2.1 Non-conflicting Changes
	11.2.2 Conflicting Changes
	11.2.3 Exercises

	11.3 Pushing Branches
	11.3.1 Exercises

	11.4 A Surprise Bonus
	11.4.1 Exercises

	11.5 Summary
	11.6 Advanced Setup
	11.6.1 A Checkout Alias
	11.6.2 Prompt Branches and Tab Completion
	11.6.3 Exercises

	11.7 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

