
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137843107
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137843107
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137843107

Praise for Learn Enough Tutorials

“I have nothing but fantastic things to say about @LearnEnough courses. I am just
about finished with the #javascript course. I must say, the videos are mandatory because
@mhartl will play the novice, and share in the joy of having something you wrote
actually work!”

—Claudia Vizena

“I must say, this Learn Enough series is a masterpiece of education. Thank you for this
incredible work!”

—Michael King

“I want to thank you for the amazing job you have done with the tutorials. They are
likely the best tutorials I have ever read.”

—Pedro Iatzky

This page intentionally left blank

LEARN ENOUGH

HTML,CSS AND LAYOUT

TO BEDANGEROUS

The Learn Enough series teaches you the developer tools, Web technologies,

and programming skills needed to launch your own applications, get a job as a

programmer, and maybe even start a company of your own. Along the way, you’ll

learn technical sophistication, which is the ability to solve technical problems

yourself. And Learn Enough always focuses on the most important parts of each

subject, so you don’t have to learn everything to get started—you just have to

learn enough to be dangerous. The Learn Enough series includes books and

video courses so you get to choose the learning style that works best for you.

Visit informit.com/learn-enough for a complete list of available publications.

Learn Enough Series from
Michael Hartl

twitter.com/informIT

http://informit.com/learn-enough
http://twitter.com/informIT

LEARN ENOUGH

HTML,CSS AND LAYOUT

TO BEDANGEROUS

An Introduction to Modern Website
Creation and Templating Systems

Lee Donahoe
Michael Hartl

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover image: smalvik/Shutterstock
Figures 1.5-1.7, 5.7, 9.2(b), 16.11: GitHub, Inc.
Figures 1.8, 1.10, 3.2, 13.8, 13.9, 14.12, 15.29(b), 17.1, 17.3-17.5: Google LLC
Figures 1.9, 1.12, 1.13, 2.1-2.7, 2.9-2.11, 3.1, 3.3-3.5, 3.8-3.10, 4.1-4.4, 4.6, 4.7, 4.9-4.16, 5.6, 5.10, 6.1-6.5,

7.4, 7.5, 7.9-7.17, 7.20-7.23, 8.2-8.4, 8.6, 8.8-8.14, 8.18-8.25, 8.27-8.33, 8.36, 8.38, 9.3, 9.6, 9.7, 9.9-9.11,
9.14, 9.16-9.20, 9.29-9.39, 9.43, 9.44, 10.3-10.8, 10.10, 10.11, 10.13, 10.14, 10.17, 10.18, 11.08, 11.12,
11.15-11.22, 12.2, 12.5, 12.6, 12.8, 12.9-12.13, 13.3-13.7, 13.11-13.16, 13.20, 13.22, 13.23, 14.3, 14.4,
14.8-14.10, 14.13, 14.14, 14.17, 15.29(a), 17.6-17.8: Apple Inc.

Figure 4.15, page 92: Icon courtesy of Twitter, Inc.
Figures 5.4, 14.1: Microsoft
Figures 8.15, 9.4, 9.15, 9.42, 13.19: Amazon.com, Inc.
Figure 15.46: Caniuse.com
Figure 16.1: Hover
Figures 16.8-16.10, 17.2: Cloudflare, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022935502

Copyright © 2022 Softcover Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-784310-7
ISBN-10: 0-13-784310-0

ScoutAutomatedPrintCode

http://Caniuse.com
mailto:governmentsales@pearsoned.com
mailto:contactintlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Contents

Preface xvii

About the Authors xxiii

PART I HYPERTEXT MARKUP LANGUAGE 1

Chapter 1 Basic HTML 3

1.1 Introduction 6
1.2 HTML Tags 8

1.2.1 Exercises 11
1.3 Starting the Project 12

1.3.1 Exercises 17
1.4 The First Tag 17

1.4.1 Exercises 20
1.5 An HTML Skeleton 20

1.5.1 Exercises 27

Chapter 2 Filling in the Index Page 29

2.1 Headings 29
2.1.1 Exercise 31

2.2 Text Formatting 31

vii

viii Contents

2.2.1 Emphasized Text 32
2.2.2 Strong Text 34
2.2.3 Exercises 35

2.3 Links 35
2.3.1 Exercises 38

2.4 Adding Images 41
2.4.1 Hotlinking 44
2.4.2 Exercises 48

Chapter 3 More Pages, More Tags 51

3.1 An HTML Page About HTML 51
3.1.1 Exercises 53

3.2 Tables 54
3.2.1 Block Elements 55
3.2.2 Inline Elements 59
3.2.3 Exercises 60

3.3 Divs and Spans 62
3.3.1 Exercises 66

3.4 Lists 66
3.4.1 Exercise 68

3.5 A Navigation Menu 68
3.5.1 Exercises 72

Chapter 4 Inline Styling 73

4.1 Text Styling 74
4.1.1 Exercises 79

4.2 Floats 79
4.2.1 Exercise 82

4.3 Applying a Margin 82
4.3.1 Exercises 85

4.4 More Margin Tricks 85
4.4.1 Exercise 88

4.5 Box Styling 88
4.5.1 Exercises 89

4.6 Navigation Styling 90
4.6.1 Exercises 92

Contents ix

4.7 A Taste of CSS 93
4.7.1 Internal Stylesheets 93
4.7.2 External Stylesheets 96
4.7.3 Exercises 97

4.8 Conclusion 98

PART II CASCADING STYLE SHEETS AND PAGE
LAYOUT 101

Chapter 5 Introduction to CSS 103

5.1 You’re a Front-End Developer 106
5.1.1 So, What Is Front-End Development? 108

5.2 CSS Overview and History 109
5.2.1 CSS Is Always Changing 110
5.2.2 How Did CSS Develop? 112
5.2.3 The Bog of Eternal Subjectivity 115

5.3 Sample Site Setup 116
5.3.1 Exercise 121

5.4 Start Stylin’ 121
5.4.1 Exercises 128

5.5 CSS Selectors 128
5.5.1 Exercises 132

Chapter 6 The Style of Style 133

6.1 Naming Things 134
6.2 When and Why 137
6.3 Priority and Specificity 140

6.3.1 Exercises 145
6.4 How to Be a Good Styling Citizen 145

6.4.1 Exercises 156

Chapter 7 CSS Values: Color and Sizing 157

7.1 CSS Color 157
7.1.1 Hexadecimal Colors 158
7.1.2 Setting Color and Transparency via rgb() and rgba() 161
7.1.3 Exercises 163

x Contents

7.2 Introduction to Sizing 163
7.3 Pixels (and Their Less-Used Cousin, the Point) 164

7.3.1 Exercise 168
7.4 Percentages 169

7.4.1 Percentage Fonts 174
7.4.2 Exercises 174

7.5 em 175
7.5.1 Exercises 181

7.6 rem Isn’t Just for Dreaming 181
7.6.1 Exercises 184

7.7 vh, vw: The New(er) Kids on the Block 184
7.7.1 Exercises 189

7.8 Just Make It Look Nice 190
7.8.1 Exercises 191

Chapter 8 The Box Model 193

8.1 Inline vs. Block 193
8.1.1 display: none 194
8.1.2 display: block 195
8.1.3 display: inline 196
8.1.4 display: inline-block 197
8.1.5 display: flex 199
8.1.6 Exercises 199

8.2 Margins, Padding, and Borders 199
8.2.1 Margin Weirdness 202
8.2.2 Exercises 206

8.3 Floats 206
8.3.1 Clearing Floats 208
8.3.2 Exercises 214

8.4 A Little More About the overflow Style 214
8.5 Inline Block 219

8.5.1 Exercises 223
8.6 Margins for Boxes 223

8.6.1 An Exception: margin: auto 229
8.6.2 Yet Another Exception: Negative Margins 231
8.6.3 Exercises 234

Contents xi

8.7 Padding… Not Just for Chairs 234
8.7.1 Exercise 235

8.8 Fun with Borders 235
8.8.1 Border Radius 238
8.8.2 Making Circles 238
8.8.3 Line Height 244
8.8.4 Syncing Up 245
8.8.5 Exercises 249

Chapter 9 Laying It All Out 251

9.1 Layout Basics 251
9.2 Jekyll 253

9.2.1 Installing and Running Jekyll 254
9.2.2 Exercises 259

9.3 Layouts, Includes, and Pages (Oh My!) 259
9.3.1 Layouts/Layout Templates 259
9.3.2 Includes 261
9.3.3 Pages/Page Templates 261
9.3.4 Posts, and Post-Type Files 261

9.4 The Layout File 261
9.4.1 Exercises 263

9.5 CSS File and Reset 264
9.5.1 Exercises 274

9.6 Includes Intro: Head and Header 275
9.6.1 Page Header: Up Top! 277
9.6.2 Navigation and Children 280
9.6.3 Exercise 284

9.7 Advanced Selectors 284
9.7.1 Pseudo-Classes 284
9.7.2 Exercises 286
9.7.3 first-child 287
9.7.4 Exercise 288
9.7.5 Siblings 288
9.7.6 Exercise 291

xii Contents

9.8 Positioning 291
9.8.1 A Real Logo 304
9.8.2 Exercise 308

9.9 Fixed Header 309
9.9.1 Exercise 312

9.10 A Footer, and Includes in Includes 312
9.10.1 Exercise 325

Chapter 10 Page Templates and Frontmatter 327

10.1 Template Content 327
10.1.1 Exercises 330

10.2 There’s No Place Like Home 330
10.2.1 Exercises 342

10.3 More Advanced Selectors 342
10.3.1 The :before and :after Pseudo-Elements 343
10.3.2 The :before and :after CSS Triangle 347
10.3.3 Exercises 356

10.4 Other Pages, Other Folders 356
10.4.1 Exercises 360

Chapter 11 Specialty Page Layouts with Flexbox 361

11.1 Having Content Fill a Container 363
11.1.1 Exercises 371

11.2 Vertical Flex Centering 371
11.2.1 Exercises 375

11.3 Flexbox Style Options and Shorthand 375
11.3.1 Flex Container Properties 375
11.3.2 Flex Item Properties 376
11.3.3 Exercises 381

11.4 Three-Column Page Layout 381
11.4.1 Exercises 386

11.5 A Gallery Stub 386
11.5.1 Exercises 395

Chapter 12 Adding a Blog 397

12.1 Adding Blog Posts 398

Contents xiii

12.1.1 Blog Index Structure 402
12.1.2 Exercises 411

12.2 Blog Index Content Loop 412
12.2.1 Exercises 418

12.3 A Blog Post Page 419
12.3.1 Exercises 427

Chapter 13 Mobile Media Queries 429

13.1 Getting Started with Mobile Designs 429
13.1.1 Exercise 433
13.1.2 How to See in Mobile (Without Looking at Your Phone) 434

13.2 Mobile Adaptation 438
13.2.1 Exercise 449

13.3 Mobile Viewport 449
13.3.1 Exercise 453

13.4 Dropdown Menu 453
13.4.1 The Hitbox 454
13.4.2 Making the Dropdown 455
13.4.3 Exercise 463

13.5 Mobile Dropdown Menu 463
13.5.1 Exercises 473

Chapter 14 Adding More Little Touches 475

14.1 Custom Fonts 475
14.1.1 Installing Vector Image Fonts 477
14.1.2 Loading Text Fonts via a CDN 483
14.1.3 Exercises 488

14.2 Favicons 488
14.2.1 Exercise 490

14.3 Custom Title and Meta Description 490
14.3.1 Custom Title 492
14.3.2 Custom Descriptions 494
14.3.3 Exercise 497

14.4 Next Steps 497

xiv Contents

Chapter 15 CSS Grid 499

15.1 CSS Grid at a High Level 501
15.2 A Simple Grid of Content 504

15.2.1 Grid Columns and the Grid fr Unit 507
15.2.2 Grid Rows and Gaps 510
15.2.3 Exercises 515

15.3 minmax, auto-fit, and auto-fill 515
15.3.1 Using Grid auto-fit 516
15.3.2 Relative Spanning Columns 522
15.3.3 Leveling Up CSS Grid Understanding 524
15.3.4 Exercises 527

15.4 Grid Lines, Areas, and Layouts 527
15.4.1 Getting Started with Grid Lines 529
15.4.2 The Simple Grid Layout 534
15.4.3 Named Lines and Areas 540
15.4.4 Overlapping Using Grid 545
15.4.5 Source-Independent Positioning 546
15.4.6 Finishing the Layout 550
15.4.7 Exercises 555

15.5 Grid on the Inside 556
15.5.1 Setting Up the Page 559
15.5.2 Adding a Global Grid and Header Positioning 563
15.5.3 Using Building Blocks and Justifying 570
15.5.4 More Column Positioning 574
15.5.5 Using Overlapping in a Feature Section 575
15.5.6 Starting at a Specific Column and Self-Aligning 582
15.5.7 Grid Inside a Grid Inside a Page 584
15.5.8 Exercises 589

15.6 Conclusion 589

PART III CUSTOM DOMAINS 591

Chapter 16 A Name of Our Own 593

16.1 Custom Domain Registration 594
16.1.1 What to Register? 594
16.1.2 You’ve Got a Domain, Now What? 598

Contents xv

16.2 Cloudflare Setup 599
16.2.1 Cloudflare Features 599
16.2.2 Cloudflare Signup 604
16.2.3 Connecting Registrar Nameservers 604

16.3 Custom Domains at GitHub Pages 606
16.3.1 Configuring Cloudflare for GitHub Pages 607
16.3.2 Configuring GitHub Pages 610
16.3.3 Cloudflare Page Rules 613
16.3.4 Profit!! 618

Chapter 17 Custom Email 619

17.1 Google Mail 619
17.1.1 Google Workspace Signup 621

17.2 MX Records 622
17.3 Site Analytics 626

17.3.1 Add Snippet 627
17.4 Conclusion 630

Index 635

This page intentionally left blank

Preface

Learn Enough HTML, CSS and Layout to Be Dangerous teaches you how to make mod-
ern websites using HyperText Markup Language (HTML) and Cascading Style Sheets
(CSS). This tutorial includes several much-neglected yet essential techniques for page
layout, including more advanced CSS techniques like flexbox and grid. It also covers
the use of a static site generator to make websites that are easy to maintain and update.
Finally, this tutorial shows you how to register and configure custom domains, includ-
ing both custom URLs and custom email addresses. You can think of Learn Enough
HTML, CSS and Layout to Be Dangerous as “a website in a box”: everything you
need (and nothing you don’t) to design, build, and deploy modern, professional-grade
websites.

The only prerequisites for Learn Enough HTML, CSS and Layout to Be Dangerous
are knowledge of the Unix command line, a text editor, and version control with
Git (as covered, for example, by Learn Enough Developer Tools to Be Dangerous). These
prerequisites allow us to use good software development practices throughout the
tutorial. This includes using a text editor to ensure readable code formatting and using
version control to track changes in our projects. It also enables frequent deployment
to production (for free!) using GitHub Pages.

The skills you’ll develop in this tutorial are valuable whether your interest is in
collaborating with developers or becoming a developer yourself. No matter what your

xvii

xviii Preface

goals are—level up in your current job, start a new career, or even start your own
company—Learn Enough HTML, CSS and Layout will help get you where you want
to go. To get you there as quickly as possible, throughout the tutorial we’ll focus on
the most important aspects of the subject, grounded in the philosophy that you don’t
have to learn everything to get started—you just have to learn enough to be dangerous.

In addition to teaching you specific skills, this tutorial also helps you develop
technical sophistication—the seemingly magical ability to solve practically any techni-
cal problem. Technical sophistication includes concrete skills like version control and
HTML, as well as fuzzier skills like Googling the error message and knowing when
to just reboot the darn thing. Throughout Learn Enough HTML, CSS and Layout,
we’ll have abundant opportunities to develop technical sophistication in the context
of real-world examples.

Finally, although the individual parts of this tutorial are as self-contained as possi-
ble, they are also extensively cross-referenced to show you how all the different pieces
fit together. You’ll learn how to use CSS to style your HTML elements into a flexible
multicolumn layout, use a static site generator to put the same elements on every page
without repeating any code, and then deploy your site to the live Web using a custom
domain of your choice. The result is an integrated introduction to the foundations of
front-end web development that’s practically impossible to find anywhere else.

HyperText Markup Language
Part I of Learn Enough HTML, CSS and Layout to Be Dangerous, also known as Learn
Enough HTML to Be Dangerous (https://www.learnenough.com/html), is an intro-
duction to HyperTextMarkup Language, the language of the World Wide Web. It
doesn’t assume any prior knowledge of web technologies (though readers of Learn
Enough Developer Tools to Be Dangerous will quickly realize they got a big head start
when developing a sample website using version control).

Like all Learn Enough tutorials, Learn Enough HTML to Be Dangerous is struc-
tured as a technical narrative, with each step carefully motivated by real-world uses.
Chapter 1 starts with a “hello, world!” page that you’ll immediately deploy to pro-
duction (!). We’ll then fill in the index page with formatted text, links, and images
in Chapter 2, expanding it into a multiple-page site with more advanced features like
tables and lists in Chapter 3. Finally, we’ll add some inline styling in Chapter 4, which
will allow us to see the effect of simple style rules on plain HTML elements.

The result of finishing Learn Enough HTML to Be Dangerous is a mas-
tery of the core HTML needed for making static websites. It also gives

https://www.learnenough.com/html

Preface xix

you a big head start on learning how to develop dynamic web applica-
tions with technologies like JavaScript (Learn Enough JavaScript to Be Dangerous
(https://www.learnenough.com/javascript)) or Ruby and Ruby on Rails (Learn
Enough Ruby to Be Dangerous (https://www.learnenough.com/ruby) and the Ruby on
Rails Tutorial (https://www.railstutorial.org/)).

Cascading Style Sheets and Page Layout
Building on the simple styling techniques introduced in Chapter 4 of Part I, Part II—
also known as Learn Enough CSS and Layout to Be Dangerous (https://www
.learnenough.com/css-and-layout)—covers both web design with Cascading Style
Sheets and front-end web development with a static site generator. We know of no
comparable tutorial that brings all this material together in one place, and the result
is the ability to make and deploy websites that are attractive, maintainable, and 100%
professional-grade.

In Chapter 5, we’ll learn the basics of CSS declarations and values by starting
with a few super-simple elements on a sample page. We’ll end with a first introduc-
tion to the essential technique of CSS selectors to target particular page elements for
styling. In Chapter 6, we’ll discuss aspects of selectors that are important to get right
at the beginning of a project, with a focus on managing complexity and maintain-
ing flexibility by choosing good names for things (including an introduction to CSS
color conventions).

Chapter 7 introduces two of the most important kinds of CSS values: colors
and sizes. These lay an essential foundation for Chapter 8 on the box model, which
determines how different elements fit together on the page.

In Chapter 9 and Chapter 10, we’ll take the page that we’ve been working on and
factor it into a layout using a static site generator called Jekyll to build professional-
grade websites that are easy to maintain and update. In Chapter 11, we’ll learn how
to make flexible page layouts using flexbox, adding layouts for a photo gallery page
(covered in Learn Enough JavaScript to Be Dangerous) and a blog with posts.

In Chapter 12, we’ll add the blog itself, showing how to use Jekyll to make
a professional-grade blog without black-box solutions like WordPress or Tum-
blr. Because a large and growing amount of web traffic comes from mobile
devices, in Chapter 13 we’ll cover the basics of using CSS and media queries to
make mobile-friendly sites without violating the DRY (“Don’t Repeat Yourself ”)
principle.

https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.railstutorial.org/
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/css-and-layout

xx Preface

As a concluding step in developing the main sample application, in Chapter 14
we’ll add the kinds of little details that make a site feel complete. The result will be an
industrial-strength, nicely styled site deployed to the live Web.

Finally, as a special bonus, in Chapter 15 we’ll introduce a more recent and
advanced layout technique known as CSS grid. The result is a largely self-contained
discussion of how to use grid to accomplish some of the same effects mentioned in
previous chapters, as well as some effects you can only accomplish easily with grid.

Custom Domains
In Part III, also known as Learn Enough Custom Domains to Be Dangerous
(https://www.learnenough.com/custom-domains), you’ll learn how to associate your
website with a custom domain. This means your site will live at a domain like
example.com instead of example.someoneelsesdomain.com—in other words, at a
domain you control and that no one can ever take away.

Chapter 16 shows you how to register a custom domain, including guidance on
how to pick a good domain name and a discussion of the pros and cons of various
top-level domains (TLDs). You’ll also learn how to use Cloudflare to configure the
DNS settings for your custom domain. As part of this, you’ll learn how to use Secure
Sockets Layer/Transport Layer Security (SSL/TLS) to make sure your site is secure
and how to redirect URLs for a more pleasant user experience.

Chapter 17 shows you how to use custom email addresses with your domain using
Google Workspace. The result is the ability to use yourname@example.com instead
of yourname152@gmail.com. As a special bonus, you’ll learn how to use another
Google service, Google Analytics, to monitor traffic to your site and gain insight into
how visitors are using it.

Additional Features
In addition to the main tutorial material, Learn Enough HTML, CSS and Layout to Be
Dangerous includes a large number of exercises to help you test your understanding
and to extend the material in the main text. The exercises include frequent hints and
often include the expected answers, with community solutions available by separate
subscription at www.learnenough.com.

Final Thoughts
Learn Enough HTML, CSS and Layout to Be Dangerous covers everything you need
to know to make a website for a personal homepage, hobby, or business—it’s basi-
cally a one-stop shop for all things “Web.” After learning the techniques covered in
this tutorial, and especially after developing your technical sophistication, you’ll know

https://www.learnenough.com/custom-domains
http://example.cominsteadofexample.someoneelsesdomain.com$$$�inotherwords,ata
mailto:yourname152@gmail.com
http://www.learnenough.com

Preface xxi

everything you need to design and deploy professional-grade websites. You’ll also be
ready for a huge variety of other resources, including books, blog posts, and online
documentation. Learn Enough JavaScript to Be Dangerous, which builds on this tuto-
rial to make a website with an interactive image gallery, is especially recommended.
You can even go on to learn dynamic, database-backed web development with Learn
Enough Ruby to Be Dangerous and the Ruby on Rails Tutorial.

Learn Enough Scholarships
Learn Enough is committed to making a technical education available to as wide a
variety of people as possible. As part of this commitment, in 2016 we created the Learn
Enough Scholarship program (https://www.learnenough.com/scholarship). Scholar-
ship recipients get free or deeply discounted access to the Learn Enough All Access
subscription, which includes all of the Learn Enough online book content, embedded
videos, exercises, and community exercise answers.

As noted in a 2019 RailsConf Lightning Talk (https://youtu.be/AI5wmnzzBqc?
t=1076), the Learn Enough Scholarship application process is incredibly simple: just
fill out a confidential text area telling us a little about your situation. The scholarship
criteria are generous and flexible—we understand that there are an enormous number
of reasons for wanting a scholarship, from being a student, to being between jobs, to
living in a country with an unfavorable exchange rate against the U.S. dollar. Chances
are that, if you feel like you’ve got a good reason, we’ll think so, too.

So far, Learn Enough has awarded more than 2,500 scholarships to aspiring devel-
opers around the country and around the world. To apply, visit the Learn Enough
Scholarship page at www.learnenough.com/scholarship. Maybe the next scholarship
recipient could be you!

Register your copy of Learn Enough HTML, CSS and Layout to Be Dangerous on the
InformIT site for convenient access to updates and/or corrections as they become
available. To start the registration process, go to informit.com/register and log in
or create an account. Enter the product ISBN (9780137843107) and click Submit.
Look on the Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus materials. If you
would like to be notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

https://www.learnenough.com/scholarship
https://youtu.be/AI5wmnzzBqc?t=1076
https://youtu.be/AI5wmnzzBqc?t=1076
http://www.learnenough.com/scholarship
http://informit.com/register

This page intentionally left blank

About the Authors

Lee Donahoe is Learn Enough cofounder and an entrepreneur, designer, and
frontend developer. When he was 16 his father handed him a tutorial on HTML,
and for more than 25 years since then he has been creating things for the Web.
In addition to doing the design and front-end development for Learn Enough
(https://www.learnenough.com/), Softcover (https://www.softcover.io/), and the
Ruby on RailsTM Tutorial (https://www.railstutorial.org/), he is also a cofounder and
frontend developer for Coveralls (https://www.coveralls.io/), a leading test cover-
age analysis service, and also for Buck Mason (https://www.buckmason.com/), a Los
Angeles based clothing company that crafts timeless men’s and women’s clothing. Lee
is a graduate of USC, where he studied economics as well as multimedia and creative
technologies.

Michael Hartl (https://www.michaelhartl.com/) is the creator of the Ruby on
RailsTM Tutorial, one of the leading introductions to web development, and is
cofounder and principal author at Learn Enough. Previously, he was a physics instruc-
tor at the California Institute of Technology (Caltech), where he received a Lifetime
Achievement Award for Excellence in Teaching. He is a graduate of Harvard Col-
lege, has a PhD in Physics from Caltech, and is an alumnus of the Y Combinator
entrepreneur program.

xxiii

https://www.learnenough.com/
https://www.softcover.io/
https://www.railstutorial.org/
https://www.coveralls.io/
https://www.buckmason.com/
https://www.michaelhartl.com/

This page intentionally left blank

CHAPTER 9
Laying It All Out

Now that we’ve got a good base of CSS knowledge, it’s time to learn how to put
everything together into a real website. This chapter and the next is where we really
kick things into high gear, with material you’re unlikely to see in any other CSS
tutorial. To get started, our first step will be to transform our previous work into a
more manageable set of templates and page layouts that can be easily reused and updated
(in accordance with the DRY principle (Box 5.2)).

Along the way, we’ll add more styling as a way to learn more complex aspects of
CSS, while refining our design to be more suitable for use as a personal or business
website. Combined with Chapter 10, the result will be a professional-grade example
that shows a variety of aspects of modern site design.

9.1 Layout Basics
There are an infinite number of ways that you can design content layouts for the Web,
but over the years certain conventions have become common to many sites, as shown
in Figure 9.1. These may include elements like a header that contains site navigation
and a logo (which typically links to the homepage); a hero section (Section 7.7);
paragraph-style content with optional asides; and a page footer containing repetition
of some elements from the header, as well as things like links to About or Contact
pages, privacy policy, etc. These commonalities are the result of years of trial and error,
and by incorporating such familiar elements into our site, we help new visitors orient
themselves and find what they’re looking for.

251

252 Chapter 9: Laying It All Out

Figure 9.1: Elements of a typical web page.

One thing you may notice from Figure 9.1 is that many elements, such as the
header and footer, are the same (or nearly the same) on every page of our site. If we
made each page by hand, that would make our markup ridiculously repetitive—if we
wanted to make a change, updating all those pages would be a nightmare.

This is an issue we faced repeatedly in Part I, where we simply copied and pasted
common elements like navigation links onto every individual page. Such repetition is
a violation of the DRY principle (Box 5.2), and in Box 3.2 we promised to teach you
how to use a templating system to solve this problem. In this section, we’ll fulfill this
promise by installing and using the Jekyll static site generator to eliminate duplication
in our layout.

9.2 Jekyll 253

Figure 9.2: Not Jekyll and Hyde… rather, Jekyll the static site generator!

9.2 Jekyll
When building a professional-grade website, it’s essential to use a system capable of
supporting templates to eliminate duplication. To accomplish this, we’ll be using Jekyll
(https://jekyllrb.com/) (Figure 9.21), a free and open-source program for generating
static websites (that is, sites that don’t change from visit to visit).2

By learning Jekyll, you’ll cultivate the skills needed to develop and deploy
a real website—skills that are transferable to other static site generators (such as
Middleman and Hugo) and to full-blown web frameworks (like Ruby on Rails
(https://www.railstutorial.org/)). Learning the template language used by Jekyll
(called Liquid) is also a valuable skill in itself, as Liquid is widely used in systems like
the Shopify ecommerce platform.3

1. Poster image courtesy of BFA/Alamy Stock Photo.

2. Making dynamic sites that allow user registration, login, input, etc. requires using a full web applica-
tion framework. In future Learn Enough tutorials, we’ll cover two such frameworks, Sinatra and Rails (in
Learn Enough Ruby to Be Dangerous (https://www.learnenough.com/ruby) and the Ruby on Rails Tutorial,
respectively).

3. Indeed, as noted in Section 9.3, Liquid was originally developed by Shopify cofounder Tobi Lütke for
exactly this purpose.

https://jekyllrb.com/
https://middlemanapp.com/
https://gohugo.io/
https://www.railstutorial.org/
https://shopify.github.io/liquid/
http://shopify.com/
https://www.learnenough.com/ruby
https://www.railstutorial.org/
https://jekyllrb.com/
https://www.railstutorial.org/
https://www.learnenough.com/ruby

254 Chapter 9: Laying It All Out

In addition to supporting templates, Jekyll also includes a bunch of other useful
features:

• Write content in Markdown (the lightweight markup format we first discussed
in Chapter 6 of Learn Enough Developer Tools to Be Dangerous) in your text editor
of choice.

• Write and preview your content on your site locally in your dev environment.

• Publish changes via Git (which also gives you an automatic off-site backup).

• Host your site for free on GitHub Pages.

• No database management.

Originally developed by GitHub cofounder Tom Preston-Werner, Jekyll is used
by millions of people around the world and is an industrial-strength tool for creat-
ing static websites. For example, the fundraising platform for U.S. President Barack
Obama’s 2012 reelection campaign, which handled 81,548,259 pageviews and raised
over $250 million, was built using Jekyll:

By using Jekyll, we managed to avoid the complexity that comes with most CMSes (databases, server
configuration) and instead were able to focus on things like optimizing the UI and providing a better user
experience. To work in this environment, the most a front-end engineer had to learn was the Liquid template
language that Jekyll uses, and boy is that simple.4

9.2.1 Installing and Running Jekyll

Jekyll is written in the Ruby programming language, and is distributed as a Ruby gem,
or self-contained package of Ruby code. As a result, installing Jekyll is easy once you
have a properly configured Ruby development environment.

If your system is not already configured as a dev environment, you should consult
Learn Enough Dev Environment to Be Dangerous (https://www.learnenough.com/dev-
environment) at this time. This step might prove challenging, especially if you decide
to configure your native system, but in the long run the effort is well worth the reward.

4. Originally published at http://kylerush.net/blog/meet-the-Obama-campaigns-250-million-fundraising-
platform/ (since removed). Quoted selection has been lightly annotated and copyedited.

http://daringfireball.net/projects/markdown/
https://github.com/jekyll/jekyll/wiki/Sites
https://en.wikipedia.org/wiki/Content_management_system
https://en.wikipedia.org/wiki/User_interface
https://shopify.github.io/liquid/
https://www.ruby-lang.org/
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
http://kylerush.net/blog/meet-the-Obama-campaigns-250-million-fundraising-platform/
http://kylerush.net/blog/meet-the-Obama-campaigns-250-million-fundraising-platform/

9.2 Jekyll 255

Once you’ve got a working dev environment, you can install Jekyll using Bundler,
a manager for Ruby gems. We can install Bundler using the gem command, which
comes with Ruby:

Next, we need to create a so-called Gemfile to specify the Jekyll gem:

$ touch Gemfile

Then use a text editor to fill the Gemfile with the contents shown in Listing 9.1.

Listing 9.1: Adding the Jekyll gem.
Gemfile

source 'https://rubygems.org'

gem 'jekyll', '4.2.2'
gem 'webrick', '1.7.0'

If you run into any trouble, check the Gemfile at https://github.com/mhartl/mhartl
.github.io to see if it has been updated.

Finally, we can install the jekyll gem using bundle install (with a little extra
code to ensure that we’re using the right version of Bundler):

$ bundle _2.3.14_ install

Although Jekyll is designed to work with a system of templates (Section 9.3), in
fact it can work with a single file, such as our current index.html. To see how it
works, we can run the Jekyll server in our project directory (using bundle exec to
ensure that the right version of Jekyll gets run):

$ bundle _2.3.14_ exec jekyll serve

If you’re working on a native system or a virtual machine (as opposed to a cloud IDE),
at this point the Jekyll app should be available at the URL http://localhost:4000, where
localhost is the address of the local computer and 4000 is the port number (Box 9.1).
The result should look something like Figure 9.3.

$ gem install bundler -v 2.3.14

https://github.com/mhartl/mhartl.github.io
https://github.com/mhartl/mhartl.github.io
https://en.wikipedia.org/wiki/Localhost

256 Chapter 9: Laying It All Out

Figure 9.3: No more URL pointing to a file—you’re running on a server now!

Box 9.1: Server Ports

If you look at the URL for the Jekyll site, you’ll notice that it ends in “:4000”. That is
the server port. If you end a URL with a colon followed by a number, you are telling
the browser to connect to that port on the server… so what does that mean?

You can think of server ports as being like individual phone numbers for dif-
ferent services that run on a computer. The default port number for the World
Wide Web is port 80, so http://www.learnenough.com:80 is the same thing as
http://www.learnenough.com, while the default port for a secure connection is 443,
so https://learnenough.com:443 is the same thing as https://learnenough.com (with
https in place of http). Other common port numbers include 21 (ftp), 22 (ssh),
and 23 (telnet).

In the context of developing applications on a development machine, using
port numbers allows us to solve the important problem of being able to run two
or more apps simultaneously. Suppose, for example, that we wanted to run two
different Jekyll websites on our development server. By default, both of them would
be located at localhost:4000, but this would cause a conflict because the browser
would have no way of knowing which site to serve when visiting that address. The
solution is to add an extra piece of information, the port number, which allows the
computer to distinguish between, say, app #1 running on localhost:4000 and app
#2 running on localhost:4001.

As noted above, Jekyll’s default server port is 4000, but we can set a different
port number using the --port command-line option as follows:

$ bundle _2.3.14_ exec jekyll serve --port 4001

To connect to this second server, we would then type localhost:4001 into our
browser’s address bar.

http://www.learnenough.com:80
http://www.learnenough.com
https://learnenough.com:443
https://learnenough.com
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Telnet

9.2 Jekyll 257

Figure 9.4: Sharing the URL on the cloud IDE.

If you’re using the cloud IDE (https://www.learnenough.com/dev-environment-
tutorial#sec-cloud_ide) suggested in Learn Enough Dev Environment to Be Dangerous,
you’ll have to pass options for the port number (Box 9.1) and host IP number when
running the jekyll command:

$ bundle _2.3.14_ exec jekyll serve --port $PORT --host $IP

Here $PORT and $IP should be typed in literally; they are environment variables provided
by the cloud IDE to make the development site accessible on an external URL. Once
the server is running, you can visit it by selecting Share and then clicking on the server
URL, as shown in Figure 9.4. The result, apart from the browser URL, should be
the same as for the local system shown in Figure 9.3. (For simplicity, in what follows
we sometimes refer to localhost:4000, but users of the cloud IDE should use their
personal URL instead. Mutatis mutandis.)

After starting the Jekyll server, you should find a new folder in your project called
_site (with a leading underscore):

$ ls
_site index.html

This folder contains the output from the Jekyll server as it builds your site from the
source files (currently just index.html).

The _site directory and all its contents are generated by Jekyll every time a
file is saved, and if you were to make any changes in the _site folder, they will be
automatically overwritten. As a result, you should never make changes in any of the

https://www.learnenough.com/dev-environment-tutorial#sec-cloud_ide
https://www.learnenough.com/dev-environment
https://en.wikipedia.org/wiki/Internet_Protocol
https://www.cyberciti.biz/faq/set-environment-variable-unix/
https://en.wiktionary.org/wiki/mutatis_mutandis#English
https://www.learnenough.com/dev-environment-tutorial#sec-cloud_ide
https://www.learnenough.com/dev-environment-tutorial#sec-cloud_ide

258 Chapter 9: Laying It All Out

NOOOOOOOOOO!!!!!!!

Figure 9.5: TFW changes accidentally made in generated files get overwritten.

_site files themselves�they would only be overwritten by Jekyll. There’s nothing
more frustrating than accidentally working on updates in an automatically generated
folder, only to have your changes overwritten by an uncaring static site generator
(Figure 9.5).5

Because all its content is generated by Jekyll, it’s a good idea to ignore the _site
directory by adding it to your .gitignore file, and there’s a Bundler configuration
directory called .bundle that should also be ignored:

$ echo _site/ >> .gitignore
$ echo .bundle >> .gitignore
$ git add .gitignore
$ git commit -m "Ignore the generated site and Bundler directories"

You should also add the Gemfile (and the associated auto-generated Gemfile.lock
file) to the repository:

$ git add -A
$ git commit -m "Add a Gemfile"

5. Image courtesy of mangostar/123RF.

https://www.urbandictionary.com/define.php?term=TFW

9.3 Layouts, Includes, and Pages (Oh My!) 259

9.2.2 Exercises

1. Try starting Jekyll on a non-standard port like 1234.

9.3 Layouts, Includes, and Pages (Oh My!)
One of the most powerful features of Jekyll is its ability to factor different parts of a
website into reusable pieces. To accomplish this, Jekyll uses a system of folders and
conventional names for files, along with a mini-language called Liquid. Originally
developed by Tobi Lütke, cofounder of online store powerhouse Shopify,6 Liquid is a
system for adding content to a site using what are in effect simple computer programs.

Files inside a Jekyll project can be static, meaning that they do not get processed
by the Jekyll engine, or they can be dynamic and get constructed with Jekyll magic.
(The site is still static because it consists of static files on the server, even if those files are
generated dynamically by Jekyll. In other words, the files don’t change once they’ve
been generated by Jekyll, so the results are the same for every visitor of the site.)

There are four main types of magic objects/files that the Jekyll engine can use in
an automated way to build your site:

• Layouts/layout templates

• Includes

• Pages/page templates

• Posts

We’ll discuss each of these in abstract terms for reference, but their exact uses won’t
become clear until we see some concrete examples starting in Section 9.4.

9.3.1 Layouts/Layout Templates

Anything in the special _layouts directory (which we’ll create in Section 9.4) can
have Jekyll magic, meaning those files get read by the engine looking for Liquid tags
and other Jekyll formatting.

6. Tobi is also an alumnus of the Rails core team.

https://shopify.github.io/liquid/
http://shopify.com/
http://rubyonrails.org/community/

260 Chapter 9: Laying It All Out

One of the key parts of many Jekyll pages is frontmatter, which is metadata at the
top of an HTML file (in YAML format) that identifies the kind of layout to be used,
a page-specific title, etc. A fairly complicated example might look like this, where the
frontmatter is everything between the two triple-dashes ---:

layout: post
title: This is the title of the post
postHero: images/shark.jpg
author: Me, Myself, and I
authorTwitter: https://twitter.com/mhartl
gravatar: https://gravatar.com/avatar/ffda7d145b83c4b118f982401f962ca6?s=150
postFooter: Additional information, and maybe a link or two

<div>
<p>Lorem ipsum dolor sit paragraph.</p>

<div>

In a simpler but still common example, the frontmatter identifies only the page layout
template to be used when rendering the page:

layout: default

<div>
<p>Lorem ipsum dolor sit paragraph.</p>

<div>

We’ll see the effects of this sort of code starting in Section 9.4.
If there is no frontmatter in a layout file, then it is a true layout, and it needs

to have a full HTML page structure. If there is frontmatter, then the file is a layout
template that can be built into other layouts, and it doesn’t need to have a full HTML
page structure.

Layouts are often the most base-level objects, defining a standard page with a
DOCTYPE, html/head/body tags, meta tags, stylesheet links, JavaScript, etc., and they
usually pull in snippets like a site header or site footer. You often need only one
default layout for a site, but you can also use layout templates for things like blogs
(Section 12.3).

https://en.wikipedia.org/wiki/YAML

9.4 The Layout File 261

Layouts have the special ability to load content, like posts, using a generic Liquid
tag that looks like this: {{ content }}. We’ll see a short example of this in an exercise
(Section 9.6.3), and we’ll apply it to our full site in Chapter 10.

9.3.2 Includes

Files in the _includes folder can have Jekyll magic even though they don’t need
frontmatter, and these files are always intended to be built into something else. Includes
tend to be little snippets of a site that get repeated on many pages, such as the header
and footer (Figure 9.1) or a standard set of social media links. Includes will be covered
in Section 9.6.

9.3.3 Pages/Page Templates

Any other HTML file in the project directory is a page. If there is no frontmatter in
the file it is a static page, and Jekyll magic will not work (Liquid tags go unprocessed). If
a page has frontmatter, though, it will need to specify a layout, and then all the Jekyll
magic will be available. We’ll cover pages more in Chapter 10.

9.3.4 Posts, and Post-Type Files

Posts are self-contained pieces of content, such as blog posts or product details, that
are saved as files in the _posts directory. Some forms of content (like blog posts)
are typically organized by date, while others (like product descriptions) are organized
based on other attributes into collections. We’ll discuss posts further in Chapter 12;
collections are beyond the scope of this tutorial, but you can read about them in the
Jekyll documentation on collections (https://jekyllrb.com/docs/collections/).

9.4 The Layout File
Let’s start playing around with a Jekyll layout by adapting our site into the frame-
work. The end result of this section will be a page that looks exactly like the current
index.html, but which is created in a way that will give us greater power and flex-
ibility down the road. This includes getting a first taste of templates and frontmatter
(which we’ll cover in greater depth in Chapter 10).

https://jekyllrb.com/docs/collections/
https://jekyllrb.com/docs/collections/

262 Chapter 9: Laying It All Out

This isn’t how you would normally go about creating a site if you were starting
from scratch. Layout files are usually pretty bare-bones (as we’ll see in Section 10.1),
and a more common development process is to create a spartan layout using the com-
mand jekyll new and then start doing the real work in the pages and includes. In
our case, though, we’ve already done a lot of work in our single index.html file;
using it as our initial layout means that, as we learn about different aspects of Jekyll,
we can pull the parts we need out of the layout, thereby showing how a whole site
can be sliced up and reassembled.

As we explained in Section 9.3, the Jekyll convention for layouts is to place these
files in a directory called _layouts (with a leading underscore), which you should
create in the root directory of your application (repos/<username>.github.io):

$ mkdir _layouts

Any HTML file in the _layouts directory can serve as a layout, so to get started we’ll
copy the existing index.html into the layouts directory to create a default layout:

$ cp index.html _layouts/default.html

At this point, your project files should look something like Figure 9.6.

Figure 9.6: Your files and directories should look like this.

9.4 The Layout File 263

To get our site back up and visible, replace the entire contents of index.html
with the code shown in Listing 9.2.

Listing 9.2: The site index with Jekyll frontmatter.
index.html

layout: default

As mentioned in Section 9.3, the content in Listing 9.2 is known as the Jekyll front-
matter, and by adding it to the index.html file we’ve turned a static page into a Jekyll
page template.

The frontmatter is the secret sauce that lets Jekyll know that it needs to read
through an HTML page to see if it should process any of the content. By specifying
layout: default, we’ve arranged for Jekyll to use default.html as the page layout.
Because default.html is currently a fully self-contained page, the result of visiting
http://localhost:4000 is to render our entire test page (Figure 9.3). In other words,
Jekyll just takes the contents of default.html and inserts it into index.html.

As mentioned in Section 5.4, this sort of transformation, where we change the
underlying code without changing the result, is known as refactoring. It may seem like
we’ve done nothing, but we’ll see in Section 9.6 how this new structure lets us slice
and dice our website into reusable pieces.

9.4.1 Exercises

1. To see the way frontmatter affects how pages are built, delete the frontmatter in
index.html, and write “Hello world.” Save the file and refresh the page.

2. Revert your changes from Exercise 1, and change the layout to one called test.
Then create a new file in the _layouts directory called test.html, and add in
some text like “Hello again, world.”

3. In the root directory of your project, create a new file called tested.html and
add in some text in it like “For the third time, hello world!” Now, in your browser
go to http://localhost:4000/tested.html to see what happens.

http://localhost:4000
http://localhost:4000/tested.html

264 Chapter 9: Laying It All Out

9.5 CSS File and Reset
Now that we’ve refactored our test page into a layout (default.html) and a page
template (index.html), we’re going to start the process of breaking our monolithic
HTML/CSS file into its component parts. The first step is to create a standalone CSS
file with a reset that eliminates troublesome browser defaults for margins, padding, etc.
(Listing 7.18). Then we’ll pull all the CSS out of the test site’s style block and put it
into the same external file.

To get started, create a new folder in the project directory called css, and then
create a new file in that directory called main.css, either using the terminal like in
Listing 9.3, or by just adding the folders and files in your text editor.

Listing 9.3: Creating a new CSS folder and blank document in the terminal.

$ mkdir css
$ touch css/main.css

Figure 9.7: The new css folder and main.css file.

9.5 CSS File and Reset 265

You have to name your directory exactly css, because Jekyll automatically looks for
CSS files in that location, but you can use whatever filename makes you happy for the
actual CSS file.

After you’ve created the folder and file as in Listing 9.3, your project directory
should look something like Figure 9.7.

Recall from the discussions in Section 7.5 and Section 7.7 that browsers have built-
in default styling for many common elements. Those browser defaults can differ from
browser to browser, and if we were to allow them to remain it would mean that many
elements on the page would start with styles we didn’t pick. No self-respecting and
properly perfectionist developer wants to leave the appearance of important elements
up to the browser makers, so we’ll apply a full CSS reset to create a blank slate for our
designs.

Recall that we created a mini-version of a CSS reset in Listing 7.18, where we
reset the margin and padding for html and body tags. Now it’s time to upgrade our
site to use an industrial-strength reset. The resulting CSS may look intimidating, but
don’t worry—we’re putting it in Listing 9.4 precisely so that you can copy and paste
it without having to understand the details.7

Listing 9.4: A standard CSS reset.
css/main.css

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center, dl, dt, dd, ol, ul, li,
fieldset, form, label, legend, table, caption,
tbody, tfoot, thead, tr, th, td, article, aside,
canvas, details, embed, figure, figcaption, footer,
header, hgroup, menu, nav, output, ruby, section,
summary, time, mark, audio, video {

margin: 0;
padding: 0;
border: 0;
font: inherit;
vertical-align: baseline;

}
/* HTML5 display-role reset for older browsers */

7. Recall that the code listings are available at https://github.com/learnenough/learn_enough_html_css_and
_layout_code_listings.

https://github.com/learnenough/learn_enough_html_css_and_layout_code_listings
https://github.com/learnenough/learn_enough_html_css_and_layout_code_listings

266 Chapter 9: Laying It All Out

article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
display: block;

}
body {
line-height: 1;

}
blockquote, q {
quotes: none;

}
blockquote:before, blockquote:after,
q:before, q:after {
content: '';
content: none;

}
table {
border-collapse: collapse;
border-spacing: 0;

}
strong, b {
font-weight: bold;

}
em, i {
font-style: italic;

}
a img {
border: none;

}
/* END RESET*/

Note that the CSS in Listing 9.4 doesn’t need to be wrapped with the style tags the
way the styles in the HTML file did; as we’ll see in Listing 9.7, the browser understands
from the link that everything inside the file is CSS.

We see in Listing 9.4 that most of the standard HTML elements get some sort
of styling applied to them. The big block of selectors at the top is pretty much every
HTML element in the spec forced to have margin and padding set to zero, a border
of zero, and told to inherit font styles. This might seem a little extreme to target
every element, but when we are making a custom website there is no reason to leave
browser defaults for things like margin, padding, and border in place—otherwise, we
could end up having to undo styling all over our stylesheet. It’s better to undo a lot of
stuff right off the bat, and then only add positive styling later on.

Also, don’t think that the above reset styling is something set in stone (Figure 9.88).
If later in your development career you find yourself adding the same styling to every

8. Etching image courtesy of World Archive/Alamy Stock Photo; tablet graphic courtesy of Oleksiy
Mark/Shutterstock.

9.5 CSS File and Reset 267

Figure 9.8: Reset rules aren’t set in stone… or any other kind of tablet.

(say) table tag on every site you design, it’s probably best just to add that to your
reset. As usual, the DRY principle applies (Box 5.2).

With the reset added, we’re now in a position to move the custom CSS
style developed so far in the tutorial into main.css. This involves first opening
default.html and cutting all the CSS inside the style tag, leaving the tag empty
(Listing 9.5).

Listing 9.5: The default layout with CSS cut out.
_layouts/default.html

<!DOCTYPE html>
<html>

<head>
<title>Test Page: Don't Panic</title>
<meta charset="utf-8">
<style>

268 Chapter 9: Laying It All Out

</style>
</head>
<body>
.
.
.
</body>

</html>

Next, paste the CSS into main.css (possibly using something like Shift-
Command-V, which pastes at the proper indentation level), and then delete the
mini-reset targeting only html, body that we added before since it is now redundant.
The full resulting code is shown in Listing 9.6.

Listing 9.6: The entire CSS file up to this point.
css/main.css

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center, dl, dt, dd, ol, ul, li,
fieldset, form, label, legend, table, caption,
tbody, tfoot, thead, tr, th, td, article, aside,
canvas, details, embed, figure, figcaption, footer,
header, hgroup, menu, nav, output, ruby, section,
summary, time, mark, audio, video {
margin: 0;
padding: 0;
border: 0;
font: inherit;
vertical-align: baseline;

}
/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
display: block;

}
body {
line-height: 1;

}
blockquote, q {
quotes: none;

}
blockquote:before, blockquote:after,

9.5 CSS File and Reset 269

q:before, q:after {
content: '';
content: none;

}
table {

border-collapse: collapse;
border-spacing: 0;

}
strong, b {

font-weight: bold;
}
em, i {

font-style: italic;
}
a img {

border: none;
}
/* END RESET*/

/* GLOBAL STYLES */
h1 {

font-size: 7vw;
margin-top: 0;

}
a {

color: #f00;
}

/* HERO STYLES */
.full-hero {

background-color: #c7dbfc;
height: 50vh;

}

/* SOCIAL STYLES */
.social-link {

background: rgba(150, 150, 150, 0.5);
border-radius: 99px;
box-sizing: border-box;
color: #fff;
display: inline-block;
font-family: helvetica, arial, sans;
font-size: 1rem;
font-weight: bold;
height: 2.5em;
line-height: 1;
padding-top: 0.85em;
text-align: center;
text-decoration: none;
vertical-align: middle;

270 Chapter 9: Laying It All Out

width: 2.5em;
}
.social-list {
list-style: none;
padding: 0;
text-align: center;

}
.social-list > li {
display: inline-block;
margin: 0 0.5em;

}

/* BIO STYLES */
.bio-wrapper {
font-size: 24px;
margin: auto;
max-width: 960px;
overflow: hidden;

}
.bio-box {
border: 1px solid black;
box-sizing: border-box;
float: left;
font-size: 1rem;
margin: 40px 1% 0;
padding: 2%;
width: 23%;

}
.bio-box h3 {
color: #fff;
font-size: 1.5em;
margin: -40px 0 1em;
text-align: center;

}
.bio-box img {
width: 100%;

}
.bio-copy {
font-size: 1em;
line-height: 1.5;

}
.bio-copy a {
color: green;

}

As you can verify by refreshing the browser, the page is now completely unstyled
(Figure 9.9).

9.5 CSS File and Reset 271

Figure 9.9: It’s been a long time since our site was this naked and unstyled.

To restore the styling, all we need to do is tell the layout page about main.css.
The way to do this is to replace the style tags in the head section with a link to our
stylesheet, as shown in Listing 9.7.

Listing 9.7: Using a link tag to load main.css.
_layouts/default.html

<!DOCTYPE html>
<html>

<head>
<title>Test Page: Don't panic</title>
<meta charset="utf-8">
<link rel="stylesheet" href="/css/main.css">

</head>
.
.
.

272 Chapter 9: Laying It All Out

The link tag in Listing 9.7 tells the browser that it will be loading a stylesheet
(rel is short for “relationship”), and then specifies a URL (in this case an absolute
one that looks at the site’s root directory by starting the URL with a forward slash)9

that leads to the file.
It’s important to understand that using the link tag to load an external stylesheet

has nothing to do with Jekyll; this general technique works even on hand-built web-
sites that don’t use any site builder. The stylesheet doesn’t actually need to be local,
either—theoretically, it can be anywhere on the Internet—but for our purposes, we
want to use a local file so that it’s easy to make changes.

Now when you refresh the browser the styles should be properly applied,
and the page will pretty much look how it did before our refactoring, although
there will be some places where things don’t look right because of the CSS reset
(Figure 9.10).

Figure 9.10: Same old page, with some minor oddities.

9. Recall from Section 2.4 that paths can be either relative (local to the computer serving the file) or absolute
(accessed by a full URL). For example, the path css/main.css is relative, while /css/main.css is absolute.

9.5 CSS File and Reset 273

Before moving on, let’s make a few minor changes to prove that we know how
to update styles via the CSS file. Ever since we started with this page, the fonts have
looked a little… old-school. Let’s add in a general style to the page body that will
cascade down to every element on the page and change all body text to a nice, clean,
sans-serif font (Listing 9.8).

Listing 9.8: A good spot for this would be in the “Global Styles” section of the CSS file.
css/main.css

/* GLOBAL STYLES */
body {

font-family: helvetica, arial, sans;
}

When you save your work and refresh the browser, everything should still look
the way it did before, but with all-new fonts across the page (Figure 9.11).

Figure 9.11: Same old page, all-new fonts.

https://en.wikipedia.org/wiki/Sans-serif

274 Chapter 9: Laying It All Out

Finally, in order to avoid the overlap between the bio box and social links, we’ll
change the CSS for the latter to be display: block with a margin, as shown in
Listing 9.9.

Listing 9.9: Fixing up the social link spacing.
index.html

.bio-box img {
width: 100%;

}
.bio-box .social-link {
display: block;
margin: 2em 0 1em;

}
.bio-copy {
font-size: 1em;

}

The result appears in Figure 9.12.

Figure 9.12: Better spacing for the social links.

9.5.1 Exercises

1. Create a second CSS file in the css folder, and add a second link to this new
CSS file in the head of the document (making sure that this second link comes
after the original CSS link). In your new CSS file, add a style that changes the
.full-hero background color to a color of your choice. This shows that the
order in which stylesheets load affects which styles take priority.

2. Rename the new CSS to reset.css, and move the stylesheet link above the link
to main.css. Now cut and paste the entire reset section from main.css into the
new CSS file (overriding the style added in Exercise 1). Save everything and make

9.6 Includes Intro: Head and Header 275

sure that your test page looks the same in your browser. You’ve made your reset
portable!

9.6 Includes Intro: Head and Header
Now that we’ve factored the CSS into a separate file (and added a CSS reset), it’s time
to start slicing up the default page into reusable pieces. As discussed in Section 9.3,
Jekyll provides JODlVEes to help us with this important task. (/oUe: In this context, the
word “include” is used as a OoVO, which is not standard English but is standard in the
world of static site generators. This usage also changes the pronunciation; the verb
form is “in-CLUDE”, but the noun form is “IN-clude”.)10

Includes are supposed to be the smallest/most reusable snippets of site code. They
are usually loaded into either layouts or templates, but in fact can be used anywhere
on a site�you can even have includes call other includes (Figure 9.13).11 Since these
snippets of code are intended to get dropped into the site almost anywhere, you should

 LET'S PUT SOME INCLUDES

IN YOUR INCLUDES

 SO YOU CAN INCLUDE

WHILE YOU INCLUDE!

Figure 9.13: You can put includes in includes, so your includes have includes.

10. This distinction exists in many other English words, such as AT-tri-bute (noun)/at-TRI-bute (verb) and
CON-flict (noun)/con-FLICT (verb).

11. Image courtesy of vividpixels/123RF.

http://www.businessenglishresources.com/learn-english-for-business/teachers-section/mini-lessons/pronunciation-lessons-pronunciation-changes-in-words-that-are-both-nouns-and-verbs/

276 Chapter 9: Laying It All Out

always try to make sure that any includes you create have code that is portable and
self-contained.

Jekyll includes are located in a dedicated folder called _includes (as with _lay-
outs, the underscore is important). Go ahead and create that folder now, together
with a new file called head.html (Listing 9.10).

Listing 9.10: Creating the includes folder and adding in a new file.

$ mkdir _includes
$ touch _includes/head.html

At this point, your project folder should look something like Figure 9.14.

Figure 9.14: The project directory with added includes.

As you might have guessed, we’re going to use head.html to hold the head tag
and its contents. The way to do this is first to cut that content out of default.html,
and then paste it into head.html (possibly using Shift-Command-V to paste with the
proper indentation), as shown in Listing 9.11.

9.6 Includes Intro: Head and Header 277

Listing 9.11: Moving head to its own file.
_includes/head.html

<head>
<title>Test Page: Don't Panic</title>
<meta charset="utf-8">
<link rel="stylesheet" href="/css/main.css">

</head>

To include the contents of head.html back into the default.html layout, we’ll
use our first example of the Liquid language mentioned in Section 9.3, which looks
like this:

{% include head.html %}

Here include is a Liquid command to include the file in question (in this case,
head.html). The special syntax {% … %} tells Jekyll to replace the contents of
that line with the result of evaluating the code inside. Because Jekyll automatically
knows to look in the _includes directory, the result will be to insert the contents of
head.html.

Replacing the original head section with the corresponding Liquid snippet gives
the code shown in Listing 9.12.

Listing 9.12: Including the site head using Liquid.
_layouts/default.html

<!DOCTYPE html>
<html>

{% include head.html %}
<body>

After making these changes, you should refresh your browser to confirm that the page
still works.

9.6.1 Page Header: Up Top!

At the top of a typical web page, you will usually find some sort of site-level navi-
gation that takes users from page to page on the site, and also includes site branding.

278 Chapter 9: Laying It All Out

This section is often referred to as the site header (Figure 9.15) (not to be confused with
the head tag, which is the HTML header). Implementing such a header site-wide is
a perfect application of Jekyll includes.

Figure 9.15: Some site headers from popular websites.

To get started, let’s add a new Liquid tag to header.html (which we’ll create in
a moment) at the top of the default.html file, as shown in Listing 9.13.

Listing 9.13: Including the header HTML.
_layouts/default.html

<!DOCTYPE html>
<html>
{% include head.html %}
<body>

{% include header.html %}
<div class="full-hero hero-home">

<h1>I'm an h1</h1>
<ul class="social-list">

Next, create a new blank document in the _includes folder called
header.html:12

$ touch _includes/header.html

The header itself will use two semantic elements (i.e., elements that have meaning):
header to contain the header and nav for the navigation links, which (as with the

12. You can of course use your text editor to create the file rather than using touch.

https://en.wikipedia.org/wiki/Semantics

9.6 Includes Intro: Head and Header 279

social links in Section 8.5) are organized as an unordered list ul. We’ll also use the
classes ”header” and ”header-nav” to make it easier to apply styles across a range
of browsers (Box 9.2). The resulting code appears in Listing 9.14.

Listing 9.14: The basic structure of our site header.
_includes/header.html

<header class="header">
<nav>

<ul class="header-nav">
Home
Nav 1
Nav 2
Nav 3

</nav>
Logo

</header>

Save and refresh your browser and now you’ll see your new site header
(Figure 9.16). (We’ll explain the placement of the logo in Section 9.6.2.)

Figure 9.16: Our not-very-attractive header.

280 Chapter 9: Laying It All Out

Box 9.2: Style Note: Style HTML5 Elements with Classes

To ensure maximum backward compatibility, it’s not a good idea to target the newer
HTML5 semantic elements like header and nav directly. There are inevitably going
to be some users who visit your site on an old browser that doesn’t support them—
though luckily there are fewer such cases with each passing year.

When an old browser encounters new HTML tags, it sees them as regular
divs, and any styles targeting those tags are ignored. To avoid this situation, it’s
better to give such elements classes, and then target your styles at the classes.

For example, we want to avoid styling header directly:

header {
background: #000;

}

Instead, we’ll give the header tag a class "header" (like in Listing 9.14), and then
target that class (note the leading dot):

.header {
background: #000;

}

This way, our styles will work even in older browsers.

9.6.2 Navigation and Children

Now, let’s style that ugly header!
The end goal for our design is to create a traditional sort of header, with a logo

on the left-hand side that will send users back to the homepage, and site navigation
at the top right. As a final step, we’ll change the position of the header so that it will
sit on top of content below it.

The first thing that we are going to do is move the navigation to the right and put
the lis into a horizontal row by changing their display property to inline-block.
The result, which we suggest inserting immediately after the global styles, appears in
Listing 9.15.

9.6 Includes Intro: Head and Header 281

Listing 9.15: Adding header styles.
css/main.css

/* HEADER STYLES */
.header-nav {

float: right;
}
.header-nav > li {

display: inline-block;
}

Note in Listing 9.15 that we’ve used the more advanced child selector > to target the
lis (as discussed before in Box 8.1). That is to make sure that if we wanted to put a
second level of links into the menu, only the direct children would be inline-block
(which we will in fact do in Section 13.4).

After saving and refreshing, you’ll see that the menu has moved (Figure 9.17).

Figure 9.17: Navigation moved to the right and all in a line.

You might have wondered why the logo is below the navigational list in Listing 9.14
even though it comes first when viewing the header from left to right. The reason is
that we knew all along that we were going to float the navigation to the right side of
the screen, and if the logo appeared before the navigation in the HTML order then
the menu would start at the bottom of the logo. This is because even a floating element
respects the line height and position of normal block or inline elements that come
before it, which in this case would lead to unwanted space around the logo. You can

282 Chapter 9: Laying It All Out

Figure 9.18: Switching the logo to come first adds unwanted space.

check this yourself by switching the positions of the logo and nav links; you’ll see that
the menu starts lower as a result (Figure 9.18).

Now let’s add in some padding on the list items and make those links a little more
stylish. We are going to add some padding to move the navigation away from the edges
of the page:

padding: 5.5vh 60px 0 0;

We are also going to give each li in the navigation a bit of left margin so that it isn’t
bumping right up against its neighbor:

margin-left: 1em;

For the links themselves, we’ll change the color and the size, make the font bold
so that it is easier to read, get rid of the default link underlines (as is done in about
99% of site headers), and also automatically transform the text to be uppercase:

color: #000;
font-size: 0.8rem;
font-weight: bold;
text-decoration: none;
text-transform: uppercase;

Here we’ve used #000 instead of black; as noted in Section 7.1.1, it’s important to
learn how to use these two interchangeably.

9.6 Includes Intro: Head and Header 283

After adding the appropriate selectors, the styling changes look like Listing 9.16.

Listing 9.16: Styling the navigational links.
css/main.css

.header-nav {
float: right;
padding: 5.5vh 60px 0 0;

}
.header-nav > li {

display: inline-block;
margin-left: 1em;

}
.header-nav a {

color: #000;
font-size: 0.8rem;
font-weight: bold;
text-decoration: none;
text-transform: uppercase;

}

Your page navigation should now look like Figure 9.19.

Figure 9.19: Navigational links are now a bit more stylish.

So how did we come up with those exact styles? The values came from just adding
a couple of styling rules, and then tweaking the numbers until things looked good.
Design isn’t always a systematic process—often you just need to make changes and
then play around with the numbers until you get something you like. When designing

284 Chapter 9: Laying It All Out

websites, there tends to be an extended period of experimentation, so don’t worry if
it takes you time to get things right when you work on your own!

9.6.3 Exercise

1. You can load dynamic text into includes. To try this, add the extra code {{
include.content }} somewhere in your header.html include, and then in
the layout change the include tag to {% include header.html content=”This
is my sample note.” %}.

9.7 Advanced Selectors
In order to add an extra bit of polish to the site header, we are going to introduce a few
more advanced CSS selectors, and then we’ll continue to add in more styling for the
rest of our page. These advanced selectors include pseudo-classes, first-child/last-child,
and siblings.

9.7.1 Pseudo-Classes

It’s always nice to have links do something when a user rolls over them, especially
since we removed the underlines from the links in Listing 9.16. Those underlines on
links are called design affordances, and they are there to give users the suggestion that
something will happen if they move the cursor to the link and click.

Some people may argue that all links on a site should have some affordance that
clearly marks them as something clickable, either with underlines or by making them
look like buttons (HOLY WAR!!!). At this point in time, though, the design con-
vention of putting plain-text links that don’t have underlines (or some other special
style) in a header is something that most Internet users are now accustomed to. You
just know that the things at the top of the page are clickable.

Without underlines or other immediately visible affordances, though, it is impor-
tant to show users a response to rolling over the link with their cursor (including on
mobile (Box 9.3)). You really want people to know that they are interacting with an
element that does something after they perform an action.

https://en.wikipedia.org/wiki/Affordance

9.7 Advanced Selectors 285

Box 9.3: Style Note: Mobile Hover Consideration

Mobile users don’t see rollover states, so you always need to be sure that the things
you are designing will make sense to both mobile and desktop users. One way to
do this is to make sure that you also style things so that there is a change when the
link is actively clicked.

You might think that this would be something that happens automatically no
matter what, but if you make any styling changes that alter links from their browser
default, you will actually need to use the :active pseudo-class to define how you
want a link to appear when someone interacts with it.

If you do end up removing all hints that something is clickable for your site on
desktop, you might want to consider using a mobile media query to add in some
hints specifically for mobile users. We’ll be discussing this further in the context of
media queries in Chapter 13.

All HTML links have a set of what are called pseudo-classes that allow developers
to style different interactions with the link:

• :hover: Styles what happens when a user rolls over the link (applies to any
element, not just links)

• :active: Styles what happens when a user clicks the link

• :visited: Styles what the link should look like if a user has already visited the
linked page

The way to add a pseudo-class to a style declaration is by combining the element
or class name with the pseudo-class, like this:

.header-nav a:hover {
color: #ed6e2f;

}

This use of the :hover pseudo-class arranges to change the color of the link when
the user’s mouse hovers over it. (For now we’ve just picked a random orange color
that will stand out nicely against the blue background.)

We’ll add a second change as well, which is to make the logo partially transparent
on hover using the opacity property. The combined result appears in Listing 9.17.

286 Chapter 9: Laying It All Out

Listing 9.17: Adding hover states to the navigational links.
css/main.css

.header-nav a:hover,

.header-nav a:active {
color: #ed6e2f;

}
.header-logo:hover,
.header-logo:active {
opacity: 0.5;

}

Note that we’ve added the same styling to the :active pseudo-class in order to give
mobile users feedback as well (as discussed in Box 9.3).

Save your styles and refresh, and now the nav links will turn orange on rollover, and
the logo will turn 50% transparent (the opacity style works like a decimal percentage),
as shown in Figure 9.20.

Figure 9.20: Muuuuch better.

There are a bunch of other very useful pseudo-classes that are regularly used in
designing layouts. We’ll talk about some of these throughout the rest of this section,
and we’ll see further examples in Section 13.5.

9.7.2 Exercises

1. Now that you’ve seen how to style rollovers, try styling the .social-links to
have rollover states where the background color changes.

9.7 Advanced Selectors 287

2. As stated in this section, psuedo-classes like :hover don’t just apply to links.
Try adding a hover state that changes the background color of the .full-hero
element.

9.7.3 first-child

In order to indicate that the Home link in the navigation menu is particularly impor-
tant, let’s arrange for it always to be a different color from the others. We could do this
with a separate class, but since Home is always going to be the first link in the menu
we can target it using what is called the first-child pseudo-class. This pseudo-class
applies the corresponding styles only to the first child of the parent element. (There’s
also a last-child pseudo-class, which we’ll use in Section 13.4, and many others
that are beyond the scope of this tutorial.)

Let’s make the Home link work the opposite of the styling for the other links, so
that it’s orange by default and black on rollover. To use the first-child pseudo-class,
we need to make sure that whatever we’re targeting is contained in a wrapper, and
that there is nothing else in the wrapper. That just means that when you are using the
child pseudo-classes, you need the elements to be inside some other HTML element.

If there is anything like text, or an HTML element of a different type, between
the top of the parent and the element you are trying to target, the first and last child
pseudo-classes won’t work, but in this case we are going to target the first li in
.header-nav (Listing 9.18). The ul with the class .header-nav is our wrapper,
and the lis are all children that can be targeted.

Listing 9.18: Changing the appearance of just the first link.
css/main.css

.header-logo:hover,

.header-logo:active {
opacity: 0.5;

}
.header-nav > li:first-child a {

color: #ed6e2f;
}
.header-nav > li:first-child a:hover {

color: #000;
}

https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes

288 Chapter 9: Laying It All Out

Note how specific we are in Listing 9.18: We’re using the child selector to target
only lis that are direct children of the .header-nav class. You don’t technically
need this level of precision, but later on we will add in a dropdown menu in the
header (Section 13.4), and if we target styles too generally then we’ll make styling the
dropdown difficult.

Now when you save and refresh the first link should look different (Figure 9.21).

Figure 9.21: Making the first nav link orange.

9.7.4 Exercise

1. We mentioned that there are other child selector types. Try out :last-child by
changing the color of the link that is in the last li in the page header.

9.7.5 Siblings

Let’s look at two additional advanced selectors, and then after seeing how they work,
we’ll use one to add another little style detail to our site navigation. CSS supports two
sibling selectors, both of which are written like the child selector > when making a
declaration:

• The adjacent sibling +: Selects a single element only if it is right next to the primary
element in the declaration. For example, h2 + p selects a p tag only if it is
immediately preceded by an h2 tag.

9.7 Advanced Selectors 289

• The general sibling ~: Selects all elements of the type in the declaration if they
follow the primary element. For example, h2 ~ p applies to all p tags preceded
by an h2 tag.

Let’s hop out of working on the header for a second to create an example to use
with the sibling selectors. In your default.html file, replace the h2 tag with the
HTML from Listing 9.19.

Listing 9.19: Replacing the h2 and adding some text.
_layouts/default.html

<h2>THE FOUNDERS</h2>
<p>

Learn Enough to Be Dangerous was founded in 2015 by Michael Hartl, Lee Donahoe,
and Nick Merwin. We believe that the kind of technical sophistication taught by
the Learn Enough tutorials can benefit at least a billion people, and probably
more.

</p>
<p>Test paragraph</p>

We can target the paragraph that directly follows the h2 with the style shown in
Listing 9.20.

Listing 9.20: Adding an adjacent sibling selector.
css/main.css

h2 + p {
font-size: 0.8em;
font-style: italic;
margin: 1em auto 0;
max-width: 70%;
text-align: center;

}

Notice that only the first paragraph is styled (Figure 9.22).

Figure 9.22: Only the p immediately after the h2 is styled.

290 Chapter 9: Laying It All Out

Now if we change to the general sibling selector ~ as in Listing 9.21, both
paragraphs will get styled (Figure 9.23).

Listing 9.21: The general selector targets all elements that come after a specified
element.
css/main.css

h2 ~ p {
font-size: 0.8em;
font-style: italic;
margin: 1em auto 0;
max-width: 70%;
text-align: center;

}

Figure 9.23: All p tags after the h2 are now styled the same.

You may also have noticed from Figure 9.23 that the ps in the .bio-boxes below
aren’t styled. That is because the sibling selectors don’t pass styles to elements that
are wrapped inside any other elements. They only work on elements inside the same
parent.

Looking back to the header, we can use a sibling selector in the site header nav-
igation to target all the lis after the first li, and add in a little extra styling to help
visually separate the links using the styles in Listing 9.22. You might have seen some-
thing like this online: a little vertical line between navigational links to help separate
them from other links in a list. Let’s use a sibling selector to add some divider lines.

Listing 9.22: Using the general sibling selector to add styling to the header navigation.
css/main.css

.header-nav > li {
display: inline-block;
margin-left: 1em;

}

9.8 Positioning 291

.header-nav > li ~ li {
border-left: 1px solid rgba(0, 0, 0, 0.3);
padding-left: 1em;

}

The rule .header-nav > li ~ li in Listing 9.22 says to apply the subsequent rules
to all li elements next to an initial li inside an element with class ”.header-nav”—
in other words, every li in the menu after the first one. This way, the divider lines
appear before every menu item except the first (Figure 9.24).

Figure 9.24: Menu divider lines.

Now that the navigation is fairly spiffy, let’s turn our attention to the logo, which
will give us a chance to learn a little bit about CSS positioning.

9.7.6 Exercise

1. What if you didn’t use the ~ in Listing 9.22, but rather the adjacent sibling selector?
Would the divider line appear before every menu item?

9.8 Positioning
In this section, we are going to take a look at how positioning works in CSS, focusing
on the site logo, and then we’ll finish off the header design. CSS positioning can be
a little tricky, and honestly there are people who work with CSS all the time who
regularly get confused trying to get positioning to work right. So if this section seems

292 Chapter 9: Laying It All Out

long and loaded with examples, just bear with us and work through it all—you’ll find
that understanding CSS positioning is an essential skill.

When you style an element’s position, there are two basic possibilities:

1. Have the browser draw the element in its natural position in the normal flow of
content on the page.

2. Remove the target from the flow of content and display it in a different place using
directional styles—left, right, top, and bottom—and an additional dimension, the
so-called z-index.

When an element is moved around out of its natural position with directional
styles, it doesn’t affect other elements in the document—it either covers them up or
is hidden behind them. It becomes like a ship cast adrift, torn free from its mooring
on the page.

While it might be self-explanatory to move something left or right, or to change
its top or bottom position, you might not be familiar with the idea of a z-index.
The z-index property (usually a nonnegative number, 0 by default—negatives put
elements behind everything) determines whether an element is displayed above or
below other elements, as in farther “into” the screen or farther “out” toward the
viewer. It’s an element’s 3D position.

You can think of this like looking down at a big stack of papers—the higher the
z-index number is, the higher up the stack toward you the element is. A z-index
of 0 would be the bottommost piece of paper. We’ll see a concrete example of the
z-index in Section 9.9.

In order to change those directional styles, we first need to alter an element’s
position property. The position style in CSS can be given five different values
(though one of them isn’t really used). We’ll start with one of the most common one,
static.

• position: static (Figure 9.25)
– This is the default positioning of elements in the flow of content.
– An element that has no position style set, or has position: static, will

ignore directional styles like left, right, top, and bottom.

9.8 Positioning 293

Figure 9.25: How position: static affects elements.

• position: absolute (Figure 9.26)
– Positions the element at a specific place by taking it out of the document

flow, either within a parent wrapper that has a position: value other than
static, or (if there is no parent) a specific place in the browser window. It
is still a part of the page content, which means when you scroll the page, it
moves with the content.

– Also lets you define a z-index property.
– Because the element is removed from the document flow, the width or

height is determined either by shrinking to the content inside or by setting
dimensions in CSS. It behaves kind of like an element set to inline-block.

– Causes any float that is set on the object to be ignored, so if you have both
styles on an element you might as well delete the float.

Figure 9.26: How position: absolute affects elements.

294 Chapter 9: Laying It All Out

• position: relative (Figure 9.27)
– This is like static in that it respects the element’s starting position in the flow

of content, but it also allows directional styles to be applied that nudge the
element away from the boundary with other elements.

– It allows absolutely positioned items to be contained within, as though the
relatively positioned element were a separate canvas. In other words, if an
absolutely positioned element is inside a relatively positioned element, a
style of top: 0 would cause the absolutely positioned element to be drawn
at the top of the relatively positioned element rather than at the top of the
page.

– Also allows you to change the z-index of the element.

Figure 9.27: How position: relative affects elements.

• position: fixed (Figure 9.28)
– Positions the element at a specific place within the browser window totally

separate from the page content. When you scroll the page, it won’t move.
– Lets you set z-index.
– Has the same need to have dimensions set as position: absolute;

otherwise, it will be the size of the content inside.
– Also causes floats to be ignored.

9.8 Positioning 295

Figure 9.28: How position: fixed affects elements.

• position: inherit
– This is not very common, so we aren’t going to discuss it other than to say

it makes the element inherit the position from its parent.

Let’s play around with some examples. First, let’s add in some styles for the header
to better see the boundaries and to give it dimensions (Listing 9.23).

Listing 9.23: Added styles for the .header class.
css/main.css

/* HEADER STYLES */
.header {

background-color: #aaa;
height: 300px;
width: 100%;

}

Let’s now absolutely position the .header-logo and set it to 50px from the
bottom (Listing 9.24).

Listing 9.24: Adding an initial position: absolute to the logo.
css/main.css

.header-nav > li:first-child a:hover {
color: #fff;

}
.header-logo {

bottom: 50px;
position: absolute;

}

296 Chapter 9: Laying It All Out

Now save and refresh… where did the logo go (Figure 9.29)?

Figure 9.29: The parent container has no position style set.

The logo link ended up way at the bottom because the parent element that wraps
the .header-logo doesn’t have any position style applied. Also, if you scroll the
page up and down you’ll notice that the .header-logo still moves with the page.
Let’s constrain the logo to stay within the header by adding a position property, as
shown in Listing 9.25.

Listing 9.25: Setting a position other than static on the wrapper.
css/main.css

.header {
background-color: #aaa;
height: 300px;
position: relative;
width: 100%;

}

9.8 Positioning 297

With the position rule in Listing 9.25, the .header-logo will now be
50px from the bottom of the gray header box, and any positions that we give to
.header-logo will be determined based on the boundaries of the .header container
(Figure 9.30). The way that the position is based off of the boundaries of the parent is
what we meant when we said that setting a parent wrapper to position: relative
made it like a separate canvas—everything inside that is absolutely positioned takes its
place based on the dimensions of the parent.

Figure 9.30: The absolutely positioned .header-logo.

Note here that when an element is absolutely positioned, the directional styles
don’t add or subtract distance—setting bottom: 50px doesn’t move it toward the
bottom, but rather sets the position 50px from the bottom. So right: 50px puts the
element 50px from the right edge.

Negative positions work as well, and as long as the overflow of the parent wrap-
per isn’t set to hidden, the absolutely positioned element will get placed outside the
boundaries of the parent (Listing 9.26).

298 Chapter 9: Laying It All Out

Listing 9.26: Trying out negative positioning on our object.
css/main.css

.header-logo {
bottom: -50px;
position: absolute;
right: 50px;

}

After adding that style and refreshing your browser, the logo should be in a position
similar to what is shown in Figure 9.31.

Figure 9.31: Positioning the logo on the right-hand side.

You might be asking, “Well, what happens if I set both a top and bottom, or a left
and right?” The answer is that, for whatever reasons, the top and left properties will
take priority and the bottom and right will be ignored.

Another thing to consider is when you set a position property, you are manipu-
lating elements and messing around with the natural page flow, which means that it
is possible to cause misalignments. So if you add left: 200px to the .header, the

9.8 Positioning 299

width of the element (which is 100%) isn’t recalculated. Instead, the entire .header
box is pushed over by 200px, and your browser window will have horizontal scrollbars
and look broken (Figure 9.32).

Figure 9.32: This sort of thing looks sloppy.

You have to be careful!
While we are still just playing around in the positioning sandbox, we should take

a look at ways to deal with a situation that comes up anytime positioning in CSS
is discussed: How do you center an absolutely positioned object horizontally and
vertically in a way that allows the object to be any size… and allows the wrapper to
be any size?

Let’s first look at an old method where the object that we are centering has a set
height and width—centering this is easy. Give the logo a width and height, remove
the old positioning, and change the background to better see the object (Listing 9.27).

300 Chapter 9: Laying It All Out

Listing 9.27: Adding height and width dimensions to the logo.
css/main.css

.header-logo {
background-color: #000;
height: 110px;
position: absolute;
width: 110px;

}

Now let’s center it.
You might think that centering the element would be as simple as giving the

.header-logo class a style of left: 50% and top: 50%—that should put it in the
middle, both horizontally and vertically, right (Listing 9.28)?

Listing 9.28: Positioning the .header-logo in the center?
css/main.css

.header-logo {
background-color: #000;
height: 110px;
left: 50%;
position: absolute;
top: 50%;
width: 110px;

}

Well, no, the reason this didn’t work is that when the browser positions an object,
it calculates the distance using the same-named edge—so when you apply top: 50%,
it moves the top edge (not the center point) of .header-logo 50% away from the
top of .header; similarly, applying left: 50% tells the browser to move the left edge
50% away from the left of .header. The result is that the object we are trying to
position is off-center by half of its width and height (Figure 9.33).

9.8 Positioning 301

Figure 9.33: The red box in the expected position if centered vertically and horizontally.

How do we solve this and get our object in the actual center? The older method
mentioned above was to use a negative margin (Section 8.6.2) to move the object
up and left. This only works if you know the size of the object, though, since trying
to use something like a percentage would move the object based on the size of the
parent (recall from Section 7.4 that percentage values are based on the size of the
parent object). Since the height and width of the box are 110px, half of that is 55px
(Listing 9.29).

Listing 9.29: Adding in the negative margins to position the black box in the right spot.
css/main.css

.header-logo {
background-color: #000;
height: 110px;
left: 50%;
margin: -55px 0 0 -55px;
position: absolute;
top: 50%;
width: 110px;

}

302 Chapter 9: Laying It All Out

That works just fine, but you’d always be limiting yourself to centering only objects
with fixed dimensions (Figure 9.34).

Figure 9.34: Negative margins worked!

If you wanted to make a slightly bigger (or smaller) centered object, you’d have to
recalculate sizes and margins, and then make changes to your CSS. That’s too much
work, and it wouldn’t work at all with dynamically sized elements. Thankfully there
is a better, relatively new CSS style called transform that can help. The transform
property allows developers to do all sorts of amazing things like move objects around,
rotate them, and simulate three-dimensional movement.

The upside for centering objects is that this new style calculates all these move-
ments based on the object itself. So if we move it 50% to the left using transform,
the browser looks at the object’s width, and then moves it to the left 50% of its own
width, not the width of the parent.

The actual style declaration looks like this: transform: translate(x, y)—
where x is replaced by the distance along the x-axis (left is negative, right is positive),
and the same for the y-axis (up is negative, down is positive). So, to move our object
left and up half its width and height, we’d add the transform style like you see in
Listing 9.30 (make sure to remove the margin styling that we added in Listing 9.29).

9.8 Positioning 303

Listing 9.30: Moving an object using transform.
css/main.css

.header-logo {
background-color: #000;
height: 110px;
left: 50%;
position: absolute;
top: 50%;
transform: translate(-50%, -50%);
width: 110px;

}

Now when you save your work and refresh the browser you’ll have a black box in
the center of the gray header. It doesn’t matter what dimensions you give for either the
.header-logo or .header—you’ll always have a vertically and horizontally centered
object. To try it out, delete the height and width that we gave the .header-logo.

When you save and refresh your browser, the now-smaller box will still be centered
vertically and horizontally (Figure 9.35).

Figure 9.35: No matter what size the object is, it stays right in the center.

304 Chapter 9: Laying It All Out

9.8.1 A Real Logo

All right, enough positioning playtime. Let’s get back to making this site look good
by putting an actual logo in that .header-logo. In your project directory, add a new
folder called images (Figure 9.36):

$ mkdir images

Figure 9.36: New images folder in your project directory.

Then use this curl command to grab the logo image off the Learn Enough
servers:

$ curl -o images/logo.png -L https://cdn.learnenough.com/le-css/logo.png

Now let’s put the image into the header.html (Listing 9.31). The result appears
in Figure 9.37.

9.8 Positioning 305

Listing 9.31: Replacing the word logo with a logo image.
_includes/header.html

<header class="header">
<nav>

<ul class="header-nav">
Home
Nav 1
Nav 2
Nav 3

</nav>

</header>

Figure 9.37: The initial (sub-optimal) logo placed on the page.

306 Chapter 9: Laying It All Out

Now we are going to make a whole lot of changes to whip this part of the site
into shape. As in Section 9.6.2, we aren’t going to go through and give a reason why
each value is the exact number we chose. Styling a section of a site is a non-linear
process at times, and you’ll likely need to experiment a lot if you are doing this on
your own starting from a blank slate.

First, we are going to make the header background color black and any text in
the header white as follows:

.header {
background-color: #000;
color: #fff;

}

That’s also going to require that we change the color of the links, as well as the
rollover color for the first-child link in the navigation:

.header-nav > li:first-child a:hover {
color: #fff;

}

We’ll also need to change the background color of our little divider lines so that
it is partially transparent white instead of partially transparent black:

border-left: 1px solid rgba(255, 255, 255, 0.3);

Then we are going to move the .header-logo into the top left, and shrink the
image a bit:

.header-logo {
background-color: #000;
box-sizing: border-box;
display: block;
height: 10vh;
padding-top: 10px;
position: relative;
text-align: center;
width: 10vh;

}
.header-logo img {

width: 4.3vh;
}

9.8 Positioning 307

We chose 10vh for the size of the link, and for the image we set the width to be 4.3%
of the height of the container (4.3vh). We got those values after playing around with
different numbers and settling on this size for a balance of readability while not taking
up too much space.

You’ll notice that most of the sizing styles are on the link that wraps the image
and not on the image itself. The reason we did that was so that if there is a problem
downloading the image, or a delay, there is still a nice, big clickable link in the header.

Putting everything together gives us Listing 9.32, which includes all the styling
for the site header so far.

Listing 9.32: Changing up the styling for the header and logo.
css/main.css

/* HEADER STYLES */
.header {

background-color: #000;
color: #fff;

}
.header-logo {

background-color: #000;
box-sizing: border-box;
display: block;
height: 10vh;
padding-top: 10px;
position: relative;
text-align: center;
width: 10vh;

}
.header-logo:hover,
.header-logo:active {

background-color: #ed6e2f;
}
.header-logo img {

width: 4.3vh;
}
.header-nav {

float: right;
padding: 5.5vh 60px 0 0;

}
.header-nav > li {

display: inline-block;
margin-left: 1em;

}
.header-nav > li ~ li {

border-left: 1px solid rgba(255, 255, 255, 0.3);
padding-left: 1em;

}

308 Chapter 9: Laying It All Out

.header-nav a {
color: #fff;
font-size: 0.8rem;
font-weight: bold;
text-decoration: none;
text-transform: uppercase;

}
.header-nav a:hover,
.header-nav a:active {
color: #ed6e2f;

}
.header-nav > li:first-child a {
color: #ed6e2f;

}
.header-nav > li:first-child a:hover {
color: #fff;

}

Save and refresh, and your header should look like Figure 9.38. That logo’s lookin’
sharp!

Figure 9.38: The header, now styled.

9.8.2 Exercise

1. Try moving the ul that contains the social links to the bottom-left corner of the
.full-hero using the positioning rules you’ve learned. What changes are you
going to need to make to .full-hero to allow the social links to remain inside?

9.9 Fixed Header 309

2. To see why we gave dimensional styling and an alt tag to our image, try removing
the image source link to simulate the browser not finding the file.

9.9 Fixed Header
You may have noticed the recent design trend where the header sticks to the top of the
screen as you scroll down the page. This is called a fixed header—the header is styled to
use position: fixed to take the header entirely out of the page content and stick it
to the top of the user’s browser. If your site has a bunch of different sections that your
users need to navigate to, a fixed header can be a good solution to keep them from
getting annoyed that they always have to scroll to the top to do something new.

The way to implement a fixed header is to change the positioning of the header
to fixed while specifying a z-index for the header. Recall from the beginning of
Section 9.8 that the z-index determines whether an element is drawn in front of
or behind other elements. We’ll want to give our header a large value for z-index,
which will force the browser to draw the element above other elements (i.e., closer
to the user using our stack-of-paper analogy).

The styles to change the positioning value and set a z-index are shown in
Listing 9.33.

Listing 9.33: Fixing the header’s position means that content will now scroll under it.
css/main.css

.header {
background-color: #000;
color: #fff;
position: fixed;
width: 100%;
z-index: 20;

}

When you check the work in your browser, you’ll find that the header is now
pinned to the top of the screen, and when you scroll, all the content will scroll
underneath.

The resulting black bar at the top looks cool, but what if we were to put a bor-
der around the entire page? It could look interesting to have a dark area around the
whole site to frame the content. We can arrange for this with the styling shown in
Listing 9.34.

310 Chapter 9: Laying It All Out

Listing 9.34: Just for fun, let’s put a border around the entire site.
css/main.css

/* GLOBAL STYLES */
html {
box-shadow: 0 0 0 30px #000 inset;
padding: 0 30px;

}

Listing 9.34 introduces the box-shadow style, which is a relatively new CSS style
that lets you add drop shadows to HTML elements, and the declaration that we added
is a shorthand for box-shadow: x-axis y-axis blur size color inset. We
aren’t going to go any deeper into it, but if you want to play around with box shadows
there are a number of sites that let you fiddle with the settings, such as CSSmatic box
shadow (https://www.cssmatic.com/box-shadow).

After applying the code in Listing 9.34, your page should look like Figure 9.39.

Figure 9.39: Box shadow inset around the entire page. Nifty.

https://en.wikipedia.org/wiki/Drop_shadow
http://www.cssmatic.com/box-shadow
http://www.cssmatic.com/box-shadow
https://www.cssmatic.com/box-shadow

9.9 Fixed Header 311

After saving and refreshing, you might have noticed that the logo in the header
now looks a little off since it isn’t right up in the corner anymore. This is because
we increased the padding on the entire site by 30px for the black border. Let’s use
a negative value (-30px) on the positioning to get it back in place, as shown in
Listing 9.35.

Listing 9.35: Using a negative value to move the logo back into place.
css/main.css

.header-logo {
background-color: #000;
box-sizing: border-box;
display: block;
height: 10vh;
left: -30px;
padding-top: 10px;
position: relative;
text-align: center;
width: 10vh;

}

Figure 9.40: A completed page header.

312 Chapter 9: Laying It All Out

The fixed final header should now look like Figure 9.40 (shown as it should appear
with the mouse cursor on the logo, making it orange).

One thing you might have noticed is that after adding fixed positioning to the
header, the big h1 text in the hero is covered. We’ll tackle this issue in Section 10.2.

Now that we’ve got the header squared away, let’s turn our attention to the other
end of the site.

9.9.1 Exercise

1. To see why it is important to define the z-index of the header, try setting the
value to 1, and then add styles to the .social-list class to set position:
relative and z-index: 40. Then scroll the page.

9.10 A Footer, and Includes in Includes
After creating and styling a site header, a natural next step is to style the page footer.
This is the navigational/informational section that can be found at the bottom of a
site (Figure 9.41).

9.10 A Footer, and Includes in Includes 313

Figure 9.41: A refresher on the elements of a typical web page, including a page footer.

Often, the footer is a partial replication of the navigational elements from the
header (just styled in a slightly different way), but many sites add to that a bunch of
other content—everything from store locations and hours to additional content links.

Since the footer is found at the end of the page and contains ancillary information,
you don’t really need to worry about space (there’s plenty of room at the bottom!).
What we mean by that is that you can think of the footer as extra space, where users
aren’t required to see everything there. Many sites, such as Amazon, have a lot of content
in a giant footer at the bottom of the page (Figure 9.42).

http://www.zyvex.com/nanotech/feynman.html

314 Chapter 9: Laying It All Out

Figure 9.42: A giant footer.

We’ll start by creating a new footer.html file inside the _includes folder:

$ touch _includes/footer.html

Next, we’ll add some HTML. We’re going to wrap the footer in another HTML5
semantic tag, the footer tag. As with the header tag, this is a semantic element that
works just like a standard div, but gives automated site readers (such as web spiders
and screen readers for the visually impaired) a better idea of what the purpose is of
the content inside. We are also going to add in a logo link similar to the one in the
header. The result appears in Listing 9.36.

Listing 9.36: Adding in the basic footer structure.
_includes/footer.html

<footer class="footer">

9.10 A Footer, and Includes in Includes 315

<h3>Learn Enough to Be Dangerous</h3>
</footer>

To include the footer in the default layout, we’ll follow the model from List-
ing 9.12 and use Liquid to insert the contents of footer.html just before the closing
body tag in default.html (Listing 9.37).

Listing 9.37: Add in the Liquid tag to the default layout.
_layouts/default.html

.

.

.
</p>
{% include footer.html %}

</body>
</html>

Now let’s add some styling as well. We’ll give the footer a black background, like
the header, and we’ll give it some padding. We’ll make sure that the content inside is
easy to read by using vh units, which causes our padding to take up a large portion of
the screen:

background-color: #000;
padding: 10vh 0 15vh;

We’ll also constrain the size of the logo so that it isn’t a giant image, and style the
h3 and the span that is inside it (just to add a little design detail to give some of the
text a different color). All together the footer styling looks like Listing 9.38.

Listing 9.38: The initial styles for the footer.
css/main.css

/* FOOTER STYLES */
.footer {

background-color: #000;
padding: 10vh 0 15vh;
text-align: center;

}
.footer-logo img {

316 Chapter 9: Laying It All Out

width: 50px;
}
.footer h3 {
color: #fff;
padding-top: 1.5em;
text-transform: uppercase;

}
.footer h3 span {
color: #aaa;

}

/* HERO STYLES */

Save and refresh, and the result should appear as in Figure 9.43.

Figure 9.43: The first stab at the footer is looking pretty good.

And it looks... not too bad!
But let’s make it a little more useful and also add in the navigational links from the

header. You could just copy and paste the HTML from the header, but if you added
a new page you’d have to edit your navigation in two spots… we hope the mere

9.10 A Footer, and Includes in Includes 317

suggestion of that is making your programmer’s itch flare up again. Since those nav
links are always going to be the same in both the header and the footer, we can create a
new include to include in includes (thereby fulfilling the promise from Figure 9.13—it
wasn’t (just) a joke!).

We don’t want to take the outer ul from Listing 9.14 since it has a header-nav
class applied to it (well, you could add that in the include, then unstyle all the header
styles, and then restyle to fit the footer—but that would be a lot of unnecessary work).
So the content of our new include will just be the lis and the links—in other words,
the content that definitely needs to be repeated.

To eliminate repetition in the links, let’s create a new file in the _includes
directory and name it nav-links.html:

$ touch _includes/nav-links.html

Then cut the lis and links out of the .header-nav and paste them into the new
include, as shown in Listing 9.39.

Listing 9.39: We’ve cut and pasted in the lis and links.
_includes/nav-links.html

Home
Nav 1
Nav 2
Nav 3

With the code in Listing 9.39, we can replace the links in the header file with a
Liquid tag, as shown in Listing 9.40.

Listing 9.40: Updating the header with an include and a second class.
_includes/header.html

<ul class="header-nav nav-links">
{% include nav-links.html %}

Note that we’ve also added a .nav-links class in Listing 9.40 so we can add
styling to the links that will be shared between the header and footer. Before, we
were targeting and styling the links using the class .header-nav (introduced in

318 Chapter 9: Laying It All Out

Listing 9.14), but now that the links are going to be in multiple places, that isn’t a
good name to use to target the styling common to both the header and the footer.

Now that we’ve factored the nav links into a separate include, let’s add them to
the navigation section in the footer. In order to allow footer-specific styling, we’ll also
add a footer-nav class (in analogy with the header’s header-nav class), as well as
the general nav-links class added in Listing 9.40. The result appears in Listing 9.41.

Listing 9.41: The new Liquid tag to load the links in the footer.
_includes/footer.html

<footer class="footer">

<nav>

<ul class="footer-nav nav-links">
{% include nav-links.html %}

</nav>
<h3>Learn Enough to Be Dangerous</h3>

</footer>

Now let’s add some styling. First, we should move some of the styles that before
were defined on .header-nav a over to .nav-links a, and change the class that
is targeting the :hover and :active states from .header-nav to .nav-link, as in
Listing 9.42.

Listing 9.42: Moving link styling into a new .nav-links class.
css/main.css

.header-nav a {
color: #fff;

}
.nav-links a {
font-size: 0.8rem;
font-weight: bold;
text-decoration: none;
text-transform: uppercase;

}
.nav-links a:hover,
.nav-links a:active {
color: #ed6e2f;

}

9.10 A Footer, and Includes in Includes 319

Again, the idea is that we want navigational links to look similar between the
header and footer, and then for any changes that are specific to one location or the
other by targeting the links using either the .header-nav or the .footer-nav class.

Finally, we’ll add footer-specific styles, as shown in Listing 9.43.

Listing 9.43: New styling for footer navigation and links.
css/main.css

.footer-nav li {
display: inline-block;
margin: 2em 1em 0;

}
.footer-nav a {

color: #ccc;
}

When you save and refresh, you’ll have a nice header and footer, both pulling
their navigational links from the same place (Figure 9.44).

Figure 9.44: Styled header and footer with nav links from an include.

320 Chapter 9: Laying It All Out

If you want to double-check and sync up all your styles, Listing 9.44 has the
current state of the CSS declarations for the site.

Listing 9.44: The full header and footer styles.
css/main.css

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center, dl, dt, dd, ol, ul, li,
fieldset, form, label, legend, table, caption,
tbody, tfoot, thead, tr, th, td, article, aside,
canvas, details, embed, figure, figcaption, footer,
header, hgroup, menu, nav, output, ruby, section,
summary, time, mark, audio, video {
margin: 0;
padding: 0;
border: 0;
font: inherit;
vertical-align: baseline;

}
/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
display: block;

}
body {
line-height: 1;

}
blockquote, q {
quotes: none;

}
blockquote:before, blockquote:after,
q:before, q:after {
content: '';
content: none;

}
table {
border-collapse: collapse;
border-spacing: 0;

}
strong, b {
font-weight: bold;

}
em, i {
font-style: italic;

9.10 A Footer, and Includes in Includes 321

}
a img {

border: none;
}
/* END RESET*/

/* GLOBAL STYLES */
html {

box-shadow: 0 0 0 30px #000 inset;
padding: 0 30px;

}
body {

font-family: helvetica, arial, sans;
}
h1 {

font-size: 7vw;
margin-top: 0;

}
a {

color: #f00;
}
h2 ~ p {

font-size: 0.8em;
font-style: italic;
margin: 1em auto 0;
max-width: 70%;
text-align: center;

}

/* HEADER STYLES */
.header {

background-color: #000;
color: #fff;
position: fixed;
width: 100%;
z-index: 20;

}
.header-logo {

background-color: #000;
box-sizing: border-box;
display: block;
height: 10vh;
left: -30px;
padding-top: 10px;
position: relative;
text-align: center;
width: 10vh;

}
.header-logo:hover,
.header-logo:active {

322 Chapter 9: Laying It All Out

background-color: #ed6e2f;
}
.header-logo img {
width: 4.3vh;

}
.header-nav {
float: right;
padding: 5.5vh 60px 0 0;

}
.header-nav > li {
display: inline-block;
margin-left: 1em;

}
.header-nav > li ~ li {
border-left: 1px solid rgba(255, 255, 255, 0.3);
padding-left: 1em;

}
.header-nav a {
color: #fff;

}
.nav-links a {
font-size: 0.8rem;
font-weight: bold;
text-decoration: none;
text-transform: uppercase;

}
.nav-links a:hover,
.nav-links a:active {
color: #ed6e2f;

}
.header-nav > li:first-child a {
color: #ed6e2f;

}
.header-nav > li:first-child a:hover {
color: #fff;

}

/* FOOTER STYLES */
.footer {
background-color: #000;
padding: 10vh 0 15vh;
text-align: center;

}
.footer-logo img {
width: 50px;

}
.footer h3 {
color: #fff;
padding-top: 1.5em;
text-transform: uppercase;

9.10 A Footer, and Includes in Includes 323

}
.footer h3 span {

color: #aaa;
}
.footer-nav li {

display: inline-block;
margin: 2em 1em 0;

}
.footer-nav a {

color: #ccc;
}

/* HERO STYLES */
.full-hero {

background-color: #c7dbfc;
height: 50vh;

}

/* SOCIAL STYLES */
.social-list {

list-style: none;
padding: 0;
text-align: center;

}
.social-link {

background: rgba(150, 150, 150, 0.5);
border-radius: 99px;
box-sizing: border-box;
color: #fff;
display: inline-block;
font-family: helvetica, arial, sans;
font-size: 1rem;
font-weight: bold;
height: 2.5em;
line-height: 1;
padding-top: 0.85em;
text-align: center;
text-decoration: none;
vertical-align: middle;
width: 2.5em;

}
.social-list > li {

display: inline-block;
margin: 0 0.5em;

}

/* BIO STYLES */
.bio-wrapper {

font-size: 24px;
margin: auto;

324 Chapter 9: Laying It All Out

max-width: 960px;
overflow: hidden;

}
.bio-box {
border: 1px solid black;
box-sizing: border-box;
float: left;
font-size: 1rem;
margin: 40px 1% 0;
padding: 2%;
width: 23%;

}
.bio-box h3 {
color: #fff;
font-size: 1.5em;
margin: -40px 0 1em;
text-align: center;

}
.bio-box img {
width: 100%;

}
.bio-box .social-link {
display: block;
margin: 2em 0 1em;

}
.bio-copy {
font-size: 1em;

}
.bio-copy a {
color: green;

}

Finally, in case you haven’t been doing your own Git commits and deploys, now
would be a good time to do one:

$ git add -A
$ git commit -m "Finish initial layout"

You’ll discover that GitHub Pages is fully Jekyll-aware, and automatically generates
and displays the site based on the contents of the repository—free static site hosting!

9.10 A Footer, and Includes in Includes 325

9.10.1 Exercise

1. (challenging) In the same manner that we just made the header links modular,
first create a new include that makes the social links in the hero into an include
that can be inserted into other places on the site. Then use the correct include
tag to put it back where it originally was, and also a second include that builds
the social links into a new ul in the footer.

This page intentionally left blank

Index

Symbols
– (en dash), 56
/ (forward slash), 9

A
About pages, 21
absolute sizing, 167
access, personal access tokens, 15
active links, 447. See also links
adaptation, mobile, 438–449
adding

analytics snippets, 627
background images, 334
backgrounds, 334
banners, 547–549
blogs, 398–399
borders, 207–208, 347
classes, 134, 201, 522–523
classes to links, 149–150
column templates, 506–507
comments, 155
content in CSS grid, 551–555, 573
content in HTML, 517
content loops, 412–418
CSS, 125
CSS classes, 129
CSS styles, 123
dimensions, 195
drop shadows, 310

dummy elements, 384
elements, 201
favicons, 488–490
files, 276, 397–399
folders, 117
footer structures, 314 (see also footers)
Gravatar hotlinks, 46–47
height, 173, 185, 216, 299–300
“Hello, world!”, 25
hover states, 286, 287
HTML, 456
HTML to headers, 567–568
images, 41–48
index.html, 117, 118
index pages, 358
inputs, 463, 464
Jekyll gems, 255
labels, 463, 464
links, 36, 37, 39–40, 381, 425, 489
Liquid tags, 315
lists, 67
margin declarations, 223, 228
margins, 86–87
metadata, 494–497
navigation links, 69–71
negative margins, 301, 302
padding, 467
pages, 52, 357–360
paragraphs, 31–32, 37–38

635

http://index.html

636 Index

positioning, 467
post pages, 416, 417
records, 609, 610
rows, 55, 56
rules, 95, 130
siblings, 288–289
styles, 73–74, 150, 201, 336–337, 344,

352–356, 361, 391, 503, 518, 581 (see
also inline styling)

styles to headers, 280–284
meta tag, 24
tags, 61
text, 39
text to boxes, 209
titles, 490–494
Twitter links, 39–40
wrappers, 169, 184–185, 393

addresses
custom, 622
IP (Internet Protocol), 594, 600

adjacent siblings, 288–289
:after method, 213
:after pseudo-element, 343–356
.alert class, 137, 138
aligning. See also moving

child elements, 519
content, 572–573
self-aligning, 582–583
vertical flex centering, 371–375 (see also

centering)
align-items property, 371
alpha levels, 161
alt attribute, 41
analytics, site, 626–629
anchoring background images, 336, 338
animation, 390
annotations, 9. See also text
applications, Gravatar, 45
applying

borders, 235–236
flexbox, 367
formatting (see formatting)
italics, 32–33
margin: auto, 229–230
minmax, 520

styles, 73–74, 346 (see also inline styling)
areas

banners, 555–556
naming, 540–544

A records, 608–610
a tag, adding, 61
attacks

Cloudflare, 603 (see also Cloudflare)
DDoS, 599, 603

attributes, 24
alt, 41
configuring, 466

auto-fill, 515–516, 524–527
auto-fit, 515–522, 524–527, 584
auto-sizing, 509, 518
avatars, 45, 46

B
background declaration, 140
background.position style, 338–339
backgrounds

adding, 334
colors, 161 (see also backgrounds)
formatting, 161
images, 336–337
resizing images, 338

banners
adding, 547–549
areas, 555–556
moving, 548–549

base-level objects, 260. See also layouts
:before pseudo-element, 343–356
beginning tags, 9
behavior, margins, 202–205
BEM (Block Element Modifier), 137
Berners-Lee, Tim, 6, 7
Block Element Modifier. See BEM
block elements, 54, 55–58, 193–199, 511
blockquote tag, 65, 68, 74–79
blogs

adding, 398–399
columns, 405, 406
content loops, 412–418
directories, 398–399
formatting, 414

Index 637

frontmatter in, 398, 399–400
index pages, 398, 402–411, 448, 449
posting, 398–411
post pages, 419–427
previewing, 425–426
sizing pages, 407 (see also pages)
width, 426

body tag, 20, 25, 29, 110
bold, 7, 34, 35
borders, 193, 235–250, 310

adding, 207–208, 347
applying, 235–236
box models, 199–206
inline/block elements, 193–199
line height, 244–246
making circles, 238–244
radius, 238
styles, 236–237
syncing index pages, 244–249
zero-height/zero-width elements, 347, 348

Bos, Bret, 113
boxes. See also box models

content, 579–580
inline styling, 88–90
restyling, 354–355
scrolling, 215
spacing, 224

box models, 191, 511
adding text to, 209
borders, 199–206, 235–250
floats, 206–214
inline/block elements, 193–199
inline blocks, 219–223
margin: auto, 229–230
margins, 199–206, 223–233
overflow method, 211–212, 214–218
padding, 199–206, 234–235
properties, 201
rounding, 238–244
sizing, 208

breakpoints, 431, 432
browsers

CSS support, 497
functionality, 7
grid overlay, 527–529 (see also CSS grid)

modifying windows, 425
refreshing, 19
resizing windows, 434–438

building blocks, grid (CSS), 570–574

C
caches, edge caching, 602
calc() function, 586
callouts, 371, 442

containers, 371
titles, 372

Cascading HTML Style Sheets. See CHSS
Cascading Style Sheets. See CSS (Cascading

Style Sheets)
CDNs (content delivery networks), 483–488
cells

formatting, 513
table data, 55, 56, 58

centering, 519. See also moving
headings, 79
images, 87
lists, 583
vertical flex, 371–375

characters
character entity references, 56
sequences of, 9

checkboxes, adding, 464, 465
child elements, 171, 519
child selectors, 220
Chrome

mobile views, 438 (see also mobile media
queries)

resizing windows, 434–438
web inspector, 437

CHSS (Cascading HTML Style Sheets), 113
circles, formatting, 238–244
classes

adding, 134, 201, 522–523
adding links to, 149–150
adding names to unordered lists, 219
.alert, 137, 138
combining, 151
CSS (Cascading Style Sheets), 94, 129
feature, 576
grid, 564

638 Index

grid-banner, 547
grid-content, 534–540
grid-expand, 545
HTML5, 280
naming, 134, 135, 136, 184
pseudo-classes, 284–286
targeting, 140
when to use, 137–140

clearing, 208–214. See also deleting
Cloudflare, 593

benefits of, 599
configuring, 599–606
connecting registrar nameservers, 604–606
features of, 599–604
GitHub Pages configuration, 610–613
page rules, 613–618
signup, 604

CNAME records, 610, 616
code

blogs, 400 (see also blogs)
detecting screen size, 430, 431
frontmatter, 260
Ruby programming language, 254
snippets, 626, 627

code tag, 52, 53
collapsing margins, 186, 189, 204–205
collections, 261
colors

backgrounds, 161
border styles, 236–237
configuring transparency, 161–163
CSS, 157–163
formatting links, 162
hexadecimal, 77, 158–160
naming, 129, 157
pickers, 160
styles, 148
text, 7

color tag, 110
columns

defining, 502, 503, 504
flexbox, 406
formatting, 361, 362
gaps, 514
grid (CSS), 507–510

layouts, 564
on mobile screens, 520
positioning, 574–575
relative spanning, 522–524
self-aligning, 582–583
sizing, 509–510
starting, 537–538, 582–583
structure, 564
templates, 506–507, 509, 586
three-column layouts, 381–386, 445
two-column layouts, 409

combining
classes, 151
styles, 138, 139, 140

command lines
creating tags, 51
first tags, 17

commands
curl, 304
gem, 255
open, 19
rgb(), 161
rgba(), 161
unzip, 387

comments, 407
adding, 155
CSS, 106, 139
HTML, 65
styles, 373–374

computers. See desktops
conditionals, 492–493
configuring

attributes, 466
Cloudflare, 599–606
page layouts, 559–563
transparency, 161–163
wrappers, 296–297

connecting
registrar nameservers, 604–606
servers, 256

containers
callouts, 371
content filling, 363–368
CSS grid, 502, 503
examples of, 215

Index 639

parent, 508–509
styles, 369

content
adding in CSS grid, 551–555, 573
aligning, 572–573
boxes, 579–580
CSS grid, 501–504 (see also CSS grid)
elements, 543
filling containers, 363–368
formatting columns, 362–363
gallery stubs, 386–395
loops, 412–418
moving, 566
overlapping, 545–546
positioning, 340–341
replacing, 328
templates and, 327–330 (see also page

templates)
variables, 329–330
wrapping, 339–340, 339–340, 365

content delivery networks. See CDNs
conventions, naming, 136. See also naming
copying images, 42. See also moving
corners, rounding, 238–240
creating. See formatting
Creative Commons licenses, 48
CSS (Cascading Style Sheets), 6, 8

adding, 125
adding rules, 130–131
adding styles, 344
animation, 390
box models (see box models)
classes, 94, 129
colors, 157–163 (see also colors)
comments, 106, 139
defining, 126, 127
development of, 112–115
dropdown menus, 455–463
elements, 131
files, 264–275
flexbox (see flexbox)
footers, 312–325
formatting post pages, 419–424
front-end development, 106–109
grids (see CSS grid)

hexadecimal colors, 158–160
history of, 109–116
implementations of, 114
inline styling, 93–98
layouts, 251 (see also layouts)
media queries, 431 (see also media queries)
naming, 123, 134–137
overview of, 103–106
positioning, 291–309
priority and specificity, 140–146
resets, 265–267
rules, 104, 140–146, 145–156
sample site setups, 116–120
selecting text styles, 190–191
selectors, 108, 128–131, 149
sizing, 163–164 (see also sizing)
specialty page layouts, 361–363 (see also

specialty page layouts)
styles, 121–127, 133 (see also styles)
subjectivity of, 115–116
table data cells, 58
technical sophistication, 106
values, 157
when to use classes/ids, 137–140

CSS grid, 497
adding in content, 573
auto-fill, 515–516, 524–527
auto-fit, 515–522, 524–527
building blocks, 570–574
columns, 503, 504, 507–510 (see also

columns)
creating HTML files for, 501–504
elements, 520–503
finishing layouts, 550–556
footers, 540, 542
formatting layouts, 524–527
fr(functional) units, 507–510
gaps, 510–515
global grids, 563–569
grid layouts, 529–540
grid lines, 529–533
grid overlays, 527–529
grids inside a grid, 584–589
headers, 540, 542
inside elements, 556–589

640 Index

justifying, 570–574
minmax, 515–516
modifying, 504, 506
named lines/areas, 540–544
overlapping, 545–546, 576–580
overview of, 499–504
padding, 550–556
page setups, 559–563
positioning columns, 574–575
positioning headers, 563–569
relative spanning columns, 522–524
rows, 502, 503, 504, 510–515 (see also rows)
source-independent positioning, 547–550
starting columns, 582–583
subgrids, 557–558

curl command, 304
curves, borders, 238–240
custom addresses, 622
custom domains, 117, 593–594. See also

domains
Cloudflare page rules, 613–618
configuring Cloudflare, 599–606
DNS, 597–599
GitHub pages, 606–618
purchasing, 598
registering, 594–598
TLDs, 594–597

custom email, 619. See also email
Google Workplace signup, 621–622
MX records, 622–626
site analytics, 626–629

customizing
blogs, 400 (see also blogs)
elements, 104, 105
favicons, 488–490
fonts, 475–488
metadata, 494–497
titles, 490–494

D
DDoS (Distributed Denial of Service) attacks,

599, 603
declarations, 123

adding style, 150
background, 140

overriding, 142
default.html, 327. See also page templates
default port numbers, 256
default templates, 365, 366. See also templates
defining

CSS (Cascading Style Sheets), 126, 127
tables with headers, 55

deleting
elements, 195
spacing, 514

densities of pixels, 164, 166. See also pixels
deploying GitHub pages, 120
design. See also formatting

affordances, 284
bogs, 398–401 (see also blogs)
elements, 477
inline styling, 73–74 (see also inline styling)
layouts (see layouts)
mobile media queries, 429–432 (see also

mobile media queries)
modular systems and, 139
pixels, 165 (see also pixels)
responsive, 429
Safari, 427
sizing, 180 (see also sizing)
UX (user experience), 108
viewing screens, 434–438
web, 105

desktops, development, 426
detecting screen size, 430, 431
development

of CSS, 112–115
desktops, 426
environments, 107
front-end, 106–109
inline styling, 73–74 (see also inline styling)
mobile-first, 426–427
mobile-ready prototypes, 450

dimensions
adding, 195, 299–300
CSS grid, 504
flexbox, 502
post pages, 423

directories
adding index pages, 358–359

http://default.html

Index 641

blogs, 398–399
formatting, 13
images, 42, 43
Jekyll, 262 (see also Jekyll)

display: block style, 195–196
display: flex style, 199
display: inline-block style, 197–198
display: inline style, 196–197
display: none style, 194–195
display property, 425
displays

detecting screen size, 430, 431
fonts, 484
modifying properties, 196
pixels, 158 (see also pixels)
viewing screens, 434–438

Distributed Denial of Service. See DDoS
(Distributed Denial of Service) attacks

divisions, 62–66
div tag, 62, 65, 90
DNS (Domain Name System), 593, 597–599

MX records, 622
records, 598, 607–609

DOCTYPE, 23
Document Object Models. See DOMs
documents. See also HTML (Hypertext Markup

Language)
CSS (Cascading Style Sheets), 106 (see also

CSS (Cascading Style Sheets))
margins, 82–87
navigating, 8
non-linked, 9
outlines, 29
types, 23

Domain Name System. See DNS (Domain
Name System)

domains, 593–594
Cloudflare page rules, 613–618
configuring Cloudflare, 599–606
custom, 117
DNS, 597–599
GitHub pages, 606–618
names, 594
purchasing, 598
registering, 594–598

TLDs, 594–597
DOMs (Document Object Models), 121
Don’t Repeat Yourself. See DRY
dots and pluses trick (Gmail), 620
downloading images, 43, 48
downward-pointing triangles, 348
dropdown menus, 212, 453–463

adding HTML, 456
CSS, 457–460
hitboxes, 454–463
mobile, 463–473

drop shadows, adding, 310
DRY (Don’t Repeat Yourself), 107, 122, 252,

265, 565
dummy elements, adding, 384
dynamic sites, 253

E
edge caching, 602
editing DNS records, 609
elements. See also styles

adding, 201
adding dummy, 384
:after pseudo-element, 343–356
applying borders to, 235–236 (see also

borders)
:before pseudo-element, 343–356
block, 54, 55–58, 193–199, 511
child, 171, 519
content, 543
covering multiple columns with CSS,

523–524
CSS, 131
CSS grid, 504, 506
customizing, 104, 105
deleting, 195
design, 477
display: none style, 194–195
hiding, 467, 468
HTML, 25
HTML5, 280
inline, 54, 59–60, 193–199, 210, 340
inline blocks, 219–223
lists, 66–68
overlapping, 545–546

642 Index

parent, 170, 171
positioning, 291–309, 540
sections, 577
semantics, 278, 280
sizing, 372
stacking, 438–439, 443
stretching with flexbox, 364
styles, 167
viewing, 577
of web pages, 252
wrapping, 169
zero-height/zero-width, 347, 348

email
Gmail, 619–622
Google Workplace signup, 621–622
MX records, 622–626
site analytics, 626–629

emphasized text, 32–33
empty boxes, 82
empty declarations, styles, 171
empty style tags, 93
em tag, 33
em units, sizing, 175–181
encryption, 600, 601
en dash (–), 56
ending tags, 9
environments

development, 107
variables, 257

errors, 24
explicit positioning, 578
Extensible Markup Language. See XML

(Extensible Markup Language)
external stylesheets, 93, 96–97, 110

F
fault-tolerance, 20
feature class, 576
files

adding, 276, 397
CSS, 106, 264–275 (see also CSS (Cascading

Style Sheets))
layouts, 264
.png files, 488
posts/post-type, 261

filtering spam, 619
finishing layouts, 550–556
first-child pseudo-class, 287–288
first tags, 17–20
fixed headers, 309–312
flags, !important, 143, 145
flexbox

applying, 109, 367
columns, 405, 406
comparing to CSS grid, 502, 503 (see also

CSS grid)
dimensions, 502
flex containers, 363–364 (see also containers)
flex direction rule, 367
gallery stubs, 386–395
properties, 375, 445
specialty page layouts, 361–363 (see also

specialty page layouts)
stretching elements with, 364
styles, 375–381
three-column layouts, 381–386
two-column layouts, 409
vertical flex centering, 371–375

flex-grow property, 367
flex items, 363–364, 366, 369

properties, 376–381
rules, 372

floating, 79–82, 443
box models, 206–214
clearing, 208–214
images, 194

folders, 357–360. See also documents; files
adding, 117
includes, 276

Font Awesome, 477, 478, 479, 480, 481, 482
fonts, 10. See also inline styling; text

customizing, 475–488
favicons, 488–490
formatting, 243, 244
installing vector image, 477–483
loading text via CDNs, 483–488
Open Sans, 484
percentages, 174
selecting text styles, 190–191
sizing, 167, 175–181, 182

Index 643

stacking, 486
types of, 476

footers, 252, 312–325
CSS grid, 540
styles, 315, 318–325

footer tag, 314
foreach loops, 413
formatting. See also layouts; styles

auto-sizing, 509, 518
backgrounds, 161
blogs, 398–401, 414 (see also blogs)
borders, 235–250
cells, 513
circles, 238–244
columns, 361–362
CSS, 116–120
directories, 13
divisions, 62–66
dropdown menus, 453–463
emphasized text, 32–33
favicons, 488–490
fonts, 243, 244, 475–488
grids inside a grid, 584–589
homepages, 330–342
HTML, 21–23
inline styling, 73–74 (see also inline styling)
Jekyll, 259 (see also Jekyll)
layouts, 251, 524–527 (see layouts)
lists, 66–68
loops, 411
margins, 82–87
metadata, 494–497
named areas, 540
navigation menus, 68–72
overflow method, 211–212, 214–218
page rules, 613–614
pixels, 163 (see also sizing)
positioning, 291–309
post pages, 419–424
repositories, 14, 15, 120
sizing, 180 (see also sizing)
source-independent positioning, 547–550
spans, 62–66, 456–457
strong text, 34, 35
styles, 124

tables, 54–61, 362–363
tabs, 51
tags, 10–11
text, 6, 31–35, 240
titles, 490–494
viewing screens, 434–438
width, 426

forwarding
permanent, 615
URLs, 615, 616

forward slash (/), 9
fr(functional) units, 507–510
front-end development, 106–109
frontmatter, 260, 263, 398, 399–400
functionality of browsers, 7
functional units (fr), 507–510

G
galleries

adding links, 381
mobile styles, 445, 446, 447, 448
stubs, 386–395

gaps. See also spacing
columns, 514
CSS grid, 510–515

Gecko engine, 111, 114
gem command, 255
general siblings, 289
generic restricted TLDs, 595. See also TLDs

(top-level domains)
generic TLDs, 595. See also TLDs (top-level

domains)
GitHub pages, 12, 13

blogs (see blogs)
configuring CloudFlare, 607–610
custom domains, 606–618
deploying, 120
repositories, 14, 15, 19
results to, 26
settings, 610–613
templates, 16

global grids, 563–569, 586
Gmail (Google Mail), 619–622

dots and pluses trick, 620
spam filtering, 619

Google Analytics, 626–629

644 Index

Google Fonts CDN service, 484
Google Workplace signup, 621–622
graphics, .png files, 488. See also images
Gravatar, 45, 46–47
grayscale, 160. See also colors
green, 157
grid (CSS), 497

adding in content, 573
auto-fill, 515–516, 524–527
auto-fit, 515–522, 524–527
building blocks, 570–574
columns, 507–510
creating HTML files for, 501–504
elements, 502–503
finishing layouts, 550–556
footers, 540, 542
formatting layouts, 524–527
fr(functional) units, 507–510
gaps, 510–515
global grids, 563–569
grid layouts, 529–540
grid lines, 529–533
grid overlays, 527–529
grids inside a grid, 584–589
headers, 540, 542
inside elements, 556–589
justifying, 570–574
minmax, 515–516
modifying, 504, 506
named lines/areas, 540–544
overlapping, 545–546, 575–580
overview of, 499–504
padding, 550–556
page setups, 559–563
positioning columns, 574–575
positioning headers, 563–569
relative spanning columns, 522–524
rows, 510–515
source-independent positioning, 547–550
starting columns, 582–583
subgrids, 557–558

grid-auto-rows, 521
grid-banner class, 547
grid class, 564
grid-content class, 535–540

grid-expand class, 545
grids

CSS, 109
global, 563–569
on mobile screens, 515
padding, 514

groups, styles, 155–156

H
hacking, 602
Håkon Lie, 113
headers, 23, 252, 275–284

adding HTML to, 567–568
adding margins, 86–87
CSS grid, 540
fixed, 309–312
mobile media queries, 440, 441, 442
pages, 278–279
positioning, 563–569
styles, 280–284, 565
tables, 55, 56
tags, 30
updating, 317

header tag, 62, 64, 314
head.html, 276–278
headings

centering, 79
index pages, 29–31

head tag, 21
height. See also sizing

adding, 173, 185, 216, 299–300
borders, 244–246
columns, 361
overflow method, 216, 217–218
vh (viewport height), 184–189
zero-height/zero-width elements, 347, 348

“Hello, world!,” 6, 18, 25
hero styles, 334, 335
hexadecimal colors, 158–160

counting n, 158
HTML, 77
RGB, 158, 160 (see also colors)

hiding
elements, 467, 468
overflow method, 216, 217–218

http://head.html

Index 645

highlighting syntax, 18
histories, CSS (Cascading Style Sheets),

109–116
hitboxes, 454–463
homepages, 330–342

blogs, 425 (see also blogs)
content, 350–353 (see also content)
previewing, 425–426
uploading HTML, 331–333
wrapping, 393

horizontal layouts, 445, 446
hotlinking, 42, 44–47, 46–47
hover rollovers, 455
HTML (Hypertext Markup Language), 6, 7

adding, 456
adding to headers, 567–568
applying realistic, 146–147
box models, 194 (see also box models)
comments, 65
creating files for CSS grid, 501–501
documents (see documents)
elements, 25
formatting, 21–23
headers, 278–279 (see also headers)
hexadecimal colors, 77
inline styling, 73–74 (see also inline styling)
pages (see pages)
skeletons, 20–27
starting projects, 12–17
tags, 8–12 (see also tags)
uploading, 331–333
writing, 10–11

HTML5, 7, 42
classes, 280
elements, 280

html tag, 21
hyperlinks, 35. See also links
hypertext, 35. See also links
Hypertext Markup Language. See also HTML

(Hypertext Markup Language)

I
ICANN, 595
icon fonts, 476, 477, 479, 481, 482. See also

fonts

id style, 137–140, 146
images, 6

adding, 41–49, 334
background, 336–337
centering, 87
copying, 42
downloading, 48
floating, 79–82, 194
Gravatar, 45, 46–47
hotlinking, 42, 44–47
links, 49
margins, 82–87
moving, 79–82
.png files, 488
resizing, 80, 81, 338, 339, 336
sizing, 165, 166
vector image fonts, 477–483

images directory, 42, 43
img tag, 41, 82

adding, 61
implementation of CSS (Cascading Style

Sheets), 114
implicit row sizes, 511–513. See also rows; sizing
!important flag, 143, 145
includes, 275

folders, 276
Jekyll, 261

index.html, adding, 117, 118
index pages, 6, 19

adding, 358
blogs,398–411, 448, 449 (see also blogs)
content loops, 412–418
filling in, 29
headings, 29–31
homepages (see homepages)
images, 41–48
links, 35–40
post pages, 419–427
syncing, 245–249
text formatting, 31–35
updating, 330–334

inline blocks, 219–223
inline elements, 54, 59–60, 193–199, 210, 344
inline styling, 48, 122

boxes, 88–90

http://index.html

646 Index

CSS, 93–98
floats, 79–82
margins, 82–87
navigation menus, 90–93
resizing, 80
text styling, 74–79

inputs, 463, 464–465
installing

iOS simulators, 449
Jekyll, 253–259
vector image fonts, 477–483

interfaces, 599
page rules, 613–614
UI (user interface), 108

internal stylesheets, 93, 110
Internet Protocol. See IP (Internet Protocol)
iOS simulators, 449
IP (Internet Protocol), 594, 600
italics, 32–33, 74. See also inline styling
items, flex, 363–364, 366, 369

properties, 376–381
rules, 372

J
Jekyll, 252, 253–259. see also layouts

adding pages, 357–360
blogs (see blogs)
content loops, 412–418
CSS files, 264–275
directories, 262
first-child pseudo-class, 287–288
fixed headers, 309–312
flexbox (see flexbox)
footers, 312–325
includes, 261
installing, 254–259
layouts, 259–261, 264
page templates, 261 (see also page templates)
post pages, 419–427
posts/post-type files, 261
selectors, 284–286
sibling pseudo-class, 288–291
variables, 329–330

justifying
center, 519 (see also centering; moving)
CSS grid, 570–574

K
Karlton, Phil, 134

L
labels, 463

adding, 463, 464
configuring attributes, 466

landscape orientation, 431
layouts

applying flexbox, 109
blogs (see blogs)
CCS files, 264–275
columns, 564
CSS grid, 497 (see also CSS grid)
files, 264
finishing, 550–556
first-child pseudo-class, 287–288
fixed headers, 309–312
flexbox (see flexbox)
fonts, 475–488
footers, 312–325
formatting, 524–527
frontmatter, 260 (see also frontmatter)
grids, 529–540 (see also CSS grid)
headers/head.html, 275–284
horizontal, 445, 446
includes, 261
Jekyll, 252, 253–259, 259–261
nesting, 400–401
overview of, 251–253
page templates (see page templates)
positioning, 291–309
selectors, 284–286
sibling pseudo-class, 288–291
specialty page, 361–363 (see also specialty

page layouts)
three-column, 361–362, 445
three-column page, 381–386
two-column, 409
vertical, 445

licenses, Creative Commons, 48
lightgray, 157
lines

grid, 529–533 (see also CSS grid)
height, borders, 244–246
named, 540–544

http://head.html

Index 647

links, 6, 8
active, 447
adding, 36, 37, 39–40, 381, 425, 489
adding classes, 149–150
adding navigation, 69–71
adding style declarations, 150
Font Awesome, 477, 478, 479, 480
formatting colors, 162
hotlinking, 42, 44–47
images, 48
index pages, 35–40
inline/block elements, 197
moving styling, 318
non-clickable, 462
pseudo-classes, 284–286
rounding corners on, 238
spacing, 274
styles, 318–325
styling navigation, 280–284

link tag, 97, 271–272
Liquid, 253, 259, 277–278. See also Jekyll

blogs, 413 (see also blogs)
replacing content, 328
tags, 259, 315, 317

lists, 6, 66–68
adding, 67
centering, 583
ordered, 68
unordered, 68, 219

li tag, 66–68
loading

text fonts via CDNs, 483–488
websites, 19

local servers, viewing, 451
logos, 304–309, 477
loops

content, 412–418
foreach, 413
formatting, 411
terminating, 413

Lütke, Tobi, 253, 259

M
macOS, 449, 450
margin: auto, 229–230

margins
adding, 86–87, 301, 302
behavior, 202–205
for boxes, 223–233
box models, 199–206
collapsing, 186, 187, 204–205
formatting, 82–87
modifying, 224
negative, 231–233
resetting, 186
rules, 94
sizing, 224, 225, 227, 229

Markdown, content, 399, 413
matching URLs (uniform resource locators),

616
measurements, 163. See also sizing

CSS, 164 (see also CSS (Cascading Style
Sheets))

pixels, 166 (see also pixels)
media queries, 109, 187, 431. See also mobile

media queries
menus

divider lines, 290–291
dropdown, 212, 453–463
mobile dropdown, 463–473
navigation, 68–72, 90–93
optimizing for small screens, 467–468

merging styles, 139, 140
metadata, 23, 260, 494–497
meta property, 452
meta tag, 24, 41
methods. See also styles

:after, 213
overflow, 211–212, 214–218

minmax, 515–516, 520
mobile-first development, 426–427
mobile hover navigation, 285
mobile media queries, 429–432

dropdown menus, 453–463
headers, 440, 441, 442
mobile adaptation, 438–449
mobile dropdown menus, 463–473
mobile viewports, 449–453
stacking elements, 438–439
styles, 429–432

648 Index

viewing screens, 434–438
mobile-ready prototypes, 450
mobile screens

columns on, 521
grids on, 515

models, box. See box models
modifying

browser windows, 425
CSS grid, 504, 506
display properties, 196
font sizes, 175, 176 (see also sizing)
images, 80
margins, 224
styles, 307–309
thumbnails, 445, 446

modular systems, 139
moving

banners, 548–549
content, 339, 566
headings, 79
images, 42, 79–82
inline-block elements, 222
link styling, 318
objects, 304
relationships, 121
self-aligning, 582–583
text, 74–79

Mozilla Developer Network CSS Reference,
106

MX records, 622–626

N
named lines/areas, 540–544
naming

classes, 134, 135, 136, 184
colors, 130, 157
conventions, 136
CSS, 124
domains, 593–594 (see also domains)
styles, 134–137
wrapping font names, 487

navigating
adding links, 381, 425
documents, 8
dropdown menus, 453–463

mobile dropdown menus, 468–471
mobile hover navigation, 285
styling links, 280–284

navigation menus, 68–72, 90–93
negative margins, 231–233, 301, 302
negative positioning, 297–298
nesting layouts, 400–401
new generic TLDs, 596. See also TLDs

(top-level domains)
non-clickable links, 462
non-linked documents, 9
numbers

hex, 158, 159
ports, 255

O
Object Oriented CSS. See OOCSS
objects

base-level, 260 (see also layouts)
moving, 304
negative positioning, 297–298

OOCSS (Object Oriented CSS), 137
open command, 19
Open Sans fonts, 484
optimizing

fonts, 475–488
menus for small screens, 467–468
SEO, 615

options section, 587–588
ordered lists, 68
outlines, documents, 29. See also documents
overflow, examples of, 215
overflow method, 211–212, 214–218
overlapping

elements, 545–546
sections, 575–580

overlays, grid, 527–529. See also CSS grid
overriding

declarations, 142
styles, 139

P
padding, 82, 88, 193, 445

adding, 467
box models, 199–206, 234–235
grid (CSS), 550–556

Index 649

grids, 514
resetting, 186
values, 234

page layouts, 251, 559–563. See also layouts
specialty (see specialty page layouts)
three-column, 381–386

pages, 261, 262
adding, 52, 357–360
block elements, 54, 55–58
Cloudflare rules, 613–618
content loops, 412–418
CSS grid, 501–502 (see also CSS grid)
divisions, 62–66
fonts, 475–488
headers, 278–279
index (see index pages)
inline elements, 59–60
lists, 66–68
navigation menus, 68–72
post, 419–427
refreshing, 416
resizing, 434–438
sizing, 407
spans, 62–66
tables, 54–61
titles, 26, 490–494
variables, 401–402

page templates, 261, 263
adding pages, 357–360
homepages, 330–342
selectors, 343–356 (see also selecting)
template content, 327–330
variables, 329–330

paragraphs. See also text
adding, 31–32, 37–38
adding images, 43
links, 35–40 (see also links)
styles, 148

parameters, queries, 45, 46
parent containers, 508–509. See also containers
parent elements, 170, 171, 175
Pei-Yuan Wei, 112
percentages

fonts, 174
modifying margins from pixels to, 224

sizing, 169–175
Perl, 69
permanent forwarding, 615
personal access tokens, 15
pixels, 158

measurements, 166
modifying margins to percentages from

pixels, 224
sizing, 163, 164–168 (see also sizing)

plain text, 9, 175
.png files (Portable Network Graphics), 488
points, sizing, 164–168
Portable Network Graphics. See .png files
portrait orientation, 431
ports

numbers, 255
servers, 256

positioning, 291–309
adding, 467
columns, 574–575
content, 339–340
elements, 540
explicit, 578
headers, 563–569
vertical, 340

posting
blogs, 398–411
building blogs, 416
post pages, 419–427

posts/post-type files, 261
Preston-Werner, Tom, 254
previewing blogs, 425–426
priority, CSS (Cascading Style Sheets), 140–146
projects

first tags, 17–20
starting, 12–17

propagation, DNS, 600. See also DNS (Domain
Name System)

properties
align-items, 371
borders, 199
box models, 201
display, 425
flexbox, 445
flex containers, 375–376

650 Index

flex-grow, 367
flex items, 376–381
floats, 206–214
margins, 199
meta, 452
modifying display, 196
text-align, 78
z-index, 292

prototypes, mobile-ready, 450
pseudo-classes, 284–286

first-child, 287–288
inputs, 464–465
sibling, 288–291

pseudo-elements
:after, 343–356
:before, 343–356

Q
queries

media, 109, 189
mobile media, 430–431 (see also mobile

media queries)
parameters, 45, 46

quotations, blockquote tag, 74. See also
blockquote tag

R
radius, borders, 238
Raisch, Robert, 112
records

adding, 609, 610
CNAME, 610, 616
DNS, 598, 607–609
MX, 622–626
A records, 608–610
TXT, 622, 623, 624

red, 157
red, green, blue. See also RGB
redirects, 615
refreshing

browsers, 19
pages, 416

registering custom domains, 594–598
registrar nameservers, connecting, 604–606
relationships, moving, 121
relative sizing, 164

relative spanning columns, 522–524
remote origin, 14
removing. See also deleting

elements, 195
rows, 517
spacing, 513

rem units, sizing, 181–184
replacing

content, 328
inline styles with classes, 95

repositories
creating, 14, 15, 120
GitHub pages, 19
searching, 16

resets
CSS, 265–267
rules, 267
styles, 186

resizing
images, 338, 339, 336
inline styling, 80
windows, 434–438

responsive design, 429, 435–436
restoring element displays, 195
restyling, 354–355. See also styles
RGB (red, green, blue), 77, 158, 160. See also

colors
rgba() command, 161
rgb() commands, 161
right margins, adding, 84. See also margins
Right Way, 52
rollovers, hover, 455
root em units. See rem units
rounding borders, 238–240
rows. See also columns

adding, 56
CSS grid, 510–515
defining, 502, 503, 504, 510
removing, 517
starting, 536, 539
tables, 55

Ruby programming language, 254
rules

adding, 95, 130–131
Cloudflare page, 613–618

Index 651

CSS, 104, 140–146, 145–156 (see also CSS
(Cascading Style Sheets))

flexbox, 406 (see also flexbox)
flex direction, 367
flex items, 372
margins, 94
modifying font sizes, 175, 176
resets, 267
styles, 88
targeting classes, 140

running Jekyll, 254–259

S
Safari

developer tools, 427
resizing windows, 434–438
web inspector, 436

Scalable and Modular Architecture for CSS. See
SMACSS

screens. See also displays; viewing
columns on mobile, 521
detecting size of, 430, 431
grids on mobile, 515
optimizing menus for small, 467–468
viewing, 434–438

scrolling. See also moving
boxes, 215
overflow method, 217–218

search engine optimization. See SEO (search
engine optimization)

searching repositories, 16
sections

adding styles, 352–356, 391
elements, 578
options, 587–588
overlapping, 575–580
sizing, 352–353

Secure Sockets Layer. See SSL (Secure Sockets
Layer)

security
attacks (see attacks)
encryption, 600, 601
hacking, 602

selecting
fonts, 243, 244, 475–488, 476

text styles, 190–191
TLDs, 595, 596, 597

selectors, 221–222, 284–286
:after pseudo-element, 343–356
:before pseudo-element, 343–356
CSS, 108, 128–131, 149
page templates, 343–356
pseudo-classes, 284–286
siblings, 288–291

self-aligning, 582–583
semantics, 10–11, 278, 280
SEO (search engine optimization), 615
sequences of characters, 9
servers

connecting, 256
connecting registrar nameservers, 604–606
Jekyll (see Jekyll)
ports, 256

settings, GitHub pages, 610–613. See also
configuring

setups. See also formatting
setups, CSS, 116–120
sharing URLs (uniform resource locators), 257
shorthand notation, flex items, 376–381
sibling pseudo-class, 288–291
signup

Cloudflare, 604
Google Workplace, 621–622

site analytics, 626–629
site generators, 253
site headers, 278–279. See also headers
sizing

absolute, 167
auto-sizing, 509, 518
box models, 208
columns, 509
CSS, 163–164
detecting screen size, 430, 431
elements, 372
em units, 175–180
fonts, 167, 175–180, 182
images, 165, 166
inline styling, 80
landscape orientation, 431
margins, 224, 225, 227, 229

652 Index

pages, 407
percentages, 169–175
pixels, 164–168
portrait orientation, 431
relative, 164
rem units, 181–184
Safari, 434
sections, 352–353
selecting text styles, 190–191
styles, 307
text, 175, 176
vh (viewport height), 184–189
vw (viewport width), 184–189
windows, 426

skeletons, HTML (Hypertext Markup
Language), 20–27

SMACSS (Scalable and Modular Architecture
for CSS), 137

smartphones, 166, 430, 431, 432. See also
mobile media queries

snippets, adding analytics, 627
source-independent positioning, 547–550
spacing

boxes, 224
inline/block elements, 193–199
links, 274
margins, 225, 227, 229
removing, 514

spam, filtering, 619
spans, 62–66

formatting, 456–457
relative spanning columns, 522–524

span tag, 62, 64, 76, 78
special tags, 9. See also tags
specialty page layouts, 361–363

content filling containers, 363–368
flexbox styles, 375–381
gallery stubs, 386–395
three-column page layouts, 381–386
vertical flex centering, 371–375

specificity, CSS (Cascading Style Sheets),
140–146

sponsored generic TLDs, 595. See also TLDs
(top-level domains)

SSL (Secure Sockets Layer), 599, 600, 601

stacking
elements, 438–439, 443
fonts, 486

starting
columns, 537–538, 582–583
Jekyll, 254–258
projects, 12–17
rows, 536, 539

static site generators, 109
strings, 9, 10
strong tag, 9, 10, 18, 34, 35, 61
strong text, 34, 35
structure. See also design

adding blog post, 420–421
columns, 564
of index pages, 402–411

styles, 6
adding, 150, 201, 336–337, 344, 352–353,

361, 391, 503, 520, 578
adding comments, 155–156
animation, 390
applying, 346
auto-fit, 510
background.position, 338–339
borders, 236–237
circles, 238–244
colors, 148
columns, 405, 406
combining, 138, 139, 140
comments, 373–374
containers, 369
CSS, 121–127, 133
display: block, 195–196
display: flex, 199
display: inline, 196–197
display: inline-block, 197–198
display: none, 194–195
dropdown menus, 455–463
elements, 167
empty declarations, 171
favicons, 488–490
flexbox, 375–381
fonts, 475–488
footers, 315, 318–325
formatting, 124

Index 653

gallery stubs, 386–395
groups, 155–156
headers, 280–284, 565
hero, 334, 335
id (see id style)
inline blocks, 219–223
inline styling, 48, 73–74 (see also inline

styling)
links, 318–325
mobile dropdown menus, 463–471
mobile media queries, 430–438
modifying, 307–309
moving link styling, 318
naming, 134–137
overriding, 139
paragraphs, 148
positioning, 291–309
priority and specificity, 140–146
resetting, 186
rules, 88, 145–156
selecting text, 190–191
sizing, 307
transform, 302–303
when to use classes/id style, 137–140
width, 426
wrappers, 350

stylesheets, 93, 96–97
style tag, 267–268
subdomains, 608. See also domains
subgrids, 557–558
switching color names to color values, 158
symbols, 24
syncing index pages, 245–249
syntax, highlighting, 18

T
table data cells, 55, 56

CSS (Cascading Style Sheets), 58
tables, 6, 54–61

block elements, 54, 55–58
defining with headers, 55
formatting, 362–363
headers, 55, 56
inline elements, 59–60
rows, 55

using as layouts, 362–363
table tag, 54, 267
tabs, creating, 51
tags

a, 61
adding, 61
beginning, 9
blockquote, 65, 68, 74–79
body, 21, 25, 29, 110
code, 52, 53
color, 110
div, 62, 65, 90
em, 33
empty style, 93
ending, 9
first, 17–20
footer, 314
formatting, 10–11
head, 21
header, 62, 64
headers, 30
html, 21
HTML, 8–12
img, 41, 61, 82
inline styling, 73–74 (see also inline styling)
li, 66–68
link, 97, 271–272
Liquid, 259, 315, 317
meta, 24, 41, 452
span, 62, 64, 76, 78
strong, 9, 10, 18, 34–35, 61
style, 267–268
table, 54, 267
title, 23, 29

tags.html, 51
targeting classes, 140
technical sophistication, 4, 32, 33, 59, 106
templates, 251. See also layouts

columns, 506–507, 509, 586
content, 327–330
default, 365
GitHub pages, 16
homepages, 330–342
Jekyll, 259–261
page templates (see page templates)

http://tags.html

654 Index

support, 253 (see also Jekyll)
variables, 329–330

templating systems, 52, 104, 108, 252
terminating loops, 413
text

adding, 39
annotations, 9
bold, 7, 34, 35
colors, 7
emphasized, 32–33
formatting, 6, 8, 31–35, 240
index pages, 31–35
inline styling, 74–79
links, 35–40 (see also links)
plain, 9
selecting styles, 190–191
sizing, 175, 176
strong, 34, 35

text-align property, 78
text editors, “Hello, world!,” 18
three-column layouts, 361–362, 381–386, 445
thumbnails, modifying, 445, 446
titles

callouts, 372
customizing, 490–494
page, 27

title tag, 23, 29
TLDs (top-level domains), 594–597
TLS (Transport Layer Security), 599, 600, 601
tokens, personal access, 15
top-level domains. See TLDs (top-level

domains)
transform style, 302–303
transparency, configuring, 161–163
Transport Layer Security. See TLS (Transport

Layer Security)
Twitter, adding links, 39–40
two-column layouts, 405, 409. See also layouts
TXT records, 622, 623, 624
types of documents, 23

U
UI (user interface), 108
Unicode, 24
units, fr(functional), 507–510

unordered lists, 68, 219
unzip command, 387
updating

class names, 136
headers, 317
index pages, 330–334

uploading HTML (Hypertext Markup
Language), 331–333

URLs (uniform resource locators), 16, 36, 256.
See also links

adding pages, 357–358
forwarding, 615, 616
matching, 615
redirects, 615
sharing, 257

UX (user experience), 108

V
values, 83, 84, 123

CSS, 157
padding, 234

variables
definition of, 329–330
environments, 257
page, 401–402

vector image fonts, 477–483
vendor prefixing, 111
verification, TXT records, 623, 624
vertical flex centering, 371–375
vertical layouts, 445
vertical positioning, 340
vh (viewport height), 184–189
viewing

display: block style, 195–196
display: flex style, 199
display: inline-block style,

197–198
display: inline style, 196–197
display: none style, 194–195
elements, 578
local servers, 451
pixels, 158
screens, 434–438

viewports, mobile, 449–453
vw (viewport width), 184–189

Index 655

W
W3C (World Wide Consortium), 7, 113
warnings, 24
web design, 105, 251. See also layouts
web developers, 6, 7
WebKit browsers, 114
web pages, 62, 252. See also pages
websites, 16. See also page templates; projects

custom elements of, 104, 105
domains, 593–594 (see also domains)
fonts, 475–488
headers, 278–279
homepages, 330–342
loading, 19

web sizing, 164. See also sizing
width. See also sizing

adding, 299–300
blogs, 426
margins, 225, 227, 229
modifying browser windows, 425
vw (viewport width), 184–189
windows, 509
zero-height/zero-width elements, 347, 348

wildcards, 614, 615, 616
windows

auto-sizing, 509, 518
modifying browsers, 425
resizing, 434–438
sizing, 434
viewing, 434–438
width, 509

World Wide Consortium. See W3C (World
Wide Consortium)

wrappers
adding, 169, 185, 393
configuring, 296–297
styles, 350

wrapping
content, 339–340, 339–340, 365
elements, 169
font names, 487
homepages, 393

writing. See also projects
blogs (see blogs)
HTML, 10–11
styles, 133 (see also styles)

WYSIWYG (What You See Is What You Get),
9, 397

X
x-axis, 339
XML (Extensible Markup Language), 42

Y
y-axis, 339

Z
zero-height/zero-width elements, 347,

348
z-index property, 292
zooming in/out, 164. See also pixels

	Cover
	Half Title Page
	Series Page
	Title Page
	Copyright Page
	Contents
	Preface
	About the Authors
	Chapter 9 Laying It All Out
	9.1 Layout Basics
	9.2 Jekyll
	9.2.1 Installing and Running Jekyll
	9.2.2 Exercises

	9.3 Layouts, Includes, and Pages (OhMy!)
	9.3.1 Layouts/Layout Templates
	9.3.2 Includes
	9.3.3 Pages/Page Templates
	9.3.4 Posts, and Post-Type Files

	9.4 The Layout File
	9.4.1 Exercises

	9.5 CSS File and Reset
	9.5.1 Exercises

	9.6 Includes Intro: Head and Header
	9.6.1 Page Header: Up Top!
	9.6.2 Navigation and Children
	9.6.3 Exercise

	9.7 Advanced Selectors
	9.7.1 Pseudo-Classes
	9.7.2 Exercises
	9.7.3 first-child
	9.7.4 Exercise
	9.7.5 Siblings
	9.7.6 Exercise

	9.8 Positioning
	9.8.1 A Real Logo
	9.8.2 Exercise

	9.9 Fixed Header
	9.9.1 Exercise

	9.10 A Footer, and Includes inIncludes
	9.10.1 Exercise

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

