
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137670109
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137670109
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137670109

“APIs are eating the world. Organizations and collaborations are depending more and
more on APIs. For all these APIs to be designed, using patterns is a well-established way
of tackling design challenges. Patterns for API Design helps practitioners to design
their APIs more effectively: They can focus on designing their application domain
while standard design issues are solved with patterns. If you’re working in the API
space, this book will change how you design APIs and how you look at APIs.”

—Erik Wilde, Catalyst at Axway

“The authors have captured design patterns across the API lifecycle, from definition
to design, in an approachable way. Whether you have designed dozens of web APIs or
you are just starting out, this book is a valuable resource to drive consistency and
overcome any design challenge you may face. I highly recommend this book!”

—James Higginbotham
Author of Principles of Web API Design: Delivering value with APIs and

Microservices and Executive API Consultant, LaunchAny

“APIs are everywhere in today’s software development landscape. API design looks
easy but, as anyone who has suffered a poorly designed API will attest, it is a difficult
skill to master and much subtler and more complex than it initially appears. In this
book, the authors have used their long experience and years of research work to cre-
ate a structured body of knowledge about API design. It will help you to understand
the underlying concepts needed to create great APIs and provides a practical set of
patterns that you can use when creating your own APIs. It is recommended for any-
one involved in the design, building, or testing of modern software systems.”

—Eoin Woods, CTO, Endava

Application programming interfaces (API) are among the top priority elements to help
manage many of the trade-offs involved in system design, in particular distributed sys-
tems, which increasingly dominate our software ecosystem. In my experience, this
book removes the complexities in understanding and designing APIs with concepts
accessible to both practicing engineers and those who are just starting their software
engineering and architecting journey. All who aspire to play a key role in system design
should understand the API design concepts and patterns presented in this book.”

—Ipek Ozkaya
Technical Director, Engineering Intelligence Software System

Software Solutions Division
Carnegie Mellon University Software Engineering Institute

 Editor-in-Chief 2019–2023 IEEE Software Magazine

“It is my belief that we are entering into an era where API-first design will become
the dominant form of design in large, complex systems. For this reason, Patterns for
API Design is perfectly timed and should be considered essential reading for any
architect.”

—Rick Kazman, University of Hawaii

“Finally, the important topic of API design is addressed systematically! I wish I
would have had this great pattern collection a few years earlier.”

—Dr. Gernot Starke, INNOQ Fellow

“I observed software projects fail because middleware technology hid a system’s
distributed nature from programmers. They designed problematic APIs of a non-
distributed gestalt exercised remotely. This book embraces the required dispersal of
software in an interdependent world and provides timeless advice on designing inter-
faces between its separated parts. The Patterns guide beyond specific middleware
technology and will not only help with creation and understanding but also with
necessary evolution of the interconnected software systems we grow today and in the
future. Those systems not only span the globe for international business, but also
work within our cars, houses, and almost any technology our daily lives depend on.”

—Peter Sommerlad, independent consultant, author of
Pattern-Oriented Software Architecture: A System of Patterns and Security Patterns

“The book Patterns for API Design is the Swiss army knife for software engineers
and architects when it comes to designing, evolving, and documenting APIs. What I
particularly like about the book is that it does not just throw the patterns at the
reader; instead, the authors use realistic examples, provide hands-on architecture
decision support, and exemplify patterns and decisions using a case study. As a
result, their pattern language is very accessible. You can use the book to find solu-
tions for specific problems or browse entire chapters to get an overview of the prob-
lem and solution spaces related to API design. All patterns are well-crafted,
well-named, and peer-reviewed by the practitioner community. It’s a joy.”

—Dr. Uwe van Heesch, Practicing Software Architect and
Former Vice President Hillside Europe

“This comprehensive collection of API patterns is an invaluable resource for soft-
ware engineers and architects designing interoperable software systems. The intro-
duction into API fundamentals and numerous case study examples make it excellent
teaching material for future software engineers. Many of the patterns discussed in
this book are extremely useful in practice and were applied to design the APIs of
integrated, mission-critical rail operations centre systems.”

—Andrei Furda, Senior Software Engineer at Hitachi Rail STS Australia

This page intentionally left blank

Patterns for API Design

The Pearson Addison-Wesley Signature Series provides readers with
practical and authoritative information on the latest trends in modern
technology for computer professionals. The series is based on one
simple premise: great books come from great authors.

Vaughn Vernon is a champion of simplifying software architecture and
development, with an emphasis on reactive methods. He has a unique
ability to teach and lead with Domain-Driven Design using lightweight
tools to unveil unimagined value. He helps organizations achieve
competitive advantages using enduring tools such as architectures,
patterns, and approaches, and through partnerships between business
stakeholders and software developers.

Vaughn’s Signature Series guides readers toward advances in software
development maturity and greater success with business-centric
practices. The series emphasizes organic refinement with a variety
of approaches—reactive, object, and functional architecture and
programming; domain modeling; right-sized services; patterns; and
APIs—and covers best uses of the associated underlying technologies.

Visit informit.com/awss/vernon for a complete list of available publications.

Pearson Addison-Wesley
Signature Series

Make sure to connect with us!
informit.com/socialconnect

http://informit.com/awss/vernon
http://informit.com/socialconnect

Patterns for API
Design

Simplifying Integration with Loosely
Coupled Message Exchanges

Olaf Zimmermann
Mirko Stocker
Daniel Lübke
Uwe Zdun
Cesare Pautasso

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Cover image: Joshua Small-Photographer / Shutterstock

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2022947404

Copyright © 2023 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate
contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-767010-9
ISBN-10: 0-13-767010-9

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We
embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender,
socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with authors
to create content for every product and service, we acknowledge our responsibility to demonstrate
inclusivity and incorporate diverse scholarship so that everyone can achieve their potential
through learning. As the world’s leading learning company, we have a duty to help drive change
and live up to our purpose to help more people create a better life for themselves and to create a
better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich diversity of
learners.

• Our educational content accurately reflects the histories and experiences of the learners we
serve.

• Our educational content prompts deeper discussions with learners and motivates them to
expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

• Please contact us with concerns about any potential bias at https://www.pearson.com/
report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

This page intentionally left blank

xi

Contents

Foreword by Vaughn Vernon, Series Editor . xvii

Foreword by Frank Leymann . xxi

Preface . xxiii

Acknowledgments . xxxiii

About the Authors . xxxv

Part 1: Foundations and Narratives . 1

Chapter 1: Application Programming Interface (API) Fundamentals 3

From Local Interfaces to Remote APIs . 3
A Bit of Distribution and Remoting History 5
Remote API: Access to Services via Protocol for Integration. 6
APIs Matter . 8

Decision Drivers in API Design . 14
What Makes an API Successful? . 15
How Do API Designs Differ? . 16
What Makes API Design Challenging? . 17
Architecturally Significant Requirements 19
Developer Experience . 21

A Domain Model for Remote APIs . 22
Communication Participants . 22
Endpoints Offer Contracts Describing Operations 24
Messages as Conversation Building Blocks 24
Message Structure and Representation . 25
API Contract . 26
Domain Model Usage throughout the Book 27

Summary . 28

Chapter 2: Lakeside Mutual Case Study . 31

Business Context and Requirements . 31
User Stories and Desired Qualities . 32

Contentsxii

Analysis-Level Domain Model . 32
Architecture Overview . 35

System Context . 35
Application Architecture . 36

API Design Activities . 39
Target API Specification . 39
Summary . 41

Chapter 3: API Decision Narratives. 43

Prelude: Patterns as Decision Options, Forces as Decision Criteria 43
Foundational API Decisions and Patterns . 45

API Visibility . 47
API Integration Types . 52
Documentation of the API . 55

Decisions about API Roles and Responsibilities 57
Architectural Role of an Endpoint . 59
Refining Information Holder Roles . 61
Defining Operation Responsibilities . 66

Selecting Message Representation Patterns . 70
Flat versus Nested Structure of Representation Elements 71
Element Stereotypes . 78

Interlude: Responsibility and Structure Patterns in the
Lakeside Mutual Case . 82

Governing API Quality . 84
Identification and Authentication of the API Client 85
Metering and Charging for API Consumption 88
Preventing API Clients from Excessive API Usage 90
Explicit Specification of Quality Objectives and Penalties 92
Communication of Errors . 94
Explicit Context Representation . 96

Deciding for API Quality Improvements . 98
Pagination . 98
Other Means of Avoiding Unnecessary Data Transfer 102
Handling Referenced Data in Messages 107

Decisions about API Evolution . 110
Versioning and Compatibility Management 112
Strategies for Commissioning and Decommissioning 115

Contents xiii

Interlude: Quality and Evolution Patterns in the
Lakeside Mutual Case . 120

Summary . 122

Part 2: The Patterns. 125

Chapter 4: Pattern Language Introduction. 127

Positioning and Scope . 128
Patterns: Why and How? . 130
Navigating through the Patterns . 131

Structural Organization: Find Patterns by Scope 131
Theme Categorization: Search for Topics 132
Time Dimension: Follow Design Refinement Phases 135
How to Navigate: The Map to MAP . 136

Foundations: API Visibility and Integration Types 137
Pattern: Frontend Integration . 138
Pattern: Backend Integration . 139
Pattern: Public API . 142
Pattern: Community API . 143
Pattern: Solution-Internal API . 144
Foundation Patterns Summary . 145

Basic Structure Patterns. 146
Pattern: Atomic Parameter . 148
Pattern: Atomic Parameter List . 150
Pattern: Parameter Tree . 152
Pattern: Parameter Forest. 155
Basic Structure Patterns Summary . 157

Summary . 158

Chapter 5: Define Endpoint Types and Operations 161

Introduction to API Roles and Responsibilities 162
Challenges and Desired Qualities . 163
Patterns in this Chapter . 164

Endpoint Roles (aka Service Granularity) . 167
Pattern: Processing Resource . 168
Pattern: Information Holder Resource 176
Pattern: Operational Data Holder . 183
Pattern: Master Data Holder . 190

Contentsxiv

Pattern: Reference Data Holder . 195
Pattern: Link Lookup Resource . 200
Pattern: Data Transfer Resource . 206

Operation Responsibilities . 215
Pattern: State Creation Operation . 216
Pattern: Retrieval Operation . 222
Pattern: State Transition Operation . 228
Pattern: Computation Function . 240

Summary . 248

Chapter 6: Design Request and Response Message Representations 253

Introduction to Message Representation Design 253
Challenges When Designing Message Representations 254
Patterns in this Chapter . 255

Element Stereotypes . 256
Pattern: Data Element . 257
Pattern: Metadata Element . 263
Pattern: Id Element . 271
Pattern: Link Element . 276

Special-Purpose Representations . 282
Pattern:API Key . 283
Pattern: Error Report . 288
Pattern: Context Representation . 293

Summary . 305

Chapter 7: Refine Message Design for Quality . 309

Introduction to API Quality . 309
Challenges When Improving API Quality 310
Patterns in This Chapter . 311

Message Granularity . 313
Pattern: Embedded Entity . 314
Pattern: Linked Information Holder 320

Client-Driven Message Content (aka Response Shaping) 325
Pattern: Pagination. 327
Pattern: Wish List . 335
Pattern: Wish Template . 339

Contents xv

Message Exchange Optimization (aka Conversation Efficiency) 344
Pattern: Conditional Request . 345
Pattern: Request Bundle . 351

Summary . 355

Chapter 8: Evolve APIs . 357

Introduction to API Evolution . 357
Challenges When Evolving APIs . 358
Patterns in This Chapter . 361

Versioning and Compatibility Management . 362
Pattern: Version Identifier . 362
Pattern: Semantic Versioning . 369

Life-Cycle Management Guarantees . 374
Pattern: Experimental Preview . 375
Pattern: Aggressive Obsolescence . 379
Pattern:Limited Lifetime Guarantee . 385
Pattern: Two in Production . 388

Summary . 393

Chapter 9: Document and Communicate API Contracts 395

Introduction to API Documentation . 395
Challenges When Documenting APIs . 396
Patterns in This Chapter . 397

Documentation Patterns . 398
Pattern: API Description . 399
Pattern: Pricing Plan . 406
Pattern: Rate Limit . 411
Pattern: Service Level Agreement . 416

Summary . 421

Part 3: Our Patterns in Action (Now and Then) . 423

Chapter 10: Real-World Pattern Stories . 425

Large-Scale Process Integration in the Swiss Mortgage Business 426
Business Context and Domain . 426
Technical Challenges . 427
Role and Status of API. 429
Pattern Usage and Implementation . 429
Retrospective and Outlook . 436

Offering and Ordering Processes in Building Construction 438
Business Context and Domain . 438
Technical Challenges . 439
Role and Status of API. 440
Pattern Usage and Implementation . 442
Retrospective and Outlook . 444

Summary . 445

Chapter 11: Conclusion. 447

Short Retrospective . 448
API Research: Refactoring to Patterns, MDSL, and More 449
The Future of APIs . 450
Additional Resources . 451
Final Remarks . 451

Appendix A: Endpoint Identification and Pattern Selection Guides. 453

Appendix B: Implementation of the Lakeside Mutual Case 463

Appendix C: Microservice Domain-Specific Language (MDSL) 471

Bibliography . 483

Index . 499

Foreword by Vaughn Vernon,
Series Editor

My signature series emphasizes organic growth and refinement, which I describe in
more detail below. It only makes sense to start off by describing the organic commu-
nication that I experienced with the first author of this book, Professor Dr. Olaf
Zimmermann.

As I often refer to Conway’s Law of system design, communication is a critical fac-
tor in software development. Systems designs not only resemble the communication
structures of the designers; the structure and assembling of individuals as communica-
tors is just as important. It can lead from interesting conversations to stimulating
thoughts and continue to deliver innovative products. Olaf and I met at a Java User
Group meeting in Bern, Switzerland, in November 2019. I gave a talk on reactive archi-
tecture and programming and how it is used with Domain-Driven Design. Afterward,
Olaf introduced himself. I also met his graduate student and later colleague, Stefan
Kapferer. Together they had organically designed and built the open-source product
Context Mapper (a domain-specific language and tools for Domain-Driven Design).
Our chance meeting ultimately led to this book’s publication. I’ll tell more of this story
after I describe the motivation and purpose of my book series.

My Signature Series is designed and curated to guide readers toward advances in
software development maturity and greater success with business-centric practices.
The series emphasizes organic refinement with a variety of approaches—reactive,
object, as well as functional architecture and programming; domain modeling; right-
sized services; patterns; and APIs—and covers best uses of the associated underlying
technologies.

From here, I am focusing now on only two words: organic refinement.
The first word, organic, stood out to me recently when a friend and colleague

used it to describe software architecture. I have heard and used the word organic in
connection with software development, but I didn’t think about that word as care-
fully as I did then when I personally consumed the two used together: organic
architecture.

Think about the word organic, and even the word organism. For the most part,
these are used when referring to living things, but they are also used to describe inan-
imate things that feature some characteristics that resemble life forms. Organic

xvii

Foreword by Vaughn Vernon, Series Editorxviii

originates in Greek. Its etymology is with reference to a functioning organ of the
body. If you read the etymology of organ, it has a broader use, and in fact organic
followed suit: body organs; to implement; describes a tool for making or doing; a
musical instrument.

We can readily think of numerous organic objects—living organisms—from the
very large to the microscopic single-celled life forms. With the second use of organ-
ism, though, examples may not as readily pop into our mind. One example is an
organization, which includes the prefix of both organic and organism. In this use of
organism, I’m describing something that is structured with bidirectional dependen-
cies. An organization is an organism because it has organized parts. This kind of
organism cannot survive without the parts, and the parts cannot survive without the
organism.

Taking that perspective, we can continue applying this thinking to nonliving
things because they exhibit characteristics of living organisms. Consider the atom.
Every single atom is a system unto itself, and all living things are composed of atoms.
Yet, atoms are inorganic and do not reproduce. Even so, it’s not difficult to think of
atoms as living things in the sense that they are endlessly moving, functioning. Atoms
even bond with other atoms. When this occurs, each atom is not only a single system
unto itself, but becomes a subsystem along with other atoms as subsystems, with
their combined behaviors yielding a greater whole system.

So then, all kinds of concepts regarding software are quite organic in that nonliv-
ing things are still “characterized” by aspects of living organisms. When we discuss
software model concepts using concrete scenarios, or draw an architecture diagram,
or write a unit test and its corresponding domain model unit, software starts to come
alive. It isn’t static because we continue to discuss how to make it better, subjecting it
to refinement, where one scenario leads to another, and that has an impact on the
architecture and the domain model. As we continue to iterate, the increasing value in
refinements leads to incremental growth of the organism. As time progresses, so
does the software. We wrangle with and tackle complexity through useful abstrac-
tions, and the software grows and changes shapes, all with the explicit purpose of
making work better for real, living organisms at global scales.

Sadly, software organics tend to grow poorly more often than they grow well. Even
if they start out life in good health, they tend to get diseases, become deformed, grow
unnatural appendages, atrophy, and deteriorate. Worse still is that these symptoms are
caused by efforts to refine the software that go wrong instead of making things better.
The worst part is that with every failed refinement, everything that goes wrong with
these complexly ill bodies doesn’t cause their death. Oh, if they could just die! Instead,
we have to kill them and killing them requires nerves, skills, and the intestinal fortitude
of a dragon slayer. No, not one, but dozens of vigorous dragon slayers. Actually, make
that dozens of dragon slayers who have really big brains.

Foreword by Vaughn Vernon, Series Editor xix

That’s where this series comes into play. I am curating a series designed to help
you mature and reach greater success with a variety of approaches—reactive, object,
and functional architecture and programming; domain modeling; right-sized ser-
vices; patterns; and APIs. And along with that, the series covers best uses of the asso-
ciated underlying technologies. It’s not accomplished in one fell swoop. It requires
organic refinement with purpose and skill. I and the other authors are here to help.
To that end, we’ve delivered our very best to achieve our goal.

Now, back to my story. When Olaf and I first met, I offered for him and Stefan to
attend my IDDD Workshop a few weeks later in Munich, Germany. Although nei-
ther were able to break away for all three days, they were open to attend the third and
final day. My second offer was for Olaf and Stefan to use time after the workshop to
demonstrate the Context Mapper tool. The workshop attendees were impressed, as
was I. This led to further collaboration on into 2020. Little did any of us expect what
that year would bring. Even so, Olaf and I were able to meet somewhat frequently to
continue design discussions about Context Mapper. During one of these meetings,
Olaf mentioned his work on API patterns that were provided openly. Olaf showed
me a number of patterns and additional tooling he and others had built around
them. I offered Olaf the opportunity to author in the series. The result is now in
front of you.

I later met on a video call with Olaf and Daniel Lübke to kick off product devel-
opment. I have not had the chance to spend time with the other authors—Mirko
Stocker, Uwe Zdun, Cesare Pautasso—but I was assured of the team’s quality given
their credentials. Notably, Olaf and James Higginbotham collaborated to ensure the
complementary outcome of this book and Principles of Web API Design, also in this
series. As an overall result, I am very impressed with what these five have contributed
to the industry literature. API design is a very important topic. The enthusiasm
toward the book’s announcement proves that it is right in the topic’s sweet spot. I am
confident that you will agree.

—Vaughn Vernon, series editor

This page intentionally left blank

xxi

Foreword by Frank Leymann

APIs are everywhere. The API economy enables innovation in technology areas,
including cloud computing and the Internet of Things (IoT), and is also a key ena-
bler of digitalization of many companies. There hardly is any enterprise application
without external interfaces to integrate customers, suppliers, and other business
partners; solution-internal interfaces decompose such applications into more man-
ageable parts, such as loosely coupled microservices. Web-based APIs play a promi-
nent role in these distributed settings but are not the only way to integrate remote
parties: queue-based messaging channels as well as publish/subscribe-based channels
are widely used for backend integration, exposing APIs to message producers and
consumers. gRPC and GraphQL have gained a lot of momentum as well. Thus, best
practices for designing “good” APIs are desirable. Ideally, API designs persist across
technologies and survive when those change.

Patterns establish a vocabulary for a problem-solution domain, finding a balance
between being abstract and concrete, which gives them both timelessness and rele-
vance today. Take Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf
from the Addison Wesley Signature Series as an example: I have been using it in
teaching and industry assignments since my time as lead architect of the IBM MQ
family of products. Messaging technologies come and, sometimes, go—but the mes-
saging concepts such as Service Activator and Idempotent Receiver are here to stay. I
have written cloud computing patterns, IoT patterns, quantum computing patterns,
even patterns for patterns in digital humanities myself. And Martin Fowler’s Patterns
of Enterprise Application Architecture, also from the Addison Wesley Signature
Series, gives us the Remote Façade and the Service Layer. Hence, many parts of the
overall design space of distributed applications are covered well in this literature—
but not all. Therefore, it is great to see that the API design space is now supported by
patterns too, the request and response messages that travel between API client and
API provider in particular.

The team who wrote this book is a great mix of architects and developers com-
posed of deeply experienced industry professionals, leaders in the patterns commu-
nity, and academic researchers and lecturers. I have been working with three of the
authors of this book for many years and have been following their MAP project since
its inception in 2016. They apply the pattern concept faithfully: Each pattern text
follows a common template that takes us from a problem context, including design
forces, to a conceptual solution. It also comes with a concrete example (often

xxi

Foreword by Frank Leymannxxii

RESTful HTTP). A critical discussion of pros and cons resolves the initial design
forces and closes with pointers to related patterns. Many of the patterns went
through shepherding and writers workshops at pattern conferences, which helped to
incrementally and iteratively improve and harden them over several years, capturing
collective knowledge as a result from this process.

This book provides multiple perspectives on the API design space, from scoping
and architecture to message representation structure and quality attribute-driven
design to API evolution. Its pattern language can be navigated via different paths,
including project phases and structural elements such as API endpoint and opera-
tion. As in our Cloud Computing Patterns book, a graphical icon for each pattern
conveys its essence. These icons serve as mnemonics and can be used to sketch APIs
and their elements. The book takes a unique and novel step in providing decision
models that collect recurring questions, options, and criteria regarding pattern
applications. They provide stepwise, easy-to-follow design guidance without over-
simplifying the complexities inherent to API design. A stepwise application to a sam-
ple case makes the models and their advices tangible.

In Part 2, the patterns reference, application and integration architects will find
the coverage of endpoint roles such as Processing Resource and operation responsi-
bilities such as State Transition Operation useful to size APIs adequately and make
(cloud) deployment decisions. State matters, after all, and several patterns make
state management behind the API curtain explicit. API developers will benefit from
the careful consideration given to identifiers (in patterns such as API Key and Id Ele-
ment), several options for response shaping (for instance, with Wish Lists and a Wish
Template that abstracts from GraphQL), and pragmatic advice on how to expose
metadata of different kinds.

I have not seen life-cycle management and versioning strategies captured in pattern
form in other books so far. Here, we can learn about Limited Lifetime Guarantees and
Two in Production, two patterns very common in enterprise applications. These evolu-
tion patterns will be appreciated by API product owners and maintainers.

In summary, this book provides a healthy mix of theory and practice, containing
numerous nuggets of deep advice but never losing the big picture. Its 44 patterns,
organized in five categories and chapters, are grounded in real-world experience and
documented with academic rigor applied and practitioner-community feedback
incorporated. I am confident that patterns will serve the community well, today and
tomorrow. API designers in industry as well as in research, development, and educa-
tion related to API design and evolution can benefit from them.

—Prof. Dr. Dr. h. c. Frank Leymann, Managing Director
Institute of Architecture of Application Systems

University of Stuttgart

xxiii

Preface

This introduction to our book covers the following:

• The context and the purpose of the book—its motivation, goals and scope.

• Who should read the book—our target audience with their use cases and
information needs.

• How the book is organized, with patterns serving as knowledge vehicles.

Motivation

Humans communicate in many different languages. The same holds for software.
Software not only is written in various programming languages but also communi-
cates via a plethora of protocols (such as HTTP) and message exchange formats
(such as JSON). HTTP, JSON, and other technologies operate every time somebody
updates their social network profile, orders something in a Web shop, swipes their
credit card to purchase something, and so on:

• Application frontends, such as mobile apps on smartphones, place requests
for transaction processing at their backends, such as purchase orders in online
shops.

• Application parts exchange long-lived data such as customer profiles or product
catalogs with each other and with the systems of business partners, customers,
and suppliers.

• Application backends provide external services such as payment gateways or
cloud storage with data and metadata.

The software components involved in these scenarios—large, small, and
in-between—talk to others to achieve their individual goals while jointly serving end
users. The software engineer’s response to this distribution challenge is application
integration via application programming interfaces (APIs). Every integration
scenario involves at least two communication parties: API client and API provider.

xxiii

Prefacexxiv

API clients consume the services exposed by API providers. API documentation gov-
erns the client-provider interactions.

Just like humans, software components often struggle to understand each other
when they communicate; it is hard for their designers to decide on an adequate size and
structure of message content and agree on the best-suited conversation style. Neither
party wants to be too quiet or overly talkative when articulating its needs or responding
to requests. Some application integration and API designs work very well; the involved
parties understand each other and reach their goals. They interoperate effectively and
efficiently. Others lack clarity and thereby confuse or stress participants; verbose mes-
sages and chatty conversations may overload the communication channels, introduce
unnecessary technical risk, and cause extra work in development and operations.

Now, what distinguishes good and poor integration API designs? How can API
designers stimulate a positive client developer experience? Ideally, the guidelines for
good integration architectures and API designs do not depend on any particular
technology or product. Technologies and products come and go, but related design
advice should stay relevant for a long time. In our real-world analogy, principles such
as those of Cicero’s rhetoric and eloquence or Rosenberg’s in Nonviolent Communi-
cation: A Language of Life [Rosenberg 2002] are not specific to English or any other
natural language; they will not go out of fashion as natural languages evolve. Our
book aims to establish a similar toolbox and vocabulary for integration specialists
and API designers. It presents its knowledge bits as patterns for API design and evo-
lution that are eligible under different communication paradigms and technologies
(with HTTP- and JSON-based Web APIs serving as primary sources of examples).

Goals and Scope

Our mission is to help overcome the complexity of designing and evolving APIs
through proven, reusable solution elements:

How can APIs be engineered understandably and sustainably, starting from
stakeholder goals, architecturally significant requirements, and already
proven design elements?

While much has been said and written about HTTP, Web APIs, and integration
architectures in general (including service-oriented ones), the design of individual
API endpoints and message exchanges has received less attention so far:

• How many API operations should be exposed remotely? Which data should be
exchanged in request and response messages?

Preface xxv

• How is loose coupling of API operations and client-provider interactions ensured?

• What are suitable message representations: flat or hierarchically nested ones?
How is agreement reached on the meaning of the representation elements so
that these elements are processed correctly and efficiently?

• Should API providers be responsible for processing data provided by their cli-
ents, possibly changing the provider-side state and connecting to backend sys-
tems? Or should they merely provide shared data stores to their clients?

• How are changes to APIs introduced in a controlled way that balances extensi-
bility and compatibility?

The patterns in this book help answer these questions by sketching proven solu-
tions to specific design problems recurring in certain requirements contexts. Focus-
ing on remote APIs (rather than program-internal ones), they aim at improving the
developer experience on both the client side and the provider side.

Target Audience

This book targets intermediate-level software professionals striving to improve their
skills and designs. The presented patterns primarily aim at integration architects,
API designers, and Web developers interested in platform-independent architectural
knowledge. Both backend-to-backend integration specialists and developers of APIs
supporting frontend applications can benefit from the knowledge captured in the
patterns. As we focus on API endpoint granularity and the data exchanged in mes-
sages, additional target roles are API product owner, API reviewer, and cloud tenant
and provider.

This book is for you if you are a medium-experienced software engineer (such
as developer, architect, or product owner) already familiar with API funda-
mentals and want to improve your API design capabilities, including message
data contract design and API evolution.

Students, lecturers, and software engineering researchers may find the patterns
and their presentation in this book useful as well. We provide an introduction to API
fundamentals and a domain model for API design to make the book and its patterns
understandable without first having to read a book for beginners.

Prefacexxvi

Knowing about the available patterns and their pros and cons will improve profi-
ciency regarding API design and evolution. APIs and the services they provide will be
simpler to develop, consume, and evolve when applying patterns from this book
suited for a particular requirements context.

Usage Scenarios

Our objective is to make API design and usage a pleasant experience. To that end,
three main use cases for our book and its patterns are as follows:

1. Facilitate API design discussions and workshops by establishing a common
vocabulary, pointing out required design decisions, and sharing available
options and related trade-offs. Empowered by this knowledge, API providers
are enabled to expose APIs of quality and style that meet their clients’ needs,
both short term and long term.

2. Simplify API design reviews and speed up objective API comparisons so that
APIs can be quality assured—and evolved in a backward-compatible and
extensible way.

3. Enhance API documentation with platform-neutral design information so that
API client developers can grasp the capabilities and constraints of provided
APIs with ease. The patterns are designed to be embeddable into API contracts
and observable in existing designs.

We provide a fictitious case study and two real-world pattern adoption stories to
demonstrate and jumpstart this pattern usage.

We do not expect readers to know any particular modeling approach, design tech-
nique, or architectural style already. However, such concepts—for instance, the
Align-Define-Design-Refine (ADDR) process, domain-driven design (DDD), and
responsibility-driven design (RDD)—have their roles to play. They are reviewed
briefly in Appendix A.

Existing Design Heuristics (and Knowledge Gaps)

You can find many excellent books that provide deep advice on specific API technol-
ogies and concepts. For instance, the RESTful Web Services Cookbook [Allamaraju
2010] explains how to build HTTP resource APIs—for example, which HTTP
method such as POST or PUT to pick. Other books explain how asynchronous mes-
saging works in terms of routing, transformation, and guaranteed delivery [Hohpe
2003]. Strategic DDD [Evans 2003; Vernon 2013] can get you started with API

Preface xxvii

endpoint and service identification. Service-oriented architecture, cloud computing,
and microservice infrastructure patterns have been published. Structuring data stor-
ages (relational, NoSQL) is also documented comprehensively, and an entire pattern
language for distributed systems design is available as well [Buschmann 2007].
Finally, Release It! extensively covers design for operations and deployment to pro-
duction [Nygard 2018a].

The API design process, including goal-driven endpoint identification and opera-
tion design, is also covered well in existing books. For instance, Principles of Web
API Design: Delivering Value with APIs and Microservices [Higginbotham 2021]
suggests four process phases with seven steps. The Design of Web APIs [Lauret 2019]
proposes an API goal canvas, and Design and Build Great Web APIs: Robust, Relia-
ble, and Resilient [Amundsen 2020] works with API stories.

Despite these invaluable sources of design advice, the remote API design space
still is not covered sufficiently. Specifically, what about the structures of the request
and response messages going back and forth between API client and provider? Enter-
prise Integration Patterns [Hohpe 2003] features three patterns representing message
types (event, command, and document message) but does not provide further details
on their inner workings. However, “data on the outside,” exchanged between sys-
tems, differs from “data on the inside” that is processed program-internally [Helland
2005]. There are significant differences between the two types of data in terms of
their mutability, lifetime, accuracy, consistency, and protection needs. For instance,
increasing a local stock-item counter internal to an inventory system probably
requires somewhat less architecture design than product pricing and shipment infor-
mation that is exchanged between manufacturers and logistics companies jointly
managing a supply chain via remote APIs and messaging channels.

Message representation design—data on the outside [Helland 2005] or the “Pub-
lished Language” pattern [Evans 2003] of an API—is the main focus area of this
book. It closes the knowledge gaps regarding API endpoint, operation, and message
design.

Patterns as Knowledge Sharing Vehicles

Software patterns are sophisticated knowledge-sharing instruments with a track
record of more than 25 years. We decided for the pattern format to share API design
advice because pattern names aim at forming a domain vocabulary, a “Ubiquitous
Language” [Evans 2003]. For instance, the enterprise integration patterns have
become the lingua franca of queue-based messaging; these patterns were even imple-
mented in messaging frameworks and tools.

Prefacexxviii

Patterns are not invented but are mined from practical experience and then hard-
ened via peer feedback. The patterns community has developed a set of practices to
organize the feedback process; shepherding and writers’ workshops are two particu-
larly important ones [Coplien 1997].

At the heart of each pattern is a problem-solution pair. Its forces and the discus-
sion of consequences support informed decision making, for instance, about desired
and achieved quality characteristics—but also about the downsides of certain
designs. Alternative solutions are discussed, and pointers to related patterns and
possible implementation technologies complete the picture.

Note that patterns do not aim at providing complete solutions but serve as
sketches to be adopted and tailored for a particular, context-specific API design. In
other words, patterns are soft around their edges; they outline possible solutions but
do not provide blueprints to be copied blindly. How to adopt and realize a pattern to
satisfy project or product requirements remains the responsibility of API designers
and owners.

We have been applying and teaching patterns in industry and academia for a long
time. Some of us have written patterns for programming, architecting, and integrat-
ing distributed application systems and their parts [Voelter 2004; Zimmermann
2009; Pautasso 2016].

We found the pattern concept to be well suited for the usage scenarios stated ear-
lier under “Goals and Scope” and “Target Audience.”

Microservice API Patterns

Our pattern language, called Microservice API Patterns (MAP), provides compre-
hensive views on API design and evolution from the perspective of the messages
exchanged when APIs are exposed and consumed. These messages and their pay-
loads are structured as representation elements. The representation elements differ
in their structure and meaning because API endpoints and their operations have dif-
ferent architectural responsibilities. The message structures strongly influence the
design time and runtime qualities of an API and its underlying implementations; for
instance, few large messages cause network and endpoint workloads (such as CPU
consumption and network bandwidth usage) that differ from those caused by many
small messages. Finally, successful APIs evolve over time; the changes over time have
to be managed.

We chose the metaphor and acronym MAP because maps provide orientation and
guidance, just as pattern languages do; they educate their readers on the options
available in an abstract solution space. APIs themselves also have a mapping nature,
as they route incoming requests to the underlying service implementations.

Preface xxix

We admit that “Microservice API Patterns” might come across as click-bait. In
case microservices are no longer fashionable shortly after this book is published, we
reserve the right to rename the language and repurpose the acronym. For instance,
“Message API Patterns” outlines the scope of the language well too. In the book, we
refer to MAP as “the pattern language” or “our patterns” most of the time.

Scope of the Patterns in This Book

This book is the final outcome of a volunteer project focused on the design and evo-
lution of Web APIs and other remote APIs addressing endpoint and message respon-
sibility, structure, and quality concerns as well as service API evolution. The project
started in the fall of 2016. The resulting pattern language, presented in this book,
helps answer the following questions:

• What is the architectural role played by each API endpoint? How do the end-
point roles and the responsibilities of operations impact service size and
granularity?

• What is an adequate number of representation elements in request and
response messages? How are these elements structured? How can they be
grouped and annotated with supplemental information?

• How can an API provider achieve a certain level of API quality while at the
same time using its resources in a cost-effective way? How can quality trade-
offs be communicated and accounted for?

• How can API professionals deal with life-cycle management concerns such as
support periods and versioning? How can they promote backward compatibil-
ity and communicate unavoidable breaking changes?

We collected our patterns by studying numerous Web APIs and API-related
specifications and reflecting on our own professional experience (before writing any
pattern). We observed many occurrences of the patterns—known uses—both in
public Web APIs and in application development and software integration projects
in industry. Intermediate versions of many of our patterns went through the shep-
herding and writers’ workshop processes at EuroPLoP1 from 2017 to 2020; they were
later published in the respective conference proceedings.2

1. https://europlop.net/content/conference.
2. We decided not to include big collections of known uses in the book; such information is available

online and in the EuroPLoP conference proceedings from 2016 to 2020. In some of the supplemental
resources, you can find extra implementation hints as well.

https://europlop.net/content/conference

Prefacexxx

Entry Points, Reading Order, and Content Organization

When maneuvering a complex design space to solve wicked problems [Wikipedia
2022a] (and API design certainly qualifies as sometimes wicked), it is often hard to see
the forest for the trees. It is neither possible nor desirable to serialize or standardize the
problem-solving activities. Therefore, our pattern language has multiple entry points.
Each book part can serve as a starting point, and Appendix A suggests even more.

The book has three parts: Part 1, “Foundations and Narratives,” Part 2, “The
Patterns,” and Part 3, “Our Patterns in Action (Now and Then).” Figure P.1
shows these parts with their chapters and logical dependencies.

Part 2

Chapters 5 to 9:
Pattern Themes

Chapter 4:
Pattern Language Introduction

Preface:
Goals and Scope, Target Audience, Patterns, Content Organization, Reading Order

Part 1

Chapter 2:
Lakeside Mutual

Case Study

Chapter 1:
API Fundamentals

Chapter 3: API
Decision Narratives

Part 3

Chapter 11:
Conclusion

Chapter 10:
Real-World

Pattern Stories

Appendices A to C:
A: Endpoint Identification and Pattern Selection Guides (including Cheat Sheet)

B: Implementation of the Lakeside Mutual Case
C: Microservice Domain-Specific Language (MDSL)

Chapters 5 to 9:
Pattern ThemesChapters 5 to 9:

Pattern ThemesChapters 5 to 9:
Pattern ThemesChapters 5 to 9:
Pattern Reference

Figure P.1 Book parts and their dependencies

Part 1 introduces the domain of API design conceptually, starting with Chapter 1,
“Application Programming Interface (API) Fundamentals.” Lakeside Mutual, our
case study and primary source of examples, appears for the first time with its business
context, requirements, existing systems, and initial API design in Chapter 2, “Lakeside
Mutual Case Study.” We provide decision models that show how the patterns in our
language relate to each other in Chapter 3, “API Decision Narratives.” Chapter 3 also
provides pattern selection criteria and shows how the featured decisions were made in the
Lakeside Mutual case. These decision models may serve as navigation aids when reading
the book and when applying the patterns in practice.

Preface xxxi

Part 2 is the pattern reference; it starts with Chapter 4, “Pattern Language Intro-
duction,” followed by five chapters full of patterns: Chapter 5, “Define Endpoint
Types and Operations,” Chapter 6, “Design Request and Response Message Rep-
resentations,” Chapter 7, “Refine Message Design for Quality,” Chapter 8,
“Evolve APIs,” and Chapter 9, “Document and Communicate API Contracts.”
Figure P.2 illustrates these chapters and possible reading paths in this part; for instance,
you can learn about basic structure patterns such as Atomic Parameter and Parame-
ter Tree in Chapter 4 and then move on to element stereotypes such as Id Element
and Metadata Element found in Chapter 6.

Foundation Patterns
(Chapter 4) Quality Patterns

(Chapter 7)

Client-Driven
Message Content

Message Exchange
Optimization

Message Granularity

Responsibility Patterns
(Chapter 5)

Operation
Responsibilities

Endpoint Roles

Message Structuring
Patterns (Chapter 6)

Special-Purpose
Representations

Element Stereotypes

Evolution Patterns
(Chapter 8)

Lifecycle
Management
Guarantees

Versioning

Documentation Patterns
(Chapter 9)

Billing and
Governance

API Description

Basic Structure
Patterns

Align

Define

Design

Refine

Integration Types
(API Direction)

API Visibility

Figure P.2 Über-pattern map: Chapter flows in Part 2 of the book

Each pattern description can be seen as a small, specialized article on its own,
usually a few pages long. These discussions are structured identically: First, we intro-
duce when and why to apply the pattern. Then we explain how the pattern works
and give at least one concrete example. Next, we discuss the consequences of apply-
ing the pattern and direct readers to other patterns that become eligible once a par-
ticular one has been applied. The names of our patterns are set in small caps
(example: Processing Resource). This pattern template, introduced in detail in
Chapter 4, was derived from the EuroPLoP conference template [Harrison 2003]. We
refactored it slightly to take review comments and advice into account (thank you
Gregor and Peter!). It puts particular emphasis on quality attributes and their con-
flicts, as our patterns deal with architecturally significant requirements; conse-
quently, trade-offs are required when making API design and evolution decisions.

Part 3 features the application of the patterns in two real-world projects in rather
different domains, e-government and offer/order management in the construction
industry. It also reflects, draws some conclusions, and gives an outlook.

Prefacexxxii

Appendix A, “Endpoint Identification and Pattern Selection Guides,” provides
a problem-oriented cheat sheet as another option to get started. It also discusses how
our patterns relate to RDD, DDD, and ADDR. Appendix B, “Implementation of the
Lakeside Mutual Case,” shares more API design artifacts from the book’s case study.
Appendix C, “Microservice Domain-Specific Language (MDSL),” provides a
working knowledge of MDSL, a language for microservices contracts with built-in
pattern support via decorators such as <<Pagination>>. MDSL provides bindings
and generator support for OpenAPI, gRPC protocol buffers, GraphQL, and other
interface description and service programming languages.

You will see some (but not much) Java and quite a bit of JSON and HTTP (for
instance, in the form of curl commands and responses to them) as you find your way
through the book. Very little, if any, gRPC, GraphQL, and SOAP/WSDL might also
come your way; if so, it is designed to be simple enough to be understandable without
expertise in any of these technologies. Some of our examples are described in MDSL
(if you are wondering why we created yet another interface description language:
OpenAPI in its YAML or JSON renderings simply does not fit on a single book page
when going beyond HelloWorld–ish examples!).

Supplemental information is available through the Web site companion to this
book:

https://api-patterns.org

We hope you find the results of our efforts useful so that our patterns have a chance
to find their way into the body of knowledge of the global community of integration
architects and API developers. We will be glad to hear about your feedback and con-
structive criticism.

Olaf, Mirko, Daniel, Uwe, Cesare
June 30, 2022

Register your copy of Patterns for API Design: Simplifying Integration with Loosely
Coupled Message Exchanges on the InformIT site for convenient access to updates
and/or corrections as they become available. To start the registration process, go to
informit.com/register and log in or create an account. Enter the product ISBN
(9780137670109) and click Submit. Look on the Registered Products tab for an
Access Bonus Content link next to this product, and follow that link to access any
available bonus materials. If you would like to be notified of exclusive offers on new
editions and updates, please check the box to receive email from us.

https://api-patterns.org
http://informit.com/register

xxxiii

Acknowledgments

We thank Vaughn Vernon for all his feedback and encouragement during our book pro-
ject. We feel honored to be part of his Addison Wesley Signature Series. Special thanks
also go to Haze Humbert, Menka Mehta, Mary Roth, Karthik Orukaimani, and Sandra
Schroeder from Pearson for their excellent support and to Frank Leymann for providing
the foreword and valuable feedback on our work. Our copy editor, Carol Lallier of Clar-
ity Editing, made this late activity a rewarding, even pleasant experience.

The real-world pattern stories in this book would have not been possible without
the cooperation of development projects. Thus, we’d like to thank Walter Berli and
Werner Möckli from Terravis and Phillip Ghadir and Willem van Kerkhof from innoQ
for their inputs and work on these stories. Nicolas Dipner and Sebnem Kaslack created
the initial versions of the patterns icons in their term and bachelor thesis projects. Toni
Suter implemented large parts of the Lakeside Mutual case study applications. Stefan
Kapferer, developer of Context Mapper, also contributed to the MDSL tools.

We want to thank all the people who provided feedback on the content of this
book. Special thanks go to Andrei Furda, who provided input to the introductory
material and reviewed many of our patterns; Oliver Kopp and Hans-Peter Hoidn,
who applied patterns, provided feedback, and/or organized several informal work-
shops with peers; James Higginbotham and, again, Hans-Peter Hoidn, who reviewed
the book manuscript.

In addition, many colleagues provided helpful feedback, especially the shepherds and
writer’s workshop participants from EuroPLoP 2017, 2018, 2019, and 2020. We thank
the following individuals for their valuable insights: Linus Basig, Luc Bläser, Thomas
Brand, Joseph Corneli, Filipe Correia, Dominic Gabriel, Antonio Gámez Díaz, Reto
Fankhauser, Hugo Sereno Ferreira, Silvan Gehrig, Alex Gfeller, Gregor Hohpe, Stefan
Holtel, Ana Ivanchikj, Stefan Keller, Michael Krisper, Jochen Küster, Fabrizio Lazzaretti,
Giacomo De Liberali, Fabrizio Montesi, Frank Müller, Padmalata Nistala, Philipp Oser,
Ipek Ozkaya, Boris Pokorny, Stefan Richter, Thomas Ronzon, Andreas Sahlbach, Niels
Seidel, Souhaila Serbout, Apitchaka Singjai, Stefan Sobernig, Peter Sommerlad, Markus
Stolze, Davide Taibi, Dominic Ullmann, Martin (Uto869), Uwe van Heesch, Timo Ver-
hoeven, Stijn Vermeeren, Tammo van Lessen, Robert Weiser, Erik Wilde, Erik Wittern,
Eoin Woods, Rebecca Wirfs-Brock, and Veith Zäch. We also would like to thank the stu-
dents of several editions of the HSR/OST lectures “Advanced Patterns and Frameworks”
and “Application Architecture” and of the USI lecture on “Software Architecture.” Their
discussion of our patterns and additional feedback are appreciated.

This page intentionally left blank

xxxv

About the Authors

Olaf Zimmermann is a long-time service orienteer with a PhD in architectural deci-
sion modeling. As consultant and professor of software architecture at the Institute
for Software at Eastern Switzerland University of Applied Sciences, he focuses on
agile architecting, application integration, cloud-nativity, domain-driven design, and
service-oriented systems. In his previous life as a software architect at ABB and IBM,
he had e-business and enterprise application development clients around the world
and worked on systems and network management middleware earlier. Olaf is a Dis-
tinguished (Chief/Lead) IT Architect at The Open Group and co-edits the Insights
column in IEEE Software. He is an author of Perspectives on Web Services and the
first IBM Redbook on Eclipse. He blogs at ozimmer.ch and medium.com/olzzio.

Mirko Stocker is a programmer by heart who could not decide whether he liked
frontend or backend development more, so he stayed in the middle and discovered
that APIs hold many interesting challenges as well. He cofounded two startups in the
legal tech sector, one of which he still chairs as managing director. This path has led
him to become a professor of software engineering at the Eastern Switzerland Uni-
versity of Applied Sciences, where he researches and teaches in the areas of program-
ming languages, software architecture, and Web engineering.

Daniel Lübke is an independent coding and consulting software architect with a
focus on business process automation and digitization projects. His interests are
software architecture, business process design, and system integration, which inher-
ently require APIs to develop solutions. He received his PhD at the Leibniz Univer-
sität Hannover, Germany, in 2007 and has worked in many industry projects in
different domains since then. Daniel is author and editor of several books, articles,
and research papers; gives training; and regularly presents at conferences on topics of
APIs and software architecture.

Uwe Zdun is a full professor of software architecture at the Faculty of Computer
Science, University of Vienna. His work focuses on software design and architecture,
empirical software engineering, distributed systems engineering (microservices, ser-
vice-based, cloud, APIs, and blockchain-based systems), DevOps and continuous
delivery, software patterns, software modeling, and model-driven development.
Uwe has worked on many research and industry projects in these fields, and in

xxxv

http://ozimmer.ch
http://medium.com/olzzio

About the Authorsxxxvi

addition to his scientific writing is co-author of the professional books Remoting
Patterns—Foundations of Enterprise, Internet, and Realtime Distributed Object
Middleware, Process-Driven SOA—Proven Patterns for Business-IT Alignment, and
Software-Architektur.

Cesare Pautasso is a full professor at the Software Institute of the USI Faculty of
Informatics, in Lugano, Switzerland, where he leads the Architecture, Design, and
Web Information Systems Engineering research group. He chaired the 25th European
Conference on Pattern Languages of Programs (EuroPLoP 2022). He was lucky to
meet Olaf during a brief stint at the IBM Zurich Research Lab back in 2007, after
receiving his PhD from ETH Zurich in 2004. He has co-authored SOA with REST
(Prentice Hall, 2013) and, self-published the Beautiful APIs series, RESTful Diction-
ary, and Just Send an Email: Anti-patterns for Email-centric Organizations on
LeanPub.

309

Chapter 7

Refine Message Design
for Quality

This chapter covers seven patterns that address issues with API quality. Arguably, it
would be hard to find any API designers and product owners who do not value quali-
ties such as intuitive understandability, splendid performance, and seamless evolva-
bility. That said, any quality improvement comes at a price—a literal cost such as
extra development effort but also negative consequences such as an adverse impact
on other qualities. This balancing act is caused by the fact that some of the desired
qualities conflict with each other—just think about the almost classic performance
versus security trade-offs.

We first establish why these issues are relevant in “Introduction to API Quality.”
The next section presents two patterns dealing with “Message Granularity.” Three
patterns for “Client-Driven Message Content” follow, and two patterns aim at
“Message Exchange Optimization.”

These patterns support the third and the fourth phases of the Align-Define-
Design-Refine (ADDR) design process for APIs that we introduced at the start of
Part 2.

Introduction to API Quality

Modern software systems are distributed systems: mobile and Web clients communi-
cate with backend API services, often hosted by a single or even multiple cloud pro-
viders. Multiple backends also exchange information and trigger activities in each
other. Independent of the technologies and protocols used, messages travel through
one or several APIs in such systems. This places high demands on quality aspects of
the API contract and its implementation: API clients expect any provided API to be
reliable, responsive, and scalable.

Chapter 7 Refine Message Design for Quality 310

API providers must balance conflicting concerns to guarantee a high service qual-
ity while ensuring cost-effectiveness. Hence, all patterns presented in this chapter
help resolve the following overarching design issue:

How to achieve a certain level of quality of a published API while at the same
time utilizing the available resources in a cost-effective way?

Performance and scalability concerns might not have a high priority when initially
developing a new API, especially in agile development—if they arise at all. Usually,
there is not enough information on how clients will use the API to make informed
decisions. One could also just guess, but that would not be prudent and would vio-
late principles such as making decisions in the most responsible moment [Wirfs-
Brock 2011].

Challenges When Improving API Quality

The usage scenarios of API clients differ from each other. Changes that benefit some
clients may negatively impact others. For example, a Web application that runs on a
mobile device with an unreliable connection might prefer an API that offers just the
data that is required to render the current page as quickly as possible. All data that is
transmitted, processed, and then not used is a waste, squandering valuable battery
time and other resources. Another client running as a backend service might periodi-
cally retrieve large amounts of data to generate elaborate reports. Having to do so in
multiple client-server interactions introduces a risk of network failures; the report-
ing has to resume at some point or start from scratch when such failures occur. If the
API has been designed with its request/response messages tailored to either use case,
the API very likely is not ideally suited for the other one.

Taking a closer look, the following conflicts and design issues arise:

• Message sizes versus number of requests: Is it preferable to exchange several
small messages or few larger ones? Is it acceptable that some clients might have
to send multiple requests to obtain all the data required so that other clients do
not have to receive data they do not use?

• Information needs of individual clients: Is it valuable and acceptable to prior-
itize the interests of some customers over those of others?

• Network bandwidth usage versus computation efforts: Should bandwidth
be preserved at the expense of higher resource usage in API endpoints and their
clients? Such resources include computation nodes and data storage.

Introduction to API Quality 311

• Implementation complexity versus performance: Are the gained bandwidth
savings worth their negative consequences, for instance, a more complex
implementation that is harder and more costly to maintain?

• Statelessness versus performance: Does it make sense to sacrifice client/pro-
vider statelessness to improve performance? Statelessness improves scalability.

• Ease of use versus latency: Is it worth speeding up the message exchanges
even if doing so results in a harder-to-use API?

Note that the preceding list is nonexhaustive. The answers to these questions
depend on the quality goals of the API stakeholders and additional concerns. The
patterns in this chapter provide different options to choose from under a given set
of requirements; adequate selections differ from API to API. Part 1 of this book
provided a decision-oriented overview of these patterns in the “Deciding for API
Quality Improvements” section of Chapter 3, “API Decision Narratives.” In this
chapter, we cover them in depth.

Patterns in This Chapter

The section “Message Granularity” contains two patterns: Embedded Entity and
Linked Information Holder. Data Elements offered by API operations frequently
reference other elements, for example, using hyperlinks. A client can follow these links
to retrieve the additional data; this can become tedious and lead to a higher implemen-
tation effort and latency on the client side. Alternatively, clients can retrieve all data at
once when providers directly embed the referenced data instead of just linking to it.

“Client-Driven Message Content” features three patterns. API operations some-
times return large sets of data elements (for example, posts on a social media site or
products in an e-commerce shop). API clients may be interested in all of these data
elements, but not necessarily all at once and not all the time. Pagination divides the
data elements into chunks so that only a subset of the sequence is sent and received
at once. Clients are no longer overwhelmed with data, and performance and resource
usage improve. Providers may offer relatively rich data sets in their response mes-
sages. If the problem is that not all clients require all information all the time, then
a Wish List allows these clients to request only the attributes in a response data set
that they are interested in. Wish Template addresses the same problem but offers cli-
ents even more control over possibly nested response data structures. These patterns
address concerns such as accuracy of the information, data parsimony, response
times, and processing power required to answer a request.

Finally, the “Message Exchange Optimization” section features two patterns,
Conditional Request and Request Bundle. The other patterns in this chapter offer

Chapter 7 Refine Message Design for Quality 312

several options to fine-tune message contents to avoid issuing too many requests or
transmitting data that is not used; in contrast, Conditional Requests avoid send-
ing data that a client already has. While the number of messages exchanged stays the
same, the API implementation can respond with a dedicated status code to inform
the client that more recent data is not available. The number of requests sent and
responses received can also impair the quality of an API. If clients have to issue many
small requests and wait for individual responses, bundling them into a larger mes-
sage can improve throughput and reduce the client-side implementation effort. The
Request Bundle pattern presents this design option.

Figure 7.1 provides an overview of the patterns in this chapter and shows their
relations.

Alternatives for Reference Management

Embedded
Entity

Linked
Information

Holder

Request
Bundle

PaginationConditional
Request

Adjusting Message Sizes and Number of Requests

more

Amount of data per message

fewer

Number of requests

more

less

unchanged

include or
exclude data

Wish List Wish Template

tailor response
message content

Amount of Control and Expressivity

less more

Figure 7.1 Pattern map for this chapter (API quality)

Message Granularity 313

Message Granularity

Information elements in request and response message representations, concepts
from our API domain model (see Chapter 1, “Application Programming Interface
(API) Fundamentals”), often reference other ones to express containment, aggrega-
tion, or other relationships. For instance, operational data such as orders and ship-
ments typically is associated with master data such as product and customer records.
To expose such references when defining API endpoints and their operations, the two
basic options are as follows:

1. Embedded Entity: Embed the referenced data in a possibly nested Data Ele-
ment (introduced in Chapter 6, “Design Request and Response Message Rep-
resentations”) in the message representation.

2. Linked Information Holder: Place a Link Element (also Chapter 6) in the
message representation to look up the referenced data via a separate API call to
an Information Holder Resource (Chapter 5, “Define Endpoint Types and
Operations”).

These message sizing and scoping options have an impact on the API quality:

• Performance and scalability: Both message size and number of calls required
to cover an entire integration scenario should be kept low. Few messages that
transport a lot of data take time to create and process; many small messages
are easy to create but cause more work for the communications infrastructure
and require receiver-side coordination.

• Modifiability and flexibility: Backward compatibility and extensibility are
desired in any distributed system whose parts evolve independently of each
other. Information elements contained in structured, self-contained represen-
tations might be hard to change because any local updates must be coordinated
and synchronized with updates to the API operations that work with them and
related data structures in the API implementation. Structured representations
that contains references to external resources usually is even harder to change
than self-contained data because clients have to be aware of such references so
that they can follow them correctly.

• Data quality: Structured master data such as customer profiles or product details
differs from simple unstructured reference data such as country and currency
codes (Chapter 5 provides a categorization of domain data by lifetime and muta-
bility). The more data is transported, the more governance is required to make

Chapter 7 Refine Message Design for Quality 314

this data useful. For instance, data ownership might differ for products and cus-
tomers in an online shop, and the respective data owners usually have different
requirements, for example, regarding data protection, data validation, and update
frequency. Extra metadata and data management procedures might be required.

• Data privacy: In terms of data privacy classifications, the source and the tar-
get of data relationships might have different protection needs; an example
is a customer record with contact address and credit card information. More
fine-grained data retrieval facilitates the enforcement of appropriate controls
and rules, lowering the risk of embedded restricted data accidentally slipping
through.

• Data freshness and consistency: If data is retrieved by competing clients at
different times, inconsistent snapshots of and views on data in these clients
might materialize. Data references (links) may help clients to retrieve the most
recent version of the referenced data. However, such references may break, as
their targets may change or disappear after the link referring to it has been
sent. By embedding all referenced data in the same message, API providers can
deliver an internally consistent snapshot of the content, avoiding the risk of
link targets becoming unavailable. Software engineering principles such as sin-
gle responsibility may lead to challenges regarding data consistency and data
integrity when taken to the extreme because data may get fragmented and
scattered.

The two message granularity patterns, Embedded Entity and Linked Informa-
tion Holder in this section address these issues in opposite ways. Combining them
on a case-by-case basis leads to adequate message sizes, balancing the number of
calls and the amount of data exchanged to meet diverse integration requirements.

 Pattern:
EmbEddEd Entity

When and Why to Apply
The information required by a communication participant contains structured
data. This data includes multiple elements that relate to each other in certain ways.
For instance, master data such as a customer profile may contain other elements
providing contact information including addresses and phone numbers, or a peri-
odic business results report may aggregate source information such as monthly
sales figures summarizing individual business transactions. API clients work with

Message Granularity 315

One could simply define one API endpoint for each basic information element
(for instance, an entity defined in an application domain model). This endpoint is
accessed whenever API clients require data from that information element, for exam-
ple, when it is referenced from another one. But if API clients use such data in many
situations, this solution causes many subsequent requests when references are fol-
lowed. This could possibly make it necessary to coordinate request execution and
introduce conversation state, which harms scalability and availability; distributed
data also is more difficult than local data to keep consistent.

How It Works

How can one avoid exchanging multiple messages when their receivers require
insights about multiple related information elements?

For any data relationship that the receiver wants to follow, embed a Data Ele-
ment in the request or response message that contains the data of the target
end of the relationship. Place this Embedded Entity inside the representation
of the source of the relationship.

Analyze the outgoing relationships in the new Data Element and consider
embedding them in the message as well. Repeat this analysis until transitive closure
is reached—that is, until all reachable elements have been either included or excluded
(or circles are detected and processing stopped). Review each source-target relation-
ship carefully to assess whether the target data is really needed on the receiver side
in enough cases. A yes answer to this question warrants transmitting relationship
information as Embedded Entities; otherwise, transmitting references to Linked
Information Holders might be sufficient. For instance, if a purchase order has a
uses relation to product master data and this master data is required to make sense
of the purchase order, the purchase order representation in request or response mes-
sages should contain a copy of all relevant information stored in the product master
data in an Embedded Entity.

Figure 7.2 sketches the solution.

several of the related information elements when creating request messages or pro-
cessing response messages.

Chapter 7 Refine Message Design for Quality 316

Including an Embedded Entity in a message leads to a Parameter Tree struc-
ture that contains the Data Element representing the related data. Additional
Metadata Elements in this tree may denote the relationship type and other supple-
mental information. There are several options for structuring the tree, corresponding
to the contained Data Element. It may be nested, for instance, when representing
deep containment relationship hierarchies; it may be flat and simply list one or more
Atomic Parameters. When working with JSON in HTTP resource APIs, JSON
objects (possibly including other JSON objects) realize these options. One-to-many
relationships (such as a purchase order referring to its order items) cause the Embed-
ded Entity to be set-valued. JSON arrays can represent such sets. The options
for representing many-to-many relationships are similar to those in the Linked
Information Holders pattern; for instance, the Parameter Tree might contain
dedicated nodes for the relationships. Some redundancy might be desired or toler-
able, but it also may confuse consumers who expect normalized data. Bidirectional
relationships require special attention. One of the directions can be used to create the
Embedded Entity hierarchy; if the opposite direction should also be made explicit
in the message representation, a second instance of this pattern might be required,

API Client

Datasource
API

Implementation

API
Endpoint

Data ElementE1:

E1:

E2:

E1:

E2:

Data Element as Embedded EntityE2:

Request

Response

Figure 7.2 EMBEDDED ENTITY: Single API endpoint and operation, returning structured
message content that matches the structure of the source data in the API implementation to
follow data relations

Message Granularity 317

causing data duplication. In that case, it might be better to express the second rela-
tionship with embedded Id Elements or Link Elements instead.

In any of these cases, the API Description has to explain the existence, structure,
and meaning of the Embedded Entity instances.

Example
Lakeside Mutual, our microservices sample application introduced in Chapter 2,
“Lakeside Mutual Case Study,” contains a service called Customer Core that
aggregates several information items (here, entities and value objects from domain-
driven design [DDD]) in its operation signatures. API clients such as the Customer
Self-Service frontend can access this data via an HTTP resource API. This API
contains several instances of the Embedded Entity pattern. Applying the pattern,
a response message might look as follows:1

curl -X GET http://localhost:8080/customers/gktlipwhjr

{

 "customer": {

 "id": "gktlipwhjr"

 },

 "customerProfile": {

 "firstname": "Robbie",

 "lastname": "Davenhall",

 "birthday": "1961-08-11T23:00:00.000+0000",

 "currentAddress": {

 "streetAddress": "1 Dunning Trail",

 "postalCode": "9511",

 "city": "Banga"

 },

 "email": "rdavenhall0@example.com",

 "phoneNumber": "491 103 8336",

 "moveHistory": [{

 "streetAddress": "15 Briar Crest Center",

 "postalCode": "",

 "city": "Aeteke"

 }]

 },

 "customerInteractionLog": {

 "contactHistory": [],

 "classification": "??"

 }

}

1. Note that the data shown is fictitious, generated by https://www.mockaroo.com.

https://www.mockaroo.com

Chapter 7 Refine Message Design for Quality 318

The referenced information elements are all fully contained in the response mes-
sage; examples are customerProfile and customerInteractionLog. No URI
links to other resources appear. Note that the customerProfile entity actually
embeds nested data in this exemplary data set (for example, currentAddress and
moveHistory), while the customerInteractionLog does not (but is still included
as an empty Embedded Entity).

Discussion
Applying this pattern solves the problem of having to exchange multiple messages
when receivers require multiple related information elements. An Embedded Entity
reduces the number of calls required: if the required information is included, the cli-
ent does not have to create a follow-on request to obtain it. Embedding entities can
lead to a reduction in the number of endpoints, because no dedicated endpoint to
retrieve linked information is required. However, embedding entities leads to larger
response messages, which usually take longer to transfer and consume more band-
width. Care must also be taken to ensure that the included information does not have
higher protection needs than the source and that no restricted data slips through.

It can be challenging to anticipate what information different message receivers
(that is, API clients for response messages) require to perform their tasks. As a result,
there is a tendency to include more data than most clients need. Such design can be
found in many Public APIs serving many diverse and possibly unknown clients.

Traversing all relationships between information elements to include all possibly
interesting data may require complex message representations and lead to large mes-
sage sizes. It is unlikely and/or difficult to ensure that all recipients will require the
same message content. Once included and exposed in an API Description, it is hard
to remove an Embedded Entity in a backward-compatible manner (as clients may
have begun to rely on it).

If most or all of the data is actually used, sending many small messages might
require more bandwidth than sending one large message (for instance, because pro-
tocol header metadata is sent with each small message). If the embedded entities
change at different speeds, retransmitting them causes unnecessary overhead because
messages with partially changed content can only be cached in their entirety. A fast-
changing operational entity might refer to immutable master data, for instance.

The decision to use Embedded Entity might depend on the number of message
consumers and the homogeneity of their use cases. For example, if only one consumer
with a specific use case is targeted, it is often good to embed all required data straight
away. In contrast, different consumers or use cases might not work with the same data.
In order to minimize message sizes, it might be advisable not to transfer all data. Both
client and provider might be developed by the same organization—for example, when
providing “Backends for Frontends” [Newman 2015]. Embedding entities can be a

Message Granularity 319

reasonable strategy to minimize the number of requests in that case. In such a setting,
they simplify development by introducing a uniform regular structure.

Combinations of linking and embedding data often make sense, for instance,
embedding all data immediately displayed in a user interface and linking the rest for
retrieval upon demand. The linked data is then fetched only when the user scrolls
or opens the corresponding user interface elements. Atlassian [Atlassian 2022] dis-
cusses such a hybrid approach: “Embedded related objects are typically limited in
their fields to avoid such object graphs from becoming too deep and noisy. They
often exclude their own nested objects in an attempt to strike a balance between per-
formance and utility.”

“API Gateways” [Richardson 2016] and messaging middleware [Hohpe 2003] can
also help when dealing with different information needs. Gateways can either provide
two alternative APIs that use the same backend interface and/or collect and aggregate
information from different endpoints and operations (which makes them stateful). Mes-
saging systems may provide transformation capabilities such as filters and enrichers.

Related Patterns
Linked Information Holder describes the complementary, opposite solution for
the reference management problem. One reason for switching to the Linked Infor-
mation Holder might be to mitigate performance problems, for instance, caused by
slow or unreliable networks that make it difficult to transfer large messages. Linked
Information Holders can help to improve the situation, as they allow caching each
entity independently.

If reducing message size is the main design goal, a Wish List or, even more expres-
sive, a Wish Template can also be applied to minimize the data to be transferred by
letting consumers dynamically describe which subset of the data they need. Wish
List or Wish Template can help to fine-tune the content in an Embedded Entity.

Operational Data Holders reference Master Data Holders by definition
(either directly or indirectly); these references often are represented as Linked Infor-
mation Holders. References between data holders of the same type are more likely
to be included with the Embedded Entity pattern. Both Information Holder
Resources and Processing Resources might deal with structured data that needs
to be linked or embedded; in particular, Retrieval Operations either embed or link
related information.

More Information
Phil Sturgeon features this pattern as “Embedded Document (Nesting)” in [Sturgeon
2016b]. See Section 7.5 of Build APIs You Won’t Hate for additional advice and
examples.

Chapter 7 Refine Message Design for Quality 320

 Pattern:
LinkEd information HoLdEr

When and Why to Apply
An API exposes structured data to meet the information needs of its clients. This
data contains elements that relate to each other (for example, product master data
may contain other information elements providing detailed information, or a perfor-
mance report for a period of time may aggregate raw data such as individual mea-
surements). API clients work with several of the related information elements when
preparing request messages or processing response messages. Not all of this infor-
mation is always useful for the clients in its entirety.2

A rule of thumb for distributed system design states that exchanged messages
should be small because large messages may overutilize the network and the end-
point processing resources. However, not all of what communication participants
want to share with each other might fit into such small messages; for instance, they
might want to follow many or all of the relationships within information elements.
If relationship sources and targets are not combined into a single message, par-
ticipants have to inform each other how to locate and access the individual pieces.
This distributed information set has to be designed, implemented, and evolved; the
resulting dependencies between the participants and the information they share
have to be managed. For instance, insurance policies typically refer to customer
and product master data; each of these related information elements might, in
turn, consist of several parts (see Chapter 2 for deeper coverage of the data and
domain entities in this example).

One option is to always (transitively) include all the related information elements
of each transmitted element in request and response messages throughout the API,
as described in the Embedded Entity pattern. However, this approach can lead to
large messages containing data not required by some clients and harm the perfor-
mance of individual API calls. It couples the stakeholders of this data.

2. This pattern context is similar to that of Embedded Entity but emphasizes the diversity of client
wants and needs.

How can messages be kept small even when an API deals with multiple infor-
mation elements that reference each other?

Message Granularity 321

The referenced API endpoint often is an Information Holder Resource rep-
resenting the linked information element. This element might be an entity from the
domain model that is exposed by the API (possibly wrapped and mapped); it can also
be the result of a computation in the API implementation.

Linked Information Holders might appear in request and response messages;
the latter case is more common. Typically, a Parameter Tree is used in the rep-
resentation structure, combining collections of Link Elements and, optionally,
Metadata Elements explaining the link semantics; in simple cases, a set of Atomic
Parameters or a single Atomic Parameter might suffice as link carriers.

Figure 7.3 illustrates the two-step conversation realizing the pattern.

Add a Link Element to messages that pertain to multiple related information
elements. Let the resulting Linked Information Holder reference another
API endpoint that exposes the linked element.

How It Works

API Client

Datasource

Data Element

API
Implementation 1

API
Endpoint 1

API
Implementation 2

API
Endpoint 2

E1:

E2:

E1:

E2:

Link ElementL:

E1:

L:

Link to Information Holder Resource

2

1

Figure 7.3 LINKED INFORMATION HOLDER: Two API endpoints are involved. The first
response contains a link rather than data from the data source; the data is retrieved from it in
a follow-on request to the second endpoint

Chapter 7 Refine Message Design for Quality 322

The Link Element that constitutes the Linked Information Holder provides
location information, for instance, a URL (with domain/hostname and port number
when using HTTP over TCP/IP). The Link Element also has a local name to be able
to identify it within the message representation (such as a JSON object). If more
information about the relation should be sent to clients, this Link Element can be
annotated with details about the corresponding relationship, for instance, a Meta-
data Element specifying its type and semantics. In any case, API clients and provid-
ers must agree on the meaning of the link relationships and be aware of coupling and
side effects introduced. The existence and the meaning of the Linked Information
Holder, including cardinalities on both ends of the relation, has to be documented
in the API Description.

One-to-many relationships can be modeled as collections, for instance, by
transmitting multiple Link Elements as Atomic Parameter Lists. Many-to-many
relationships (such as that between books and their readers in a library manage-
ment system) can be modeled as two one-to-many relationships, with one collec-
tion linking the source data to the targets and a second one linking the target data
to the sources (assuming that the message recipient wants to follow the relation in
both directions). Such design may require the introduction of an additional API
endpoint, a relationship holder resource, representing the relation rather than its
source or target. This endpoint then exposes operations to retrieve all relationships
with their sources and targets; it may also allow clients to find the other end of a
relationship they already know about. Different types of Link Elements identify
these ends in messages sent to and from the relationship holder resource. Unlike
in the Embedded Entity pattern, circular dependencies in the data are less of an
issue when working with Linked Information Holders (but still should be han-
dled); the responsibility to avoid endless loops in the data processing shifts from
the message sender to the recipient.

Example
Our Lakeside Mutual sample application for Customer Management utilizes a Cus-
tomer Core service API that aggregates several information elements from the
domain model of the application, in the form of entities and value objects from
DDD. API clients can access this data through a Customer Information Holder,
implemented as a REST controller in Spring Boot.

Message Granularity 323

The Customer Information Holder, called customers, realizes the Information
Holder Resource pattern. When applying Linked Information Holder for its
customerProfile and its moveHistory a response message may look as follows:

curl -X GET http://localhost:8080/customers/gktlipwhjr

{

 "customer": {

 "id": "gktlipwhjr"

 },

 "links": [{

 "rel": "customerProfile",

 "href": "/customers/gktlipwhjr/profile"

 }, {

 "rel": "moveHistory",

 "href": "/customers/gktlipwhjr/moveHistory"

 }],

 "email": "rdavenhall0@example.com",

 "phoneNumber": "491 103 8336",

 "customerInteractionLog": {

 "contactHistory": [],

 "classification": "??"

 }

}

Both profile and moveHistory are implemented as sub-resources of the Cus-
tomer Information Holder. The customerProfile can be retrieved by a subsequent
GET request to the URI /customers/gktlipwhjr/profile. How does the client
know that a GET request must be used? This information could have been included
in a Metadata Element. In this example, the designers of the API decided not to
include it. Instead, their API Description specifies that GET requests are used by
default to retrieve information.

Discussion
Linking instead of embedding related data results in smaller messages and uses fewer
resources in the communications infrastructure when exchanging individual messages.
However, this has to be contrasted with the possibly higher resource use caused by the
extra messages required to follow the links: Additional requests are required to derefer-
ence the linked information. Linking instead of embedding might demand more
resources in the communications infrastructure. Additional Information Holder
Resource endpoints have to be provided for the linked data, causing development and
operations effort and cost, but allowing to enforce additional access restrictions.

Chapter 7 Refine Message Design for Quality 324

When introducing Linked Information Holders into message representations,
an implicit promise is made to the recipient that these links can be followed success-
fully. The provider might not be willing to keep such a promise infinitely. Even if a
long lifetime of the linked endpoint is guaranteed, links still may break, for instance,
when the data organization or deployment location changes. Clients should expect
this and be able to follow redirects or referrals to the updated links. To minimize
breaking links, the API provider should invest in maintaining link consistency; a
Link Lookup Resource can be used to do so.

Sometimes the data distribution reduces the number of messages exchanged.
Different Linked Information Holders may be defined for data that changes at a
different velocity. Clients then can request frequently changing data whenever they
require the latest snapshot of it; they do not have to re-request slower changing data
that is embedded with it (and therefore tightly coupled).

The pattern leads to modular API designs but also adds a dependency that must
be managed. It potentially has performance, workload, and maintenance costs
attached. The Embedded Entity pattern can be used instead if justified from a per-
formance point of view. This makes sense if a few large calls turn out to perform
better than many small ones due to network and endpoint processing capabilities or
constraints (this should be measured and not guessed). It might be required to switch
back and forth between Embedded Entity and Linked Information Holder dur-
ing API evolution; with Two In Production, both designs can be offered at the same
time, for instance, for experimentation with a potential change. The API refactor-
ings “Inline Information Holder” and “Extract Information Holder” of the Inter-
face Refactoring Catalog [Stocker 2021b] provide further guidance and step-by-step
instructions.

Linked Information Holder is well suited when referencing rich information
holders serving multiple usage scenarios: usually, not all message recipients require
the full set of referenced data, for instance, when Master Data Holders such as
customer profiles or product records are referenced from Operational Data Hold-
ers such as customer inquiries or orders. Following links to Linked Information
Holders, message recipients can obtain the required subsets on demand.

The decision to use Linked Information Holder and/or to include an Embed-
ded Entity might depend on the number of API clients and the level of similarity of
their use cases. Another decision driver is the complexity of the domain model and
the application scenarios it represents. For example, if one client with a specific use
case is targeted, it usually makes sense to embed all data. However, if there are sev-
eral clients, not all of them might appreciate the same comprehensive data. In such
situations, Linked Information Holders pointing at the data used only by a frac-
tion of the clients reduces the message sizes.

325Client-Driven Message Content (aka Response Shaping)

Related Patterns
Linked Information Holders typically reference Information Holder
Resources. The referenced Information Holder Resources can be combined
with Link Lookup Resource to cope with potentially broken links. By definition,
Operational Data Holders reference Master Data Holders; these references can
either be included and flattened as Embedded Entities or structured and then pro-
gressively followed using Linked Information Holders.

Other patterns that help reduce the amount of data exchanged can be used alter-
natively. For instance, Conditional Request, Wish List, and Wish Template are
eligible; Pagination is an option too.

More Information
“Linked Service” [Daigneau 2011] is a similar pattern but is less focused on data.
“Web Service Patterns” [Monday 2003] has a “Partial DTO Population” pattern that
solves a similar problem; DTO stands for Data Transfer Object.

See Build APIs You Won’t Hate, Section 7.4 [Sturgeon 2016b], for additional
advice and examples, to be found under “Compound Document (Sideloading).”

The backup, availability, consistency (BAC) theorem investigates data manage-
ment issues further [Pardon 2018].

Client-Driven Message Content (aka Response Shaping)

In the previous section, we presented two patterns to handle references between data
elements in messages. An API provider can choose between embedding or linking
related data elements, and also combine these two options to achieve suitable mes-
sage sizes. Depending on the clients and their API usage, their best usage may be
clear. But usage scenarios of clients might be so different that an even better solution
would be to let clients themselves decide at runtime which data they are interested in.

The patterns in this section offer two different approaches to optimize this facet
of API quality further, response slicing and response shaping. They address the fol-
lowing challenges:

• Performance, scalability, and resource use: Providing all clients with all data
every time, even to those that only have a limited or minimal information need,
comes at a price. From a performance and workload point of view, it there-
fore makes sense to transmit only the relevant parts of a data set. However,
the pre- and postprocessing required to rightsize the message exchanges also
require resources and might harm performance. These costs have to be bal-
anced against the expected reduction of the response message size and the
capabilities of the underlying transport network.

Chapter 7 Refine Message Design for Quality 326

• Information needs of individual clients: An API provider might have to serve
multiple clients with different information needs. Usually, providers do not
want to implement custom APIs or client-specific operations but let the clients
share a set of common operations. However, certain clients might be interested
in just a subset of the data made available via an API. The common operations
might be too limited or too powerful in such cases. Other clients might be over-
whelmed if a large set if data arrives at once. Delivering too little or too much
data to a client is also known as underfetching and overfetching.

• Loose coupling and interoperability: The message structures are important
elements of the API contract between API provider and API client; they con-
tribute to the shared knowledge of the communication participants, which
impacts the format autonomy aspect of loose coupling. Metadata to control
data set sizing and sequencing becomes part of this shared knowledge and has
to be evolved along with the payload.

• Developer convenience and experience: The developer experience, including
learning effort and programming convenience, is closely related to understandabil-
ity and complexity considerations. For instance, a compact format optimized for
transfer might be difficult to document and understand, and to prepare and digest.
Elaborate structures enhanced with metadata that simplify and optimize process-
ing cause extra effort during construction (both at design time and at runtime).

• Security and data privacy: Security requirements (data integrity and confi-
dentiality in particular) and data privacy concerns are relevant in any message
design; security measures might require additional message payloads such as
API Keys or security tokens. An important consideration is which payload can
and should actually be sent; data that is not sent cannot be tampered with (at
least not on the wire). The need for certain, data-specific security measures
might actually lead to different message designs (for instance, credit card infor-
mation might be factored out into a dedicated API endpoint with specifically
secured operations). In the context of slicing and sequencing large data sets,
all parts can be treated equally unless they have different protection needs. The
heavy load caused by assembling and transmitting large data sets can expose
the provider to denial-of-service attacks.

• Test and maintenance effort: Enabling clients to select which data to receive
(and when) creates options and flexibility with regards to what the provider
has to expect (and accept) in incoming requests. Therefore, the testing and
maintenance effort increases.

The patterns in this section, Pagination, Wish List, and Wish Template, address
these challenges in different ways.

Client-Driven Message Content (aka Response Shaping) 327

 Pattern:
Pagination

When and Why to Apply
Clients query an API, fetching collections of data items to be displayed to the user or
processed in other applications. In at least one of these queries, the API provider
responds by sending a large number of items. The size of this response may be larger
than what the client needs or is ready to consume at once.

The data set may consist of identically structured elements (for example, rows
fetched from a relational database or line items in a batch job executed by an
enterprise information system in the backend) or of heterogeneous data items not
adhering to a common schema (for example, parts of a document from a document-
oriented NoSQL database such as MongoDB).

How can an API provider deliver large sequences of structured data without
overwhelming clients?

In addition to the forces already presented in the introduction to this section,
Pagination balances the following ones:

• Session awareness and isolation: Slicing read-only data is relatively simple.
But what if the underlying data set changes while being retrieved? Does the
API guarantee that once a client retrieves the first page, the subsequent pages
(which may or may not be retrieved later) will contain a data set that is consist-
ent with the subset initially retrieved? How about multiple concurrent requests
for partial data?

• Data set size and data access profile: Some data sets are large and repeti-
tive, and not all transmitted data is accessed all the time. This offers optimiza-
tion potential, especially for sequential access over data items ordered from
the most recent to the oldest, which may no longer be relevant for the client.
Moreover, clients may not be ready to digest data sets of arbitrary sizes.

One could think of sending the entire large response data set in a single response
message, but such a simple approach might waste endpoint and network capacity;
it also does not scale well. The size of the response to a query may be unknown in
advance, or the result set may be too large to be processed at once on the client side
(or on the provider side). Without mechanisms to limit such queries, processing errors

Chapter 7 Refine Message Design for Quality 328

such as out-of-memory exceptions may occur, and the client or the endpoint imple-
mentation may crash. Developers and API designers often underestimate the memory
requirements imposed by unlimited query contracts. These problems usually go unno-
ticed until concurrent workload is placed on the system or the data set size increases. In
shared environments, it is possible that unlimited queries cannot be processed efficiently
in parallel, which leads to similar performance, scalability, and consistency issues—only
combined with concurrent requests, which are hard to debug and analyze anyway.

How It Works

Divide large response data sets into manageable and easy-to-transmit chunks
(also known as pages). Send one chunk of partial results per response message
and inform the client about the total and/or remaining number of chunks.
Provide optional filtering capabilities to allow clients to request a particu-
lar selection of results. For extra convenience, include a reference to the next
chunk/page from the current one.

The number of data elements in a chunk can be fixed (its size then is part of the
API contract) or can be specified by the client dynamically as a request parameter.
Metadata Elements and Link Elements inform the API client how to retrieve addi-
tional chunks subsequently.

API clients then process some or all partial responses iteratively as needed; they
request the result data page by page. Hence, subsequent requests for additional
chunks might have to be correlated. It might make sense to define a policy that
governs how clients can terminate the processing of the result set and the prepara-
tion of partial responses (possibly requiring session state management).

Figure 7.4 visualizes a sequence of requests that use Pagination to retrieve three
pages of data.

Variants The pattern comes in four variants that navigate the data set in different
ways: page based, offset based, cursor or token based, and time based.

Page-Based Pagination (a somewhat tautological name) and Offset-Based Pagina-
tion refer to the elements of the data set differently. The page-based variant divides
the data set into same-sized pages; the client or the provider specify the page size.
Clients then request pages by their index (like page numbers in a book). With Offset-
Based Pagination, a client selects an offset into the whole data set (that is, how many
single elements to skip) and the number of elements to return in the next chunk
(often referred to as limit). Both approaches may be used interchangeably (the offset

Client-Driven Message Content (aka Response Shaping) 329

can be calculated by multiplying the page size with the page number); they address
the problem and resolve the forces in similar ways. Page-Based Pagination and
Offset-Based Pagination do not differ much with respect to developer experience and
other qualities. Whether entries are requested with an offset and limit or all entries
are divided into pages of a particular size and then requested by an index is a minor
difference. Either case requires two integer parameters.

These variants are not well suited for data that changes in between requests and
therefore invalidates the index or offset calculations. For example, given a data set
ordered by creation time from most recent to oldest, let us assume that a client has
retrieved the first page and now requests the second one. In between these requests,
the element at the front of the data set is removed, causing an element to move from
the second to the first page without the client ever seeing it.

API Client

Datasource

PageSize = 2

PageSize = 2
PageId = 3

API
Implementation

API
Endpoint

Page 3:

Total Pages: 3
Next Page: None

E5:

E1:

E2:

E3:

E4:

E5:

Data ElementE1:

Page 1:

Total Pages: 3
Next Page: Page 2

E1: E2:

Page 2:

Total Pages: 3
Next Page: Page 3

E3: E4:

1

2

3

PageSize = 2
PageId = 2

Figure 7.4 PAGINATION: Query and follow-on requests for pages, response messages with
partial results

Chapter 7 Refine Message Design for Quality 330

The Cursor-Based Pagination variant solves this problem: it does not rely on the
absolute position of an element in the data set. Instead, clients send an identifier that
the provider can use to locate a specific item in the data set, along with the number
of elements to retrieve. The resulting chunk does not change even if new elements
have been added since the last request.

The remaining fourth variant, Time-Based Pagination, is similar to Cursor-Based
Pagination but uses timestamps instead of element IDs. It is used in practice less
frequently but could be applied to scroll through a time plot by gradually requesting
older or newer data points.

Example
The Lakeside Mutual Customer Core backend API illustrates Offset-Based Pagina-
tion in its customer endpoint:

curl -X GET http://localhost:8080/customers?limit=2&offset=0

This call returns the first chunk of two entities and several control Metadata
Elements. Besides the link relation [Allamaraju 2010] that points at the next chunk,
the response also contains the corresponding offset, limit, and total size val-
ues. Note that size is not required to implement Pagination on the provider side
but allows API clients to show end users or other consumers how many more data
elements (or pages) may be requested subsequently.

{

 "offset": 0,

 "limit": 2,

 "size": 50,

 "customers": [

 ...

 ,

 ...

],

 "_links": {

 "next": {

 "href": "/customers?limit=2&offset=2"

 }

 }

}

Client-Driven Message Content (aka Response Shaping) 331

The preceding example can easily be mapped to the corresponding SQL query
LIMIT 2 OFFSET 0. Instead of talking about offsets and limits, the API could also
use the page metaphor in its message vocabulary, as shown here:

curl -X GET http://localhost:8080/customers?page-size=2&page=0

{

 "page": 0,

 "pageSize": 2,

 "totalPages": 25,

 "customers": [

 ...

 ,

 ...

],

 "_links": {

 "next": {

 "href": "/customers?page-size=2&page=1"

 }

 }

}

Using Cursor-Based Pagination, the client first requests an initial page of the
desired size 2:

curl -X GET http://localhost:8080/customers?page-size=2

{

 "pageSize": 2,

 "customers": [

 ...

 ,

 ...

],

 "_links": {

 "next": {

 "href": "/customers?page-size=2&cursor=mfn834fj"

 }

 }

}

The response contains a link to the next chunk of data, represented by the cursor
value mfn834fj. The cursor could be as simple as the primary key of the database
or contain more information, such as a query filter.

Chapter 7 Refine Message Design for Quality 332

Discussion
Pagination aims to substantially improve resource consumption and performance
by sending only the data presently required and doing so just in time.

A single large response message might be inefficient to exchange and process. In
this context, data set size and data access profile (that is, the user needs), especially
the number of data records required to be available to an API client (immediately
and over time), require particular attention. Especially when returning data for
human consumption, not all data may be needed immediately; then Pagination has
the potential to improve the response times for data access significantly.

From a security standpoint, retrieving and encoding large data sets may incur high
effort and cost on the provider side and therefore lead to a denial-of-service attack.
Moreover, transferring large data sets across a network can lead to interruptions, as
most networks are not guaranteed to be reliable, especially cellular networks. This
aspect is improved with Pagination because attackers can only request pages with
small portions of data instead of an entire data set (assuming that the maximum
value for the page size is limited). Note that in a rather subtle attack, it could still
be enough to request the first page; if a poorly designed API implementation loads
a vast data set as a whole, expecting to feed the data to the client page by page, an
attacker still is able to fill up the server memory.

If the structure of the desired responses is not set oriented, so that a collection of
data items can be partitioned into chunks, Pagination cannot be applied. Compared
to response messages using the Parameter Tree pattern without Pagination, the
pattern is substantially more complex to understand and thus might be less conveni-
ent to use, as it turns a single call into a longer conversation. Pagination requires
more programming effort than does exchanging all data with one message.

Pagination leads to tighter coupling between API client and provider than single
message transfers because additional representation elements are required to man-
age the slicing of the result sets into chunks. This can be mitigated by standardizing
the required Metadata Elements. For example, with hypermedia, one just follows
a Web link to fetch the next page. A remaining coupling issue is the session that may
have to be established with each client while the pages are being scanned.

If API clients want to go beyond sequential access, complex parameter represen-
tations may be required to perform random access by seeking specific pages (or to
allow clients to compute the page index themselves). The Cursor-Based Pagination
variant with its—from a client perspective, opaque—cursor or token usually does
not allow random access.

Delivering one page at a time allows the API client to process a digestible amount
of data; a specification of which page to return facilitates remote navigation directly
within the data set. Less endpoint memory and network capacity are required to
handle individual pages, although some overhead is introduced because Pagination
management is required (discussed shortly).

Client-Driven Message Content (aka Response Shaping) 333

The application of Pagination leads to additional design concerns:

• Where, when, and how to define the page size (the number of data elements
per page). This influences the chattiness of the API (retrieving the data in many
small pages requires a large number of messages).

• How to order results—that is, how to assign them to pages and how to arrange
the partial results on these pages. This order typically cannot change after the
paginated retrieval begins. Changing the order as an API evolves over its life
cycle might make a new API version incompatible with previous ones, which
might go unnoticed if not communicated properly and tested thoroughly.

• Where and how to store intermediate results, and for how long (deletion policy,
timeouts).

• How to deal with request repetition. For instance, do the initial and the sub-
sequent requests have to be idempotent to prevent errors and inconsistencies?

• How to correlate pages/chunks (with the original, the previous, and the next
requests).

Further design issues for the API implementation include the caching policy (if
any), the liveness (currentness) of results, filtering, as well as query pre- and post-
processing (for example, aggregations, counts, sums). Typical data access layer con-
cerns (for instance, isolation level and locking in relational databases) come into play
here as well [Fowler 2002]. Consistency requirements differ by client type and use
case: Is the client developer aware of the Pagination? The resolution of these con-
cerns is context-specific; for instance, frontend representations of search results in
Web applications differ from batch master data replication in Backend Integra-
tions of enterprise information systems.

With respect to behind-the-scenes changes to mutable collections, two cases have
to be distinguished. One issue that has to be dealt with is that new items might be
added while the client walks through the pages. The second issue concerns updates
to (or removal of) items on a page that has already been seen by the client. Pagina-
tion can deal with new items but will usually miss changes to already downloaded
items that happened while a Pagination “session” was ongoing.

If the page size was set too small, sometimes the result of Pagination can be
annoying for users (especially developers using the API), as they have to click through
and wait to retrieve the next page even if there are only a few results. Also, human
users may expect client-side searches to filter an entire data set; introducing Pagina-
tion may incorrectly result in empty search results because the matching data items
are found in pages that have not yet been retrieved.

Chapter 7 Refine Message Design for Quality 334

Not all functions requiring an entire record set, such as searching, work (well)
with Pagination, or they require extra effort (such as intermediate data structures
on the API client side). Paginating after searching/filtering (and not vice versa)
reduces workload.

This pattern covers the download of large data sets, but what about upload? Such
Request Pagination can be seen as a complementary pattern. It would gradually
upload the data and fire off a processing job only once all data is there. Incremen-
tal State Build-up, one of the Conversation Patterns [Hohpe 2017], has this inverse
nature. It describes a solution similar to Pagination to deliver the data from the cli-
ent to the provider in multiple steps.

Related Patterns
Pagination can be seen as the opposite of Request Bundle: whereas Pagination is
concerned with reducing the individual message size by splitting one large message
into many smaller pages, Request Bundle combines several messages into a single
large one.

A paginated query typically defines an Atomic Parameter List for its input
parameters containing the query parameters and a Parameter Tree for its output
parameters (that is, the pages).

A request-response correlation scheme might be required so that the client can
distinguish the partial results of multiple queries in arriving response messages; the
pattern “Correlation Identifier” [Hohpe 2003] might be eligible in such cases.

A “Message Sequence” [Hohpe 2003] also can be used when a single large data
element has to be split up.

More Information
Chapter 10 of Build APIs You Won’t Hate covers Pagination types, discusses imple-
mentation approaches, and presents examples in PHP [Sturgeon 2016b]. Chapter 8
in the RESTful Web Services Cookbook deals with queries in a RESTful HTTP con-
text [Allamaraju 2010]. Web API Design: The Missing Link covers Pagination under
“More on Representation Design” [Apigee 2018].

In a broader context, the user interface (UI) and Web design communities have
captured Pagination patterns in different contexts (not API design and manage-
ment, but interaction design and information visualization). See coverage of the
topic at the Interaction Design Foundation Web site [Foundation 2021] and the UI
Patterns Web site [UI Patterns 2021].

Chapter 8 of Implementing Domain-Driven Design features stepwise retrieval
of a notification log/archive, which can be seen as Offset-Based Pagination [Vernon
2013]. RFC 5005 covers feed paging and archiving for Atom [Nottingham 2007].

Client-Driven Message Content (aka Response Shaping) 335

 Pattern:
WisH List

When and Why to Apply
API providers serve multiple different clients that invoke the same operations. Not all
clients have the same information needs: some might use just a subset of the data
offered by an endpoint and its operations; other clients might need rich data sets.

How can an API client inform the API provider at runtime about the data it is
interested in?

When addressing this problem, API designers balance performance aspects
such as response time and throughput with factors influencing the developer expe-
rience such as learning effort and evolvability. They strive for data parsimony (or
Datensparsamkeit).

These forces could be resolved by introducing infrastructure components such as
network- and application-level gateways and caches to reduce the load on the server,
but such components add to the complexity of the deployment model and network
topology of the API ecosystem and increase related infrastructure testing, operations
management, and maintenance efforts.

How It Works

As an API client, provide a Wish List in the request that enumerates all desired
data elements of the requested resource. As an API provider, deliver only those
data elements in the response message that are enumerated in the Wish List
(“response shaping”).

Specify the Wish List as an Atomic Parameter List or flat Parameter Tree. As
a special case, a simple Atomic Parameter may be included that indicates a verbos-
ity level (or level of detail) such as minimal, medium, or full.

Chapter 7 Refine Message Design for Quality 336

The List Evaluator in the figure has two implementation options. It often is trans-
lated to a filter for the data source so that only relevant data is loaded. Alternatively,
the API implementation can fetch a full result set from the data source and select the
entities that appear in the client wish when assembling the response data. Note that
the data source can be any kind of backend system, possibly remote, or database. For
instance, the wish translates into a WHERE clause of a SQL query when the data
source is a relational database. If a remote system is accessed via an API, the Wish
List might simply be passed on after having been validated (assuming that the down-
stream API also supports the pattern).

Variants A common variant is to provide options for expansion in responses. The
response to the first request provides only a terse result with a list of parameters that
can be expanded in subsequent requests. To expand the request results, the client can
select one or more of these parameters in the Wish List of a follow-on request.

Another variant is to define and support a wildcard mechanism, as known
from SQL and other query languages. For instance, a star * might request all data
elements of a particular resource (which could then be the default if no wishes are
specified). Even more complex schemes are possible, such as cascaded specifications
(for example, customer.* fetching all data about the customer).

API Client

Wish List

Datasource

Response
API

Implementation

API
Endpoint

List Evaluator

Desired element

Data element

Figure 7.5 WISH LIST: A client enumerates the desired data elements of the resource

Figure 7.5 sketches the request and response messages used when introducing a
Wish List:

Client-Driven Message Content (aka Response Shaping) 337

Example
In the Lakeside Mutual Customer Core application, a request for a customer returns
all of its available attributes.

curl -X GET http://localhost:8080/customers/gktlipwhjr

For customer ID gktlipwhjr, this would return the following:

{

 "customerId": "gktlipwhjr",

 "firstname": "Max",

 "lastname": "Mustermann",

 "birthday": "1989-12-31T23:00:00.000+0000",

 "streetAddress": "Oberseestrasse 10",

 "postalCode": "8640",

 "city": "Rapperswil",

 "email": "admin@example.com",

 "phoneNumber": "055 222 4111",

 "moveHistory": [],

 "customerInteractionLog": {

 "contactHistory": [],

 "classification": {

 "priority": "gold"

 }

 }

}

To improve this design, a Wish List in the query string can restrict the result to the
fields included in the wish. In the example, an API client might be interested in only
the customerId, birthday, and postalCode:

curl -X GET http://localhost:8080/customers/gktlipwhjr?\

fields=customerId,birthday,postalCode

The returned response now contains only the requested fields:

{

 "customerId": "gktlipwhjr",

 "birthday": "1989-12-31T23:00:00.000+0000",

 "postalCode": "8640"

}

This response is much smaller; only the information required by the client is
transmitted.

Chapter 7 Refine Message Design for Quality 338

Discussion
Wish List helps manage the different information needs of API clients. It is well
suited if the network has limited capacity and there is a certain amount of confi-
dence that clients usually require only a subset of the available data. The potential
negative consequences include additional security threats, additional complexity, as
well as test and maintenance efforts. Before introducing a Wish List mechanism,
these negative consequences must be considered carefully. Often, they are treated as
an afterthought, and mitigating them can lead to maintenance and evolution prob-
lems once the API is in production.

By adding or not adding attribute values in the Wish List instance, the API client
expresses its wishes to the provider; hence, the desire for data parsimony (or
Datensparsamkeit) is met. The provider does not have to supply specialized and opti-
mized versions of operations for certain clients or to guess data required for client
use cases. Clients can specify the data they require, thereby enhancing performance
by creating less database and network load.

Providers have to implement more logic in their service layers, possibly affecting
other layers down to data access as well. Providers risk exposing their data model to
clients, increasing coupling. Clients have to create the Wish List, the network has to
transport this metadata, and the provider has to process it.

A comma-separated list of attribute names can lead to problems when mapped to
programming language elements. For instance, misspelling an attribute name might
lead to an error (if the API client is lucky), or the expressed wish might be ignored
(which might lead the API client to the impression that the attribute does not exist).
Furthermore, API changes might have unexpected consequences; for instance, a
renamed attribute might no longer be found if clients do not modify their wishes
accordingly.

Solutions using the more complex variants introduced earlier (such as cas-
caded specifications, wildcards, or expansion) might be harder to understand and
build than simpler alternatives. Sometimes existing provider-internal search-and-
filter capabilities such as wildcards or regular expressions can be reused.

This pattern (or, more generally speaking, all patterns and practices sharing this
common goal and theme of client-driven message content) is also known as response
shaping.

Related Patterns
Wish Template addresses the same problem as Wish List but uses a possibly nested
structure to express the wishes rather than a flat list of element names. Both Wish
List and Wish Template usually deal with Parameter Trees in response messages
because patterns to reduce message sizes are particularly useful when dealing with
complex response data structures.

Client-Driven Message Content (aka Response Shaping) 339

Using a Wish List has a positive influence on sticking to a Rate Limit, as less data
is transferred when the pattern is used. To reduce the transferred data further, it can
be combined with Conditional Request.

The Pagination pattern also reduces response message sizes by splitting large
repetitive responses into parts. The two patterns can be combined.

More Information
Regular expression syntax or query languages such as XPath (for XML payloads)
can be seen as an advanced variant of this pattern. GraphQL [GraphQL 2021] offers
a declarative query language to describe the representation to be retrieved against an
agreed-upon schema found in the API documentation. We cover GraphQL in more
detail in the Wish Template pattern.

Web API Design: The Missing Link [Apigee 2018] recommends comma-separated
Wish Lists in its chapter “More on Representation Design.” James Higginbotham
features this pattern as “Zoom-Embed” [Higginbotham 2018].

“Practical API Design at Netflix, Part 1: Using Protobuf FieldMask” in the Net-
flix Technology Blog [Borysov 2021] mentions GraphQL field selectors and sparse
fieldsets in JSON:API [JSON API 2022]. It then features Protocol Buffer FieldMask
as a solution for gRPC APIs within the Netflix Studio Engineering. The authors sug-
gest that API providers may ship client libraries with prebuilt FieldMask for the
most frequently used combinations of fields. This makes sense if multiple consumers
are interested in the same subset of fields.

 Pattern:
WisH tEmPLatE

When and Why to Apply
An API provider has to serve multiple different clients that invoke the same operations.
Not all clients have the same information needs: some might need just a subset of the
data offered by the endpoint; other clients might need rich, deeply structured data sets.

How can an API client inform the API provider about nested data that it is inter-
ested in? How can such preferences be expressed flexibly and dynamically?3

3. Note that this problem is very similar to the problem of the pattern Wish List but adds the theme of
response data nesting.

Chapter 7 Refine Message Design for Quality 340

An API provider that has multiple clients with different information might simply
expose a complex data structure that represents the superset (or union) of what the
client community wants (for example, all attributes of master data such as prod-
uct or customer information or collections of operational data entities such as pur-
chase order items). Very likely, this structure becomes increasingly complex as the
API evolves. Such a one-size-fits-all approach also costs performance (response time,
throughput) and introduces security threats.

Alternatively, one could use a flat Wish List that simply enumerates desired attrib-
utes, but such a simple approach has limited expressiveness when dealing with nested
data structures.

Network-level and application-level gateways and proxies can be introduced to
improve performance, for instance, by caching. Such responses to performance issues
add to the complexity of the deployment model and network topology and come
with design and configuration effort.

How It Works

Add one or more additional parameters to the request message that mirror the
hierarchical structure of the parameters in the corresponding response mes-
sage. Make these parameters optional or use Boolean as their types so that
their values indicate whether or not a parameter should be included.

The structure of the wish that mirrors the response message often is a Parame-
ter Tree. API clients can populate instances of this Wish Template parameter with
empty, sample, or dummy values when sending a request message or set its Boolean
value to true to indicate their interest in it. The API provider then uses the mirrored
structure of the wish as a template for the response and substitutes the requested
values with actual response data. Figure 7.6 illustrates this design.

The Template Processor in the figure has two implementation options, depend-
ing on the chosen template format. If a mirror object is already received from the
wire and structured as a Parameter Tree, this data structure can be traversed to
prepare the data source retrieval (or to extract relevant parts from the result set).
Alternatively, the templates may come in the form of a declarative query, which must
be evaluated first and then translated to a database query or a filter to be applied to
the fetched data (these two options are similar to those in the List Evaluator compo-
nent of a Wish List processor shown in Figure 7.5). The evaluation of the template
instance can be straightforward and supported by libraries or language concepts
in the API implementation (for instance, navigating through nested JSON objects
with JSONPath, XML documents with XPath, or matching a regular expression).

Client-Driven Message Content (aka Response Shaping) 341

For complex template syntaxes constituting a domain-specific language, the intro-
duction of compiler concepts such as scanning and parsing might be necessary.

Figure 7.7 shows the matching input and output parameter structure for two top-
level fields, aValue and aString, and a nested child object that also has two fields,
aFlag and aSecondString. The output parameters (or response message elements)
have integer and string types, and the mirror in the request message specifies match-
ing Boolean values. Setting the Boolean to true indicates interest in the data.

Example
The following MDSL service contract sketch introduces a <<Wish_Template>> high-
lighted with a stereotype:

data type PersonalData P // unspecified, placeholder

data type Address P // unspecified, placeholder

data type CustomerEntity <<Entity>> {PersonalData?, Address?}

endpoint type CustomerInformationHolderService

 exposes

 operation getCustomerAttributes

 expecting payload {

 "customerId":ID, // the customer ID

 <<Wish_Template>>"mockObject":CustomerEntity

 // has same structure as desired result set

 }

 delivering payload CustomerEntity

API Client
Datasource

Wish Template

API
Implementation

API
Endpoint

Template
Processor

Desired element

Data element

Figure 7.6 WISH TEMPLATE components and processing steps

Chapter 7 Refine Message Design for Quality 342

In this example of an API, the client can send a CustomerEntity mirror (or
mock) object that may include PersonalData and/or Address attributes (this is
defined in the data type definition CustomerEntity). The provider can then check
which attributes were sent (ignoring the dummy values in the wish) and respond with
a filled-out CustomerEntity instance containing PersonalData and/or Address.

Discussion
Data parsimony (or Datensparsamkeit) is an important general design principle in
distributed systems that are performance- and security-critical. However, this princi-
ple is not always applied when iteratively and incrementally defining an API end-
point: it is typically easier to add things (here, information items or attributes) than
to remove them. That is, once something is added to an API, it is often hard to deter-
mine whether it can be safely removed in a backward-compatible way (without
breaking changes, that is) as many (maybe even unknown) clients might depend on
it. By specifying selected attribute values in the Wish Template instance and filling it

«Service»
SampleAPI

+ getPartialData(input: AnyType, desiredOutput: SampleWishTemplate): SampleOutput

«Value Object»
SampleWishTemplateRoot

- aValueDesired: boolean
- aStringDesired: boolean

«Value Object»
SampleOutputRoot

- aValue: int [0..1]
- aString: String [0..1]

«Value Object»
SampleWishTemplateChild

- aFlagDesired: boolean
- aSecondStringDesired: boolean

«Value Object»
SampleOutputChild

- aFlag: boolean [0..1]
- aSecondString: String [0..1]

«use»

innerPayloadWishes innerPayload

«use»

Figure 7.7 Possible structure of mock/mirror object (WISH TEMPLATE)

Client-Driven Message Content (aka Response Shaping) 343

with marker values or Boolean flags, the consumer expresses its wishes to the pro-
vider; thus, the desire for data parsimony and flexibility is met.

When implementing this pattern, several decisions have to be made, including
how to represent and populate the template. The sibling pattern Wish List men-
tions a comma-separated list of wishes as one approach, but the Parameter Trees
forming the Wish Template are more elaborate and therefore require encoding and
syntactic analysis. While highly sophisticated template notations might improve the
developer experience on the client side and performance significantly, they also run
the risk of turning into a larger, rather complex piece of middleware embedded into
the API implementation (which comes with development, test, and maintenance
effort as well as technical risk).

Another issue is how to handle errors for wishes that cannot be fulfilled, for
example, because the client specified an invalid parameter. One approach could be to
ignore the parameter silently, but this might hide real problems, for instance, if there
was a typo or the name of a parameter changed.

The pattern is applicable not only when designing APIs around business capabili-
ties but also when working with more IT-infrastructure-related domains such as soft-
ware-defined networks, virtualization containers, or big data analysis. Such domains
and software solutions for them typically have rich domain models and many con-
figuration options. Dealing with the resulting variability justifies a flexible approach
to API design and information retrieval.

GraphQL, with its type system, introspection, and validation capabilities, as
well as its resolver concept can be seen as an advanced realization of this pattern
[GraphQL 2021]. The Wish Templates of GraphQL are the query and mutation
schemas providing declarative descriptions of the client wants and needs. Note that
the adoption of GraphQL requires the implementation of a GraphQL server (effec-
tively realizing the Template Processor in Figure 7.6). This server is a particular type
of API endpoint located on top of the actual API endpoints (which become resolvers
in GraphQL terms). This server has to parse the declarative description of queries
and mutations and then call one or more resolvers, which in turn may call additional
ones when following the data structure hierarchy.

Related Patterns
Wish List addresses the same problem but uses a flat enumeration rather than a
mock/template object; both these patterns deal with instances of Parameter Tree
in response messages. The Wish Template becomes part of a Parameter Tree that
appears in the request message.

Wish Template shares many characteristics with its sibling pattern Wish List.
For instance, without client- and provider-side data contract validation against a

Chapter 7 Refine Message Design for Quality 344

schema (XSD, JSON Schema), Wish Template has the same drawbacks as the sim-
ple enumeration approach described in the Wish List pattern. Wish Templates can
become more complex to specify and understand than simple lists of wishes; sche-
mas and validators are usually not required for simple lists of wishes. Provider devel-
opers must be aware that complex wishes with deep nesting can strain and stress the
communication infrastructure.4 Processing can then also get more complex. Accept-
ing the additional effort, as well as the complexity added to the parameter data defi-
nitions and their processing, only makes sense if simpler structures like Wish Lists
cannot express the wish adequately.

Using a Wish Template has a positive influence on a Rate Limit, as less data is
transferred when the pattern is used and fewer requests are required.

More Information
In “You Might Not Need GraphQL,” Phil Sturgeon shows several APIs that imple-
ment response shaping and how they correspond to related GraphQL concepts [Stur-
geon 2017].

Message Exchange Optimization (aka Conversation
Efficiency)

The previous section offered patterns that allow clients to specify the partition of
large data sets and which individual data points they are interested in. This lets API
providers and clients avoid unnecessary data transfers and requests. But maybe the
client already has a copy of the data and does not want to receive the same data
again. Or they might have to send many individual requests that cause transmission
and processing overhead. The patterns described here provide solutions to these two
issues and try to balance the following common forces:

• Complexity of endpoint, client, and message payload design and program-
ming: The additional effort needed to implement and operate a more complex
API endpoint that takes data update frequency characteristics into account
needs to be balanced against the expected reduction in endpoint processing
and bandwidth usage. Reducing the number of requests does not imply that

4. Olaf Hartig and Jorge Pérez analyzed the performance of the GitHub GraphQL API and found an
“exponential increase in result sizes” as they increased the query level depth. The API timed out on
queries with nesting levels higher than 5 [Hartig 2018].

Message Exchange Optimization (aka Conversation Efficiency) 345

less information is exchanged. Hence, the remaining messages have to carry
more complex payloads.

• Accuracy of reporting and billing: Reporting and billing of API usage must
be accurate and should be perceived as being fair. A solution that burdens the
client with additional work (for instance, keeping track of which version of
data it has) to reduce the provider’s workload might require some incentive
from the provider. This additional complexity in the client-provider conversa-
tion might also have an impact on the accounting of API calls.

The two patterns responding to these forces are Conditional Request and Request
Bundle.

 Pattern:
ConditionaL rEquEst

When and Why to Apply
Some clients keep on requesting the same server-side data repeatedly. This data does
not change between requests.

How can unnecessary server-side processing and bandwidth usage be avoided
when invoking API operations that return rarely changing data?

In addition to the challenges introduced at the beginning of this section, the fol-
lowing forces apply:

• Size of messages: If network bandwidth or endpoint processing power is
limited, retransmitting large responses that the client already has received is
wasteful.

• Client workload: Clients may want to learn whether the result of an operation
has changed since their last invocation in order to avoid reprocessing the same
results. This reduces their workload.

• Provider workload: Some requests are rather inexpensive to answer, such as
those not involving complex processing, external database queries, or other
backend calls. Any additional runtime complexity of the API endpoint, for
instance, any decision logic introduced to avoid unnecessary calls, might
negate the possible savings in such cases.

Chapter 7 Refine Message Design for Quality 346

• Data currentness versus correctness: API clients might want to cache a local
copy of the data to reduce the number of API calls. As copy holders, they must
decide when to refresh their caches to avoid stale data. The same considera-
tions apply to metadata. On the one hand, when data changes, chances are that
metadata about it has to change too. On the other hand, the data could remain
the same, and only the metadata might change. Attempts to make conversa-
tions more efficient must take these considerations into account.

One might consider scaling up or scaling out on the physical deployment level to
achieve the desired performance, but such an approach has its limits and is costly.
The API provider or an intermediary API gateway might cache previously requested
data to serve them quickly without having to recreate or fetch them from the
database or a backend service. Such dedicated caches have to be kept current and
invalidated at times, which leads to a complex set of design problems.5

In an alternative design, the client could send a “preflight” or “look before you
leap” request asking the provider if anything has changed before sending the actual
request. But this design doubles the number of requests, makes the client implemen-
tation more complex, and might reduce client performance when the network has a
high latency.

How It Works

If the condition is not met, the provider does not reply with a full response but
returns a special status code instead. Clients can then use the previously cached
value. In the simplest case, the conditions represented by Metadata Elements could
be transferred in an Atomic Parameter. Application-specific data version numbers
or timestamps can be used if already present in the request.

5. As Phil Karlton (quoted by Martin Fowler) notes, “There are only two hard things in Computer Sci-
ence: cache invalidation and naming things” [Fowler 2009]. Fowler provides tongue-in-cheek evidence
for this claim.

Make requests conditional by adding Metadata Elements to their message
representations (or protocol headers) and processing these requests only if the
condition specified by the metadata is met.

Message Exchange Optimization (aka Conversation Efficiency) 347

«Pattern»
Conditional

Request

Condition
«Domain Class»

API Provider

Time-Based Condition

- lastModified: Timestamp

Fingerprint-Based
Condition

- ngerprint: HashCode
- versionNumber: ID

«Domain Class»
Operation

«Domain Class»
API Client

calls if
condition
holds

sends

evaluates

Figure 7.8 CONDITIONAL REQUEST

It is also possible to implement the Conditional Request pattern within the com-
munication infrastructure, orthogonal and complementary to the application-specific
content. To do so, the provider may include a hash of the data served. The client can
then include this hash in subsequent requests to indicate which version of the data it
already has and for which data it wishes to receive only newer versions. A special con-
dition violated response is returned instead of the complete response if the condi-
tion is not met. This approach implements a “virtual caching” strategy, allowing clients
to recycle previously retrieved responses (assuming they have kept a copy).

Variants Request conditions can take different forms, leading to different variants
of this pattern:

• Time-Based Conditional Request: Resources are timestamped with a last-
modified date. A client can use this timestamp in the subsequent requests so
that the server will reply with a resource representation only if it is newer than
the copy the client already has. Note that this approach requires some clock
synchronization between clients and servers if it is supposed to work accu-
rately (which might not always be required). In HTTP, the If-Modified-
Since request header carries such a timestamp, and the 304 Not Modified
status code is used to indicate that a newer version is not available.

Figure 7.8 illustrates the solution elements.

Chapter 7 Refine Message Design for Quality 348

• Fingerprint-Based Conditional Request: Resources are tagged, that is, finger-
printed, by the provider, using, for example, a hash function applied to the
response body or some version number. Clients can then include the finger-
print to indicate the version of the data they already have. In HTTP, the entity
tag (ETag), as described in RFC 7232 [Fielding 2014a], serves that purpose
together with the If-None-Match request header and the previously men-
tioned 304 Not Modified status code.

Example
Many Web application frameworks, such as Spring, support Conditional Requests
natively. The Spring-based Customer Core backend application in the Lakeside Mutual
scenario includes ETags—implementing the fingerprint-based Conditional Request
variant—in all responses. For example, consider retrieving a customer:

curl -X GET --include \

http:://localhost:8080/customers/gktlipwhjr

A response containing an ETag header could start with:

HTTP/1.1 200

ETag: "0c2c09ecd1ed498aa7d07a516a0e56ebc"

Content-Type: application/hal+json;charset=UTF-8

Content-Length: 801

Date: Wed, 20 Jun 2018 05:36:39 GMT

{

 "customerId": "gktlipwhjr",

...

Subsequent requests can then include the ETag received from the provider previ-
ously to make the request conditional:

curl -X GET --include –-header \

'If-None-Match: "0c2c09ecd1ed498aa7d07a516a0e56ebc"' \

http://localhost:8080/customers/gktlipwhjr

If the entity has not changed, that is, If-None-Match occurs, the provider
answers with a 304 Not Modified response including the same ETag:

HTTP/1.1 304

ETag: "0c2c09ecd1ed498aa7d07a516a0e56ebc"

Date: Wed, 20 Jun 2018 05:47:11 GMT

If the customer has changed, the client will get the full response, including a new
ETag, as shown in Figure 7.9.

Message Exchange Optimization (aka Conversation Efficiency) 349

Note that the Customer Core microservice implements Conditional Request
as a filter applied to the response. Using a filter means that the response is still com-
puted but then is discarded by the filter and replaced with the 304 Not Modified
status code. This approach has the benefit of being transparent to the endpoint
implementation; however, it only saves bandwidth and not computation time. A
server-side cache could be used to minimize the computational time as well.

Discussion
Conditional Requests allow both clients and API providers to save bandwidth
without assuming that providers remember whether a given client has already seen
the latest version of the requested data. It is up to the clients to remind the server
about their latest known version of the data. They cache previous responses and are

Client API Provider

Data unchanged,
ETag still unmodified

200, ETag: 1

304

200, ETag: 2

304

Operation

Data changed, ETag
modified

request(If-None-Match: ETag 1)

request(If-None-Match: ETag 1)

call()

call()

request()

request(If-None-Match: ETag 1)

Figure 7.9 CONDITIONAL REQUEST example

Chapter 7 Refine Message Design for Quality 350

responsible for keeping track of their timestamp or fingerprint and resending this
information along with their next requests. This simplifies the configuration of the
data currentness interval. Timestamps, as one way to specify the data currentness
interval, are simple to implement even in distributed systems as long as only one sys-
tem writes the data. The time of this system is the master time in that case.

The complexity of the provider-side API endpoint does not increase if the pattern
is implemented with a filter, as shown in the preceding example. Further improve-
ments, such as additional caching of responses, can be realized for specific endpoints
to reduce provider workload. This increases the complexity of the endpoint, as they
have to evaluate the conditions, filters, and exceptions, including errors that might
occur because of the condition handling or filtering.

Providers also have to decide how Conditional Requests affect other quality
measures such as a Rate Limit and whether such requests require special treatment
in a Pricing Plan.

Clients can choose whether or not to make use of Conditional Requests,
depending on their performance requirements. Another selection criterion is whether
clients can afford to rely on the server to detect whether the state of the API resources
has changed. The number of messages transmitted does not change with Condi-
tional Requests, but the payload size can be reduced significantly. Rereading an old
response from the client cache is usually much faster than reloading it from the API
provider.

Related Patterns
Using a Conditional Request may have a positive influence on a Rate Limit that
includes response data volumes in the definition of the limit, as less data is trans-
ferred when this pattern is used.

The pattern can be carefully combined with either Wish List or Wish Template.
This combination can be rather useful to indicate the subset of data that is to be
returned if the condition evaluates to true and the data needs to be sent (again).

A combination of Conditional Requests with Pagination is possible, but there
are edge cases to be considered. For example, the data of a particular page might not
have changed, but more data was added, and the total number of pages has increased.
Such a change in metadata should also be included when evaluating the condition.

More Information
Chapter 10 in the RESTful Web Services Cookbook [Allamaraju 2010] is dedicated
to conditional requests. Some of the nine recipes in this chapter even deal with
requests that modify data.

Message Exchange Optimization (aka Conversation Efficiency) 351

 Pattern:
rEquEst bundLE

When and Why to Apply
An API endpoint that exposes one or more operations has been specified. The API
provider observes that clients make many small, independent requests; individual
responses are returned for these requests. These chatty interaction sequences harm
scalability and throughput.

How can the number of requests and responses be reduced to increase commu-
nication efficiency?

In addition to the general desire for efficient messaging and data parsimony (as
discussed in the introduction to this chapter), the goal of this pattern is to improve
performance:

• Latency: Reducing the number of API calls may improve client and provider
performance, for instance, when the network has high latency or overhead is
incurred by sending multiple requests and responses.

• Throughput: Exchanging the same information through fewer messages may
lead to a higher throughput. However, the client has to wait longer until it can
start working with the data.

One might consider using more or better hardware to meet the performance demands
of the API clients, but such an approach has its physical limits and is costly.

How It Works

Define a Request Bundle as a data container that assembles multiple inde-
pendent requests in a single request message. Add metadata such as identifiers
of individual requests (bundle elements) and a bundle element counter.

There are two options to design the response messages:

1. One request with one response: Request Bundle with a single bundled
response.

2. One request with multiple responses: Request Bundle with multiple responses.

Chapter 7 Refine Message Design for Quality 352

The Request Bundle container message can, for instance, be structured as a
Parameter Tree or a Parameter Forest. In the first option, a message structure
for the response container that mirrors the request assembly and corresponds to the
bundled requests has to be defined. The second option can be implemented with sup-
port from the underlying network protocols to support suitable message exchange
and conversation patterns. For example, with HTTP, the provider can delay the
response until a bundle item has been processed. RFC 6202 [Saint-Andre 2011] pre-
sents details on this technique, which is called long polling.

Errors have to be handled both individually and on the container level. Different
options exist; for instance, an Error Report for the entire batch can be combined
with an associative array of individual Error Reports for bundle elements acces-
sible via Id Elements.

Figure 7.10 shows a Request Bundle of three individual requests, A, B, and C,
assembled into a single remote API call. Here, a single bundled response is used
(Option 1).

API Client

API
Implementation

API
Endpoint

Request
Bundle

A

B

C

A Individual request

A Individual response

Container message

Request Splitter

Response
Assembler

Bundle Element
Dispatcher

Single
Bundled

Response

A

B

C

Figure 7.10 REQUEST BUNDLE: Three independent requests, A, B, and C, are assembled in
a container message. The provider processes the requests and replies with a Single Bundled
Response

Message Exchange Optimization (aka Conversation Efficiency) 353

The API implementation has to split the request bundle and assemble the response
bundle. This can be as straightforward as iterating through an array that the provider-
side endpoint hands over, but it also may require some additional decision and dispatch
logic, for instance, using a control Metadata Element in the request to decide where
in the API implementation to route the bundle elements to. The API client has to split
a bundled response in a similar way if the provider returns a single bundled response.

Example
In the Lakeside Mutual Customer Core service, clients can request multiple custom-
ers from the customer’s Information Holder Resource by specifying an Atomic
Parameter List of customer Id Elements. A path parameter serves as a bundle con-
tainer. A comma (,) separates the bundle elements:

curl -X GET http://localhost:8080/customers/ce4btlyluu,rgpp0wkpec

This will return the two requested customers as Data Elements, represented as
JSON objects in a bundle-level array (using the single bundled response option):

{

 "customers": [

 {

 "customerId": "ce4btlyluu",

 "firstname": "Robbie",

 "lastname": "Davenhall",

 "birthday": "1961-08-11T23:00:00.000+0000",

 ...

 "_links": { ... }

 },

 {

 "customerId": "rgpp0wkpec",

 "firstname": "Max",

 "lastname": "Mustermann",

 "birthday": "1989-12-31T23:00:00.000+0000",

 ...

 "_links": { ... }

 }

],

 "_links": { ... }

}

This example implements the pattern option Request Bundle with single bun-
dled response, introduced earlier.

Chapter 7 Refine Message Design for Quality 354

Discussion
By transmitting a bundle of requests at once, the number of messages can be reduced
significantly if the client-side usage scenarios include batch or bulk processing (for
instance, periodic updates to customer master data). As a consequence, the commu-
nication is sped up because less network communication is required. Depending on
the actual use case, client implementation effort might also decrease because the cli-
ent does not have to keep track of multiple ongoing requests. It can process all logi-
cally independent bundle elements found in a single response one by one.

The pattern adds to endpoint processing effort and complexity. Providers have
to split the request messages and, when realizing Request Bundle with multiple
responses, coordinate multiple individual responses. Client processing effort and
complexity can increase as well because clients must deal with the Request Bundle
and its independent elements, again requiring a splitting strategy. Finally, the mes-
sage payload design and processing get more complex, as data from multiple sources
has to be merged into one message.

Being independent of each other, individual requests in the Request Bundle
might be executed concurrently by the endpoint. Hence, the client should not make
any assumptions about the order of evaluation of the requests. API providers should
document this container property in the API Description. Guaranteeing a particu-
lar order of bundle elements causes extra work, for instance ordering a single bun-
dled response in the same way as the incoming Request Bundle.

The pattern is eligible if the underlying communication protocol cannot handle
multiple requests at once. It assumes that data access controls are sufficiently defined
and presented so that all bundle elements are allowed to be processed. If not, the
provider must compose partial responses indicating to the client which commands/
requests in the bundle failed and how to correct the corresponding input so that invo-
cation can be retried. Such element-level access control can be challenging to handle
on the client side.

Clients must wait until all messages in the bundle have been processed, increas-
ing the overall latency until a first response is received; however, compared to many
consecutive calls, the total communication time typically speeds up, as less network
communication is required. The coordination effort might make the service provider
stateful, which is considered harmful in microservices and cloud environments due
to its negative impact on scalability. That is, it becomes more difficult to scale out
horizontally when workload increases because the microservices middleware or the
cloud provider infrastructure may contain load balancers that now have to make sure
that subsequent requests reach the right instances and that failover procedures rec-
reate state in a suited fashion. It is not obvious whether the bundle or its elements
should be the units of scaling.

Summary 355

Related Patterns
The request and response messages of a Request Bundle form Parameter Forests
or Parameter Trees. Additional information about the structure and information
that identifies individual requests comes as one or more Id Elements or Metadata
Elements. Such identifiers might realize the “Correlation Identifier” pattern [Hohpe
2003] to trace responses back to requests.

A Request Bundle can be delivered as a Conditional Request. The pattern
can also be combined with a Wish List or a Wish Template. It must be carefully
analyzed if enough gains can be realized to warrant the complexity of a combination
of two or even three of those patterns. If the requested entities are of the same kind
(for instance, several people in an address book are requested), Pagination and its
variants can be applied instead of Request Bundle.

Using a Request Bundle has a positive influence on staying within a Rate Limit
that counts operation invocations because fewer messages are exchanged when the
pattern is used. This pattern goes well with explicit Error Reports because it is
often desirable to report the error status or success per bundle element and not only
for the entire Request Bundle.

Request Bundle can be seen as an extension of the general “Command” design
pattern: each individual request is a command according to terminology from
[Gamma 1995]. “Message Sequence” [Hohpe 2003] solves the opposite problem:
to reduce the message size, messages are split into smaller ones and tagged with a
sequence ID. The price for this is a higher number of messages.

More Information
Recipe 13 in Chapter 11 of the RESTful Web Services Cookbook [Allamaraju 2010]
advises against providing a generalized endpoint to tunnel multiple individual
requests.

Coroutines can improve performance when applying the Request Bundle pat-
tern in the context of batch processing (aka chunking). “Improving Batch Perfor-
mance when Migrating to Microservices with Chunking and Coroutines” discusses
this option in detail [Knoche 2019].

Summary

This chapter presented patterns concerned with API quality, specifically, finding the
sweet spot between API design granularity, runtime performance, and the ability to
support many diverse clients. It investigated whether many small or few large mes-
sages should be exchanged.

Chapter 7 Refine Message Design for Quality 356

Applying the Embedded Entity pattern makes the API exchange self-contained.
Linked Information Holder leads to smaller messages that can refer to other
API endpoints and, therefore, will lead to multiple round-trips to retrieve the same
information.

Pagination lets clients retrieve data sets piecewise, depending on their informa-
tion needs. If the exact selection of details to be fetched is not known at design time,
and clients would like the API to satisfy all of their desires, then Wish Lists and Wish
Templates offer the required flexibility.

Bulk messages in a Request Bundle require only one interaction. While perfor-
mance can be carefully optimized by sending and receiving payloads with the right
granularity, it also helps to introduce Conditional Requests and avoid resending
the same information to clients who already have it.

Note that performance is hard to predict in general and in distributed systems in
particular. Typically, it is measured under steady conditions as a system landscape
evolves; if a performance control shows a negative trend that runs the risk of violat-
ing one or more formally specified Service Level Agreements or other specified
runtime quality policies, the API design and its implementation should be revised.
This is a broad set of important issues for all distributed systems; it becomes even
more severe when a system is decomposed into small parts, such as microservices to
be scaled and evolved independently of each other. Even when services are loosely
coupled, the performance budget for meeting the response-time requirements of an
end user performing a particular business-level function can be evaluated only as
a whole and end-to-end. Commercial products and open-source software for load/
performance testing and monitoring exist. Challenges include the effort required to
set up an environment that has the potential to produce meaningful, reproducible
results as well as the ability to cope with change (of requirements, system architec-
tures, and their implementations). Simulating performance is another option. There
is a large body of academic work on predictive performance modeling of software
systems and software architectures (for example, “The Palladio-Bench for Modeling
and Simulating Software Architectures” [Heinrich 2018]).

Next up is API evolution, including approaches to versioning and life-cycle man-
agement (Chapter 8, “Evolve APIs”).

This page intentionally left blank

499

Index

A
ACID, 232, 448
accuracy

API design, 63, 90, 112–113, 163
billing, 342–343

ADDR (Align-Define-Design-Refine) phases,
136, 309, 357, 395

ADR (architectural decision record) template,
44–45. See also decisions

Aggressive Obsolescence pattern, 116–117,
379–384

Aggregate, 33, 64, 183, 258, 459
Aggregated Metadata, 265
AI (artificial intelligence), Google Quantum,

14
Apache ActiveMQ, 37
Apache Kafka, 6
API Description pattern, 56–57, 168–169,

399–400, 401–402, 401–402, 403–405
API Implementation, 17, 39, 163, 258
API Key pattern, 86–87, 288

discussion, 287
example, 286–287
how it works, 285–286
related patterns, 288
when and why to apply, 283–285

API(s), 6, 10, 11, 17, 18, 19, 28, 162, 449, 450
CRUD (create, read, update, delete),

176–177, 193–194
ecosystems, 14
endpoints, 22, 23
local, 6, 8, 28–29, 145
platform, 3–4, 144
quality, 29, 84–85, 309–311
refactoring, 449–450
remote. See remote APIs

roles and responsibilities. See roles and
responsibilities

socket, 5
updating, 389–390

Application Backend, 11, 37, 142
Application Frontend, 11, 37, 142
application(s)

APIs, 11
backend, 10

architecture. See also decisions; endpoints
endpoints, Processing Resource pattern,

60
microservices, 12–18, 38
scope, 131–132
service-oriented, 12

Asynchronous Messaging, 6, 19, 141
Atlassian, 319
Atomic Parameter List pattern, 73, 74–76,

150–152
Atomic Parameter pattern, 72, 74–78,

148–150
audit checks, 164, 295
avoid unnecessary data transfer decisions,

102–103, 105–107
Conditional Request pattern, 104
Request Bundle pattern, 104–105
Wish List pattern, 103
Wish Template pattern, 103

AWS (Amazon Web Services), 10, 248, 276

B
Backend See Application Backend
Backend Integration pattern, 53–55,

139–141
business activity, 164, 173–174, 228,

230–231, 232–233, 236, 434, 447
Business Activity Processor, 233, 434

Index500

Bandwidth, 20, 201, 310
Bounded Context, 3, 64, 193, 458
Business Logic Layer, 139, 183
business process, 163, 164, 182, 298, 425, 428,

429, 433, 434 436–437, 439, 443
Business Process Execution Language (BPEL),

427, 433
Business Process Management (BPM), 228,

232, 434
business value, 15

C
caching, 64, 182, 247
CAD (computer-aided design), 438, 441
candidate API endpoints, 59, 162
challenges

of API design, 17–19
of API documentation, 396–397
of API evolution, compatibility, 359
of improving API quality, 310–311
of message representation design, 254–255
of role- and responsibility-driven API

design, 163–164
channel. See messages and messaging systems,

channels
clarity, API, 21, 29
client(s), 17

-driven message content, 325–326,
327–334, 335–344

identification and authentication decisions,
85–87

cloud services, 10, 12. See also self-service
CNA (cloud-native application), 10–11, 12
code generation, 367
Collection Resource, 206
collections, 157, 206, 322
command, 168, 355
command message, 24, 128, 171, 175
commit ID, 370
communicate errors decision, Error Report

pattern, 94–96
communication, 22–23, 65–66, 206–207. See also

messages and messaging systems
Community API pattern, 49–50, 143–144
compatibility, 359. See also versioning and

compatibility management decisions
components, 3, 4

Computation Function pattern, 69, 240–242,
245–248

Conditional Request pattern, 104, 311–312,
345–350

Context Representation pattern, 96–98,
293–295, 296–298, 299–305

continuous delivery, 18
contracts, 7–8, 17, 22, 26–27, 70

API, 7–8, 22
uniform, 404

control metadata, 97, 102, 255, 265, 268, 269,
270, 295, 303, 330

controller, 83, 240, 355
conversation(s), 14, 24–25, 239–240, 254.

See also messages and messaging systems
coroutines, 355

coupling, 158, 173–174, 176–177, 263
loose, 19–20, 57, 61, 263, 326

CQRS (command and query responsibility
separation), 222, 433

CRUD (create, read, update, delete) APIs,
176–177, 193–194

cursor-based pagination, 101, 330, 331

D
data contract, 29, 259, 475
data currentness interval, 349
Data Element pattern, 79–80, 257–261, 262,

311
data lake, 13
data parsimony, 20, 69, 335, 342–343
data quality, 55, 61, 63, 109, 313–314
data streams, 6
Data Transfer Resource pattern, 65–66,

206–207, 208–215
database, 5, 170, 178, 198, 257, 264, 275, 331,

336, 441–442
data-oriented API endpoints, 165, 167, 180
Datensparsamkeit, 20, 335, 338, 342–343
DCE (distributed computing environment), 5
decisions, 46, 47, 74–78, 127

API integration types, 52
Backend Integration pattern, 53–55,

139–141
Frontend Integration pattern, 53,

138–139
API roles and responsibilities, 57–59

Index 501

API visibility, 47–48
Community API pattern, 49–50,

143–144
Public API pattern, 48–49, 142–143
Solution-Internal API pattern,

50–51, 144–145
architectural role of an endpoint, 61

Information Holder Resources
pattern, 60–61

Processing Resource pattern, 60
avoid unnecessary data transfer, 102–103

Conditional Request pattern, 104
Request Bundle pattern, 104–105
Wish List pattern, 103
Wish Template pattern, 103

client identification and authentication,
85–87

communicate errors, Error Report
pattern, 94–96

context representation, Context
Representation pattern, 96–98

documentation of the API, 55–57
element stereotype, 78–79, 82

Data Element pattern, 79–80
ID Element pattern, 81
Link Element pattern, 81–82
Metadata Element pattern, 80

handling of referenced data, 107–108
Embedded Entity pattern, 108,

109–110
Linked Information Holder

pattern, 109
message structure and representation

Atomic Parameter list pattern, 73
Atomic Parameter pattern, 72
Parameter Forest pattern, 74
Parameter Tree pattern, 73

metering and charging for API
consumption, Pricing Plan pattern,
88–90

operation responsibility, 66
Computation Function pattern, 69
Retrieval Operation pattern, 68
State Creation Operations pattern,

67–68
State Transition Operation pattern,

68–69
pagination, 98–102

preventing API clients from excessive API
usage, Rate Limit pattern, 90–92

quality objective, 92–93
roles and responsibilities, 66

Data Transfer Resource pattern,
65–66

Information Holder Resources
pattern, 61–63

Link Lookup Resource pattern, 64–65
Master Data Holder pattern, 63–64
Operational Data Holder pattern,

63–64
Processing Resource pattern, 60-61
Reference Data Holder pattern, 64

using an experimental preview, 118–119
version introduction and decommissioning,

115
Aggressive Obsolescence pattern,

116–117
Limited Lifetime Guarantee pattern,

115–116
Two in Production pattern, 117–118

versioning and compatibility management
Semantic Versioning pattern, 114
Version Identifier pattern, 113–114

why-statement, 44–45
deployment, 47, 58, 122, 145, 335, 340, 358,

360, 427–428, 449
deserialization, 26
design, 8, 14–15. See also decisions; patterns

API, 8, 14–15
challenges, 17–19, 29
clarity, 21
data parsimony, 20, 69, 335, 342–343
differences in, 16–17
ease of use, 21
function, 21
Lakeside Mutual, 39
modifiability, 20
privacy, 20–21
security, 20–21
stability, 21
understandability, 19

DRY (do not repeat yourself) principle,
64, 196

endpoints, positioning, 161
idempotence, 164
Lakeside Mutual API, 39

Index502

message representation, 253–255
operations, 165
Pagination pattern, caveats, 333
provider-side processing, 168–170
role- and responsibility-driven, challenges

and desired qualities in, 163–164
security, 169–170

Design-by-Contract, 405
developer experience (DX), 17, 21–22
DevOps, continuous delivery, 18
Digital Weather Markup Language

(DWML), 9
distributed applications, 5–6, 447
distribution, 18
Document Message, 128, 171, 175, 230–231
documentation, 395–397. See also API

Description pattern
challenges, 396–397
decisions, 55–57

domain model, 22–28. See also messages
and messaging systems

API contract, 26–27
communication participants, 22–23
conversations, 24–25
Lakeside Mutual domain model, 32–35
message structure and representation,

25–26
domain-driven design (DDD), 51, 64, 141,

176–178, 230–231, 258, 317, 450
DRY (do not repeat yourself) principle, 64, 196
DTR (data transfer representation), 26
dynamic endpoint references, 64–65

E
ease of use, API, 21
ecosystems, 13–14
entity, 33, 176, 262, 459
Eiffel, 248
Elaborate Description, 402
elaboration phases, pattern, 135–136
element stereotype decisions, 78, 82

Data Element Pattern, 79–80, 257–261,
262

ID Element pattern, 81, 271–274, 275, 276
Link Element pattern, 81–82, 276–279,

280–282
Metadata Element pattern, 80, 263–264,

265–266, 267, 268–269, 270

Embedded Entity pattern, 64–65, 108,
109–110, 129, 311, 314–319

enabling technology, 14
endpoint(s), 22, 135–136, 161

address, 23
candidate API, 162
Data Transfer Resource pattern, 65–66
data-oriented API, 165, 167, 180
dynamic references, 64–65
positioning, 161
Processing Resource pattern, 60
roles, 165, 168–176

E/R Diagram, 176
ERP (enterprise resource planning), 391, 438
Error Report pattern, 94–96, 120–121,

288–290, 291–293
ETag (entity tag), 348
event, 4, 187, 219
Event Message, 128
event-driven architecture, 220
eventual consistency, 179, 188, 221, 232
evolution of APIs, 110–111, 357. See also

versioning and compatibility
management decisions

challenges, 358–360
Lakeside Mutual, 120–122
versioning and compatibility management

decisions, 112–113, 360
Aggressive Obsolescence pattern,

379–385
Experimental Preview pattern,

375–378
Limited Lifetime Guarantee pattern,

385–388
Semantic Versioning pattern, 114
Two in Production pattern, 388–393
Version Identifier pattern, 113–114

expanding the request results, 336
Experimental Preview pattern, 118–119,

375–378
extensibility, API, 359–383

F
fingerprint-based conditional request, 348
forces, 8
foundation patterns, 137–138, 145–146

Backend Integration, 139–141
Community API, 143–144

Index 503

Frontend Integration, 138–139
Public API, 142–143
Solution-Internal API, 144–145

frontend, 4, 10, 31, 36–37, 38, 47, 52, 53, 138,
140, 145–146, 228, 229, 232–233, 235,
236, 237, 281, 317, 333, 368

Frontend Integration pattern, 53, 138–139
function, API, 21
future of APIs, 450

G
gateway, 97, 236, 298, 303, 305, 319, 335, 340,

404, 411, 449
GET requests, 322–323
GitHub, 5, 414
Google

Maps, 15
Quantum AI, 14

governance, API quality, 84–85, 98, 114, 377
GraphQL, 339, 343
GUID, 276

H
handling of referenced data decisions, 107–108

Embedded Entity pattern, 108
Linked Information Holder pattern, 109

Helland, P., “Data on the Outside versus Data
on the Inside”, 405

hiding shared data structures behind domain
logic, 176–178

home resource, 23
HTTP (Hyper-text Transfer Protocol)

APIs, 6
long polling, 352

hypermedia-oriented protocols, 6

I
IBANs, 382–383
ID Element pattern, 81, 271–274, 275, 276
IDEAL (Isolated State, Distribution, Elasticity

Automation and Loose Coupling),
10–11, 12

idempotence, 164
Information Holder Resource pattern,

60–63, 176–182, 183

infrastructure, 13, 97, 205, 239, 284, 295, 313,
323, 335, 343, 344, 347, 354, 433, 436

integration, 427–428, 429–430, 437, 441,
447, 450, 6–8, 12, 16, 18–19, 22, 28,
47, 128, 140, 141, 142, 145, 170, 174,
177–178, 212, 217–218, 227, 236, 258,
266, 269, 275, 276, 367–368, 388, 426

integration types, decisions, 52
Backend Integration pattern, 53–55
Frontend Integration pattern, 53

interface. See API(s), local
Internet of Things, 14
interoperability, 54, 56–57, 76–77, 141

J-K
JavaScript, 10, 37
JSON, 128, 153–154

Kerberos, 87, 287, 306–307
Kubernetes, 11, 450

L
Lakeside Mutual, 31

API design and target specification, 39–41
business context and requirements, 31–32
cursor-based pagination, 331
CustomerInformationHolder controller,

82–83
domain model, 32–35
microservices architecture, 38
offset-based pagination, 330–331
quality and evolution patterns, 120–122
self-service features

application architecture, 36–38
current system, 35–36
desired qualities, 31–32
usability, 32

user stories and desired qualities, 32
library, 246–247
lifetime, 16
Limited Lifetime Guarantee pattern,

115–116, 361, 385, 385–386, 387–388
Link Element pattern, 81–82, 276–279, 280,

280–282
Link Lookup Resource pattern, 64–65,

200–206
Linked Information Holder pattern, 109,

129, 311, 320, 321–324, 325

Index504

load balancers, 13
local API, 6, 8, 28–29, 145
long polling, 352
loose coupling, 19–20, 57, 61, 263, 326, 355

M-N
manageability, in API design, 60, 114, 164,

169, 370
market-based pricing, 409
master data, 13, 32–33, 35, 62, 63–64, 66, 70,

83, 180, 184–185, 187, 189, 190–191,
192–195, 248–249, 313–314, 315, 318,
320, 333, 340, 383, 427, 432

Master Data Holder pattern, 63–64,
190–195

MDSL (Microservices Domain-Specific
Language), 28, 40–41, 151, 153,
341–342, 449

message
request, 24
response, 24

messages and messaging systems, 24
channels, 128
client, 3–4
deserialization, 26
DTR (data transfer representation), 26
exchange optimization

Conditional Request pattern,
345–350

Request Bundle pattern, 351–355
granularity, 313–314

Embedded Entity pattern, 314–319
Linked Information Holder pattern,

320–325
JSON, 128
request-reply, 24
response, 24
serialization, 26
structure and representation, 25–26, 71–72,

146
Atomic Parameter List pattern, 73,

150–152
Atomic Parameter pattern, 72,

148–150
design, 253–254
design challenges, 254–255
Parameter Forest pattern, 74,

155–157

Parameter Tree pattern, 73, 152–155
patterns, 70–71, 74–78

Metadata Element pattern, 80, 263–264 ,
265–266, 267, 268–269, 270

metering and charging for API consumption
decisions, 88–90, 406–407. See also
Pricing Plan pattern

microservices, 12–13, 18, 141, 441
Lakeside Mutual, 38
tenets, 61, 177
transclusion, 441

middleware, 7, 319
Minimal Description, 401, 403–404
modifiability, API, 20, 254, 294, 313

N in Production, 391

O
OAS (OpenAPI Specification), 401, 450
OAuth 2.0, 87, 306
offset-based pagination, 101, 328–329,

330–331
open source marketplaces, 13
OpenStreetMap, 15
operational data, 33, 62–63, 184–189, 192, 194,

195, 202, 248–249
Operational Data Holder pattern, 63–64,

183–185, 185–189, 190
operation(s), 162, 165

responsibility, 66–70, 165–166
Computation Function pattern, 69,

240–248
Retrieval Operation pattern, 68,

222–228
State Creation Operation pattern,

67–68, 216–222
State Transition Operation pattern,

68–69, 228–239
overfetching, 326

P
page-based pagination, 328–329
pagination decisions, 98–102
Pagination pattern, 311, 327–328, 330–331,

332–334, 334
Parameter Forest pattern, 74, 155–157
Parameter Tree pattern, 73, 74–76, 152–155

Index 505

pattern language, 127, 128
patterns, 41, 43–44, 105–107, 127, 129–131,

255–256. See also decisions; foundation
patterns; structure patterns

Aggressive Obsolescence, 116–117,
379–380, 382–384

API Description, 56–57, 168–169,
399–400, 401–402, 401–402, 403–405

API Key, 86–87, 283–287, 288
architectural scope, 131–132
Atomic Parameter, 72, 74–78, 148–150
Atomic Parameter List, 73, 74–76,

150–152
Backend Integration, 53–55, 139–141
Community API, 49–50, 143–144
Computation Function, 69, 240–242,

245–248
Conditional Request, 104, 311–312,

345–350
Context Representation, 96–98,

293–295, 296–298, 299–305
Data Element, 79–80, 257–261, 262, 311
Data Transfer Resource, 65–66,

206–207, 208–211, 212–214, 215
elaboration phases, 135–136
Embedded Entity, 108, 109–110, 311,

314–315, 315–319
Error Report, 94–96, 288–290, 291–293
Experimental Preview, 118–119, 375–378
foundation, 137–138
Frontend Integration, 53, 138–139
ID Element, 81, 271–274, 275, 276
Information Holder Resource, 60–63,

176–178, 178–182, 183
Limited Lifetime Guarantee, 115–116,

361, 385, 385–386, 387–388
Link Element, 81–82, 276–279, 280,

280–282
Link Lookup Resource, 64–65, 200–206
Linked Information Holder, 109, 311,

320, 323–324, 325
Linked Information Holder pattern,

321–323
Master Data Holder, 63–64, 190–195
Metadata Element, 80, 263–264,

265–266, 267, 268–269, 270
Operational Data Holder, 63–64,

183–185, 185–189, 190

Pagination, 100–102, 311, 327–330,
330–331, 332–334

Parameter Forest, 74,
155–157

Parameter Tree, 73, 152–155
Pricing Plan, 88–90, 406–410, 411
Processing Resource, 60, 168–170,

170–176
Public API, 48–49, 142–143
Rate Limit, 90–92, 411–415
Reference Data Holder, 64, 195–200
Request Bundle, 104–105, 311–312,

351–353, 354, 355
Retrieval Operation, 68, 222–223,

224–228
Semantic Versioning, 114, 369–374
Service Level Agreement, 92–93,

416–419, 420, 421
Solution-Internal API, 50–51, 144–145
State Creation Operation, 216–222
State Transition Operation, 67–69,

228–230, 230–236, 237, 238–240
topic categories, 132–133
Two in Production, 117–118, 388–391,

392
Version Identifier, 113–114, 361, 362–368
Wish List, 103, 311, 335–336, 337, 338–339
Wish Template, 103, 311, 339–344

Pautasso, C., A Pattern Language for RESTful
Conversations, 282

performance, 17, 20, 21, 22, 29, 64, 69, 75–76,
84, 85, 87, 91–92, 93, 98, 101, 106,
109, 163–164, 196, 199–200, 204–205,
226–227, 257, 284–285, 287, 289, 304,
309, 310, 311, 313, 320, 325, 335, 338,
340, 351, 397, 406–407

platform APIs, 3–4, 144
policy/Lakeside Mutual, 33
policies, 5, 34–35, 328
preventing API clients from excessive API

usage decisions, Rate Limit pattern,
90–92, 411–416

Pricing Plan pattern, 88–90, 406–410, 411
privacy, 20–21, 169–170, 326
Processing Resource pattern, 60, 168–172,

172–176
products, 13
protocols, 6, 28
provenance metadata, 255, 265, 269 , 270, 303

Index506

provider-side processing, 57, 168–170, 201
pubishing an API, 18
Public API pattern, 48–49, 142–143
Published Language, 51, 201, 255, 258, 260,

262, 265

Q
QoS (quality of service), 84, 416–418
quality, 309–310

attributes, 8, 29
governing, 84–85
role- and responsibility-driven API

design, 163–164
challenges of improving, 310–311
Lakeside Mutual, patterns, 120–122
objectives and penalties, 92–93
pagination decisions, 98–102

quantum computing, 14
Query component, Terravis, 432–433
queue-based, message-oriented application

integration, 5

R
Rate Limit pattern, 90–92, 411–415
real-world API designs

retrospective and outlook, 444
SACAC

business context and domain, 438–439
pattern usage and implementation,

442–443
role and status of API, 440–441
technical challenges, 439–440

Terravis
business context and domain, 426–433
pattern usage and implementation,

429–436
role and status of API, 429
technical challenges, 427–428

refactoring, 77, 200, 385, 431, 449–450
reference data, 62, 64, 178–179, 195–200, 313
Reference Data Holder pattern, 64,

195–200
relationship, 27–28, 36, 73, 108, 152, 176–177,

178–179, 181, 182–183, 184–185, 190,
191, 260, 276, 315–317, 318, 320, 322

relationship holder resource, 322
remote API, 4–5, 7, 8, 28–29, 447, 448,
remote facade, 188, 194, 195

representation element, 19, 25–26, 30, 79, 80,
81, 128, 133, 150, 152, 158, 258–259,
263, 263, 264, 265, 305–306, 367,
380–381, 465

flat versus nested structure, 71–78
Request Bundle pattern, 104–105, 311–312,

351–353, 354, 355
request pagination, 334
request-reply message, 24, 336
resale software ecosystems, 13
resource, 23, 60, 61, 64–65, 76, 105, 266, 322,

323, 408. See also Data Transfer
Resource pattern; Information
Holder Resource pattern; Link
Lookup Resource pattern; Processing
Resource pattern

response message, 24
response shaping, 338
response slicing, 326, 327, 332
response time. See performance
Responsibility, 57, 66, 82, 162
REST (Representational State Transfer), 6
Retrieval Operation pattern, 68, 222–223,

224–228
role- and responsibility-driven API design,

challenges and desired qualities,
163–164

role stereotype, 182–183, 215
roles and responsibilities, 248

decisions, 57–59, 61, 66
Data Transfer Resource pattern,

65–66
Information Holder Resources

pattern, 60–63
Link Lookup Resource pattern, 64–65
Master Data Holder pattern, 63–64
Operational Data Holder pattern,

63–64
Processing Resource pattern, 60
Reference Data Holder pattern, 64

operation responsibility, 66–70
Computation Function pattern, 69
Retrieval Operation pattern, 68
State Creation Operations pattern,

67–68
State Transition Operation pattern,

68–69
RPC (Remote Procedure Call), 5
Ruby on Rails, 443

Index 507

S
SaaS (software-as-a-service), 12
SACAC

business context and domain, 438–439
pattern usage and implementation,

442–443
retrospective and outlook, 444
role and status of API, 440–441
technical challenges, 439–440

schema versioning, 364, 374
SchemaVer, 364
SDK (software development kit), 7
security, 20–21, 169–170, 177
self-service, Lakeside Mutual

application architecture, 36–38
current system, 35–36
desired qualities, 31–32
target specification, 39–41
usability, 32

Semantic Versioning pattern, 114, 369–374
semantics, states and state transitions,

234–235
serialization, 26

service, 50, 144, 168–169, 229, 296–298,
359, 384, 406, 420, 429–430, 434–435.
See also microservices; QoS (quality of
service); self-service, Lakeside Mutual;
SLA (service-level agreement); SOA
(service-oriented architecture)

service layer, 268, 338
Service Level Agreement pattern, 92–93,

416–419, 420, 421
shared data structures, hiding shared data

structures behind domain logic,
176–178

shared knowledge, 4, 399–400
Siriwardena, P., Advanced API Security, 307
SLA (service-level agreement), 92–93, 163,

418–419, 420
slicing, 326, 327, 332
SLO (service-level objective), 92–93, 418–419,

420
SOA (service-oriented architecture),

12, 23
socket APIs, 5
software

ecosystems, 13–14
products, 13

Solution-Internal API pattern, 50–51,
144–145

SPA (single-page application), 37
sprints, 136
stability, API, 21, 271–272, 375, 378, 390
State Creation Operation pattern, 67–68,

216–222
State Transition Operation pattern, 68–69,

228–236, 237, 238–240
states and state transitions, semantics,

234–235
stereotype. See also ID Element pattern; Link

Element pattern; Metadata Element
pattern

element, 78–82, 256, 282
role, 249

strict consistency, 188
structure patterns, 146–147, 157–158

Atomic Parameter, 72, 74–78, 148–150
Atomic Parameter List, 73, 74–76,

150–152
Parameter Forest, 155–157
Parameter Tree, 152–155, 316–317

subscription-based pricing, 407–408, 410
success factors, 15, 22, 43

business value, 15
lifetime, 16
time to first call, 15
time to first level n ticket, 15
visibility, 15

Switzerland, Land Register API, 426–427.
See also Terravis

System of Engagement, 185, 212

T
TCP/IP, 5, 6, 18
Terravis

business context and domain, 426–427
pattern usage and implementation

Nominee component, 435
pattern implementation technologies,

436
patterns applied to all components,

429–431
Process Automation component,

433–435
Query component, 432–433

retrospective and outlook, 436–437

Index508

role and status of API, 429
technical challenges, 427–428

throttling, 413
throughput. See performance
time to first call, 15
time to first level n ticket, 15
time-based conditional request, 347
time-based pagination, 101, 330
topic categories, patterns, 132–133
transaction, 62, 232
transclusion, 441
transitive closure, 315
Twitter, Web API, 5
Two in Production pattern, 117–118,

388–391, 392

U
UI (user interface), 53
underfetching, 326
understandability, API, 19, 56–57, 74
Unified Process, 135–136
uniform contract, 404
updating APIs, 389–390
URI, 70, 147, 149, 193, 208, 209, 274, 278,

280–281
URL, 23, 322
URN (Unified Resource Name), 274
usability, self-service features, Lakeside

Mutual, 32
usage-based pricing, 408
use cases, API, 8–9
using an experimental preview decisions,

118–119
UUID, 276. See also GUID

V
Version Identifier pattern, 113–114, 361,

362–368
version introduction and decommissioning

decisions, 115
Aggressive Obsolescence pattern,

116–117

Limited Lifetime Guarantee pattern,
115–116

Two in Production pattern, 117–118
versioning and compatibility management

decisions, 360
Aggressive Obsolescence pattern,

379–385
detecting incompatibility, 369–370
Experimental Preview pattern, 375–378
Lakeside Mutual, 122
Limited Lifetime Guarantee pattern,

385–388
schema versioning, 364, 374
Semantic Versioning pattern, 114,

369–374
Two in Production pattern, 388–393
Version Identifier pattern, 113–114,

362–369
visibility, 15

data structure, 51–52
decisions, 47–48

Community API pattern, 49–50,
143–144

Public API pattern, 48–49, 142–143
Solution-Internal API pattern, 50–51

W
Web API, 5
Web API Design: The Missing Link, 339
WebDAV, 441
why-statement, 44–45
wildcards, 336
Wire Tap, 411
Wish List pattern, 103, 311, 335–336, 337, 338
Wish Template pattern, 103, 311, 339–344
WSDL (Web Services Description

Language), 367

X-Y-Z
Y-Statement. See why-statement

Zalando RESTful API and Event Scheme
Guidelines, 270

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword by Vaughn Vernon, Series Editor
	Foreword by Frank Leymann
	Preface
	Acknowledgments
	About the Authors
	Chapter 7: Refine Message Design for Quality
	Introduction to API Quality
	Challenges When Improving API Quality
	Patterns in This Chapter

	Message Granularity
	Pattern: EMBEDDED ENTITY
	Pattern: LINKED INFORMATION HOLDER

	Client-Driven Message Content (aka Response Shaping)
	Pattern: PAGINATION
	Pattern: WISH LIST
	Pattern: WISH TEMPLATE

	Message Exchange Optimization (aka Conversation Efficiency)
	Pattern: CONDITIONAL REQUEST
	Pattern: REQUEST BUNDLE

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	k
	L
	M
	N
	O
	P
	O
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

