

Beautiful C++

9780137647842_web.indb 1 09/11/21 9:15 PM

This page intentionally left blank

Beautiful C++

30 Core Guidelines for Writing Clean, Safe,
and Fast Code

J. Guy Davidson
Kate Gregory

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

9780137647842_web.indb 3 09/11/21 9:15 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at corpsales@
pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw.

Library of Congress Control Number: 2021947544

Copyright © 2022 Pearson Education, Inc.

Cover image: IROOM STOCK/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-764784-2
ISBN-10: 0-13-764784-0

ScoutAutomatedPrintCode

9780137647842_web.indb 4 09/11/21 9:15 PM

mailto:corpsales@pearsoned.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity,
and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited to
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the poten-
tial to deliver opportunities that improve lives and enable economic mobility. As we
work with authors to create content for every product and service, we acknowledge
our responsibility to demonstrate inclusivity and incorporate diverse scholarship so
that everyone can achieve their potential through learning. As the world’s leading
learning company, we have a duty to help drive change and live up to our purpose to
help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

•• Everyone has an equitable and lifelong opportunity to succeed through
learning.

•• Our educational products and services are inclusive and represent the rich
diversity of learners.

•• Our educational content accurately reflects the histories and experiences of the
learners we serve.

•• Our educational content prompts deeper discussions with learners and moti-
vates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about
any concerns or needs with this Pearson product so that we can investigate and
address them.

•• Please contact us with concerns about any potential bias at

https://www.pearson.com/report-bias.html.

9780137647842_web.indb 5 09/11/21 9:15 PM

https://www.pearson.com/report-bias.html

This page intentionally left blank

To Bryn

To Sinead

To Rory and Lois

C.47: Much love, JGD

To Jim Allison, though he is unlikely to see it. Research
works. And to Chloe and Aisha who have not been at the

front of books before, KMG

9780137647842_web.indb 7 09/11/21 9:15 PM

This page intentionally left blank

ix

Contents

List of Selected C++ Core Guidelines .   xiii

Foreword .   xv

Preface ��   xvii

Acknowledgments .   xxi

About the Authors .   xxiii

Section 1  Bikeshedding is bad . 1

Chapter 1.1  P.2: Write in ISO Standard C++ . 3

Chapter 1.2 � F.51: Where there is a choice, prefer default
arguments over overloading . 13

Chapter 1.3 � C.45: Don’t define a default constructor that
only initializes data members; use in-class
member initializers instead . 23

Chapter 1.4  C.131: Avoid trivial getters and setters 31

Chapter 1.5  ES.10: Declare one name (only) per declaration 41

Chapter 1.6 � NR.2: Don’t insist to have only a single
return-statement in a function . 49

Section 2  Don’t hurt yourself . 59

Chapter 2.1 � P.11: Encapsulate messy constructs,
rather than spreading through the code 61

Chapter 2.2  I.23: Keep the number of function arguments low 71

Chapter 2.3 � I.26: If you want a cross-compiler ABI, use a
C-style subset . 79

9780137647842_web.indb 9 09/11/21 9:15 PM

Contentsx

Chapter 2.4 � C.47: Define and initialize member variables
in the order of member declaration . 87

Chapter 2.5  CP.3: Minimize explicit sharing of writable data 97

Chapter 2.6 � T.120: Use template metaprogramming
only when you really need to . 107

Section 3  Stop using that . 119

Chapter 3.1 � I.11: Never transfer ownership by a raw pointer (T*)
or reference (T&) . 121

Chapter 3.2  I.3: Avoid singletons . 129

Chapter 3.3 � C.90: Rely on constructors and assignment
operators, not memset and memcpy . 139

Chapter 3.4  ES.50: Don’t cast away const . 149

Chapter 3.5 � E.28: Avoid error handling based on
global state (e.g. errno) . 159

Chapter 3.6 � SF.7: Don’t write using namespace at global
scope in a header file . 169

Section 4  Use this new thing properly 179

Chapter 4.1 � F.21: To return multiple “out” values,
prefer returning a struct or tuple . 181

Chapter 4.2  Enum.3: Prefer class enums over “plain” enums 193

Chapter 4.3  ES.5: Keep scopes small . 201

Chapter 4.4 � Con.5: Use constexpr for values that can
be computed at compile time . 213

Chapter 4.5  T.1: Use templates to raise the level of abstraction of code . . . 225

Chapter 4.6  T.10: Specify concepts for all template arguments 235

Section 5  Write code well by default 245

Chapter 5.1  P.4: Ideally, a program should be statically type safe 247

Chapter 5.2  P.10: Prefer immutable data to mutable data 259

9780137647842_web.indb 10 09/11/21 9:15 PM

Contents xi

Chapter 5.3  I.30: Encapsulate rule violations . 267

Chapter 5.4 � ES.22: Don’t declare a variable until
you have a value to initialize it with . 275

Chapter 5.5  Per.7: Design to enable optimization 285

Chapter 5.6  E.6: Use RAII to prevent leaks . 293

Envoi . 305

Afterword . 307

Index . 309

9780137647842_web.indb 11 09/11/21 9:15 PM

This page intentionally left blank

xiii

Selected C++ Core Guidelines

P.2: Write in ISO Standard C++ (Chapter 1.1)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-Cplusplus

P.4: Ideally, a program should be statically type safe (Chapter 5.1)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe

P.10: Prefer immutable data to mutable data (Chapter 5.2)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-mutable

P.11: Encapsulate messy constructs, rather than spreading through the code
(Chapter 2.1)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library

I.3: Avoid singletons (Chapter 3.2)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-singleton

I.11: Never transfer ownership by a raw pointer (T*) or reference (T&)
(Chapter 3.1)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw

I.23: Keep the number of function arguments low (Chapter 2.2)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nargs

I.26: If you want a cross-compiler ABI, use a C-style subset (Chapter 2.3)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abi

I.30: Encapsulate rule violations (Chapter 5.3)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-encapsulate

F.21: To return multiple “out” values, prefer returning a struct or tuple
(Chapter 4.1)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi

F.51: Where there is a choice, prefer default arguments over overloading
(Chapter 1.2)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-default-args

C.45: Don’t define a default constructor that only initializes data members; use
in-class member initializers instead (Chapter 1.3)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default

9780137647842_web.indb 13 09/11/21 9:15 PM

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-Cplusplus
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-mutable
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-library
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-singleton
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nargs
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abi
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-encapsulate
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-out-multi
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-default-args
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-default

Selected C++ Core Guidelinesxiv

C.47: Define and initialize member variables in the order of member
declaration (Chapter 2.4)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-order

C.90: Rely on constructors and assignment operators, not memset and memcpy
(Chapter 3.3)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-memset

C.131: Avoid trivial getters and setters (Chapter 1.4)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-default-args

Enum.3: Prefer class enums over “plain” enums (Chapter 4.2)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class

ES.5: Keep scopes small (Chapter 4.3)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-scope

ES.10: Declare one name (only) per declaration (Chapter 1.5)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-task

ES.22: Don’t declare a variable until you have a value to initialize it with
(Chapter 5.4)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe

ES.50: Don’t cast away const (Chapter 3.4)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts-const

Per.7: Design to enable optimization (Chapter 5.5)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-efficiency

CP.3: Minimize explicit sharing of writable data (Chapter 2.5)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data

E.6: Use RAII to prevent leaks (Chapter 5.6)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-raii

E.28: Avoid error handling based on global state (e.g. errno) (Chapter 3.5)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw

Con.5: Use constexpr for values that can be computed at compile time (Chapter 4.4)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr

T.1: Use templates to raise the level of abstraction of code (Chapter 4.5)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-raise

T.10: Specify concepts for all template arguments (Chapter 4.6)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts

T.120: Use template metaprogramming only when you really need to (Chapter 2.6)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-metameta

SF.7: Don’t write using namespace at global scope in a header file (Chapter 3.6)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-using-directive

NR.2: Don’t insist to have only a single return-statement in a function (Chapter 1.6)
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rnr-single-return

9780137647842_web.indb 14 09/11/21 9:15 PM

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-order
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-memset
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-default-args
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-scope
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-task
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-typesafe
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts-const
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rper-efficiency
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconc-data
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-raii
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-no-throw
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-raise
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-concepts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rt-metameta
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-using-directive
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rnr-single-return

xv

Foreword

I enjoyed reading this book. I enjoyed it especially because it presents the C++ Core
Guidelines (CG) very differently from how the CG itself does it. The CG presents its
rules relatively tersely in a fixed format. The CG rules are often expressed in
language-technical terms with an emphasis on enforcement through static analysis.
This book tells stories, many coming from the games industry based on the evolu-
tion of code and techniques over decades. It presents the rules from a developer’s
point of view with an emphasis on what benefits can be obtained from following the
rules and what nightmares can result from ignoring them. There are more extensive
discussions of the motivation for rules than the CG themselves can offer.

The CG aims for a degree of completeness. Naturally, a set of rules for writing
good code in general cannot be complete, but the necessary degree of completeness
implies that the CG are not meant for a systematic read. I recommend the introduc-
tion and the philosophy section to get an impression of the aims of the CG and its
conceptual framework. However, for a selective tour of the CG guided by taste, per-
spective, and experience, read the book. For true geeks, it is an easy and entertaining
read. For most software developers, it offers something new and useful.

—Bjarne Stroustrup
June 2021

9780137647842_web.indb 15 09/11/21 9:15 PM

This page intentionally left blank

xvii

Preface

The complexity of writing C++ is diminishing with each new standard and each
new piece of teaching literature. Conferences, blogs, and books abound, and this is a
good thing. The world does not have enough engineers of sufficient quality to solve
the very real problems we face.

Despite the continuing simplification of the language, there is still much to learn
about how to write good C++. Bjarne Stroustrup, the inventor of C++, and Herb
Sutter, the convenor of the standards body that maintains C++, have devoted con-
siderable resources to creating teaching materials for both learning C++ and writing
better C++. These volumes include The C++ Programming Language1 and A Tour
of C++,2 as well as Exceptional C++3 and C++ Coding Standards.4

The problem with books, even this modest volume, is that they represent a snap-
shot in time of the state of affairs, yet C++ is a continuously evolving language.
What was good advice in 1998 may no longer be such a smart idea. An evolving lan-
guage needs an evolving guide.

An online resource, C++ Core Guidelines,5 was launched at the CppCon Confer-
ence in 2015 by Bjarne Stroustrup and Herb Sutter during their two6 keynote7 talks.
The guidelines provide excellent, simple advice for improving your C++ style such
that you can write correct, performant, and efficient code at your first attempt. It is
the evolving guide that C++ practitioners need, and the authors will be delighted to
review pull requests with corrections and improvements. Everyone, from beginners
to veterans, should be able to follow its advisories.

1.	 Stroustrup, B, 2013. The C++ Programming Language, Fourth Edition. Boston: Addison-Wesley.
2.	 Stroustrup, B, 2018. A Tour of C++, Second Edition. Boston: Addison-Wesley.
3.	 Sutter, H, 1999. Exceptional C++. Reading, MA: Addison-Wesley.
4.	 Sutter, H, and Alexandrescu, A, 2004. C++ Coding Standards. Boston: Addison-Wesley.
5.	 Isocpp.github.io. 2021. C++ Core Guidelines. Copyright © Standard C++ Foundation and its contributors.

Available at: https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines Accessed 16 July 2021.
6.	 Youtube.com. 2021. CppCon 2015: Bjarne Stroustrup “Writing Good C++14”. Available at: https://

www.youtube.com/watch?v=1OEu9C51K2A Accessed 16 July 2021.
7.	 Youtube.com. 2021. CppCon 2015: Herb Sutter “Writing Good C++14... By Default.” Available at:

https://www.youtube.com/watch?v=hEx5DNLWGgA Accessed 16 July 2021.

A01_Davidson_FM_pi-xxiv.indd 17 10/11/21 2:56 PM

http://Isocpp.github.io
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://Youtube.com
https://www.youtube.com/watch?v=1OEu9C51K2A
https://www.youtube.com/watch?v=1OEu9C51K2A
http://Youtube.com
https://www.youtube.com/watch?v=hEx5DNLWGgA

Prefacexviii

At the end of February 2020, on the
#include discord,8 Kate Gregory canvassed
interest in producing a book about the Core
Guidelines and I cautiously jumped at the
chance. Kate gave a talk at CppCon 20179

where she looked at just 10 of the Core
Guidelines. I share her enthusiasm for pro-
moting better programming. I am the Head
of Engineering Practice at Creative Assem-

bly, Britain’s oldest and largest game development studio, where I have spent a lot of
the past 20-plus years helping to turn our fine engineers into even greater engineers. It
is our observation that, despite the accessibility and simplicity of the Core Guidelines,
many developers are not especially familiar with them. We want to promote their use,
and we decided to write this book because there is not enough literature about them.

The Core Guidelines can be found at https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines. They are absolutely jam-packed with excellent advice: indeed,
it is hard to know where to start. Reading from the top to the bottom is feasible, but
it is a tall order to grasp the entire set of advisories without repeated reading. They
are organized into 22 major sections with titles like “Interfaces,” “Functions,” “Con-
currency,” and so on. Each section is composed of individual guidelines, sometimes
a few, sometimes dozens. The guidelines are identified by their major section letter,
then their number within the section, separated by a period. For example, “F.3: Keep
functions short and simple” is the third guideline in section F, “Functions.”

Each guideline is ordered in a similar way. It starts with the title of the guideline,
which is presented as an action (do this, don’t do this, avoid this, prefer this) followed
by a reason and some examples, and possibly an exception to the guideline. Finally,
there is a note on how to enforce the guideline. Enforcement notes range from advice
to authors of static analysis tools to hints on how to conduct a code review. There
is a skill to reading them, it turns out; deciding which ones to prioritize in your own
code is a matter of personal discovery. Let us show you how to start taking advantage
of their wisdom.

There are some sharp edges in C++ as well as some dusty corners that are not
visited so often in modern C++. We want to steer you away from these. We want to
show you that C++ does not have to be difficult, complex, or something that most
developers cannot be trusted with.

8.	 #include <C++>. 2021. #include <C++>. Available at: https://www.includecpp.org/ Accessed
16 July 2021.

9.	 Youtube.com. 2021. CppCon 2017: Kate Gregory “10 Core Guidelines You Need to Start Using Now.”
Available at: https://www.youtube.com/watch?v=XkDEzfpdcSg Accessed 16 July 2021.

The guidelines provide
excellent, simple advice for
improving your C++ style
such that you can write
correct, performant, and
efficient code at your first
attempt.

9780137647842_web.indb 18 09/11/21 9:15 PM

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.includecpp.org/
http://Youtube.com
https://www.youtube.com/watch?v=XkDEzfpdcSg

Preface xix

About This Book

In this book we offer what we consider to be 30 of the best C++ Core Guidelines. By
thoroughly explaining these guidelines we hope that you will at least abide by them, even
if you decide against investigating the remainder. The set that we have chosen are not
necessarily the most important. However, they are certainly the set that will change your
code for the better immediately. Of course, we hope that you will also see that there are
many other good guidelines you could also follow. We hope that you will read the remain-
der and try them out in your code. Just as the Core Guidelines are aimed at all C++
developers with all levels of experience, so is this book aimed at the same set of people.
The material does not increase in complexity as the book progresses, nor is there a
required order in which to read the chapters. They are independent of one another,
although they may explicitly refer to other chapters. We kept each chapter to about three
thousand words, so you may decide that this is a bedside volume rather than a textbook.
The purpose is not to teach you C++, but to advise you how to improve your style.

We divided the guidelines into five sections of six chapters, following Kate’s origi-
nal presentation to CppCon in 2017. In Section 1, “Bikeshedding is bad,” we present
guidelines that allow you to simply make a decision about when to do A or B, for some
particular set of As and Bs, and move on with the minimum of fuss and argument.
“Bikeshedding”10 derives from C. Northcote Parkinson’s “law of triviality,” an argument
that organization members typically give disproportionate weight to trivial issues, such
as the color to paint a bikeshed compared to the testing criteria for the nuclear power sta-
tion to which it is attached, because it is the one thing everyone knows something about.

In Section 2, “Don’t hurt yourself,” we present guidelines for preventing personal
injury while writing code. One of the problems with the residual complexity of C++
is that there are several places where you can shoot yourself in the foot with ease. For
example, while it is legal to populate a constructor initialization list in any order, it
is never wise to do so.

Section 3 is named “Stop using that” and deals with parts of the language that are
retained for backward compatibility reasons, along with pieces of advice that used
to be valuable, but which have been superseded by developments in the language.
As C++ evolves, things that seemed like a good idea at the time occasionally reveal
themselves as rather less valuable than was originally expected. The standardization
process fixes these things, but everyone needs to stay informed about them because
you may come across examples if you find yourself working with a legacy codebase.
C++ offers a guarantee of backward compatibility: code written 50 years ago in C
should still compile today.

10.	 2021. Available at: https://exceptionnotfound.net/bikeshedding-the-daily-software-anti-pattern/
Accessed 16 July 2021.

9780137647842_web.indb 19 09/11/21 9:15 PM

https://exceptionnotfound.net/bikeshedding-the-daily-software-anti-pattern/

Prefacexx

Section 4 follows on from this with the title “Use this new thing properly.” Things
like concepts, constexpr, structured binding, and so on need care when being
deployed. Again, C++ is an evolving standard and new things appear with each
release, all of which require some teaching to back them up. Although this text does
not aim to teach you the new features of C++20, these guidelines do give you a flavor
of how to apprehend novel features.

Section 5, the final section, is titled “Write code well by default.” These are simple
guidelines that, if followed, will result in you generating good code without having
to think too hard about what is going on. They lead to the production of good idi-
omatic C++ which will be understood and appreciated by your colleagues.

Throughout the book, as with any good text, themes emerge and are developed. Part
of the fun of writing this book, which I hope will translate to the reading of it too, has
been seeing what motivates the guidelines and introspecting about the wider application
of these motivations. Many of the guidelines, when squinted at carefully with the sun in
the right place, restate some of the fundamental truths of software engineering in differ-
ent ways. Extracting those truths will greatly improve your programming practice.

We truly hope you enjoy and profit from this book.

Access the Code

All of the code is available at the Compiler Explorer website. Matt Godbolt has kindly
reserved stable links for each chapter which are formed by joining https://godbolt.org/z/
cg30-ch and the chapter number. For example, https://godbolt.org/z/cg30-ch1.3 will take
you to the complete code for Chapter 1.3. We recommend you start with https://godbolt
.org/z/cg30-ch0.0 for instructions on how to use the website and interact with the code.

—Guy Davidson, @hatcat01 hatcat.com
—Kate Gregory, @gregcons gregcons.com

October 2021

Register your copy of Beautiful C++ on the InformIT site for convenient access to
updates and/or corrections as they become available. To start the registration pro-
cess, go to informit.com/register and log in or create an account. Enter the product
ISBN (9780137647842) and click Submit. Look on the Registered Products tab for an
Access Bonus Content link next to this product, and follow that link to access any
available bonus materials. If you would like to be notified of exclusive offers on new
editions and updates, please check the box to receive email from us.

9780137647842_web.indb 20 09/11/21 9:15 PM

https://godbolt.org/z/cg30-ch
https://godbolt.org/z/cg30-ch
https://godbolt.org/z/cg30-ch1.3
https://godbolt.org/z/cg30-ch0.0
https://godbolt.org/z/cg30-ch0.0
http://hatcat.com
http://gregcons.com
http://informit.com/register

xxi

Acknowledgments

The years 2020 and 2021 proved to be quite turbulent, and we have many people to thank
for their support, both elective and incidental, during the development of this book.

Of course, we would like to thank Bjarne Stroustrup and Herb Sutter for the existence
of the Core Guidelines and for their encouragement to write about them. We would also
like to thank the attendees of CppCon for providing an audience to explore some of this.

Our families have provided vital support during what is a somewhat solitary pro-
cess, and without them this effort would have been considerably harder.

The legion of friends on the #include discord, headquartered at includecpp.org,
have continued to buoy us up in our daily C++ life since July 2017.11 We will be donat-
ing one-tenth of our earnings from this book to you. All of you, please take a bow.

Several members of the ISO WG21 C++ committee, the body that maintains the
standard, offered their help. We would like to thank Michael Wong and Tony van
Eerd for their insight.

All the code examples are available at Compiler Explorer12 with stable and intel-
ligible links thanks to the generous efforts of Matt Godbolt, creator of this fine ser-
vice. We extend our gratitude and remind him that the C++ community has profited
greatly from his exertions.

Cppreference.com13 was an excellent research tool during the initial preparation
of each chapter, so we acknowledge the continuing efforts of the creator and host
Nate Kohl, admins Povilas Kanapickas and Sergey Zubkov, along with Tim Song and
all the other contributors, and thank them for maintaining this fine resource. They
are heroes of the community.

After writing Chapter 3.6 it became clear that considerable inspiration came from
an article by Arthur O’Dwyer. Many thanks to him for his continued service to the
community. His blog also includes tales of his efforts to uncover some of the earliest
computer-based text adventures from the 1970s and 1980s.14

A book like this requires an army of proofreaders, so we offer our thanks to
Bjarne Stroustrup, Roger Orr, Clare Macrae, Arthur O’Dwyer, Ivan Čukić, Rainer
Grimm, and Matt Godbolt.

The team at Addison-Wesley were invaluable, so we offer many thanks to Gregory
Doench, Audrey Doyle, Aswini Kumar, Menka Mehta, Julie Nahil, and Mark Taber.

11.	 https://twitter.com/hatcat01/status/885973064600760320
12.	 https://godbolt.org/z/cg30-ch0.0
13.	 https://en.cppreference.com/w
14.	 https://quuxplusone.github.io/blog

9780137647842_web.indb 21 09/11/21 9:15 PM

http://includecpp.org
http://Cppreference.com
https://twitter.com/hatcat01/status/885973064600760320
https://godbolt.org/z/cg30-ch0.0
https://en.cppreference.com/w
https://quuxplusone.github.io/blog

This page intentionally left blank

xxiii

About the Authors

J. Guy Davidson was first introduced to computing by way of the Acorn Atom in
1980. He spent most of his teenage years writing games on a variety of home com-
puters: the Sinclair Research ZX81 and ZX Spectrum, as well as the Atari ST. After
taking a mathematics degree from Sussex University, dabbling with theater, and play-
ing keyboards in a soul band, he settled on writing presentation applications in the
early 1990s and moved to the games industry in 1997 when he started working for
Codemasters in their London office.

In 1999 he joined Creative Assembly where he is now the head of engineering
practice. He works on the Total War franchise, curating the back catalogue, as well
as improving the standard of programming among the engineering team. He serves
on the IGGI advisory board, the BSI C++ panel, and the ISO C++ committee. He is
the standards officer of the ACCU committee and serves on the program committee
of the ACCU conference. He is a moderator on the #include<C++> discord server.
He serves as code of conduct lead for several organizations. He can be found speak-
ing at C++ conferences and meetups, particularly about adding linear algebra to the
standard library.

In his bountiful spare time he offers C++ mentoring support through Prospela
and BAME in Games; addresses schools, colleges, and universities through UKIE,
STEMNet, and as a Video Game Ambassador; practices and teaches wu-style tai chi;
studies the piano; sings first bass for the Brighton Festival Chorus; runs a local film
club; is a voting member of BAFTA; has stood twice (unsuccessfully) for election to
local council on behalf of The Green Party of England and Wales; and is trying to
learn Spanish. You may occasionally find him at the card table playing bridge for a
penny a point. There are probably other things: he is not one for letting the grass
grow under his feet.

Kate Gregory met programming, some of her dearest friends, and the man she mar-
ried all at the University of Waterloo in 1977 and has never looked back. Her degrees
are in chemical engineering, which goes to show that you can’t tell much about some-
one from what their degrees are in. Her rural Ontario basement has a small room
with ancient computers: PET, C64, home-soldered 6502 system, and so on, as souve-
nirs of a simpler time. Since 1986 she has been running Gregory Consulting with her
husband, helping clients across the world to be better at what they do.

9780137647842_web.indb 23 09/11/21 9:15 PM

About the Authorsxxiv

Kate has done keynotes on five continents, loves finding brain-changing truths
and then sharing them, and spends a great deal of time volunteering in various C++
activities. Dearest of these is #include <C++>, which is changing this industry to be
more welcoming and inclusive. Their Discord server is a warm and gentle place to
learn C++ as a beginner, to collaborate on a paper for WG21 to change the language
we all use, or anything in between.

She is pulled from her keyboard by her grandchildren, Ontario lakes and camp-
sites, canoe paddles and woodsmoke, and the lure of airports worldwide. A foodie,
a board game player, and someone who cannot resist signing up to help with things,
she is as active offline as online, but less visible. Since surviving stage IV melanoma in
2016, she worries less about what others think and what is expected, and more about
what she wants for her own future. It’s working well.

9780137647842_web.indb 24 09/11/21 9:15 PM

129

Chapter 3.2

I.3: Avoid singletons

Global objects are bad

Global objects are bad, m’kay? You will hear this all the time, from programmers
young and old, recited as an article of faith. Let’s look into why this is.

A global object lives in the global namespace. There is only one of these, hence
the name “global.” The global namespace is the outermost declarative region of a
translation unit. A name with global namespace scope is said to be a global name.
Any object with a global name is a global object.

A global object is not necessarily visible to every translation unit of a program;
the one-definition rule means that it can only be defined in one translation unit.
However, a declaration can be repeated in any number of translation units.

Global objects have no access restrictions. If you can see it, you can interact with
it. Global objects have no owner other than the program itself, which means no sin-
gle entity is responsible for it. Global objects have static storage duration, so they are
initialized at startup (or static initialization) and destroyed at shutdown (or static
deinitialization).

This is problematic. Ownership is fundamental to reasoning about objects. Since
nothing owns a global object, how can you reason about its state at any time? You
might be calling functions on that object and then, suddenly and without warning,
another entity may call other functions on that object without your knowledge.

Worse still, since nothing owns global objects, their construction sequence is not
determined by the standard. You have no idea in which order global objects will be
constructed, which leads to a rather frustrating category of bug that we shall cover
later.

9780137647842_web.indb 129 09/11/21 9:16 PM

130 Stop using that

Singleton Design Pattern

Having convinced you of the harm that global objects cause to your codebase, let us
turn our attention to singletons. I first encountered this term in 1994 when the book
Design Patterns1 was published. This venerable tome was a tremendously exciting
read at the time and is still a very useful book to have on your shelf or your e-reader.
It describes patterns that recur in software engineering, in much the same way that
patterns recur in conventional architecture, such as cupola, portico, or cloister. What
was so welcome about this book was that it identified common patterns in program-
ming and gave them names. Naming is hard, and having someone do the naming for
us was a great boon.

The book categorizes the patterns in three ways, as creational, structural, or
behavioral patterns. It is within the creational division that we find the singleton,
which restricts object creation for a class to only one instance. Of course, with such
a fabulous text outlining such a well-used pattern, it was taken for granted that using
a singleton was A Good Thing. After all, we had all been using something like sin-
gletons for years, we just had not yet given them a name that we could all agree on.

A popular example of a singleton is the main window. The main window is where
all the action happens, collecting user input and displaying results. You should only
create one main window, so it might make sense to prevent the creation of another.
Another example is the manager class. This is characterized by including the name
“manager” in the identifier. This is a strong sign that in fact a singleton has been
created, and that there are problems deciding about ownership of whatever is being
managed.

Static initialization order fiasco

Singletons are prone to the static initialization order fiasco.2 This term was coined by
Marshall Cline in his C++ FAQ and characterizes the problem of dependent objects
being constructed out of order. Consider two global objects, A and B, where the con-
structor of B uses some functionality provided by A and so A must be constructed
first. At link time, the linker identifies the set of objects with static storage duration,

1.	 Gamma, E, Helm, R, Johnson, R, and Vlissides, J, 1994. Design Patterns. Reading, MA: Addison-Wesley.
2.	 “Fiasco” is possibly an unfair characterization. Static initialization was never supposed to offer a topo-

logical ordering of initialization. That was infeasible with separate compilation, incremental linking,
and linkers from the 1980s. C++ had to live with the existing operating systems. This was a time when
systems programmers were used to living with sharp tools.

9780137647842_web.indb 130 09/11/21 9:16 PM

Chapter 3.2: I.3 131

sets aside an area of the memory for them to exist in, and creates a list of construc-
tors to be called before main is called. At runtime, this is called static initialization.

Now, although you can identify that B depends on A and so A must be constructed
first, there is no standard way to signal to the linker that this is the case. Indeed, how
could you do that? You would need to find some way of exposing the dependency
in the translation unit, but the compiler only knows about the translation unit it is
compiling.

We can hear your brow furrowing. “Well, what if I told the linker what order to
create them in? Could the linker be modified to accommodate that?” In fact, this has
been tried. Long ago I used an IDE called Code Warrior, by Metrowerks. The edition
I was using exposed a property that allowed me to dictate the order of construction
of static objects. It worked fine, for a while, until I unwittingly created a subtle circu-
lar dependency that took me the better part of twenty hours to track down.

You aren’t convinced. “Circular
dependencies are part and parcel of engi-
neering development. The fact that you
managed to create one because you got
your relationships wrong shouldn’t pre-
clude the option to dictate the creation
order at static initialization.” Indeed, I did
actually resolve the problem and carried

on, but then I needed to port the codebase to another toolchain which didn’t sup-
port this feature. I was programming in nonstandard C++ and paid the price when I
attempted portability.

“Nonetheless,” you continue, “this is something the committee COULD stand-
ardize. Linkage specifications are already in the purview of the standard. Why not
initialization order specification?” Well, another problem with static initialization
order is that there is nothing to stop you starting multiple threads during static ini-
tialization and requiring an object before it has been created. It is far too easy to
shoot yourself in the foot with dependencies between global static objects.

The committee is not in the habit of standardizing footguns. Dependency on the
order of initialization is fraught with peril, as demonstrated in the prior paragraphs,
and allowing programmers to command this facility is unwise at best. Additionally,
it militates against modular design. Static initialization order IS specified per transla-
tion unit by order of declaration. Specification between translation units is where it
all falls down. By keeping your object dependencies in a single translation unit, you
avoid all of these problems while maintaining clarity of purpose and separation of
concerns.

By keeping your object
dependencies in a single
translation unit, you avoid
all of these problems while
maintaining clarity of purpose
and separation of concerns.

9780137647842_web.indb 131 09/11/21 9:16 PM

132 Stop using that

The word “linker” appears ONCE in the standard.3 Linkers are not unique to
C++; linkers will bind together anything of the appropriate format, regardless
of what compiler emitted it, be it C, C++, Pascal, or other languages. It is a steep
demand to require that linkers suddenly support a new feature solely for the benefit
of promoting a dicey programming practice in one language. Cast the idea of stand-
ardizing initialization order from your mind. It is a fool’s errand.

Having said that, there is a way around the static initialization order fiasco, and
that is to take the objects out of the global scope so that their initialization can be
scheduled. The easiest way to do this is to create a simple function containing a
static object of the type required, which the function returns by reference. This is
sometimes known as the Meyers Singleton after Scott Meyers, who described this
approach in his book Effective C++.4 The technique itself is much older than that,
having been used in the 1980s. For example:

Manager& manager() {
 static Manager m;
 return m;
}

Now the function is global, rather than the object. The Manager object will not be
created until the function is called: static data at function scope falls under differ-
ent initialization rules. “But,” you may ask, “what about the concurrency problem?
Surely, we still have the same issue of multiple threads trying to access the object
before it has been fully created?”

Fortunately, since C++11 this is also thread safe. If you look at section [stmt.dcl]5
in the standard you will see the following: “If control enters the declaration concur-
rently while the variable is being initialized, the concurrent execution shall wait for
completion of the initialization.” This is not the end of your troubles, though: you
are still distributing a handle to a single mutable object, with no guarantee of thread-
safe access to that object.

How to hide a singleton

You might look at that and decide that we have simply hidden a singleton behind a
function. Indeed, hiding singletons is easy and the Core Guidelines remarks that
enforcing their nonuse is very hard in general. The first enforcement idea offered by

3.	 https://eel.is/c++draft/lex.name
4 .	Meyers, S, 1998. Effective C++. Reading, MA: Addison-Wesley.
5.	 https://eel.is/c++draft/stmt.dcl

9780137647842_web.indb 132 09/11/21 9:16 PM

https://eel.is/c++draft/lex.name
https://eel.is/c++draft/stmt.dcl

Chapter 3.2: I.3 133

this specific Core Guideline I.3: “Avoid singletons,” is “look for classes with names
that include singleton.” This might seem somewhat specious, but since Singleton is
one of the Design Patterns it is remarkably common for engineers to add it to the
name of a class, to identify that “this is a singleton” or “I have read the Design Pat-
terns book.” Of course, doing so embeds the implementation in the interface, which
is A Bad Thing, but that is another topic.

The second idea offered by the guideline is “look for classes for which only a single
object is created (by counting objects or by examining constructors).” This requires
a complete, manual, class-by-class audit of your codebase. Sometimes singletons are
created by accident. An abstraction may be inducted and a class formed from it, and
all the scaffolding required to manage the life cycle of and interactions with that
class may be created, such as the special functions, public interface, and so on, but
only one instance of the object may ever exist at one time. It may not have been the
engineer’s intention to create a singleton, but that is what has happened; a count of
all the instances reveals the quantity to be one.

The final idea is “If a class X has a public static function that contains a function-
local static of the class type X and returns a pointer or reference to it, ban that.”
This is exactly the technique described above to resolve the static initialization order
fiasco. The class may have a superset of the following interface:

class Manager
{
public:
 static Manager& instance();

private:
 Manager();
};

The giveaway here is the private constructor. Nothing can create this object except a
static member or a friend, and we see no friend declarations. Nothing can derive
from it unless another constructor is added to the nonprivate interface. The private
constructor indicates that “my construction is tightly controlled by other functions
in my interface” and lo! And behold! The public interface contains a static function
which returns a reference to an instance. You will no doubt be able to guess the gen-
eral content of this member function by looking at the manager() example function
above.

A subtle variation of this is the reference-counted singleton. Consider a class that
is a huge resource hog. Not only do you not want two instances of these to exist at
once, but you also want it to be destroyed the moment it is no longer needed. This
is somewhat complex to manage, since you need a shared pointer, a mutex, and a

9780137647842_web.indb 133 09/11/21 9:16 PM

134 Stop using that

reference counter. However, this is still a singleton and falls under the “Avoid single-
tons” guideline.

You might be looking at that public static member function and saying to yourself
“surely the guideline should say ‘Avoid static storage duration objects.’ They are sin-
gletons, after all.” Hold that thought.

But only one of these should ever exist

Throughout the teaching of C++ there have been some popular examples to describe
object orientation. Gas stations have cars, pumps, a cash desk, tankers delivering
fuel, prices, and so on, yielding an ecosystem rich enough to describe many kinds of
relationships. In the same vein, restaurants have tables, customers, menus, a serving
hatch, wait staff, chefs, food deliveries, garbage collection, and other features. In
today’s textbooks they probably also have a website and a Twitter account.

Both examples have one thing in common: an abstraction that should only exist
singly. The gas station has one cash desk. The restaurant has one serving hatch.
Surely these are singletons? If not, what is to be done?

One solution we have seen to this problem is to create a class with an entirely
static interface. All the public member functions and the private data are static. We
now want to take a diversion and tell you about W. Heath Robinson. Born in 1872 in
Finsbury Park, London, this English cartoonist was best known for his drawings of
ludicrously elaborate machines that went to great lengths to solve simple problems.
One of the automatic analysis machines built for Bletchley Park during the Second
World War to assist in the decryption of German message traffic was named “Heath
Robinson” in his honor. I was given a book of his cartoons as a young child and
marveled at the intricacy of the operation of his devices. He had an American coun-
terpart, Rube Goldberg, born in July 1883 in San Francisco, who also drew overly
complex devices, and inspired the board game Mouse Trap. Their names have passed
into common parlance in the English language to describe overengineering.

This is precisely what a class with an entirely static interface is an example of.
When you create a class, you create a public interface for viewing and controlling the
abstraction, and a pile of data and nonpublic functions for modeling the abstraction.
However, if there is only one instance of all the data, why do you need to attach it to
a class? You can simply implement all the public member functions in one source file
and put the single instance of the data and all the nonpublic functions in an anony-
mous namespace.

In fact, why are you bothering with a class at all?

9780137647842_web.indb 134 09/11/21 9:16 PM

Chapter 3.2: I.3 135

What we have arrived at, in a self-referentially convoluted way, is the correct
solution to the problem of singletons (small s). They should be implemented as
namespaces rather than classes. Rather than this:

class Manager
{
public:
 static int blimp_count();
 static void add_more_blimps(int);
 static void destroy_blimp(int);

private:
 static std::vector<Blimp> blimps;
 static void deploy_blimp();
};

you should declare this:

namespace Manager
{
 int blimp_count();
 void add_more_blimps(int);
 void destroy_blimp(int);
}

The implementation does not need to be exposed to the client like some Heath Rob-
inson drawing of marvelous and fascinating complexity. It can be hidden away in the
dark recesses of a private implementation file. This has the additional advantage of
improving the stability of the file in which the namespace is declared, minimizing
large-scale dependent recompilation. Of course, the data used to model the abstrac-
tion will not be owned by an object, so it will be static. Beware of the static initializa-
tion order fiasco as described above.

Wait a moment…

You might be looking at this namespace solution and remarking to yourself “but this
is still a Singleton.”

It is not a Singleton. It is a singleton. The problem that the guideline is warn-
ing about is the Singleton pattern, not the existence of single-instance abstrac-
tions. Indeed, in an interview with InformIT in 2009, Erich Gamma, one of the four
authors of Design Patterns, remarked that he wanted to remove Singleton from the
catalogue.6

6.	 https://www.informit.com/articles/article.aspx?p=1404056

9780137647842_web.indb 135 09/11/21 9:16 PM

https://www.informit.com/articles/article.aspx?p=1404056

136 Stop using that

There are two problems that we have with C++ advice. The first is that what was
smart advice once may not remain smart advice forever.

At the moment, a new version of C++ is released every three years. The introduc-
tion of std::unique_ptr and std::shared_ptr in 2011 changed the advice on how
we matched new and delete pairs (“Don’t delete an object in a different module from
where it was created”) by making it entirely feasible to never use raw new and delete,
as advised by Core Guideline R.11: “Avoid calling new and delete explicitly.” Learn-

ing a set of advisories and then moving on
with your life is not sufficient: you need to
continually review advice as the language
grows and changes.

An immediate manifestation of this
problem is that you may have a favorite framework that you use extensively, which
may contain idiomatic use of C++ that has been deprecated. Perhaps it contains
a Singleton for capturing and manipulating environment variables, or settings
informed by the command-line parameters which may be subject to change. You
might feel that your favorite framework can do no wrong, but that is not the case.
Just as scientific opinion changes with the arrival of new information, so does best
C++ practice. This book that you are reading today may contain some timeless
advice, but it would be supremely arrogant and foolish of me to suggest that the
entire text is wisdom for the ages, with stone-carved commandments about how you
should write C++.

The second problem is that advisories are the distillation of several motivations,
often hidden entirely from the snappy and memorable phrase that sits in our imme-
diate recall. “Avoid singletons” is much easier to remember than “avoid overengi-
neering single-instance abstractions into a class and abusing access levels to prevent
multiple instantiations.” Learning the advice is not enough. You must learn the moti-
vations so that you know why you are taking a particular approach, and when it is
safe not to do so.

C++ Core Guidelines is a living document with a GitHub repository on which
you can make pull requests. It contains hundreds of advisories with varying amounts
of motivation, and the purpose of this book is to highlight some of the deeper moti-
vations for 30 of them.

Earlier we remarked that you may be thinking that all static objects are Single-
tons, so all static objects should be avoided. You should be able to see now that static
objects are not Singletons, nor are they necessarily singletons. They are an instance
of an object whose duration is the entire duration of the program. Nor are they nec-
essarily globals: static data members have class scope, not global scope.

Similarly, “Globals are bad, m’kay?” is not universally the case. It is global muta-
ble state that can hurt you, as revealed in Core Guideline I.2: “Avoid non-const global

What was smart advice once
may not remain smart advice
forever.

9780137647842_web.indb 136 09/11/21 9:16 PM

Chapter 3.2: I.3 137

variables.” If your global object is immutable, then it is merely a property of your
program. For example, while writing a physics simulation for a space game we could
quite reasonably declare an object of type float called G, which is the gravitational
constant, in the global namespace like this:

constexpr float G = 6.674e-11; // Gravitational constant

After all, it is a universal constant. Nobody should be changing this. Of course, you
might decide that the global namespace is not the right place for such a thing, and
declare a namespace called universe like this:

namespace universe {
 constexpr float G = 6.674e-11; // Gravitational constant
}

There is an outside chance that you might want to experiment with a universe with a
different gravitational constant; in this case you may want to use a function that sim-
ply returns a value, and then change the logic behind the interface according to your
crazy experimental needs.

The point is that you know WHY globals are bad, for the reasons enumerated
earlier, and you can decide when it is appropriate to bend that rule, with a full under-
standing of the technical debt you are taking on.

Summary

In summary:

•• Avoid singletons: the pattern, not the single-instance abstraction.

•• Prefer a namespace to a class to model this type of abstraction.

•• Use static data carefully when implementing a singleton.

•• Understand the motivations for the Core Guidelines.

•• Review the Core Guidelines as the C++ language grows and evolves.

9780137647842_web.indb 137 09/11/21 9:16 PM

309

Index

A
ABI (application binary interface)

cross-compiler, 79–85
purpose of, 80–81

abstract machine, 143–145, 165
abstraction

aliasing namespaces, 176–177
in API design, 13–14
buffers, 256
class templates and, 231–233
of concepts, 240–242
declarations and, 45
in enumerations, 269–273
examples of usage, 273–274
function templates and, 229–231
history of, 32–34
levels of, 68–69
messy constructs example, 65–68
minimizing function arguments, 73–75
in multithreaded programming, 104–105
naming, difficulty of, 233
nouns/verbs in, 39–40
optimization through, 290–292
purpose of, 32, 65, 273
raising level with templates, 225–233
by refactoring, 69–70
scope and, 210
single-instance, 135

ACCU (Association of C and C++ Users), 11
acyclic graphs, 172
aggregates

abstract machine optimization, 144–145
initializing, 141–143

<algorithm> header, 230–231
algorithms, repetition and, 69–70
aliasing

namespaces, 176–177

with using keyword, 171
alignment, class layout and, 89–91
Annotated Reference Manual (Ellis and

Stroustrup), 4
annotations in function signatures, 182–183
anonymous namespace, 204–205
ANSI (American National Standards

Institute), 4
API design

abstractions in, 13–14
self-documentation, 13

application binary interface (ABI)
cross-compiler, 79–85
purpose of, 80–81

arguments
default versus overloading, 13–21
function signatures, 181–182
minimizing number of, 71–78
parameters versus, 13–14
template arguments, concepts for, 235–243
unambiguous nature of default, 18–19

ARM. See Annotated Reference Manual (Ellis
and Stroustrup)

array decay, 256
as-if rule, 94, 143–145, 185
asm declarations, 42
assembly language, levels of abstraction and,

227–228
assert macro, 166
assignment operators, preferring over memcpy,

139–148
Association of C and C++ Users (ACCU), 11
atomic objects, 101
attributes, declaring, 42
auto keyword, 8, 248
auto_ptr, 122
automatic storage duration, 293, 295

9780137647842_web.indb 309 09/11/21 9:16 PM

Index310

B
backward compatibility of C++, 9, 43–45,

215–216
BASIC language, 49–50
bit manipulation, 255
bit patterns, 247
bitwise const, 155–156, 261–262
block scope, 202–203
Boost classes for error handling, 163–164
buffer size, 255–257
built-in types, 82–83

C
C++ programming language. See also ISO

Standard C++
defaults in, 215–216, 259–261
history of, 3–4
performance, 139–140

The C++ Programming Language
(Stroustrup), 3

C++ Seasoning (Parent), 69–70
C++ Standards Committee, participation in,

303–304
caching, const keyword and, 154–155
casting

const, avoiding, 149–158
enumerations, 199–200
type safety and, 250–253

Cfront, 3
class encapsulation, 63
class enumerations, preferred over unscoped,

193–200
class invariants

minimizing function arguments, 73–75
purpose of, 37–39

class layout, alignment and, 89–91
class members, importing, 171
class scope, 206–207
class templates, abstraction and, 231–233
Cline, Marshall, 130–131
cohesion, 76
compilers

abstract machine, 143–145
proper usage of, 147–148
variations in, 5–6

compile-time computation, 213–223

consteval keyword, 221–222
constexpr usage examples, 216–220
constinit keyword, 222–223
default C++, 215–216
history of constexpr keyword, 213–215
inline keyword, 220–221

concepts
abstraction of, 240–242
factoring via, 242–243
in ISO Standard C++, 235
parameter constraints and, 237–240
problem solved by, 236–237
for template arguments, 235–243

<concepts> header, 239
concurrency, multithreaded programming,

97–105
conferences, 11
const firewall, 151–152
const keyword, 149–158

caching and, 154–155
const firewall, 151–152
default C++ and, 215–216, 259–261
dual interface implementation, 152–154
in function declarations, 261–265
history of constexpr keyword, 213–215
logical versus bitwise const, 155–156
maintaining state, 149–151
pointers to const versus const pointers,

157–158
preferring immutable over mutable data,

259–265
const_cast keyword, 149–158, 252
constant initialization, 222–223
constants

enumerations and, 194–195
as preprocessor macros, 193–194

consteval keyword, 221–222
constexpr if statement, 115–116
constexpr keyword

history of, 213–215
usage examples, 216–220

constinit keyword, 222–223
constraints on parameters, 237–240
constructors

default, purpose of, 23–24
default parameters, 29
member data initialization, 93–94
multiple, 27–28
performance overhead, 140–141

9780137647842_web.indb 310 09/11/21 9:16 PM

Index 311

preferring over memset, 139–148
private, 133

context-specific functionality, localization of,
280–282

contracts, 166
conversions

implicit, 198–200
in standard conversion sequences, 16–17

copy elision, 184–186
CppCon, 11
Cpre, 3
cross-compiler ABIs, 79–85
C-style casting, 251–252
C-style declaration, 276–277
C-style subsets, 82–83

D
DAG (directed acyclic graph), 172–173
daisy-chaining functions, 190–191
data privacy

in abstraction, 39–40
with encapsulation, 34–37

data races
avoiding, 101–103
definition of, 98–99

data sources, member functions of, 73–75
deadlocks

avoiding, 101–103
definition of, 100

debugging libraries, 79–80
declarations

abstraction and, 45
backward compatibility, 43–45
const keyword in, 261–265
C-style, 276–277
declare-then-initialize, 277–278
delaying, 275–283
maximally delayed, 278–280
multiple, avoiding, 41–46
order of initialization, 87–95
purpose of, 41
structured binding, 46
types of, 41–43

declare-then-initialize style, 277–278
default arguments

overloading versus, 13–21
unambiguous nature of, 18–19

default C++, 215–216, 259–261
default constructors

multiple, 27–28
purpose of, 23–24

default member initializers, 26, 28
default parameters in constructors, 29
delaying declarations, 275–283

C-style declaration versus, 276–277
declare-then-initialize, 277–278
localization of context-specific

functionality, 280–282
maximally delayed, 278–280
state, eliminating, 282–283

design for optimization, 285–292
design patterns, 130
Design Patterns, 130, 135
deterministic destruction, 92–93, 201, 293–295
Dijkstra, Edsger, 51
directed acyclic graph (DAG), 172–173
directed graphs, 172
Discord chats, 11
documentation with SAL, 182–183
dual interface implementation, 152–154
duck typing, 247
Dusíková, Hana, 303–304
dynamic allocation, 8
dynamic storage duration, 293, 295
dynamic_cast keyword, 252

E
Elements of Programming (Stepanov),

239–240
Ellis, Margaret, 4
enable_if clause, 114–117
encapsulation

with concepts, 240
information hiding and, 64–65
with namespaces, 170–171
purpose of, 34–37, 63–64
of rule violations, 267–273

enumeration scope, 208–209
enumerations

abstraction in, 269–273
constants and, 194–195
encapsulation, 63
implicit conversion, 198–200
purpose of scoped, 196–197

9780137647842_web.indb 311 09/11/21 9:16 PM

Index312

scoped versus unscoped, 193–200
underlying type, 197–198

errno object, 159–160
error handling, 186–188

avoiding based on global state, 159–166
Boost classes, 163–164
errno object, 159–160
exceptions, 162
proposals for, 166
return codes, 161
<system_error> header, 162–163
types of errors, 164–165

exact match standard conversion sequences, 16
exception handling

exception propagation, 84–85
RAII, 53–55

exception propagation, 84–85
exceptions

in error handling, 162
zero-overhead deterministic exceptions,

166
exchanging messages, 103–104, 262
<experimental/scope>300–303
explicit conversion of enumerations, 199–200
explicit sharing of writable data, minimizing,

97–105
expression templates, 110–113
expressions, importance of, 275–276
extensions to C++, 6

F
factoring via concepts, 242–243
file handling, 295–298
file scope, 32–33
forward compatibility of C++, 9–10
frame rate, maximizing, 285–286
“The Free Lunch Is Over” (Sutter), 100
free store, 121–123
function arguments. See arguments
function overloading

alternatives to, 19–20
default arguments versus, 13–21
necessity of, 20–21
overload resolution, 15–17

function parameter scope, 207–208
function signatures

annotations in, 182–183

in-out parameters, 188–191
input/output parameters, 181–182
objects, returning, 183–186
tuples, returning, 186–188

function templates
abstraction and, 229–231
arguments, concepts for, 235–243
parameter constraints, 237–240
problem solved by concepts, 236–237

function-body initialization, 25–26
functions

abstraction, 65–68
cleanup, 51–53
compile-time computation, 213–223
daisy-chaining, 190–191
declaring, 41, 261–265
encapsulation, 63
exception handling, 53–55
good coding practice, 56–57
input/output parameters, 181–182
messy constructs example, 61–63, 268–269
naming, 34
“one function, one responsibility,” 75–76
overloading in namespaces, 175–176
pure, 56
simplicity of, 56
single-return rule, avoiding, 49–57

fundamental types, variations in, 7–8

G
Gamma, Erich, 135
generic lambda expressions, 238
getters/setters

business logic in, 36–37
class invariants, 37–39
encapsulation and data privacy, 34–37
purpose of, 31–32
trivial, avoiding, 31–40

global namespace, 129
scope, 204–205
using directives in, avoiding, 169–178

global objects
avoiding, 129
when to use, 136–137

global state, error handling based on, 159–166
Goldberg, Rube, 134
graphs, 172

9780137647842_web.indb 312 09/11/21 9:16 PM

Index 313

GSL (Guidelines Support Library), 77,
126–128

H
Hacker’s Delight, 117
header files

header guards, 7
history of abstraction, 33–34

header guards, 7
hiding singletons, 132–134
history

of abstraction, 32–34
of C++, 3–4
of constexpr keyword, 213–215

Hoare, Tony, 290
Hyrum’s Law, 33

I
IILE (Immediately Invoked Lambda

Expression), 94, 269, 281–282
immutable data, preferring over mutable,

259–265
implicit conversion of enumerations, 198–200
implicit conversion sequences, ranking, 16–17
importing class members, 171
information hiding, 64–65
initialization

of aggregates, 141–143
constinit keyword, 222–223
in C-style declaration, 276–277
declare-then-initialize, 277–278
default member initializers, 26, 28
delaying declaration, 275–283
function-body, 25–26
importance of, 24–25
in initializer list, 26
maximally delayed declaration, 278–280
order of, 87–95
RAII, 53–55, 270–273, 293–303
static initialization order fiasco, 130–132
two-phase, purpose of, 23–24

initializer list, initialization in, 26
inline keyword, 220–221
inline namespace, 205–206
inlining, 286
in-out parameters, 188–191

input parameters, 181–182
int type

enumerations and, 198–200
for money, 71
variations in, 7–8

intent, declaring, 229
interfaces

class scope, 206–207
dual interface implementation, 152–154
static, 134

iostream library, 190, 296–297
ISO Standard C++

abstract machine, 143–145
backward compatibility, 9, 43–45
C++ Standards Committee participation,

303–304
concepts in, 235
forward compatibility, 9–10
history of C++, 3–4
resources for information, 10–11
variation encapsulation, 4–8

IsoCpp, 10

K
keywords

auto, 8, 248
const. See const keyword
const_cast, 149–158, 252
consteval, 221–222
constexpr, 213–215
constinit, 222–223
dynamic_cast, 252
inline, 220–221
mutable, 156–157
reinterpret_cast, 252–253
requires, 242
static_cast, 251–252
union, 249–250
unsigned, 253–255
using, 8, 171–172
virtual, 44–45

Knuth, Donald, 290–291

L
lambda expressions

constraints, 238

9780137647842_web.indb 313 09/11/21 9:16 PM

Index314

IILE, 269, 281–282
initialization, 94–95

language level, variations in, 5–6
late function binding, 44–45
LCA (lowest common ancestor), 173–174
leading punctuation style, 93–94
leaks

in file handling, 295–298
future prevention possibilities, 300–303
memory, 121, 293–295
reasons for preventing, 298–300

Lenkov, Dmitry, 4
levels of abstraction, 68–69

purpose of, 227–228
raising with templates, 225–233

libraries
ABI and, 80–81, 84–85
creating, 79–80
debugging, 79–80

lifetime of objects, 202, 204–205, 293–295
linkages

declaring, 42
scope and storage duration and, 204–205

linkers, 132
localization of context-specific functionality,

280–282
locking mutexes, 101–103, 156
logical const, 155–156, 261–262
loop unrolling, 286
lowest common ancestor (LCA), 173–174

M
Mastering Machine Code on Your ZX81

(Baker), 49
maximally delayed declaration, 278–280
maximizing

frame rate, 285–286
performance, 139–140

Mechanization of Contract Administration
Services (MOCAS), 85

Meeting C++, 11
member data initialization

in aggregates, 142–143
default member initializers, 26, 28
function-body, 25–26
importance of, 24–25
in initializer list, 26

order of, 87–95
member functions

of data sources, 73–75
as mutable, 263

memcpy, 114–115, 139–148
memory

buffer size, 255–257
free store, 121–123
realloc function, 75–76

memory leaks, 121, 293–295
memset, avoiding, 139–148
merge function, 77
messages, exchanging, 103–104, 262
messy constructs

abstraction, 65–68
encapsulation and information hiding,

63–65
example of, 61–63, 268–269

metaprogramming, template, 107–117
complexity of, 107–108
expression templates, 110–113
memcpy, 114–115
self-modifying code, 108–110

Meyers, Scott, 132, 200
Meyers Singleton, 132
millennium bug, 9–10
minimizing

explicit sharing of writable data, 97–105
number of function arguments, 71–78
scope, 201–210, 275

MOCAS (Mechanization of Contract
Administration Services), 85

Model-View-Controller, 39
modules, encapsulation, 63–64
money, int type for, 71
Moore’s Law, 100
multiple constructors, 27–28
multiple declarations, avoiding, 41–46
multiple processors, multithreaded

programming with, 99–101
multiple return statements, 49–57
multithreaded programming, 97–105

abstraction in, 104–105
data races and deadlocks, avoiding,

101–103
exchanging messages, 103–104
with multiple processors, 99–101
traditional model, 97–99

9780137647842_web.indb 314 09/11/21 9:16 PM

Index 315

mutable data, preferring immutable over,
259–265

mutable keyword, 156–157
mutexes, locking, 101–103, 156

N
name mangling, 81
named return value optimization (NRVO),

185–186
namespace aliases, declaring, 42
namespace scope, 203–206
namespaces

aliasing, 176–177
declaring, 42
encapsulation, 63–64, 170–171
global, 129
nested, 172–174
overloaded functions in, 175–176
singletons as, 135
using directives at global scope, avoiding,

169–178
naming

concepts, 240
difficulty of, 233, 239
functions, 34

nested namespaces, 172–174
nested scope, 203
[[no_discard]] attribute, 215–216
nouns/verbs in abstraction, 39–40
NRVO (named return value optimization),

185–186

O
objects

declaring, 43
global, 129, 136–137
lifetime (storage duration), 202, 204–205,

293–295
returning, 183–186

“one function, one responsibility,” 75–76
opaque enum declarations, 43
optimization

abstract machine and, 143–145
compiler usage and, 147–148
design for, 285–292
maximizing frame rate, 285–286

RVO and NRVO, 185–186
sort function example, 286–290
through abstraction, 290–292

order of initialization, 87–95
OSI model, 68
output parameters

in function signatures, 181–182
objects, returning, 183–186
tuples, returning, 186–188

overload resolution, 15–17
overloading

alternatives to, 19–20
default arguments versus, 13–21
in namespace functions, 175–176
necessity of, 20–21

ownership, transferring, 121–128, 269
free store, 121–123
GSL (Guidelines Support Library),

126–128
smart pointers, 122–125
unadorned reference semantics, 125–126

P
parameters

abstraction, 73–75
arguments versus, 13–14
constraints on, 237–240
default, in constructors, 29
documentation with SAL, 182–183
function parameter scope, 207–208
in-out, 188–191
input/output, 181–182
as mutable, 262–263, 264–265
template parameter scope, 209–210

Parent, Sean, 69–70
Pareto Principle, 291
performance

constructor overhead, 140–141
maximizing, 139–140
optimization for, 285–292
returning objects, 183–186

pointers
const, 157–158
as mutable, 263
raw, 17
smart, 122–125
transferring ownership, 121–128, 269

9780137647842_web.indb 315 09/11/21 9:16 PM

Index316

portability, levels of abstraction and, 227–228
#pragma once, 7
preprocessor macros, 193–195
preventing leaks, 298–300
privacy of data

in abstraction, 39–40
with encapsulation, 34–37

private constructors, 133
processor instructions, 139–140
programming bugs, 164–165
Programming the Z80 (Zaks), 49
promotion in standard conversion sequences,

16
public data in abstraction, 39–40
pure functions, 56

Q
Qt, 6

R
race conditions

avoiding, 101–103
definition of, 98–99

RAII (Resource Acquisition Is Initialization),
53–55, 270–273, 293–303

file handling leaks, 295–298
future possibilities, 300–303
memory leaks, 293–295
reasons for preventing leaks, 298–300

ranges, identifying, 77–78
ranking implicit conversion sequences, 16–17
raw pointers, 17, 121–128, 269
realloc function, 75–76
recoverable errors, 164
refactoring, abstraction by, 69–70
reference

as mutable, 263
transferring ownership, 121–128, 269

reference-counted singletons, 133–134
reflection, 117
regulatory constraints, 8
reinterpret_cast keyword, 252–253
repetition, algorithms and, 69–70
requires clause, 116–117
requires keyword, 242

Resource Acquisition Is Initialization.
See RAII (Resource Acquisition Is
Initialization)

resources for information, 10–11
return codes, 161
return statements

cleanup, 51–53
const-qualifying, 264
in function signatures, 181–182
objects in, 183–186
single-return rule, avoiding, 49–57
tuples in, 186–188

Robinson, W. Heath, 134
rule violations, encapsulation of, 267–273
run-time environment, variations in, 4–5
RVO (return value optimization), 185–186

S
SAL (source code annotation language),

182–183
scope

block, 202–203
class, 206–207
context of, 210
enumeration, 208–209
function parameter, 207–208
future leak prevention possibilities,

300–303
minimizing, 201–210, 275
namespace, 203–206
nested, 203
purpose of, 201–202
template parameter, 209–210
types of, 202

scope creep, example of, 61–63, 268–269
scope resolution operators, 176–177, 204
scoped enumerations

preferred over unscoped, 193–200
purpose of, 196–197

self-documentation, 13, 34
self-modifying code, 108–110
setters. See getters/setters
SFINAE (Substitution Failure Is Not An

Error), 115
shared_ptr, 122–125
simple declarations, 43
Single Entry, Single Exit, 50–51

9780137647842_web.indb 316 09/11/21 9:16 PM

Index 317

single-instance abstractions, 135
single-return rule, avoiding, 49–57
singletons

avoiding, 129–137
as design pattern, 130
hiding, 132–134
as namespaces, 135
static initialization order fiasco, 130–132
static interfaces, 134
when to use, 135–137

smart pointers, 122–125
sort function, optimization of, 286–290
sortable concept, 241–242
source code annotation language (SAL),

182–183
source files, encapsulation, 63–64
ssize function, 255
stack manipulation, 286
Standard C++. See ISO Standard C++
standard conversion sequences, 16–17
state

eliminating, 282–283
error handling based on, 159–166
maintaining across platforms, 149–151

statements, importance of, 275–276
static initialization order fiasco, 130–132
static interfaces, 134
static storage duration, 293
static_assert declarations, 43
static_cast keyword, 251–252
Stepanov, Alex, 239–240
storage duration of objects, 202, 204–205,

293–295
string literals, 78
Stroustrup, Bjarne, 3–4, 307
structured binding, 46, 187–188
Structured Design (Yourdon and Constantine),

76
Structured Programming (Johan-Dahl,

Dijkstra, Hoare), 51
“Structured Programming with go to

Statements” (Knuth), 290–291
subsets, C-style, 82–83
Substitution Failure Is Not An Error

(SFINAE), 115
Sutter, Herb, 100, 307–308
synchronization, maintaining across

platforms, 149–151
<system_error> header, 162–163

T
tags, 272–273
tasks, threads as, 104–105
taxonomy of types, 239–240
TCPL. See The C++ Programming Language

(Stroustrup)
template instantiations, declaring, 42
template metaprogramming (TMP), 107–117

complexity of, 107–108
expression templates, 110–113
memcpy, 114–115
self-modifying code, 108–110

template parameter scope, 209–210
templates

arguments, concepts for, 235–243
class templates, 231–233
function templates, 229–231
naming, difficulty of, 233
raising level of abstraction, 225–233

thread-local storage duration, 293
threads

multithreaded programming, 97–105
as tasks, 104–105

TMP. See template metaprogramming (TMP)
“train model” for ISO Standard C++, 4
transferring ownership, 121–128, 269

free store, 121–123
GSL (Guidelines Support Library),

126–128
smart pointers, 122–125
unadorned reference semantics, 125–126

trivial getters/setters
avoiding, 31–40
encapsulation and data privacy, 34–37

tuples, returning, 186–188
two-phase initialization, purpose of, 23–24
type aliases, declaring, 42
type punning, 250
type safety

buffer size, 255–257
casting, 250–253
purpose of, 247–248
union keyword, 249–250
unsigned keyword, 253–255

types
built-in, 82–83
for enumerations, 197–198
for money, 71

9780137647842_web.indb 317 09/11/21 9:16 PM

Index318

as mutable, 263
taxonomy of, 239–240
variations in, 7–8

U
underlying type for enumerations, 197–198
union keyword, 249–250
unique_ptr, 122–124, 297–298
unscoped enumerations

implicit conversion, 198–200
preferring scoped over, 193–200

unsigned keyword, 253–255
user-defined conversion sequences, 17
using declarations, 42, 171–172
using directives, 43

at global scope, avoiding, 169–178
in nested namespaces, 172–174
overloaded namespace functions and,

175–176
purpose of, 172

using enum declarations, 43
using keyword, 171–172, 307–308

V
variables

C-style declaration, 276–277
declare-then-initialize, 277–278

delaying declaration, 275–283
maximally delayed declaration, 278–280

variant object, 249
variation encapsulation

extensions to C++, 6
fundamental types, 7–8
header files, 7
language level and compiler, 5–6
regulatory constraints, 8
run-time environment, 4–5

vectors, 233
verbs/nouns in abstraction, 39–40
virtual keyword, 44–45

W
writable data, minimizing explicit sharing,

97–105

Y
Y2K bug, 9–10

Z
Z80 assembly language, 49–50, 285–286
zero initialization, 222–223
zero-overhead deterministic exceptions, 166

9780137647842_web.indb 318 09/11/21 9:16 PM

	Cover
	Half Title
	Title
	Copyright
	Dedication
	Contents
	List of Selected C++ Core Guidelines
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 3.2 I.3: Avoid singletons
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

