
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137589739
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137589739
https://plusone.google.com/share?url=http://www.informit.com/title/9780137589739
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137589739
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137589739/Free-Sample-Chapter

Understanding
Software Dynamics

The Pearson Addison-Wesley Professional Computing
Series was created in 1990 to provide serious programmers

and networking professionals with well-written and practical
reference books. Pearson Addison-Wesley is renowned for
publishing accurate and authoritative books on current and
cutting-edge technology, and the titles in this series will help
you understand the state of the art in programming languages,
operating systems, and networks.

Visit informit.com/series/professionalcomputing
for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Pearson Addison-Wesley
Professional Computing Series

Brian W. Kernighan, Consulting Editor

http://informit.com/series/professionalcomputing
http://informit.com/socialconnect

Understanding
Software Dynamics

Richard L. Sites

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
 corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021944164

Copyright © 2022 Pearson Education, Inc.

Cover image: Art Heritage/Alamy Stock Photo

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-758973-9
ISBN-10: 0-13-758973-5

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Dedicated to the memory of Chuck Thacker,
a true Friend of the Electron who could do more

performance analysis in his head than most mortals.

This page intentionally left blank

Contents at a Glance
Contents ix

Foreword xix

Preface xxi

Acknowledgments xxv

About the Author xxvii

I Measurement 1

1 My Program Is Too Slow 3

2 Measuring CPUs 15

3 Measuring Memory 31

4 CPU and Memory Interaction 49

5 Measuring Disk/SSD 61

6 Measuring Networks 85

7 Disk and Network Database Interaction 111

II Observation 131

8 Logging 133

9 Aggregate Measures 141

10 Dashboards 157

11 Other Existing Tools 167

12 Traces 193

13 Observation Tool Design Principles 209

III Kernel-User Trace 217

14 KUtrace: Goals, Design, Implementation 219

15 KUtrace: Linux Kernel Patches 227

16 KUtrace: Linux Loadable Module 239

17 KUtrace: User-Mode Runtime Control 245

18 KUtrace: Postprocessing 249

19 KUtrace: Display of Software Dynamics 257

viii Contents at a Glance

IV Reasoning 267

20 What to Look For 269

21 Executing Too Much 271

22 Executing Slowly 279

23 Waiting for CPU 289

24 Waiting for Memory 299

25 Waiting for Disk 307

26 Waiting for Network 319

27 Waiting for Locks 337

28 Waiting for Time 357

29 Waiting for Queues 361

30 Recap 383

A Sample Servers 387

B Trace Entries 391

Glossary 397

References 405

Index 415

Contents
Foreword xix

Preface xxi

Acknowledgments xxv

About the Author xxvii

I Measurement 1

1 My Program Is Too Slow 3

1.1 Datacenter Context 3

1.2 Datacenter Hardware 5

1.3 Datacenter Software 6

1.4 Long-Tail Latency 7

1.5 Thought Framework 9

1.6 Order-of-Magnitude Estimates 9

1.7 Why Are Transactions Slow? 11

1.8 The Five Fundamental Resources 12

1.9 Summary 12

2 Measuring CPUs 15

2.1 How We Got Here 15

2.2 Where Are We Now? 19

2.3 Measuring the Latency of an add Instruction 20

2.4 Straight-Line Code Fail 21

2.5 Simple Loop, Loop Overhead Fail, Optimizing Compiler Fail 21

2.6 Dead Variable Fail 24

2.7 Better Loop 25

2.8 Dependent Variables 26

2.9 Actual Execution Latency 26

2.10 More Nuance 27

2.11 Summary 28

Exercises 28

3 Measuring Memory 31

3.1 Memory Timing 31

3.2 About Memory 32

3.3 Cache Organization 34

3.4 Data Alignment 36

3.5 Translation Lookaside Buffer Organization 36

x Contents

3.6 The Measurements 37

3.7 Measuring Cache Line Size 38

3.8 Problem: N+1 Prefetching 40

3.9 Dependent Loads 41

3.10 Non-random Dynamic Random-Access Memory 42

3.11 Measuring Total Size of Each Cache Level 43

3.12 Measuring Cache Associativity of Each Level 45

3.13 Translation Buffer Time 46

3.14 Cache Underutilization 46

3.15 Summary 46

Exercises 47

4 CPU and Memory Interaction 49

4.1 Cache Interaction 49

4.2 Simple Matrix Multiply Dynamics 51

4.3 Estimates 51

4.4 Initialization, Cross-Checking, and Observing 52

4.5 Initial Results 53

4.6 Faster Matrix Multiply, Transpose Method 55

4.7 Faster Matrix Multiply, Subblock Method 57

4.8 Cache-Aware Computation 58

4.9 Summary 58

Exercises 59

5 Measuring Disk/SSD 61

5.1 About Hard Disks 62

5.2 About SSDs 64

5.3 Software Disk Access and On-Disk Buffering 66

5.4 How Fast Is a Disk Read? 68

5.5 A Little Back-of-the-Envelope Calculation 71

5.6 How Fast Is a Disk Write? 72

5.7 Results 73

5.8 Reading from Disk 73

5.9 Writing to Disk 77

5.10 Reading from SSD 80

5.11 Writing to SSD 82

5.12 Multiple Transfers 82

5.13 Summary 83

Exercises 84

 Contents xi

6 Measuring Networks 85

6.1 About Ethernet 87

6.2 About Hubs, Switches, and Routers 89

6.3 About TCP/IP 89

6.4 About Packets 90

6.5 About Remote Procedure Calls (RPCs) 91

6.6 Slop 93

6.7 Observing Network Traffic 94

6.8 Sample RPC Message Definition 96

6.9 Sample Logging Design 99

6.10 Sample Client-Server System Using RPCs 100

6.11 Sample Server Program 101

6.12 Spinlocks 101

6.13 Sample Client Program 102

6.14 Measuring One Sample Client-Server RPC 105

6.15 Postprocessing RPC Logs 106

6.16 Observations 107

6.17 Summary 108

Exercises 109

7 Disk and Network Database Interaction 111

7.1 Time Alignment 111

7.2 Multiple Clients 117

7.3 Spinlocks 118

7.4 Experiment 1 118

7.5 On-Disk Database 121

7.6 Experiment 2 121

7.7 Experiment 3 125

7.8 Logging 127

7.9 Understanding Transaction Latency Variation 128

7.10 Summary 128

Exercises 129

II Observation 131

8 Logging 133

8.1 Observation Tools 133

8.2 Logging 133

8.3 Basic Logging 134

xii Contents

8.4 Extended Logging 135

8.5 Timestamps 135

8.6 RPC IDs 136

8.7 Log File Formats 137

8.8 Managing Log Files 138

8.9 Summary 139

9 Aggregate Measures 141

9.1 Uniform vs. Bursty Event Rates 142

9.2 Measurement Intervals 143

9.3 Timelines 143

9.4 Further Summarizing of Timelines 145

9.5 Histogram Time Scales 147

9.6 Aggregating Per-Event Measurements 150

9.7 Patterns of Values Over Time 151

9.8 Update Intervals 152

9.9 Example Transactions 154

9.10 Conclusion 155

10 Dashboards 157

10.1 Sample Service 157

10.2 Sample Dashboards 159

10.3 Master Dashboard 159

10.4 Per-Instance Dashboards 163

10.5 Per-Server Dashboards 164

10.6 Sanity Checks 164

10.7 Summary 165

Exercises 165

11 Other Existing Tools 167

11.1 Kinds of Observation Tools 167

11.2 Data to Observe 169

11.3 top Command 170

11.4 /proc and /sys Pseudofiles 171

11.5 time Command 171

11.6 perf Command 171

11.7 oprofile, CPU Profiler 173

11.8 strace, System Calls 176

11.9 ltrace, CPU C Library Calls 179

 Contents xiii

11.10 ftrace, CPU Trace 180

11.11 mtrace, Memory Malloc/Free 183

11.12 blktrace, Disk Trace 184

11.13 tcpdump and Wireshark, Network Trace 187

11.14 locktrace, Critical Section Locks 189

11.15 Offered Load, Outbound Calls, and Transaction Latency 189

11.16 Summary 191

Exercises 191

12 Traces 193

12.1 Tracing Advantages 193

12.2 Tracing Disadvantages 194

12.3 The Three Starting Questions 194

12.4 Example: Early Program Counter Trace 197

12.5 Example: Per-Function Counts and Time 199

12.6 Case Study: Per-Function Trace of Gmail 203

12.7 Summary 207

13 Observation Tool Design Principles 209

13.1 What to Observe 209

13.2 How Frequently and For How Long? 210

13.3 How Much Overhead? 211

13.4 Design Consequences 212

13.5 Case Study: Histogram Buckets 212

13.6 Designing Data Display 214

13.7 Summary 215

III Kernel-User Trace 217

14 KUtrace: Goals, Design, Implementation 219

14.1 Overview 219

14.2 Goals 220

14.3 Design 221

14.4 Implementation 223

14.5 Kernel Patches and Module 224

14.6 Control Program 224

14.7 Postprocessing 225

14.8 A Note on Security 225

14.9 Summary 225

xiv Contents

15 KUtrace: Linux Kernel Patches 227

15.1 Trace Buffer Data Structures 228

15.2 Raw Traceblock Format 229

15.3 Trace Entries 230

15.4 IPC Trace Entries 232

15.5 Timestamps 233

15.6 Event Numbers 233

15.7 Nested Trace Entries 233

15.8 Code 234

15.9 Packet Tracing 234

15.10 AMD/Intel x86-64 Patches 236

15.11 Summary 237

Exercises 237

16 KUtrace: Linux Loadable Module 239

16.1 Kernel Interface Data Structures 239

16.2 Module Load/Unload 240

16.3 Initializing and Controlling Tracing 241

16.4 Implementing Trace Calls 241

16.5 Insert1 241

16.6 InsertN 243

16.7 Switching to a New Traceblock 244

16.8 Summary 244

17 KUtrace: User-Mode Runtime Control 245

17.1 Controlling Tracing 245

17.2 Standalone kutrace_control Program 246

17.3 The Underlying kutrace_lib Library 246

17.4 The Control Interface to the Loadable Module 247

17.5 Summary 247

18 KUtrace: Postprocessing 249

18.1 Postprocessing Details 249

18.2 The rawtoevent Program 250

18.3 The eventtospan Program 251

18.4 The spantotrim Program 253

18.5 The spantospan Program 253

18.6 The samptoname_k and samptoname_u Programs 253

18.7 The makeself Program 254

 Contents xv

18.8 KUtrace JSON Format 254

18.9 Summary 256

19 KUtrace: Display of Software Dynamics 257

19.1 Overview 257

19.2 Region 1, Controls 258

19.3 Region 2, Y-axis 259

19.4 Region 3, Timelines 260

19.5 Region 4, IPC Legend 265

19.6 Region 5, X-axis 265

19.7 Region 6, Save/Restore 265

19.8 Secondary Controls 265

19.9 Summary 266

IV Reasoning 267

20 What to Look For 269

20.1 Overview 269

21 Executing Too Much 271

21.1 Overview 271

21.2 The Program 271

21.3 The Mystery 272

21.4 Exploring and Reasoning 273

21.5 Mystery Understood 277

21.6 Summary 277

22 Executing Slowly 279

22.1 Overview 279

22.2 The Program 279

22.3 The Mystery 280

22.4 Floating-Point Antagonist 282

22.5 Memory Antagonist 285

22.6 Mystery Understood 286

22.7 Summary 286

23 Waiting for CPU 289

23.1 The Program 289

23.2 The Mystery 289

23.3 Exploring and Reasoning 290

23.4 Mystery 2 292

xvi Contents

23.5 Mystery 2 Understood 293

23.6 Bonus Mystery 295

23.7 Summary 297

Exercises 297

24 Waiting for Memory 299

24.1 The Program 299

24.2 The Mystery 300

24.3 Exploring and Reasoning 300

24.4 Mystery 2: Access to a Page Table 304

24.5 Mystery 2 Understood 304

24.6 Summary 306

Exercises 306

25 Waiting for Disk 307

25.1 The Program 307

25.2 The Mystery 307

25.3 Exploring and Reasoning 308

25.4 Reading 40MB 310

25.5 Reading Sequential 4KB Blocks 311

25.6 Reading Random 4KB Blocks 313

25.7 Writing and Sync of 40MB on SSD 314

25.8 Reading 40MB on SSD 315

25.9 Two Programs Accessing Two Files at Once 316

25.10 Mysteries Understood 317

25.11 Summary 317

Exercises 317

26 Waiting for Network 319

26.1 Overview 319

26.2 The Programs 320

26.3 Experiment 1 321

26.4 Experiment 1 Mystery 322

26.5 Experiment 1 Exploring and Reasoning 323

26.6 Experiment 1 What About the Time Between RPCs? 327

26.7 Experiment 2 329

26.8 Experiment 3 329

26.9 Experiment 4 330

26.10 Mysteries Understood 333

 Contents xvii

26.11 Bonus Anomaly 334

26.12 Summary 336

27 Waiting for Locks 337

27.1 Overview 337

27.2 The Program 341

27.3 Experiment 1: Long Lock Hold Times 344

27.3.1 Simple Locking 344

27.3.2 Lock Saturation 345

27.4 Mysteries in Experiment 1 345

27.5 Exploring and Reasoning in Experiment 1 346

27.5.1 Lock Capture 347

27.5.2 Lock Starvation 348

27.6 Experiment 2: Fixing Lock Capture 348

27.7 Experiment 3: Fixing Lock Contention via
Multiple Locks 349

27.8 Experiment 4: Fixing Lock Contention via Less
Locked Work 351

27.9 Experiment 5: Fixing Lock Contention via RCU
for Dashboard 353

27.10 Summary 355

28 Waiting for Time 357

28.1 Periodic Work 357

28.2 Timeouts 358

28.3 Timeslicing 358

28.4 Inline Execution Delays 359

28.5 Summary 359

29 Waiting for Queues 361

29.1 Overview 361

29.2 Request Distribution 363

29.3 Queue Structure 364

29.4 Worker Tasks 365

29.5 Primary Task 365

29.6 Dequeue 365

29.7 Enqueue 366

29.8 Spinlock 366

29.9 The “Work” Routine 367

29.10 Simple Examples 367

xviii Contents

29.11 What Could Possibly Go Wrong? 368

29.12 CPU Frequency 369

29.13 Complex Examples 370

29.14 Waiting for CPUs: RPC Log 370

29.15 Waiting for CPUs: KUtrace 371

29.16 PlainSpinLock Flaw 374

29.17 Root Cause 375

29.18 PlainSpinLock Fixed: Observability 376

29.19 Load Balancing 377

29.20 Queue Depth: Observability 378

29.21 Spin at the End 378

29.22 One More Flaw 379

29.23 Cross-Checking 379

29.24 Summary 380

Exercises 380

30 Recap 383

30.1 What You Learned 383

30.2 What We Haven’t Covered 385

30.3 Next Steps 385

30.4 Summary (for the Entire Book) 386

A Sample Servers 387

A.1 Sample Server Hardware 387

A.2 Connecting the Servers 388

B Trace Entries 391

B.1 Fixed-Length Trace Entries 391

B.2 Variable-Length Trace Entries 392

B.3 Event Numbers 393

B.3.1 Events Inserted by Kernel-Mode KUtrace Patches 394

B.3.2 Events Inserted by User-Mode Code 395

B.3.3 Events Inserted by Postprocessing Code 395

Glossary 397

References 405

Index 415

Foreword
Dick Sites approaches problem-solving in a way that is shockingly rare these days: he finds it
almost personally offensive to make guesses, and instead he insists on understanding a phe-
nomenon before trying to fix it. When faced with the complexity of modern computer systems,
including their hardware and software, most programmers approach performance debugging
armed with a hunch about what is happening and proceed to “try this, try that” with the hope
that this might yield a shortcut to a solution. Those of us who use this method are implicitly
 giving up on the possibility of truly grasping the complex interactions that could cause a
program to underperform. The idea that something computer related is beyond understanding
certainly doesn’t occur to Dick. Often it is the case that basic tools that provide telemetry on a
program’s behavior are missing. In those cases Dick does the obvious thing (for Dick), which
is to build them, including the visualization framework that compresses essential information
about program execution into readable charts that shine a bright light into program dynamics.

When you go through Dick’s remarkable career, it becomes clear why he is confident in his
ability to understand complex computing systems. He became a programmer at age 10 in 1959,
and his curiosity about computing resulted in a career where he studied or worked closely with
giants of our field such as Fran Allen, Fred Brooks, John Cocke, Don Knuth, and Chuck Seitz, to
name just a few. His accomplishments in industry are impressively broad: from co-designing the
DEC Alpha Architecture to working on Adobe’s Photoshop and speeding up Google web services
such as Gmail.

When I met Dick (joining DEC in 1995), he was already a legend of our field, and I had the unique
pleasure of spending time with him during his Google tenure and witnessed his problem-solving
approach firsthand. Readers of this book will delight in the clarity of Dick’s writing and how
performance debugging problems are described as mysteries to be solved through his knowl-
edge of hardware/software interactions and sequences of clues unveiled by observing detailed
traces of program execution. This is a book that will be immensely useful for programmers and
computer designers alike, in no small part because there is no other book to compare it with. It is
as unique as its author.

—Luiz André Barroso, Google Fellow

This page intentionally left blank

Preface
Understanding the performance of complex software is difficult. It is even more difficult when
that software is time-constrained and mysteriously exceeds its constraints now and then.
Software professionals have pictures in their heads of their software’s execution dynamics: How
the various pieces work and interact together over time and estimates of how long each piece
takes. (Sometimes they even document those pictures.) But when time constraints are not met,
we have few tools for understanding why—for finding the root cause(s) of delay and other perfor-
mance anomalies. This is a textbook for software developers and advanced students who work
on such software.

Software dynamics refers not just to the performance or execution time of a single program
thread but to the interactions between threads, between unrelated programs, and between
an operating system and user programs. Delays in complex software often are caused by these
interactions—code blocking and waiting for other code to wake it up, runnable code waiting for
the scheduler to assign it a CPU to run on, code running slowly due to shared-hardware interfer-
ence from other code, code not running at all because an interrupt routine is using its CPU, code
invisibly spending much of its time in operating-system services or in page-fault handling, code
waiting for I/O devices or network messages from other computers, and so on.

Time-constrained software handles repeated tasks that have periodic deadlines or tasks that
have an aperiodic arrival rate of new requests each with a deadline. These tasks can have hard
deadlines for sending control signals to moving machinery (airplanes, cars, industrial robots),
soft deadlines such as for converting speech to text on the fly, or just aspirational deadlines such
as for customer database lookup or web-search response times. Time-constrained also applies to
phone/tablet/desktop/game user-interface responses. The term time-constrained is broader than
the term real-time, which often implies hard constraints.

In each case, software tasks have a stimulus or request and a result or response. The elapsed
time between the stimulus and result, the latency or response time, has some deadline. Tasks that
exceed their deadlines fail, sometimes in catastrophic ways and sometimes in merely frustrating
ways. You will learn how to find the root causes for these failures.

The individual tasks within such software can be called transactions, queries, control-responses, or
game-reactions depending on the context. Here we will use the term transactions to encompass
all of these. Often an end-to-end task is composed of several sub-tasks, some of which run in
parallel and some of which depend on the completion of other subtasks. Sub-tasks may be CPU-
bound, memory-bound, disk-bound, or network-bound. They may be executing but more slowly
than expected due to interference across shared hardware resources or due to power-saving
strategies in modern CPU chips. They may be waiting (i.e., not executing) for software locks or
for responses from other tasks or other computers or external devices. There may be unexpected
delays or interference from the underlying operating system or its kernel-mode device drivers,
rather than in the programmer’s user-mode code.

In many situations the software involved consists of a dozen or more layers or subsystems, all of
which may contribute to unexpected delays and all of which may be running on separate net-
worked computers. For example, a Google web search may spread the query across 2,000 com-
puters, each of which does a small portion of the search and then the results are passed back and
prioritized. An email message arrival in the cloud may trigger subsystems for databases, network

xxii Preface

disk storage, indexing, locking, encryption, replication, and cross-continent transmission. An
automobile-driving computer may be running 50 different programs, some of which interact on
every video frame coming from a half-dozen cameras, plus radar returns, changing GPS coor-
dinates, changing 3D acceleration forces on the vehicle, and feedback about rain, visibility, tire
slippage, etc. A small database system might have query optimization and disk-access subsystems
using a dozen disks spread across several networked computers. A game can have subsystems for
local computation, graphics processing, and networked interactions with other players.

You will learn in this book how to design in observability, logging, and timestamps for such
software, how to measure CPU/memory/disk/network behavior, how to design low-overhead
observation tools, and how to reason about the resulting performance data. Once you have an
accurate picture of the actual elapsed-time tasks and sub-tasks for normal transactions and also
for slow ones, you can see how that reality differs from the picture in your head. At that point,
substantially improving the slow transactions may take only 20 minutes of software changes.
But without a good picture of reality, programmers are reduced to guessing and “trying things”
to reduce long delays and improve performance. This book is about not guessing, but knowing.

All of the examples, programming exercises, and supplied software in this book are written in
C or C++, based on the Linux operating system running on 64-bit AMD, ARM, or Intel proces-
sors. The reader is assumed to be familiar with developing software in this environment. We
assume further that the reader has some software that is time-constrained and has performance
issues that the reader wants to fix. The software should already be functional and deemed
debugged, with acceptable average performance—the problem is just unexplained performance
variance. The reader is assumed to have an in-the-head picture of how the software runs and
can on request sketch how the pieces are supposed to interact in a typical transaction. Finally, the
reader is assumed to know a little about CPUs, virtual memory, disk and network I/O, software
locks, multi-core execution, and parallel processing. Together, we will take it from there.

We explore three major themes: Measure, Observe, and Reason.

Measure. The starting place for any performance study is to measure what is happening. A
numerical measurement—transactions per second, 99th percentile response time, or dropped
video frame count—tells you only what is happening but not why.

Observe. To understand why some measurement is unexpectedly slow or otherwise bad but
measuring the same work again is fast, it is necessary to observe in close detail where all the time
is going or what processing is being done for both normal and slow instances. For the hard case
of unexpectedly bad behavior that only occurs under heavy live load, it is necessary to observe
over a substantial enough time interval to have a high probability of observing several slow
instances and to do so in situ with minimal distortion while running full live loads.

Reason (and fix). Once careful observations are available, you need to reason about what you
see—how are slow instances different from normal ones, how do software and hardware inter-
actions produce slow instances, and how can you improve the situation? In the last part of the
book, we go through case-study examples of such reasoning and some of the fixes.

Following these themes, the book material is organized into four parts, including a part about
building the low-overhead KUtrace observation tool:

 ■ Part I (Chapters 1–7), Measurement—how to do careful measurements of the four funda-
mental computer resources: CPU, memory, disk/SSD, and network.

 Preface xxiii

■ Part II (Chapters 8–13), Observation—normal observation tools: logging, dashboards,
counting/profiling/sampling, and tracing.

■ Part III (Chapters 14–19), Kernel-User Trace—the design and construction of a running
low-overhead Linux tracing tool that records what every CPU core is doing every nano-
second, along with postprocessing programs to create dynamic HTML pages that display
the resulting timelines and interactions.

■ Part IV (Chapters 20–30), Reasoning—case studies of reasoning about the interference
underlying unusual delays observed in: excess execution, slow instruction execution,
waiting for CPU, memory, disk, network, software locks, queues, and timers.

Using these ideas, you will be able to turn this picture of unexplained delay:

into the following detailed picture showing which subtasks happened when, which happened in
parallel, which depended on another step finishing, and thus exactly why it took three hours:

The same ideas can turn an example software delay into this picture of the remote-login ssh
daemon on CPU 2 waking up gedit on CPU 1:

-wakeup-sshd.1748

gedit.1762

1

2

420 440 460 480 500 520 540 560 580

a eup-wakeup-ss d 8sshd.1748

gedit.1762ggedit.1762

420 440 460 480 500 520 540 560 580

1

2

Time (μsec)

(In Part III you will learn how to create this last kind of picture for your arbitrary software.)

xxiv Preface

This book is intended especially for engaged readers who do the included programming assign-
ments and who implement portions of the software observation tools described.

Layered throughout this book are comments about modern complex processor chips and their
performance-enhancing mechanisms. Accidently defeating these mechanisms can create sur-
prising delays. The careful reader will gain a deeper understanding of computer architecture and
microarchitecture, along with everything else.

This is a textbook for software professionals and advanced students. But it also covers material
of interest to computer hardware architects, operating system developers, system-architecture
IT professionals, real-time system designers, and game developers. Its focus on understanding
user-facing latency will develop skills that enhance any programmer’s career.

Accessing the Source Code
The book uses several computer programs: mystery1, mystery2, and so forth. The source code
for these programs is available for download from Addison-Wesley at informit.com/title/
9780137589739.

Register your copy of Understanding Software Dynamics on the InformIT site for convenient
access to updates and/or corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the product ISBN
(9780137589739) and click Submit. Look on the Registered Products tab for an Access Bonus
Content link next to this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

http://informit.com/title/
http://informit.com/register

Acknowledgments
Many people have helped along the path to this book. Amer Diwan, V. Bruce Hunt, Richard
Kaufmann, and Hal Murry have actively read and provided feedback on the text. Connor
Sites-Bowen, J. Craig Mudge, Jim Maurer, and Rik Farrow provided thoughtful reviews and
encouragement for earlier versions and related articles. Brian Kernighan did a thorough reading
of the manuscript and made suggestions to materially improve the final product.

Much of the material here was developed from graduate courses I taught after retiring from
Google in 2016. I am grateful for the opportunities and the student feedback arranged by
Michael Brown at the National University of Singapore; Jim Larus and Willy Zwaenepoel at
Ecole Polytechnique Federale de Lausanne; Christos Kozyrakis at Stanford University; and
Kevin Jeffay and Fred Brooks at the University of North Carolina.

Joshua Bakita, Drew Gallatin, and Hal Murray have done ports of KUtrace to different Unix
flavors. Jim Keller and Pete Bannon provided me the opportunity to do a port at Tesla Motors.
Sandhya Dwarkadas asked the key question about detecting cache interference that led to my
adding instructions-per-cycle counting to KUtrace.

My early career became focused on CPU performance and tracing through the influence and
guidance of Elaine Bond, Pat Goldberg, Ray Hedberg, Fran Allen, and John Cocke at IBM;
Don Knuth at Stanford; and Joel Emer, Anita Borg, and Sharon Perl at Digital Equipment
Corporation.

My wife of 37 years, Lucey Bowen, has been especially gracious and supportive while I spent too
much time focused on completing the book.

My editor, Greg Doench, has been particularly helpful in bringing this project to a smooth
 completion. He took time in the early months to arrange trial runs of importing text and the
extensive figures into the publishing workflow, saving time and grief near the end of the pro-
cess. My copy editor, Kim Wimpsett, did a fantastic job inserting literally thousands of small
improvements.

—Richard L. Sites, September 2021

This page intentionally left blank

About the Author
Richard L. Sites wrote his first computer program in 1959 and has spent most of his career
at the boundary between hardware and software, with a particular interest in CPU/software
performance interactions. His past work includes VAX microcode, DEC Alpha co-architect, and
inventing the performance counters found in nearly all processors today. He has done low-
overhead microcode and software tracing at DEC, Adobe, Google, and Tesla. Dr. Sites earned
his PhD at Stanford in 1974; he holds 66 patents and is a member of the US National Academy
of Engineering.

This page intentionally left blank

Chapter 6
Measuring Networks

The fourth fundamental shared resource to measure is network activity—how long do real
network transmissions take and what are their dynamics? In contrast to measurements of the
internal dynamics of single operations in the previous chapters, we will look at multiple overlap-
ping network requests. The environment for disk measurements (and for that matter CPU and
memory measurements) is fairly simple, as shown in Figure 6.1. There is just the one program
running on one CPU and accessing one disk with a single transfer at a time.

Figure 6.1 Environment for disk measurements

But the environment for network measurements is substantially more complicated, as shown in
Figure 6.2. There are multiple client programs sending request messages to several server pro-
grams, which in turn send responses. These are all running on several different computers with
network connections in between. Common server programs include database software.

In general, the different computers of Figure 6.2 could be located anywhere in the world, but
we will concentrate in this chapter on computers that are physically close to each other, such
as all inside a single datacenter room. The network connections could be Ethernet, Infiniband,
Fibre Channel, or other choices, but we will concentrate on Ethernet connections. Various
network protocols could be used, such as virtual channels, User Datagram Protocol (UDP), or
Transmission Control Protocol/Internet Protocol (TCP/IP) software. We will concentrate on
TCP/IP links, a common choice within datacenters.

The request messages and their responses could be structured in various ways; we will concentrate
on remote procedure call (RPC) messages. Each RPC request message specifies a server computer
to perform some work, the particular method (i.e., function or procedure name) to be called,
and copies of all the method arguments. Each response message specifies the client computer
to receive the response and the response data itself. The request and response messages can

86 Chapter 6 Measuring Networks

vary widely in size, from about 100 bytes to tens of megabytes. RPCs are usually asynchronous,
meaning that the caller need not wait for the RPC response, but can instead continue execut-
ing and issuing other RPC requests in parallel, eventually waiting for responses that come back
in arbitrary order. It is the highly parallel execution of many small pieces of work that allows
datacenter software to respond quickly. Unlike TCP and other network protocols, RPC message
formats are not standardized. This book uses a simple made-up format, described in Section 6.8.

In a large datacenter of 20,000 computers, with each computer running many different pro-
grams, an individual computer may have 10,000 network connections open at once, exchanging
RPCs over all of them. While Figure 6.2 shows multiple point-to-point connections between
client CPUs and server CPUs, these are just conceptual. The physical network may have just
a single Ethernet link between each computer and a network router, with all the RPC traffic
shared across these links. These underlying physical links and their associated kernel software
are the shared network resource that we measure in this chapter.

A note on notation. The word server is somewhat overloaded in the computer industry.
It can refer to a box of hardware that is a computer, or it can refer to a program that
performs some specific function on behalf of various client programs. To add to the
confusion, a server program performing a specific function is often called a service.
In this book, when the context is not clear we will refer to server CPU or sample
server for a box of hardware and server program for a piece of software providing
some service. The unqualified term server will generally mean a CPU.

As discussed in Chapter 1, datacenter software consists of layers and layers of subsystems, many
running in parallel and often on hundreds or thousands of different servers. All this activity
is tied together with some form of network message passing or RPCs. In this chapter we will
observe and measure some simple RPCs, and then in the next chapter we will measure multiple

Figure 6.2 More complicated environment for network measurements

 6.1 About Ethernet 87

overlapping RPCs. There are several layers of software involved, including user code, the oper-
ating system, and the TCP (transmission control protocol) stack on the client computer and the
same three on the server computer. We will use RPCs from one user-mode program to another
and back, measuring the behavior and delays between sample servers.

6.1 About Ethernet
Ethernet is the standard networking technology worldwide and is heavily used in datacenters.
The original Ethernet at Xerox PARC in 1973 used a single coaxial cable (one wire inside a tube
of a second wire with insulation in between), so it was a shared medium. Individual Alto com-
puters connected to the wire with a vampire tap that poked an insulated spike through the outer
wire to touch the inner wire, plus a second connection to the outer wire, as shown in Figure 6.3.
(The vampire taps were shown to be unreliable and were soon superseded.) Just as polite people
do when talking in a group, a computer desiring to transmit would listen to the coax (carrier-
sense) waiting until it was idle and then try to transmit. During transmission, it continued
to listen to determine whether the bits it transmitted were on the wire or whether they were
garbled because some other computer was also starting to transmit. When that happened, both
would stop transmitting, each wait a random amount of time, and then try again. Any node
connected to the shared coax can observe all the packets, not just those addressed to that node.
This is useful for monitoring network performance and debugging network problems, but it
raises security issues.

Figure 6.3 Metcalfe’s original Ethernet diagram, photographed by Boggs [Metcalfe 1976]

Today, Ethernet data is transmitted as packets of up to 1,518 bytes (jumbo packets can be bigger)
with gaps [Wikipedia 2021n] in between and a checksum at the end, as in Figure 6.4. Network
software turns longer messages into sequences of packets. Individual packets are delivered with
high probability, but are not 100% guaranteed to arrive. In particular, switches and routers
that are overloaded are free to drop packets at any time. Packets with bad checksums are also
discarded.

88 Chapter 6 Measuring Networks

Figure 6.4 Ethernet type II frame [Wikimedia 2020a]

Each Ethernet packet starts with the 48-bit destination Media Access Control (MAC) address,
followed by the 48-bit source MAC address, followed by a 16-bit Ethertype field and then the rest
of the packet. The last 24 bits of a MAC address is an assigned Organizationally Unique Identifier
(OUI) [IEEE 2021].

The remainder of a packet typically has several headers for layers of different switching protocols
and then finally some user data. We will be using the TCP/IPv4 protocol pair, with a 20-byte
IPv4 header giving the 4-byte IP addresses of the source and destination machines and a 20-byte
TCP header giving the 2-byte port numbers on those machines plus data sequence numbers (SEQ)
and acknowledgment bits (ACK) for accomplishing in-order guaranteed delivery.

We are using IP version 4 (IPv4) in our examples, but all the 32-bit IP numbers in this protocol
are now used up worldwide, so the newer IPv6 is also being used in datacenters. IPv6 has 128-bit
IP addresses, and an entire IPv6 header is 40 bytes instead of 20.

The MAC address is a unique 48-bit identifier assigned to each network interface controller in
the world. (The original 3 Mb/sec Ethernet used 8-bit addresses.) The Ethertype field specifies
how to interpret the following data bytes. For TCP/IP traffic, the MAC header Ethertype specifies
IPv4, followed by a 20-byte IPv4 header in the first few data bytes of Figure 6.4. The IP header in
turn specifies that it is followed immediately by a TCP header, which specifies that it is followed
immediately by some number N of user message data or payload bytes.

While the original 3 Mb/sec Ethernet used a single shared coax cable for connec-
tions, later implementations more often use twisted-pair copper wires or optical
fibers running point-to-point from each computer to a hub or switch or router. These
connections have progressively increased in speed from 10 Mb/sec to 100 Mb/sec,
1 Gb/sec, 10 Gb/sec, and now 100 Gb/sec with 400 Gb/sec on the horizon, five
orders of magnitude faster than the original.

Note that network transmission rate is traditionally measured in bits per second while disk
transfer rate is traditionally measured in bytes per second. Lower-case “Mb” is megabits while
upper-case “MB” is megabytes. Marketing literature often confuses these, introducing factor-of-
eight errors. Deliberately quoting disk transfers in Mb/sec is a cheap way to make your numbers
8x larger.

 6.3 About TCP/IP 89

6.2 About Hubs, Switches, and Routers
Point-to-point Ethernet connections between more than two machines require some form of
switching fabric. There are three different kinds that you may encounter.

A hub with N links is a very cheap and now rarely used design that just reproduces one incoming
transmission on all inactive outgoing links. If two or more links have incoming transmissions
at once, only one is copied, and the others are dropped. Since a hub can copy only one transmis-
sion at a time, it is a shared resource like the original coax.

Switches with N links store packets at each incoming port and immediately forward them to one
or more outgoing ports. Smarter switches keep tables of which MAC address destinations are
attached to which port and forward only to the right destination port. A switch may store as lit-
tle as two packets per incoming port, forwarding one while a second arrives. If multiple packets
on different incoming ports have the same outgoing port and there is not enough buffering for
all of them, some of the packets are dropped. As mentioned, Ethernet does not guarantee packet
delivery, just best-effort.

A router is a more complex form of switch, using not only the MAC address in each packet but
also higher-level IP and other header address information to select the output port for each
packet. Routers are often connected to other routers so that a packet may go from one end node
through several routers to another end node:

A ⇒ Router1 ⇒ Router2 ⇒ Router3 ⇒ B

Typical use in a datacenter is to have 40–50 servers mounted in a vertical rack with a router
at the top (or middle) each rack. Traffic between servers within that rack is delivered directly
from the top-of-rack router, while traffic destined for other racks is sent from the source top-of-
rack router to one of several intermediate routers that eventually send the packet to the destina-
tion top-of-rack router and on to the destination server. Often in this case, the cross-router links
run at a higher speed than the individual server links: for example, 10 Gb/sec copper-wire server
links within a rack and 100 Gb/sec fiber-optic cross-rack links. We will use the phrase on the wire
to refer to bit transmission over any kind of link. Routers often have several packets of buffering
per input port, so can handle a modest amount of network congestion with several input packets
destined for the same output port.

Our sample servers each have a 1 Gb/sec Ethernet port, and several are connected via a five-port
switch, four ports for up to four sample servers and the fifth port connected to the rest of the
building, as shown in Appendix A.

6.3 About TCP/IP
The TCP/IP design allows packets to be routed not just within a single building but anywhere
in the world that is connected to the global Internet. This routing sends packets across various
media—not just Ethernet links, but also long-haul dedicated fibers, radio links to satellites, WiFi
connections within houses, and many more kinds of sub-networks. The complex dynamics and
delays of long-distance communication are beyond the scope of this book; we will concentrate just
on the complex-enough dynamics and delays of Ethernet connections within a single building.

90 Chapter 6 Measuring Networks

For a message from machine A to machine B, sending software on A for guaranteed-delivery pro-
tocols such as TCP keeps track of packets sent that do not arrive and retransmits them. Packets
are therefore not guaranteed to arrive in the order originally sent, so receiving software further
tracks them and reassembles messages in receive buffers. This tracking is done by the receiving
TCP software on B sending back an ACK indication to A for one or more received packets. ACKs
can be sent in short packets of their own but are usually piggybacked as part of other packets
already going back B⇒A. Senders have a limited number of multiple packets outstanding—sent
but not yet acknowledged. When this limit is reached, the sender must wait until some ACKs
arrive. If a packet ACK does not arrive within some configured timeout period, the sender is
responsible for retransmitting that packet.

We are using TCP/IPv4 to send RPC messages between servers, with each message possibly
requiring many packets. Our remote procedure calls depend on the guaranteed delivery mecha-
nism of TCP to deliver an entire message with the pieces in proper order.

It is unlikely in our little sample server cluster that we will see packets dropped and retransmitted
because of hardware errors, but we will soon try to create enough network congestion to force some
packet drops because of overloaded switch buffering. To try to protect the rest of any building
network from also becoming overloaded when we do saturation experiments, it is best for our lab
machines to connect directly with each other through their own local switch, as described earlier.

TCP establishes a reliable connection to carry a pair of byte streams between two programs on
two machines, one stream in each direction. These are the bi-directional connections shown in
Figure 6.2. Each machine is specified by its IP address and the specific program by its port num-
ber. Two-byte port numbers range from 0..65535, but ports below 1024 are restricted to specific
uses. We will use ports 12345..12348 on our sample servers for RPC traffic. (Our lab machines
may also have a software firewall that closes traffic on most other ports.)

Once a connection is established, there is a stream of data available in each direction between
the two machines. A machine can send an (almost) arbitrary number of bytes at once, and the
TCP software deals with breaking up long messages into multiple packets, or packing multiple
short messages or fragments of longer messages into single packets. The communication model
is just a stream of bytes, so a given RPC message may start and end in the middle of packets.

On the other end, a machine can request receiving an (almost) arbitrary number of bytes into
a buffer, but the number actually delivered at once can be less than the buffer size. The receive
calls normally return any data available, up to the requested amount, rather than waiting for
receipt of the full amount requested. This design allows the receiving software some flexibility
in managing buffers and in managing how long to wait for data (or what else to do in the mean-
time). The receiving logic thus must be prepared to do multiple receive calls to get all the pieces
of a single complete message and must also be prepared to receive multiple messages and partial
messages at each call.

6.4 About Packets
In addition to IP and TCP headers, datacenter packets may contain additional headers. For exam-
ple, virtual local area networks (VLANs) can be implemented by having a 4-byte VLAN header
before the IP header. Cooperating routers deliver packets based on their VLAN header, with the

 6.5 About Remote Procedure Calls (RPCs) 91

effect that packets from one virtual LAN can be prevented from reaching ports associated with
other virtual LANs. This design allows multiple completely unrelated networks to use shared
switching equipment. Packets without a VLAN header can be dropped by a router or sent to
specific unsecured ports. Incoming packets with the wrong VLAN header for a particular port
can be dropped. The goal is that each type of traffic is completely unable to observe any of the
other traffic, even if some connected computers are spoofing their MAC and IP addresses to try
to read, and even modify and forward, others’ data. If the routers themselves operate correctly,
this can give some level of security and privacy.

One use of VLANs is for a building-wide network with specific authorized machines (by MAC
address) attached to specific router ports and using VLAN headers. An unauthorized machine
connected to the network is not allowed to use any VLAN headers, and all it can see is a tiny
default network consisting of itself and a gateway/authorization computer that may choose to
stop all communication with the device, may convert it into an authorized node that can use
VLANs, or may allow it to connect to an outside Internet port, thus supporting devices from guests
visiting the building but otherwise allowing only limited access for those unauthorized machines.

Packets may also be encrypted. Enough initial information is left unencrypted to allow the pack-
ets to be routed, and then an encapsulation header is used to signal that the remaining bytes are
to be passed on unchanged and uninterpreted by any routing mechanism. The encapsulated
data can be encrypted in various ways by the sender and decrypted by the receiver. The encapsu-
lation technique can also be used to carry byte streams that actually contain non-Internet bytes
and use completely different routing protocols for some private network that connects different
locations via encapsulated traffic sent over the regular Internet.

We will consider only unencapsulated packets for the rest of this book, since we are focusing on
server-to-server network performance and not on all the possible ways to use the Internet.

6.5 About Remote Procedure Calls (RPCs)
Our lab experiments will use a form of remote procedure call. For a local procedure call, routine
A calls some Method with arguments and gets back a return value, with all the code running on
a single machine:

routine A {
 ...
 foo = Method(arguments);
 ...
}

For a remote procedure call, the idea is the same, but the Method (e.g., a C function) runs on a
remote computer.

The Method name and arguments are passed to the remote server in a request message, and the
return value is eventually passed back in a response message, as shown in Figure 6.5. The client
and server programs are constructed with calls to an RPC library. Building, sending, and parsing
the request and response messages is done by the library routines, implementing a particular
RPC design. Non-blocking RPCs allow multiple RPC requests to be outstanding at once and
allow responses to return out of order.

92 Chapter 6 Measuring Networks

Figure 6.5 A single RPC sending a request message and eventually receiving a response
message; “krnl” is kernel code; T1-T4 are timestamps in user-mode code to send/receive
RPC request and response messages.

Each message is a network transmission. The request message goes from

■ a user-mode client program on computer A at time T1 to

■ kernel-mode code on A,

■ over the network,

■ to kernel-mode code on computer B,

■ to a user-mode server program on B at time T2.

The response message travels in the opposite direction, at times T3 and T4. RPC latency is mea-
sured from the time T1 that the user-mode client program on A sends the request to the time T4
that the user-mode client program on A receives the response. When a response is delayed, the
delay can be anywhere on the picture—request or response, user code or kernel code, machine
A or machine B, send or receive network hardware. The four times T1..T4 help observe where the
overall time went.

To examine the performance effects of network RPCs we will use timelines with events T1, T2,
T3, and T4 indicating the RPC timing. We will draw individual RPCs as timelines with notches
showing the times T1..T4, as shown in Figure 6.6. The notches do not take up much diagram
space, but the human eye is quite good at picking them out, even when there are hundreds of
RPC lines close together. The total RPC latency, as observed by the client user-mode program, is
T4-T1. The total server time for the RPC is T3–T2.

w1 w3
Figure 6.6 Diagram of one RPC, showing the four times. T1 to T2 is the time from client
user-mode code sending an RPC request to server user-mode code receiving that request. T2
to T3 is the server time spent performing the request. T3 to T4 is the time from server user-
mode code sending the RPC response to client user-mode code receiving that response. Times
T1 and T4 are taken from the client CPU’s time-of-day clock, while T2 and T3 are from the
server CPU’s time-of-day clock. The two clocks may be offset from each other by microseconds
to milliseconds. We will deal with clock alignment in the next chapter. w1 is the time the client
kernel-mode code sends the request to the network hardware ("w” for “wire"), and w3 is the
time the server kernel-mode code sends the response to the network hardware.

The return value from an RPC may be a single status number or may be thousands of bytes of
data. It is convenient to always return both an overall status for the call (success, failure, specific
error codes) and a possibly empty byte string of additional results.

 6.6 Slop 93

Most datacenter software uses RPCs to send work between servers. For example, passing a para-
graph of text to Google Translate via its web-page interface may send that paragraph to a load-
balancing server that in turn forwards it to a least-busy translation server, which in turn may break
the paragraph into sentences and send the individual sentences in parallel to a few dozen sentence
servers that do sequences of multi-word phrase lookups in the source language and map into the
best-score sequence out of many possible phrases in the target language. These results are then
gathered back together by the translation server into a single translated paragraph.

6.6 Slop
The slop, or unidentified communication time, is (T4-T1) - (T3-T2) = (T2-T1) + (T4-T3). When the
client RPC latency and the server time are nearly equal, the slop is small. When there are com-
munication delays (usually in the kernel code on one machine or the other, not in the network
hardware), the slop can be large. Figure 6.6 shows a large slop, with the overall RPC latency
about 1.5x the server time. In Chapter 7, we will also subtract the estimated transmission time
for request and response messages:

slop = (T4 - T1) - (T3 - T2) - requestTx - responseTx

When the slop is large, that means that there is significant delay somewhere between the two
communicating user-mode programs. In Chapter 15 we will introduce recording the w1 and w3
times of RPC headers on the wire, shown in gray in Figure 6.6. They indicate here that request
and response messages hit the wire almost immediately when sent, so the long delays are in
kernel code on the receiving end.

Figure 6.7 Two-level RPC call tree for a single web search, farming out one search to about
2,000 partial searches of different parts of a web index. Each rectangle represents a rack of
~50 server machines. The light green arcs show about 100 top-level RPCs from one machine
in rack “hsdr” to 100 others. The dark blue arcs show about 20 second-level RPCs from each
of those 100 to a total of about 2000 servers.

94 Chapter 6 Measuring Networks

To complete the RPC picture, Figure 6.7 shows a two-level call tree of RPCs doing a single web
search. The top-level ~100 light green RPC arcs coming from the top of the rack labeled “hsdr”
are all done in parallel, and all the groups of second-level ~20 dark blue RPC arcs are also done
in parallel, quickly spreading the work across about 2,000 servers. Each leaf in the call tree does
a portion of the search, and those partial results are combined when all parallel RPCs in a group
have returned.

6.7 Observing Network Traffic
In this chapter we will observe and measure some simple RPCs. In contrast to observing local
CPU, memory, and disk activity, it takes two connected machines and two sets of software to
observe network traffic. Rather than just observing isolated packets, we will observe an RPC sys-
tem that has client software, server software, multi-packet RPC request and response messages,
multiple server threads, and overlapped client calls. As usual, we wish to observe in enough
detail to detect anomalous dynamics.

Figure 6.8 shows one example of such dynamics, captured by RPC logs and Dapper [Sigelman
2010]. Using the style of our single-RPC diagram from Figure 6.6, the notched lines in Figure 6.8
show the time layout of 93 parallel RPCs, similar to the top-level RPCs shown as timeless light
green arcs in Figure 6.7.

0ms 50 100 150
pyge65 pyhr19 pyde35 pygj11

pyhr29

pyfi22

pygk39 pyej23
pyhr19

Figure 6.8 Diagram of ~100 RPCs at top level of a single web-search RPC. The “pyxxxx”
notations to the right of each line are individual server names.

 6.7 Observing Network Traffic 95

The very top notched blue line labeled pyge65 in Figure 6.8 shows an incoming single RPC
requesting a single web search on server pyge65. It takes about 160 msec total. Underneath it are
the outbound sub-RPCs that this initial call spawns, directed at other servers. You can see the
sub-RPC transaction latency variation and can see that the 99th percentile slowest parallel RPC
on pyhr29 determines the response time of the overall web-search RPC. You can also see that
understanding and removing the sources of long latency can speed up this example by about a
factor of 2, from 160 msec total to about 80 msec.

Look at the spawned RPCs. First, at the far upper left there is a short barely visible call to server
pyhr19 (yellow line just under the “m” in “0ms") to check for a previously cached immediate
answer. Using cached previous search answers noticeably speeds up identical searches. Then
a blue call to pyde35 is a canary request [Dean 2010]. Only when that returns successfully, i.e.,
without crashing pyde35, are the other RPCs done. If you have a request that hits a code bug that
crashes a server, and you will, the canary strategy results in crashing just one server instead of
thousands. In Figure 6.8 the canary returns, so the 90-odd parallel calls to pygj11 .. pygk39 are
started. Not shown are the 20-odd RPCs that each of these spawn in turn, about 2,000 in total,
corresponding to the dark blue arcs in Figure 6.7.

Only when pyhr29 returns, the slowest of these parallel calls, does the initial web-search RPC
complete. At the very lower right are two parallel calls to update duplicate cached results on
pyej23 and on pyhr19 (yellow lines). These actually occur after the initial RPC completes. The
vertical white line at 50 msec is just a time grid.

If you look carefully at the canary call to pyde35, you will notice that the request message takes
over 10 msec to go from client user-mode code to server user-mode code, and the response mes-
sage also takes over 10 msec to go from server to client. This slop is much longer than the slop
time for most of the subsequent RPCs, so we have our first unexpected source of excess latency.
For datacenter networks within a single building, the delay through the routers of the hardware
switching fabric rarely exceeds 20 usec. So a delay that is 500x longer than that can only be a
software, not hardware, delay, somewhere on the client or server in either user code or kernel
code. We examine such delays in Part IV.

If you look carefully, the 93 parallel calls do not all start at exactly the same time—there is
a slight tilt to the nearly vertical left edge. Their start times increment by about 6 usec each,
reflecting the CPU time to create and send each RPC. The leftmost notch on each line shows
that almost all the RPC requests arrive at their corresponding server program fairly quickly,
except the calls to pyhr29 and pyfi22, which take over 20 msec to arrive. This is another latency
mystery to be resolved.

The rightmost notch on each line shows that almost all the RPC responses are sent soon before
they arrive at the client program, so there is no latency mystery for those.

Initially, however, we would be more interested in the exceptionally slow response times of
pyhr29 and pygj11, since they delay the overall response time of the initial RPC by about 70
msec. Understanding those delays requires observing what is happening on each of those CPUs,
applying our observation tools and thought to each in turn. The same kind of transaction log
files that were used to create Figure 6.8 can be used on the logs from pyhr29 and pygj11 to see the
dynamics of their delays. The general pattern is: observe to focus on the big issues and ignore
the inconsequential artifacts, examine the important artifacts in more detail, resolve them, and
then repeat.

96 Chapter 6 Measuring Networks

The good news is that our picture of the RPC activity on just one machine has revealed two
 message-delivery latency mysteries and has pinpointed exactly the other two machines and time
of day to the microsecond that contribute to overall slow response time for this one web search.
Looking at multiple such web searches over a few tens of seconds will reveal whether pyhr29 and
pygj11 are always slow or just happened to be slow for this one observation.

Our goal in this chapter is to capture enough information about each RPC to be able to draw
 diagrams like Figure 6.8 and then use those to track down root causes for delays. In later chap-
ters, especially Chapter 26, we will add tools for observing the underlying reasons for delay(s)
that our RPC diagrams reveal.

But before exploring the observation of network dynamics, we need to describe the sample
“database” RPC system in a little more detail.

6.8 Sample RPC Message Definition
Local procedure calls have relatively simple dynamics—on a given CPU core, procedure A calls
procedure B, and that CPU core then executes instructions in B; no further instructions in A exe-
cute until B returns. Local procedure calls may be nested, with A calling B, which in turn calls C.
But these all execute sequentially on a single CPU core. We can observe a complete local call tree
by capturing the entry and exit times of each procedure. Call nesting is implied by nested entry/
exit times. In a multiple-core, multi-threaded-program environment, multiple local calls to B
can occur simultaneously, but they are from different callers executing on different software
threads possibly using different CPU cores.

Remote procedure calls are more complicated. Unlike a subroutine call, the transmission of
the request message from client machine A to server machine B is not instantaneous, nor is the
transmission of the response message back from B to A. Since these messages use shared network
resources, other network traffic may delay them, so we at least want to capture send/receive
times for each message.

As shown in Figure 6.8, an RPC may be non-blocking—the caller A may proceed with additional
execution in parallel with B and issue additional parallel RPCs to C, D, E, etc. Eventual response
messages from B, C, D, E, ... arrive at A asynchronously and not necessarily in order. To match
up multiple request and response pairs in the RPC library code, each outstanding RPC is given a
unique ID, and that is included in its request and response messages. To match up one RPC with
any sub-RPCs that it does, each sub-RPC also includes the RPC ID of its parent; this allows us to
reconstruct entire call trees.

A caller may wait for all its RPC responses before finishing, or it may finish early as in Figure 6.8
(pyge65 at the very top right returns before the calls to pyej23 and pyhr19 at the very bottom
right). If a network link goes down or a server crashes, some responses may never arrive; the
caller needs to detect and deal with this rather than waiting forever.

During the time that A is waiting for a response from B, other clients on the same or different
machines may also be sending RPCs to B, and B may be working on those and not on A’s. If that
happens, a sub-RPC from B to some other server Z may be part of the work for A or for any other
client of B. The parent ID shows the proper association.

 6.8 Sample RPC Message Definition 97

If A calls B with RPCID 1234 in the request message and B subsequently calls Z on
behalf of A’s request, the call to Z would have parent ID 1234 and its own RPCID of
perhaps 5678.

All these complications happen fairly often in a large datacenter environment.

We can observe the dynamics of a complete remote call tree only by capturing the caller/callee
pairs and send/receive times for each request and response message and explicitly recording
the parent caller for all nested RPCs. Most of this information must be transmitted between
machines in each of the request and response messages.

For our sample RPC system, each request or response message starts with an RPC marker fol-
lowed by an RPC header followed optionally by a byte string that contains the argument values
for a request or the result values for a response, as shown in Figure 6.9. Each complete message is
broken up into the payload data carried in one or more TCP/IP packets. We will focus in the rest
of this chapter on complete messages instead of individual packets.

Figure 6.9 Overall structure of a request or response message in our sample RPC design

The 16-byte RPC marker, as shown in Figure 6.10, serves several purposes: delimiting messages,
defining variable lengths, and sanity check.

Figure 6.10 RPC marker of 16 bytes

The signature is a fixed 32-bit value. This allows a quick check that the subsequent bytes could
begin an RPC message and are not something else. If somehow a TCP connection gets out of
sync, it also allows scanning forward until a signature is found as a way to resynchronize. (This
is not necessarily a good idea; it may be better to drop the connection and force a clean restart.)
In Chapter 15, we use the signature field to filter packets that appear to be the beginning of an
RPC message, recording KUtrace entries for each.

The 32-bit headerlen field gives the byte length of the following RPC header, whose size will
likely vary over several months or years in a real datacenter as the RPC library is updated and
expanded. To improve validity checking, headerlen values are required to be less than 2**12. For
our sample RPC design, headerlen is always 72.

98 Chapter 6 Measuring Networks

The 32-bit datalen field gives the byte length of the optional argument or result byte string that
follows the RPC header. A length of 0 indicates no string. To improve validity checking and to
make huge messages invalid, datalen values are required to be less than 2**24. The two length
fields allow an RPC library to break a message into its variable-length pieces.

Finally, the 32-bit checksum field is a simple arithmetic function of the previous three fields,
allowing a robust sanity check that the marker and subsequent bytes are highly likely to be the
start of a valid RPC message.

The RPC marker is designed to be part of a complete network message but is not visible to the
callers of the RPC library software. Those callers deal only with the RPC header and data string.

The RPC header, shown in Figure 6.11, has all the information to describe a single RPC request
or response message. Fields are initialized to zero and are filled in incrementally by RPC library
as an RPC is processed. For example, T1 and the first L are filled in by the RPC library when an
RPC request message is about to be sent by a client program. The second L is filled in when
an RPC response message is about to be sent by a server program, and T4 is not filled in until
the RPC response message is received by the client program.

Figure 6.11 RPC header of 72 bytes.

Briefly, the naturally aligned fields are

■ RPCID 32 bits, containing a unique ID number for each outstanding request.

■ Parent ID 32 bits, containing the RPCID of the request that spawned the current request.

■ T1..T4 64-bit wall-clock timestamps with microsecond resolution, giving respectively the
request send time, request receive time, response send time, and response receive time; T1
and T4 are based on the client machine’s time-of-day clock; T2 and T3 are based on the
server machine’s time-of-day clock.

■ IP 32 bits and port 16 bits, giving the client and server machines’ TCP/IP addresses,

■ L L 8 bits each, giving the logarithm of the byte lengths of request and response messages.

■ Message type 16 bits, to indicate request or response or other types of message.

 6.9 Sample Logging Design 99

 ■ Method 64 bits (8 bytes), ASCII name of the routine being called, zero padded.

 ■ Status 32 bits, return-value status indicating success, failure, or specific error number.

 ■ Padding 32 bits, to make the header a multiple of eight bytes in total length.

The sizes of the RPC header fields are somewhat arbitrary; different sizes would work equally
well. Reducing the byte lengths to logarithms is just an example of trading resolution (e.g.,
within 10%) for space.

This header format is somewhat less flexible than those used in real datacenters, but is sufficient
for our sample RPC work.

6.9 Sample Logging Design
The client-server programs described in the coming text each write a log file of all the RPCs
they process. This logging is our designed-in observability for the dynamics of the RPC system.
As such, it is important that the logging is not so slow or bulky that it consumes significant
resources or distorts the performance of the underlying service.

Our sample design target is to be able to process and therefore log up to 10,000 RPCs per second
with little overhead. This is the right order of magnitude for a real datacenter service.

Back-of-the-envelope: If each log entry is 1,000 bytes, logging 10,000 RPC/sec would write
10MB/sec to a log file, or 864GB/day per service, with multiple services running on each server.
This quickly gets bulky and can also consume significant bandwidth to a disk holding multiple
log files. Each service would nearly fill up a 1TB disk every day, likely requiring multiple disk
drives just for logging.

Instead, if each log entry is about 100 bytes, one service would log about 1MB/sec, and total
about 86 GB/day. This is still a bit bulky, but several services writing 1MB/sec to a logging disk
is an easily sustained rate, and those services would need just a single 1TB disk to hold a day’s
worth of log entries—a manageable amount.

For slower-rate services that handle only about 1,000 RPCs per second, we could roughly afford
1,000 bytes per log entry, although most logging does not need so much data per RPC. Do the
back-of-the-envelope arithmetic at design time to document affordable limits on the logging
overhead.

For our sample RPC design, the binary log format is just a copy of the current RPC header, with
the full data length from the RPC mark moved to just in front of the data, and the data itself
truncated or zero-extended to 24 bytes, as shown in Figure 6.12. Each log entry is thus exactly
96 bytes.

Log-system performance is a key consideration. Truncating the data keeps each log entry size
bounded, and it also provides a bit of privacy for possible user-supplied data such as an email
message. Including even a little of the data, though, helps identify what is going on when there
is unusual latency. Recording log entries as binary fields instead of printed ASCII values saves
file space and also saves CPU time for formatting all the numbers. This approach substantially
reduces the logging overhead. Conversion to readable ASCII can be done by postprocessing
binary log files as needed later.

100 Chapter 6 Measuring Networks

Figure 6.12 Sample log entry format, 96 bytes total

Each server program will write a local binary file of these log entries as it runs, and each client
program will write its own local binary file of log entries. For an overall service running on
2,000 machines, the server programs would write 2,000 local log files on those machines.
Scattered clients would write local log files on their own machines.

In a large datacenter, all programs would periodically close their log files and open new ones.
A background service would gather closed log files into a single place or into a distributed file
system so that they could be postprocessed efficiently. To conserve space, most logs would be
thrown away after a few days. There is little point keeping data if no one will ever read it again.
For our sample environment, none of that log management is done: we just deal with multiple
local log files written locally on individual servers.

6.10 Sample Client-Server System Using RPCs
The supplied server4.cc and client4.cc implement a sample RPC system with logging. In
addition, the supplied dumplogfile4.cc turns binary logs into JSON-formatted ASCII so you
can see what they contain and so that they can be displayed easily.

The service provided by these programs is an in-memory key-value store (a simple database). The
server program accepts RPCs that read or write key-value pairs in RAM, while the client sends
such requests. The server-implemented methods are

■ Ping(data), returns a copy of data with no key-value action

■ Write(key, value), remembers the pair

■ Read(key), returns value

■ Chksum(key), returns an eight-byte checksum of the value

■ Delete(key), removes key and its value

■ Stats(), returns some statistics on server usage

■ Reset(), erases all key-value pairs

■ Quit(), stops the server and all its threads

This pair of programs should allow you to get into trouble in myriad ways. Sending a burst of
100 values of 1MB each will saturate a sample server’s 1Gb/sec Ethernet for at least a second.
Doing two such actions independently between different machines should overload a sample
four-port switch. Sending a burst of 100,000 one-byte values will saturate CPUs quite nicely and
also clog up the logging system. Overlapping a heavy-duty burst with some more modest work
will likely interfere with the modest work.

 6.12 Spinlocks 101

6.11 Sample Server Program
The server program shown in Figure 6.13 continuously accepts RPC request messages, processes
them, and sends response messages. It usually runs with multiple threads handling independent
RPCs applied to a single shared database.

Figure 6.13 Sample server program

The program, server4.cc, takes two command-line arguments specifying the range of ports to
listen on. For each port, it forks a dedicated listening thread. Each such thread opens a TCP/IP
socket on its port and waits for RPCs, which it then executes sequentially as they arrive. The
default behavior is use four sequential ports, 12345..12348, and to fork four corresponding
threads.

As a safety move, each launch of server4 will self-destruct after four minutes, to protect against
runaway or zombie programs, even if server4 is launched in the background via the command-
line ampersand.

Multiple copies of server4 can be launched, so long as they use non-overlapping port numbers.
Copies of server4 can run on multiple server machines. Nothing in the simple design except
chance prevents multiple people from launching interfering runs at the same time.

Keys are byte strings restricted to less than 256 bytes, while values are byte strings restricted to
less than 1.25MB (i.e., 5 * 256 * 1024 bytes). Total RAM storage space is restricted to be less than
200MB.

The database of key-value pairs is a C++ map of strings. It is shared across all server execution
threads, so each operation that touches the database takes out a simple spinlock before access-
ing the data. By design, this is a somewhat flawed approach—everything works, but there can be
severe blocking dynamics, which we will shortly observe.

6.12 Spinlocks
The spinlock protecting a software critical section is our fifth shared resource, along with the four
hardware resources CPU, memory, disk, and network. There are many forms of software locks,
with spinlock the simplest—whenever a thread cannot acquire the lock for a critical section of

102 Chapter 6 Measuring Networks

code, it simply loops (spins) trying over and over to acquire the lock, until eventually other threads
free the lock and the subject thread successfully grabs it. Chapter 27 discusses locks in more detail.

The sample server code defines a C++ SpinLock class, which acquires a spinlock in its construc-
tor and frees the lock in its destructor. Thus the code pattern

LockAndHist some_lock_name;
 ...
{
 SpinLock sp(some_lock_name);
 <critical section code here>
 ...
}

makes the inner block a critical section that can be executed by only one thread at a time.
The C++ constructor/destructor mechanism for SpinLock guarantees to acquire the lock
some_lock_name upon entry to the block and to release it upon exit from the block, even for
an unexpected or exception exit. This design completely removes one source of programming
error—processes that sometimes fail to release a lock.

The spinlock implementation also defines a small histogram to record lock acquisition times.
This is another piece of designed-in observability. A common issue with software locks is that
under some circumstances a program thread has to wait much too long to acquire a lock, result-
ing in long transaction latency on one thread whenever another thread holds a lock too long. A
small histogram of lock-acquire times for each lock can tell you the normal time taken to acquire
a contended lock and also can show how many much-longer times occur. If there are no long
acquisition times for a given lock, then lock-waiting is not a cause for a long transaction latency,
and you can look elsewhere.

The locking pseudocode looks like this:

start = __rdtsc()
 test-and-set loop to get lock
stop = __rdtsc()
elapsed_usec = (stop - start) / cyclesperusec
hist[Floorlg(elapsed_usec)]++

where rdtsc reads the x86 cycle counter and Floorlg(x) takes floor(log2(x)), returning 0..31
for a 32-bit unsigned int x. The variable hist is a small array of counts. Logarithm base 2 is suffi-
cient resolution to put long and short acquisition delays into different count buckets. The stats
command mentioned earlier returns this histogram array.

6.13 Sample Client Program
The client program, shown in Figure 6.14, takes command-line arguments and sends one or
more RPCs to a specified server and port, repeated and spaced out in time in a stylized way.

Multiple instances of client4 can be launched in the background so that they overlap in time on
a single machine, and of course multiple instances can be run from several different machines.
Instances of server4 and client4 can also run on the same machine, but will not use the network
for local communication; for this degenerate case, the kernel network code moves message bytes
in RAM.

 6.13 Sample Client Program 103

The command-line arguments to client4 allow specifying Rep repetitions of the pair of actions

<send K RPCs, wait M msec>

The first RPC of a burst of K is specified by its method and initial key/value data. Either field can
be padded with pseudorandom data to a specified byte length. Subsequent RPCs in a burst keep
the method and base strings but supply possibly incremented keys/values. Within a burst, each
RPC is sent as soon as the previous one returns a response, but not before.

The client4 program takes a set of command-line parameters that form a little language:

./client4 server port
 [-rep number] [-k number] [-waitms number] [-seed1]
 [-verbose] command
 [-key "keybase" [+] [padlen]]
 [-value "valuebase" [+] [padlen]]

The write, read, and delete commands require a key, and the ping and write commands require a
value.

-rep Says to repeat the outer loop some number of times.

-k Says to repeat the command some number of times (the inner loop)
and then wait before continuing the outer loop.

-waitms Says how long to wait (in milliseconds) after each burst of k commands.

-seed1 Says to seed the random number generator for padding bytes to
exactly the value 1, allowing reproducible pseudorandom values.

-verbose Prints a little about each request and response message.

-key "keybase" [+]
[padlen]

Specifies a base character string that is optionally incremented and
optionally padded with random characters. In the presence of -rep
and -k repetitions, “+” indicates incrementing the base string, and
padlen gives the padded length.

-value "valuebase"
[+] [padlen]

Uses the same algorithm.

Figure 6.14 Sample client program

104 Chapter 6 Measuring Networks

For example,

./client4 target_server 12345 -k 5 ping -value "vvvvv" + 10

sends five ping commands to target_server:port, with value strings such as

vvvvv_0u5j
vvvvw_trce
vvvvx_qxol
vvvvy_1bv3
vvvvz_dg1w

where the + specifies incrementing v w x y z in the base string, and the 10 specifies padding
with random characters out to 10 characters total. Incrementing increases the low character of
the base string by 1, wrapping 9 to 0, z to a, and Z to A, carrying into higher character places as
needed (the next base value above would be vvvwa). Incrementing is most useful for keys and
padding is most useful for values.

The individual commands are defined in a little more detail here.

ping [-value “valuebase” [+] [padlen]]

Sends an RPC request to the specified server:port containing RPC marker, RPC header, and
optionally RPC data containing the specified value. The server responds with the same data.

write -key “keybase” [+] [padlen] -value “valuebase” [+] [padlen]

Sends an RPC request to the specified server:port containing RPC marker, RPC header, and
RPC data containing the specified <key, value> pair. The server saves each <key, value> pair and
responds with a status code, typically SUCCESS.

read -key “keybase” [+] [padlen]

Sends an RPC request to the specified server:port containing RPC marker, RPC header, and RPC
data containing the specified key. The server responds with the matching value and a status
code, typically SUCCESS.

delete -key “keybase” [+] [padlen]

Sends an RPC request to the specified server:port containing RPC marker, RPC header, and
RPC data containing the specified key. The server deletes each matching <key, value> pair and
responds with a status code, typically SUCCESS.

stats

Sends an RPC request to the specified server:port containing RPC marker, RPC header, with
no RPC data. The server responds with an arbitrary status string and a status code, typically
SUCCESS. For server4, the status string is a text version of the spinlock histogram described
earlier—32 counts separated by single spaces.

reset

Sends an RPC request to the specified server:port containing RPC marker, RPC header, with no
RPC data. The server removes all its <key, value> pairs and responds with a status code, typically
SUCCESS.

 6.14 Measuring One Sample Client-Server RPC 105

quit

Sends an RPC request to the specified server:port containing RPC marker, RPC header, with no
RPC data. The server responds with a status code, typically SUCCESS, and exits immediately
afterward.

The client4 program prints the observed round-trip time for the first 20 RPCs it issues. At the end,
it prints a log2 histogram of those times, plus total RPCs, total msec elapsed, total MB transmit-
ted and received, and RPC messages transmitted and received per second. In a datacenter system,
this is the kind of information that would be displayed on a dashboard web page.

6.14 Measuring One Sample Client-Server RPC
Recall our thought framework from Chapter 1. In thinking about performance issues, we will
follow the programmer’s discipline of first estimating how long some work should take, then
observing how long it actually does take, and then reasoning about any differences. Figure 6.15
shows this framework again.

Figure 6.15 Framework for examining the performance of complex software

Consider the offered load of sending a single write RPC from client program to server program,
with a 5-byte key and 1,000,000-byte value. What do we expect the timing to look like on our
sample server configuration with a 1Gb/sec network?

Remember that 1 Gb/sec is roughly 100 MB/sec when we convert from bits to bytes and include
some overhead, or about 100 bytes per microsecond. So sending ~1,000,000 bytes of RPC request
should take about 10,000 usec (10 msec) across the wire. On the server side, creating a string of
1,000,000 bytes and putting it into a C++ map should take only about 100 usec or so if the main
memory can transfer 10GB/sec. A short reply of 100 bytes should take about 1 usec on the wire
plus some small software overhead. Overall, we might expect something like Figure 6.16 when
we sketch out a timeline.

Figure 6.16 Expected RPC timing sketch for Write() of 1MB of data

106 Chapter 6 Measuring Networks

This sketch is somewhat distorted, but you get the idea—a long time to transmit 1MB in the
request message, 100x less time to put it into the key/value store, and 100x less time again to
transmit the response message. Let’s see what happens.

Compile server4.cc and run it with no arguments to get the default configuration of
listening on four ports.

./server4

Compile client4.cc and run it on a different machine with these arguments:

./client4 target_server 12345 write -key "kkkkk" \
 -value "vvvvv" 1000000
./client4 target_server 12345 quit

Compile dumplogfile4.cc and run it on the client, pointing to the 1MB write log file
written by client4.

./dumplogfile4 client4_20190420_145721_dclab-1_10479.log \
 "Write 1MB" \
 >client4_20190420_145721_dclab-1_10479.json

Compile makeself.cc and run it on the client, pointing to the previous JSON file.

./makeself client4_20190420_145721_dclab-1_10479.json \
 show_rpc_2019.html \
 > client4_20190420_145721_dclab-1_10479.html

Display the resulting HTML file.

google-chrome client4_20190420_145721_dclab-1_10479.html

6.15 Postprocessing RPC Logs
The programs client4.cc and server4.cc write binary log files of 96-byte records as
described earlier.

The program dumplogfile4.cc reads these log files and turns them into JSON files with the
timestamps and other information turned into ASCII text. The JSON file has a stylized header
that contains among other things the start minute of the log records, the title from the second
command- line argument ("Write 1MB” previously), and some axis labels. This header is followed by
lines of text for the log records. By default, only log records for receipt of a response are included,
i.e., just those records that describe a full round-trip transaction. The -all flag includes all records.

The program makeself.cc reads a JSON file and writes an HTML file based on a template,
incorporating the JSON information. This is the same makeself.cc program we encountered in
Chapter 5, but with a different template file, show_rpc.html.

The displayed HTML, such as Figure 6.17, can be panned and zoomed via mouse drag and
mouse wheel, respectively. The lower-left red dot resets the display. The [Rel. 0] button at the top
switches between showing multiple RPCs by wall-clock- time and showing them all starting at
(relative to) time zero.

 6.16 Observations 107

6.16 Observations
On a sample server pair of machines, I measured 9.972 msec to send the Write() request from
 client to server, 1.118 msec to process it on the server, and 10 usec to send the response back to
the client. My estimates of the first and last times were pretty reasonable, but my processing
time estimate was 10x too low (see Table 6.1).

Table 6.1 Estimated RPC Elapsed Time vs. Measured

Action Estimate Actual

Send 1MB request 10 msec 9.972 msec

Process request 100 usec 1118 usec

Send 100 byte response 2 usec 10 usec

Based on the client-side log, Figure 6.17 shows 10 such RPCs lined up on time across about
120 msec, using the style of Figure 6.8. The hollow part of the lines (more precisely, the white
overlaid lines) show approximately the message transmission time for the 1MB client => server
messages. Among other things, you can see the 1–2 msec gap on the client from the end of one
RPC to the beginning of the next one (oval around the first gap).

0

1

2

3

4

5

6

7

8

9

580 590 600 610 620 630 640 650 660 670 680 690

R
PC

 N
um

be
r

580 590 600 610 620 630 640 650 660 670 680 690

0

1

2

3

4

5

6

7

8

9

R
PC

 N
um

be
r

Ten write(1MB)RPCs

2018-08-01 14:24:49 Time (msec)

Figure 6.17 Ten RPCs, each sending 1MB of data. The oval highlights the 1–2 msec gap
between successive RPCs.

Figure 6.18 shows the same 10 RPCs, but this time they are aligned to a common starting point,
so the relative times of the different RPCs are easily compared. Now it is clearer that the first few
RPCs take longer, and then the timing settles down a bit. It is also clearer that number seven has
an extra delay in getting its response message back to the client.

The request time from client to server is about 9 msec, as we estimated, but the time processing
on the server is about 1 msec, longer than the 100 usec per 1MB that we estimated. Why was our
estimate off?

108 Chapter 6 Measuring Networks

0

1

2

3

4

5

6

7

8

9

00_000 002 004 006 008 010 012 014

R
PC

 N
um

be
r

_000 002 004 006 008 010 012 014

0

1

2

3

4

5

6

7

8

9

R
PC

 N
um

be
r

Ten write(1MB)RPCs

2018-08-01 00:00:00 Time (msec)

Figure 6.18 The same 10 RPCs, but this time all with the same start time of zero

Copying each 1MB message from network card to kernel buffer, then kernel buffer to user buffer,
then user buffer to separate key and value strings, and then value string to map entry, each one
MB in our sample server code is read or written to memory about eight times, not just once.
This boosts our estimate to about 800 usec for all those copies, close to the observed 1 msec. To
complete the picture, the response time from server to client is about 350 usec, a little longer
than I would have expected but not terrible. Estimating ahead of time makes it easy to spot
discrepancies.

6.17 Summary
In this chapter we introduced a sample remote procedure call database system and ran it on two
networked computers, recording the times at which each RPC message is sent and received. The
resulting notched-line diagrams show the measured time, the approximate transmission time
for each message, the spacing between successive RPCs, and the relative timing of multiple simi-
lar RPCs. The underlying logging is sustainable at a rate of 10,000 RPCs per second per service.

In the next chapter, we will look in more detail at multiple overlapped RPCs on multiple clients
and servers, at locking within transactions, and at time-aligning the clocks on multiple machines.
We will expand the sample in-memory database to be an equally simple disk database. Later in the
book we will examine the slow parts of these RPCs, including identifying the delays in message
transmission and the delays in RPC processing.

■ To understand the dynamics of multiple remote procedure calls, it is absolutely necessary
to design in observation hooks, including at least RPC IDs, send and receive times, and
byte lengths.

■ These hooks must have low enough overhead to be useful under heavy live load.

■ Creating RPC traffic requires at least one client and one server program running on differ-
ent machines.

■ A little stylized language lets us build a client to generate useful sequences of RPCs.

 Exercises 109

 ■ Data structures for the RPC format across a network are part of the overall RPC design, and
these must include observation metadata in the messages sent across a network, along with
the actual operation and its data. This metadata information can fit in about 100 bytes.

 ■ Logging to disk the timestamps and other metadata for every incoming and outgoing
RPC message lets us observe a complete picture of where all the time went in an RPC call
tree, and also a complete picture of all the other RPCs whose processing overlaps with and
therefore possibly interferes with one of interest.

 ■ Viewing the log data by wall-clock time lets us see delays within and between successive
RPCs, and also lets us see overlapping of RPCs.

 ■ Viewing the log data with all RPCs of a given kind starting at time zero lets us see differ-
ences among similar RPCs, and in particular lets us see what is different about slow ones
vs. normal ones.

 ■ Estimating what we expect to see makes it easy to spot discrepancies.

Exercises
Consider this work:

1. Send 10 ping messages of 100KB each.

2. Send 10 writes of 1MB of random data for keys kkkkk, kkkkl, kkkkm, ..., kkkkt.

3. Send 10 matching reads of 1MB from the same 10 keys.

4. Finally, send a quit command.

Draw yourself a little sketch of what you expect to see in the RPC timings.

Now run the server4 program on one sample server and the client4 program on another,
sequentially sending commands for the previous sequences. Run the dumplogfile4 program and
makeself program against the first three client log files and display the actual results.

You likely will find that the two servers’ wall-clock times differ by a few milliseconds, which may
be enough to make the HTML display look odd, if the send time for a message is timestamped after
the receipt time. We will look at time alignment in the next chapter. In the meantime, you might
consider hand-editing the JSON files to adjust T2 and T3 to be between T1 and T4. This is optional,
but doing so will give you some insight about what your Chapter 7 program will need to do.

6.1 How long, in milliseconds, did you estimate for the ping requests and their response
message transmissions? How long do they actually take? Briefly comment on the
difference.

6.2 How long, in milliseconds, did you estimate for the write requests and their
response message transmissions? How long do they actually take? Briefly comment on the
difference.

6.3 How long, in milliseconds, did you estimate for the read requests and their response
message transmissions? How long do they actually take? Briefly comment on the
difference.

This page intentionally left blank

Index

A
Abusive offered load, 162, 190
ACK, selective, 332, 333
ACK, TCP

n Ethernet packets, 88
routing dynamics, 90
timeouts and, 358
transmission delays and, 326, 327, 331-333

Acorn RISC machine. See ARM
AcquireSpin loop, 343
AcquireWait routine, 342–344
ACS-1 computer, 17–18
ACS-360 computer, 18
add instruction

latency, 20–21
measurements, 23

addevent routine, 342
addr2line program, 264
Address space layout randomization. See ASLR
Agarwal, Anant, 195, 196, 405, 411
Aggregate measures, 141

conclusion, 155
histogram time scales, 147–149
measurement intervals, 143
patterns of values over time, 151–152
per-event, 150–151
timelines, 143–147
transaction examples, 154–155
uniform vs. bursty event rates, 142
update intervals, 152–154

aio_select service, 358
Aligned reference, 36
Alignment, 36, 111–117
Allen, Frances E., xix, xxv
Allen, K. Scott, 338, 405
Alto, Xerox, 87
AMD/Intel x86-64 patches, 236–237
AMD Ryzen, 387–388
Amdahl, Gene M., 32, 345, 405
Analog, 64, 66, 359
Analyzer programs for observation tools, 170
Aniszczyk, Chris, 189, 405
Annot group in software dynamics display, 258
Annotations in software dynamics display

 timelines, 261–262
Anomaly/ies

echoing experiment, 334-335
at Google, 161

KUtrace for spotting, 225
reading from SSD, 80
resolution and spotting, 144
server4 program, 122
writing to SSD, 82

Anonymous, 146, 405
Antagonist

floating-point, 282-284
memory, 285
understanding, 286

Apollo moon landing, 358
Arc button in software dynamics display, 258,

260
Arcs in data display, 215
arg0 field

JSON events, 256
trace entries, 231, 391–392

ARM, xxii, 173, 224, 233, 384
Arms in hard disks, 62–63
Arrival times on master dashboards, 159–160
ASLR (address space layout randomization), 264
Aspect box in software dynamics display, 266
Associativity measurements for cache levels,

45–46
Asynchronous

effect of blktrace on, 185
defined, 397
read, 69, 73, 74
RPCs, 6, 86
with SSD, 80, 82
write, 72, 77, 78

Atomic instructions
locks, 338, 344
queues, 365, 376

Atomic pointer increments, 241–242
ATIME directory field, 67, 397
Atlas, Manchester, 17, 412
Averages

aggregate measures, 145–147
CPU-only performance, 168
latency, 4
top command, 170

Axes
data display, 215
software dynamics display, 265

axisLabelX field for JSON metadata, 254
axisLabelY field for JSON metadata, 255

416 Babcock, Charles

B
Babcock, Charles, 136, 405
Back end, execution, 6, 7, 19
Back-of-the-envelope calculation, 71, 99, 158, 215
Bakita, Joshua J., xxv
Balan, Subra, 409
Bannon, Pete, xxv
Barroso, Luiz André, xix, 411
Batch software, 4, 5, 171, 327
Battle, T. R., 407
Beadon, Matt, 407
Beaver, Donald, 411
Benchmarks

floating-point antagonists, 283–284
profiles, 173–176
slow performance problem, 279–282
SPEC, 58

Bignose, 406
Binary log file records, 137–138
Binary order of magnitude, 9
Biro, Ross, 230
Blaauw, Gerrit A., 338, 405
Blake, Geoffrey, 8, 405
Blind to, 168, 193, 210, 370, 385
blktrace command, 184–187
Boatload, 5
Boggs, David R., 87, 414
Bond, Elaine, xxv
Borg, Anita, xxv, 211, 406
Bostock, Mike, 249, 406
Bowen, M. Lucey, xxv
Branch instruction latency, 20
Brockmeyer, R. L., 407
Brooks, Frederick P., Jr., xix, xxv, 338, 405, 406
Broughton, Jason, 327, 406
Brown, Michael, xxv
Buffers

disks, 66–68
early CPUs, 17
KUtrace tool, 223
Linux kernel patches, 227
log files, 138
organization, 36–37
trace, 205
trace buffer data structures, 228

BuildDashString routine, 354
Burrows, Mike, 411
Bursty events, 142, 146, 370, 397
Busy machines, 222, 223, 315, 317
Byte addressing, 32, 36

C
C6 sleep state, 262, 293, 294
c_str() routine, 184
Caches

AMD Ryzen 3 chip, 387–388
associativity, 37, 38, 45, 71

cache-aware computation, 58
cache hits, 35, 38, 44, 45, 51
cache size, 37, 40, 44, 46, 47
CPU and memory interaction, 49–51
datacenters, 6
direct-mapped, 36, 37
disks, 67
hashed lookup, 54, 55, 56, 57
hierarchy, 31, 34, 35, 37, 43, 400
introduction, 18
KUtrace tool design, 221
level associativity measurements, 45–46
level size measurements, 43–45
lines, 35-39, 41-51, 211, 221
memory, 18, 33, 34-35, 400
miss, 6, 35, 38, 39, 50-55, 71, 201
organization, 34–36
physically addressed, 37, 47
prefetching, 40-42, 47, 57, 61, 83
replacement, 44, 400, 401, 402
set-associative, 36, 45, 49, 402
sets, 50, 51, 54, 57
tags, 35, 36, 37, 403
total size, 38, 43, 44, 45
underutilization, 44, 46
virtually addressed, 37

Calculation intervals on master dashboards, 160
Canary requests in network traffic, 95
CB button for software dynamics display, 259
CBS, 358, 406
CDC 6600 computer, 17
CFS (Completely Fair Scheduler), 289–292
Chakravarthy, Tejasvi, 407
Checksums

packets, 87–88
RPCs, 98, 100, 104

Chesson, Greg, 196, 406
ChipsEtc, 33, 406
chksum method

RPC clients, 104
RPC logs, 100

Christie’s, 358, 406
Clark, Douglas, 407
Client-mode RPCs, 92
Client-server systems, 7, 100, 105–106, 397
Clients and client4 program

disk and network database interaction,
117–125

latency in master dashboards, 161
network waiting issues, 320–321, 327–329
RPCs, 100, 102–106
time-of-day clock, 113

Clock cycle, 15, 17, 25, 32
Clock drift, 112–114
Clock interrupts, 168
Clock skew, 111
Cocke, John, xix, xxv
Colossus file system, 408

 Cray-1 computer 417

Collector programs for observation tools, 170
Color in data display, 215
Column access array, 50
Column access, DRAM, 42
Comcast, 189, 406
Comment field for JSON metadata, 254
Commitments for service response times, 190–191
Common Vulnerabilities and Exposures. See CVE
Compiler optimization, 24, 28, 58, 284
Completely Fair Scheduler (CFS). See CFS
Compression in SSDs, 65
Constant-rate timestamp counters, 21
Constraints

offered loads, 11
trace tools, 202

Contended locks
critical section locks, 189, 196
waiting for. See Locks, waiting for

Contended-wait-time histograms, 339
Context switches in disk operations, 309
Conti, Carl J., 36, 406
Control interfaces for loadable modules, 247
Control programs for KUtrace tool, 223–224
Controls for software dynamics display, 258–259,

265–266
Coordinated universal time (UTC) for timestamps,

136
copy_from_user() routine, 244
Copy-on-write (CoW). See CoW
Copying

disk data, 78–80
log files, 136
SSD data, 82

Core memory
CPU access, 15–16
cycle times, 33
ferrite, 32

Counters
logs, 133
observation tools design, 212
oprofile, 173
overview, 167–169
perf, 171–173
time, 171
top, 170

Counting instruction cycles, 20–22
CoW (copy-on-write), 293
CPU affinity, 294, 295, 296, 297
CPU and memory interaction, 49

cache-aware computation, 58
cache interaction, 49–51
exercises, 59
matrix multiplication algorithm, 51
matrix multiplication estimates, 51–52
matrix multiplication initialization,

cross-checking, and observing, 52–53
matrix multiplication subblock method, 57–58

matrix multiplication transpose method,
55–57

summary, 58–59
CPU architecture suggestion, 37, 201, 232
cpu field for JSON events, 255
CPU group in software dynamics display, 259–260
cpuModelName field for JSON metadata, 255
CPUs

aggregate measures, 151
frequency, 20, 259, 270, 369, 370, 384
IPC trace entries, 232
KUtrace tool design, 222
lock waiting issues, 342
measuring. See CPUs, measuring
memory hierarchy, 34–36
memory interaction. See CPU and memory

interaction
oprofile profiler, 173–176
per-function Gmail trace example, 203–207
per-server dashboard information, 164
profiling tools, 168
queue issues, frequency, 369–370
queue issues, KUtrace, 371–374
queue issues, RPC logs, 370–371
software dynamics display, 259–260
software dynamics display timelines,

260–261
tool overhead, 211–212
top command, 170
trace buffer data structures, 228
trace tools, 195
waiting for. See CPUs, waiting for

CPUs, measuring
add instruction latency, 20–21
CPU history, 15–18
dead variable fail, 24–25
dependent variables, 26
execution latency, 26–27
exercises, 28–29
gcc -fno-tree-reassoc command-line

flag., 27
loop fails, 21–24
loops with volatiles, 25–26
modern processor chips, 19
straight-line code fail, 21
summary, 28

CPUs, waiting for
analysis, 293–295
exercises, 297
exploring and reasoning, 290–292
mystery, 289–290, 292
program, 289
scheduler issues, 289–292
software locks, 295–297
startup issues, 292
summary, 297

Cray-1 computer, 20

418 Critical sections

Critical sections
description, 12
locktrace command, 189
queue issues, 375–377
spinlocks, 101–102
trace tools, 196
waiting for. See Locks, waiting for

Cross-checking
matrix multiplication, 52–53, 55
queue issues, 379–380

Crystal oscillators for clock, 111–112
ctime() routine, 137
Culler, David E., 408
Curved arcs in data display, 215
CVE 2017, 225, 406
Cycles

counting, 20–22
CPUs, 15–17
SSD erase, 65

Cylinder, disk, 62–64, 69, 70, 397

D
D-cache, 18, 387, 388
D3 JavaScript library, 249, 254
Damato, Joe, 327, 406
Dapper tool

traffic observations, 94
working with, 189–191

dashboard_thread processes, 341–344
Dashboards, 157

BirthdayPic sample service, 157–158
data display, 214
exercises, 165–166
lock issues, 341–344, 353–354
master, 159–163
per-instance, 163–164
per-server, 164
sample, 159
sanity checks, 164–165
summary, 165

Data alignment in memory, 36
Data display

observation tools design, 214–215
software dynamics display. See Display of

software dynamics
Data-driven documents. See D3
Databases

datacenter software layer, 6–7
disk and network database interaction. See

Disk and network database interaction
sample server program, 101

Datacenters
hardware, 5–6
software, 6–7
terms and concepts, 3–5

datalen field in RPC headers, 98
Dates in data display, 215

De Bruijn, Wilem, 408
Dead code, 24, 28
Dead variable fail measurements, 24–25
Dean, Jeffery A., 8, 10, 95, 406
DEC Alpha 21064, 18, 20
Decimal orders of magnitude, 9
delete method

RPC clients, 104
RPC logs, 100

Delta time in disk and network database interac-
tion time, 113–115

Deming, W. Edwards, 1
Dennard, Robert H., 33, 406, 412
Dependent instructions

defined, 398
loads and memory, 41
variables, 26

Dequeue routine, 365–366, 374–375
Design

KUtrace tool, 221–223
observation tools. See Observation tools

design
traces, 194–197

Destructive readout, 33, 142, 398
Detour, intentional. See Enticement
Digital Equipment Corporation. See DEC
DIMMs (dual-inline memory modules), 32, 42
Direct-mapped caches, 36
Directory, file system, 66, 67, 121, 171
Disaster, performance, 4, 67, 68, 201, 202
Disk and network database interaction, 111

exercises, 129
experiment 1, 118–121
experiment 2, 121–125
experiment 3, 125–127
logging, 127
multiple clients, 117
on-disk databases, 121
spinlocks, 118
summary, 128–129
time alignment, 111–117
transaction latency variation, 128

Disks
disk blocks, 63, 71, 255, 402
disk syncs, 308-310, 314-316
network interaction. See Disk and network

database interaction
per-server dashboard information, 164
tool overhead, 211–212
trace tools, 195
tracing with blktrace command, 184–187
waiting for. See Disks, waiting for

Disks/SSD, measuring, 61
back-of-the-envelope calculations, 71–72
disk reads, 68–71, 73–77
disk writes, 77–80
exercises, 84

 Flight-recorder mode 419

hard disk overview, 62–64
multiple transfers, 82–83
software disk access and on-disk buffering,

66–68
SSD overview, 64–66
SSD reads, 80–81
SSD writes, 82
summary, 83

Disks, waiting for, 307
analysis, 317
exercises, 317
exploring and reasoning, 308–310
mystery, 307–308
program, 307
read and write times, 307–309
reading 40MB on disks, 310–311
reading 40MB on SSD, 315
reading random 4KB blocks, 313–314
reading sequential 4K blocks, 311–313
summary, 317
two programs accessing two files at once,

316–317
writing and sync of 40MB on SSD, 314–315

Display, observation tools design for, 214–215
Display of software dynamics, 257

controls, 258–259
IPC legends, 265
overview, 257–258
Save/Restore, 265
secondary controls, 265–266
summary, 266
timelines, 260–265
X-axis, 265
Y-axis, 259–260

Distortion, 21, 25, 42, 133, 148, 194
Diwan, Amer, xxv, 353
Dixit, Harish Dattatraya, 211, 407
Dixit, Kaivalya M., 58, 406
Doench, Greg, xxv
DoFakeWork routine, 342
DRAM (dynamic random-access memory)

non-random, 42–43
overview, 33
sample server, 32

dt field in trace entries, 231, 391
Dual-inline memory module. See DIMM
dumplogfile4 program, 100, 106
duration field for JSON events, 255
Dwarkadas, Sandhya, xxv, 222
Dynamic random-access memory. See DRAM
Dynamics of programs, 4

E
E field in trace entries, 231, 391
ECC (error correction code) bits

memory, 33
SSDs, 66

Einstein, Albert, 131

Elapsed time in data display, 215
Embedded servo, disk, 63, 64, 75, 398
Emer, Joel S., xxv, 196, 407
Empirical transactions per second targets, 4
Encapsulated packets, 91
Encrypted packets, 91
Enqueue routine, 366, 374–376
Enticement, seductive. See Mislead
Erase cycles, SSD, 65, 68, 398
Error correction code. See ECC
Errors per interval data on per-instance dash-

boards, 163
Estimates, 9–10, 51
Ethernet, 87–88
Ethertype, 88, 188, 321
ethtool, 327
Event numbers

KUtrace tool, 219
Linux kernel patches, 233
trace entries, 391–395

Events
JSON format, 255–256
uniform rates vs. bursty, 142

eventtospan program, 251–252, 262–263
Execute cycle, 16, 20
Execution latency in CPU measurements, 26–27
Execution units, 16, 19
Extended logging, 135
Extent, file, 66-67, 69-71, 77, 398
Extinction event, 143-145, 411, 413
Extra work, 11, 277, 358
Eyles, Don, 358, 407

F
Fade button for software dynamics display, 266
Fall, Kevin R., 321, 407
FancyLock class, 339
Farrow, Rik, xxv
fdiv_wait_usec routine, 367
Ferrite core memory, 32
Fetch/execute CPU process, 16
Feynman, Richard P., 267
Files

log formats, 137–138
metadata, 67

Fills in cache lines, 36
Filters in packet tracing, 235
FindCacheSizes() routine, 44
Fixed-length trace entries, 391–392
flags field for JSON metadata, 255
Flash drive. See SSD
Flash memory, 64–66
Flight-recorder mode

KUtrace tool, 221
observation tools, 170
postprocessing, 250
trace calls, 243
trace tools, 197

420 Floating gates in SSDs

Floating gates in SSDs, 64, 66
Floating-point antagonists in slow performance

problem, 282–284
flt_hog program, 282–284
Fogh, Anders, 409
Formats for log files, 137–138
Four-way set-associative caches, 36
fprintf routine, 354
Fram oil filter, 124, 407
free routine, 183–184
Freq button for software dynamics display,

259–260
Frequency decisions in observation tools design,

210–211
Friedenberg, S. E., 196, 197, 407
Friend of the Electron, v
Friend, J. R., 407
Front end, instruction fetch, 19
ftrace command, 180–183
Full intervals for aggregate measures, 154
Fully associative caches, 36
Fundamental resource, 12, 15, 31, 169, 195, 262
futex routine

CPU waiting issues, 295–296
spinlocks, 376–377

futex_wait routine
lock issues, 343–344
queue issues, 373, 375

futex_wake routine, 373, 375
fwrite() routine, 137

G
Gallatin, Drew, xxv
Galloping Gertie, 413
Garden path, 379; See also Detour
gcc -fno-tree-reassoc command-line flag, 27
GE 645, 17
Generators for datacenters, 5
Geng, Yilong, 113, 407
Genkin, Daniel, 409
get_claim routine, 241–244
get_slow_claim() routine, 244
gettimeofday() routine

disk reads, 68
disk writes, 71
locks, 343
log files, 137
network waiting issues, 324–325
postprocessing, 250
time-of-day clock, 112
timestamps, 135–136
traceblocks, 230

GetUsec() routine
disk reads, 68
lock waiting, 343

GFS (Google File System), 125, 407
Ghemawat, Sanjay, 125, 407
Gifford, David, 338, 407

Girl with a curl, 31, 409
Glitch, hardware, 210
Glossary of terms, 397–404
Gmail per-function trace example, 203–207
go command in kutrace_control program, 246
Goals for KUtrace tool, 220–221
Gobioff, Howard, 407
Goldberg, Patricia A., xxv
Golden age of computing, 15, 32, 399
Goldilocks, 220
Goldsmith, Belinda, 146, 407
Good learning, 361, 379, 386
Good trouble, 361, 409
Google, 138, 189, 196, 407
Google File System. See GFS
Govindaraju, Rama, 408
GPU (Graphics Processing Units), 220, 385
Gregg, Brendan D., 11, 167, 407
Gross interference data in per-server dashboards,

164
Gruss, Daniel, 409
Guaranteed-delivery protocols, 88, 90
Gustafson, John L., 345, 408

H
Haas, Werner, 409
Half-Optimal Principle

CPU waiting problem, 293, 295
SSD reads, 315

Half-Useful Principle
context switching, 309
disk reads, 314
disk writes, 71–73
latency, 69–70
SSD reads, 315

Hamburg, Mike, 409
Hard disks. See Disks
Hardware

datacenters, 5–6
performance counters, 168
shared, 12

Hardware interference with KUtrace tool, 222
Hashes for memory, 36
hdparam -W0 command, 67
headerlen field in RPC headers, 97
Headers

Ethernet, 88
JSON, 252
packets, 90–91
RPC messages, 97–99, 263

Heads
hard disks, 62–64
queue structure, 364

Head-switching, disk, 64, 75
Heat maps, 151–152
Hedberg, Ray, xxv
Heisenberg, Werner, 194
Held locks, 337–338

 Issue slots 421

Hennessy, John L., 15, 408
Herbert, Tom, 335, 408
High-density data display, 215
Hildebrand, Dean, 125, 408
Hindered transactions, 11, 13, 399
Histograms

aggregate measures, 145–146
case study, 212–214
latency, 8–9
lock waiting, 339
long-tail distributions, 145–146
per-instance dashboards, 163–164
small, 102, 189
spinlocks, 102
time scales, 147–149

Hits
cache, 35
description, 6

Hochschild, Peter H., 211, 408
Hoff, Todd, 8, 408
Hog, floating-point, 280, 282-286
Hog, memory, 280,
Hog, paging, 299-304, 306
Horn, Jann, 409
Horowitz, Mark, 405
htop command, 170
Hubs, 88, 89
Hunt, V. Bruce, xxv, 410
HyperThread, 18
Hypervisors, 385

I
I-cache, 18, 172, 387, 388
IBM 1959, 199, 408
IBM 1967, 338, 408
IBM 1970, 33, 408
IBM 1983, 376, 408
IBM 2021, 189, 408
IBM 33FD, 186
IBM 360/67, 17
IBM 360/85, 18, 33, 34, 35
IBM 360/91, 411
IBM 370/145, 408
IBM 704, 16
IBM 709, 16
IBM 7010, 197–199
IBM 7030, 16, 412
IBM 7094, 16
IBM Power4 chip, 18
IBM RISC System/6000, 18
IBM Personal Computer AT, 65
IBM Power4, 18, 412
IBM Stretch, 16–17
IBM System/360 computer test-and-set

instruction, 338
IBM System 370/145 computer, 33
Idle, low-power, 262, 313, 384, 394

IEEE 2021, 88, 408
Information Sciences Institute, 333, 408
Initialization

matrix multiplication, 52–53
tracing, 241

Inline execution delays, 359
Input/output memory management unit.

See IOMMU
Insert1 routine, 241–243
InsertN routine, 243–244
Instruction fetch, 15, 16, 18, 21, 25, 32, 198, 283
Instruction sets, 16–17
Instructions executed per cycle (IPC)

KUtrace tool design, 222
legends in software dynamics display, 265
trace buffer data structures, 228
trace entries, 232

Intel, 33, 232, 236, 293, 327
Intel 1103, 33
Intel 2021, 172, 408
Intel i3, 32, 38, 48, 281, 289, 295, 388
Intel Pentium 4 processor, 18
Intel Pentium P5 processor, 20
Intel Xeon, 18
Interactive data displays, 215
Interface data structures, 239–240
Interference, 143, 150, 195, 217, 222, 280,

368-369
Intermittent performance problem

exploring and reasoning, 273–276
mystery, 272–273
mystery21 program, 271–277
overview, 271
summary, 277–278
understanding, 277

Internet protocol. See IP
Interrupts

coalescing, 325, 327
delays, 329
disk operations, 308–313
network waiting, 327
profiling tools, 168
request. See IRQ

Intervals
aggregate measures, 143, 152–154
master dashboards, 160–162

IOMMU, 82, 399
IP addresses in TCP/IP, 90
IP field in RPC headers, 98
IPC. See Instructions executed per cycle (IPC)
IPC button for software dynamics display, 259
ipc field for JSON events, 256
IPv4, 88, 90, 235, 321, 399
IPv6, 88, 235, 321, 399
IRQ, 224, 234, 236, 327, 392
Issue cycle, 343, 399
Issue slots, 19

422 Jaspan, Saul

J
Jaspan, Saul, 411
Jeffay, Kevin, xxv
Jiffie, 325
JSON format

events, 255–256
metadata, 254–256

K
Karp, Joel, 33, 412
Kaufmann, Richard, xxv
Keatts, Bill, 58, 408
Keller, James B., xxv
Kernel buffers for KUtrace tool, 223
Kernel interface data structures, 239–240
Kernel-mode code for RPC messages, 320
Kernel-mode samples for profiling tools, 168
Kernel patches and module

KUtrace tool, 224, 394
Linux. See Linux kernel patches for KUtrace

Kernel-user trace. See KUtrace tool
kernelVersion field for JSON metadata, 255
Kernighan, Brian, xxv
Kessler, Richard E., 406
Knuth, Donald E., xix, xxv, 19, 196, 409
Kocher, Paul C., 225, 409
Kozyrakis, Christos, xxv
Krohnke, Duane W., 17, 409
kswapd0 daemon, 300–301
ktime_get_real routine, 324–325
Kuck Associates, 58
kutrace_control program, 246–247
kutrace_global_ops global, 234, 240
kutrace_lib library, 246–247, 393
kutrace_mod_exit routine, 240
kutrace_mod_init routine, 240
kutrace_mod module, 264
KUtrace tool, 219

control program, 223–224
CPU waiting problem, 290–292
design, 221–223
goals, 220–221
implementation, 223
JSON format, 254–256
kernel patches and module, 224
Linux kernel patches. See Linux kernel

patches for KUtrace
Linux loadable module. See Linux loadable

modules for KUtrace
overview, 219
postprocessing. See Postprocessing for

KUtrace
queue waiting, 371–374
security, 225
software dynamics display. See Display of

software dynamics
trace entries, 391–395

user-mode runtime control. See User-mode
runtime control for KUtrace

kutrace_tracing global, 234, 240
kworker0:0 process, 301

L
L fields in RPC headers, 98
L1 cache, 35, 37, 43-46, 49-51, 294-295
L2 cache, 18, 34, 44, 201, 294-295
L3 cache, 34, 44, 49, 51, 54-55, 295
Labels in data display, 215
Lamport, Leslie B., 242, 409
Larus, James R., xxv
Latency

add instruction, 20–21
aggregate measures, 147
description, 3
disk. See Disks/SSD, measuring
disk and network database interaction, 128
execution, 26–27
Half-Useful Principle, 69–70
instruction, 28, 38, 399
light load, 161
load-to-use, 41, 44
long tail, 7–9, 11, 147–149, 267, 400
master dashboard times, 160–161
memory, 31
queries, 4
queues, 368–369
response, 161
RPC, 92
tail, 4, 9, 222
tail-flick, 403
transaction, 189–191

Layers
datacenter subsystems, 6–7
memory access, 31–32

LBAs (Logical Block Addresses), 63, 65, 66, 399
Leap seconds with timestamps, 136
Least recently used. See LRU
Lee, Ki Suh, 113, 409
Legend button for software dynamics display, 266
Legends in software dynamics display, 265
Length decisions in observation tools design,

210–211
Leung, Shun-Tak, 407
Level-1 instruction caches, 34–35
Levels, cache

associativity measurements, 45–46
size measurements, 43–45

Lewis, John R., 361, 409
Line size for caches, 38–39
Linear feedback shift registers, 137
Linear scales for aggregate measures, 147–148
LinearTiming() routine, 41
Lines in cache memory, 35
Linux, 196, 289, 409

 MakeAction routine 423

Linux kernel patches for KUtrace, 227
AMD/Intel x86-64 patches, 236–237
code, 234
event numbers, 233
exercises, 237
IPC trace entries, 232
nested trace entries, 233
packet tracing, 234–235
raw traceblock format, 229–230
summary, 237
syscall trace entries, 230–231
timestamps, 233
trace buffer data structures, 228

Linux loadable modules for KUtrace, 239
kernel interface data structures, 239–240
loading/unloading, 240
summary, 244
trace calls, implementing, 241
trace calls, initializing and controlling, 241
trace calls, Insert1 routine, 241–243
trace calls, InsertN routine, 243–244
traceblock switching, 244

Lipp, Moritz, 225, 409
Liptay, John S., 18, 33, 409
list command, 171–172
Liu, Shiyu, 407
Load balancing for queues, 377–378
Loadable modules

control interfaces, 247
Linux. See Linux loadable modules for

KUtrace
Lock button for software dynamics display, 259
Lock capture, 338, 347-348
Lock contention, 349-354
Lock saturation

defined, 338
long lock hold times experiment, 345

Locks
CPU waiting issues, 295–297
disk and network database interaction, 118
software dynamics display timelines, 263
spinlocks, 101–102
tools, 169

Locks, waiting for, 337
experiment 1, exploring and reasoning,

346–348
experiment 1, lock capture, 347–348
experiment 1, lock saturation, 345
experiment 1, lock starvation, 348
experiment 1, mysteries, 345–346
experiment 1, simple locking, 344
experiment 2 lock capture fixes, 348–349
experiment 3 lock contention fixes, 349–351
experiment 4 lock contention fixes, 351–353
experiment 5 lock contention fixes, 353–354
overview, 337–341
program, 341–344
summary, 355

locktrace command, 189
Logarithmic scales for aggregate measures,

147–148
Logging and logs

basic, 134–135
disk and network database interaction, 127
extended, 135
file formats, 137–138
managing, 138–139
networks, 99–100
observation tools, 133, 212
overview, 133–134
postprocessing, 106
queue waiting, 370–371
RPC IDs, 136–137
RPCs, 100
summary, 139
timestamps, 135–136
tracing tools, 168

Logical Block Addresses. See LBAs
Logical Block Numbers, 66–67
Long lock hold times experiment

exploring and reasoning, 346–348
lock capture, 347–348
lock saturation, 345
lock starvation, 348
mysteries, 345–346
simple locking, 344

Long-tail latency, 11, 267, 400
histogram time scales, 147–149
overview, 7–9

Long-tail transactions with KUtrace tool, 222
Longbottom, Roy, 279, 409
Longfellow, Henry Wadsworth, 31, 409
Loop fail measurements, 21–24
Loop unrolling, 25, 28, 58
Low overhead

contended lock tools, 189
counting tools, 168
KUtrace tool, 217, 223, 227
network trace, 188
observation tools, 133
profile tools, 168, 176
protocol buffers, 138
RPC logs, 189
timestamp logging, 127
of top command, 170
tracing tools, 180, 193, 194, 195

Low-power, idle, 262, 384
LRU, 44, 400
ltrace command, 179–180

M
MAC (Media Access Control) addresses

Ethernet packets, 88
switches, 89

Make-runnable changes in KUtrace tool design, 222
MakeAction routine, 342, 346

424 MakeLongList() routine

MakeLongList() routine, 42
makeself program, 254
malloc routine, 183–184, 299
Manchester Atlas machine, 17
Mangard, Stefan, 409
Mapping, address, 17, 37, 43, 47, 48, 52
Mark button for software dynamics display, 258,

260
Markers in KUtrace tool, 219
Mason, Chris, 407
Massachusetts Institute of Technology. See MIT
Master dashboards, 159–163
matrix.cc program, 53
Matrix multiplication

algorithm, 51
estimates, 51–52
initialization, cross-checking, and observing,

52–53
subblock method, 57–58
transpose method, 55–57

Matrix storage order, 49–51
Matrix300 benchmark, 58, 280
Maurer, James, xxv
Maximum values in aggregate measures, 147
mbit_sec field for JSON metadata, 255
McKenney, Paul E., 354, 409
Media Access Control addresses. See MAC
Measurement intervals

aggregate measures, 143, 152–154
master dashboards, 161–162

Measuring
CPUs. See CPUs, measuring
disks/SSD. See Disks/SSD, measuring
memory. See Memory, measuring
networks. See Networks, measuring

Medians
aggregate measures, 145–147
latencies, 8
master dashboards, 162

memcpy() routine, 244
Memory

banks, 16, 19
CPU access, 16
CPU interaction. See CPU and memory

interaction
hierarchy, 32, 34, 35, 37, 38, 46
Linux kernel patches, 227
measuring. See Memory, measuring
mtrace command, 183–184
protection, 17, 177
SSDs, 64–66
tool overhead, 211–212
top command, 170
trace tools, 195
waiting for. See Memory, waiting for
word, 33, 34

Memory, measuring
cache level associativity, 45–46
cache level size, 43–45
cache line size, 38–39
cache organization, 34–36
cache underutilization, 46
data alignment, 36
dependent loads, 41
exercises, 47–48
history, 32–34
N+1 prefetching problem, 40–41
non-random DRAM, 42–43
process, 37–38
summary, 46–47
timing, 31–32
translation buffer time, 46
translation lookaside buffer organization,

36–37
Memory, waiting for, 299

analysis, 304–305
exercises, 306
exploring and reasoning, 300–304
mystery, 300, 304
program, 299
summary, 306

Memory antagonists in slow performance problem,
285

Memory hog, 280, 285
Memory used data in per-server dashboards, 164
Metadata

files, 67
JSON format, 254–255

Metcalfe, Robert M., 87, 409, 414
Method field in RPC headers, 99
Microprocessor superscalar design, 18
Minimum values in aggregate measures, 147
Mislead or deceive. See Primrose path
Misses, 6, 35
MIT (Massachusetts Institute of Technology), 17
MLC (multi-level cell) drives, 66
Modern processor chip speedup techniques, 19
Modules for KUtrace tool, 224
Mogul, Jeffrey C., 408
Monolithic memory, 33
mtrace command, 183–184
Mudge, J. Craig, xxv
Multi-bit error correcting codes in SSDs, 66
Multi-level cell (MLC) drives. See MLC
Multics operating system, 17
Multiple clients in disk and network database

 interaction, 117–125
Multiple disk transfers, 82–83
Multiple instruction issue, 19
Multiple threads

code locking out, 214
global counter disaster and, 202

 Observations 425

in datacenter environment, 5, 12
lock saturation and, 338, 344, 400
RPC overlap and, 118
RPCs handled by, 101
spawned by PID 1234, 264

Multiple time groupings in master dashboards,
161–162

Multiplication of matrices. See Matrix multiplication
multiply instruction, 16
Murray, Hal, xxv, 334
Mutex class, 339
Muthiah, Bharath, 407
mwait instruction, 293–294
mystery0 program, 22–26
mystery2 program, 38, 40–42, 44
mystery3 program, 73
mystery21 program, 271–277
mystery23 program, 289–291
mystery25 program, 308–312, 315–316
mystery27 program, 341–354

N
N+1 prefetching problem, 40–41
Naik, Ashish, 407
NaiveTiming() routine, 40–41
name field for JSON events, 256
Names for KUtrace tool intervals, 221
nanosleep routine, 327–328
National Institute of Standards and Technology.

See NIST
Naur, Peter, 410
Nested trace entries, 233
Network interface controller. See NIC
Network time protocol. See NTP
Networks

bandwidth data on per-server dashboards, 164
disk interaction. See Disk and network

database interaction
measurements. See Networks, measuring
packets. See Packets
tools, 187–189
trace tools, 195
waiting for. See Networks, waiting for

Networks, measuring, 85–87
client program, 102–105
Ethernet, 87–88
exercises, 109
hubs, switches, and routers, 89
logging design, 99–100
observations, 107–108
packets, 90–91
RPCs, client/server systems, 100, 105–106
RPCs, log postprocessing, 106
RPCs, message definition, 96–99
RPCs, overview, 91–93
server program, 101
slop, 93–94
spinlocks, 101–102

summary, 108–109
TCP/IP, 89–90
traffic observations, 94–96

Networks, waiting for, 319
analyses, 333
anomaly, 334–335
experiment 1, exploring and reasoning,

323–327
experiment 1, mystery, 322–323
experiment 1, overview, 321
experiment 1, time between RPCs, 327–329
experiment 2, 329
experiment 3, 329–330
experiment 4, 330–333
overview, 319–320
programs, 320–321
summary, 336

Neural network processing chips, 385
Nguyen, Thomas, 413
NIC (Network Interface Controller), 324
NIST (National Institute of Standards and

Technology), 136, 410
Non-blocking RPC, 96–97
Non-execution spans, 262–263
Non-overlapping intervals in aggregate measures,

152–153
Non-random DRAM, 42–43
Nop events in trace entries, 391
Normal distributions for aggregate measures,

145–147
Not pipelined, 367, 369
Notches in data display, 215
Nothing missing design, 190, 193, 205, 207, 216,

220, 225, 385
NTP (Network Time Protocol), 112
Nyland, Lars, 289

O
O_DIRECT disk-read pattern, 310
O_DIRECT parameter, 67
O_NOATIME parameter, 67
Observability

queue issues, 378
spinlocks, 376–377

Observation tools
kinds, 167–169
logging, 133

Observation tools design, 209
consequences, 212
data display, 214–215
frequency and length decisions, 210–211
histogram buckets case study, 212–214
item selection, 209–210
overhead, 211–212
summary, 215–216

Observations
matrix multiplication, 52–53
network traffic, 94–96

426 Offered loads

Offered loads
constraints, 11
description, 3
limits, 4
overview, 189–191

On-disk buffering, 66–68
On-disk databases, 121
On-disk read cache, 68
On-disk write buffer, 67, 68, 78, 79, 124
On the wire, packet, 89, 320-321, 323, 325, 329
open() system call, 67
Opper, Frederick Burr, 338, 414
oprofile profiling system, 173–176
Option group in software dynamics display,

258–259
Order-of-magnitude estimates, 9–10
Oscillators for clock, 111–112
Overhead

IPC trace entries, 232
KUtrace tool design, 221
observation tools design, 211–212
software dynamics display timelines,

264–265
trace tools, 197–198, 202, 205, 207

Overlapping intervals in aggregate measures,
152–153

OUIs (Organizationally Unique Identifiers), 88
Ousterhout, John K., 157, 410
Out-of-order, 19, 40, 41, 47, 325

P
Packets

Ethernet, 87–88
overview, 90–91
software dynamics display timelines, 263
TCP/IP, 90
tracing, 234–235

Padding field in RPC headers, 99
Padegs, Andris, 376, 410
page_fault routine, 172, 180, 181, 304
Page faults

in child threads, 293
KUtrace tool for, 217, 244
mystery25 program, 308
page table access, 304
paging_hog program and, 299, 300-304
patches tracing, 236
performance counters, 172
in schedtest, 304

Page table, 46, 82, 227, 293, 299, 304
Paged memory, 17
Paging activity

CPU waiting problem, 293
memory waiting problem, 299–305

paging_hog program, 299–300, 303
Painter, Richard A., 280, 410
Parady, Bodo, 409
Parallel servers for datacenter transactions, 6–7

Parent ID field in RPC headers, 98
Parity for memory, 33
Partially full intervals in aggregate measures, 153
Patches

KUtrace tool, 224, 394
Linux kernel. See Linux kernel patches for

KUtrace
Patterns in memory access, 31–32
Patterns of values in aggregate measures,

151–152
Patterson, David A., 15, 408
PaX project, Linux, 264, 410
Payload, packet, 88, 97, 235, 401
PC (program counter), 133

profiling tools, 168, 173
samples in display timelines, 263
SMT, 18
trace example, 197–199

PCIe (peripheral component interconnect express)
bus, 65

Pendharkar, Sneha, 407
Pentium 4 processor, 18
Pentium P5 processor, 20
Per-event measurements, aggregating, 150–151
Per-function counts and time trace example,

199–202
Per-function Gmail trace example, 203–207
Per-instance dashboards, 163–164
Per-server dashboards, 164
Percentiles

aggregate measures, 145–147, 150–151
long-tail latency, 8–9

perf command, 171–173
Performance analysis overview, 269–270
Peripheral component interconnect express (PCIe)

bus, 65
Perl, Sharon E., xxv, 195, 196, 410
Physically addressed cache, 37
pid field for JSON events, 255
PID group in software dynamics display, 259–260
PID groups in queue issues, 373
Piecewise-linear graphs for aggregate measures,

147, 149
ping method

RPC clients, 104
RPC logs, 100

Pipelines in ACS-1 computer, 17
Pipelining instruction, 15, 16, 19, 27, 401
PlainSpinLock class, 366, 374–375
Plakal, Manoj, 411
Planes in core memory, 32–33
Platters in hard disks, 62–63
Plausibility check, 52, 165
Point events

fixed-length trace entries, 392
software dynamics display timelines, 262

poll service, 358
Ports in TCP/IP, 90

 Regions in software dynamics display 427

Postprocessing for KUtrace
details, 249
eventtospan program, 251–252
implementation, 223, 225
JSON format, 254–256
makeself program, 254
overview, 249
rawtoevent program, 250–251
samptoname_k and samptoname_u pro-

grams, 253–254
spantospan program, 253
spantotrim program, 253
summary, 256
trace entry events, 395

Postprocessing RPC logs, 106
Power-saving mode

advent of, 20
changing parameters of, 370
as idle option, 262, 304
observation of, 222
performance disasters and, 161, 162
states for KUtrace tool, 222
and timestamps, 21

Power4 chip, 18
Prabhakar, Balaji, 407
Preamble, packet, 20
Precharge cycle, DRAM, 42
Prefetch, cache, 40–41, 57, 61, 401
PreProcessEvent routine, 252
Prescher, Thomas, 409
Primary tasks for queues, 362, 365
/proc pseudofile, 171
process_message routine, 334
Process wakeup in software dynamics display time-

lines, 262
ProcessEvent routine, 251–252
Profiles

logs, 133
observation tools design, 212
tools, 167–169

Program counter. See PC
Protocol buffers, 138
Pseudofiles, 171
Pseudorandom RPC IDs, 137
pthread_create routine, 293

Q
Queries

description, 3
latency, 4

Queues, waiting for
complex examples, 370
CPU frequency, 369–370
cross-checking, 379–380
dequeue routine, 365–366
enqueue routine, 366
exercises, 380–381
KUtrace tool, 371–374

latency, 368–369
load balancing, 377–378
overview, 361
primary tasks, 365
queue depth, 151, 163, 378
queue structure, 364
request distribution, 363–364
root cause, 375–376
RPC logs, 370–371
simple examples, 367–368
spin, 378–379
spinlocks, 366, 374–377
summary, 380
work routine, 367
worker tasks, 365

queuetest program, 361, 367–368, 370,
375–379

quit method
RPC clients, 105
RPC logs, 100

R
Randell, Brian, 410
Random 4KB blocks, reading, 313–314, 316
randomid field for JSON metadata, 255
Ranganatha, Parthasarathy, 408
Raspberry Pi-4B boards, 237
Raw traceblock format, 229–230
rawtoevent program, 250–251
RDTSC (Read timestamp counter instruction), 20,

22–24, 201–202
Read-copy-update (RCU) technique, 353–354
read method

RPC clients, 104
RPC logs, 100

Read/write heads in hard disks, 62–64
Readouts in memory, 33
Reads

disk, 40MB, 310
disk, caches, 67
disk, random 4KB blocks, 313–314
disk, sequential 4K blocks, 311–313
disk, speed, 68–71
disk, timing displays, 73–77
SSD, 40MB, 315
SSD, timing displays, 80–81

really_get_slow_claim() routine, 244
Receive-side scaling. See RSS
record command, 171–172
recvmsg service, 358
Refresh, 33, 213, 401
Regions in software dynamics display

Region 1, controls, 258–259
Region 2, Y-axis, 259–260
Region 3, timelines, 260–265
Region 4, IPC legend, 265
Region 5, X-axis, 265
Region 6, save/restore, 265

428 Register-to-register operations in early CPUs

Register-to-register operations in early CPUs, 16
Regits, William M., 33, 412
Releaselock code, 344
Reliable connections, 90
Remote procedure calls. See RPCs
report command, 171–172
Requests

arrival times, on master dashboards, 159–160
description, 3
latency times, on master dashboards, 160–161
per-instance dashboards, 163
queue waiting distribution, 363–364

reset method
RPC clients, 104
RPC logs, 100

Resonant frequency, 64
Resources, fundamental, 12, 15, 31, 169, 262,

398
Response times

controlling, 5, 7
CPU business and, 4
exceptionally slow, 95, 134
histogram case study, 212
per-instance dashboards, 163-164
transaction, 401
understanding, 1
wide variety of, 154, 272

Restore, 33, 265, 401
Retransmit, 321, 331, 333, 336
Retransmit timeout, 332, 333, 359
retval field

JSON events, 256
trace entries, 231, 391

Ring buffer, 324, 325, 329
Root cause, 373, 375, 384
Rosenblum, Mendel, 407
Rothenberg, Jeff, 138, 410
Round-robin, 44, 290, 346, 349
Routers, 89
Row access, array, 50, 57
Row access, DRAM, 42
RPC group in software dynamics display, 260
RPC ID, 98
RPC_stats routine, 353–354
rpcid field for JSON events, 255–256
RPCs (Remote procedure calls)

aggregate measures, 150–151
client program, 102–105
client/server systems, 100, 105–106
data, 104, 105, 115
datacenters, 6
disk and network database interaction,

115–125
exercises, 109
headers, 97-99, 104, 105
IDs in logs, 136–137
interference, 11

intermittent performance, 273–277
KUtrace tool design, 222
latencies, 8
logs postprocessing, 106
marker, 97, 98, 104, 105, 235
messages, definition, 96–99
messages, networks, 85–87
messages, server program, 101
messages, TCP/IP, 90
messages, traffic observations, 94–96
mystery21 program, 271–275
network waiting issues. See Networks,

waiting for
observations, 107–108
overview, 91–93
packet tracing, 235
queue logs, 370–371
summary, 108–109
trees, 7

RSS, 335
Rubtsov, Artem, 63, 410
Rule of thumb, 69, 76, 211, 212
Ryzen processor chips, 32

S
Saidi, Ali G., 405
Saive, Ravi, 410
Samp button for software dynamics display, 259
Sample servers

connecting, 388–389
hardware, 387–388

samptoname_k program, 253–254, 264
samptoname_u program, 253–254, 264
Sanity checks on dashboards, 164–165
Sankar, Sriram, 407
SATA (Serial AT attachment), 65, 75, 81, 82, 312
Save/Restore region, 265
Scales for aggregate measures, 147
Schedulers

CPU waiting issues, 289–292
Linux kernel patches, 236

Schmidt, John D., 33, 406, 410
Scholz, Hans-Peter, 413
Schwarz, Michael, 409
ScrambledTiming() routine, 42
Scott, Tom, 136, 410
Screw-up, performance

200 usec delay, 327
benchmark dilution, 281
benchmark program measures, 285
code oversight, 353
critical-section locks, 189
Checksum calls, 276
CPU slowdown, 369
deep algorithm changes for, 174
dropped transactions, 377
external interference, 368

 Slow performance problem 429

futex inside the critical section, 375, 376
with gcc compiler, 24, 284
with gcc optimizer, 24
hardware glitch, 210
histogram buckets, 213
with index updates, 207
IPC trace entries, 232
latency under light loads, 161
from legacy debug code, 214
lock, delays from, 353
lock captures, 347
lock saturation, 345, 348
misconfigured kernel, 333
mwait instruction timing, 293
mystery27 program, 341
no observability, 376, 378
PlainSpinLock flaw, 375
profile flaws, 203
program interference, 368
queue delay, 373
retransmit timeout, 332, 333, 359
scheduler failure, 295, 291, 294, 295
sequential threads, 270
server code variability, 272
slow rdtsc, 201
slowdown from spinning, 379
slowdown of Whetstone module, 286
straight-line code fail, 21
time between RPCs, 328
UDP packet bunching, 335
variable names, misleading by, 347
variation, misunderstanding, 203
write data buffering, 124
writer lock in reader lock, 347
writing and sync of 40MB, 309

Search group in software dynamics display, 259
Secondary controls in software dynamics

display, 265–266
Sector, disk. See Disk blocks
Security, 17, 87, 91, 225
Seek time

disk read speeds, 69, 70, 74
experiments involving, 125, 126
flash drive delays, 68
for 4K block reads, 313, 316
paging_hog program, 303
plus transfer time, 124
SATA bus, 65
solid-state drive, 314

Selective ACK, 332, 333
send_to calls, 334
SEQ, TCP, 88, 309-315
Sequential 4K blocks

reading on disk, 311–313
reading on SD, 315

Serenyi, Denis, 408
Serial AT attachment. See SATA

server_disk program, 121
server4 program

log files, 106, 138
network waiting problem, 320–321, 329
sample server, 100–101

Servers
datacenters, 5–7
description, 3, 86
latency data on master dashboards, 161
RPCs, 101
sample, 387–389
time-of-day clock, 113

Service level agreements (SLAs), 190–191
Service response time commitments, 190–191
Services, 3
Set access bias, cache, 51
Set-associative caches, 36
Seurat, Georges, 168
Shacham, Nachum, 347, 410
Shanbhag, Chandan, 411
Shift registers for RPC IDs, 137
shortMulX field for JSON metadata, 255
shortUnitsX field for JSON metadata, 255
show_cpu.html file, 257–258
Shrivastav, Vishal, 409
Signatures for RPC markers, 97
Sigelman, Benjamin H., 7, 94, 189, 195, 196, 410
Simultaneous multithreading. See SMT
Sine wave, idle delay, 232, 293, 315, 326
Sites-Bowen, Connor J., xxv, 71, 414
Sites, Richard L., 195, 196, 204, 293, 405, 409.

411
Size

cache levels, 43–45
cache lines, 38–39

Skew, execution, 7, 13, 398
Skewed distribution, 363-364, 367, 370, 373, 377
Skewed requests in queues, 362–364
SLAs (service level agreements), 190–191
Sleep

AMD Ryzen, 326
avoiding, 317
Intel C6, 293, 294
mwait and, 315
thread delays from, 297
time between RPCs and, 327, 328
time to come out of, 313
and work completion costs, 379

Slop
communication, 93, 402
disk and network database interaction time,

115–116
networks, 93–95

Slow performance problem
analysis, 286
floating-point antagonists, 282–284
memory antagonists, 285

http://show_cpu.html

430 Slow performance problem

mystery, 280–282
overview, 279
program, 279–280
summary, 286–287
Whetstone benchmark, 279–282

SMT (simultaneous multithreading), 18
Software

critical sections. See Critical sections
datacenters, 6–7

Software disk access, 66–68
Software dynamics display. See Display of software

dynamics
Software layers, 5, 6, 86
Software locks

CPU waiting issues, 295–297
software dynamics display timelines, 263
waiting for. See Locks, waiting for

Solid-state drives. See SSD
Sorting, 73, 138, 162, 199, 215, 252, 254
spantospan program, 253
spantotrim program, 253
SPEC89 benchmarks, 58, 280
SPEC92 benchmarks, 58
Spector, Alfred Z., 407
Spectre, 225, 409
Speculative execution, 16, 19, 211, 343
Speed concerns overview

datacenter context, 3–5
datacenter hardware, 5–6
datacenter software, 6–7
fundamental resources, 12
long-tail latency, 7–9
order-of-magnitude estimates, 9–10
summary, 12–13
thought framework, 9
transactions, 11–12

Spin with queues, 378–379
Spinlock, fancy, 339, 346, 364, 379
Spinlock, plain, 365, 366, 374-376
Spinlocks

disk and network database interaction, 118
networks, 101–102
PlainSpinLock Flaw, 374–377
queues, 366

Spock, S’chn T’gai, 386
spn box in software dynamics display, 266
sprintf() routine, 137
SRAM (static random-access memory), 33, 34, 402
SSDs (solid-state drives)

banks, 81, 317
overview, 64–66
writing and sync of 40MB, 314–315

Standard deviations in aggregate measures, 145–147
Standard Performance Evaluation Corporation.

See SPEC
Startup

checks at, 164, 165
idle CPU time at, 292, 304

half-useful principle and, 70, 317
log files for, 168
perf program, 173
recording, 134
sort program, 198
sync system, 309
timestamped log of, 357
unusual delays in, 371

Starvation, 127, 337, 338, 344, 347, 348
stat command, 171–172
Static random-access memory (SRAM), 33
stats method

RPC clients, 104
RPC logs, 100

Status field in RPC headers, 99
Stephenson, Pat, 411
Stevens, W. Richard, 321, 407
Stoll, Clifford P., 379, 411
Stoner, M. J., 407
stop command in kutrace_control program, 246
strace command, 176–179
Straight-line code fail measurements, 21
Stress test, 370, 380, 386
Stride, array, 38-40, 42, 43, 46
Strings for logs, 134
Subblock, array, 35, 55, 57–58
Subsystems in datacenters, 6
Superlinear slowdown, 316
Superscalar design

ACS-1 computer, 17
microprocessors, 18

Supervisory programs in datacenters, 6
Switches and switching

networks, 89
traceblocks, 244

Sync system call, 309, 310
Synchronization

40MB on SSD, 314–315
disk and network database interaction time,

111–117
disk operations, 308–310

Synchronous, 6, 128, 403
/sys pseudofiles, 171
Syscall trace entries, 231
System 360/91 design, 17
System under test

defined, 403
distortion of, 133, 194, 201, 211, 215
framework for examining, 9
offered load driving, 128

T
T field in trace entries, 231, 391
T1 field in RPC headers, 98
Tacoma Narrows Bridge, 413
Tag, cache, 35–37, 403
Tail latency

description, 4

 tracebase field for JSON metadata 431

frameworks, 9
histogram time scales, 147–149
overview, 7–9

Tails in queue structure, 364
TCP (Transmission Control Protocol) packet tracing,

234–235
TCP/IP (Transmission Control Protocol/Internet

Protocol)
network waiting issues, 321
overview, 89–90

tcpdump tool
network traffic, 187–189
network waiting issues, 325–327, 329, 331
packet information, 195
packet tracing, 235

Technical term, 5, 124
Tensor processing units (TPUs), 385
Terms, glossary of, 397–404
Tesla, xxv, xxvii
Test-and-set instructions in lock waiting, 338–339
Text strings for logs, 134
Thacker, Charles P., v
Thoth trace tool, 204
thousandsX field for JSON metadata, 255
Thrash, 36, 181, 403
Threads

description, 5
locks. See Locks, waiting for
spinlocks, 101–102

Thurber, James G., 414
Time, waiting for, 357

inline execution delays, 359
periodic work, 357–358
summary, 359
timeouts, 358
timeslicing, 358–359

Time alignment, 111–117, 118, 155, 266
Time-base problem in packet tracing, 235
Time-constrained software

deadlines, xxi
default delays, 333
incentives for, 5
KUtrace to observe, 217, 220, 221
observation tools, 131, 133, 169, 175, 211
vs. offline software, 4
with performance issues, xxii
timeouts and, 358
unacceptable delays for, 327

time command, 171
Time groupings on master dashboards, 161–162
Time-of-day clock, 112
Time scales

histogram, 147–149
trace tools, 196

Time zones with timestamps, 136
timealign.cc program, 115–117
TimeDiskWrite() routine, 73

Timelines
aggregate measures, 143–147
software dynamics display, 260–265

Timeouts, 358
Times in data display, 215
Timeslicing, 358–359
timestamp field for JSON events, 255
Timestamps

constant-rate counters, 21
KUtrace tool, 219
Linux kernel patches, 233
logs, 134–136
packet tracing, 235
per-function Gmail trace example, 205
per-instance dashboards, 164
queue waiting, 362
trace entries, 391

Timing for memory, 31–32
title field for JSON metadata, 255
TLBs (translation lookaside buffers)

early CPUs, 17
organization, 36–37

Tools
blktrace, 184–187
Dapper, 189–191
data to be observed, 169–170
design. See Observation tools design
exercises, 191
ftrace, 180–183
locktrace, 189
ltrace, 179–180
mtrace, 183–184
observation, 167–169
oprofile profiling system, 173–176
perf, 171–173
/proc and /sys pseudofiles, 171
strace, 176–179
summary, 191
tcpdump, 187–189
time, 171
top, 170–171
Wireshark, 187–189

top command, 170–171
TPUs (tensor processing units), 385
Trace calls

initializing and controlling, 241
Insert1, 241–243
InsertN, 243–244

Trace entries
event numbers, 393–395
fields, 391
fixed-length, 391–392
IPC, 232
nested, 233
syscall, 230–231
variable-length, 392–393

tracebase field for JSON metadata, 255

432 Traceblocks

Traceblocks
Linux kernel patches, 229–230
switching, 244

Traces, 193
advantages, 193–194
buffer data structures, 228
design questions, 194–197
disadvantages, 194
initializing and controlling, 241
KUtrace tool design, 222
logs, 133
per-function counts and time example,

199–202
per-function Gmail example, 203–207
program counter example, 197–199
summary, 207–208
user-mode runtime control, 245

Tracing tools, 167–169
blktrace, 184–187
ftrace, 180–183
locktrace, 189
ltrace, 179–180
mtrace, 183–184
observation tools design, 212
strace, 176–179

Track, disk, 62–64
Transactions

aggregate measures examples, 154–155
description, 3
latency, 189–191
latency variation in disk and network data-

base interaction, 128
speed factors, 11–12

Translation buffers access time, 46
Translation lookaside buffers. See TLBs
Transmission Control Protocol (TCP) packet tracing.

See TCP
Transmission Control Protocol/Internet Protocol.

See TCP/IP
Transmission delays in networks, 323–327
Transpose method, 55–57
Trees for remote procedure calls, 7
Tufte, Edward R., 214, 411
Turner, Paul, 408
txt box in software dynamics display, 266
Type field in RPC headers, 98

U
UDP (User Datagram Protocol) packets

network waiting anomaly, 334–335
tracing, 234–235

Unaligned references, 36
Unbalanced tasks in queues, 377–378
Underutilization of caches, 46
Unidentified communication time in networks,

93–94
Uniform distribution, 363, 364, 381

Uniform event rates vs. bursty, 142
Uniform requests in queues, 362–364
Units

dashboards, 160
order-of-magnitude, 9

Unpredictable unusual transactions, traces for,
194

Unreasonable offered loads, 11
Update intervals

aggregate measures, 152–154
master dashboards, 160–161

User Datagram Protocol. See UDP
User-facing

complex software, 4
fan outs from, 7
foreground programs, 5, 157, 158
latency, understanding, xxiv
live load, 11, 194
performance disasters, 68
RPCs, 131
unacceptable delays, 122, 125

User-mode code
RPCs, 92, 320
trace entry events, 395

User-mode library for KUtrace tool, 219, 222
User-mode runtime control for KUtrace, 245

control interface to loadable modules, 247
kutrace_control program, 246
kutrace_lib library, 246–247
summary, 247
tracing control, 245

UTC (coordinated universal time) for timestamps,
136

V
Vahdat, Amin M., 407, 408
Valgrind, 189, 411
Vampire taps, 87
Variable-length trace entries, 392–393
Variance, xxii, 1, 168, 323
Variation

CPU frequency, 369
disk blocks and, 75
execution skew as, 7
finding sources of, 1
transaction latency, 95, 111, 128
mystery2.cc, 47, 346, 349
99th percentile, 151
profiling and, 203
RPC logging showing, 272
run-to-run, 52
3X, 42

VAX-11/780, 407
version field for JSON metadata, 255
VLAN packets, 90–91
Virtual machine, 220, 385
Virtual memory, 15, 17, 36, 46, 82, 170, 306

http://mystery2.cc

 Zwergelstern 433

Virtually addressed cache, 37
vmalloc routine, 227
Volatile variables in CPU measurements, 25–26, 29

W
wait command in kutrace_control program, 246
WaitMsec routine, 328
Wall, David W., 406
Walpole, Jonathan, 409
Wang, Han, 409
Watchdog timers, 358
Wear-leveling in SSDs, 66
Weatherspoon, Hakim, 409
Weaveworks, 411
Whetstone benchmark, 25, 173, 191, 279, 281,

286
Wikimedia 2005, 63, 414
Wikimedia 2006, 65, 414
Wikimedia 2008, 143, 411
Wikimedia 2010, 32, 413
Wikimedia 2012, 62, 414
Wikimedia 2013, 62, 414
Wikimedia 2016, 33, 413
Wikimedia 2020a, 88, 414
Wikimedia 2020b, 338, 414
Wikimedia 2021, 111, 414
Wikipedia 2019a, 17, 411
Wikipedia 2020a, 16, 411
Wikipedia 2020b, 17, 411
Wikipedia 2020c, 17, 411
Wikipedia 2020d, 18, 411
Wikipedia 2020e, 18, 412
Wikipedia 2020f, 33, 412
Wikipedia 2020g, 290, 412
Wikipedia 2020h, 345, 412
Wikipedia 2021a, 16, 412
Wikipedia 2021b, 16, 412
Wikipedia 2021c, 17, 412
Wikipedia 2021d, 17, 412
Wikipedia 2021e, 17, 412
Wikipedia 2021f, 18, 412
Wikipedia 2021g, 18, 412
Wikipedia 2021h, 18, 412
Wikipedia 2021i, 18, 412
Wikipedia 2021j, 18, 412
Wikipedia 2021k, 20, 412
Wikipedia 2021l, 18, 412
Wikipedia 2021m, 33, 412

Wikipedia 2021n, 87, 412
Wikipedia 2021o, 112, 412
Wikipedia 2021p, 136, 413
Wikipedia 2021q, 137, 413
Wikipedia 2021r, 138, 413
Wikipedia 2021s, 143, 413
Wikipedia 2021t, 186, 413
Wikipedia 2021u, 199, 413
Wikipedia 2021v, 320, 413
Wikipedia 2021w, 320, 413
Wikipedia 2021x, 345, 413
Wikipedia 2021y, 347, 413
Wikipedia 2021z, 354, 413
Williams, Don, 190, 413
Wireshark, 187–189, 235, 319
Words

instruction sets, 16
memory, 32–33

Worker tasks in queues, 362, 365
worker_thread processes, 341–344
Write cycle, 20, 65, 66
write method

RPC clients, 104
RPC logs, 100

Writes
disk, 40MB, 308–310
disk, buffering, 67
disk, speed, 71–73
disk, timing display, 77–80
SSD, 40MB, 314–315
SSD, cycles, 65
SSD, timing display, 82

X
X-axis in software dynamics display, 265
Xeon processor, 18
Xerox PARC, 87

Y
Y-axis in software dynamics display, 259–260
Yarom, Yuval, 409
Ychars box in software dynamics display, 266
Yin, Zi, 407
YouTube 2016, 64, 413

Z
Zwaenepoel, Wily, xxv
Zwergelstern, 414

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	6 Measuring Networks
	6.1 About Ethernet
	6.2 About Hubs, Switches, and Routers
	6.3 About TCP/IP
	6.4 About Packets
	6.5 About Remote Procedure Calls (RPCs)
	6.6 Slop
	6.7 Observing Network Traffic
	6.8 Sample RPC Message Definition
	6.9 Sample Logging Design
	6.10 Sample Client-Server System Using RPCs
	6.11 Sample Server Program
	6.12 Spinlocks
	6.13 Sample Client Program
	6.14 Measuring One Sample Client-Server RPC
	6.15 Postprocessing RPC Logs
	6.16 Observations
	6.17 Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'PDFX-1a2001_LSC'] [Based on 'PDFX-1a2001'])
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

