
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137579938
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137579938
https://plusone.google.com/share?url=http://www.informit.com/title/9780137579938
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137579938
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137579938/Free-Sample-Chapter

Python
Programming with
Design Patterns

9780137579938_print.indb 1 26/10/21 9:23 PM

This page intentionally left blank

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town •
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi •

Mexico City • São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Python
Programming with
Design Patterns

James W. Cooper

9780137579938_print.indb 3 26/10/21 9:23 PM

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

Python screenshots: © 2001-2021, Python Software Foundation

Cover image: spainter_vfx/Shutterstock

Screenshot of MySQL Workbench © 2021, Oracle Corporation

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the web: informit.com/aw

Library of Congress Control Number: 2021947622

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-757993-8
ISBN-10: 0-13-757993-4

ScoutAutomatedPrintCode

Editor-in-Chief
Mark Taub

Executive Editor
Debra J. Willimans

Development Editor
Chris Zahn

Managing Editor
Sandra Schroeder

Senior Project
Editor
Lori Lyons

Copy Editor
Krista Hansing
Editorial Services

Production
Manager
Remya Divakaran/
Codemantra

Indexer
Ken Johnson

Proofreader
Charlotte Kughen

Compositor
Codemantra

A01_Cooper_FM_pi-pxxvi.indd 4 28/10/21 10:04 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We
embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender,
socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver
opportunities that improve lives and enable economic mobility. As we work with authors to
create content for every product and service, we acknowledge our responsibility to demonstrate
inclusivity and incorporate diverse scholarship so that everyone can achieve their potential
through learning. As the world’s leading learning company, we have a duty to help drive change
and live up to our purpose to help more people create a better life for themselves and to create a
better world.

Our ambition is to purposefully contribute to a world where:

QQ Everyone has an equitable and lifelong opportunity to succeed through learning.

QQ Our educational products and services are inclusive and represent the rich diversity of
learners.

QQ Our educational content accurately reflects the histories and experiences of the learners we
serve.

QQ Our educational content prompts deeper discussions with learners and motivates them to
expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any concerns or
needs with this Pearson product so that we can investigate and address them.

QQ Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

9780137579938_print.indb 5 26/10/21 9:23 PM

https://www.pearson.com/report-bias.html

This page intentionally left blank

❖

To Vicki

❖

9780137579938_print.indb 7 26/10/21 9:23 PM

Contents at a Glance

I: Introduction

1	 Introduction to Objects  5

2	 Visual Programming in Python  17

3	 Visual Programming of Tables of Data  41

4	 What Are Design Patterns?  53

II: Creational Patterns

5	 The Factory Pattern  61

6	 The Factory Method Pattern  67

7	 The Abstract Factory Pattern  75

8	 The Singleton Pattern  79

9	 The Builder Pattern  83

10	 The Prototype Pattern  91

11	 Summary of Creational Patterns  95

III: Structural Patterns

12	 The Adapter Pattern  99

13	 The Bridge Pattern  105

14	 The Composite Pattern  111

15	 The Decorator Pattern  121

16	 The Façade Pattern  129

17	 The Flyweight Pattern  139

18	 The Proxy Pattern  145

19	 Summary of Structural Patterns  151

9780137579938_print.indb 8 26/10/21 9:23 PM

IV: Behavioral Patterns

20	 Chain of Responsibility Pattern  155

21	 The Command Pattern  167

22	 The Interpreter Pattern  177

23	 The Iterator Pattern  187

24	 The Mediator Pattern  195

25	 The Memento Pattern  203

26	 The Observer Pattern  211

27	 The State Pattern  217

28	 The Strategy Pattern  225

29	 The Template Pattern  233

30	 The Visitor Pattern  239

V: A Brief Introduction to Python

31	 Variables and Syntax in Python  249

32	 Making Decisions in Python  263

33	 Development Environments  275

34	 Python Collections and Files  279

35	 Functions  291

A	 Running Python programs  295

Index  299

9780137579938_print.indb 9 26/10/21 9:23 PM

Table of Contents

I: Introduction  1
The tkinter Library  2

GitHub  2

1	 Introduction to Objects  5

The Class __init__ Method  6

Variables Inside a Class  6

Collections of Classes  7

Inheritance  8

Derived Classes Created with Revised Methods  8

Multiple Inheritance  8

Drawing a Rectangle and a Square  10

Visibility of Variables  12

Properties  13

Local Variables  13

Types in Python  13

Summary  14

Programs on GitHub  15

2	 Visual Programming in Python  17

Importing Fewer Names  19

Creating an Object-Oriented Version   19

Using Message Boxes  21

Using File Dialogs  22

Understanding Options for the Pack Layout Manager  23

Using the ttk Libraries  24

Responding to User Input  25

Adding Two Numbers  26

Catching the Error  26

Applying Colors in tkinter  27

Creating Radio Buttons  27

Using a Class-Level Variable  30

Communicating Between Classes  30

Using the Grid Layout  30

Creating Checkbuttons  32

Disabling Check Boxes  34

9780137579938_print.indb 10 26/10/21 9:23 PM

xiContents

Adding Menus to Windows  35

Using the LabelFrame  39

Moving On  40

Examples on GitHub  40

3	 Visual Programming of Tables of Data  41

Creating a Listbox  42

Displaying the State Data  44

Using a Combobox  46

The Treeview Widget  47

Inserting Tree Nodes  50

Moving On  51

Example Code on GitHub  51

4	 What Are Design Patterns?  53

Defining Design Patterns  54

The Learning Process  55

Notes on Object-Oriented Approaches  56

Python Design Patterns  57

References  57

II: Creational Patterns  59

5	 The Factory Pattern  61

How a Factory Works  61

Sample Code  62

The Two Subclasses  62

Building the Simple Factory  63

Using the Factory  63

A Simple GUI  64

Factory Patterns in Math Computation  65

Programs on GitHub  65

Thought Questions  66

6	 The Factory Method Pattern  67

The Swimmer Class  68

The Event Classes  69

Straight Seeding  70

Circle Seeding  71

9780137579938_print.indb 11 26/10/21 9:23 PM

xii Contents

Our Seeding Program  72

Other Factories  74

When to Use a Factory Method   74

Programs on GitHub  74

7	 The Abstract Factory Pattern  75

A GardenMaker Factory  75

How the User Interface Works  77

Consequences of the Abstract Factory Pattern  77

Thought Questions  78

Code on GitHub  78

8	 The Singleton Pattern  79

Throwing the Exception  80

Creating an Instance of the Class  80

Static Classes As Singleton Patterns  81

Finding the Singletons in a Large Program  81

Other Consequences of the Singleton Pattern  82

Sample Code on GitHub  82

9	 The Builder Pattern  83

An Investment Tracker  84

Calling the Builders  86

The List Box Builder  87

The Checkbox Builder  88

Displaying the Selected Securities  89

Consequences of the Builder Pattern  89

Thought Questions  89

Sample Code on GitHub  89

	10	 The Prototype Pattern  91

Cloning in Python  91

Using the Prototype  92

Consequences of the Prototype Pattern  94

Sample Code on GitHub  94

	11	 Summary of Creational Patterns  95

9780137579938_print.indb 12 26/10/21 9:23 PM

xiiiContents

III: Structural Patterns  97

	12	 The Adapter Pattern  99

Moving Data Between Lists  99

Making an Adapter  101

The Class Adapter  103

Two-Way Adapters  103

Pluggable Adapters  103

Programs on GitHub  103

	13	 The Bridge Pattern  105

Creating the User Interface  107

Extending the Bridge  108

Consequences of the Bridge Pattern  109

Programs on GitHub  110

	14	 The Composite Pattern  111

An Implementation of a Composite  112

Salary Computation  112

The Employee Classes  112

The Boss Class  113

Building the Employee Tree  114

Printing the Employee Tree  114

Creating a Treeview of the Composite  116

Using Doubly Linked Lists  117

Consequences of the Composite Pattern  118

A Simple Composite  119

Other Implementation Issues  119

Dealing with Recursive Calls  119

Ordering Components  120

Caching Results  120

Programs on GitHub  120

	15	 The Decorator Pattern  121

Decorating a Button  121

Using a Decorator  122

Using Nonvisual Decorators  123

Decorated Code  124

9780137579938_print.indb 13 26/10/21 9:23 PM

xiv Contents

The dataclass Decorator  125

Using dataclass with Default Values  126

Decorators, Adapters, and Composites  126

Consequences of the Decorator Pattern  126

Programs on GitHub  127

	16	 The Façade Pattern  129

Building the Façade Classes  131

Creating Databases and Tables  135

Using the SQLite Version  136

Consequences of the Façade  137

Programs on GitHub  137

Notes on MySQL  137

Using SQLite  138

References  138

	17	 The Flyweight Pattern  139

What Are Flyweights?  139

Example Code  140

Selecting a Folder  142

Copy-on-Write Objects  143

Program on GitHub  143

	18	 The Proxy Pattern  145

Using the Pillow Image Library  145

Displaying an Image Using PIL  146

Using Threads to Handle Image Loading  146

Logging from Threads  149

Copy-on-Write  149

Comparing Related Patterns  149

Programs on GitHub  150

	19	 Summary of Structural Patterns  151

IV: Behavioral Patterns  153

	20	 Chain of Responsibility Pattern  155

When to Use the Chain   156

Sample Code  156

9780137579938_print.indb 14 26/10/21 9:23 PM

xvContents

The Listboxes  159

Programming a Help System  160

Receiving the Help Command  161

The First Case  162

A Chain or a Tree?  163

Kinds of Requests  164

Consequences of the Chain of Responsibility  164

Programs on GitHub  165

	21	 The Command Pattern  167

When to Use the Command Pattern  167

Command Objects  168

A Keyboard Example  168

Calling the Command Objects  170

Building Command Objects  171

The Command Pattern  172

Consequences of the Command Pattern  172

Providing the Undo Function  172

Creating the Red and Blue Buttons  175

Undoing the Lines  175

Summary  176

References  176

Programs on GitHub  176

	22	 The Interpreter Pattern  177

When to Use an Interpreter  177

Where the Pattern Can Be Helpful  177

A Simple Report Example  178

Interpreting the Language  179

How Parsing Works  180

Sorting Using attrgetter()  181

The Print Verb  182

The Console Interface  182

The User Interface  183

Consequences of the Interpreter Pattern  184

Programs on GitHub  185

9780137579938_print.indb 15 26/10/21 9:23 PM

xvi Contents

	23	 The Iterator Pattern  187

Why We Use Iterators  187

Iterators in Python  187

A Fibonacci Iterator  188

Getting the Iterator  189

Filtered Iterators  189

The Iterator Generator  191

A Fibonacci Iterator  191

Generators in Classes  192

Consequences of the Iterator Pattern  192

Programs on GitHub  193

	24	 The Mediator Pattern  195

An Example System  195

Interactions Between Controls  197

Sample Code  198

Mediators and Command Objects  199

Consequences of the Mediator Pattern  200

Single Interface Mediators  200

Programs on GitHub  201

	25	 The Memento Pattern  203

When to Use a Memento  203

Sample Code  204

Consequences of the Memento Pattern  209

Programs on GitHub  209

	26	 The Observer Pattern  211

Example Program for Watching Colors Change  212

The Message to the Media  215

Consequences of the Observer Pattern  215

Programs on GitHub  215

	27	 The State Pattern  217

Sample Code  217

Switching Between States  221

How the Mediator Interacts with the StateManager  222

Consequences of the State Pattern  224

9780137579938_print.indb 16 26/10/21 9:23 PM

xviiContents

State Transitions  224

Programs on GitHub  224

	28	 The Strategy Pattern  225

Why We Use the Strategy Pattern  225

Sample Code  226

The Context  227

The Program Commands  227

The Line and Bar Graph Strategies  228

Consequences of the Strategy Pattern  230

Programs on GitHub  231

	29	 The Template Pattern  233

Why We Use Template Patterns  233

Kinds of Methods in a Template Class  234

Sample Code  234

Drawing a Standard Triangle  235

Drawing an Isosceles Triangle  236

The Triangle Drawing Program  237

Templates and Callbacks  238

Summary and Consequences  238

Example Code on GitHub  238

	30	 The Visitor Pattern  239

When to Use the Visitor Pattern  239

Working with the Visitor Pattern  241

Sample Code  241

Visiting Each Class  242

Visiting Several Classes  242

Bosses Are Employees, Too  243

Double Dispatching  245

Traversing a Series of Classes  245

Consequences of the Visitor Pattern  245

Example Code on GitHub  245

9780137579938_print.indb 17 26/10/21 9:23 PM

xviii Contents

V: A Brief Introduction to Python  247

	31	 Variables and Syntax in Python   249

Data Types  250

Numeric Constants  250

Strings  250

Character Constants  251

Variables  252

Complex Numbers  253

Integer Division  253

Multiple Equal Signs for Initialization  254

A Simple Python Program  254

Compiling and Running This Program  255

Arithmetic Operators  255

Bitwise Operators  255

Combined Arithmetic and Assignment Statements  256

Comparison Operators  256

The input Statement  257

PEP 8 Standards  258

Variable and Function Names  258

Constants  258

Class Names  258

Indentation and Spacing  259

Comments  259

Docstrings  259

String Methods  260

Examples on GitHub  261

	32	 Making Decisions in Python  263

elif is “else if”  263

Combining Conditions  264

The Most Common Mistake  264

Looping Statements in Python  265

The for Loop and Lists  265

Using range in if Statements  266

Using break and continue  266

The continue Statement  267

Python Line Length  267

9780137579938_print.indb 18 26/10/21 9:23 PM

xixContents

The print Function  267

Formatting Numbers  268

C and Java Style Formatting  269

The format string Function  269

f-string Formatting  269

Comma-Separated Numbers  270

Strings  270

Formatting Dates  271

Using the Python match Function  271

Pattern Matching  272

Reference  273

Moving On  273

Sample Code on GitHub  273

	33	 Development Environments  275

IDLE  275

Thonny  275

PyCharm  276

Visual Studio  276

Other Development Environments  276

LiClipse  276

Jupyter Notebook  277

Google Colaboratory  277

Anaconda  277

Wing  278

Command-Line Execution  278

CPython, IPython, and Jython  278

	34	 Python Collections and Files  279

Slicing  279

Slicing Strings  280

Negative Indexes  281

String Prefix and Suffix Removal  281

Changing List Contents  281

Copying a List  282

Reading Files  282

Using the with Loop  283

Handling Exceptions  284

9780137579938_print.indb 19 26/10/21 9:23 PM

xx Contents

Using Dictionaries  284

Combining Dictionaries  286

Using Tuples  286

Using Sets  287

Using the map Function  287

Writing a Complete Program  288

Impenetrable Coding  288

Using List Comprehension  289

Sample Programs on GitHub  290

	35	 Functions  291

Returning a Tuple  292

Where Does the Program Start?  292

Summary  293

Programs on GitHub  293

A	 Running Python Programs  295

If You Have Python Installed  295

Shortcuts  295

Creating an Executable Python Program  296

Command-Line Arguments  297

		 Index  299

9780137579938_print.indb 20 26/10/21 9:23 PM

Preface
When I began studying Python, I was impressed by how simple coding was and how easy it was
to get started writing basic programs. I tried several development environments, and in all cases, I
was able to get simple programs running in moments.

The Python syntax was simple, and there were no brackets or semicolons to remember. Other
than remembering to use the Tab key (to generate those four-space indentations), coding in
Python was easy.

But it was only after I played with Python for a few weeks that I began to see how sophisticated
the language really is and how much you can really do with it. Python is a fully object-oriented
language, making it easy to create classes that hold their own data without a lot of syntactic
fussing.

In fact, I started trying to write some programs that I had written years ago in Java, and I was
amazed by how much simpler they were in Python. And with the powerful IDEs, it was hard to
make many mistakes.

When I realized how much I could get done quickly in Python, I also realized that it was time to
write a book about powerful programs you can write in Python. This led to my writing new, clean,
readable versions of the 23 classic design patterns that I had originally coded some years before.

The result is this book, which illustrates the basics of object-oriented programming, visual
programming, and how to use all of the classic patterns. You can find complete working code
for all these programs on GitHub at https://github.com/jwcnmr/jameswcooper/tree/main/
Pythonpatterns.

This book is designed to help Python programmers broaden their knowledge of object-oriented
programming (OOP) and the accompanying design patterns.

QQ If you are new to Python but have experience in other languages, you will be able to charge
ahead by reviewing Chapter 31 through Chapter 35 and then starting back at Chapter 1.

QQ If you are experienced in Python but want to learn about OOP and design patterns, start at
Chapter 1. If you like, you can skip Chapter 2 and Chapter 3 and go right through the rest
of the book.

QQ If you are new to programming in general, spend some time going over Chapter 31 through
35 to try some of the programs. Then start on Chapter 1 to learn about OOP and design
patterns.

You will likely find that Python is the easiest language you ever learned, as well as the most
effortless language for writing the objects you use in design patterns. You’ll see what they are for
and how to use them in your own work.

In any case, the object-oriented programming methods presented in these pages can help you
write better, more reusable program code.

9780137579938_print.indb 21 26/10/21 9:23 PM

https://github.com/jwcnmr/jameswcooper/tree/main/Pythonpatterns
https://github.com/jwcnmr/jameswcooper/tree/main/Pythonpatterns

Book Organization
This book is organized into five parts.

Part I, “Introduction”
Design patterns essentially describe how objects can interact effectively. This book starts by
introducing objects in Chapter 1, “Introduction to Objects,” and providing graphical examples
that clearly illustrate how the patterns work.

Chapter 2, “Visual Programming in Python,” and Chapter 3, “Visual Programming of Tables of
Data,” introduce the Python tkinter library, which gives you a way to create windows, buttons,
lists, tables, and more with minimal complexity.

Chapter 4, “What Are Design Patterns?”, begins the discussion of design patterns by exploring
exactly what they are.

Part II, “Creational Patterns”
Part II starts by outlining the first group of patterns that the “Gang of Four” named Creational
Patterns.

Chapter 5, “The Factory Pattern,” describes the basic Factory pattern, which serves as the simple
basis of the three factory patterns that follow. In this chapter, you create a Factory class that
decides which of several related classes to use, based on the data itself.

Chapter 6, “The Factory Method Pattern,” explores the Factory method. In this pattern, no single
class makes the decision as to which subclass to instantiate. Instead, the superclass defers the
decision to each subclass.

Chapter 7, “The Abstract Factory Pattern,” discusses the Abstract Factory pattern. You can use this
pattern when you want to return one of several related classes of objects, each of which can return
several different objects on request. In other words, the Abstract Factory is a factory object that
returns one of several groups of classes.

Chapter 8, “The Singleton Pattern,” looks at the Singleton pattern, which describes a class in
which there can be no more than one instance. It provides a single global point of access to that
instance. You don’t use this pattern all that often, but it is helpful to know how to write it.

In Chapter 9, “The Builder Pattern,” you see that the Builder pattern separates the construction
of a complex object from its visual representation, so that several different representations can be
created, depending on the needs of the program.

Chapter 10, “The Prototype Pattern,” shows how to use the Prototype pattern when creating an
instance of a class is time consuming or complex. Instead of creating more instances, you make
copies of the original instance and modify them as appropriate.

Chapter 11, “Summary of Creational Patterns,” just summarizes the patterns in Part II.

9780137579938_print.indb 22 26/10/21 9:23 PM

Part III, “Structural Patterns”
Part III begins with a short discussion of Structural Patterns.

Chapter 12, “The Adapter Pattern,” examines the Adapter pattern, which is used to convert the
programming interface of one class into that of another. Adapters are useful whenever you want
unrelated classes to work together in a single program.

Chapter 13, “The Bridge Pattern,” takes up the similar Bridge pattern, which is designed to
separate a class’s interface from its implementation. This enables you to vary or replace the
implementation without changing the client code.

Chapter 14, “The Composite Pattern,” delves into systems in which a component may be an
individual object or may represent a collection of objects. The Composite pattern is designed to
accommodate both cases, often in a treelike structure.

In Chapter 15, “The Decorator Pattern,” we look at the Decorator pattern, which provides a way to
modify the behavior of individual objects without having to create a new derived class. Although
this can apply to visual objects such as buttons, the most common use in Python is to create a
kind of macro that modifies the behavior of a single class instance.

In Chapter 16, “The Façade Pattern,” we learn to use the Façade pattern to write a simplifying
interface to code that otherwise might be unduly complex. This chapter deals with such an
interface to a couple of different databases.

Chapter 17, “The Flyweight Pattern,” describes the Flyweight pattern, which enables you to
reduce the number of objects by moving some of the data outside the class. You can consider this
approach when you have multiple instances of the same class.

Chapter 18, “The Proxy Pattern,” looks at the Proxy pattern, which is used when you need to
represent an object that is complex or time consuming to create, by a simpler one. If creating an
object is expensive in time or computer resources, Proxy enables you to postpone creation until
you need the actual object.

Chapter 19, “Summary of Structural Patterns,” summarizes these Structural patterns.

Part IV, “Behavioral Patterns”
Part IV outlines the Behavioral Patterns.

Chapter 20, “Chain of Responsibility Pattern,” looks at how the Chain of Responsibility pattern
allows a decoupling between objects by passing a request from one object to the next in a chain
until the request is recognized.

Chapter 21, “The Command Pattern,” shows how the Command pattern uses simple objects to
represent the execution of software commands. Additionally, this pattern enables you to support
logging and undoable operations.

Chapter 22, “The Interpreter Pattern,” looks at the Interpreter pattern, which provides a
definition of how to create a little execution language and include it in a program.

9780137579938_print.indb 23 26/10/21 9:23 PM

In Chapter 23, “The Iterator Pattern,” we explore the well-known Iterator pattern, which describes
the formal ways you can move through a collection of data items.

Chapter 24, “The Mediator Pattern,” takes up the important Mediator pattern. This pattern
defines how communication between objects can be simplified by using a separate object to keep
all objects from having to know about each other.

Chapter 25, “The Memento Pattern,” saves the internal state of an object, so you can restore it
later.

In Chapter 26, “The Observer Pattern,” we look at the Observer pattern, which enables you to
define the way a number of objects can be notified of a change in a program state.

Chapter 27, “The State Pattern,” describes the State pattern, which allows an object to modify its
behavior when its internal state changes.

Chapter 28, “The Strategy Pattern,” describes the Strategy pattern, which, like the State pattern,
switches easily between algorithms without any monolithic conditional statements. The
difference between the State and Strategy patterns is that the user generally chooses which of
several strategies to apply.

In Chapter 29, “The Template Pattern,” we look at the Template pattern. This pattern formalizes
the idea of defining an algorithm in a class but leaves some of the details to be implemented in
subclasses. In other words, if your base class is an abstract class, as often happens in these design
patterns, you are using a simple form of the Template pattern.

Chapter 30, “The Visitor Pattern,” explores The Visitor pattern, which turns the tables on the
object-oriented model and creates an external class to act on data in other classes. This is useful
if there are a fair number of instances of a small number of classes and you want to perform some
operation that involves all or most of them.

Part V, “A Brief Introduction to Python”
In this last section of the book, we provide a succinct summary of the Python language. If you are
only passingly familiar with Python, this will get you up to speed. It is sufficiently thorough to
instruct beginner as well.

In Chapter 31, “Variables and Syntax in Python,” we review the basic Python variables and
syntax, and in Chapter 32, “Making Decisions in Python,” we illustrate the ways your programs
can make decisions.

In Chapter 33, “Development Environments,” we provide a short summary of the most common
development environments, and in Chapter 34, “Python Collections and Files,” we discuss arrays
and files.

Finally in Chapter 35, “Functions,” we take up how to use functions on Python.

Enjoy writing design patterns and learning the ins and outs of the powerful Python language!

9780137579938_print.indb 24 26/10/21 9:23 PM

Register Your Book

9780137579938_print.indb 25 26/10/21 9:23 PM

Acknowledgments
I must start by thanking the late John Vlissides, one of the original “Gang of Four,” for his clear
explanations of several points about these design patterns. He worked just a few doors down from
me at IBM Research and didn’t mind my dropping in for a chat about patterns from time to time.

I also really appreciated early supportive comments from Arianne Dee and Ausif Mahmood, as
well as Vaughn Cooper.

Of course, my editor, Debra J. Williams, has been both supportive and creative in helping me
bring this project to fruition, as have the reviewers, Nick Cohron and Regina R. Monaco. And
from a development point of view, Chris Zahn has been terrific.

I hope you enjoy writing patterns in Python as much as I have.

James Cooper
Wilton, CT

July 2021

9780137579938_print.indb 26 26/10/21 9:23 PM

About the Author
James W. Cooper holds a PhD in chemistry and worked in academia, for the scientific instrument
industry, and for IBM for 25 years, primarily as a computer scientist at IBM’s Thomas J. Watson
Research Center. Now retired, he is the author of 20 books, including 3 on design patterns in
various languages. His most recent books are Flameout: The Rise and Fall of IBM Instruments (2019)
and Food Myths Debunked (2014).

James holds 11 patents and has written 60 columns for JavaPro Magazine. He has also written
nearly 1,000 columns for the now vanished Examiner.com on foods and chemistry, and he
currently writes his own blog: FoodScienceInstitute.com. Recently, he has written columns on
Python for Medium.com and Substack.

He is also involved in local theater groups and is the treasurer for Troupers Light Opera, where he
performs regularly.

9780137579938_print.indb 27 26/10/21 9:23 PM

http://Examiner.com
http://FoodScienceInstitute.com
http://Medium.com

This page intentionally left blank

4
What Are Design Patterns?

Sitting at your desk in front of your workstation, you stare into space, trying to figure out how
to write a new program feature. You know intuitively what must be done, what data and what
objects come into play, but you have this underlying feeling that there is a more elegant and
general way to write this program.

In fact, you probably don’t write any code until you can build a picture in your mind of what
the code does and how the pieces of the code interact. The more you can picture this “organic
whole,” the more likely you are to feel comfortable that you have developed the best solution to
the problem. If you don’t grasp this whole right away, you might keep staring out the window for
a time, even though the basic solution to the problem is quite obvious.

In one sense, you feel that the most elegant solution will be more reusable and more maintain-
able, but even if you are the sole likely programmer, you feel reassured when you have designed a
solution that is relatively elegant and doesn’t expose too many internal inelegancies.

One of the main reasons computer science researchers began to recognize design patterns is to
satisfy this need for elegant but simple reusable solutions. The term design patterns sounds a bit
formal to the uninitiated and can be somewhat off-putting when you first encounter it. But, in
fact, design patterns are just convenient ways of reusing object-oriented code between projects
and programmers. The idea behind design patterns is simple: to write down and catalog common
interactions between objects that programmers have frequently found useful.

One frequently cited pattern from early literature on programming frameworks is the Model-
View-Controller framework for Smalltalk (Krasner and Pope, 1988), which divided the user
interface problem into three parts. The parts were referred to as a data model, containing the
computational parts of the program; the view, which presents the user interface; and the controller,
which interacts between the user and the view (see Figure 4-1).

9780137579938_print.indb 53 26/10/21 9:24 PM

54 Chapter 4 What Are Design Patterns?

Controller View

Data model

Figure 4-1  Model-View-Controller illustration

Each of these aspects of the problem is a separate object, and each has its own rules for managing
its data. Communication among the user, the GUI, and the data should be carefully controlled,
and this separation of functions accomplished that very nicely. Three objects talking to each
other using this restrained set of connections is an example of a powerful design pattern.

In other words, design patterns describe how objects communicate without become entangled in
each other’s data models and methods. Keeping this separation has always been an objective of
good OO programming. If you have been trying to keep objects minding their own business, you
are probably already using some of the common design patterns.

Design patterns started to be recognized more formally in the early 1990s by Erich Gamma,1 who
described patterns incorporated in the GUI application framework ET++. The culmination of
these discussions and a number of technical meetings was the book Design Patterns: Elements of
Reusable Software, by Gamma, Helm, Johnson, and Vlissides.2 This best-selling book, commonly
referred to as the Gang of Four, or “GoF” book, has had a powerful impact on programmers
seeking to understand how to use design patterns. It describes 23 commonly occurring and gener-
ally useful patterns and comments on how and when you might apply them. Throughout the
following chapters, we refer to this groundbreaking book as Design Patterns.

Since the publication of the original Design Patterns, many other useful books have been
published. These include our popular Java Design Patterns: A Tutorial3 and an analogous book on
C# design patterns.4 Rhodes5 maintains an interesting site describing how Python can make use
of design patterns, as well.

Defining Design Patterns
We all talk about the way we do things in our everyday work, hobbies, and home life, and recog-
nize repeating patterns all the time:

QQ Sticky buns are like dinner rolls, but I add brown sugar and nut filling to them.

QQ Her front garden is like mine, but in mine I use astilbe.

QQ This end table is constructed like that one, but in this one, the doors replace drawers.

9780137579938_print.indb 54 26/10/21 9:24 PM

55The Learning Process

We see the same thing in programming, when we tell a colleague how we accomplished a tricky
bit of programming so that they don’t have to re-create it from scratch. We simply recognize effec-
tive ways for objects to communicate while maintaining their own separate existences.

To summarize:

Design patterns are frequently used algorithms that describe convenient ways for classes to
communicate.

It has become apparent that you don’t just write a design pattern off the top of your head. In fact,
most such patterns are discovered rather than written. The process of looking for these patterns is
called pattern mining and is worthy of a book of its own.

The 23 design patterns selected for inclusion in the original Design Patterns book were patterns
that had several known applications and were on a middle level of generality, where they could
easily cross application areas and encompass several objects.

The authors divided these patterns into three types: creational, structural, and behavioral.

QQ Creational patterns create objects for you instead of having you instantiate objects directly.
This gives your program more flexibility in deciding which objects need to be created for a
given case.

QQ Structural patterns help you compose groups of objects into larger structures, such as
complex user interfaces or accounting data.

QQ Behavioral patterns help you define the communication between objects in your system and
control the flow in a complex program.

The Learning Process
We have found that learning design patterns is a multiple-step process:

1.	 Acceptance

2.	 Recognition

3.	 Internalization

First, you accept the premise that design patterns are important in your work. Then you recognize
that you need to read about design patterns in order to determine when you might use them.
Finally, you internalize the patterns in sufficient detail that you know which ones might help you
solve a given design problem.

For some lucky people, design patterns are obvious tools, and they grasp their essential utility just
by reading summaries of the patterns. For many of the rest of us, there is a slow induction period
after we’ve read about a pattern, followed by the proverbial “Aha!” when we see how we can apply
them in our work. These chapters help take you to that final stage of internalization by providing
complete, working programs that you can try out for yourself.

9780137579938_print.indb 55 26/10/21 9:24 PM

56 Chapter 4 What Are Design Patterns?

The examples in Design Patterns are brief and are written in either C++ or, in some cases, Smalltalk.
If you are working in another language, it is helpful to have the pattern examples in your
language of choice. This part of the book attempts to fill that need for Python programmers.

Notes on Object-Oriented Approaches
The fundamental reason for using design patterns is to keep classes separated and prevent them
from having to know too much about one another. Equally important, using these patterns
helps you avoid reinventing the wheel and enables you to describe your programming approach
succinctly in terms other programmers can easily understand.

There are a number of strategies that OO programmers use to achieve this separation, among
them encapsulation and inheritance. Nearly all languages that have OO capabilities support
inheritance. A class that inherits from a parent class has access to all the methods of that parent
class. It also has access to all its variables. However, by starting your inheritance hierarchy with
a complete, working class, you might be unduly restricting yourself as well as carrying along
specific method implementation baggage. Instead, Design Patterns suggests that you always

Program to an interface and not to an implementation.

Putting this more succinctly, you should define the top of any class hierarchy with an abstract
class or an interface, which implements no methods but simply defines the methods that class will
support. Then in all your derived classes, you have more freedom to implement these methods as
best suits your purposes.

Python does not directly support interfaces, but it does let you write abstract classes, where the
methods have no implementation. Remember the comd interface to the DButton class:

class DButton(Button):
 def __init__(self, master, **kwargs):
 super().__init__(master, **kwargs)
 super().config(command=self.comd)

 # abstract method to be called by children
 def comd(self): pass

This is a good example of an abstract class. Here you fill in the code for the command method in
the derived button classes. As you will see, it is also an example of the Command design pattern.

The other major concept you should recognize is object composition. We have already seen this
approach in the Statelist examples. Object composition is simply the construction of objects
that contain others—the encapsulation of several objects inside another one. Many beginning
OO programmers tend to use inheritance to solve every problem, but as you begin to write more
elaborate programs, the merits of object composition become apparent. Your new object can have
the interface that works best for what you want to accomplish without having all the methods of
the parent classes. Thus, the second major precept suggested by Design Patterns is

Favor object composition over inheritance.

9780137579938_print.indb 56 26/10/21 9:24 PM

57References

At first this seems contrary to the customs of OO programming, but you will see any number
of cases among the design patterns where we find that inclusion of one or more objects inside
another is the preferred method.

Python Design Patterns
The following chapters discuss each of the 23 design patterns featured in the Design Patterns book,
along with at least one working program example for that pattern. The programs have some sort
of visual interface as well to make them more immediate to you.

Which design patterns are most useful? This depends on the individual programmer. The ones we
use the most are Command, Factory, Decorator, Façade, and Mediator, but we have used nearly
every one at some point.

References
1.	 Erich Gamma, Object-Oriented Software Development based on ET++, (in German) (Springer-

Verlag, Berlin, 1992).

2.	 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns, Elements
of Reusable Object-Oriented Software (Reading, MA: Addison-Wesley, 1995).

3.	 James Cooper, Java Design Patterns: A Tutorial (Boston: Addison-Wesley: 2000).

4.	 James Cooper, C# Design Patterns: A Tutorial (Boston: Addison-Wesley, 2003).

5.	 Brandon Rhodes, “Python Design Patterns,” https://python-patterns.guide.

9780137579938_print.indb 57 26/10/21 9:24 PM

https://python-patterns.guide

Index

Symbols
= (equal signs)

assignment (=) operator, 264

initialization, 254

is equal to (==) operator, 264

spacing, 259

A
Abstract Factory pattern, 75, 95

consequences of, 77–78

GardenMaker Factory, 75–77

GitHub programs, 78

purposes of, 77–78

thought questions, 78

user interfaces, 77

access (privileged), iterators, 192–193

accessor methods, 6

accounts (GitHub), setting up, 3

Adapter pattern, 99

Class adapter, 103

creating adapters, 101–102

GitHub programs, 103

moving data between lists, 99–101

pluggable adapters, 103

two-way adapters, 103

adapters

Class adapter, 103

creating, 101–102

pluggable adapters, 103

two-way adapters, 103

Z02_Cooper_Index_p299-324_new2.indd 299 26/10/21 10:29 PM

300 adding

adding

menus, to windows, 35–38

two numbers, visual programming, 26

Anaconda, 277

AND operator, 256

arithmetic operators, 255, 259

arithmetic/assignment statements,
combined, 256

arrays

lists, 265

range function, 265

assignment (=) operator, 264

attrgetter operator, sorting, 181–182

B
bar graphs, Line and Bar Graph strategies,

228–230

behavioral patterns, 55, 153

Chain of Responsibility pattern, 155–156

consequences of, 164–165

first cases, 162

GitHub programs, 165

help systems, programming,
160–161

help systems, tree structures,
163–164

listboxes, 159–160

receiving help command, 161–162

requests, 164

sample code, 156–159

using, 156

Command pattern, 167, 176

ButtonCommand objects, 175

buttons, creating, 175

buttons, Undo button, 175–176

Command objects, 168

Command objects, building,
171–172

Command objects, calling, 170–171

Command objects, containers, 172

Command objects, mediators,
199–200

consequences of, 172

GitHub programs, 176

keyboard example, 168–170

KeyModerator class, 169, 170

references, 176

Undo button, 175–176

Undo function, 172–175

Interpreter pattern, 177

attrgetter operator, sorting, 181–182

consequences of, 184–185

console interface, 182–183

GitHub programs, 185

languages, 179–180

parsing, 180–181

Print verb, 182

report generator example, 178–179

usefulness of, 177–178

user interfaces, 183–184

using, 177

Variable class, 181

Verb class, 181

Iterator pattern, 187

calling iterators, 189

composites and iterators, 193

consequences of, 192–193

creating iterators, 189

dunder methods, 188

external iterators, 193

Fibonacci iterators, 188–189,
191–192

filtered iterators, 189–191

generators in classes, 192

getting iterators, 189

GitHub programs, 193

internal iterators, 193

Z02_Cooper_Index_p299-324_new2.indd 300 26/10/21 10:29 PM

301behavioral patterns

iterable containers, 188

iterator generator, 191

for loops as iterators, 187–188

modifying data, 192

privileged access, 192–193

using, 187

Mediator pattern, 195

Command objects, 199–200

consequences of, 200

example system, 195–197

GitHub programs, 201

interactions between controls, 197

sample code, 198–199

single interface mediators, 200–201

Memento pattern, 203

Caretaker class, 208–209

consequences of, 209

GitHub programs, 209

graphics drawing program example,
204–209

sample code, 204–209

using, 203–204

Observer pattern, 211–212

color changing program example,
212–214

consequences of, 215

GitHub programs, 215

messages to the media, 215

notifications, 215

State pattern, 217

consequences of, 224

GitHub programs, 224

graphics drawing program example,
217–220

sample code, 217–220

StateManager, mediator
interactions, 222–223

StateManager, switching between
states, 221

switching between states, 221

transitions, 224

Strategy pattern, 225

consequences of, 230–231

Context class, 227

GitHub programs, 231

Line and Bar Graph strategies,
228–230

PlotStategy class, 226–227

program commands, 227–228

sample code, 226–227

using, 225–226

Template pattern, 233

callbacks, 238

concrete methods, 234

consequences of, 238

empty methods, 234

GitHub programs, 238

hook methods, 234

isosceles triangles, 236

IsoscelesTriangle class, 236

Point class, 234

sample code, 234–235

standard triangles, 235

stdTriangle class, 235

summary of, 238

Template class, 234

Triangle class, 234–235, 236

Triangle Drawing program, 237

using, 233

Visitor pattern, 239, 241

Boss class, 242–243

BVacationVisitor class, 243–244

consequences of, 245

double dispatching, 245

GitHub programs, 245

sample code, 241–242

traversing a series of classes, 245

Z02_Cooper_Index_p299-324_new2.indd 301 26/10/21 10:29 PM

302 behavioral patterns

using, 239–240

visiting classes, 242

visiting several classes, 242–243

bitwise operators, 255–256

blank lines, classes/functions, 259

Blue button, creating, 175

Boolean variables, 250

Boss class

Composite pattern, 113

Visitor pattern, 242–243

break statements, 266

Bridge pattern, 105–107

consequences of, 109–110

creating user interfaces, 107

extending bridges, 107–109

GitHub programs, 110

Listbox builder, 105–106

Treeview widget, 105, 106, 107, 108–109

bridges, extending, 107–109

Builder pattern, 83–84, 95

calling builders, 86–87

Checkbox builder, 88

consequences of, 89

GitHub programs, 89

investment trackers, 84–86

Listbox builder, 87–88

selected securities, displaying, 89

thought questions, 89

ButtonCommand objects, Command
pattern, 175

buttons

Blue button, creating, 175

checkbuttons, grid layouts, 32–34

creating

Command pattern, 175

object-oriented programming, 19–21

visual programming, 17–19

Decorator pattern, 121–122

Hello buttons, 17

Quit buttons, 17–18

radio buttons, 27–29

Red button, 175

Undo button, Command pattern,
175–176

BVacationVisitor class, Visitor pattern,
243–244

byte codes, 2, 278

C
C style formatting, 269

caching results, Composite pattern, 120

callbacks, Template pattern, 238

calling

builders, Builder pattern, 86–87

Command objects, 170–171

functions, 293

iterators, 189

CamelCase, 258

Caretaker class, Memento pattern,
208–209

case (upper/lower)

CamelCase, 258

classes, 258

constants, 258

functions, 258–259

variables, 249, 252

catching errors, 26–27

Chain of Responsibility pattern, 155–156

consequences of, 164–165

first cases, 162

GitHub programs, 165

help command, receiving, 161–162

help systems

programming, 160–161

tree structures, 163–164

Z02_Cooper_Index_p299-324_new2.indd 302 26/10/21 10:29 PM

303collections

listboxes, 159–160

requests, 164

sample code, 156–159

using, 156

character constants, 251–252

check boxes, disabling, 34

Checkbox builder, 88

checkbuttons, grid layouts, 32–34

CircleSeeding class, 71–72

Class adapter, 103

Class_init_Method, 6

classes, 5–6

blank lines, 259

Boss class

Composite pattern, 113

Visitor pattern, 242–243

BVacationVisitor class, Visitor pattern,
243–244

CamelCase, 258

Caretaker class, Memento pattern,
208–209

collections, 7

communicating between, 30

Context class, Strategy pattern, 227

creating, 7

Database class, Facade pattern, 132–133

Decorator class, 121–123

derived classes, 8

Docstrings, 259

Employee class, Composite pattern,
112–113

Facade classes, building, 131–135

Factory classes, operation of, 61–62

Factory Method pattern

CircleSeeding class, 71–72

Event classes, 69–70

Straight Seeding class, 70–71

Swimmer class, 68–69

generators, 192

indentation, 259

inheritance, 8–9

instances

creating, 6

Singleton pattern, 80–81

IsoscelesTriangle class, Template pattern,
236

KeyModerator class, Command pattern,
169, 170

naming conventions, 258

PlotStategy class, Strategy pattern,
226–227

Point class, Template pattern, 234

Query class, Facade pattern, 133–134

Results class, Facade pattern, 134

static classes, Singleton pattern, 81

stdTriangle class, Template pattern, 235

subclasses, Factory pattern, 62–63

Table class, Facade pattern, 133

Template class, methods, 234

traversing a series of classes, Visitor
pattern, 245

Triangle class, Template pattern,
234–235, 236

Variable class, Interpreter pattern, 181

variables, 6–7, 30

Verb class, Interpreter pattern, 181

visiting, 242

Visitor class, 241–242

cloning, 91–92

coding, impenetrable, 288

collections

classes, 7

dictionaries

combining, 286

listing, 285

using, 284–285

Z02_Cooper_Index_p299-324_new2.indd 303 26/10/21 10:29 PM

304 collections

GitHub programs, 290

lists

changing contents, 281–282

copying, 282

creating, 279

doubly linked lists, 117–118

moving data between, 99–101

slicing, 279

spacing, 259

sets, using, 287

tuples

returning, 292

using, 286

color

color changing program example,
Observer pattern, 212–214

tkinter library, applying color with, 27

combining

arithmetic/assignment statements, 256

conditions, 264

dictionaries, 286

combo boxes, 46–47

Command pattern, 167, 176

ButtonCommand objects, 175

buttons

creating, 175

Undo button, 175–176

Command objects, 168

building, 171–172

calling, 170–171

containers, 172

mediators and, 199–200

consequences of, 172

GitHub programs, 176

keyboard example, 168–170

KeyModerator class, 169, 170

references, 176

Undo function, 172–175

command-line

arguments, 297–298

execution, 278

commands

Interp command, 180

program commands, Strategy pattern,
227–228

queuing, 168

comma-separated numbers, 270

comments

Docstrings, 259

indentation, 259

spacing, 259

common mistakes, Python decision
making, 264

communicating between classes, 30

comparison operators, 256–257

compiling, simple Python program
example, 255

complement operator, 250–256

complete Python programs, writing, 288

complex numbers, 253

Composite pattern, 111

Boss class, 113

caching results, 120

composite implementation, 112

consequences of, 118

doubly linked lists, 117–118

Employee class, 112–113

employee trees

building, 114

printing, 114–116

GitHub programs, 120

iterators, 193

leaf nodes, 112–113

recursive calls stet, 119

salary computation, 112

simple composites, 119

Treeviews of composites, 116–117

Z02_Cooper_Index_p299-324_new2.indd 304 26/10/21 10:29 PM

305data tables

compound operators, spacing, 259

comprehension, lists, 289

concrete methods, 234

conditions, combining, 264

console interface, Interpreter pattern,
182–183

constants

case, upper/lower, 258

character constants, 251–252

named constants. See variables

naming conventions, 258

numeric constants, 250

containers

Command objects, 172

iterable containers, 188

Context class, Strategy pattern, 227

continue statements, 267

controls, interactions between, 197

copying, lists, 282

copy-on write objects

Flyweight pattern, 143

Proxy pattern, 149

CPython, 278

creational patterns, 55, 59

Abstract Factory pattern, 75, 95

consequences of, 77–78

GardenMaker Factory, 75–77

GitHub programs, 78

purposes of, 77–78

thought questions, 78

user interfaces, 77

Builder pattern, 83–84, 95

calling builders, 86–87

Checkbox builder, 88

consequences of, 89

displaying selected securities, 89

GitHub programs, 89

investment trackers, 84–86

Listbox builder, 87–88

thought questions, 89

Factory Method pattern, 67–68, 74

CircleSeeding class, 71–72

Event classes, 69–70

GitHub programs, 74

seeding program, 72–73

Straight Seeding class, 70–71

using, 74

Factory pattern, 61, 95

building, 63

Factory classes, 61–62

GitHub programs, 65

GUI, 64

math computations, 65

sample code, 62

subclasses, 62–63

thought questions, 66

using, 63–64

Prototype pattern, 91, 95

cloning, 91–92

consequences of, 94

GitHub programs, 94

using, 92–94

Singleton pattern, 79–80, 95

consequences of, 82

GitHub programs, 82

large programs, 81–82

static classes, 81

throwing exceptions, 80

summary of, 95

D
data modification, iterators, 192

data tables, 41–42

combo boxes, 46–47

listboxes, creating, 42–43

state data, displaying, 44–46

Z02_Cooper_Index_p299-324_new2.indd 305 26/10/21 10:29 PM

306 data tables

tree nodes, inserting in data tables,
50–51

Treeview widget, 47–49

data types, 250

Database class, Facade pattern, 132–133

database objects, Facade pattern, 129

databases, creating, 135–136

dataclass decorator, 125–126

dates, formatting, 271

DBObjects, Facade pattern, 134

decision making in Python

arrays, range function, 265

assignment (=) operator, 264

break statements, 266

combining conditions, 264

common mistakes, 264

continue statements, 267

elif (else if) statements, 263–264

format string function, 269

formatting

dates, 271

formatting, C style, 269

formatting, Java style, 269

f-string formatting, 269

numbers, 268, 270

strings, 270

GitHub programs, 273

if statements, 263

else clauses, 263

range function, 266

is equal to (==) operator, 264

line length, 267

lists, 265

looping statements, 265

for loops, 265

match function, 271–272

pattern matching, 272–273

print function, 267–268

declaring variables, 252

Decorator pattern, 121, 126

buttons, 121–122

consequences of, 126–127

dataclass decorator, 125–126

decorated code, 124–125

Decorator class, 121–123

GitHub programs, 127

nonvisual decorators, 123–124

def keyword, functions, 291, 293

derived classes, 8

design patterns, 57. See also separate
entries

defined, 53, 54–55

learning process, 55–56

Model-View-Controller framework for
SmallTalk, 53–54

object-oriented strategies, 56

objects over inheritance, 57

popularity of, 54

programming to interfaces, 56

resources, 54

development environments

Anaconda, 277

command-line execution, 278

CPython, 278

Google Colaboratory, 277

IDLE, 275

IPython, 278

Jupyter Notebook, 277

Jython, 278

LiClipse, 276–277

PyCharm, 276

Thonny, 275–276

Visual Studio, 276

Wing, 278

dictionaries

combining, 286

listing, 285

using, 284–285

Z02_Cooper_Index_p299-324_new2.indd 306 26/10/21 10:29 PM

307Factory Method pattern

disabling check boxes, 34

dispatching, double, 245

displaying

images with PIL, 146

selected securities, Builder pattern, 89

state data, 44–46

dividing integers, 253

Docstrings, 259

double dispatching, Visitor pattern, 245

doubly linked lists, Composite pattern,
117–118

downloading SQLite, 138

drawing

drawing program example

Memento pattern, 204–209

State pattern, 217–220

isosceles triangles, 236

rectangles/squares, 10–11

standard triangles, 235

Triangle Drawing program, 237

dunder methods, 188

E
elif (else if) statements, 263–264

else clauses, if statements, 263

Employee class, Composite pattern,
112–113

employee trees

building, 114

printing, 114–116

empty methods, 234

equal signs (=)

assignment (=) operator, 264

initialization, 254

is equal to (==) operator, 264

spacing, 259

errors

catching, 26–27

handling, 284

message boxes, creating, 21

Event classes, Factory Method pattern,
69–70

exceptions

handling, 284

throwing, Singleton pattern, 80

executable Python programs, creating,
296–297

extending bridges, 107–109

external iterators, 193

F
Facade pattern, 129–131

classes, building, 131–135

consequences of, 137

Database class, 132–133

database objects, 129

databases, creating, 135–136

DBObjects, 134

GitHub programs, 137

MySQL database, connections, 131

MySQL Workbench, 130

Query class, 133–134

Results class, 134

SQLite, 136

Table class, 133

tables

creating, 135–136

names, 134–135

Factory classes, operation of, 61–62

Factory Method pattern, 67–68, 74

CircleSeeding class, 71–72

Event classes, 69–70

Z02_Cooper_Index_p299-324.indd 307 27/10/21 8:29 PM

308 Factory Method pattern

GitHub programs, 74

seeding program, 72–73

Straight Seeding class, 70–71

using, 74

Factory pattern, 61, 95

building, 63

Factory classes, operation of, 61–62

GitHub programs, 65

GUI, 64

math computations, 65

sample code, 62

subclasses, 62–63

thought questions, 66

using, 63–64

Fibonacci iterators, 188–189, 191–192

file dialogs, 22–23

files

opening, 282

reading, 282–283

filtered iterators, 189–191

first cases, Chain of Responsibility pattern,
162

Flyweight pattern, 139

copy-on write objects, 143

example code, 140–142

flyweights, defined, 139

folders

as flyweights, 140–142

selecting, 142–143

GitHub programs, 143

folders

as flyweights, 140–142

selecting, Flyweight pattern, 142–143

for loops, 187–188, 265, 266

for statements, 283

format string function, 269

formatting

C style formatting, 269

f-string formatting, 269

Java style formatting, 269

numbers, 268, 270

strings, 270

frames, LabelFrame widget, 39–40

f-string formatting, 269

functions, 291

blank lines, 259

calling, 293

case, upper/lower, 258–259

def keyword, 291, 293

Docstrings, 259

format string function, 269

GitHub programs, 293

len function, strings, 251

map function, 287–288

masking function. See AND operator

match function, 271–272

naming conventions, 258–259

print function, 267–268

range function, arrays, 265

returning tuples, 292

starting Python programs, 292–293

Undo function, Command pattern,
172–175

G
GardenMaker Factory, 75–77

GitHub programs

Abstract Factory pattern, 78

account setup, 3

Adapter pattern, 103

Bridge pattern, 110

Builder pattern, 89

Chain of Responsibility pattern, 165

collections, 290

Command pattern, 176

Composite pattern, 120

Decorator pattern, 127

Facade pattern, 137

Z02_Cooper_Index_p299-324_new2.indd 308 26/10/21 10:29 PM

309interactions between controls, Mediator pattern

Factory Method pattern, 74

Factory pattern, 65

Flyweight pattern, 143

functions, 293

Interpreter pattern, 185

Iterator pattern, 193

Mediator pattern, 201

Memento pattern, 209

Observer pattern, 215

programs, 15

Prototype pattern, 94

Proxy pattern, 150

Python, decision making, 273

Python syntax, 261

Singleton pattern, 82

State pattern, 224

Strategy pattern, 231

Template pattern, 238

Visitor pattern, 245

visual programming

data tables, 51–52

examples, 40

Google Colaboratory, 277

graphics drawing program example

Memento pattern, 204–209

State pattern, 217–220

grid layouts, 30–34

GUI (Graphical User Interfaces), Factory
pattern, 64

H
Hello buttons, creating, 17

help command, receiving, 161–162

help systems

programming, 160–161

tree structures, 163–164

hints, type, 13

hook methods, 234

I
icons, creating, 295–296

IDLE (Integrated Development and Learning
Environment), 275

if statements, 263

else clauses, 263

range function, 266

images

displaying with PIL, 146

loading with threads, 146–148

PIL

displaying images, 146

using, 145–146

impenetrable coding, 288

importing

names to tkinter library, 19

tkinter library tools, 17

indentation

comments, 259

loops/classes, 259

statements, 263

indexes, negative, 281

inheritance, 8

multiple inheritance, 8–9

objects over inheritance, 57

initialization, equal signs (=), 254

input statements, 257

input (user), responding to, 25–26

inserting tree nodes in data tables, 50–51

installing

MySQL, 137

Python, 275

instances

classes, Singleton pattern, 80–81

creating, 6

integer division, 253

interactions between controls, Mediator
pattern, 197

Z02_Cooper_Index_p299-324_new2.indd 309 26/10/21 10:29 PM

310 interfaces

interfaces

programming to, 56

single interface mediators, 200–201

internal iterators, 193

Interp command, 180

Interpreter pattern, 177

attrgetter operator, sorting, 181–182

consequences of, 184–185

console interface, 182–183

GitHub programs, 185

languages, 179–180

parsing, 180–181

Print verb, 182

report generator example, 178–179

usefulness of, 177–178

user interfaces, 183–184

using, 177

Variable class, 181

Verb class, 181

investment trackers, 84–86

IPython, 278

is equal to (==) operator, 264

isosceles triangles, drawing, 236

IsoscelesTriangle class, Template pattern,
236

iterable containers, 188

Iterator pattern, 187

calling iterators, 189

composites and iterators, 193

consequences of, 192–193

creating iterators, 189

dunder methods, 188

external iterators, 193

Fibonacci iterators, 188–189, 191–192

filtered iterators, 189–191

generators in classes, 192

getting iterators, 189

GitHub programs, 193

internal iterators, 193

iterable containers, 188

iterator generator, 191

for loops as iterators, 187–188

modifying data, 192

privileged access, 192–193

using, 187

J
Java style formatting, 269

.jpg files, PIL

displaying images, 146

using, 145–146

Jupyter Notebook, 277

Jython, 278

K
keyboards, Command pattern, 168–170

KeyModerator class, Command pattern,
169, 170

L
LabelFrame widget, 39–40

languages, Interpreter pattern, 179–180

large programs, Singleton pattern, 81–82

layouts, 17

grid layouts, 30–34

pack layouts, 18–19, 23–24

leaf nodes, Composite pattern, 112–113

learning design patterns, 55–56

left/right shift operators, 256

len function, strings, 251

LiClipse, 276–277

Line and Bar Graph strategies, 228–230

line length in Python, 267

Listbox builder

Bridge pattern, 105–106

Builder pattern, 87–88

Z02_Cooper_Index_p299-324_new2.indd 310 26/10/21 10:29 PM

311Memento pattern

listboxes

Chain of Responsibility pattern, 159–160

creating, 42–43

lists, 265

changing contents, 281–282

comprehension, 289

copying, 282

creating, 279

dictionaries, 285

doubly linked lists, Composite pattern,
117–118

moving data between, 99–101

slicing, 279

spacing, 259

loading images with threads, 146–148

local variables, 13

logging from threads, 149

looping statements, 265

loops

break statements, 266

continue statements, 267

indentation, 259

for loops, 187–188, 265, 266

with loops, 283–284

for loops, as iterators,

lower/upper case

CamelCase, 258

classes, 258

constants, 258

functions, 258–259

variables, 249, 252

M
making decisions in Python

arrays, range function, 265

assignment (=) operator, 264

break statements, 266

combining conditions, 264

common mistakes, 264

continue statements, 267

elif (else if) statements, 263–264

format string function, 269

formatting

dates, 271

formatting, C style, 269

formatting, Java style, 269

f-string formatting, 269

numbers, 268, 270

strings, 270

GitHub programs, 273

if statements, 263

else clauses, 263

range function, 266

is equal to (==) operator, 264

line length, 267

lists, 265

looping statements, 265

for loops, 265

match function, 271–272

pattern matching, 272–273

print function, 267–268

map function, 287–288

masking function. See AND operator

match function, 271–272

matching patterns, 272–273

math computations, Factory pattern, 65

Mediator pattern, 195

Command objects, 199–200

consequences of, 200

example system, 195–197

GitHub programs, 201

interactions between controls, 197

sample code, 198–199

single interface mediators, 200–201

Memento pattern, 203

Caretaker class, 208–209

consequences of, 209

GitHub programs, 209

Z02_Cooper_Index_p299-324_new2.indd 311 26/10/21 10:29 PM

312 Memento pattern

graphics drawing program example,
204–209

sample code, 204–209

using, 203–204

menus, adding to windows, 35–38

message boxes, 17

creating, 21–22

error message boxes, 21

warning message boxes, 21

messages to the media, Observer
pattern, 215

methods, 5

accessor methods, 6

concrete methods, 234

dunder methods, 188

empty methods, 234

hook methods, 234

revised methods, class creation, 8

strings, 251, 260–261

Template methods, 234

mistakes (common), Python decision
making, 264

Model-View-Controller framework for
SmallTalk, 53–54

modifying data, iterators, 192

moving, data between lists, 99–101

multiple inheritance, 8–9

MySQL, 137

database connections, 131

installing, 137

PyCharm, 137

pymysql library, 137

MySQL Workbench, 130

N
named constants. See variables

naming conventions, 249, 252

classes, 258

constants, 258

functions, 258–259

variables, 258–259

negative indexes, 281

nodes (leaf), Composite pattern, 112–113

nonvisual decorators, 123–124

notifications, Observer pattern, 215

numbers

adding, visual programming, 26

comma-separated numbers, 270

complex numbers, 253

dates, formatting, 271

formatting, 268, 270, 271

numeric constants, 250

O
object-oriented programming

buttons, creating, 19–21

classes, 5–6

collections, 7

creating, 7

derived classes, 8

inheritance, 8

inheritance, multiple inheritance,
8–9

instances, 6

variables, 6–7

defined, 5

inheritance, 8

methods, 5, 8

polymorphism, 14

rectangles/squares, drawing, 10–11

types, 13

declaring, 13–14

hints, 13

variables

local variables, 13

properties, 13

visibility, 12

Z02_Cooper_Index_p299-324.indd 312 27/10/21 8:29 PM

313Python

objects

ButtonCommand objects, Command
pattern, 175

Command objects, 168

building, 171–172

calling, 170–171

containers, 172

mediators and, 199–200

copy-on write objects

Flyweight pattern, 143

Proxy pattern, 149

database objects, Facade pattern, 129

over inheritance, 57

Observer pattern, 211–212

color changing program example,
212–214

consequences of, 215

GitHub programs, 215

messages to the media, 215

notifications, 215

ODBC (Open Database Connectivity), 129

opening, files, 282

OR operator, 256

operators

AND operator, 256

arithmetic operators, 255, 259

assignment (=) operator, 264

bitwise operators, 255–256

comparison operators, 256–257

complement operator, 250–256

compound operators, spacing, 259

is equal to (==) operator, 264

left/right shift operators, 256

OR operator, 256

in strings, 251

P
pack layouts, 18–19, 23–24

parsing, Interpreter pattern, 180–181

pattern matching, 272–273

PEP 8 standards, 258

PIL (Pillow Image Library)

displaying images, 146

using, 145–146

PlotStategy class, Strategy pattern,
226–227

pluggable adapters, 103

Point class, Template pattern, 234

polymorphism, 14, 243

prefix/suffix removal, strings, 281

print function, 267–268

Print verb, Interpreter pattern, 182

printing employee trees, 114–116

privileged access, iterators, 192–193

program commands, Strategy pattern,
227–228

programming, help systems, 160–161

properties, 13

Prototype pattern, 91, 95

cloning, 91–92

consequences of, 94

GitHub programs, 94

using, 92–94

Proxy pattern, 145

comparing related patterns, 149–150

copy-on write objects, 149

GitHub programs, 150

PIL

displaying images, 146

using, 145–146

threads

loading images, 146–148

logging from, 149

PyCharm, 137, 276

pymysql library, 137

Python

arrays, lists, 265

classes

Z02_Cooper_Index_p299-324_new2.indd 313 26/10/21 10:29 PM

314 Python

blank lines, 259

Docstrings, 259

indentation, 259

naming conventions, 258

command-line arguments, 297–298

comments

Docstrings, 259

indentation, 259

spacing, 259

complete programs, writing, 287–288

complex numbers, 253

constants

character constants, 251–252

named constants. See variables

naming conventions, 258

numeric constants, 250

data types, 250

decision making

assignment (=) operator, 264

break statements, 266

combining conditions, 264

common mistakes, 264

continue statements, 267

elif (else if) statements, 263–264

format string function, 269

formatting, C style, 269

formatting, dates, 271

formatting, f-string, 269

formatting, Java style, 269

formatting, numbers, 268, 270

formatting, strings, 270

GitHub programs, 273

if statements, 263

if statements, else clauses, 263

if statements, range function, 266

is equal to (==) operator, 264

line length, 267

lists, 265

looping statements, 265

for loops, 265

match function, 271–272

pattern matching, 272–273

print function, 267–268

range function, arrays, 265

development, 1–2

development environments

Anaconda, 277

command-line execution, 278

CPython, 278

Google Colaboratory, 277

IDLE, 275

IPython, 278

Jupyter Notebook, 277

Jython, 278

LiClipse, 276–277

PyCharm, 276

Thonny, 275–276

Visual Studio, 276

Wing, 278

dictionaries

listing, 285

using, 284–285

equal signs (=)

initialization with, 254

spacing, 259

executable programs, creating, 296–297

formatting, dates, 271

f-string formatting, 269

functions, 291

blank lines, 259

calling, 293

def keyword, 291, 293

Docstrings, 259

format string function, 269

GitHub programs, 293

map function, 287–288

Z02_Cooper_Index_p299-324.indd 314 27/10/21 8:30 PM

315Quit buttons, creating

match function, 271–272

naming conventions, 258–259

range function, arrays, 265

returning tuples, 292

starting Python programs, 292–293

GitHub programs

collections, 290

decision making, 273

syntax, 261

icons, creating, 295–296

installing, 275

integer division, 253

line length, 267

lists

changing contents, 281–282

comprehension, 289

copying, 282

slicing, 279

spacing, 259

loops

break statements, 266

continue statements, 267

for loops, 266

indentation, 259

with loops, 283–284

negative indexes, 281

operators, 250–256

AND operator, 256

arithmetic operators, 255, 259

bitwise operators, 255–256

comparison operators, 256–257

compound operators, 259

left/right shift operators, 256

OR operator, 256

pattern matching, 272–273

PEP 8 standards, 258

running programs, 295

sets, using, 287

shortcuts, creating, 295–296

simple program example, 254–255

starting programs, 292–293

statements

break statements, 266

combined arithmetic/assignment
statements, 256

continue statements, 267

elif (else if) statements, 263–264

if statements, 263

if statements, else clauses, 263

if statements, range function, 266

indentation, 263

input statements, 257

looping statements, 265

for statements, 283

strings

formatting, 270

len function, 251

methods, 251, 260–261

in operators, 251

prefix/suffix removal, 281

representing, 250–251

slicing, 251, 280

tuples, using, 287

variables

Boolean variables, 250

declaring, 252

naming conventions, 249, 252,
258–259

reassigning values, 250

upper/lower case, 249, 252

Q
Query class, Facade pattern, 133–134

queuing commands, 168

Quit buttons, creating, 17–18

Z02_Cooper_Index_p299-324_new2.indd 315 26/10/21 10:29 PM

316 radio buttons, creating

R
radio buttons, creating, 27–29

Radiobutton widget, 24–29

range function, arrays, 265

reading files, 282–283

reassigning variable values, 250

receiving help command, 161–162

rectangles/squares, drawing, 10–11

recursive calls stet, Composite pattern, 119

Red button, creating, 175

removing prefixes/suffixes from strings,
281

report generator example, Interpreter
pattern, 178–179

requests, Chain of Responsibility pattern,
164

responding to user input, 25–26

Responsibility pattern, Chain of, 155–156

consequences of, 164–165

first cases, 162

GitHub programs, 165

help command, receiving, 161–162

help systems

programming, 160–161

tree structures, 163–164

listboxes, 159–160

requests, 164

sample code, 156–159

using, 156

Results class, Facade pattern, 134

returning tuples, 292

revised methods, class creation, 8

S
salary computation, Composite pattern, 112

securities (selected), displaying, 89

seeding program, Factory Method pattern,
72–73

selected securities, displaying, 89

selecting folders, Flyweight pattern,
142–143

series of classes, traversing, 245

sets, using, 287

shortcuts, creating, 295–296

simple composites, 119

Simple Factory pattern, 61

building, 63

Factory classes, operation of, 61–62

GitHub programs, 65

GUI, 64

math computations, 65

sample code, 62

subclasses, 62–63

thought questions, 66

using, 63–64

single interface mediators, 200–201

Singleton pattern, 79–80, 95

consequences of, 82

exceptions, throwing, 80

GitHub programs, 82

large programs, 81–82

static classes, 81

slicing

lists, 279

strings, 251, 280

SmallTalk, Model-View-Controller framework,
53–54

sorting, attrgetter operator, 181–182

spacing

arithmetic operators, 259

comments, 259

equal signs (=), 259

lists, 259

SQLite

downloading, 138

Facade pattern, 136

Z02_Cooper_Index_p299-324_new2.indd 316 26/10/21 10:29 PM

317structural patterns

squares/rectangles, drawing, 10–11

standard triangles, drawing, 235

starting Python programs, 292–293

state data, displaying, 44–46

State pattern, 217

consequences of, 224

GitHub programs, 224

graphics drawing program example,
217–220

sample code, 217–220

StateManager

mediator interactions, 222–223

switching between states, 221

switching between states, 221

transitions, 224

StateManager

mediator interactions, 222–223

switching between states, 221

statements

break statements, 266

combined arithmetic/assignment
statements, 256

continue statements, 267

elif (else if) statements, 263–264

for statements, 283

if statements, 263

else clauses, 263

range function, 266

indentation, 263

input statements, 257

looping statements, 265

switch statements. See match function

static classes, Singleton pattern, 81

stdTriangle class, Template pattern, 235

Straight Seeding class, Factory Method
pattern, 70–71

Strategy pattern, 225

consequences of, 230–231

Context class, 227

GitHub programs, 231

Line and Bar Graph strategies, 228–230

PlotStategy class, 226–227

program commands, 227–228

sample code, 226–227

using, 225–226

strings

Docstrings, 259

format string function, 269

formatting, 270

f-string formatting, 269

len function, 251

methods, 251, 260–261

prefix/suffix removal, 281

representing, 250–251

slicing, 251, 280

structural patterns, 55, 59–97

Adapter pattern, 99

Class adapter, 103

creating adapters, 101–102

GitHub programs, 103

moving data between lists, 99–101

pluggable adapters, 103

two-way adapters, 103

Bridge pattern, 105–107

consequences of, 109–110

creating user interfaces, 107

extending bridges, 107–109

GitHub programs, 110

Listbox builder, 105–106

Treeview widget, 105, 106, 107,
108–109

Composite pattern, 111

Boss class, 113

building employee trees, 114

caching results, 120

composite implementation, 112

consequences of, 118

Z02_Cooper_Index_p299-324_new2.indd 317 26/10/21 10:29 PM

318 structural patterns

doubly linked lists, 117–118

Employee class, 112–113

GitHub programs, 120

iterators, 193

leaf nodes, 112–113

printing employee trees, 114–116

recursive calls stet, 119

salary computation, 112

simple composites, 119

Treeviews of composites, 116–117

Decorator pattern, 121, 126

buttons, 121–122

consequences of, 126–127

dataclass decorator, 125–126

decorated code, 124–125

Decorator class, 121–123

GitHub programs, 127

nonvisual decorators, 123–124

Facade pattern, 129–131

building classes, 131–135

consequences of, 137

creating databases, 135–136

creating tables, 135–136

Database class, 132–133

database objects, 129

DBObjects, 134

GitHub programs, 137

MySQL database connections, 131

MySQL Workbench, 130

Query class, 133–134

Results class, 134

SQLite, 136

Table class, 133

tables names, 134–135

Flyweight pattern, 139

copy-on write objects, 143

example code, 140–142

flyweights, defined, 139

folders as flyweights, 140–142

GitHub programs, 143

selecting folders, 142–143

Proxy pattern, 145

comparing related patterns, 149–150

copy-on write objects, 149

GitHub programs, 150

PIL, displaying images, 146

PIL, using, 145–146

threads, loading images, 146–148

threads, logging from, 149

summary of, 151

subclasses, Factory pattern, 62–63

suffix/prefix removal, 281

Swimmer class, Factory Method pattern,
68–69

switch statements. See match function

switching between states, 221

syntax, Python

classes

blank lines, 259

Docstrings, 259

indentation, 259

naming conventions, 258

comments

Docstrings, 259

spacing, 259

complex numbers, 253

constants

character constants, 251–252

named constants. See variables

naming conventions, 258

numeric constants, 250

data types, 250

equal signs (=)

initialization with, 254

spacing, 259

Z02_Cooper_Index_p299-324_new2.indd 318 26/10/21 10:29 PM

319thought questions

functions

blank lines, 259

Docstrings, 259

naming conventions, 258–259

GitHub programs, 261

integer division, 253

lists, spacing, 259

loops, indentation, 259

operators

AND operator, 256

arithmetic operators, 255, 259

bitwise operators, 255–256

comparison operators, 256–257

complement operator, 250–256

compound operators, 259

left/right shift operators, 256

OR operator, 256

PEP 8 standards, 258

Python, indentation, 259

statements

combined arithmetic/assignment
statements, 256

indentation, 263

input statements, 257

strings

len function, 251

methods, 251, 260–261

in operators, 251

representing, 250–251

slicing, 251

variables

Boolean variables, 250

declaring, 252

naming conventions, 249, 252,
258–259

reassigning values, 250

upper/lower case, 249, 252

T
Table class, Facade pattern, 133

tables

creating, Facade pattern, 135–136

data tables, 41–42

combo boxes, 46–47

listboxes, creating, 42–43

state data, displaying, 44–46

tree nodes, inserting in data tables,
50–51

Treeview widget, 47–49

names, Facade pattern, 134–135

Template class, methods, 234

Template methods, 234

Template pattern, 233

callbacks, 238

concrete methods, 234

consequences of, 238

empty methods, 234

GitHub programs, 238

hook methods, 234

isosceles triangles, 236

IsoscelesTriangle class, 236

Point class, 234

sample code, 234–235

standard triangles, 235

stdTriangle class, 235

summary of, 238

Template class, 234

Triangle class, 234–235, 236

Triangle Drawing program, 237

using, 233

Thonny, 275–276

thought questions

Abstract Factory pattern, 78

Builder pattern, 89

Factory pattern, 66

Z02_Cooper_Index_p299-324_new2.indd 319 26/10/21 10:29 PM

320 threads

threads

image loading, 146–148

logging from, 149

throwing exceptions, Singleton pattern, 80

tkinter library, 2

colors, applying, 27

importing names, 19

importing tools, 17

window setup, 17

tracking investments, 84–86

transitions, State pattern, 224

traversing a series of classes, Visitor
pattern, 245

tree nodes, inserting in data tables, 50–51

Treeview widget, 47–49

Bridge pattern, 105, 106, 107, 108–109

Composite pattern, 116–117

Triangle class, Template pattern, 234–235,
236

Triangle Drawing program, 237

triangles, drawing

isosceles triangles, 236

standard triangles, 235

ttk libraries, 24

tuples

returning, 292

using, 286

two-way adapters, 103

types, 13

declaring, 13

hints, 13

U
Undo button, Command pattern, 175–176

Undo function, Command pattern, 172–175

upper/lower case

CamelCase, 258

classes, 258

constants, 258

functions, 258–259

variables, 249, 252

user input, responding to, 25–26

user interfaces

Abstract Factory pattern, 77

creating, 107

GUI, Factory pattern, 64

Interpreter pattern, 183–184

V
Variable class, Interpreter pattern, 181

variables

Boolean variables, 250

case, upper/lower, 249, 252

declaring, 252

inside classes, 6–7, 30

local variables, 13

naming conventions, 258–259

properties, 13

visibility, 12

Verb class, Interpreter pattern, 181

visibility of variables, 12

Visitor pattern, 239, 241

Boss class, 242–243

BVacationVisitor class, 243–244

consequences of, 245

double dispatching, 245

GitHub programs, 245

sample code, 241–242

traversing a series of classes, 245

using, 239–240

visiting

classes, 242

several classes, 242–243

visual programming

buttons

Hello buttons, 17

Quit buttons, 17–18

radio buttons, 27–29

Z02_Cooper_Index_p299-324_new2.indd 320 26/10/21 10:29 PM

321with loops

check boxes, disabling, 34

classes

communicating between, 30

variables, 30

data tables, 41–42

combo boxes, 46–47

listboxes, 42–43

state data, displaying, 44–46

tree nodes, inserting, 50–51

Treeview widget, 47–49

errors, catching, 26–27

file dialogs, 22–23

Hello buttons, creating, 17

layouts, 17

grid layouts, 30–34

pack layouts, 18–19, 23–24

menus, adding to windows, 35–38

message boxes, 17

creating, 21–22

error message boxes, 21

warning message boxes, 21

numbers, adding, 26

Quit buttons, creating, 17–18

radio buttons, creating, 27–29

tkinter library

applying colors, 27

importing names, 19

importing tools, 17

window setup, 17

ttk libraries, 24

user input, responding to, 25–26

variables, inside classes, 30

widgets

grid layouts, 30–31

LabelFrame widget, 39–40

pack layout manager, options, 23–24

Radiobutton widget, 24–29

Treeview widget, 47–49

ttk libraries, 24

windows, adding menus to, 35–38

Visual Studio, 276

W - X - Y - Z
warning message boxes, creating, 21

widgets

grid layouts, 30–31

LabelFrame widget, 39–40

pack layout manager, options, 23–24

Radiobutton widget, 24–29

Treeview widget, 47–49

Bridge pattern, 105, 106, 107,
108–109

Composite pattern, 116–117

ttk libraries, 24

windows, adding menus, 35–38

Wing, 278

with loops, 283–284

Z02_Cooper_Index_p299-324_new2.indd 321 26/10/21 10:29 PM

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Table of Contents
	4 What Are Design Patterns?
	Defining Design Patterns
	The Learning Process
	Notes on Object-Oriented Approaches
	Python Design Patterns
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y-Z

