
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137506736
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137506736
https://plusone.google.com/share?url=http://www.informit.com/title/9780137506736
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137506736
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137506736/Free-Sample-Chapter

Network Automation Made
Easy

Ivo Pinto, CCIE No. 57162

Cisco Press

9780137506736_web.indb 1 27/09/21 6:31 PM

ii    Network Automation Made Easy

Network Automation Made Easy
Ivo Pinto

Copyright© 2022 Cisco Systems, Inc.

Cisco Press logo is a trademark of Cisco Systems, Inc.

Published by:
Cisco Press

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ScoutAutomatedPrintCode

Library of Congress Control Number: 2021915881

ISBN-13: 978-0-13-750673-6

ISBN-10: 0-13-750673-2

Warning and Disclaimer
This book is designed to provide information about network automation, it covers the current landscape,
practical applications, tools, and techniques. Every effort has been made to make this book as complete
and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc.
shall have neither liability nor responsibility to any person or entity with respect to any loss or damages
arising from the information contained in this book or from the use of the discs or programs that may
accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco
Systems, Inc.

Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise of
members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book or otherwise alter it to better suit your needs, you can contact us
through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your
message.

We greatly appreciate your assistance.

9780137506736_web.indb 2 27/09/21 6:31 PM

http://www.pearson.com/permissions
mailto:feedback@ciscopress.com

iii

Editor-in-Chief: Mark Taub

Alliances Manager, Cisco Press: Arezou Gol

Director, ITP Product Management: Brett Bartow

Managing Editor: Sandra Schroeder

Development Editor: Ellie C. Bru

Project Editor: Mandie Frank

Copy Editor: Kitty Wilson

Technical Editors: �Asier Arlegui Lacunza;
Celia Ortega Gomez

Editorial Assistant: Cindy Teeters

Designer: Chuti Prasertsith

Composition: codeMantra

Indexer: Erika Millen

Proofreader: Donna E. Mulder

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Cisco Press or Cisco Systems, Inc. cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters
Cisco Systems International BV Amsterdam,
The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go
to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply
a partnership relationship between Cisco and any other company. (1110R)

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks,
go to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does

not imply a partnership relationship between Cisco and any other company. (1110R)

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters
Cisco Systems International BV Amsterdam,
The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

9780137506736_web.indb 3 27/09/21 6:31 PM

http://www.cisco.com/go/offices
http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks
http://www.cisco.com/go/offices

iv    Network Automation Made Easy

Pearson’s Commitment to Diversity, Equity, and
Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners.
We embrace the many dimensions of diversity, including but not limited to race, ethnic-
ity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political
beliefs.

Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibil-
ity to demonstrate inclusivity and incorporate diverse scholarship so that everyone can
achieve their potential through learning. As the world’s leading learning company, we have
a duty to help drive change and live up to our purpose to help more people create a bet-
ter life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

■■ Everyone has an equitable and lifelong opportunity to succeed through learning.

■■ Our educational products and services are inclusive and represent the rich diversity
of learners.

■■ Our educational content accurately reflects the histories and experiences of the
learners we serve.

■■ Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

■■ Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

9780137506736_web.indb 4 27/09/21 6:31 PM

https://www.pearson.com/report-bias.html

v

Credits
Figure 1-8	 Screenshot of Kibana search dashboard © 2021 Elasticsearch B.V.

Figure 1-9	 Screenshot of Grafana dashboard © 2021 Grafana Labs

Figure 1-10	� Screenshot of Splunk firewall information dashboard
© 2005–2021 Splunk Inc.

Figure 2-2	� Screenshot of AWS traffic Flow logs © 2021, Amazon Web Services, Inc.

Figure 2-4	 Screenshot of REST API GET using Postman ©2021 Postman, Inc.

Figure 2-7	 Screenshot of Splunk Syslog view © 2005–2021 Splunk Inc.

Figure 3-3	� Screenshot of Grafana displaying a router CPU utilization graph per
minute © 2021 Grafana Labs

Figure 3-8	� Screenshot of Setting Up a Grafana Alarm for 55 MBs Disk I/O
© 2021 Grafana Labs

Figure 3-9	� Screenshot of Setting Up a Kibana Alarm for Syslog Data © 2021
Elasticsearch� B.V.

Figure 6-11	 Screenshot of Jenkins Pipeline stages © Jenkins

Figure 7-5	 Screenshot of Gantt chart of tasks © 2021 - Gantt.com

9780137506736_web.indb 5 27/09/21 6:31 PM

http://Gantt.com

vi    Network Automation Made Easy

About the Author
Ivo Pinto, CCIE No. 57162 (R&S, Security, and Data Center), CISSP, is a Solutions
Architect with many years of experience in the fields of multicloud, automation, and
enterprise and data center networking. Ivo has worked at Cisco in different roles and
different geographies, and he has led the architecture creation and deployment of many
automated global-scale solutions for Fortune 50 companies that are in production today.
In his latest role, he is responsible for multicloud innovation at the Customer Experience
CTO office. Ivo is the founder of IT OnTrack (www.itontrack.com), a provider of
services to young professionals who are looking to further their careers in IT. Ivo has
authored Cisco white papers and multiple Cisco exam questions.

Follow Ivo on LinkedIn @ivopinto01.

9780137506736_web.indb 6 27/09/21 6:31 PM

http://www.itontrack.com

vii

About the Technical Reviewers
Asier Arlegui Lacunza, CCIE No. 5921, has been with Cisco since 1998 and currently
works as a Principal Architect in the Cisco Customer Experience organization. In the
past 20+ years of his career at Cisco, he has worked as a technical architect on a wide
range of enterprise (data center, campus, and enterprise WAN) and service provider
(access and core networking) technology projects, with a focus on network automation.
He holds a master’s degree in telecommunications engineering from Public University of
Navarra, Spain.

Celia Ortega Gomez joined Cisco in the Network Consulting Engineer Associate
Program in 2017. She has been working as a consulting engineer, focusing on network
automation, routing and switching, and visibility technologies in the Cisco Customer
Experience organization for EMEAR customers. She holds several industry certifications
and is now working as the manager for South PMO Office and High Touch services.

9780137506736_web.indb 7 27/09/21 6:31 PM

viii    Network Automation Made Easy

Dedications
I would like to dedicate this book to my family, who has supported me on every step
of this long journey. To my loving mother, thank you for believing that one day I would
write a book. To my wonderful wife, thank you for the tireless encouragement through-
out the process. And last but not least, to my two cats, Oscar and Tofu, who kept me
company during the countless all-nighters I pulled to finish the book.

9780137506736_web.indb 8 27/09/21 6:31 PM

ix

Acknowledgments
Special thanks to the technical reviewers, Asier Arlegui Lacunza and Celia Ortega
Gomez, who contributed to a substantial increase in quality not only with their correc-
tions but also suggestions for the content of this book. Also, special thanks to Pedro
Marques, Pedro Trigueira, and Miguel Santos for their guidance and advice throughout
the process. I would like to thank my former and my current leadership at Cisco, Stefaan
de Haan, Mark Perry, Carlos Pignataro, Adele Trombeta, and Steve Pickavance, for
supporting me during the lengthy process of writing a book.

This book wouldn’t have been possible without the support of many people on the Cisco
Press team. Brett Bartow, Director, Pearson IT Professional Group, was instrumental in
sponsoring the book and driving it to execution. Eleanor Bru, Development Editor, has
done an amazing job in the technical review cycle, and it has been an absolute pleasure
working with you. Also, many thanks to the numerous Cisco Press unknown soldiers
working behind the scenes to make this book happen.

9780137506736_web.indb 9 27/09/21 6:31 PM

x    Network Automation Made Easy

Contents at a Glance

	 Introduction  xvii

Chapter 1	 Types of Network Automation   1

Chapter 2	 Data for Network Automation   43

Chapter 3	 Using Data from Your Network   87

Chapter 4	 Ansible Basics   119

Chapter 5	 Using Ansible for Network Automation   155

Chapter 6	 Network DevOps   199

Chapter 7	 Automation Strategies   241

Appendix A	 Answers to Review Questions  273

	 Index  279

9780137506736_web.indb 10 27/09/21 6:31 PM

xi

Contents
Introduction   xvii

Chapter 1	 Types of Network Automation   1

Data-Driven Automation   2

What Data-Driven Automation Is   3

Data-Driven Automation Use Cases   4

Monitoring Devices   5

Compliance Checking   6

Optimization   7

Predictive Maintenance   8

Troubleshooting   9

Task-Based Automation   11

What Task-Based Automation Is   11

Task-Based Automation Use Cases   12

Interaction   12

Data Collection   12

Configuration   13

Provisioning   14

Reporting   15

End-to-End Automation   16

What End-to-End Automation Is   16

End-to-End Automation Use Cases   17

Migration   18

Configuration   19

Provisioning   20

Testing   21

Tools   22

DNA Center   22

Cloud Event-Driven Functions   23

Terraform   24

Ansible   31

Chef   33

Kibana   34

Grafana   35

9780137506736_web.indb 11 27/09/21 6:31 PM

xii    Network Automation Made Easy

Splunk   36

Python   38

Summary   39

Review Questions   40

Chapter 2	 Data for Network Automation   43

The Importance of Data   43

Data Formats and Models   44

YAML   44

XML   48

JSON   53

Syslog   57

NetFlow   59

IPFIX   60

Cloud Flows   60

YANG   61

Methods for Gathering Data   66

APIs   66

Model-Driven Techniques   72

NETCONF   72

RESTCONF   77

Telemetry   80

Log Exporters   81

Summary   84

End Notes   84

Review Questions   85

Chapter 3	 Using Data from Your Network   87

Data Preparation   87

Parsing   88

Aggregation   98

Data Visualization   100

Data Insights   104

Alarms   105

Configuration Drift   107

AI/ML Predictions   110

9780137506736_web.indb 12 27/09/21 6:31 PM

xiii

Case Studies   112

Creating a Machine Learning Model with Raw Data   112

How a Data Center Reduced Its Mean Time to Repair   113

Network Migrations at an Electricity Provider   115

Summary   116

Review Questions   117

Chapter 4	 Ansible Basics   119

Ansible Characteristics   119

Installing Ansible   120

Inventory   122

Variables   126

Playbooks   131

Conditionals   133

Loops   136

Handlers   140

Executing a Playbook   143

Roles   149

Summary   152

Review Questions   153

Chapter 5	 Using Ansible for Network Automation   155

Interacting with Files   155

Reading   155

Writing   158

Interacting with Devices   160

Networking (Routers, Switches, Firewalls)   160

Using SSH   160

Using NETCONF   165

Using RESTCONF   169

Computing (Servers, Virtual Machines, and Containers)   174

Servers and Virtual machines   174

Containers   181

Cloud (AWS, GCP)   183

Interacting with APIs   187

9780137506736_web.indb 13 27/09/21 6:31 PM

xiv    Network Automation Made Easy

Case Studies   189

Configuration Changes Across 100,000 Devices   189

Quality of Service Across a Heterogenous Installed Base   193

Disaster Recovery at a European Bank   194

Summary   195

Review Questions   196

Chapter 6	 Network DevOps   199

What NetDevOps Is   199

Source Control   202

Infrastructure as Code (IaC)   205

Continuous Integration and Continuous Deployment/Delivery
(CI/CD)   208

Why Use NetDevOps   210

When to Use NetDevOps   211

NetDevOps Tools   214

Git   215

GitLab CI/CD   224

Jenkins   226

How to Build Your Own NetDevOps Environment   228

NetDevOps Environment Requirements   228

NetDevOps Stages   230

NetDevOps Operations   232

Case Studies   233

Pipelines in One of the World’s Largest Banks   233

New Technology Trainings at a Fortune 50 Company   234

New Service Implementations in a Tier 1 Service Provider   236

Summary   238

Review Questions   238

Chapter 7	 Automation Strategies   241

What an Automation Strategy Is   241

Assessment   244

KPIs   245

Other Strategy Documents   248

Summary   250

9780137506736_web.indb 14 27/09/21 6:31 PM

xv

Why You Need an Automation Strategy   250

How to Build Your Own Automation Strategy   251

Assessment   252

Culture and Skills   257

Goals, Objectives, Strategies, and Tactics   258

ABD Case Study   264

How to Use an Automation Strategy   268

Summary   270

Review Questions   271

Appendix A	 Answers to Review Questions   273

	 Index   279

9780137506736_web.indb 15 27/09/21 6:31 PM

xvi    Network Automation Made Easy

Icons Used in This Book

Server Farm Detector Laptop Cloud

Cisco Nexus
9000 in NX-OS

Firewall

Cisco Nexus
5000

Cisco Nexus
7000

Server Router

Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions
used in Cisco’s Command Reference. The Command Reference describes these conven-
tions as follows:

■■ Boldface indicates commands and keywords that are entered literally as shown. In
actual configuration examples and output (not general command syntax), boldface
indicates commands that are manually input by the user (such as a show command).

■■ Italics indicate arguments for which you supply actual values.

■■ Vertical bars (|) separate alternative, mutually exclusive elements.

■■ Square brackets [] indicate optional elements.

■■ Braces { } indicate a required choice.

■■ Braces within brackets [{ }] indicate a required choice within an optional element.

9780137506736_web.indb 16 27/09/21 6:31 PM

xvii

Introduction
From the moment networks appeared, they steadily grew bigger and became increasing-
ly complex. Engineers have sought to automate any possible activity since then. Network
automation is the process of automating the configuration, management, testing, deploy-
ment, and operation of physical and virtual devices in a network. By eliminating tedious
and manual processes, it is possible to reduce operational expenses, reduce human error,
and achieve better time to market.

Network automation is not a new topic, but in recent years, it has exponentially increased
in importance due to external factors such as the need for agility in responding to
growth. Although it’s still in its infancy, network automation is already a critical pillar
of an organization’s strategy. Companies are redesigning and rethinking their network
strategies, and some are even being pushed toward automation without clear processes or
goals.

This book approaches the topic from the point of view of an IT professional who is well
versed in networking and related topics—including cloud, compute, and other compo-
nents in today’s networks—and is trying to take both physical and virtual infrastructure
to a semi- or fully automated state. The book explains the fundamentals of network auto-
mation, including a variety of tools and their use cases and data and how to extract value
from it. This book also takes a deep dive into a specific tool, Ansible, showing how to
use it to solve a number of common use cases in networking.

A key aspect of the book is its practical approach to the topic. It is filled with code snip-
pets you can reuse for your own use cases, as well as real case studies that show practical
applications of all this knowledge.

Although this is a Cisco Press book, it takes a vendor-neutral approach to automation
tools and techniques. It will give you the knowledge you need to make informed deci-
sions when automating your own use cases.

Last but not least, the book explains how to produce a network automation strategy,
which is a key piece that is notoriously missing in many enterprises today. It helps a
reader focus automation efforts on a fruitful network automation journey rather than a
journey without a clear purpose.

Goals and Methods

IT professionals are now more than ever before challenged by their businesses to meet
a level of network agility and elasticity that only automation can solve. Furthermore,
as networks have expanded to the cloud, they have become increasingly dynamic and
complex. To address this, vendors introduce new tools every other day, many of them
overlapping in the problems they address. This makes it very challenging for the IT
professionals to choose the correct tool for their use case.

9780137506736_web.indb 17 27/09/21 6:31 PM

xviii    Network Automation Made Easy

The goal of this book is to help you understand what can and should be automated in
your network environment, what benefits automation would bring, and how you can
achieve it. Furthermore, it compares and contrasts some of the available tools to help you
understand where to use each of them and why. This knowledge will allow you to make
informed network automation decisions in your company.

Who Should Read This Book?

Network automation typically touches several network components, such as routers,
switches, firewalls, virtual machines, and cloud infrastructure. In general, IT professionals
are divided in their areas of expertise. Individuals are spread into focus areas such as the
following, which in some cases overlap:

■■ Servers and virtualization

■■ Storage

■■ Switching and routing

■■ Security

■■ Software applications

■■ Cloud

As the focus of this book is network automation, the audience is the sum of all system
administrators, storage administrators, networking engineers, software virtualization engi-
neers, and network management engineers. Because this book also approaches real case
studies and network automation strategy, IT managers will also benefit from reading it
as it will help them understand how automation can greatly improve their ecosystem and
how to plan for the journey.

How This Book Is Organized

This book is set up to help you understand and replicate the use cases on your own. It is
recommended that you read through the chapters in order to get the full benefit of the
book.

Networking, storage, compute, virtualization, and cloud are complex topics and are get-
ting more complex every day. System administrators, networking engineers, cloud engi-
neers, and virtualization engineers are asked to master their field and also to automate
the solutions in their field. This book helps you understand the fundamentals of network
automation and apply it to your job needs, using state-of-the-art tools and techniques.
This book offers a number of advantages:

■■ An easy reading style with no marketing

■■ Comprehensive coverage of the topic, from fundamentals to advanced techniques

9780137506736_web.indb 18 27/09/21 6:31 PM

xix

■■ Real case studies, instead of hypothetical situations, of projects the author led

■■ Coverage of the latest network automation trends, such as NetDevOps

■■ Reusable code snippets

■■ Explanations of tools and their applications with neutrality

This book is beneficial to IT professionals trying to understand how to implement
network automation solutions as well as to IT management trying to understand the
benefits of network automation and where to apply it.

Book Structure

The book is organized into seven chapters:

■■ Chapter 1, “Types of Network Automation”: This chapter describes the different
network automation types and the use cases they address. This chapter also com-
pares and contrasts some of the common automation tools used by modern enter-
prises, including their advantages and shortcomings, in a vendor-neutral way.

■■ Chapter 2, “Data for Network Automation”: This chapter provides fundamen-
tal background on data and the role it plays in network automation. The chapter
describes commonly seen data formats, such as JSON, XML, and YAML, in detail.
Finally, it consolidates the topic by describing methods and techniques to gather
data from your network.

■■ Chapter 3, “Using Data from Your Network”: This chapter provides an overview of
what you can do with the data that you gather from your network. The chapter starts
by defining common data preparation techniques, such as parsing and aggregation,
followed by data visualization techniques. Finally, it describes possible insights you
can derive from your gathered data. The chapter also describes three case studies
about enterprises that have created notable value from network data.

■■ Chapter 4, “Ansible Basics”: This chapter examines Ansible, which is the most com-
monly used automation tool in enterprises. It describes all the fundamental buildings
blocks of Ansible, including the tool’s installation as well as its architecture and com-
ponents, such as plays, tasks, modules, variables, conditionals, loops, and roles.

■■ Chapter 5, “Using Ansible for Network Automation”: This chapter examines
Ansible as a network automation tool. It illustrates how to achieve common net-
working tasks with Ansible playbooks across a variety of components, such as files,
networking devices, virtual machines, cloud constructs, and APIs. Furthermore, the
chapter describes three use cases where Ansible was used to automate global-scale
network architectures.

■■ Chapter 6, “Network DevOps”: This chapter introduces NetDevOps and how it is
changing the automation paradigm in networking. It covers the fundamentals of what
NetDevOps is, why you would use it, and where you would use it. The chapter also

9780137506736_web.indb 19 27/09/21 6:31 PM

xx    Network Automation Made Easy

guides you through the step-by-step process of creating your own NetDevOps pipe-
line. The chapter finishes with three case studies that give you a feel for the benefits
NetDevOps has brought to some large enterprises.

■■ Chapter 7, “Automation Strategies”: This chapter defines network automation strat-
egy and delves into its functionality. It provides a detailed description of what an
automation strategy is and its components. This chapter also includes a methodology
to build an automation strategy from scratch, along with tips and lessons learned
from applying automation in large enterprises. It finishes with an overview of how to
plan the execution of a newly created strategy.

9780137506736_web.indb 20 27/09/21 6:31 PM

In Chapter 2, “Data for Network Automation,” you learned about data types and data
models, as well as common methods to gather data from your network infrastructure.
After you have stored your network data, what do you do with it? Are you currently stor-
ing any of your network’s data (logs, metrics, configurations)? If so, which data? What
for?

You typically store data in order to find insights in it and to comply with regulatory
requirements. An insight, in this sense, can be any useful information or action.

This chapter helps you understand how to use the collected data from your network and
derive value from it. In the context of enterprise networks, this chapter covers the follow-
ing topics:

■■ Data preparation techniques

■■ Data visualization techniques

■■ Network insights

At the end of this chapter are some real case studies that are meant to inspire you to
implement automation solutions in your own network.

Data Preparation
Data comes in various formats, such as XML, JSON, and flow logs (refer to Chapter 2).
It would be nice if we could gather bread from a field, but we must gather wheat and
process it into bread. Similarly, after we gather data from a variety of devices, we need
to prepare it. When you have a heterogeneous network, even if you are gathering the
same type of data from different places, it may come in different formats (for example,
NetFlow on a Cisco device and IPFIX on an HPE device). Data preparation involves
tailoring gathered data to your needs.

Using Data from Your Network

Chapter 3

9780137506736_web.indb 87 27/09/21 6:32 PM

88    Chapter 3: Using Data from Your Network

There are a number of data preparation methods. Data preparation can involve simple
actions such as normalizing the date format to a common one as well as more complex
actions such as aggregating different data points. The following sections discuss some
popular data preparation methods that you should be familiar with.

Parsing

Most of the times when you gather data, it does not come exactly as you need it. It may
be in different units, it may be too verbose, or you might want to split it in order to store
different components separately in a database. In such cases, you can use parsing tech-
niques.

There are many ways you can parse data, including the following:

■■ Type formatting: You might want to change the type, such as changing seconds to
minutes.

■■ Splitting into parts: You might want to divide a bigger piece of information into
smaller pieces, such as changing a sentence into words.

■■ Tokenizing: You might want to transform a data field into something less sensitive,
such as when you store payment information.

You can parse data before storage or when consuming it from storage. There is really no
preferred way, and the best method depends on the architecture and storage capabilities.
For example, if you store raw data, it is possible that afterward, you might parse it in dif-
ferent ways for different uses. If you store raw data, you have many options for how to
work with that data later; however, it will occupy more storage space, and those different
uses may never occur. If you choose to parse data and then store it, you limit what you
store, which saves space. However, you might discard or filter a field that you may later
need for a new use case.

Regular expressions (regex) play a big part in parsing. Regex, which are used to find pat-
terns in text, exist in most automation tools and programming languages (for example,
Python, Java). It is important to note that, regardless of the tool or programming lan-
guage used, the regex are the same. Regex can match specific characters, wildcards, and
sequences. They are not predefined; you write your own to suit your need, as long as you
use the appropriate regex syntax. Table 3-1 describes the regex special characters.

Table 3-1  Regex Special Characters

Character Description

\d Matches characters that contain digits from 0 to 9.

\D Matches characters that do not contain digits from 0 to 9.

\w Matches any word containing characters from a to z, A to Z, 0 to 9, or the
underscore character.

9780137506736_web.indb 88 27/09/21 6:32 PM

Data Preparation    89

Character Description

\W Matches any non-word characters (not containing characters from a to z, A to
Z, 0 to 9, or the underscore character).

\s Matches any whitespace character (spaces, tabs, newlines, carriage returns).

\S Matches any non-whitespace character.

Table 3-2 describes a number of regex meta characters; although this is not a complete
list, these are the most commonly used meta characters.

Table 3-2  Regex Meta Characters

Characters Description

[] A set of characters

. Any character

^ Starts with

$ Ends with

+ One or more occurrences

* Zero or more occurrences

{} Exact number of occurrences

| OR

Example 3-1 shows how to use regex to find the IP address of an interface.

Example 3-1  Using Regex to Identify an IPv4 Address

Given the configuration:

interface Loopback0

description underlay

ip address 10.0.0.1 255.255.255.0

Regex expression:

(?:[0-9]{1,3}\.){3}[0-9]{1,3}

Result:

["10.0.0.1", "255.255.255.0"]

Example 3-1 shows a simplex regex that matches on three blocks of characters that range
from 0 to 999 and have a trailing dot, followed by a final block of characters ranging
from 0 to 999. The result in this configuration is two entries that correspond to the IP
address and the mask of the Loopback0 interface.

9780137506736_web.indb 89 27/09/21 6:32 PM

90    Chapter 3: Using Data from Your Network

IP addresses are octets, with each unit consisting of 8 bits ranging from 0 to 255. As an
exercise, improve the regex in Example 3-1 to match only the specific 0 to 255 range in
each IP octet. To try it out, find one of the many websites that let you insert text and a
regex and then show you the resulting match.

You can also use a number of tools, such as Python and Ansible, to parse data. Example 3-2
shows how to use Ansible for parsing. Firstly, it lists all the network interfaces available in a
Mac Book laptop, using the code in the file all_interfaces.yml. Next, it uses the regex ˆen to
display only interfaces prefixed with en. This is the code in en_only.yml.

Example 3-2  Using Ansible to Parse Device Facts

$ cat all_interfaces.yml

- hosts: all

 tasks:

 - name: print interfaces

 debug:

 msg: "{{ ansible_interfaces }}"

$ ansible-playbook -c local -i 'localhost,' all_interfaces.yml

PLAY [all] ***

TASK [Gathering Facts] ***

ok: [localhost]

TASK [print interfaces] **

ok: [localhost] => {

 "msg": [

 "awdl0",

 "bridge0",

 "en0",

 "en1",

 "en2",

 "en3",

 "en4",

 "en5",

 "gif0",

 "llw0",

 "lo0",

 "p2p0",

 "stf0",

 "utun0",

 "utun1"

]

}

9780137506736_web.indb 90 27/09/21 6:32 PM

Data Preparation    91

PLAY RECAP ***

localhost : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

$ cat en_only.yml

- hosts: all

 tasks:

 - name: print interfaces

 debug:

 msg: "{{ ansible_interfaces | select('match', '^en') | list }}"

$ ansible-playbook -c local -i 'localhost,' en_only.yml

PLAY [all] ***

TASK [Gathering Facts] ***

ok: [localhost]

TASK [print interfaces] **

ok: [localhost] => {

 "msg": [

 "en0",

 "en1",

 "en2",

 "en3",

 "en4",

 "en5"

]

}

PLAY RECAP ***

localhost : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

What if you need to apply modifications to interface names, such as replacing en with
Ethernet? In such a case, you can apply mapping functions or regex, as shown with
Ansible in Example 3-3.

9780137506736_web.indb 91 27/09/21 6:32 PM

92    Chapter 3: Using Data from Your Network

Example 3-3  Using Ansible to Parse and Alter Interface Names

$ cat replace_ints.yml

- hosts: all

 tasks:

 - name: print interfaces

 debug:

 msg: "{{ ansible_interfaces | regex_replace('en', 'Ethernet') }}"

$ ansible-playbook -c local -i 'localhost,' replace_ints.yml

PLAY [all] ***

TASK [Gathering Facts] ***

ok: [localhost]

TASK [print interfaces] **

ok: [localhost] => {

 "msg": [

 "awdl0",

 "bridge0",

 "Ethernet0",

 "Ethernet1",

 "Ethernet2",

 "Ethernet3",

 "Ethernet4",

 "Ethernet5",

 "gif0",

 "llw0",

 "lo0",

 "p2p0",

 "stf0",

 "utun0",

 "utun1"

]

}

PLAY RECAP ***

localhost : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

9780137506736_web.indb 92 27/09/21 6:32 PM

Data Preparation   93

Note  Ansible is covered in Chapters 4, “Ansible Basics,” and 5, “Using Ansible for
Network Automation.” When you finish reading those chapters, circle back to this example
for a better understanding.

Another technique that can be considered parsing is enhancing data with other fields.
Although this is typically done before storage and not before usage, consider that some-
times the data you gather might not have all the information you need to derive insights.
For example, flow data might have SRC IP, DST IP, SRC port, and DST port information
but no date. If you store that data as is, you might be able to get insights from it on the
events but not when they happened. Something you could consider doing in this scenario
is appending or prepending the current date to each flow and then storing the flow data.

As in the previous example, there are many use cases where adding extra data fields can
be helpful—for example during a maintenance window having sensor data that includes
the sensor’s location. Adding extra data fields is a commonly used technique when you
know you will need something more than just the available exported data.

Example 3-4 enhances the previous Ansible code (refer to Example 3-3) by listing the
available interfaces along with the time the data was collected.

Example 3-4  Using Ansible to List Interfaces and Record Specific Times

$ cat fieldadd.yml

- hosts: all

 tasks:

 - name: print interfaces

 debug:

 msg: "{{ ansible_date_time.date + ansible_interfaces | regex_replace('en',
'Ethernet') }} "

$ ansible-playbook -c local -i 'localhost,' fieldadd.yml

PLAY [all] ***

TASK [Gathering Facts] ***

ok: [localhost]

TASK [print interfaces] **

ok: [localhost] => {

 "msg": "2021-01-22['awdl0', 'bridge0', 'Ethernet0', 'Ethernet1', 'Ethernet2',
'Ethernet3', 'Ethernet4', 'Ethernet5', 'gif0', 'llw0', 'lo0', 'p2p0', 'stf0',
'utun0', 'utun1'] "

}

PLAY RECAP ***

localhost : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

M03_Ivo_C03_p087-118.indd 93 30/09/21 4:26 PM

94    Chapter 3: Using Data from Your Network

As part of parsing, you might choose to ignore some data. That is, you might simply
drop it instead of storing or using it. Why would you do this? Well, you might know that
some of the events that are taking place taint your data. For example, say that during a
maintenance window you must physically replace a switch. If you have two redundant
switches in your architecture, while you are replacing one of them, all your traffic is going
through the other one. The data collected will reflect this, but it is not a normal scenario,
and you know why it is happening. In such scenarios, ignoring data points can be useful,
especially to prevent outliers on later analysis.

So far, we have mostly looked at examples of using Ansible to parse data. However, as
mentioned earlier, you can use a variety of tools for parsing.

Something to keep in mind is that the difficulty of parsing data is tightly coupled with its
format. Regex are typically used for text parsing, and text is the most challenging type of
data to parse. Chapter 2 mentions that XQuery and XPath can help you navigate XML
documents. This should give you the idea that different techniques can be used with dif-
ferent types of data. Chapter 2’s message regarding replacing the obsolete CLI access
with NETCONF, RESTCONF, and APIs will become clearer when you need to parse
gathered data. Examples 3-5 and 3-6 show how you can parse the same information
gathered in different formats from the same device.

Example 3-5  Using Ansible with RESTCONF to Retrieve an Interface Description

$ cat interface_description.yml

- name: Using RESTCONF to retrieve interface description

 hosts: all

 connection: httpapi

 vars:

 ansible_connection: httpapi

 ansible_httpapi_port: 443

 ansible_httpapi_use_ssl: yes

 ansible_network_os: restconf

 ansible_user: cisco

 ansible_httpapi_password: cisco123

 tasks:

 - name: Retrieve interface configuration

 restconf_get:

 content: config

 output: json

 path: /data/ietf-interfaces:interfaces/interface=GigabitEthernet1%2F0%2F13

 register: cat9k_rest_config

9780137506736_web.indb 94 27/09/21 6:32 PM

Data Preparation    95

 - name: Print all interface configuration

 debug: var=cat9k_rest_config

 - name: Print interface description

 debug: var=cat9k_rest_config['response']['ietf-interfaces:interface']
['description']

$ ansible-playbook -i '10.201.23.176,' interface_description.yml

PLAY [Using RESTCONF to retrieve interface description] ****************************

TASK [Retrieve interface configuration] **

ok: [10.201.23.176]

TASK [Print all interface configuration] ***

ok: [10.201.23.176] => {

 "cat9k_rest_config": {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python"

 },

 "changed": false,

 "failed": false,

 "response": {

 "ietf-interfaces:interface": {

 "description": "New description",

 "enabled": true,

 "ietf-ip:ipv4": {

 "address": [

 {

 "ip": "172.31.63.164",

 "netmask": "255.255.255.254"

 }

]

 },

 "ietf-ip:ipv6": {},

 "name": "GigabitEthernet1/0/13",

 "type": "iana-if-type:ethernetCsmacd"

 }

 },

 "warnings": []

 }

}

9780137506736_web.indb 95 27/09/21 6:32 PM

96    Chapter 3: Using Data from Your Network

TASK [Print interface description] ***

ok: [10.201.23.176] => {

 "cat9k_rest_config['response']['ietf-interfaces:interface']['description']":
"New description"

}

PLAY RECAP ***

10.201.23.176 : ok=3 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

In Example 3-5, you can see that when using a RESTCONF module, you receive the inter-
face information in JSON format. Using Ansible, you can navigate through the JSON syn-
tax by using the square bracket syntax. It is quite simple to access the interface descrip-
tion, and if you needed to access some other field, such as the IP address field, you would
need to make only a minimal change:

debug: var=cat9k_rest_config['response']['ietf-interfaces:interface']
['ietf-ip:ipv4']

Example 3-6 achieves the same outcome by using a CLI module and regex.

Example 3-6  Using Ansible with SSH and Regex to Retrieve an Interface Description

$ cat interface_description.yml

- name: Retrieve interface description

 hosts: all

 gather_facts: no

 vars:

 ansible_user: cisco

 ansible_password: cisco123

 interface_description_regexp: "description [\\w+ *]*"

 tasks:

 - name: run show run on device

 cisco.ios.ios_command:

 commands: show run interface GigabitEthernet1/0/13

 register: cat9k_cli_config

 - name: Print all interface configuration

 debug: var=cat9k_cli_config

 - name: Scan interface configuration for description

 set_fact:

 interface_description: "{{ cat9k_cli_config.stdout[0] | regex_
findall(interface_description_regexp, multiline=True) }}"

9780137506736_web.indb 96 27/09/21 6:32 PM

Data Preparation    97

 - name: Print interface description

 debug: var=interface_description

$ ansible-playbook -i '10.201.23.176,' interface_description.yml

PLAY [Retrieve interface description] **

TASK [run show run on device] **

ok: [10.201.23.176]

TASK [Print all interface configuration] ***

ok: [10.201.23.176] => {

 "cat9k_cli_config": {

 "ansible_facts": {

 "discovered_interpreter_python": "/usr/bin/python"

 },

 "changed": false,

 "deprecations": [

 {}

],

 "failed": false,

 "stdout": [

 "Building configuration...\n\nCurrent configuration : 347 bytes\n!\
ninterface GigabitEthernet1/0/13\n description New description\n no switchport\n
dampening\n ip address 172.31.63.164 255.255.255.254\n no ip redirects\n ip pim
sparse-mode\n ip router isis \n load-interval 30\n bfd interval 500 min_rx 500
multiplier 3\n clns mtu 1400\n isis network point-to-point \nend"

],

 "stdout_lines": [

 [

 "Building configuration...",

 "",

 "Current configuration : 347 bytes",

 "!",

 "interface GigabitEthernet1/0/13",

 " description New description",

 " no switchport",

 " dampening",

 " ip address 172.31.63.165 255.255.255.254 secondary",

 " ip address 172.31.63.164 255.255.255.254",

 " no ip redirects",

 " ip pim sparse-mode",

 " ip router isis ",

 " load-interval 30",

 " bfd interval 500 min_rx 500 multiplier 3",

 " clns mtu 1400",

9780137506736_web.indb 97 27/09/21 6:32 PM

98    Chapter 3: Using Data from Your Network

 " isis network point-to-point ",

 "end"

]

],

 "warnings": []

 }

}

TASK [Scan interface configuration for description] ********************************

ok: [10.201.23.176]

TASK [Print interface description] ***

ok: [10.201.23.176] => {

 "interface_description": [

 "description New description"

]

}

PLAY RECAP ***

10.201.23.176 : ok=4 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

Example 3-6 uses the following regex:

"description [\\w+ *]*"

This is a simple regex example, but things start to get complicated when you need to
parse several values or complex values. Modifications to the expected values might
require building new regex, which can be troublesome.

By now you should be seeing the value of the structured information you saw in
Chapter 2.

Aggregation

Data can be aggregated—that is, used in a summarized format—from multiple sources or
from a single source. There are multiple reasons you might need to aggregate data, such
as when you do not have enough computing power or networking bandwidth to use all
the data points or when single data points without the bigger context can lead to incor-
rect insights.

Let’s look at a networking example focused on the CPU utilization percentage in a router.
If you are polling the device for this percentage every second, it is possible that for some
reason (such as a traffic burst punted to CPU), it could be at 100%, but then, in the next
second, it drops to around 20% and stays there. In this case, if you have an automated
system to act on the monitored metric, you will execute a preventive measure that is not
needed. Figures 3-1 and 3-2 show exactly this, where a defined threshold for 80% CPU

9780137506736_web.indb 98 27/09/21 6:32 PM

Data Preparation    99

utilization would trigger if you were measuring each data point separately but wouldn’t if
you aggregated the data and used the average of the three data points.

% CPU utilization

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

100

90

80

70

60

50

40

30

20

10

0

Figure 3-1  % CPU Utilization Graph per Time Measure T

% CPU utilization

T9, T10 T11T6, T7 T8T3, T4 T5T0, T1 T2

100

70

50

25

0

Figure 3-2  % CPU Utilization Graph per Aggregated Time Measure T

9780137506736_web.indb 99 27/09/21 6:32 PM

100    Chapter 3: Using Data from Your Network

In the monitoring use case, it is typical to monitor using aggregated results at time
intervals (for example, 15 or 30 seconds). If the aggregated result is over a defined CPU
utilization threshold, it is a more accurate metric to act on. Tools like Kibana support
aggregation natively.

As another example of aggregating data from multiple sources to achieve better insights,
consider the following scenario: You have two interfaces connecting the same two devic-
es, and you are monitoring all interfaces for bandwidth utilization. Your monitoring tool
has a defined threshold for bandwidth utilization percentage and automatically provisions
a new interface if the threshold is reached. For some reason, most of your traffic is taking
one of the interfaces, which triggers your monitoring tool’s threshold. However, you still
have the other interface bandwidth available. A more accurate aggregated metric would
be the combined bandwidth available for the path (an aggregate of the data on both
interfaces).

Finally, in some cases, you can aggregate logs with the addition of a quantifier instead
of repeated a number of times—although this is often out of your control because many
tools either do not support this feature or apply it automatically. This type of aggregation
can occur either in the device producing the logs or on the log collector. It can be seen as
a compression technique as well (see Example 3-7). This type of aggregation is something
to have in mind when analyzing data rather than something that you configure.

Example 3-7  Log Aggregation on Cisco’s NX-OS

Original:

2020 Dec 24 09:34:11 N7009 %VSHD-5-VSHD_SYSLOG_CONFIG_I: Configured from vty by
ivpinto on 10.10.10.1@pts/0

2020 Dec 24 09:35:09 N7009 %VSHD-5-VSHD_SYSLOG_CONFIG_I: Configured from vty by
ivpinto on 10.10.10.1@pts/0

Aggregated:

2020 Dec 24 09:34:11 N7009 %VSHD-5-VSHD_SYSLOG_CONFIG_I: Configured from vty by
ivpinto on 10.10.10.1@pts/0

2020 Dec 24 09:35:09 N7009 last message repeated 1 time

Data Visualization
Humans are very visual. A good visualization can illustrate a condition even if the audi-
ence does not have technical knowledge. This is especially helpful for alarming condi-
tions. For example, you do not need to understand that the CPU for a device should not
be over 90% if there is a red blinking light over it.

Visualizing data can help you build better network automation solutions or even perceive
the need for an automated solution. However, automation solutions can also build data
visualization artifacts.

There are a number of tools that can help you visualize data. For example, Chapter 1,
"Types of Network Automation,” discusses Kibana, which can be used for log data;

9780137506736_web.indb 100 27/09/21 6:32 PM

Data Visualization    101

Grafana, which can be used for metric data; and Splunk, which can be used for most
data types. There are also data visualization tools specific for NetFlow or IPFIX data;
for example, Cisco’s Tetration. This type of flow data is typically exported to specialized
tools to allow you to visualize who the endpoints are talking to, what protocols they are
using, and what ports they are using.

Tip  When you automate actions, base the actions on data rather than on assumptions.

Say that you want to visualize the CPU utilization of routers. The best data gathering
method in this scenario would be model-driven telemetry (but if telemetry is not avail-
able, SNMP can also work), and Grafana would be a good visualization choice. Grafana
integrates with all kinds of databases, but for this type of time-series data, InfluxDB is a
good fit. The configuration steps would be as follows:

Step 1.	 Configure a telemetry subscription in the router.

Step 2.	 Configure a telemetry server (for example, Telegraf) to listen in.

Step 3.	 Store the data in a database (for example, InfluxDB).

Step 4.	 Configure Grafana’s data source as the database table.

The resulting visualization might look like the one in Figure 3-3, where you can see the
millicores on the vertical axis and the time on the horizontal axis.

Figure 3-3  Grafana Displaying a Router CPU Utilization Graph per Minute

This type of data visualization could alert you to the need for an automated solution to
combat CPU spikes, for example, if they are occurring frequently and impacting service.

9780137506736_web.indb 101 27/09/21 6:32 PM

102    Chapter 3: Using Data from Your Network

Many times, it is difficult to perceive a need until you see data represented in a visual
format.

Although data visualization is a discipline on its own and we only touch on a very small
part of it, there are a couple things to have in mind when creating visualizations. For
one thing, you should choose metrics that clearly represent the underlying status. For
example, for CPU utilization, typically the percentage is shown and not cores or threads.
This is because interpreting a percentage is much easier than knowing how many cores
are available on a specific device and contrasting that information with the devices being
used. On the other hand, when we are looking at memory, most of the time we represent
it with a storage metric (such as GB or MB) rather than a percentage. Consider that 10%
of memory left can mean a lot in a server with 100 TB but very little in a server with
1 TB; therefore, representing this metric as 10 TB left or 100 GB left would be more
illustrative.

Choosing the right metric scale can be challenging. Table 3-3 illustrates commonly used
scales for enterprise network component visualizations.

Table 3-3  Data Visualization Scales

Metric Scale

CPU utilization Percentage over time

Memory utilization Specific storage in time (for example, GB)

Disk operations Operations over time

Network traffic Specific transmission over time (for example Gbps)

Another important decision is visualization type. There are many commonly used visual-
izations. The following types are commonly used in networking:

■■ Line charts

■■ Stat panels/gauges

■■ Bar charts

Your choice of visualization will mostly come down to two answers:

■■ Are you trying to compare several things?

■■ Do you need historical context?

The answer to the first question indicates whether you need multiple- or single-line visu-
alizations. For example, if you want to visualize the memory usage of all components
within a system, you could plot it as shown in Figure 3-4. This line chart with multiple
lines would allow you to compare the components and get a broader perspective. In this
figure, you can see that the app-hosting application is consuming more than twice as
much memory as any other running application.

9780137506736_web.indb 102 27/09/21 6:32 PM

Data Visualization    103

Figure 3-4  Virtual Memory Utilization Graph of All Components in a Container

If you simply want to see the memory usage for a single component, such as a router or
an application running on a system, you do not need to pollute your visualization with
unneeded information that would cause confusion without adding value. In this case, a
single-line chart like the one in Figure 3-5 would suffice.

Figure 3-5  Virtual Memory Utilization Graph of Sensor Assurance Application

Both Figures 3-4 and 3-5 give you a chronological view of the metric being measured.
If you do not need historical context, and you just want to know the status at the exact
moment, you can use panels or bar charts instead. For example, Figure 3-6 shows a point-
in-time view of the Figure 3-4 metrics.

Figure 3-6  Current Virtual Memory Utilization Bar Chart of All Components in a
Container

9780137506736_web.indb 103 27/09/21 6:32 PM

104    Chapter 3: Using Data from Your Network

When you do not need a chronological understanding of a metric and you have a single
component to represent, the most commonly used visualization is a gauge or a stat panel.
Figure 3-7 shows a point-in-time view of the Figure 3-5 metric.

Figure 3-7  Gauge Representation of the Current Virtual Memory Utilization of Sensor
Assurance Application

A way to further enhance visualization is to use color. You can’t replace good visualiza-
tion metrics and types with color. However, color can enhance good visualization metrics
and types. Color thresholds in visualizations can enable quicker insights. For example, by
defining 80% memory utilization or higher as red, 60% to 79% utilization as yellow, and
59% or less as green, a visualization can help an operator get a feeling for the overall sta-
tus of a system with a simple glance at a dashboard.

In some cases, you might want to automate a data visualization instead of using a prebuilt
tool. This might be necessary if your use case is atypical, and market tools do not fulfill
it. For example, say that a customer has an ever-growing and ever-changing network. The
network engineers add devices, move devices across branches, and remove devices every
day. The engineering team wants to have an updated view of the topology when request-
ed. The team is not aware of any tool on the market that can achieve this business need,
so it decides to build a tool from scratch. The team uses Python to build an automated
solution hosted on a central station and that consists of a tool that collects CDP neighbor
data from devices, cross-references the data between all devices, and uses the result to
construct network diagrams. This tool can be run at any time to get an updated view of
the network topology.

Note  Normally, you do not want to build a tool from scratch. Using tools that are already
available can save you time and money.

Data Insights
An insight, as mentioned earlier, is knowledge gained from analyzing information. The
goal of gathering data is to derive insights. How do you get insights from your data? In
two steps:

Step 1.	 You need to build a knowledge base. Knowing what is expected behavior and
what is erroneous behavior is critical when it comes to understanding data.

9780137506736_web.indb 104 27/09/21 6:32 PM

Data Insights    105

This is where you, the expert, play a role. You define what is good and what
is bad. In addition, new techniques can use the data itself to map what is
expected behavior and what is not. We touch on these techniques later in this
section.

Step 2.	 You apply the knowledge base to the data—hopefully automatically, as this is
a network automation book.

As an example of this two-step process, say that you define that if a device is running at
99% CPU utilization, this is a bad sign (step 1). By monitoring your devices and gathering
CPU utilization data, you identify that a device is running at 100% utilization (step 2) and
replace it. The data insight here is that a device was not working as expected.

Alarms

Raising an alarm is an action on the insight (in this case, the insight that it’s necessary to
raise the alarm). You can trigger alarms based on different types of data, such as log data
or metrics.

You can use multiple tools to generate alarms (refer to Chapter 1); the important param-
eter is what to alarm on. For example, say that you are gathering metrics from your
network using telemetry, and among these metrics is memory utilization. What value for
memory utilization should raise an alarm? There is no universal answer; it depends on the
type of system and the load it processes. For some systems, running on 90% memory uti-
lization is common; for others, 90% would indicate a problem. Defining the alarm value is
referred to as defining a threshold. Most of the time, you use your experience to come
up with a value.

You can also define a threshold without having to choose a critical value. This technique,
called baselining, determines expected behavior based on historical data.

A very simple baselining technique could be using the average from a specific time frame.
However, there are also very complex techniques, such as using neural networks. Some
tools (for example, Cisco’s DNA Center) have incorporated baselining modules that help
you set up thresholds.

If you are already using Grafana, creating an alarm is very simple. By editing the
Figure 3-4 dashboard as shown in Figure 3-8, you can define the alarm metric. You can
use simple metrics such as going over a determined value, or calculated metrics such
as the average over a predefined time. Figure 3-8 shows a monitoring graph of disk I/O
operations on several services; it is set to alarm if the value reaches 55 MBs.

Tools like Kibana also allow you to set up alerts based on log data. For example,
Figure 3-9 shows the setup of an alarm based on receiving more than 75 Syslog messages
from a database with the error severity in the past 5 minutes.

9780137506736_web.indb 105 27/09/21 6:32 PM

106    Chapter 3: Using Data from Your Network

Figure 3-8  Setting Up a Grafana Alarm for 55 MBs Disk I/O

Figure 3-9  Setting Up a Kibana Alarm for Syslog Data

In addition to acting as alerts for humans, alarms can be automation triggers; that is,
they can trigger automated preventive or corrective actions. Consider the earlier scenario
of an abnormally high CPU utilization percentage. In this case, a possible alarm could
be a webhook that triggers an Ansible playbook to clean up known CPU-consuming
processes.

Note  A webhook is a “reverse API” that provides a way for an application to notify about
a behavior using HTTP. Some tools are automatically able to receive webhooks and trigger
behaviors based on them (for example, RedHat Ansible Tower). You can also build your
own webhook receivers and call actions, depending on the payload.

Figure 3-10 illustrates an attacker sending CPU punted packets to a router, which leads to
a spike in CPU usage. This router is configured to send telemetry data to Telegraf, which
stores it in an InfluxDB database. As Grafana ingests this data, it notices the unusual

9780137506736_web.indb 106 27/09/21 6:32 PM

Data Insights    107

metric and triggers a configured alarm that uses an Ansible Tower webhook to run a
playbook and configure an ACL that will drop packets from the attacker, mitigating the
effects of the attack.

% CPU usage>

Webhook

Configure ACL

Run
playbook

Ingest
data

Stores
data

Sends telemetery
data

Sends crafted
packets

Attacker

75%

Grafana

InfluxDB

Ansible
Tower

Telegraf

Figure 3-10  Automated Resolution Triggered by Webhook

Typically, deploying a combination of automated action and human notification is the
best choice. Multiple targets are possible when you set up an alarm to alert humans, such
as email, SMS, dashboards, and chatbots (for example, Slack or Webex Teams).

In summary, you can use an alarm to trigger actions based on a state or an event. These
actions can be automated or can require manual intervention. The way you set up alarms
and the actions available on alarms are tightly coupled with the tools you use in your
environment. Grafana and Kibana are widely used in the industry, and others are available
as well, including as Splunk, SolarWinds, and Cisco’s DNA Center.

Configuration Drift

In Chapter 1, we touched on the topic of configuration drift. If you have worked in
networking, you know it happens. Very few companies have enough controls in place
to completely prevent it, especially if they have long-running networks that have been in
place more than 5 years. So, how do you address drift?

You can monitor device configurations and compare them to known good ones (tem-
plates). This tells you whether configuration drift has occurred. If it has, you can either
replace the device configuration with the template or the other way around. The decision
you make depends on what is changed.

9780137506736_web.indb 107 27/09/21 6:32 PM

108    Chapter 3: Using Data from Your Network

You can apply templates manually, but if your network has a couple hundred or even
thousands of devices, it will quickly become a burden. Ansible can help with this task, as
shown in Example 3-8.

Note  Do not worry if you don’t fully understand the code in this example yet. It is meant
to function as a future refence, and you might want to circle back here after you read
Chapters 4 and 5.

Example 3-8  Using Ansible to Identify Configuration Differences in a Switch

$ cat config_dif.yml

- hosts: all

 gather_facts: no

 tasks:

 - name: diff against the startup config

 cisco.ios.ios_config:

 diff_against: intended

 intended_config: "{{ lookup('file', 'template.txt') }}"

$ cat inv.yaml

all:

 hosts:

 switch_1:

 ansible_host: "10.10.10.1"

 ansible_network_os: cisco.ios.ios

 vars:

 ansible_connection: ansible.netcommon.network_cli

 ansible_user: "cisco"

 ansible_password: "C!sc0123"

$ ansible-playbook -i inv.yaml config_dif.yml –diff

PLAY [all] ***

TASK [diff against the startup config] ***

ok: [switch_1]

PLAY RECAP ***

switch_1 : ok=1 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

9780137506736_web.indb 108 27/09/21 6:32 PM

Data Insights    109

Modified the ssh version to 1 instead of 2 on the template file (template.txt)

$ cat template.txt

#output omitted#

ip ssh version 1

#output omitted#

$ ansible-playbook -i inv.yaml config_dif.yml --diff

PLAY [all] ***

TASK [diff against the startup config] ***

--- before

+++ after

@@ -253,7 +253,7 @@

 no ip http secure-server

 ip route vrf Mgmt-vrf 0.0.0.0 0.0.0.0 3.6.0.254 name LAB-MGMT-GW

 ip tacacs source-interface Vlan41

-ip ssh version 2

+ip ssh version 1

 ip scp server enable

 tacacs-server host 192.168.48.165

 tacacs-server host 1.1.1.1

changed: [switch_1]

PLAY RECAP ***

switch_1 : ok=1 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

Example 3-8 shows a template file (template.txt) with the expected configuration, which
is the same configuration initially used on the switch. The example shows how you can
connect automatically to the host to verify whether its configuration matches the pro-
vided template. If it does not, you see the differences in the output (indicated with the +
or – sign). The example shows that, on the second execution, after the template is modi-
fied, the output shows the differences.

Tip  Something to keep in mind when comparing configurations is that you must ignore
hashes.

You can also achieve configuration compliance checking by using the same type of tool
and logic but, instead of checking for differences against a template, checking for devia-
tions from the compliance standards (for example, using SHA-512 instead of SHA-256).

9780137506736_web.indb 109 27/09/21 6:32 PM

110    Chapter 3: Using Data from Your Network

AI/ML Predictions

Insights can come from artificial intelligent (AI) or machine learning (ML) techniques. AI
and ML have been applied extensively in the past few years in many contexts (for exam-
ple, for financial fraud detection, image recognition, and natural language processing).
They can also play a role in networking.

ML involves constructing algorithms and models that can learn to make decisions/predic-
tions directly from data without following predefined rules. Currently, ML algorithms
can be divided into three major categories: supervised, unsupervised, and reinforcement
learning. Here we focus on the first two categories because reinforcement learning is
about training agents to take actions, and that type of ML is very rarely applied to net-
working use cases.

Supervised algorithms are typically used for classification and regression tasks, based
on labeled data (where labels are the expected result). Classification involves predicting
a result from a predefined set (for example, predicting malicious out of the possibilities
malicious or benign). Regression involves predicting a value (for example, predicting how
many battery cycles a router will live through).

Unsupervised algorithms try to group data into related clusters. For example, given a set
of NetFlow log data, grouping it with the intent of trying to identify malicious flows
would be considered unsupervised learning.

On the other hand, given a set of NetFlow log data where you have previously identi-
fied which subset of flows is malicious and using it to predict whether if future flows are
malicious would be considered supervised learning.

One type is not better than the other; supervised and unsupervised learning aims to
address different types of situations.

There are three major ways you can use machine learning:

■■ Retraining models

■■ Training your own models with automated machine learning (AutoML)

■■ Training your models manually

Before you learn about each of these ways, you need to understand the steps involved in
training and using a model:

Step 1.	 Define the problem (for example, prediction, regression, clustering). You need
to define the problem you are trying to solve, the data that you need to solve
it, and possible algorithms to use.

Step 2.	 Gather data (for example, API, Syslog, telemetry). Typically you need a lot of
data, and gathering data can take weeks or months.

Step 3.	 Prepare the data (for example, parsing, aggregation). There is a whole disci-
pline called data engineering that tries to accomplish the most with data in a
machine learning context.

9780137506736_web.indb 110 27/09/21 6:32 PM

Data Insights    111

Step 4.	 Train the model. This is often a trial-and-error adventure, involving different
algorithms and architectures.

Step 5.	 Test the model. The resulting models need to be tested with sample data sets
to see how they perform at predicting the problem you defined previously.

Step 6.	 Deploy/use the model. Depending on the results of testing, you might have to
repeat steps 4 and 5; when the results are satisfactory, you can finally deploy
and use the model.

These steps can take a long time to work through, and the process can be expensive.
The process also seems complicated, doesn’t it? What if someone already addressed the
problem you are trying to solve? These is where pretrained models come in. You find
these models inside products and in cloud marketplaces. These models have been trained
and are ready to be used so you can skip directly to step 6. The major inconvenience with
using pretrained models is that if your data is very different from what the model was
trained with, the results will not be ideal. For example, a model for detecting whether
people were wearing face masks was trained with images at 4K resolution. When predic-
tions were made with CCTV footage (at very low resolution), there was a high false posi-
tive rate. Although it may provide inaccurate results, using pretrained models is typically
the quickest way to get machine learning insights in a network.

If you are curious and want to try a pretrained model, check out Amazon Rekognition,
which is a service that identifies objects within images. Another example is Amazon
Monitron, a service with which you must install Amazon-provided sensors that analyze
industrial machinery behavior and alert you when they detect anomalies.

AutoML goes a step beyond pretrained models. There are tools available that allow you
to train your own model, using your own data but with minimal machine learning knowl-
edge. You need to provide minimal inputs. You typically have to provide the data that
you want to use and the problem you are trying to solve. AutoML tools prepare the data
as they see fit and train several models. These tools present the best-performing models
to you, and you can then use them to make predictions.

With AutoML, you skip steps 3 through 5, which is where the most AI/ML knowledge is
required. AutoML is commonly available from cloud providers.

Finally, you can train models in-house. This option requires more knowledge than the
other options. Python is the tool most commonly used for training models in-house.
When you choose this option, all the steps apply.

An interesting use case of machine learning that may spark your imagination is in regard
to log data. When something goes wrong—for example, an access switch reboots—you
may receive many different logs from many different components, from routing neighbor-
ships going down to applications losing connectivity and so on. However, the real prob-
lem is that a switch is not active. Machine learning can detect that many of those logs are
consequences of a problem and not the actual problem, and it can group them accord-
ingly. This is part of a new discipline called AIOps (artificial intelligence operations). A
tool not mentioned in Chapter 1 that tries to achieve AIOps is Moogsoft.

9780137506736_web.indb 111 27/09/21 6:32 PM

112    Chapter 3: Using Data from Your Network

Here are a couple examples of machine learning applications for networks:

■■ Malicious traffic classification based on k-means clustering.

■■ Interface bandwidth saturation forecast based on recurrent neural networks.

■■ Log correlation based on natural language processing.

■■ Traffic steering based on time-series forecasting.

The code required to implement machine learning models is relatively simple, and we
don’t cover it in this book. The majority of the complexity is in gathering data and pars-
ing it. To see how simple using machine learning can be, assume that data has already
been gathered and transformed and examine Example 3-9, where x is your data, and y
is your labels (that is, the expected result). The first three lines create a linear regression
model and train it to fit your data. The fourth line makes predictions. You can pass a
value (new_value, in the same format as the training data, x), and the module will try to
predict its label.

Example 3-9  Using Python’s sklearn Module for Linear Regression

from sklearn.linear_model import LinearRegression

regression_model = LinearRegression()

regression_model.fit(x, y)

y_predicted = regression_model.predict(new_value)

Case Studies
This section describes three case studies based on real customer situations. It examines,
at a high level, the challenges these companies had and how we they addressed them with
the network automation techniques described throughout this book. These case studies
give you a good idea of the benefits of automation in real-world scenarios.

Creating a Machine Learning Model with Raw Data

Raw data is data in the state in which it was collected from the network—that is, without
transformations. You have seen in this chapter that preparing data is an important step in
order to be able to derive insights. A customer did not understand the importance of
preparing data, and this is what happened.

Company XYZ has a sensitive business that is prone to cyberattacks. It had deployed
several security solutions, but because it had machine learning experts, XYZ wanted to
enhance its current portfolio with an in-house solution.

9780137506736_web.indb 112 27/09/21 6:32 PM

Case Studies    113

The initial step taken was to decide which part of the network was going to be used, and
XYZ decided that the data center was the best fit. XYZ decided that it wanted to predict
network intrusion attacks based on flow data from network traffic.

After careful consideration, the company started collecting flow data from the network
by using IPFIX. Table 3-4 shows the flow’s format.

Table 3-4  Flow Data Fields

Duration Protocol Src IP Src Port Dst IP Dst Port Packets Bytes Flows Flags

813 TCP 10.0.0.2 56979 10.0.0.3 8080 12024 10300 1 AP

After collecting data for a couple months, a team manually labeled each collected flow as
suspicious or normal.

With the data labeled, the machine learning team created a model, using a decision tree
classifier.

The results were poor, with accuracy in the 81% range. We were engaged and started
investigating.

The results from the investigation were clear: XYZ had trained the model with all features
in their raw state—so the data was unaltered from the time it was collected, without any
data transformation. Byte values appeared in different formats (sometimes 1000 bytes
and sometimes 1 KB), and similar problems occurred with the number of packets.
Another clear misstep was that the training sample had an overwhelming majority of nor-
mal traffic compared to suspicious traffic. This type of class imbalance can damage the
training of a machine learning model.

We retrained the model, this time with some feature engineering (that is, data preparation
techniques). We separated each flag into a feature of its own, scaled the data set in order
for the classes to be more balanced, and changed data fields so they were in the same
units of measure (for example, all flows in KB), among other techniques.

Our changes achieved 95.9% accuracy.

This case study illustrates how much difference treating the data can make. The ability to
derive insights from data, with or without machine learning, is mostly influenced by the
data quality. We trained exactly the same algorithm the original team used and got a 14%
improvement just by massaging the data.

How a Data Center Reduced Its Mean Time to Repair

Mean time to repair (MTTR) is a metric that reflects the average time taken to trouble-
shoot and repair a failed piece of equipment or component.

Customer ABC runs critical services in its data center, and outages in those services
incur financial damages along with damages to ABC’s brand reputation. ABC owns a very

9780137506736_web.indb 113 27/09/21 6:32 PM

114    Chapter 3: Using Data from Your Network

complex data center topology with a mix of platforms, vendors, and versions. All of its
services are highly redundant due to the fact that the company’s MTTR was high.

We were involved to try to drive down the MTTR as doing so could have a big impact on
ABC’s business operations. The main reason we could pinpoint as causing the high MTTR
metric was the amount of knowledge needed to triage and troubleshoot any situation. In
an ecosystem with so many different vendors and platforms, data was really sparse.

We developed an automation solution using Python and natural language processing
(NLP) that correlated logs across these platforms and deduplicated them. This really
enabled ABC’s engineers to understand the logs in a common language.

In addition, we used Ansible playbooks to apply configurations after a device was
replaced. The initial workflow consisted of replacing faulty devices with new ones and
manually configuring them using the configuration of the replaced device. This process
was slow and error prone.

Now after a device is identified for replacement at ABC, the following workflow occurs:

Step 1.	 Collect the configuration of the faulty device (using Ansible).

Step 2.	 Collect information about endpoints connected to the faulty device (using
Ansible).

Step 3.	 Manually connect/cable the new device (manually).

Step 4.	 Assign the new device a management connection (manually).

Step 5.	 Configure the new device (using Ansible).

Step 6.	 Validate that the endpoint information from the faulty device from Step 2
matches (using Ansible).

This new approach allows ABC to ensure that the configurations are consistent when
devices are replaced and applied in a quick manner. Furthermore, it provides assurance
regarding the number and type of connected endpoints, which should be the same before
and after the replacement.

In Chapter 5, you will see how to create your own playbooks to collect information and
configure network devices. In the case of ABC, two playbooks were used: one to retrieve
configuration and endpoint information from the faulty device and store it and another to
configure and validate the replacement device using the previously collected information.
These playbooks are executed manually from a central server.

Both solutions together greatly reduced the time ABC takes to repair network compo-
nents. It is important to note that this customer replaced faulty devices with similar ones,
in terms of hardware and software. If a replacement involves a different type of hardware
or software, some of the collected configurations might need to be altered before they
can be applied.

9780137506736_web.indb 114 27/09/21 6:32 PM

Case Studies    115

Network Migrations at an Electricity Provider

A large electricity provider was responsible for a whole country. It had gone through a
series of campus network migrations to a new technology, but after a couple months, it
had experienced several outages. This led to the decision to remove this new technology,
which entailed yet another series of migrations. These migrations had a twist: They had
to be done in a much shorter period of time due to customer sentiment and possibility of
outages while on the current technology stack.

Several automations were applied, mostly for validation, as the migration activities
entailed physical moves, and automating configuration steps wasn’t possible.

The buildings at the electricity provider had many floors, and the floors had many devic-
es, including the following:

■■ IP cameras

■■ Badge readers

■■ IP phones

■■ Desktops

■■ Building management systems (such as heating, air, and water)

The procedure consisted of four steps:

Step 1.	 Isolate the device from the network (by unplugging its uplinks).

Step 2.	 Change the device software version.

Step 3.	 Change the device configuration.

Step 4.	 Plug in the device to a parallel network segment.

The maintenance windows were short—around 6 hours—but the go-ahead or rollback
decision had to be made at least 3 hours after the window start. This was due to the time
required to roll back to the previous known good state.

We executed the first migration (a single floor) without any automation. The biggest
hurdle we faced was verifying that every single endpoint device that was working before
was still working afterward. (Some devices may have not been working before, and mak-
ing them work on the new network was considered out of scope.) Some floors had over
1000 endpoints connected, and we did not know which of them were working before. We
found ourselves—a team of around 30 people—manually testing these endpoints, typi-
cally by making a call from an IP phone or swiping a badge in a reader. It was a terrible
all-nighter.

9780137506736_web.indb 115 27/09/21 6:32 PM

116    Chapter 3: Using Data from Your Network

After the first migration, we decided to automate verifications. This automation collected
many outputs from the network before the migration, including the following:

■■ CDP neighbors

■■ ARP table

■■ MAC address table

■■ Specific connectivity tests (such as ICMP tests)

Having this information on what was working before enabled us to save tens of person-
hours.

We parsed this data into tables. After devices were migrated (manually), we ran the col-
lection mechanisms again. We therefore had a picture of the before and a picture of the
after. From there, it was easy to tell which endpoint devices were working before and not
working afterward, so we could act on only those devices.

We developed the scripts in Python instead of Ansible. The reason for this choice was
the team’s expertise. It would be possible to achieve the same with Ansible. (Refer to
Example 1-9 in Chapter 1 for a partial snippet of this script.)

There were many migration windows for this project. The first 8-hour maintenance
window was dedicated to a single floor. In our 8-hour window, we successfully migrated
and verified six floors.

The time savings due to automating the validations were a crucial part of the success of
the project. The stress reduction was substantial as well. At the end of each migration
window, the team was able to leave, knowing that things were working instead of fearing
being called the next morning for nonworking endpoints that were left unvalidated.

Summary
This chapter covers what to do after you have collected data. It explains common data
preparation methods, such as parsing and aggregation, and discusses how helpful it can
be to visualize data.

In this chapter, you have seen that data by itself has little value, but insights derived from
high-quality data can be invaluable when it comes to making decisions. In particular, this
chapter highlights alarms, configuration drift, and AI/ML techniques.

Finally, this chapter presents real case studies of data automation solutions put in place to
improve business outcomes.

Chapter 4 covers Ansible. You have already seen a few examples of what you can accom-
plish with Ansible, and after you read Chapter 4, you will understand the components of
this tool and how you can use it. Be sure to come back and revisit the examples in this
chapter after you master the Ansible concepts in Chapters 4 and 5.

9780137506736_web.indb 116 27/09/21 6:32 PM

Review Questions    117

Review Questions
You can find answers to these questions in Appendix A, “Answers to Review Questions.”

	 1.	 If you need to parse log data by using regex, which symbol should you use to match
any characters containing the digits 0 through 9?
a.	 \d
b.	 \D
c.	 \s
d.	 \W

	 2.	 If you need to parse log data by using regex, which symbol should you use to match
any whitespace characters?
a.	 \d
b.	 \D
c.	 \s
d.	 \W

	 3.	 Which of the IP-like strings match the following regex? (Choose two.)
		 \d+\.\d+\.\d+\.\d+

a.	 255.257.255.255
b.	 10.00.0.1
c.	 10.0.0.1/24
d.	 8.8,8.8

	 4.	 You work for a company that has very few network devices but that has grown sub-
stantially lately in terms of users. Due to this growth, your network has run at nearly
its maximum capacity. A new project is being implemented to monitor your devices
and applications. Which technique can you use to reduce the impact of this new
project in your infrastructure?
a.	 Data parsing
b.	 Data aggregation
c.	 Data visualization

	 5.	 You are building a new Grafana dashboard. Which of the following is the most
suitable method for representing a single device’s CPU utilization?
a.	 Bar chart
b.	 Line chart
c.	 Gauge
d.	 Pie chart

9780137506736_web.indb 117 27/09/21 6:32 PM

118    Chapter 3: Using Data from Your Network

	 6.	 You are building a new Grafana dashboard. Which of the following is the most
suitable method for representing the memory utilization of all components in a
system?
a.	 Bar chart
b.	 Line chart
c.	 Gauge
d.	 Pie chart

	 7.	 True or false: With automated systems, alarms can only trigger human intervention.
a.	 True
b.	 False

	 8.	 Your company asks you to train a machine learning model to identify unexpected
logs, because it has been storing logs for the past years. However, you lack machine
learning expertise. Which of the following is the most suitable method to achieve a
working model?
a.	 Use AutoML
b.	 Use a pretrained model that you find online
c.	 Use an in-house trained model

	 9.	 In the context of regex, what does the symbol + mean?
a.	 One or more occurrences
b.	 Zero or more occurrences
c.	 Ends with
d.	 Starts with

	10.	 In the context of machine learning, your company wants to identify how many
virtual machines it needs to have available at a specific time of day to process
transactions. What type of problem is this?
a.	 Regression
b.	 Classification
c.	 Clustering
d.	 Sentiment analysis

9780137506736_web.indb 118 27/09/21 6:32 PM

Index

Symbols
* (asterisk), 89
{ } (braces), 89
^ (caret), 89
$ (dollar sign), 89
. (period), 89
| (pipe character), 89
+ (plus sign), 89
(pound sign), 46–47
[] (square brackets), 89
200–204 HTTP status codes, 68
400–404 HTTP status codes, 68
500 HTTP status code, 68
503 HTTP status code, 68

A
absent state, 180
abstracted input, VLANs (virtual

LANs) configuration with, 256
abstraction, network service, 237
accountability, source control and,

203
ACI (Application Centric

Infrastructure), 31, 194
action plans, for automation strategies,

268–270
addresses (IPv4), identifying, 89

agent keyword, 228
agents, 34, 61, 110, 225, 226
aggregated metrics, 23
aggregation of data, 98–100
AI. See artificial intelligence (AI)
AIOps (artificial intelligence

operations), 111
alarms, 105–107
alerts, DNA Center, 23
algorithms

supervised, 110
unsupervised, 110

Amazon Monitron, 111
Amazon Rekognition, 111
Amazon Web Services. See AWS

(Amazon Web Services)
ambiguity, removing with automation

strategy, 251
analysis application, NetFlow, 59
Ansible, 31–32

APIs (application programming
interfaces), 187–189

architecture, 119–120
case studies, 189–195

configuration changes across
100,000 devices, 189–192

disaster recovery at European
bank, 194–195

QoS across heterogenous
installed base, 193–194

Z02_Ivo_Index_p279-300.indd 279 27/09/21 8:58 PM

280  Ansible

characteristics of, 119–120
cloud computing, 183–186

EC2 VM, creating, 184
GCP disks, creating, 185
resource provisioning, 185–186
website content, crawling,

188–189
conditionals, 133–136
configuration drift, identifying,

107–109
configuration playbook, 231
containers, 181–183

applications, creating in specific
namespaces, 182–183

creating, 181–183
files

reading, 155–157
writing, 158–160

handlers, 140–143
multiple, 142–143
playbook execution with,

140–141
installing, 120–122
inventory, 122–125

with groupings, 123
implicit definitions, 124–125
with ungrouped hosts, 123
with variable assignments, 122
verifying, 124

Inventory JSON schema, 56–57
loops, 136–139
modules, 120, 187

command, 174–176
copy, 158
docker_container, 181
ec2, 207
ios_config, 164
ios_interface, 164–165
lookup plug-in, 156
netconf_config, 167–168
netconf_get, 165–166
netconf_rpc, 168–169
restconf_config, 171–173
restconf_get, 169–170
slurp, 156–157

uri, 188–189
vmware_guest, 179–180
yum, 174

network devices, interacting with,
160–173
NETCONF, 165–169
RESTCONF, 169–173
SSH (Secure Shell Protocol),

160–165
parsing data with, 90–98

device facts, 90–91
listing available interfaces, 93
parsing and altering interface

names, 91–92
recording times of data

collection, 93
regular expressions and, 96–98
RESTCONF and, 94–96
SSH (Secure Shell Protocol)

and, 96–98
playbooks. See also specific tasks

example of, 132
executing, 143–149
overview of, 131–133
running for specific group of

hosts, 132–133
structure of, 131–132

roles, 149–152
default folder structure,

149–150
Galaxy, 149–150
role directories, 149
VLAN creation with, 150–152

servers and virtual machines,
174–181

subnet deployment with
in cloud, 211–212
on legacy network, 212–213

supported operating systems, 121
variables, 126–131

Ansible Vaults, 130–131
assigning with folder structure,

126–127
assigning with variable files, 128
defined, 129–130

Z02_Ivo_Index_p279-300.indd 280 27/09/21 8:58 PM

automation strategies  281

registered, 129
verifying version of, 121
VLAN (virtual LAN) configuration

with, 150–152, 255
VLAN (virtual LAN) deployment with,

207–208
Ansible Inventory schema, 56–57
ansible_facts variable, 159, 160
ansible-galaxy command, 149
ansible-inventory command, 124–125
ansible-playbook command, 143–144
APIC (Application Policy

Infrastructure Controller), 194
APIs (application programming

interfaces), 66–72
API integrations, 71
curl command, 69
HTTP methods, 67–68
HTTP status codes, 68
interacting with, 187–189
interface information, retrieving,

70–71
Postman, 69–70
REST (Representational State

Transfer), 66
Application Centric Infrastructure

(ACI), 31, 194
Application Policy Infrastructure

Controller (APIC), 194
application programming interfaces.

See APIs (application programming
interfaces)

applications, creating in specific
namespaces, 182–183

architecture
Ansible, 119–120
Chef, 33
data-driven automation

pull model, 3–4
push model, 3

Splunk, 36
arrays, in JSON (JavaScript Object

Notation), 55
artificial intelligence (AI)

AIOps (artificial intelligence
operations), 111

data insights from, 110–112
DNA Center, 22–23
machine learning model with raw

data, 112–113
supervised algorithms, 110
unsupervised algorithms, 110

assessment, for network automation
automation strategies, 244, 252–257
enterprise automation levels,

254–257
questions to ask, 252–253
stages of, 252
Technology Maturity Level Chart,

254
assigning Ansible variables

Ansible Vaults, 130–131
defined variables, 129–130
with folder structure, 126–127
registered variables, 129
with variable files, 128

asterisk (*), 89
asynchronous tasks, 147–149
authorization, source control and,

203
automation

of data visualizations, 104
definition of, 1
strategies for. See automation

strategies
automation strategies, 250–251

action plans for, 268–270
assessment, 252–257

in automation strategy
documents, 244

enterprise automation levels,
254–257

questions to ask, 252–253
stages of, 252
Technology Maturity Level

Chart, 254
automation strategy documents,

248–250
assessment in, 244
data strategies, 248–249
financial strategies, 250

Z02_Ivo_Index_p279-300.indd 281 27/09/21 8:58 PM

282  automation strategies

key performance indicators
(KPIs), 245–247

summary of, 250
benefits of, 250–251
case study, 264–268
culture and skills, 257–258
definition of, 241–243
drafting, 243, 261–262
Gantt chart of tasks, 270
goals, 243, 258–259
how to use, 268–270
importance of, 241, 250–251
iterations, 248–250
objectives, 243, 259–261
pillars of, 242
proof of concept (PoC), 268
tactics, 243, 262–264

automation tasks, with Ansible
APIs (application programming

interfaces), 187–189
case studies

configuration changes across
100,000 devices, 189–192

disaster recovery at European
bank, 194–195

QoS across heterogenous
installed base, 193–194

cloud computing, 183–186
EC2 VM, creating, 184
GCP disks, creating, 185
resource provisioning, 185–186
website content, crawling,

188–189
containers, 181–183

applications, creating in specific
namespaces, 182–183

creating, 181–183
files

reading, 155–157
writing, 158–160

network devices, 160–173
NETCONF, 165–169
RESTCONF, 169–173
SSH (Secure Shell Protocol),

160–165

servers and virtual machines,
174–181

automation tools. See tools
automation types, 1

data-driven
definition of, 3–4
overview of, 3–4
pull model sensor architecture,

3–4
push model sensor architecture,

3
use cases, 4–10

end-to-end
definition of, 16–17
use cases, 17–22

task-based
definition of, 11
use cases, 12–16

AutoML, 111
AWS (Amazon Web Services), 15

automation tasks with Ansible,
183–186
EC2 VM, creating, 184
GCP disks, creating, 185
resource provisioning, 15,

185–186
subnet deployment, 211–212
website content, crawling,

188–189
cloud event-driven functions, 23–24
cloud flows, 60–61
CloudWatch, 36
default template, 61
Lambda, 23

Azure Functions, 23

B
banks

disaster recovery at, 194–195
pipelines in, 233–234

bar charts, 102–103
baselining, 23
Beats, 34
Boolean types, 55

Z02_Ivo_Index_p279-300.indd 282 27/09/21 9:08 PM

code phase (NetDevOps)  283

braces ({ }), 89
branches, Git

making changes in, 221–222
merging, 222–223

build phase (NetDevOps), 200
business alignment, automation

strategies and, 242

C
candidate datastores, NETCONF,

72–73
caret (^), 89
case studies

Ansible network automation,
189–195
configuration changes across

100,000 devices, 189–192
disaster recovery at European

bank, 194–195
QoS across heterogenous

installed base, 193–194
automation strategies, 264–268
data preparation and visualization

machine learning model with
raw data, 112–113

mean time to repair (MTTR)
reduction, 113–114

network migrations at
electricity provider, 115–116

NetDevOps (network DevOps),
233–237
new service implementations

in tier 1 service provider,
236–237

new technology trainings
at Fortune 500 company,
234–235

pipelines in large bank, 233–234
CDP (Cisco Discovery Protocol)

neighbor devices, learning names
of, 12–13

centralized source control, 203–204
change tracking, source control and,

203

charts
bar, 102–103
line, 102–103
Technology Maturity Level Chart,

254
Chef, 33–34
child elements (XML), 49
CI/CD (continuous integration/

continuous deployment), 208–210
benefits of, 208–210
GitLab CI/CD, 224–226
pipelines, 214–228

case study, 233–234
definition of, 210
Git, 215–224
GitLab CI/CD, 224–226
Jenkins, 226–228, 230–232

Cisco ACI (Application Centric
Infrastructure), 31

Cisco APIC (Application Policy
Infrastructure Controller), 194

Cisco Discovery Protocol (CDP)
neighbor devices, learning names
of, 12–13

Cisco DNA Center, 107
Cisco FTD module, 187
Cisco Intersight, 31
Cisco NX-OS, log aggregation on,

98–100
Cisco Tetration, 82–83, 100–101
close-session operation, NETCONF,

73
cloud computing

automation tasks with Ansible,
183–186
EC2 VM, creating, 184
GCP disks, creating, 185
resource provisioning, 15,

185–186
subnet deployment, 211–212
website content, crawling,

188–189
cloud event-driven functions, 23–24
cloud flows, 60–61

code phase (NetDevOps), 200

Z02_Ivo_Index_p279-300.indd 283 27/09/21 8:58 PM

284  collecting data

collecting data
with Ansible, 32
task-based automation use cases for,

12–13
color, in data visualizations, 104
command module, 174–176
commands. See individual commands
comments, YAML, 46–47
commit operation, NETCONF, 73
communication, automation strategies

for, 251
compliance checking

data-driven automation, 6–7
DNA Center, 23

compliance pipelines, 234
Compute Engine, 184
computing, automation for. See

containers; servers; VMs (virtual
machines)

concept, proof of, 268
conditionals, 133–136
configuration, 107

with cloud event-driven functions,
23–24

configuration drift, 5, 107–109
device

Ansible configuration
playbook, 231

configuration changes across
100,000 devices, 189–192

with DNA Center, 22–23
Git, 215–216

adding files to, 217–218
directory structure of, 229
remote repositories, 223–224

interfaces
IOS, 164–165
with NETCONF, 76–77, 167–168
retrieving with Ansible,

169–171
with Python, 38–39
running configuration

retrieving, 166–167
saving, 168–169

TACACS+ keys, 31–32, 190–192

task-based automation use cases for,
13–14

VLANs (virtual LANs), 254–256
with abstracted input, 256
with Ansible, 255
Jenkins pipeline for, 255
single VLAN on switch with

specific hostname, 133–134
two VLANs on switch with

specific hostname, 134–136
VMs (virtual machines), with

Terraform
application of changes, 28–29
overview of, 24–25
Terraform initialization, 26
.tf configuration file, 25
verification of applied changes,

29–31
verification of changes to be

applied, 26–27
configuration drift, 5, 107–109
container nodes, in YANG, 63
containers, 181–183

applications, creating in specific
namespaces, 182–183

creating, 181–183
continuous integration/continuous

deployment (CI/CD), 208–210
benefits of, 208–210
GitLab CI/CD, 224–226
pipelines, 214–228

case study, 233–234
definition of, 210
Git, 215–224
GitLab CI/CD, 224–226
Jenkins, 226–228, 230–232

conversion, XML-to-JSON, 51–52
copy module, 158
copy-config operation, NETCONF, 73
CPU utilization of routers, data

visualization of, 101–102
culture, automation strategies and,

257–258
“culture of fear”, 258
curl command, 21, 69

Z02_Ivo_Index_p279-300.indd 284 27/09/21 8:58 PM

data gathering  285

D
\D characters, 88
\d characters, 88
dashboards

Cisco Tetration, 82–83
Grafana, 35
Kibana, 34–35
Splunk, 37

data center topology, 19–20
data collection, task-based

automation use cases for, 12–13
data encoding, YANG, 63–66
data enforcement, YAML, 47
data formats and models. See also

data gathering; data insights; data
preparation; data visualization

cloud flows, 60–61
definition of, 44
importance of, 43–44
IPFIX, 60
JSON, 53–57

Ansible Inventory schema,
56–57

data encoding for YANG, 64–66
data types, 55
XML-to-JSON conversion,

53–55
NetFlow, 59–60

architecture, 59
components, 59
versions of, 59

overview of, 43
Syslog, 57–59

message syntax, 57–58
severities, 58

XML, 48–53
data encoding for YANG, 63–66
document example, 48
document type definitions

(DTDs), 51–52
elements, 49
interface attributes, 50
name collisions, 50
namespaces, 50–51, 168
schemas, 51–52

XML-to-JSON conversion,
51–52

XPath, 52–53
XQuery, 52–53

YAML, 44–48
comments, 46–47
data enforcement, 47
data types, 46
file example, 45
flow-style data, 46

YANG, 61–66
data encoding for, 63–66
modules, 62–63
node types, 63

data gathering. See also data insights;
data preparation; data visualization

APIs (application programming
interfaces), 66–72
API integrations, 71
curl command, 69
HTTP methods, 67–68
HTTP status codes, 68
interface information,

retrieving, 70–71
Postman, 69–70
REST (Representational State

Transfer), 66
log exporters, 81–83
NETCONF, 72–77

candidate datastores, 72–73
definition of, 72
interaction with, 74–77
interface configuration, 76–77
interface filter, 75
model-driven protocol stack, 80
operations, 73
RPC reply, 75–76

overview of, 66
RESTCONF, 77–80

interface configurations,
modifying, 79

interface information,
retrieving, 78–79

model-driven protocol stack, 80
URI elements, 77–78

telemetry, 80–81

Z02_Ivo_Index_p279-300.indd 285 27/09/21 8:58 PM

286  data insights

data insights, 104–112. See also data
visualization

alarms, 105–107
artificial intelligence (AI), 110–112
configuration drift, 107–109
machine learning (ML), 110–112
overview of, 104–105

data preparation, 87–100
aggregation, 98–100
case studies

machine learning model with
raw data, 112–113

mean time to repair (MTTR)
reduction, 113–114

network migrations at electricity
provider, 115–116

labeled data, 110
overview of, 87–88
parsing, 88–98

with Ansible, 90–98
identifying IPv4 addresses

with, 89
regular expressions in, 88–89
splitting into parts, 88
tokenizing, 88
type formatting, 88

raw data, 112–113
data strategies, 248–249
data types

in JSON (JavaScript Object
Notation), 55

in YAML, 46
data visualization, 100–104

automation of, 104
bar charts, 102–103
case studies

machine learning model with
raw data, 112–113

mean time to repair (MTTR)
reduction, 113–114

network migrations at
electricity provider, 115–116

color in, 104
CPU utilization of routers, 101–102
line charts, 102–103

metric scales for, 102
stat panels/gauges, 102–104
tools for, 100–101

databases, InfluxDB, 106–107
data-driven automation

definition of, 3–4
overview of, 2
pull model sensor architecture, 3–4
push model sensor architecture, 3
use cases, 4–10

compliance checking, 6–7
device monitoring, 5–6
optimization, 7–8
predictive maintenance, 8–9
troubleshooting, 8–10

datastores, NETCONF, 72–73
debug keyword, 170
declarative approach, 207–208
declarative pipelines, 227
defaults directory (Ansible), 149
defined variables, 129–130
defining a threshold, 105
delegate_to keyword, 159
DELETE method, 67
delete-config operation, NETCONF,

73
dependencies, resource, 15
deploy phase (NetDevOps), 200
deployment

continuous, 208–210
benefits of, 208–210
GitLab CI/CD, 224–226
pipelines. See pipelines

subnets
in cloud, 211–212
on legacy network, 212–213

VMs (virtual machines)
with Ansible, 178–179, 207
imperative versus declarative

approach to, 207–208
snapshots and VMotion,

180–181
with Terraform, 208
vmware_guest state choices,

179–180

Z02_Ivo_Index_p279-300.indd 286 27/09/21 8:58 PM

dollar sign ($)  287

description command, 164
device facts, parsing with Ansible,

90–91
device monitoring, data-driven

automation use cases for, 5–6
devices, interacting with, 160–173

getting network devices from DNAC,
187

interfaces, netconf_rpc Ansible
module, 168–169

NETCONF, 165–169
interface configuration,

167–168
netconf_config Ansible module,

167–168
netconf_get Ansible module,

165–166
netconf_rpc Ansible module,

168–169
running configuration,

retrieving, 166–167
running configuration, saving,

168–169
RESTCONF, 169–173

configuration, retrieving,
169–171

device configuration, 171–173
restconf_config module,

171–173
restconf_get module, 169–170

SSH (Secure Shell Protocol), 160–165
host facts, printing, 160–162
IOS interface configuration,

164–165
NTP status, printing, 163–164
output of show command,

capturing, 162–163
DevOps, network. See NetDevOps

(network DevOps)
dial-in telemetry, 80
dial-out telemetry, 80
dictionary data type, 46
directories, Ansible role, 149
disaster recovery

end-to-end automation use cases
for, 20

European bank case study, 194–195
testing, 21

disk space, verifying and freeing,
177–178

disks, GCP, 185
distributed source control, 204–205
DNA Center (DNAC), 9–10, 22–23,

107, 187
docker_container module, 181
Dockerfile, retrieving, 182
document type definitions (DTDs),

51–52
documents, automation strategy,

248–250
action plans for, 268–270
assessment, 244, 252–257

enterprise automation levels,
254–257

questions to ask, 252–253
stages of, 252
Technology Maturity Level

Chart, 254
benefits of, 250–251
case study, 264–268
culture and skills, 257–258
data strategies, 248–249
drafting, 243, 261–262
financial strategies, 250
Gantt chart of tasks, 270
goals, 243, 258–259
how to use, 268–270
importance of, 250–251
key performance indicators (KPIs),

245–247
common pitfalls with, 245–246
creating, 246–247, 260–261
definition of, 245
high-level, 245
low-level, 245
objectives-linked, 260–261

objectives, 243, 259–261
pillars of, 242
proof of concept (PoC), 268
summary of, 250
tactics, 243, 262–264

dollar sign ($), 89

Z02_Ivo_Index_p279-300.indd 287 27/09/21 8:58 PM

288  drafting automation strategies

drafting automation strategies, 243,
261–262

drift, configuration, 5, 107–109
DTDs (document type definitions),

51–52

E
ec2 module, 207
EC2 VM (virtual machine), creating,

184
echo command, 226
edit-conf operation, NETCONF, 73
Elasticsearch, 34
electricity provider, network

migrations at, 115–116
elements, XML (Extensible Markup

Language), 49
ELK stack, 34
end-to-end automation

definition of, 16–17
use cases, 17–22

end-to-end pipelines, 234
enforcement (data), with YAML, 47
enterprise automation levels, 254–257
environment, NetDevOps, 226–228
/etc/ansible/hosts, 122
event-driven functions, 23–24
executing Ansible playbooks, 143–149

ad hoc commands, 144
ansible-playbook command, 143–144
asynchronous tasks, 147–149
nonblocking tasks, 147–148
run_once task, 146
serial execution of tasks, 145–146

explicit namespaces, 51
exporters, log, 81–83
Extensible Markup Language.

See XML (Extensible Markup
Language)

F
fear, culture of, 258
features, 9

files, 24
adding to Git repositories, 217–218
changes to

making in Git branches, 221–222
pushing to remote repositories,

223–224
rolling back, 219–220
verifying, 218–219

creating with Terraform, 25
Dockerfile, retrieving, 182
reading, 155–157

local files, 156
lookup plug-in, 156
remote files, 157

writing, 158–160
XML document example, 48
YAML file example, 45

files directory (Ansible), 149
filters, NETCONF, 75
financial strategies, 250
firewalls

data-driven automation in, 3
interacting with. See network

devices, interacting with
flow collectors, 59
flow exporters, 59
flows, cloud, 60–61
flow-style data, 46
folder structure, assigning Ansible

variables with, 126–127
folders, Ansible role, 149–150
formats, data. See data formats and

models
Fortune 500, new technology training

in, 234–235
forwarders, Splunk, 36–37
freeing disk space, 177–178
FTD module, 187
functional testing, 21
functions, cloud event-driven, 23–24

G
Galaxy role, 149–150
Gantt chart of tasks, 270

Z02_Ivo_Index_p279-300.indd 288 27/09/21 8:58 PM

HTTP (Hypertext Transfer Protocol)  289

gather_facts, 159
gathering data. See data gathering
gauges, 102–104
GCP (Google Cloud Platform), 15

automation tasks with Ansible,
183–186
EC2 VM, creating, 184
GCP disks, creating, 185
resource provisioning, 15,

185–186
subnet deployment, 211–212
website content, crawling,

188–189
cloud event-driven functions, 23–24
cloud flows, 60–61

GCP disks, creating, 185
GET method, 67
get operation, NETCONF, 73
get-conf operation, NETCONF, 73
Git, 215–224

branches
making changes in, 221–222
merging, 222–223

configuration, 215
file changes

making in Git branches, 221–222
pushing to remote repositories,

223–224
rolling back, 219–220
verifying, 218–219

repositories
adding files to, 217–218
directory structure of, 229
initialization of, 215–216
remote, 223–224

git add command, 217, 219, 221
git branch command, 221
git checkout command, 219–220
git clone command, 224
git commit command, 217, 218, 219,

221
git config command, 215
git init command, 215
git log command, 217, 218, 219, 221,

222
git merge command, 222

git pull command, 223
git push command, 223
git remote add command, 223
git show command, 217
GitHub, 189
GitLab CI/CD, 224–226
goals, automation strategy, 243,

258–259
Google Cloud Function, 23
Google Cloud Platform. See GCP

(Google Cloud Platform)
Google RPC (gRPC), 80
Grafana, 35–36, 100–102, 107
group_vars, 126
groupings, Ansible inventory with,

123
gRPC (Google RPC), 80

H
handlers, Ansible, 140–143

handlers directory, 149
multiple, 142–143
playbook execution with, 140–141

heavy forwarder, Splunk, 37
hello operation, 73
heterogenous installed base, QoS

(quality of service) across,
193–194

high availability, 195
high-level key performance indicators

(KPIs), 245
host_vars, 126
hosts

Ansible
grouped, 123
ungrouped, 123

printing facts about, 160–162
HTTP (Hypertext Transfer Protocol)

httpd installation, 174–177
with command module, 174–176
disk space, verifying and

freeing, 177–178
independently of operating

system, 176–177

Z02_Ivo_Index_p279-300.indd 289 27/09/21 8:58 PM

290  HTTP (Hypertext Transfer Protocol)

VM deployment with, 178–179
VM snapshots and VMotion,

180–181
vmware_guest state choices,

179–180
with yum module, 174

methods, 67–68, 171
status codes, 68

httpapi connection type, 170
httpd, installing with Ansible, 174–177

with command module, 174–176
disk space verification, 177–178
disk space, verifying and freeing,

177–178
independently of operating system,

176–177
VM deployment with, 178–179
VM snapshots and VMotion, 180–181
vmware_guest state choices, 179–180
with yum module, 174

I
IaC (infrastructure as code), 24,

205–208. See also Ansible;
Terraform

definition of, 205
goals of, 206
idempotence, 120, 206
immutability, 206–207
imperative versus declarative

approach to, 207–208
idempotence, 120, 206
IETF (Internet Engineering Task

Force), 60
ietf-interface, 62

JSON representation of, 64–66
XML representation of, 64

immutability, 206–207
imperative approach, 207–208
implicit definitions, in Ansible

inventory, 124–125
implicit namespaces, 51
indexer, Splunk, 37

InfluxDB, 36, 106–107
infrastructure as code. See IaC

(infrastructure as code)
initialization

Git repositories, 215–216
Terraform, 26

insights, data, 104–112. See also data
gathering; data preparation; data
visualization

alarms, 105–107
artificial intelligence (AI), 110–112
configuration drift, 107–109
machine learning (ML), 110–112
overview of, 104–105

installation
Ansible, 120–122
httpd

with command module, 174–176
disk space verification, 177–178
disk space, verifying and

freeing, 177–178
independently of operating

system, 176–177
VM deployment with, 178–179
VM snapshots and VMotion,

180–181
vmware_guest state choices,

179–180
with yum module, 174

integration, continuous, 208–210
benefits of, 208–210
GitLab CI/CD, 224–226
pipelines, 214–228

case study, 233–234
definition of, 210
Git, 215–224
GitLab CI/CD, 224–226
Jenkins, 226–228, 230–232

integrations, API, 71
interaction

with Ansible, 32
with cloud event-driven functions,

23–24
task-based automation use cases

for, 12

Z02_Ivo_Index_p279-300.indd 290 27/09/21 8:58 PM

languages  291

interface attributes, XML (Extensible
Markup Language) document
with, 50

interfaces
configuration

with NETCONF, 76–77,
167–168

with RESTCONF, 79
listing available, 93
names, parsing with Ansible, 91–92
retrieving information about, 70–71,

78–79
Ansible with RESTCONF,

94–96
Ansible with SSH and regex,

96–98
Internet Protocol Flow Information

Export (IPFIX), 60, 113
inventory, Ansible, 122–125

with groupings, 123
implicit definitions, 124–125
with ungrouped hosts, 123
with variable assignments, 122
verifying, 124

inventory command, 125
ios_command module, 162
ios_config module, 164
ios_interface module, 164–165
IPFIX (Internet Protocol Flow

Information Export), 60, 113
IPv4 addresses, identifying, 89
item keyword, 136
iteration. See loops

J
JavaScript Object Notation. See JSON

(JavaScript Object Notation)
Jenkins, 189, 226–228, 255
JSON (JavaScript Object Notation),

53–57
Ansible Inventory schema, 56–57
data encoding for YANG, 64–66
data types, 55
XML-to-JSON conversion, 53–55

K
key performance indicators (KPIs),

245–247
common pitfalls with, 245–246
creating, 246–247, 260–261
definition of, 245
high-level, 245
low-level, 245
objectives-linked, 260–261

keys, TACACS+, 31–32, 190–192
Kibana, 34–35, 100–101, 107
kill-session operation, NETCONF, 73
KPIs. See key performance indicators

(KPIs)
Kubernetes, 182, 183

L
labeled data, 110
languages

Python, 38–39
interface configuration with

NETCONF, 77
machine learning (ML) with,

111, 112
sklearn, 112

XML (Extensible Markup Language),
48–53
data encoding for YANG, 63–66
document example, 48
document type definitions

(DTDs), 51–52
elements, 49
interface attributes, 50
name collisions, 50
namespaces, 50–51, 168
schemas, 51–52
XML-to-JSON conversion,

51–52
XPath, 52–53
XQuery, 52–53

YANG, 61–66
data encoding for, 63–66

Z02_Ivo_Index_p279-300.indd 291 27/09/21 8:58 PM

292  languages

modules, 62–63
node types, 63

LANs (local area networks), virtual.
See VLANs (virtual LANs)

Layer 3 VPN topology, 17
leaf list nodes, YANG, 63
leaf nodes, YANG, 63
legacy networks, subnet deployment

with Ansible, 212–213
levels, enterprise automation, 254–257
line charts, 102–103
list data type, YAML, 46
list nodes, YANG, 63
load prediction, 9
local files, reading, 156
local source control, 203
lock operation, in NETCONF, 73
log data processing, 34, 98–100
log exporters, 81–83
Logstash, 34
lookup functions, 188
lookup plug-in, 156
loop keyword, 136
loops, 136–139
low-level key performance indicators

(KPIs), 245

M
machine learning (ML)

data insights from, 110–112
DNA Center, 22–23
machine learning model with raw data,

112–113
macOS, Ansible installation on, 121
maintenance, predictive, 7–8
mean time to repair (MTTR), 113–114
measurement, automation strategies

for, 251
merging Git branches, 222–223
messages, Syslog, 57–58
meta characters, 89
meta directory (Ansible), 149
methods, 171

DELETE, 67

GET, 67
PATCH, 67–68
POST, 67
PUT, 67–68

metric scales, 102
Microsoft Azure, 184
migrations

network migrations at electricity
provider, 115–116

overview of, 32
ML. See machine learning (ML)
model-driven data-gathering

techniques
NETCONF, 72–77

candidate datastores, 72–73
definition of, 72
interaction with, 74–77
interface configuration, 76–77
interface filter, 75
model-driven protocol stack, 80
operations, 73
RPC reply, 75–76

RESTCONF, 77–80
interface configurations,

modifying, 79
interface information,

retrieving, 78–79
model-driven protocol stack, 80
URI elements, 77–78

telemetry, 80–81
models, data. See data formats and

models
models, machine learning

data insights from, 110–112
machine learning model with raw

data, 112–113
modules

Ansible, 120, 174
command, 174–176
copy, 158
docker_container, 181
ios_config, 164
ios_interface, 164–165
lookup plug-in, 156
netconf_config, 167–168

Z02_Ivo_Index_p279-300.indd 292 05/10/21 6:15 PM

NetDevOps (network DevOps)  293

netconf_get, 165–166
netconf_rpc, 168–169
restconf_config, 171–173
restconf_get, 169–170
slurp, 156–157
uri, 187, 188–189
vmware_guest, 179–180
yum, 174

Cisco FTD, 187
ec2, 207
YANG, 62–66

monitoring
data-driven automation use cases for,

5–6
with DNA Center, 22–23
with Grafana, 35–36
with Kibana, 34
with Splunk, 36–37

Monitron, 111
Moogsoft, 111
MTTR (mean time to repair),

113–114
multiple handlers, 142–143
mutable infrastructure, 206–207

N
name collisions, XML (Extensible

Markup Language) document with,
50

names
interface, parsing with Ansible,

91–92
of neighbor devices, 12–13

namespaces, 168
creating applications in, 182–183
XML (Extensible Markup Language)

document with, 50–51
neighbor devices, learning names of,

12–13
NETCONF, 72–77, 165–169

candidate datastores, 72–73
definition of, 72
interaction with, 74–77

interface configuration, 76–77,
167–168

interface filter, 75
model-driven protocol stack, 80
netconf_config Ansible module,

167–168
netconf_get Ansible module,

165–166
netconf_rpc Ansible module,

168–169
operations, 73
RPC reply, 75–76
running configuration

retrieving, 166–167
saving, 168–169

netconf_config Ansible module,
167–168

netconf_get Ansible module, 165–166
netconf_rpc Ansible module, 168–169
NetDevOps (network DevOps)

benefits of, 200–202, 210–211
case studies, 233–237

new service implementations
in tier 1 service provider,
236–237

new technology trainings
at Fortune 500 company,
234–235

pipelines in large bank,
233–234

CI/CD (continuous integration/
continuous deployment),
208–210
benefits of, 208–210
GitLab CI/CD, 224–226
pipelines, 210, 227–228,

230–232, 233–234
tools for, 214–228

definition of, 199–202
environment, requirements for,

228–229
IaC (infrastructure as code), 205–208

definition of, 205
goals of, 206
idempotence, 206

Z02_Ivo_Index_p279-300.indd 293 27/09/21 8:58 PM

294  NetDevOps (network DevOps)

immutability, 206–207
imperative versus declarative

approach to, 207–208
operations, 232–233
overview of, 199
phases of, 199–202
source control, 202–205

centralized, 203–204
distributed, 204–205
local, 203

stages of, 230–232
testing with, 232–233
tools, 214–228

Git, 215–224
GitLab CI/CD, 224–226
Jenkins, 226–228

when to use, 211–214
NetFlow, 3, 5, 59–60

architecture, 59
components, 59
versions of, 59

Netmiko, 38
network automation strategies. See

automation strategies
network devices, interacting with,

160–173
DNA Center, getting network devices

from, 187
NETCONF, 165–169

interface configuration, 167–168
netconf_config Ansible module,

167–168
netconf_get Ansible module,

165–166
netconf_rpc Ansible module,

168–169
running configuration,

retrieving, 166–167
running configuration, saving,

168–169
RESTCONF, 169–173

configuration, retrieving,
169–171

device configuration, 171–173
restconf_config module,

171–173

restconf_get module, 169–170
SSH (Secure Shell Protocol), 160–165

host facts, printing, 160–162
IOS interface configuration,

164–165
NTP status, printing, 163–164
output of show command,

capturing, 162–163
network DevOps. See NetDevOps

(network DevOps)
network migrations at electricity

provider, 115–116
network service abstraction, 237
new service implementations, 236–237
Nginx containers, 181–182
nodes

Chef, 33
YANG, 63

nonblocking tasks, 147–148
NTP status, printing, 163–164
null types, in JSON (JavaScript Object

Notation), 55
number types, in JSON (JavaScript

Object Notation), 55
NX-OS, updating TACACS key for,

190–192

O
object types, in JSON (JavaScript

Object Notation), 55
objectives, automation strategy, 243,

259–261
Openpyxl, 38
OpenStack, 15, 181
operating models, automation

strategies and, 242
operations

NETCONF, 73
NetDevOps, 232–233

optimization
data-driven automation use cases for,

7–8
with DNA Center, 22–23

Z02_Ivo_Index_p279-300.indd 294 27/09/21 8:58 PM

QoS (quality of service)  295

organizational culture, automation
strategies and, 258

outliers, DNA Center, 23

P
Paramiko, 38
parent XML elements, 49
parsing data, 88–98

with Ansible, 90–98
device facts, 90–91
listing available interfaces, 93
parsing and altering interface

names, 91–92
recording times of data

collection, 93
regular expressions and, 96–98
RESTCONF and, 94–96
SSH (Secure Shell Protocol)

and, 96–98
identifying IPv4 addresses with, 89
regular expressions in, 88–89
splitting into parts, 88
tokenizing, 88
type formatting, 88

PATCH method, 67–68
performance testing, 21
period (.), 89
phases, NetDevOps (network DevOps),

199–202
ping command, 21, 236
pip, 121
pipe character (|), 89
pipelines, 233–234

definition of, 210
in GitLab CI/CD, 225–226
in Jenkins, 227–228, 230–232

plan phase (NetDevOps), 200
playbooks, Ansible, 231. See also

Ansible
example of, 132
executing, 143–149

ad hoc commands, 144
ansible-playbook command,

143–144

asynchronous tasks, 147–149
nonblocking tasks, 147–148
run_once task, 146
serial execution of tasks,

145–146
overview of, 131–133
running for specific group of hosts,

132–133
structure of, 131–132

plus sign (+), 89
PoC (proof of concept), 268
POST method, 67
PostgreSQL, 36
Postman, 69–70
pound sign (#), 46–47
poweredoff state, 180
poweredon state, 180
predictive maintenance, data-driven

automation use cases for, 7–8
preparing data. See data preparation
present state, 180
proof of concept (PoC), 268
providers, 24
provisioning

with Ansible, 32, 185–186
with cloud event-driven functions,

23–24
with DNA Center, 22–23
task-based automation use cases for,

14–15
with Terraform, 24–31

pull model sensor architecture, 3–4
push model sensor architecture, 3
PUT method, 67–68
Pyautogui, 38
Python, 38–39

interface configuration with
NETCONF, 77

machine learning (ML) with, 111, 112
sklearn, 112

Q
QoS (quality of service)

Z02_Ivo_Index_p279-300.indd 295 27/09/21 8:58 PM

296  QoS (quality of service)

across heterogenous installed base,
193–194

disaster recovery at European bank,
194–195

queries, XQuery, 52–53
questionnaires, assessment, 252–253

R
raw data, machine learning model

with, 112–113
reading files, 155–157

local files, 156
lookup plug-in, 156
remote files, 157

rebootguest state, 180
recipes, Chef, 33
Red Hat OpenShift, 31
Red Hat Virtualization (RHV), 181
RedHat Ansible Tower, 106
regex. See regular expressions (regex)
register keyword, 170
registered variables, 129
regular expressions (regex)

meta characters, 89
parsing data with, 88–89
retrieving interface descriptions with,

96–98
special characters, 88

Rekognition, 111
release phase (NetDevOps), 200
remote files, reading, 157
remote repositories, Git, 223–224
reporting

with Splunk, 37
task-based automation use cases for,

15–16
repositories, Git

adding files to, 217–218
directory structure of, 229
initialization of, 215–216
remote, 223–224

resources
dependencies, 15
provisioning on AWS, 185–186

REST (Representational State
Transfer) APIs, 66

restarted state, 180
RESTCONF, 77–80, 169–173

configuration, retrieving, 169–171
device configuration, 171–173
interface configurations, modifying,

79
interface information, retrieving,

78–79, 94–96
model-driven protocol stack, 80
restconf_config module, 171–173
restconf_get module, 169–170
URI elements, 77–78

restconf_config module, 171–173
restconf_get module, 169–170
RFCs (requests for comments)

RFC 3954, 60
RFC 5101, 60
RFC 5424, 58

RHV (Red Hat Virtualization), 181
roadmaps, automation strategies and,

242
roles, Ansible, 149–152

default folder structure, 149–150
Galaxy, 149–150
role directories, 149
VLAN creation with, 150–152

rolling back file changes, 219–220
root hierarchy (XML), 49
rotations per minute (RPMs), for

router fans, 8–9
routers

interacting with. See network
devices, interacting with

router fans, rotations per minute for,
8–9

RPC reply, 75–76
Ruby, 33
run_once task, 146
running configuration

retrieving, 166–167
saving, 168–169

running datastore, NETCONF, 73

Z02_Ivo_Index_p279-300.indd 296 27/09/21 8:58 PM

switches  297

S
\S characters, 89
\s characters, 89
scalar data types, in YAML, 46
scales, metric, 102
schemas

Ansible Inventory JSON schema,
56–57

XML (Extensible Markup Language)
document with, 51–52

YAML, 47
scripted pipelines, 227, 230–232
SD-WAN (software-defined wide

area networking), data-driven
automation in, 7–8

Secure Shell Protocol (SSH), 5, 18
Selenium, 38
servers, 174–181

automation tasks with Ansible,
174–181

Chef, 33
CI/CD, 210

ServiceNow, 189
services, new implementations

in tier 1 service provider,
236–237

severities, Syslog, 58
show commands, 10

capturing output of, 162–163
show cdp neighbors, 12–13
show interfaces, 71
show ip int brief, 38
in typical configuration workflow, 14

shutdownguest state, 180
sibling elements (XML), 49
Simple Network Management

Protocol (SNMP), 3, 5
simplification, automation strategies

for, 251
skills, automation strategies and, 242,

257–258
sklearn module, 112
Slack, 189

slurp module, 156–157
snapshots, 180–181
SNMP (Simple Network Management

Protocol), 3, 5
SolarWinds, 107
source control, 202–205

centralized, 203–204
distributed, 204–205
local, 203

special characters, in regular
expressions, 88

speed command, 164
splitting data into parts, 88
Splunk, 36–37, 100–101, 107, 189
square brackets ([]), 89
SSH (Secure Shell Protocol), 5, 18,

160–165
host facts, printing, 160–162
IOS interface configuration, 164–165
NTP status, printing, 163–164
output of show command, capturing,

162–163
retrieving interface descriptions with,

96–98
startup datastore, NETCONF, 73
stat panels, 102–104
state choices, vmware_guest, 179–180
stateless frameworks, 67
status codes, HTTP (Hypertext

Transfer Protocol), 68
stdout, 164, 175
stdout variable, 163–164
steps keyword, 228
strategies, automation. See

automation strategies
string type, in JSON (JavaScript

Object Notation), 55
subnet deployment

with Ansible
in cloud, 211–212
on legacy network, 212–213

variable files for, 213
supervised algorithms, 110
suspended state, 180
switches

Z02_Ivo_Index_p279-300.indd 297 27/09/21 8:58 PM

298  switches

identifying configuration differences
in, 107–109

interacting with. See network
devices, interacting with

Syslog, 3, 57–59
message syntax, 57–58
severities, 58

T
TACACS+ keys

configuration with Ansible, 31–32
updating, 190–192

tactics, automation strategy, 243,
262–264

task pipelines, 234
task-based automation

definition of, 11
use cases, 12–16

configuration, 13–14
data collection, 12–13
interaction, 12
provisioning, 14–15
reporting, 15–16

tasks
asynchronous, 147–149
Gantt chart of, 270
nonblocking, 147–148
run_once, 146
serial execution of, 145–146

tasks directory (Ansible), 149
technology adoption, automation

strategies and, 242
Technology Maturity Level Chart,

254
technology training at Fortune 500

company, 234–235
Telegraf, 106–107
telemetry, 80–81
templates directory (Ansible), 149
template-ubuntu, 178
Terraform, 24–31

application of changes, 28–29
overview of, 24–25
.tf configuration file, 25, 26

verification of applied changes,
29–31

verification of changes to be applied,
26–27

VM deployment with, 208
test phase (NetDevOps), 200
testing

disaster recovery, 21
functional, 21
with NetDevOps (network DevOps),

232–233
performance, 21
security, 21

tests directory (Ansible), 149
Tetration, 82–83, 100–101
.tf files, 24, 25
threshold, defining, 105
tier 1 service providers, new service

implementations in, 236–237
tokenizing, 88
tools. See individual tools
traceability, source control and, 203
traceroute command, 10, 21
trainings, new technology, 234–235
traps (SNMP), 3
tree command, 127
troubleshooting

data-driven automation use cases for,
8–10

with DNA Center, 22–23
type formatting, 88

U
ungrouped hosts, Ansible inventory

with, 123
universal forwarder, Splunk, 37
unlock operation, NETCONF, 73
unsupervised algorithms, 110
until keyword, 139
updating TACACS+ keys, 190–192
URI elements, RESTCONF, 77–78
uri module, 187, 188–189
use cases

data-driven automation, 4–10

Z02_Ivo_Index_p279-300.indd 298 27/09/21 8:58 PM

VMs (virtual machines)  299

compliance checking, 6–7
device monitoring, 5–6
optimization, 7–8
predictive maintenance, 8–9
troubleshooting, 8–10

end-to-end automation, 17–22
overview of, 1, 4–10
task-based automation, 12–16

configuration, 13–14
data collection, 12–13
interaction, 12
provisioning, 14–15
reporting, 15–16

V
Vagrant, 181
validate operation, NETCONF, 73
var_files keyword, 128
variable assignments, Ansible

inventory with, 122
variable files

assigning Ansible variables with, 128
for subnets, 213

variables, Ansible, 126–131
Ansible Vaults, 130–131
assigning with folder structure,

126–127
assigning with variable files, 128
defined, 129–130
registered, 129

vars directory (Ansible), 149
Vaults, Ansible, 130–131
verifying

Ansible inventory, 124
Ansible version, 121
disk space, 177–178
file changes, 218–219

version history, source control and,
203

virtualization. See containers; VMs
(virtual machines)

visualization, data, 100–104
automation of, 104
bar charts, 102–103

case studies
machine learning model with

raw data, 112–113
mean time to repair (MTTR)

reduction, 113–114
network migrations at

electricity provider, 115–116
color in, 104
CPU utilization of routers, 101–102
line charts, 102–103
metric scales for, 102
stat panels/gauges, 102–104
tools for, 100–101

VLANs (virtual LANs)
configuring, 254–256

with abstracted input, 256
with Ansible, 255
Jenkins pipeline for, 255
with Python, 38–39
single VLAN on switch

with specific hostname,
133–134

two VLANs on switch with
specific hostname, 134–136

creating, 150–152
VMotion, 180–181
VMs (virtual machines), 174–181

automation tasks with Ansible,
174–181

creating with Ansible, 184
creating with Terraform

application of changes, 28–29
overview of, 24–25
Terraform initialization, 26
.tf configuration file, 25
verification of applied changes,

29–31
verification of changes to be

applied, 26–27
deployment

with Ansible, 178–179, 207
imperative versus declarative

approach to, 207–208
snapshots and VMotion,

180–181

Z02_Ivo_Index_p279-300.indd 299 27/09/21 8:58 PM

300  VMs (virtual machines)

with Terraform, 208
vmware_guest state choices,

179–180
VMware vCloud suite, 15
vmware_guest module, 179–180
vmware_guest state choices, 179–180
VPNs (virtual private networks), 17

W
\W characters, 89
\w characters, 88
webhooks, 106–107
website content, crawling, 188–189
workstations, Chef, 33
writing files, 158–160

X
XenServer, 181
XML (Extensible Markup Language),

48–53
data encoding for YANG, 63–66
document example, 48
document type definitions (DTDs),

51–52
elements, 49

interface attributes, 50
name collisions, 50
namespaces, 50–51, 168
schemas, 51–52
XML-to-JSON conversion, 51–52
XPath, 52–53, 94
XQuery, 52–53, 94

xmlns value, 168
XPath, 52–53, 94
XQuery, 52–53, 94

Y-Z
Yamale, 47
YAML, 31, 44–48

comments, 46–47
data enforcement, 47
data types, 46
file example, 45
flow-style data, 46

YANG, 61–66
data encoding for, 63–66
modules, 62–66
node types, 63

Yet Another Markup Language.
See YAML

yum, 121, 174

Z02_Ivo_Index_p279-300.indd 300 27/09/21 8:58 PM

	Cover
	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewers
	Dedications
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Chapter 3 Using Data from Your Network
	Data Preparation
	Parsing
	Aggregation

	Data Visualization
	Data Insights
	Alarms
	Configuration Drift
	AI/ML Predictions

	Case Studies
	Creating a Machine Learning Model with Raw Data
	How a Data Center Reduced Its Mean Time to Repair
	Network Migrations at an Electricity Provider

	Summary
	Review Questions

	Index

