PEARSON IT CERTIFICATION

Review Exercises

Cert Guide Advance your IT career with hands-on learning

CEH **Certified Ethical Hacker**

MICHAEL GREGG **OMAR SANTOS**

FREE SAMPLE CHAPTER SHARE WITH OTHERS

8+

in

Ju

Y

f

CEH Certified Ethical Hacker Cert Guide

Michael Gregg Omar Santos

CEH Certified Ethical Hacker Cert Guide

Copyright © 2022 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-748998-5

ISBN-10: 0-13-748998-6

Library of Congress Control Number: 2021947879 ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Pearson IT Certification cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/ or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screenshots may be viewed in full within the software version specified.

Microsoft[®] and Windows[®] are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation. Editor-in-Chief Mark Taub

Product Line Manager Brett Bartow

Executive Editor James Manly

Development Editor Christopher A. Cleveland

Managing Editor Sandra Schroeder

Senior Project Editor Tonya Simpson

Copy Editor Chuck Hutchinson

Indexer Timothy Wright

Proofreader Abigail Manheim

Technical Editor Trevor Chandler

Publishing Coordinator Cindy Teeters

Cover Designer Chuti Prasertsith

Compositor codeMantra

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. The authors and the publisher shall have neither

liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Pearson's Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportunities that improve lives and enable economic mobility. As we work with authors to create content for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their potential through learning. As the world's leading learning company, we have a duty to help drive change and live up to our purpose to help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

- Everyone has an equitable and lifelong opportunity to succeed through learning
- Our educational products and services are inclusive and represent the rich diversity of learners
- Our educational content accurately reflects the histories and experiences of the learners we serve
- Our educational content prompts deeper discussions with learners and motivates them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about any concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.

Contents at a Glance

Introduction xxvii

- CHAPTER 1 An Introduction to Ethical Hacking 3
- CHAPTER 2 The Technical Foundations of Hacking 47
- CHAPTER 3 Footprinting, Reconnaissance, and Scanning 89
- CHAPTER 4 Enumeration and System Hacking 161
- CHAPTER 5 Social Engineering, Malware Threats, and Vulnerability Analysis 229
- CHAPTER 6 Sniffers, Session Hijacking, and Denial of Service 311
- CHAPTER 7 Web Server Hacking, Web Applications, and Database Attacks 363
- CHAPTER 8 Wireless Technologies, Mobile Security, and Attacks 445
- CHAPTER 9 Evading IDS, Firewalls, and Honeypots 491
- CHAPTER 10 Cryptographic Attacks and Defenses 539
- CHAPTER 11 Cloud Computing, IoT and Botnets 585
- CHAPTER 12 Final Preparation 619 Glossary of Key Terms 623
- APPENDIX A Answers to the "Do I Know This Already?" Quizzes and Review Questions 649
- APPENDIX B CEH Certified Ethical Hacker Cert Guide Exam Updates 685 Index 687

Online Elements:

- APPENDIX C Study Planner
 - **Glossary of Key Terms**

Table of Contents

Introduction xxvii

Chapter 1 An Introduction to Ethical Hacking 3 "Do I Know This Already?" Quiz 3 Foundation Topics 7 Security Fundamentals 7 Goals of Security 8 Risk, Assets, Threats, and Vulnerabilities 9 Backing Up Data to Reduce Risk 11 Defining an Exploit 12 Risk Assessment 13 Security Testing 14 No-Knowledge Tests (Black Box) 14 Full-Knowledge Testing (White Box) 15 Partial-Knowledge Testing (Gray Box) 15 Types of Security Tests 15 Incident Response 17 Cyber Kill Chain 18 Hacker and Cracker Descriptions 19 Who Attackers Are 20 Ethical Hackers 21 Required Skills of an Ethical Hacker 22 Modes of Ethical Hacking 23 Test Plans—Keeping It Legal 25 Test Phases 27 Establishing Goals 28 Getting Approval 29 Ethical Hacking Report 29 Vulnerability Research and Bug Bounties-Keeping Up with Changes 30

Ethics and Legality 31 Overview of U.S. Federal Laws 32 Compliance Regulations 34 Payment Card Industry Data Security Standard (PCI-DSS) 36 Summary 36 Exam Preparation Tasks 37 Review All Key Topics 37 Define Key Terms 38 Exercises 38 1-1 Searching for Exposed Passwords - 38 1-2 Examining Security Policies 39 Review Questions 39 Suggested Reading and Resources 44 Chapter 2 The Technical Foundations of Hacking 47 "Do I Know This Already?" Quiz 47 Foundation Topics 50 The Hacking Process 50 Performing Reconnaissance and Footprinting 50 Scanning and Enumeration 51 Gaining Access 52 Escalating Privilege 53 Maintaining Access 53 Covering Tracks and Planting Backdoors 54 The Ethical Hacker's Process 54 NIST SP 800-115 56 Operationally Critical Threat, Asset, and Vulnerability Evaluation 56 Open Source Security Testing Methodology Manual 56 Information Security Systems and the Stack 57 The OSI Model 57 Anatomy of TCP/IP Protocols 60 The Application Layer 62 The Transport Layer 66 Transmission Control Protocol 66

User Datagram Protocol 68 The Internet Layer 69 Traceroute 74 The Network Access Layer 77 Summary 78 Exam Preparation Tasks 79 Review All Key Topics 79 Define Key Terms 79 Exercises 80 2-1 Install a Sniffer and Perform Packet Captures 80 2-2 Using Traceroute for Network Troubleshooting 81 Review Questions 81 Suggested Reading and Resources 85 Chapter 3 Footprinting, Reconnaissance, and Scanning 89 "Do I Know This Already?" Quiz 89 Foundation Topics 93 Footprinting 93 Footprinting Methodology 93 Documentation 95 Footprinting Through Search Engines 96 Footprinting Through Social Networking Sites 101 Footprinting Through Web Services and Websites 103 Email Footprinting 106 Whois Footprinting 108 DNS Footprinting 112 Network Footprinting 118 Subnetting's Role in Mapping Networks 119 Traceroute 120 Footprinting Through Social Engineering 121 Footprinting Countermeasures 122 Scanning 122 Host Discovery 123 Port and Service Discovery 124

Nmap 131 SuperScan 139 THC-Amap 139 Hping 140 Port Knocking 140 OS Discovery (Banner Grabbing/OS Fingerprinting) and Scanning Beyond IDS and Firewall 141 Active Fingerprinting Tools 143 Fingerprinting Services 145 Default Ports and Services 145 Finding Open Services 145 Draw Network Diagrams 148 Summary 151 Exam Preparation Tasks 152 Review All Key Topics 152 Define Key Terms 152 Exercises 153 3-1 Performing Passive Reconnaissance 153 3-2 Performing Active Reconnaissance 154 Review Questions 155 Suggested Reading and Resources 159 Chapter 4 Enumeration and System Hacking 161 "Do I Know This Already?" Quiz 161 Foundation Topics 164 Enumeration 164 Windows Enumeration 164 Windows Security 166 NetBIOS and LDAP Enumeration 167 NetBIOS Enumeration Tools 169 SNMP Enumeration 177 Linux/UNIX Enumeration 183 NTP Enumeration 185 SMTP Enumeration 186

Х

Additional Enumeration Techniques 191 DNS Enumeration 191 Enumeration Countermeasures 192 System Hacking 193 Nontechnical Password Attacks 193 Technical Password Attacks 194 Password Guessing 195 Automated Password Guessing 197 Password Sniffing 197 Keylogging 198 Escalating Privilege and Exploiting Vulnerabilities 199 Exploiting an Application 200 Exploiting a Buffer Overflow 201 Owning the Box 203 Windows Authentication Types 203 Cracking Windows Passwords 205 Linux Authentication and Passwords 209 Cracking Linux Passwords 212 Hiding Files and Covering Tracks 213 Rootkits 214 File Hiding 217 Summary 219 Exam Preparation Tasks 220 Review All Key Topics 220 Define Key Terms 220 Exercise 220 4-1 NTFS File Streaming 220 Review Questions 221 Suggested Reading and Resources 226 Chapter 5 Social Engineering, Malware Threats, and Vulnerability Analysis 229 "Do I Know This Already?" Quiz 229 Foundation Topics 234 Social Engineering 234 Phishing 235

Pharming 235 Malvertising 236 Spear Phishing 237 SMS Phishing 245 Voice Phishing 245 Whaling 245 Elicitation, Interrogation, and Impersonation (Pretexting) 246 Social Engineering Motivation Techniques 247 Shoulder Surfing and USB Baiting 248 Malware Threats 248 Viruses and Worms 248 Types and Transmission Methods of Viruses and Malware 249 Virus Payloads 251 History of Viruses 252 Well-Known Viruses and Worms 253 Virus Creation Tools 255 Trojans 255 Trojan Types 256 Trojan Ports and Communication Methods 257 Trojan Goals 258 Trojan Infection Mechanisms 259 Effects of Trojans 260 Trojan Tools 261 Distributing Trojans 263 Wrappers 264 Packers 265 Droppers 265 Crypters 265 Ransomware 267 Covert Communications 268 Tunneling via the Internet Layer 269 Tunneling via the Transport Layer 272 Tunneling via the Application Layer 273

Port Redirection 274 Keystroke Logging and Spyware 276 Hardware Keyloggers 277 Software Keyloggers 277 Spyware 278 Malware Countermeasures 279 Detecting Malware 280 Antivirus 283 Analyzing Malware 286 Static Analysis 286 Dynamic Analysis 288 Vulnerability Analysis 290 Passive vs. Active Assessments 290 External vs. Internal Assessments 290 Vulnerability Assessment Solutions 291 Tree-Based vs. Inference-Based Assessments 291 Vulnerability Scoring Systems 292 Vulnerability Scanning Tools 296 Summary 297 Exam Preparation Tasks 298 Review All Key Topics 299 Define Key Terms 300 Command Reference to Check Your Memory 300 Exercises 300 5-1 Finding Malicious Programs 300 5-2 Using Process Explorer 301 Review Questions 303 Suggested Reading and Resources 307 **Chapter 6** Sniffers, Session Hijacking, and Denial of Service 311 "Do I Know This Already?" Quiz 311 Foundation Topics 314 Sniffers 314 Passive Sniffing 315 Active Sniffing 316

Address Resolution Protocol 316 ARP Poisoning and MAC Flooding 318 Tools for Sniffing and Packet Capturing 324 Wireshark 324 Other Sniffing Tools 328 Sniffing and Spoofing Countermeasures 328 Session Hijacking 330 Transport Layer Hijacking 330 Identify and Find an Active Session 331 Predict the Sequence Number 332 Take One of the Parties Offline 333 Take Control of the Session 333 Application Layer Hijacking 334 Session Sniffing 334 Predictable Session Token ID 334 **On-Path Attacks** 335 Client-Side Attacks 335 Browser-Based On-Path Attacks 337 Session Replay Attacks 338 Session Fixation Attacks 338 Session Hijacking Tools 338 Preventing Session Hijacking 341 Denial of Service and Distributed Denial of Service 341 DoS Attack Techniques 343 Volumetric Attacks 343 SYN Flood Attacks 344 ICMP Attacks 344 Peer-to-Peer Attacks 345 Application-Level Attacks 345 Permanent DoS Attacks 346 Distributed Denial of Service 347 DDoS Tools 348 DoS and DDoS Countermeasures 350

Summary 353 Exam Preparation Tasks 354 Review All Key Topics 354 Define Key Terms 354 Exercises 355 6-1 Scanning for DDoS Programs 355 6-2 Spoofing Your MAC Address in Linux 355 6-3 Using the KnowBe4 SMAC to Spoof Your MAC Address 356 Review Questions 356 Suggested Reading and Resources 360 Web Server Hacking, Web Applications, and Database Attacks 363 Chapter 7 "Do I Know This Already?" Quiz 363 Foundation Topics 366 Web Server Hacking 366 The HTTP Protocol 366 Scanning Web Servers 374 Banner Grabbing and Enumeration 374 Web Server Vulnerability Identification 379 Attacking the Web Server 380 DoS/DDoS Attacks 380 DNS Server Hijacking and DNS Amplification Attacks 380 Directory Traversal 382 On-Path Attacks 384 Website Defacement 384 Web Server Misconfiguration 384 HTTP Response Splitting 385 Understanding Cookie Manipulation Attacks 385 Web Server Password Cracking 386 Web Server–Specific Vulnerabilities 386 Comments in Source Code 388 Lack of Error Handling and Overly Verbose Error Handling 389 Hard-Coded Credentials 389

Race Conditions 389 Unprotected APIs 390 Hidden Elements 393 Lack of Code Signing 393 Automated Exploit Tools 393 Securing Web Servers 395 Harden Before Deploying 395 Patch Management 395 396 Disable Unneeded Services Lock Down the File System 396 Log and Audit 396 Provide Ongoing Vulnerability Scans 397 Web Application Hacking 398 Unvalidated Input 398 Parameter/Form Tampering 399 Injection Flaws 399 Cross-Site Scripting (XSS) Vulnerabilities 400 Reflected XSS Attacks 401 Stored XSS Attacks 402 DOM-Based XSS Attacks 404 XSS Evasion Techniques 405 XSS Mitigations 406 Understanding Cross-Site Request Forgery Vulnerabilities and Related Attacks 408 Understanding Clickjacking 409 Other Web Application Attacks 410 Exploiting Web-Based Cryptographic Vulnerabilities and Insecure Configurations 411 Web-Based Password Cracking and Authentication Attacks 412 Understanding What Cookies Are and Their Use 414 URL Obfuscation 415 Intercepting Web Traffic 417 Securing Web Applications 419 Lack of Code Signing 421

Database Hacking 421 A Brief Introduction to SQL and SQL Injection 422 SQL Injection Categories 427 Fingerprinting the Database 429 Surveying the UNION Exploitation Technique 430 Using Boolean in SQL Injection Attacks 431 Understanding Out-of-Band Exploitation 432 Exploring the Time-Delay SQL Injection Technique 433 Surveying Stored Procedure SQL Injection 434 Understanding SQL Injection Mitigations 434 SQL Injection Hacking Tools 435 Summary 436 Exam Preparation Tasks 437 Review All Key Topics 437 Exercise 438 7-1 Complete the Exercises in WebGoat 438 Review Questions 438 Suggested Reading and Resources 443 Chapter 8 Wireless Technologies, Mobile Security, and Attacks 445 "Do I Know This Already?" Quiz 445 Foundation Topics 449 Wireless and Mobile Device Technologies 449 Mobile Device Concerns 451 Mobile Device Platforms 452 Android 453 iOS 455 Windows Mobile Operating System 456 BlackBerry 457 Mobile Device Management and Protection 457 Bluetooth 458 Radio Frequency Identification (RFID) Attacks 461 Wi-Fi 461 Wireless LAN Basics 462

Wireless LAN Frequencies and Signaling 463 Wireless LAN Security 464 Installing Rogue Access Points 467 Evil Twin Attacks 468 Deauthentication Attacks 468 Attacking the Preferred Network Lists 472 Jamming Wireless Signals and Causing Interference 472 War Driving 472 Attacking WEP 472 Attacking WPA 474 Wireless Networks Configured with Open Authentication 478 KRACK Attacks 479 Attacks Against WPA3 479 Attacking Wi-Fi Protected Setup (WPS) 480 KARMA Attack 481 Fragmentation Attacks 481 Additional Wireless Hacking Tools 482 Performing GPS Mapping 483 Wireless Traffic Analysis 483 Launch Wireless Attacks 483 Crack and Compromise the Wi-Fi Network 484 Securing Wireless Networks 485 Site Survey 485 Robust Wireless Authentication 485 Misuse Detection 486 Summary 487 Exam Preparation Tasks 488 Review All Key Topics 488 Define Key Terms 488 Review Questions 488 Suggested Reading and Resources 489

Chapter 9 Evading IDS, Firewalls, and Honeypots 491 "Do I Know This Already?" Quiz 491 Foundation Topics 495 Intrusion Detection and Prevention Systems 495 IDS Types and Components 495 Pattern Matching 497 Protocol Analysis 500 Heuristic-Based Analysis 500 Anomaly-Based Analysis 500 Global Threat Correlation Capabilities 502 Snort 502 IDS Evasion 506 Flooding 507 Insertion and Evasion 507 Session Splicing 508 Shellcode Attacks 508 Other IDS Evasion Techniques 509 IDS Evasion Tools 510 Firewalls 511 Firewall Types 512 Network Address Translation 512 Packet Filters 513 Application and Circuit-Level Gateways 515 Stateful Inspection 515 Identifying Firewalls 516 Bypassing Firewalls 520 Honeypots 526 Types of Honeypots 528 Detecting Honeypots 529 Summary 530 Exam Preparation Tasks 530

Review All Key Topics 530 Define Key Terms 531 Review Questions 531 Suggested Reading and Resources 536 Cryptographic Attacks and Defenses 539 Chapter 10 "Do I Know This Already?" Quiz 539 Foundation Topics 543 Cryptography History and Concepts 543 Encryption Algorithms 545 Symmetric Encryption 546 Data Encryption Standard (DES) 548 Advanced Encryption Standard (AES) 550 Rivest Cipher 551 Asymmetric Encryption (Public Key Encryption) 551 RSA 552 Diffie-Hellman 552 ElGamal 553 Elliptic-Curve Cryptography (ECC) 553 Digital Certificates 553 Public Key Infrastructure 554 Trust Models 555 Single-Authority Trust 556 Hierarchical Trust 556 Web of Trust 557 Email and Disk Encryption 557 Cryptoanalysis and Attacks 558 Weak Encryption 561 Encryption-Cracking Tools 563 Security Protocols and Countermeasures 563 Steganography 566 Steganography Operation 567 Steganographic Tools 568 Digital Watermark 571

Hashing 571 Digital Signature 573 Summary 574 Exam Preparation Tasks 574 Review All Key Topics 574 Define Key Terms 575 Exercises 575 10-1 Examining an SSL Certificate 575 10-2 Using PGP 576 10-3 Using a Steganographic Tool to Hide a Message 577 Review Questions 577 Suggested Reading and Resources 582 Chapter 11 Cloud Computing, IoT, and Botnets 585 "Do I Know This Already?" Quiz 585 Foundation Topics 588 Cloud Computing 588 Cloud Computing Issues and Concerns 590 Cloud Computing Attacks 592 Cloud Computing Security 593 DevOps, Continuous Integration (CI), Continuous Delivery (CD), and DevSecOps 593 CI/CD Pipelines 596 Serverless Computing 598 Containers and Container Orchestration 598 How to Scan Containers to Find Security Vulnerabilities 600 IoT 601 IoT Protocols 604 IoT Implementation Hacking 606 Botnets 606 Botnet Countermeasures 609 Summary 612 Exam Preparation Tasks 612

Review All Key Topics 612 Define Key Terms 613 Review Questions 613 Suggested Reading and Resources 615

Chapter 12 Final Preparation 619

Hands-on Activities 619 Suggested Plan for Final Review and Study 620 Summary 621

Glossary of Key Terms 623

- Appendix A Answers to the "Do I Know This Already?" Quizzes and Review Questions 649
- Appendix B CEH Certified Ethical Hacker Cert Guide Exam Updates 685 Index 687

Online Elements:

Appendix C Study Planner

Glossary of Key Terms

About the Authors

Michael Gregg (CISSP, SSCP, CISA, MCSE, MCT, CTT+, A+, N+, Security+, CCNA, CASP, CISA, CISM, CEH, CHFI, and GSEC) directs the cybersecurity operations for a multinational organization that operates facilities worldwide. As the CISO, Michael is responsible for securing the organization's assets on a global scale. Michael is responsible for developing cost-effective and innovative technology solutions for security issues and for evaluating emerging technologies.

He has more than 20 years of experience in the IT field and holds two associate's degrees, a bachelor's degree, and a master's degree. In addition to coauthoring the first, second, and third editions of *Security Administrator Street Smarts*, Michael has written or coauthored more than 20 other books.

Michael has testified before a U.S. congressional committee, has been quoted in newspapers such as the *New York Times*, and was featured on various television and radio shows, including NPR, ABC, CBS, Fox News, and others, discussing cybersecurity and ethical hacking. He has created more than a dozen IT security training classes. He has created and performed video instruction on many security topics, such as cybersecurity, CISSP, CISA, Security+, and others.

When not working, speaking at security events, or writing, Michael enjoys 1960s muscle cars and has a slot in his garage for a new project car.

Omar Santos is an active member of the cybersecurity community. His active role helps businesses, academic institutions, state and local law enforcement agencies, and other participants that are dedicated to increasing the security of their critical infrastructure. Omar is the lead of the DEF CON Red Team Village, the chair of the OASIS Common Security Advisory Framework (CSAF), and has been the leader of several working groups in the Industry Consortium for Advancement of Security on the Internet (ICASI) and the Forum of Incident Response and Security Teams (FIRST).

Omar is the author of more than 20 books and video courses and numerous white papers, articles, and security configuration guidelines and best practices. Omar is a principal engineer of the Cisco Product Security Incident Response Team (PSIRT), where he mentors and leads engineers and incident managers during the investigation and resolution of security vulnerabilities. Omar has been quoted by numerous media outlets, such as The Register, Wired, ZDNet, ThreatPost, CyberScoop, TechCrunch, Fortune, Ars Technica, and more. Additional information about Omar can be obtained from h4cker.org and omarsantos.io. You can follow Omar on Twitter at @santosomar.

Dedications

To my parents, Betty and Curly, who always stood behind me, encouraged me, and prayed that all my dreams would come true.

-Michael

I would like to dedicate this book to my lovely wife, Jeannette, and my two beautiful children, Hannah and Derek, who have inspired and supported me throughout the development of this book. I also dedicate this book to my father, Jose, and to the memory of my mother, Generosa. Without their knowledge, wisdom, and guidance, I would not have the goals that I strive to achieve today.

—Omar

Acknowledgments

Michael:

I would like to say thanks to Grace, James, Chris, Omar, and all the team at Pearson for helping make this version of the book a reality.

Omar:

This book is a result of concerted efforts of various individuals whose help brought it to reality. I would like to thank Michael Gregg for his contributions and to the team at Pearson, especially to James Manly and Chris Cleveland, for their help and continuous support throughout the development of this book.

About the Technical Reviewer

Trevor Chandler, CISSP No. 458840, has been a faculty member in higher education for more than 34 years. Trevor also has worked as a system administrator on UNIX (AIX, HP-UX, SunOS) and Linux (Red Hat) systems. As an educator, Trevor delivers courses primarily in multiple levels of Linux system administration, Cisco networking (CCNA/CCNP), and information systems security. Trevor achieved EC-Council's Certified Ethical Hacker (CEH) certification in 2017.

We Want to Hear from You!

As the reader of this book, *you* are our most important critic and commentator. We value your opinion and want to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book's title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: community@informit.com

*Be sure to check the box that you would like to hear from us to receive exclusive discounts on future editions of this product.

Introduction

The EC-Council Certified Ethical Hacker (CEH) exam is one of the leading ethical hacking and cybersecurity certifications available today. CEH is recognized by the industry as providing candidates with a solid foundation of hands-on security testing skills and knowledge. The CEH exam covers a broad range of security concepts to prepare candidates for the technologies that they are likely to be working with if they move into a role that requires hands-on security testing.

Let's talk some about what this book is. It offers you the information you need to know to pass the CEH exam. It's highly recommended that you spend time with the tools and software discussed in the book. You should also complete a number of practice tests to become more comfortable with the types of questions you will see on the exam and get used to completing 125 questions in four hours. Depending on your personal study habits or learning style, you might benefit from buying this book *and* taking a class.

NOTE After completing the CEH exam, candidates may elect to attempt the CEH Practical exam. Individuals who possess the CEH credential will be able to sit for the CEH Practical exam. This exam will test their limits in unearthing vulnerabilities across major operating systems, databases, and networks. The CEH Practical exam is a six-hour, hands-on exam that requires you to demonstrate the application of ethical hacking techniques, such as threat vector identification, network scanning, OS detection, vulnerability analysis, system hacking, and web app hacking.

Cert Guides are meticulously crafted to give you the best possible learning experience for the particular characteristics of the technology covered and the actual certification exam. The instructional design implemented in the Cert Guides reflects the nature of the CEH certification exam. The Cert Guides provide you with the factual knowledge base you need for the exams, and then take it to the next level with exercises and exam questions that require you to engage in the analytic thinking needed to pass the CEH exam.

EC-Council recommends that typical candidates for this exam have a minimum of two years of experience in IT security. In addition, EC-Council recommends that candidates have preexisting knowledge of networking, TCP/IP, and basic computer knowledge.

Now, let's briefly discuss what this book is not. It is not a book designed to teach you advanced hacking techniques or the latest hack. This book's goal is to prepare you for the CEH 312-50 exam, and it is targeted to those with some networking, OS, and systems knowledge. It provides basics to get you started in the world of ethical hacking and prepare you for the exam. Those wanting to become experts in this field should be prepared for additional reading, training, and practical experience.

How to Use This Book

This book uses several key methodologies to help you discover the exam topics on which you need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. Therefore, this book does not try to help you pass the exams only by memorization; instead, it is designed to help you truly learn and understand the topics.

The book includes many features that provide different ways to study so you can be ready for the exam. If you understand a topic when you read it but do not study it any further, you probably will not be ready to pass the exam with confidence. The features included in this book give you tools that help you determine what you know, review what you know, better learn what you don't know, and be well prepared for the exam. These tools include the following:

- "Do I Know This Already?" Quizzes: Each chapter begins with a quiz that helps you determine the amount of time you need to spend studying that chapter. The answers are provided in Appendix A, "Answers to the 'Do I Know This Already?' Quizzes and Review Questions."
- Foundation Topics: These are the core sections of each chapter. They explain the tools and hacking concepts, and explain the configuration of both for the topics in that chapter.
- Exam Preparation Tasks: This section lists a series of study activities that you should complete after reading the "Foundation Topics" section. Each chapter includes the activities that make the most sense for studying the topics in that chapter. The activities include the following:
 - **Review All Key Topics:** The Key Topic icon appears next to the most important items in the "Foundation Topics" section of the chapter. The Review All Key Topics activity lists the key topics from the chapter and their page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic. Review these topics carefully.

- Define Key Terms: Although certification exams might be unlikely to ask a question such as "Define this term," the CEH 312-50 exam requires you to learn and know a lot of tools and how they are used. This section lists some of the most important terms from the chapter, asking you to write a short definition and compare your answer to the Glossary.
- Exercises: One or more sample exercises at the end of many chapters list a series of tasks for you to practice, which apply the lessons from the chapter in a real-world setting.
- Review Questions: Each chapter includes review questions to help you confirm that you understand the content you just covered. The answers are provided in Appendix A, "Answers to the 'Do I Know This Already?' Quizzes and Review Questions."

Companion Website

This book's companion website gives you access to the Pearson Test Prep practice test software (both online and Windows desktop versions) with two full practice exams and a PDF of the Glossary. To access the companion website, follow these steps:

- 1. Register your book by going to http://www.pearsonitcertification.com/register and entering the ISBN: 9780137489985.
- 2. Respond to the challenge questions.
- 3. Go to your account page and click the Registered Products tab.
- 4. Click the Access Bonus Content link under the product listing.

Pearson Test Prep Practice Test Software

This book comes complete with the Pearson Test Prep practice test software containing two full exams. These practice tests are available to you either online or as an offline Windows application. To access the practice exams that were developed with this book, please see the instructions in the card inserted in the sleeve in the back of the book. This card includes a unique access code that enables you to activate your exams in the Pearson Test Prep software.

Accessing the Pearson Test Prep Software Online

The online version of this software can be used on any device with a browser and connectivity to the Internet, including desktop machines, tablets, and smartphones. To start using your practice exams online, follow these steps:

- 1. Go to http://www.pearsontestprep.com.
- 2. Select Pearson IT Certification as your product group.
- **3.** Enter your email/password for your account. If you don't have a Pearson IT Certification account, you will need to establish one by going to http://www.pearsonitcertification.com/join.
- 4. In the My Products tab, click the Activate New Product button.
- **5.** Enter the access code printed on the insert card in the back of your book to activate your product.
- 6. The product will now be listed in your My Products page. Click the **Exams** button to launch the exam settings screen and start your exam.

Accessing the Pearson Test Prep Software Offline

If you want to study offline, you can download and install the Windows version of the Pearson Test Prep software. There is a download link for this software on the book's companion website, or you can enter this link in your browser:

http://www.pearsonitcertification.com/content/downloads/pcpt/engine.zip

To access the book's companion website and the software, follow these steps:

- 1. Register your book by going to http://www.pearsonitcertification.com/register and entering the ISBN: 9780137489985.
- 2. Respond to the challenge questions.
- 3. Go to your account page and click the **Registered Products** tab.
- 4. Click the Access Bonus Content link under the product listing.
- **5.** Click the **Install Pearson Test Prep Desktop Version** link under the Practice Exams section of the page to download the software.
- 6. After the software finishes downloading, unzip all the files on your computer.

- **7.** Double-click the application file to start the installation and follow the onscreen instructions to complete the registration.
- 8. When the installation is complete, launch the application and click the Activate Exam button on the My Products tab.
- 9. Click the Activate a Product button in the Activate Product Wizard.
- **10.** Enter the unique access code found on the card in the sleeve in the back of your book and click the **Activate** button.
- **11.** Click **Next**, and then click **Finish** to download the exam data to your application.
- **12.** You can now start using the practice exams by selecting the product and clicking the **Open Exam** button to open the exam settings screen.

Note that the offline and online versions will synch together, so saved exams and grade results recorded on one version will be available to you on the other as well.

Customizing Your Exams

When you are in the exam settings screen, you can choose to take exams in one of three modes:

- **Study Mode:** Study Mode allows you to fully customize your exams and review the answers as you are taking the exam. This is typically the mode you would use first to assess your knowledge and identify information gaps.
- Practice Exam Mode: Practice Exam Mode locks certain customization options because it is presenting a realistic exam experience. Use this mode when you are preparing to test your exam readiness.
- Flash Card Mode: Flash Card Mode strips out the answers and presents you with only the question stem. This mode is great for late-stage preparation when you want to challenge yourself to provide answers without the benefit of seeing multiple-choice options. This mode will not provide the detailed score reports that the other two modes will, so it should not be used if you are trying to identify knowledge gaps.

In addition to these three modes, you will be able to select the source of your questions. You can choose to take exams that cover all the chapters, or you can narrow your selection to a single chapter or the chapters that make up specific parts in the book. All chapters are selected by default. If you want to narrow your focus to individual chapters, deselect all the chapters and then select only those on which you want to focus in the Objectives area. You can also select the exam banks on which to focus. Each exam bank comes complete with a full exam of questions that cover topics in every chapter. The two exams printed in the book are available to you as well as two additional exams of unique questions. You can have the test engine serve up exams from all four banks or from just one individual bank by selecting the desired banks in the exam bank area.

You can make several other customizations to your exam from the exam settings screen, such as the time of the exam, the number of questions served up, whether to randomize questions and answers, whether to show the number of correct answers for multiple-answer questions, or whether to serve up only specific types of questions. You can also create custom test banks by selecting only questions that you have marked or questions on which you have added notes.

Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should always have access to the latest version of the software as well as the exam data. If you are using the Windows desktop version, every time you launch the software, it will check to see if there are any updates to your exam data and automatically download any changes that were made since the last time you used the software. This requires that you are connected to the Internet at the time you launch the software.

Sometimes, due to many factors, the exam data may not fully download when you activate your exam. If you find that figures or exhibits are missing, you may need to manually update your exams.

To update a particular exam you have already activated and downloaded, click the **Tools** tab and then click the **Update Products** button. Again, this is an issue only with the desktop Windows application.

If you want to check for updates to the Pearson Test Prep exam engine software, Windows desktop version, click the **Tools** tab and then click the **Update Application** button. This will ensure that you are running the latest version of the software engine.

Premium Edition eBook and Practice Tests

This book includes an exclusive offer for 80 percent off the Premium Edition eBook and Practice Tests edition of this title. See the coupon code included with the cardboard sleeve for information on how to purchase the Premium Edition.

End-of-Chapter Review Tools

Chapters 1 through 11 each have several features in the "Exam Preparation Tasks" and "Review Questions" sections at the end of the chapter. You might have already worked through these in each chapter. However, you might also find it helpful to use these tools again as you make your final preparations for the exam.

Goals and Methods

The most important and obvious goal of this book is to help you pass the CEH exam. In fact, if the primary objective of this book were different, the book's title would be misleading. However, the methods used in this book to help you pass the CEH exam are designed to also make you much more knowledgeable about how penetration testers do their job. Although this book and the practice tests together have more than enough questions to help you prepare for the actual exam, the method in which they are used is not to simply make you memorize as many questions and answers as you possibly can.

One key methodology used in this book is to help you discover the exam topics and tools that you need to review in more depth. Remember that the CEH exam will expect you to understand not only hacking concepts but also common tools. So, this book does not try to help you pass by memorization, but helps you truly learn and understand the topics, and when specific tools should be used. This book will help you pass the CEH exam by using the following methods:

- Helping you discover which test topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises and scenarios that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions in the practice tests

Who Should Read This Book?

This book is not designed to be a general security book or one that teaches network defenses. This book looks specifically at how attackers target networks, what tools attackers use, and how these techniques can be used by ethical hackers. Overall, this book is written with one goal in mind: to help you pass the exam.

Why should you want to pass the CEH exam? Because it's one of the leading entrylevel ethical hacking certifications. It is also featured as part of DoD Directive 8140, and having the certification might mean a raise, a promotion, or other recognition. It's also a chance to enhance your résumé and to demonstrate that you are serious about continuing the learning process and that you're not content to rest on your laurels. Or one of many other reasons.

Strategies for Exam Preparation

Although this book is designed to prepare you to take and pass the CEH certification exam, there are no guarantees. Read this book, work through the questions and exercises, and when you feel confident, take the practice exams and additional exams provided in the test software. Your results should tell you whether you are ready for the real thing.

When taking the actual certification exam, make sure that you answer all the questions before your time limit expires. Do not spend too much time on any one question. If you are unsure about the answer to a question, answer it as best as you can, and then mark it for review.

Remember that the primary objective is not to pass the exam but to understand the material. When you understand the material, passing the exam should be simple. Knowledge is a pyramid; to build upward, you need a solid foundation. This book and the CEH certification are designed to ensure that you have that solid foundation.

Regardless of the strategy you use or the background you have, the book is designed to help you get to the point where you can pass the exam with the least amount of time required. For instance, there is no need for you to practice or read about scanning and Nmap if you fully understand the tool already. However, many people like to make sure that they truly know a topic and therefore read over material that they already know. Several book features will help you gain the confidence that you need to be convinced that you know some material already, and to help you know what topics you need to study more.

How This Book Is Organized

Although this book could be read cover to cover, it is designed to be flexible and allow you to easily move between chapters and sections of chapters to cover the material that you need more work with. Chapter 1, "An Introduction to Ethical Hacking," provides an overview of ethical hacking and reviews some basics. Chapters 2 through 11 are the

core chapters. If you do intend to read them all, the order in the book is an excellent sequence to use.

The core chapters, Chapters 2 through 11, cover the following topics:

- Chapter 2, "The Technical Foundations of Hacking": This chapter discusses basic techniques that every security professional should know. This chapter reviews TCP/IP and essential network knowledge.
- Chapter 3, "Footprinting, Reconnaissance, and Scanning": This chapter discusses the basic ideas behind target selection and footprinting. The chapter reviews what type of information should be researched during footprinting and how passive and active footprinting and scanning tools should be used.
- Chapter 4, "Enumeration and System Hacking": This chapter covers enumeration, a final chance to uncover more detailed information about a target before system hacking. System hacking introduces the first step at which the hacker is actually exploiting a vulnerability in systems.
- Chapter 5, "Social Engineering, Malware Threats, and Vulnerability Analysis": This chapter examines social engineering, all types of malware, including Trojans, worms, viruses, how malware is analyzed, and how vulnerabilities are tracked and mitigated.
- Chapter 6, "Sniffers, Session Hijacking, and Denial of Service": This chapter covers sniffing tools, such as Wireshark. The chapter examines the difference in passive and active sniffing. It also reviews session hijacking and DoS, DDoS, and botnet techniques.
- Chapter 7, "Web Server Hacking, Web Applications, and Database Attacks": This chapter covers the basics of web server hacking, different web application attacks, and how SQL injection works.
- Chapter 8, "Wireless Technologies, Mobile Security, and Attacks": This chapter examines the underlying technology of wireless technologies, mobile devices, Android, iOS, and Bluetooth.
- Chapter 9, "Evading IDS, Firewalls, and Honeypots": This chapter discusses how attackers bypass intrusion detection systems and firewalls. This chapter also reviews honeypots and honeynets and how they are used to jail attackers.
- Chapter 10, "Cryptographic Attacks and Defenses": This chapter covers the fundamentals of attacking cryptographic systems and how tools such as encryption can be used to protect critical assets.

• Chapter 11, "Cloud Computing, IoT, and Botnets": This chapter covers the fundamentals of cloud computing and reviews common cloud modeling types. The chapter reviews common cloud security issues and examines penetration testing concerns. This chapter also covers the principles of IoT security and associated threats. The chapter also examines botnets and how they are used, detected, and dealt with.

Figure Credits

Cover image: ArtBackground/Shutterstock

Figure 2-11, screenshot of clear-text password displayed in Wireshark © Wireshark

Figure 3-3, screenshot of Google hacking social security numbers © Google LLC

Figure 3-4, screenshot of a person search in Maltego © Maltego Technologies

Figure 3-5, screenshot of the Shodan search engine © Shodan

Figure 3-6, screenshot of Zabasearch © ZabaSearch

Figure 3-8, screenshot of ARIN's Whois lookup © American Registry for Internet Numbers, Ltd.

Figure 3-9, screenshot of a ping capture © Wireshark Foundation

Figure 3-13, screenshot of a Wireshark scan capture [cw] Wireshark Foundation

Figure 4-2, screenshot of Have I Been Pwned? © Troy Hunt

Figure 4-3, screenshot of John the Ripper © OpenWall

Figure 5-14, screenshot of the ransom note left on an infected system © Lazarus Group

Figure 5-17, screenshot of Wireshark ping capture © Wireshark

Figure 5-19, screenshot of Talos File Reputation online tool © Cisco Systems, Inc.

Figure 5-20, screenshot of Process Explorer © Microsoft 2020

Figure 6-5, screenshot of Wireshark © Wireshark Foundation

Figure 6-9, screenshot of Booter sites used for DoS © Google LLC

Figure 7-6, screenshot of Whatweb © Whatweb.net

Figure 7-7, screenshot of ExploitDB.com © Offsec Services Limited

Figure 7-10, screenshot of a stored XSS attack example © Damn Vulnerable Web App

Figure 7-11, screenshot of a dialog appearing after the example stored XSS attack is successful © Damn Vulnerable Web App

Figure 7-12, screenshot of an example of a CSRF attack © Damn Vulnerable Web App

Figure 7-13, screenshot of basic authentication © PortSwigger Ltd.

Figure 7-14, screenshot of intercepting Web traffic with OWASP ZAP © OWASP Foundation, Inc

Figure 7-15, screenshot of an example of an SQL statement © Refsnes Data

Figure 7-17, screenshot of an example of a basic SQL injection attack using string-based user input © OWASP Foundation, Inc

Figure 7-18, screenshot of an example of a basic SQL injection attack numeric-based user input © OWASP Foundation, Inc

Figure 7-19, screenshot of an example of a UNION operand in an SQL injection attack © OWASP Foundation, Inc

Figure 7-20, screenshot of a blind SQL injection attack © Damn Vulnerable Web App

Figure 8-6, screenshot of the airmon-ng tool © Aircrack-ng

Figure 8-7, screenshot of the airodump-ng tool © Aircrack-ng

Figure 8-8, screenshot of performing a deauthentication attack with aireplay-ng © Aircrack-ng

Figure 8-11, screenshot of using airodump-ng to view the available wireless networks and then capturing traffic to the victim BSSID © Aircrack-ng

Figure 8-12, screenshot of using aireplay-ng to disconnect the wireless clients © Aircrack-ng

Figure 8-13, screenshot of collecting the WPA handshake using airodump-ng © Aircrack-ng

Figure 8-14, screenshot of cracking the WPA PSK using aircrack-ng © Aircrack-ng

Figure 9-3, screenshot of Snort alerts in Squert © the squertproject

Figure 9-4, screenshot of analyzing Snort alerts in Kibana © Elasticsearch

Figure 9-7, screenshot of Router Password Crack © ifm Network Experts

Figure 10-8, screenshot of online decoders © Yellow Pipe

Figure 10-11, screenshot of S-Tools encryption method © Microsoft 2020

Figure 10-12, screenshot of original and duplicate graphic with hidden text © Microsoft 2020

Figure 11-8, Citadel Enterprise Americas, LLC

This page intentionally left blank

Footprinting, Reconnaissance, and Scanning

"Do I Know This Already?" Quiz

The "Do I Know This Already?" quiz enables you to assess whether you should read this entire chapter thoroughly or jump to the "Exam Preparation Tasks" section. If you are in doubt about your answers to these questions or your own assessment of your knowledge of the topics, read the entire chapter. Table 3-1 lists the major headings in this chapter and their corresponding "Do I Know This Already?" quiz questions. You can find the answers in Appendix A, "Answers to the 'Do I Know This Already?' Quizzes and Review Questions."

Foundation Topics Section	Questions
Footprinting	1-8
Scanning	9–15

Table 3-1 "Do I Know This Already?" Section-to-Question Mapping

CAUTION The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of the self-assessment. Giving yourself credit for an answer you correctly guess skews your self-assessment results and might provide you with a false sense of security.

- 1. Where should an ethical hacker start the information-gathering process?
 - a. Interview with company
 - b. Dumpster diving
 - c. Company's website
 - d. Interview with employees

- 2. What common Windows and Linux tool is used for port scanning?
 - a. Hping
 - b. Amap
 - c. Nmap
 - d. SuperScan
- 3. What does the Nmap **-sT** switch do?
 - a. UDP scan
 - **b.** ICMP scan
 - c. TCP full connect scan
 - d. TCP ACK scan
- **4.** Which of the following would be considered outside the scope of footprinting and information gathering?
 - **a.** Finding physical addresses
 - b. Attacking targets
 - c. Identifying potential targets
 - d. Reviewing a company website
- **5.** During a security assessment, you are asked to help with a footprinting activity. Which of the following might be used to determine network range?
 - a. ARIN
 - b. DIG
 - $\textbf{c.} \ Traceroute$
 - d. Ping host
- 6. You have been asked to gather some specific information during a penetration test. The "intitle" string is used for what activity?
 - a. Traceroute
 - **b.** Google search
 - c. Website query
 - d. Host scanning

- **7.** During a footprinting exercise, you have been asked to gather information from APNIC and LACNIC. What are these examples of?
 - **a.** IPv6 options
 - **b.** DHCP servers
 - c. DNS servers
 - d. RIRs
- 8. CNAMEs are associated with which of the following?
 - a. ARP
 - b. DNS
 - c. DHCP
 - d. Google hacking
- 9. Which of the following TCP scan types is also known as the half-open scan?
 - a. FIN scan
 - **b.** XMAS scan
 - c. SYN scan
 - d. Null scan
- 10. What scan is also known as a zombie scan?
 - a. IDLE scan
 - b. SYN scan
 - c. FIN scan
 - d. Stealth scan
- 11. What is the TCP port scan that is used to toggle on the FIN, URG, and PSH TCP flags?
 - a. XMAS scan
 - **b.** Null scan
 - c. ACK scan
 - d. None of these answers are correct

- **12.** You were hired to perform penetration testing for a local school. You discovered an FTP server in the network. What type of FTP scan technique would make the scan harder to trace?
 - a. FTP bounce scan
 - b. FTP stealth SYN scan
 - c. FTP null scan
 - d. Slowloris FTP scan
- **13.** Which of the following tools can be used to enumerate systems that are running NetBIOS?
 - a. Nmap
 - **b.** nbtscan
 - c. Metasploit
 - d. All of these answers are correct
- 14. What type of information can you obtain when successfully enumerating insecure SNMP systems?
 - a. Network interface configuration
 - b. The device hostname and current time
 - **c.** The device IP routing table
 - d. All of these answers are correct
- **15.** What SMTP command can be used to verify whether a user's email mailbox exists in an email server?
 - a. EXPN
 - b. VRFY
 - c. RCPT
 - d. None of these answers are correct

Foundation Topics

Footprinting

Footprinting is the first step of the hacking methodology, and it is all about gathering information. Most organizations share a tremendous amount of information and data through various channels, including their websites and social media pages, their employees, and even their help desks. Footprinting is about information gathering and is both passive and active. Reviewing the company's website is an example of passive footprinting, whereas the act of calling the help desk and attempting to social engineer them out of privileged information is an example of active information gathering. Port scanning entails determining network ranges and looking for open ports on individual systems. The EC-Council divides footprinting and scanning into seven basic steps, as illustrated in Figure 3-1.

Figure 3-1 Footprinting and Scanning Steps

Many times, students ask for a step-by-step method of information gathering. Realize that these are just generic steps and that ethical hacking is really the process of discovery. Although the material in this book is covered in an ordered approach, real life sometimes varies. When performing these activities, you might find that you are led in a different direction from what you originally envisioned.

Key Topic The information and had

The information-gathering steps of footprinting and scanning are of utmost importance. Reconnaissance can be active or passive. Active means that you (the pen tester or ethical hacker) are using tools such as scanners to gather information about your targeted system. In other words, you are "actively" sending IP packets and interacting with the targeted system or network. In passive reconnaissance, you do not send any IP packets or interact with your target, but instead leverage publicly available information. This information is also known as *open source intelligence (OSINT)*. **TIP** MITRE (a United States government funded research organization) created a set of matrices to describe and document the different tactics and techniques used by attackers from the moment they start reconnaissance until the very last steps of an attack. This framework is called MITRE ATT&CK. We cover more details about the ATT&CK framework throughout this book. However, we would like to draw your attention to the reconnaissance techniques and subtechniques documented at https://attack.mitre.org/tactics/TA0043. Table 3-2 lists all the reconnaissance techniques and subtechniques in the MITRE ATT&CK framework.

Technique	Subtechnique		
Active Scanning	Scanning IP Blocks		
	Vulnerability Scanning		
Gather Victim Host Information	Client Configurations		
	Firmware		
	Hardware		
	Software		
Gather Victim Identity Information	Credentials		
	Email Addresses		
	Employee Names		
Gather Victim Network Information	DNS		
	Domain Properties		
	IP Addresses		
	Network Security Appliances		
	Network Topology		
	Network Trust Dependencies		
Gather Victim Org Information	Business Relationships		
	Determine Physical Locations		
	Identify Business Tempo		
	Identify Roles		

 Table 3-2
 MITRE ATT&CK Reconnaissance Techniques and Subtechniques

Technique	Subtechnique
Phishing for Information	Spearphishing Attachment
	Spearphishing Link
	Spearphishing Service
Search Closed Sources	Purchase Technical Data
	Threat Intel Vendors
Search Open Technical Databases	CDNs
	Digital Certificates
	DNS/Passive DNS
	Scan Databases
	WHOIS
Search Open Websites/Domains	Search Engines
	Social Media
Search Victim-Owned Websites	

Good information gathering can make the difference between a successful pen test and one that has failed to provide maximum benefit to the client. This information can be found on the organization's website, published trade papers, Usenet, financial databases, or even from disgruntled employees. Some potential sources are discussed, but first let's review documentation.

Documentation

One important aspect of information gathering is documentation. Most people don't like paperwork, but it's a requirement that you cannot ignore. The best way to get off to a good start is to develop a systematic method to profile a target and record the results. Create a matrix with fields to record domain name, IP address, DNS servers, employee information, email addresses, IP address range, open ports, and banner details. Figure 3-2 gives an example of what your information matrix might look like when you start the documentation process. You can use simple tables, notes, or mind maps like the one illustrated in Figure 3-2.

Building this type of information early on will help in mapping the network and planning the best method of attack.

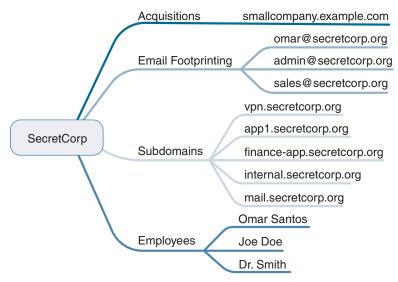


Figure 3-2 Documentation Finding

Footprinting Through Search Engines

Most people use Google, DuckDuckGo, or other search engines to locate information on the Internet. What you might not know is that search engines, such as Google, can perform much more powerful searches than most people ever dream of. Not only can Google translate documents, perform news searches, and do image searches, but it also can be used by hackers and attackers to do something that has been termed *Google hacking*.

Through the use of basic search techniques combined with advanced operators, Google can become a powerful vulnerability search tool. Table 3-3 describes some advanced operators.

Operator	Description
Filetype	Directs Google to search only within the text of a particular type of file. Example: filetype:xls
Inurl	Directs Google to search only within the specified URL of a document. Example: inurl:search-text

Table 3-3 Google Search Terms

Operator	Description
Link	Directs Google to search within hyperlinks for a specific term. Example: link:www.domain.com
Intitle	Directs Google to search for a term within the title of a document. Example intitle: "Index of.etc"

NOTE The CEH exam may ask you about specific Google search term strings.

Through the use of the advanced operators shown in Table 3-3 in combination with key terms, Google can be used to uncover many pieces of sensitive information that shouldn't be revealed. A term even exists for the people who blindly post this information on the Internet; they are called *Google dorks*. To see how this works, enter the following phrase into Google:

intext:JSESSIONID OR intext:PHPSESSID inurl:access.log ext:log

This query searches in a URL for the session IDs that could be used to potentially impersonate users. The search found more than 100 sites that store sensitive session IDs in logs that were publicly accessible. If these IDs have not timed out, they could be used to gain access to restricted resources. You can use advanced operators to search for many types of data. Figure 3-3 shows a search where Social Security numbers (SSNs) were queried. Although this type of information should not be listed on the web, it might have been placed there inadvertently or by someone who did not understand the security implications.

Finally, don't forget that finding a vulnerability using Google is not unethical, but using that vulnerability can be unethical unless you have written permission from the domain owner. For example, here is a link to the Google hack for Shellshock (a Bash vulnerability introduced later in the chapter): https://www.exploit-db.com/ exploits/34895/. Notice how it took only a few minutes for an attacker to gather this type of information. Security professionals should always be concerned about what kind of information is posted on the web and who can access it.

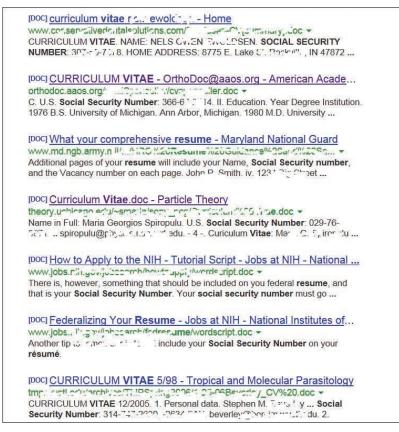


Figure 3-3 Google Hacking Social Security Numbers

Key Topic Now that we have discussed some basic Google search techniques, let's look at more advanced Google hacking. If you have never visited the Google Hacking Database (GHDB) repositories, we suggest that you visit https://www.exploit-db.com/google-hacking-database/. This site has the following search categories:

- Footholds
- Files containing usernames
- Sensitive directories
- Web server detection
- Vulnerable files
- Vulnerable servers
- Error messages

- Files containing juicy info
- Files containing passwords
- Sensitive online shopping info
- Network or vulnerability data
- Pages containing login portals
- Various online devices
- Advisories and vulnerabilities

A tool such as the GHDB has made using Google easier, but it's not your only option. Maltego, FOCA, Recon Dog, and Shodan are others worth discussion. Maltego is an open source intelligence and forensics application. It is a tool-based approach to mining and gathering Internet data that can be compiled in an easyto-understand format. Maltego offers plenty of data on websites and their services. Figure 3-4 shows an example of using Maltego to gather information about a person (in this case, Omar Santos).

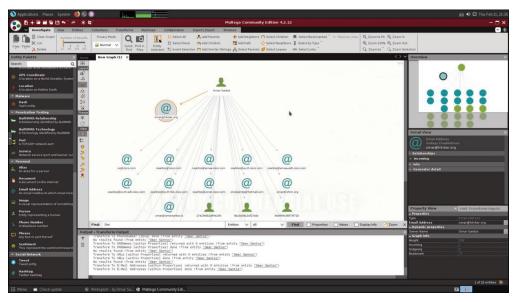


Figure 3-4 A Person Search in Maltego

FOCA is another example of an open source information-gathering tool. Similar to FOCA is Recon Dog, which is another example of an all-in-one information-gathering tool.

Shodan offers the capability to search for the servers, webcams, printers, routers, and even SCADA devices connected to the Internet. Shodan is an organization that scans the Internet on a 24/7 basis from numerous locations around the world. The scan results are then stored in a database, and you are able to search those results via the website at https://www.shodan.io or via its API.

NOTE SCADA devices are industrial controls with embedded computers that can be connected to the Internet.

Figure 3-5 shows an example of searching for potentially vulnerable systems in Shodan.

🕥 Applications Places System 🍯					💼 🜒 🖸 Thu Feb 11, 21:43
• • •					
🔏 port:502 - Shodan Searci 🗙 🕂					
(c) ⇒ C @ 0				Q Recommendation 년 ··· ⓒ ☆	
Setting Started Start S Parrot	OS OCommunity ODocs	🖨 Git 🦉 CryptPad 🛅 Privacy 🛅 Pe	stest 🖾 Learn 🖨 Donate		
Shoden Developers Mentor	VIEW AIL			Show API Key Try out the new be	eta websitel Help Center
SHODAN port502		🔾 🕫 Explore Downloads I	Reports Pricing Enterprise Access		A My Account
🐔 Exploits 🔩 Maps 🛸 Image	es Ake 151 & Dov	mioud Results			
TOTAL RESULTS		New Yapping: Yapp schilt of what you had	ve connected to the Internet. Check out Shodan Monitor		
21.548					
21,540		RELATED TAGS: Scada			
TOP COUNTRES	R.	Remote Surveillance, Any to The Source of the Source of the Th	me & Amp; Any where C storing is as been (r), 12 (as 281) abia 20 of server, Lisua 2, 1097); A storado 20 Server, Lisua 2, 1097); A storado 20 consection, class Last-matrices, Taylo, 18 (4) 30 (4) 31 (4) Consect-Type, technol. Test: 201-4911-1949(4)		
United States	4,780		Content-Length: \$4171		
Netherlands	1,250				
United Kingdom	754				
Korea, Republic of	792				
Baly	786	162.159.201.87			
TOP ORGANIZATIONS		Cloudflare Added an 2021 ar 17 pr 19 57 GMT			
			*		
Amazon.com Verizon Wireless	4,719				
Life of a Plug	452	125.143.225.241 Korea Telecom			
Viettel Group	452				
Rapid Smaks	418	★ South Korea, Jeju City			
Pageo arrenta	100				
TOP OPERATING SYSTEMS		13.208.63.90			
	13				
Ubuntu Debian	13	Amazon.com			
Resplan		Advised on 20021-02-12 07-58 29 2947			
Presponent	A	 Japan, Osaka 			
TOP PRODUCTS					
		cloud funnyjes			
OpenSSH	194				
Dropbear solid	75	HTTP/1.1 302 Found Date: Fr1, 12 Feb 2021 02:36:25 GMT			
BMX P34 2020 TM221CE40R	-30 10	Date: FF1, 12 Feb 2021 02:36:25 GMI X-Powered-By: PhP/5.3.6-13ubuntu3.6			
TM221CE16T	10		/5.8.40 WebSTAR 5/5 182.1.5.1.2688 2/Service Pack 1 UPeP/L.8. TVersity Media	a Server 5.2.3790 2/Service Pack 1, UPsP/1.0, TVersity Media Server 6.0.6000 2/, U	PrP/I a
IMCCIVES IN	1	and a star of the start of the start of the			0/10/10/10/0
		■安全入口校验失败 び			
			HTTP/1.1 200 OK		
		Hunwei Cloud Service data center	Content-Type: test/html; charset=utf=8		
Menu 🚯 Websploit - by Omar Sa.	Malteon Community Ed				127 🔹

Figure 3-5 The Shodan Search Engine

In Figure 3-5, the user queries for TCP port 502, which is typically used for Modbus communication.

TIP Modbus is a communications protocol used in industrial control system (ICS) devices such as programmable logic controllers (PLCs).

Tools like Shodan can be used to find network-connected devices, such as routers, servers, IoT devices, printers, databases, and even live webcams. The Shodan search engine is a powerful database of prescanned networked devices connected to the Internet. It consists of banners collected from port scans of public IP addresses, with fingerprints of services like Telnet, FTP, HTTP, and other applications.

Shodan creates risk by providing both attackers and defenders a prescanned inventory of devices connected to public IP addresses on the Internet. For example, when a new vulnerability is discovered and published, an attacker can quickly and easily search Shodan for vulnerable versions and then launch an attack. Attackers can also search the Shodan database for devices with poor configurations or other weaknesses, all without actively scanning.

Using Shodan search filters, you can really narrow down search results, by country code or CIDR netblock, for example. Shodan application programming interfaces (APIs) and some basic scripting can enable many search queries and subsequent actions (for example, a weekly query of newly discovered IPs scanned by Shodan on your CIDR netblock that runs automatically and is emailed to the security team).

Remember that public IP addresses are constantly probed and scanned already; by using Shodan, you are not scanning, because Shodan has already scanned these IPs. Shodan is a tool, and it can be used for good or evil. To mitigate risk, you can take tangible steps like registering for a free Shodan account, searching for your organization's public IPs, and informing the right network and security people of the risks of your organization's Shodan exposure. Using a variety of filters, these search engines allow you to query hosts and networks for specific information.

Footprinting Through Social Networking Sites

Social networks are another big target for attackers. Although social media has opened up great channels for communication and is very useful for marketers, it is fraught with potential security problems. Social networking sites are becoming one of the biggest threats to a user's security and will remain so for the foreseeable future. One reason is that users don't always think about security when using these sites. There is also the issue that these sites are designed to connect people. Security is not always the primary concern. Some sites that you, as an ethical hacker, might want to check include the following:

- Facebook
- Twitter

Key Topic

- LinkedIn
- TikTok
- Pinterest

TIP The three primary ways attackers use social networking include using *social engineering* to gather sensitive information, creating fake profiles, and using public information to gather information about a victim.

Although some organizations might be relatively secure, gaining the names, addresses, and locations of key employees can allow attackers to fly a drone over their homes, guess passwords, or even possibly backdoor the organization through an employee's unsecure credentials.

NOTE As an ethical hacker, you can use tools like InSpy to perform enumeration on LinkedIn profiles and identify people based on company, job title, and email address.

TIP It's not just people that hackers are concerned with. Some attackers may scan the web for competitive intelligence. This type of scan can be thought of as identifying, gathering, and analyzing information about a company's products or services.

The Dangers of Social Networks

Robin Sage is the name of a military exercise given to Army students before they receive their assignments to one of the Army's seven operational Special Forces groups. It is also the name that was recently given to a fictitious 25-year-old female pretending to be a cyberthreat analyst at the U.S. Navy's Network Warfare Command. The idea behind this ruse was to demonstrate the dangers of social networking. The results were startling.

Even though her fake Facebook profile was filled with inconsistencies, many people who should have known better tried to make contact and passed potentially sensitive information. Her social network connections included senior military officers, a member from the Joint Chiefs of Staff, and someone from the National Reconnaissance Office (NRO); the NRO is responsible for launching and operating U.S. spy satellites.

The experiment was carried out by security consultant Thomas Ryan and revealed huge vulnerabilities in the use of social networking by people in the national security field. Ryan discussed the results of this experiment at the Black Hat security conference.

Footprinting Through Web Services and Websites

One of the best places to begin footprinting is an organization's website. Search for the company's URL with Google, Bing, Dogpile, Shodan, or your search engine of choice. You will want to look for the following:

- **Company URL:** Domain name.
- Internal URLs: As an example, not only secretcorp.org but also internal. secretcorp.org, mail.secretcorp.org, finance-app.secretcorp.org, etc.
- **Restricted URLs:** Any domains not accessible to the public.
- Internal pages: Company news, employment opportunities, addresses, and phone numbers. Overall, you want to look for all open source information, which is information freely provided to clients, customers, or the general public.

NOTE One great tool to find internal URLs is Netcraft's "What's that site running?" tool on its home page. You can find it at https://news.netcraft.com.

Let's look at an example of a local consulting company called secretcorp (secretcorp.org). A quick review of its site shows it has a news and updates section. Recent news states the following:

We are proud to have just updated all of our servers to Plesk 10.0.1. Anyone logging in to these new servers as admin should use the username of the domain, for example, secretcorp.org. The passwords have been transferred from the old servers, so no password reset should be required. We used the existing domain administrator password. Our continued alliance with Cisco has allowed us to complete our transition from Arista equipment. These upgrades, along with our addition of a third connection to the Internet, give us a high degree of fault tolerance.

You might consider this good marketing information to provide potential clients. The problem is that this information is available to anyone who browses the website. This information allows attackers to know that the new systems are Linux based and that the network equipment is all Extreme Networks. If attackers were planning to launch a *denial-of-service (DoS)* attack against the organization, they now know that they must knock out three nodes to the Internet. Even a competitor would benefit from this knowledge because the company is telling the competition everything about its infrastructure.

In some cases, information may have been removed from a company website. That is when the Wayback Machine, at https://archive.org, is useful to browse archived web pages that date back to 1996. It's a useful tool for looking for information that no longer exists on a site.

NOTE Although the Wayback Machine is useful for exploring old web pages, keep in mind that websites can be removed or blocked so that they are not listed.

Another big information leakage point is company directories. They usually identify key employees or departments. By combining this information with a little social engineering, an attacker can call the help desk, pretend he works for one of these key employees, and demand that a password is reset or changed. He could also use biographical information about a key employee to perform other types of social engineering trickery. During a pen test, you want to record any such findings and make sure to alert the organization as to what information is available and how it might be used in an attack.

One method to gain additional information about the organization's email server is to send an email that will bounce from the site. If the site is secretcorp.org, send a mail to badaddress@secretcorp.org. It will bounce back to you and give you information in its header, including the email server IP address and email server version. Another great reason for bouncing an email message is to find out whether the organization makes use of mail scrubbers. Whatever you find, you should copy the information from the headers and make a note of it as you continue to gather information.

Finally, keep in mind that it's not just logical information that you want to gather. Now is a good time to record all physical information about the targeted company. Location information is used to determine the physical location of the targeted company. Bing Maps and Google Earth are two tools that can be used to get physical layout information. Bing Maps is particularly interesting because it offers a 45-degree perspective, which gives a unique view of facilities and physical landmarks. This view enables you to identify objects such as entry points and points of ingress/egress.

If you're lucky, the company has a job posting board. Look this over carefully; you will be surprised at how much information is given there. If no job listings are posted on the organization's website, get interactive and check out some of the major Internet job boards. Popular sites include the following:

- Careerbuilder.com
- Monster.com

- ZipRecruiter.com
- Glassdoor.com
- Indeed.com

At the job posting site, query for the organization. Here's an example of the type of information usually found:

- Primary responsibilities for this position include management of a Windows Active Directory environment, applications running in Azure, Cisco Firepower Threat Defense (FTD) firewalls.
- Interact with the technical support supervisor to resolve issues and evaluate/ maintain patch level and security updates.
- Experience necessary in Active Directory, Microsoft Clustering and F5 Network Load Balancing, Cisco Firepower Threat Defense (FTD) firewalls, Azure Cosmos DB, and Azure Kubernetes Service (AKS).
- Maintain, support, and troubleshoot a Windows 10 user environment, Cisco SSL VPNs, firewalls, and legacy F5 load balancers.

Does this organization give away any information that might be valuable to an attacker? It actually tells attackers almost everything about its network.

NOTE Discovering unsecured devices or infrastructure could be used to determine if a Bitcoin miner could successfully be placed on the victim's network without his knowledge.

One way to reduce the information leakage from job postings is to reduce the system-specific information in the job post or to use a company confidential job posting. Company confidential postings hide the true company's identity and make it harder for attackers to misuse this type of information.

If the organization you are working for is publicly traded, you should review the Security and Exchange Commission's *EDGAR database*. It's located at https://www.sec.gov/edgar/searchedgar/companysearch.html. A ton of information is available at this site. Hackers focus on the 10-Q and 10-K. These two documents contain yearly and quarterly reports.

NOTE The financial data found by using the EDGAR database can be used to determine whether a company should be targeted for attack or even ransomware.

Not only do these documents contain earnings and potential revenue, they also contain details about any acquisitions and mergers. Anytime there is a merger, or one firm acquires another, there is a rush to integrate the two networks. Having the networks integrated is more of an immediate concern than security. Therefore, you will be looking for entity names that are different from the parent organization. These findings might help you discover ways to jump from the subsidiary to the more secure parent company. You should record this information and have it ready when you start to research the Internet Assigned Numbers Authority (IANA) and American Registry for Internet Numbers (ARIN) databases. Here are some other sites you can use to gather financial information about an organization:

- Marketwatch: http://www.marketwatch.com
- **Experian:** http://www.experian.com
- Wall Street Consensus Monitor: http://www.wallstreetconsensusmonitor.com/
- Euromonitor: http://www.euromonitor.com

Email Footprinting

Security is not just about technical and physical controls. It's also about people. In many modern attacks, people are the initial target. All this really means is that an ethical hacker is also going to want to see what information is available about key personnel. Whereas websites, employee directories, and press releases may provide employee names, third-party sites have the potential to provide sensitive data an attacker might be able to leverage. We can categorize these sites as either data aggregation brokers or social networking.

A staggering number of data aggregation brokerage sites are on the web. It is easy for an attacker to perform online searches about a person. These sites allow attackers to locate key individuals, identify home phone numbers, and even create maps to people's houses. Attackers can even see the surroundings of the company or the home they are targeting with great quality satellite pictures. Here are some of the sites:

- Pipl: https://pipl.com
- Spokeo: https://www.spokeo.com
- Whitepages: https://www.whitepages.com
- People Search Now: https://www.peoplesearchnow.com
- **Zabasearch:** https://www.zabasearch.com
- Peoplefinders: https://www.peoplefinders.com
- OSINT Framework: https://osintframework.com

NOTE Keep in mind that the amount of information you gather will depend on what part of the world you are searching. Some countries have stronger laws regarding privacy than others. For example, the European Union has strict privacy laws. Citizens of the EU have the right to be forgotten.

What's interesting is that many sites promise everything from criminal background checks to previous addresses to marriage records to names of family members. Figure 3-6 shows an example of a Zabasearch query.

🔍 🔍 🔍 👘 Omar Santos Zabasearch	LCOT X +				
← → C ☆ 🔒 zabasearch.com	n/people/omar+santos/				☆ ★ ⊒ Ω :
	ZABA [®] SE	ARCH People Search Find People in	Honestly Freel Search by Name. the USA. Free People Finder.		
	White Pages	Reverse Phone Lookup	Advanced People Search	Free Search Menu	
	Omar Sa	All 50 States	Search		
	Filter your results by: All M.I. V All		Clear filters		
	Found 99 Results for C	Omar Santos			
	Omar Santos, Age 24 1505 Connor (254) 753-XXXX		More information for Omar Santos Other Phone Lookup Background Check Public Records		
	View full profile a		Property Records Maps & Driving Directions		
	Omar Santos 108 Per XXXX View full profile >		More information for Omar Santos Other Phone Lookup Background Check Public Records Property Records Maps & Driving Directions		
	Omar U Santos, Age 70 6108 N Garfield (559) 449-XXXX View full profile >		More information for Omar U Santos Other Phone Lookup Background Check Public Records Property Records Maps & Driving Directions		
	Omar Santos 1300 Katy Dr XXXX View full profile »		More information for Omar Santos Other Phone Lookup Background Check Public Records Property Records Maps & Driving Directions		
	Omar Santos, Age 43		More information for Omar Santos		

Figure 3-6 Zabasearch

NOTE According to the United States Federal Trade Commission, the American public has little rights over the control and dissemination of personal information except for medical records and some credit information. See https://tcf.org/content/report/data-protection-federalism.

Whois Footprinting

Not long ago, searching for domain name information was much easier. There were only a few places to obtain domain names, and the activities of spammers and hackers had yet to cause the *Internet Assigned Numbers Authority (IANA)* to restrict the release of this information. Today, the Internet Corporation for Assigned Names and Numbers (ICANN) is the primary body charged with management of IP address space allocation, protocol parameter assignment, and domain name system management. Its role is that of overall management, as domain name registration is handled by a number of competing firms that offer various value-added services. These include firms such as Network Solutions (https://www.networksolutions.com), Register.com (https://www.register.com), GoDaddy (https://www.godaddy.com), and Tucows (http://tucows.com). There is also a series of Regional Internet Registries (RIRs) that manage, distribute, and register public IP addresses within their respective regions. The five RIRs are shown in Table 3-4.

RIR	Region of Control
ARIN	North and South America and sub-Saharan Africa
APNIC	Asia and Pacific
RIPE	Europe, Middle East, and parts of Africa
LACNIC	Latin America and the Caribbean
AfriNIC	Planned RIR to support Africa

Table 3-4 RIRs and Their Area of Control

TIP Know the RIR for each region of the world because you could be tested on this information.

The primary tool to navigate these databases is Whois. *Whois* is a utility that interrogates the Internet domain name administration system and returns the domain ownership, address, location, phone number, and other details about a specified domain name. Whois is the primary tool used to query Domain Name System (DNS). If you're performing this information gathering from a Linux computer, the good news is that Whois is built in. From the Linux prompt, you can type **whois domainname.com** or **whois?** to get a list of various options. Windows users are not as fortunate because Windows does not have a built-in Whois client. If you use Windows, you have to use a third-party tool or website to obtain Whois information.

One tool that a Windows user can use to perform Whois lookups is SmartWhois. You can download it from http://www.tamos.com/products/smartwhois/. Smart-Whois is a useful network information utility that allows you to look up all the available information about an IP address, hostname, or domain, including country, state or province, city, name of the network provider, administrator, and technical support contact information. Several commercial and open-source tools (such as whois. domaintools.com) incorporate whois lookups. Regardless of the tool, the goal is to obtain registrar information. As a demonstration, Example 3-1 shows the results of a whois query about pearson.com.

Example 3-1 whois Query Results

```
> whois pearson.com
% IANA WHOIS server
% for more information on IANA, visit http://www.iana.org
% This query returned 1 object
refer:
              whois.verisign-grs.com
domain:
              COM
Domain Name: PEARSON.COM
   Registry Domain ID: 2203864_DOMAIN_COM-VRSN
   Registrar WHOIS Server: whois.corporatedomains.com
   Registrar URL: http://cscdbs.com
   Updated Date: 2017-02-21T19:42:01Z
   Creation Date: 1996-11-25T05:00:00Z
   Registry Expiry Date: 2022-11-24T05:00:00Z
   Registrar: CSC Corporate Domains, Inc.
   Registrar IANA ID: 299
   Registrar Abuse Contact Email: domainabuse@cscglobal.com
   Registrar Abuse Contact Phone: 8887802723
   Domain Status: clientTransferProhibited https://icann.org/epp#
   clientTransferProhibited
   Domain Status: serverDeleteProhibited https://icann.org/epp#
   serverDeleteProhibited
   Domain Status: serverTransferProhibited https://icann.org/epp#
   serverTransferProhibited
   Domain Status: serverUpdateProhibited https://icann.org/epp#
   serverUpdateProhibited
   Name Server: NS01.PEARSON.COM
   Name Server: NS02.PEARSON.COM
   Name Server: NS03.PEARSON.COM
   Name Server: NS04.PEARSON.COM
```

DNSSEC: unsigned URL of the ICANN Whois Inaccuracy Complaint Form: https://www.icann.org/wicf/ >>> Last update of whois database: 2021-02-12T03:16:43Z <<< # whois.corporatedomains.com Domain Name: pearson.com Registry Domain ID: 2203864_DOMAIN_COM-VRSN Registrar WHOIS Server: whois.corporatedomains.com Registrar URL: www.cscprotectsbrands.com Updated Date: 2020-10-20T11:53:46Z Creation Date: 1996-11-25T00:00:00.000-04:00 Registrar Registration Expiration Date: 2022-11-24T00:00:00.000-04:00 Registrar: CSC CORPORATE DOMAINS, INC. Registrar IANA ID: 299 Registrar Abuse Contact Email: domainabuse@cscglobal.com Registrar Abuse Contact Phone: +1.8887802723 Domain Status: clientTransferProhibited http://www.icann.org/ epp#clientTransferProhibited Domain Status: serverDeleteProhibited http://www.icann.org/ epp#serverDeleteProhibited Domain Status: serverTransferProhibited http://www.icann.org/ epp#serverTransferProhibited Domain Status: serverUpdateProhibited http://www.icann.org/ epp#serverUpdateProhibited Registry Registrant ID: Registrant Name: Domain Management Registrant Organization: Pearson plc Registrant Street: 80 Strand Registrant City: London Registrant State/Province: ENG Registrant Postal Code: WC2R ORL Registrant Country: GB Registrant Phone: +44.2070102000 Registrant Phone Ext: Registrant Fax: +44.2070106060 Registrant Fax Ext: Registrant Email: domain.management@pearson.com Registry Admin ID: Admin Name: Domain Management Admin Organization: Pearson plc Admin Street: 80 Strand

```
Admin City: London
Admin State/Province: ENG
Admin Postal Code: WC2R ORL
Admin Country: GB
Admin Phone: +44.2070102000
Admin Phone Ext:
Admin Fax: +44.2070106060
Admin Fax Ext:
Admin Email: domain.management@pearson.com
Registry Tech ID:
Tech Name: Domain Management
Tech Organization: Pearson plc
Tech Street: 80 Strand
Tech City: London
Tech State/Province: ENG
Tech Postal Code: WC2R ORL
Tech Country: GB
Tech Phone: +44.2070102000
Tech Phone Ext:
Tech Fax: +44.2070106060
Tech Fax Ext:
Tech Email: domain.management@pearson.com
Name Server: ns01.pearson.com
Name Server: ns02.pearson.com
Name Server: ns03.pearson.com
Name Server: ns04.pearson.com
DNSSEC: unsigned
```

This information provides a contact, address, phone number, and DNS servers. A hacker skilled in the art of social engineering might use this information to call the organization and pretend to be a valid contact.

TIP A domain proxy is one way that organizations can protect their identity while still complying with laws that require domain ownership to be public information. Domain proxies work by applying anonymous contact information as well an anonymous email address. This information is displayed when someone performs a domain Whois. The proxy then forwards any emails or contact information that might come to those addresses on to you.

DNS Footprinting

If all the previous information has been acquired, the DNS might be targeted for zone transfers. A *zone transfer* is the mechanism used by DNS servers to update each other by transferring the contents of their database. DNS is structured as a hierarchy so that when you request DNS information, your request is passed up the hierarchy until a DNS server is found that can resolve the domain name request. You can get a better idea of how DNS is structured by examining Figure 3-7, which shows the DNS server hierarchy (structure).

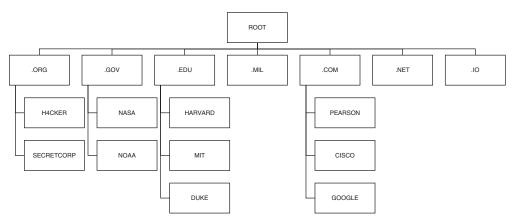


Figure 3-7 DNS Structure

What's left at this step is to try to gather additional information from the organization's DNS servers. The primary tool to query DNS servers is *Nslookup*. Nslookup provides machine name and address information. Both Linux and Windows have Nslookup clients. You use Nslookup by typing **nslookup** at the command line followed by an IP address or a machine name. Doing so causes Nslookup to return the name, all known IP addresses, and all known CNAMEs for the identified machine. Nslookup queries DNS servers for machine name and address information. Using Nslookup is rather straightforward. Let's look at an example in which Nslookup is used to find the IP addresses of Google's web servers. If you enter **nslookup google.com**, you will see the response in Example 3-2.

```
Example 3-2 Nslookup google.com Reply
```

```
$ nslookup google.com
Server: 208.67.222.222
Address: 208.67.222.222#53
Non-authoritative answer:
Name: google.com
Address: 172.217.8.14
```

The first two lines of output say which DNS servers are being queried. In this case, it's OpenDNS. The nonauthoritative answer lists two IP addresses for the Google's web servers. Responses from nonauthoritative servers do not contain copies of any domains. They have a cache file that is constructed from all the DNS lookups it has performed in the past for which it has gotten an authoritative response.

Nslookup can also be used in an interactive mode; you just type **nslookup** at the command prompt in Windows or the Linux or macOS shell. In interactive mode, you will be given a prompt of >; at which point, you can enter a variety of options, including attempts to perform a zone transfer. Table 3-5 shows some common DNS resource record names and types.

Record Name	Record Type	Purpose
Host	A	Maps a domain name to an IPv4 address
Host	AAAA	Maps a domain name to an IPv6 address
Pointer	PTR	Maps an IP address to a domain name
Name Server	NS	Specifies the servers that provide DNS services
Start of Authority	SOA	Configures settings for zone transfers and record caching
Service Locator	SRV	Used to locate services in the network
Mail	MX	Used to identify SMTP servers

Table 3-5 IPv4 DNS Records and Types

TIP For the exam, you should know the various record names and types for DNS.

TIP The SOA contains the timeout value, which a hacker can use to tell how long any DNS poisoning would last. The *Time to Live (TTL)* value is the last value within the SOA.

DNS normally moves information from one DNS server to another through the DNS zone transfer process. If a domain contains more than one name server, only one of these servers will be the primary. Any other servers in the domain will be secondary servers. Zone transfers are much like the DHCP process in that each is a four-step process. DNS zone transfers function as follows:

1. The secondary name server starts the process by requesting the SOA record from the primary name server.

- **2.** The primary then checks the list of authorized servers, and if the secondary server's name is on that list, the SOA record is sent.
- **3.** The secondary must then check the SOA record to see whether there is a match against the SOA it already maintains. If the SOA is a match, the process stops here; however, if the SOA has a serial number that is higher, the secondary will need an update. The serial number indicates if changes were made since the last time the secondary server synchronized with the primary server. If an update is required, the secondary name server will send an All Zone Transfer (AXFR) request to the primary server.
- 4. Upon receipt of the AXFR, the primary server sends the entire zone file to the secondary name server.

A zone transfer is unlike a normal lookup in that the user is attempting to retrieve a copy of the entire zone file for a domain from a DNS server. This can provide a hacker or pen tester with a wealth of information. This is not something that the target organization should be allowing. Unlike lookups that primarily occur on UDP 53, unless the response is greater than 512 bytes, zone transfers use TCP 53. To attempt a zone transfer, you must be connected to a DNS server that is the authoritative server for that zone. Example 3-3 demonstrates a DNS Zone transfer using the Zone Transfer.me domain:

\$ dig axfr @nsztml	.digi.ni	nja zo:	netransf	fer.me
; <<>> DiG 9.16.6-	Debian <	<>> ax	fr @nsz	tml.digi.ninja zonetransfer.me
; (1 server found)				
;; global options:	+cmd			
zonetransfer.me. ninja. 2019100801				nsztml.digi.ninja. robin.digi. D0
zonetransfer.me. XP"	300	IN	HINFO	"Casio fx-700G" "Windows
zonetransfer.me. 28J7JAUHA9fw2sHXMg@			TXT IVlMewxA	"google-site-verification=tyP
zonetransfer.me.	7200	IN	MX	0 ASPMX.L.GOOGLE.COM.
zonetransfer.me.	7200	IN	MX	10 ALT1.ASPMX.L.GOOGLE.COM.
zonetransfer.me.	7200	IN	MX	10 ALT2.ASPMX.L.GOOGLE.COM.
zonetransfer.me.	7200	IN	MX	20 ASPMX2.GOOGLEMAIL.COM.
zonetransfer.me.	7200	IN	MX	20 ASPMX3.GOOGLEMAIL.COM.
zonetransfer.me.	7200	IN	MX	20 ASPMX4.GOOGLEMAIL.COM.
zonetransfer.me.	7200	IN	MX	20 ASPMX5.GOOGLEMAIL.COM.

Example 3-3 Zone Transfer

zonetransfer.me. 7200 ΙN А 5.196.105.14 zonetransfer.me. 7200 IN NS nsztml.digi.ninja. zonetransfer.me. 7200 ΙN NS nsztm2.digi.ninja. acme-challenge.zonetransfer.me. 301 IN TXT "60a05hbUJ9xSsvYy7pApQvwCUSSGqxvrbdizjePEsZI" _sip._tcp.zonetransfer.me. 14000 IN SRV 0 0 5060 www. zonetransfer.me. 14.105.196.5.IN-ADDR.ARPA.zonetransfer.me. 7200 IN PTR www. zonetransfer.me. asfdbauthdns.zonetransfer.me. 7900 IN AFSDB 1 asfdbbox. zonetransfer.me. asfdbbox.zonetransfer.me. 7200 IN А 127.0.0.1 asfdbvolume.zonetransfer.me. 7800 IN AFSDB 1 asfdbbox. zonetransfer.me. canberra-office.zonetransfer.me. 7200 IN A 202.14.81.230 cmdexec.zonetransfer.me, 300 ΤN TXT ": ls" contact.zonetransfer.me. 2592000 IN "Remember to call or TXT email Pippa on +44 123 4567890 or pippa@zonetransfer.me when making DNS changes" dc-office.zonetransfer.me. 7200 IN А 143.228.181.132 deadbeef.zonetransfer.me. 7201 ΤN AAAA dead:beaf:: dr.zonetransfer.me. 300 LOC 53 20 56.558 N 1 38 IN 33.526 W 0.00m 1m 10000m 10m 7200 DZC.zonetransfer.me. IN TXT "AbCdEfG" NAPTR 1 1 "P" "E2U+email" email.zonetransfer.me. 2222 ΙN "" email.zonetransfer.me.zonetransfer.me. email.zonetransfer.me. 7200 IN Α 74.125.206.26 Hello.zonetransfer.me. 7200 ΙN TXT "Hi to Josh and all his class" home.zonetransfer.me. 7200 ΤN 127.0.0.1 Α Info.zonetransfer.me. 7200 ΙN TXT "ZoneTransfer.me service provided by Robin Wood - robin@digi.ninja. See http://digi. ninja/projects/zonetransferme.php for more information." internal.zonetransfer.me. 300 ΙN NS intns1.zonetransfer.me. internal.zonetransfer.me. 300 IN NS intns2.zonetransfer.me. 81.4.108.41 intns1.zonetransfer.me. 300 IN А intns2.zonetransfer.me. 300 ΤN A 167.88.42.94 office.zonetransfer.me. 7200 IN А 4.23.39.254 ipv6actnow.org.zonetransfer.me. 7200 IN AAAA 2001:67c:2e8:11::c100:1332 owa.zonetransfer.me. 7200 207.46.197.32 ΙN Ά robinwood.zonetransfer.me. 302 IN TXT "Robin Wood" RP rp.zonetransfer.me. 321 IN robin.zonetransfer.me. robinwood.zonetransfer.me.

```
sip.zonetransfer.me. 3333 IN NAPTR 2 3 "P" "E2U+sip"
"!^.*$!sip:customer-service@zonetransfer.me!" .
sqli.zonetransfer.me. 300 IN TXT
                                         "' or 1=1 --"
sshock.zonetransfer.me. 7200 IN TXT
                                            "() { :]}; echo
ShellShocked"
staging.zonetransfer.me. 7200 IN CNAME
                                            WWW.
sydneyoperahouse.com.
alltcpportsopen.firewall.test.zonetransfer.me. 301 IN A 127.0.0.1
testing.zonetransfer.me. 301 IN CNAME www.zonetransfer.
me.
vpn.zonetransfer.me.
                   4000
                            IN
                                  А
                                           174.36.59.154
www.zonetransfer.me. 7200
                            IN
                                   А
                                            5.196.105.14
xss.zonetransfer.me. 300 IN
                                   TXT "'><script>alert('Boo')</
script>"
zonetransfer.me. 7200 IN SOA
                                          nsztml.digi.ninja.
robin.digi.ninja. 2019100801 172800 900 1209600 3600
;; Query time: 92 msec
;; SERVER: 81.4.108.41#53(81.4.108.41)
;; XFR size: 50 records (messages 1, bytes 1994
```

NOTE You can obtain more information about how to perform a DNS zone transfer with these domains at https://digi.ninja/projects/zonetransferme.php.

One of two things will happen at this point. You will receive an error message indicating that the transfer was unsuccessful, or you will be returned a wealth of information, as shown in the query in Example 3-4 for the domain h4cker.org.

Example 3-4 Using Nslookup to Resolve DNS Names

```
$ nslookup h4cker.org
Server: 208.67.222.222
Address: 208.67.222.222#53
Non-authoritative answer:
Name: h4cker.org
Address: 185.199.109.153
Name: h4cker.org
Address: 185.199.110.153
Name: h4cker.org
Address: 185.199.111.153
Name: h4cker.org
Address: 185.199.108.153
```

Dig is another tool that you can use to provide this type of information. It's built in to most Linux distributions and can be run from Bash or run from the command prompt when installed in Windows. Dig is a powerful tool that can be used to investigate the DNS system. Example 3-5 demonstrates using dig to obtain information about the domain h4cker.org.

Example 3-5 Using dig to Investigate a DNA System

```
$ dig h4cker.org
; <<>> DiG 9.10.6 <<>> h4cker.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 42293
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;h4cker.org.
                                        ΙN
                                                         Α
;; ANSWER SECTION:
h4cker.org.
                       300
                                  ΙN
                                              Δ
                                                       185.199.110.153
h4cker.org.
                       300
                                                       185.199.111.153
                                  ΙN
                                              Α
h4cker.org.
                                  IN
                                              А
                                                       185.199.108.153
                       300
                                                       185.199.109.153
h4cker.org.
                       300
                                  ΙN
                                              Α
;; Query time: 73 msec
;; SERVER: 208.67.222.222#53(208.67.222.222)
;; WHEN: Thu Feb 11 22:24:36 EST 2021
;; MSG SIZE rcvd: 103
```

There is also a range of tools that can be used to interrogate DNS servers, including the following:

- DomainDossier: https://centralops.net/co/domaindossier.aspx
- ViewDNS: https://viewdns.info

- MassDNS: https://github.com/blechschmidt/massdns
- Domain to IP Converter: https://domaintoipconverter.com
- DNSMap: https://code.google.com/archive/p/dnsmap/

Internal DNS information should not be made available to just anyone. Hackers can use this information to find out what other servers are running on the network, and it can help them map the network and formulate what types of attacks to launch. Zone transfers are intended for use by secondary DNS servers to synchronize with their primary DNS server. You should make sure that only specific IP addresses are allowed to request zone transfers. Most operating systems restrict this by default. All DNS servers should be tested. It is often the case that the primary has tight security but the secondaries may allow zone transfers if misconfigured.

TIP The CEH exam expects you to understand the Nslookup and Dig tools and functions. Be sure that you know how to get into interactive mode with Nslookup and how to extract specific information. You may be asked to verify a specific NSlookup command.

Network Footprinting

Key To<u>pic</u>

Now that the pen test team has been able to locate names, phone numbers, addresses, some server names, and IP addresses, it's important to find out what IP addresses are available for scanning and further enumeration. If you take the IP address of a web server discovered earlier and enter it into the Whois lookup at https://www.arin.net, you can determine the network's range. In the example in Figure 3-8, the IP address 157.245.123.123 was entered into the ARIN Whois, so now you can see the details about who owns that IP block. In this case, the IP block 157.245.0.0/16 was allocated to Digital Ocean (a cloud service provider).

An attacker can now focus his efforts on the range from 157.245.0.1 to 157.245.255.254. If these results don't prove satisfactory, the attacker can use *traceroute* for additional mapping.

157.245.123.123	Searc
» Search www.arin.net instead	Search Filter: Autom
	all requests subject to terms of
157.245.123.123"	
Network: NET-157-2	245-0-0-1
Source Registry	ARIN
Net Range	157.245.0.0 - 157.245.255.255
CIDR	157.245.0.0/16
Name	DIGITALOCEAN-157-245-0-0
Handle	NET-157-245-0-0-1
Parent	NET-157-0-0-0-0
Net Type	DIRECT ALLOCATION
Origin AS	AS14061
Registration	Thu, 09 May 2019 20:41:56 GMT (Thu May 09 2019 local time)
Last Changed	Fri, 03 Apr 2020 18:09:10 GMT (Fri Apr 03 2020 local time)
Comments	Routing and Peering Policy can be found at https://www.as14061.net
	Please submit abuse reports at https://www.digitalocean.com/company/contact/#abuse
Self	https://rdap.arin.net/registry/ip/157.245.0.0
Alternate	https://whois.arin.net/rest/net/NET-157-245-0-0-1
Port 43 Whois	whois.arin.net
Related Entities	
Source Registry	ARIN
Kind	Org
Full Name	DigitalOcean, LLC
Handle	DO-13
Address	101 Ave of the Americas
	10th Floor
	New York NY
	10013
	United States
Roles	Registrant
Registration	Mon, 14 May 2012 15:59:42 GMT (Mon May 14 2012 local time)
Last Changed	Mon, 04 Feb 2019 15:30:23 GMT (Mon Feb 04 2019 local time)
Comments	http://www.digitalocean.com
	Simple Cloud Hosting

Figure 3-8 ARIN's Whois Lookup

Subnetting's Role in Mapping Networks

Some of the items you might see on the exam but are not included in any of the official courseware include subnetting. Subnetting allows the creation of many logical networks that exist within a single Class A, B, or C network. Subnetting is important in that it helps pen testers identify what systems are part of which specific network. To subnet a network, you must extend the natural mask with some of the bits from the host ID portion of the address. For example, if you had a Class C network of 192.168.5.0, which has a natural mask of 255.255.255.0, you can create subnets in this manner:

192.168.5.0 -11001100.10101000.00000101.00000000 255.255.255.224 - 111111111111111111111111111100000

By extending the mask from 255.255.255.0 to 255.255.255.224, you have taken 3 bits from the original host portion of the address and used them to make subnets. When you borrow these 3 bits, it is possible to create eight subnets. The remaining 5 bits can provide up to 32 host addresses, 30 of which can actually be assigned to a device because host addresses with all zeros and all ones are not assigned to specific devices. Here is a breakdown of the subnets and their address ranges:

Subnet	Host Range
192.168.5.0 255.255.255.224	Host address range 1 to 30
192.168.5.32 255.255.255.224	Host address range 33 to 62
192.168.5.64 255.255.255.224	Host address range 65 to 94
192.168.5.96 255.255.255.224	Host address range 97 to 126
192.168.5.128 255.255.255.224	Host address range 129 to 158
192.168.5.160 255.255.255.224	Host address range 161 to 190
192.168.5.192 255.255.255.224	Host address range 193 to 222
192.168.5.224 255.255.255.224	Host address range 225 to 254

The more host bits you use for a subnet mask, the more subnets you have available. However, the more subnets that are available, the fewer host addresses that are available per subnet.

Traceroute

It's advisable to check out more than one version of traceroute if you don't get the required results. Some techniques can also be used to try to slip traceroute past a firewall or filtering device. When UDP and ICMP are not allowed on the remote gateway, you can use the Linux **tcptraceroute** command, which allows you to use TCP packets for traceroute. You can obtain more information about tcptraceroute at https://linux.die.net/man/1/tcptraceroute. Another unique technique was

developed by Michael Schiffman, who created a patch called traceroute.diff that allows you to specify the port that traceroute will use. With this handy tool, you could easily direct traceroute to use UDP port 53. Because that port is used for DNS queries, there's a good chance that it could be used to slip past the firewall. If you're looking for a graphical user interface (GUI) program to perform traceroute with, several are available, as described here:

- LoriotPro: A professional and scalable SNMP manager and network monitoring solution that enables availability and performance control of your networks, systems, and smart infrastructures. The graphical display shows you the route between you and the remote site, including all intermediate nodes and their registrant information.
- **Trout:** A visual traceroute and Whois program. What's great about this program is its speed. Unlike traditional traceroute programs, Trout performs parallel pinging. By sending packets with more than one TTL at a time, it can quickly determine the path to a targeted device.
- VisualRoute: Another graphical traceroute for Windows. VisualRoute not only shows a graphical world map that displays the path that packets are taking but also lists information for each hop, including IP address, node name, and geographic location. This tool is commercial and must be purchased.

TIP Traceroute and ping are useful tools for identifying active systems, mapping their location, and learning more about their location. Just keep in mind that these tools are limited by what they can see; if these services are blocked by a firewall, you may get no useful data returned.

Footprinting Through Social Engineering

An attacker can also reveal a lot of information about the targeted organization and underlying systems by using social engineering. The reason is that, in many cases, it is even easier to get sensitive information by tricking a human in a conversation or by sending an email instead of using sophisticated scanning and enumeration tools.

You will learn the details about social engineering tactics and techniques in Chapter 5, "Social Engineering, Malware Threats, and Vulnerability Analysis."

Footprinting Countermeasures

The following are some of the most common countermeasures to protect your organizations and employees from malicious footprinting:

- Provide user education to stay safe online. In the past, many companies restricted employees from accessing social networking sites from their network. However, nowadays social networking sites are used as marketing tools and have become essential for business. This is why user education in some cases is better than completely blocking social networking sites.
- Configure web servers to avoid information leakage.
- Educate employees to use pseudonyms on blogs, groups, and forums.
- Do not reveal critical information in press releases, annual reports, product catalogs, and so on.
- As an ethical hacker, use footprinting techniques to discover and remove any sensitive information about your company and systems that is publicly available.
- Prevent search engines from caching your websites and use anonymous registration services.
- Enforce security policies to regulate the information that your users can reveal to third parties.
- Configure separate internal and external DNS, or use split DNS and restrict zone transfer to authorized servers.
- Disable directory listings in the web servers.
- Educate users about social engineering risks.
- Subscribe to use domain registration privacy services on the Whois Lookup database.
- Prevent domain-level cross-linking for the critical assets.

Scanning

The following sections provide details about the different network scanning concepts and scanning tools. You also learn different techniques for host discovery, port and service discovery, operating system (OS) discovery (banner grabbing/OS fingerprinting), and scanning beyond the intrusion detection system (IDS) and firewall.

Key Topic

Attackers will want to know whether machines are alive before they attempt to attack. One of the most basic methods of identifying active machines is to perform a *ping sweep*. Just because ping can be blocked does not mean it is. Although many organizations have restricted ping, you should still check to see if it is available. Ping uses ICMP and works by sending an *echo request* to a system and waiting for the target to send an *echo reply* back. If the target device is unreachable, a request timeout is returned. Ping is a useful tool to identify active machines and to measure the speed at which packets are moved from one host to another or to get details like the TTL. Figure 3-9 shows a capture of ping packets from a Linux system using the Wireshark packet capture (sniffer) tool. If you examine the ASCII decode at the bottom, you will notice that the data in the ping packet is composed of different hexadecimal values; in other systems (like Windows), this may be different. The reason is that the RFC that governs ping doesn't specify what's carried in the packet as payload. Vendors fill in this padding as they see fit. Unfortunately, this can also serve hackers as a *covert channel*. Hackers can use a variety of programs to place their own information in place of the normal padding. Tools like Loki and IcmpSend-Echo are designed for just this purpose. Then what appear to be normal pings are actually a series of messages entering and leaving the network.

Elle Edit View Go Capture Analyze St	*eth0 (as superuser)
Depty a display filter CCHIP 0 Time Source 16 9.2756666.1927.406.88.22 19.87.0568.192.111.1 18 9.261856.192.164.88.22 19.87.058.88.22 20 10.7275.185.199.111.1 21.06.282.22 20 10.7276.106.88.22 19.97.0168.89.22 21 10.262374.192.106.88.22 12.016.88.22 21 10.262374.192.106.88.22 12.016.88.22 21 10.262374.192.106.88.22 12.016.88.22 14 2.7263.21.061.80.722.22 12.016.88.22 14 2.7263.22.106.100.072.22 12.016.282.22 14 2.7263.22.22 0.101.722.22 25 13.134558.72.22.0147.0471.722.22 26 13.134558.722.22.0147.0471.722.72 21 13.134558.722.22.0147.0471.71 17 13.13222.12.0142.04447.992.07 11.11.11 11.11 11.11.11 11.11 11.11.11 11.11 11.11.11 11.11 11.11.11 11.11 11.11.11 11.11	<pre>[Coloring Rule Name: ICMP] [Coloring Rule String: icmp icmpv0] * Ethernet II, Src: 72:03:47:4ff:11:e5 (72:03:47:4f:f1:e5), Dst: CiscoMer_e9:61:74 (e0:55:3d:e9:61:74) * Destination: ciscoMer_e9:61:74 (e0:55:3d:e9:61:74) * Source: 72:03:47:4ff:f1:e5 (72:03:47:4f:f1:e5) Type: IPv4 (0x000) * Internet Protocol Version 4, Src: 192.108.88.225, Dst: 185.199.111.153 0100, 2 Version: 4 , 0101 = Header Length: 20 bytes (5) * Differentiated Services Field: 0x00 (OSCP: CS0, ECN: Not-ECT) Total [r0]: 64 Fragment offset: 0 Time to live: 64 Protocol: ICMP (1) Header Checksum : Nx000 [validation disabled] [Reader Checksum: Status: Unverified] Source: 192.186.88.225</pre>
0000 e0 55 3d e9 61 74 72 c3 0010 60 54 4c b6 40 06 41 0020 67 96 08 3f 66 6a 3f 0030 60 00 2f 96 96 6a 3f 0040 16 71 19 1a 1a 1c 1d 0040 16 71 19 1a 1b 1a 1c 1d 0040 16 71 19 1a 1b 1c 1d 0040 16 71 19 1a 1b 1c 1d 0040 16 71 2b 2b 2c 2d 000 36 37	Internet_Control Wessage Protocol Type: 8 (Echo (ping) request) Code: 0 Checksum: 0x3fbs: Good] Identifier (EE): 27109 (0x6a3f) Identifier (EE): 27109 (0x6a3f) Identifier (EE): 2 (0x0002) Sequence number (EE): 12 (0x0002) Sequence number (EE): 132 (0x0200) [Timestamp from icmp data: Feb 12, 2021 21:29:37.000000000 EST [Timestamp from icmp data: Feb 12, 2021 21:29:37.000000000 EST [Timestamp from icmp data: Feb 12, 2021 21:29:37.000000000 EST [Timestamp from icmp data: Feb 12, 2021 21:29:37.000000000 EST [Timestamp from icmp data: Feb 12, 2021 21:29:37.0000000000 EST [Timestamp from icmp data: Feb 12, 2021 21:29:37.0000000000 EST [Timestamp from icmp data: Feb 12, 2021 21:29:37.0000000000 EST [Timestamp from icmp data: Feb 12, 2021 21:29:37.0000000000 EST [Timestamp from icmp data: Feb 12, 2021 21:29:37.000000000000000000000000000000000000
	0000 e0 55 3d e9 61 74 72 C3 3f 4f f1 e5 08 00 45 00 UL aftr 60 ··· E. 0010 005 4d e5 4d e0 40 00 40 1a b0 60 c0 at 36 5d e1 b0 57 UL aftr 60 ··· E. 0020 06 5f 99 00 60 3f ba 6a 3f 00 62 91 39 27 60 00 60 X X 0020 06 00 60 00 00 00 00 11 22 21 34 12 21 34 13 12 21 31 41 34 15 21 31 41 32 13 14 13 12 13 14 15 16 16 16 16 16 17 12 13 14 15 12 15 14 15 12 15 12 15 12 15 12 15 15 15 15 15 15 15 15 15 15 15 15 15

Figure 3-9 Ping Capture

Ping does have a couple of drawbacks: First, only one system at a time is pinged, and second, not all networks allow ping. To ping a large number of hosts, a ping sweep is usually performed. Programs that perform ping sweeps usually sweep through a range of devices to determine which ones are active. Programs that will perform ping sweeps include the following:

- Angry IP Scanner: https://angryip.org
- MASSCAN: https://github.com/robertdavidgraham/masscan
- Hping3: https://tools.kali.org/information-gathering/hping3/
- WS_Ping ProPack: https://ws-ping-propack.en.softonic.com/
- Nmap: https://nmap.org/

TIP Know the positives and negatives of ping before taking the CEH exam.

Key Topic

Port and Service Discovery

Port scanning is the process of connecting to TCP and UDP ports for the purpose of finding what services and applications are running on the target device. After discovering running applications, open ports, and services, a hacker can then determine the best way to attack the system.

As discussed in Chapter 2, "The Technical Foundations of Hacking," there are a total of 65,535 TCP and UDP ports. These port numbers are used to identify a specific process that a message is coming from or going to. Table 3-6 lists some common port numbers.

Port	Protocol	Service/Transport	
20/21	FTP	ТСР	
22	SSH	ТСР	
23	Telnet	ТСР	
25	SMTP	ТСР	
53	DNS	TCP/UDP	
69	TFTP	UDP	

Table 3-6 Common Ports and Protocols

Port	Protocol	Service/Transport
80	HTTP	ТСР
110	POP3	ТСР
135	RPC	ТСР
161/162	SNMP	UDP
1433/1434	MSSQL	ТСР

TIP The exam might ask you about common or not so common ports, such as 514 (syslog) or even 179 (Internet Printing Protocol). If you see these on the test questions, the best approach is to first eliminate known ports and reduce down to the best answer.

As you have probably noticed, some of these applications run on TCP, others on UDP. Although it is certainly possible to scan for all 65,535 TCP and 65,535 UDP ports, many hackers will not. They will concentrate on the first 1,024 ports. These well-known ports are where we find most of the commonly used applications. You can find a list of well-known ports at http://www.iana.org/assignments/port-numbers. This is not to say that high-order ports should be totally ignored, because hackers might break into a system and open a high-order port, such as 31337, to use as a backdoor. So, is one protocol easier to scan for than the other? The answer to that question is yes. TCP offers more opportunity for the hacker to manipulate than UDP. Let's take a look at why.

TCP offers robust communication and is considered a connection protocol. TCP establishes a connection by using what is called a three-way handshake. Those three steps proceed as follows:

- 1. The client sends the server a TCP packet with the sequence number flag (SYN flag) set and an *initial sequence number (ISN)*.
- 2. The server replies by sending a packet with the SYN/ACK flag set to the client. The *synchronize sequence number* flag informs the client that it would like to communicate with it, and the acknowledgment flag informs the client that it received its initial packet. The acknowledgment number will be one digit higher than the client's ISN. The server generates an ISN, as well, to keep track of every byte sent to the client.

3. When the client receives the server's packet, it creates an ACK packet to acknowledge that the data has been received from the server. At this point, communication can begin.

The TCP header contains a 1-byte field for the flags. Table 3-7 describes the six most common flags.

Key Topic	Table 3-7	TCP Flag Types			
Topic	Flag	Description			
	SYN	Synchronize and initial sequence number (ISN)			
	ACK	Acknowledgment of packets received			
	FIN	nal data flag used during the four-step shutdown of a session			
	RST	Reset bit used to close an abnormal connection			
	PSH	Push data bit used to signal that data in the packet should be pushed to the beginning of the queue; usually indicates an urgent message			
	URG	Urgent data bit used to signify that urgent control characters are present in this packet that should have priority			

TIP One easy way to remember the six most commonly used flags is as follows: Unruly Attackers Pester Real Security Folks.

At the conclusion of communication, TCP terminates the session by using a fourstep shutdown:

- 1. The client sends the server a packet with the FIN/ACK flags set.
- 2. The server sends a packet ACK flag set to acknowledge the client's packet.
- **3.** The server then generates another packet with the FIN/ACK flags set to inform the client that it also is ready to conclude the session.
- **4.** The client sends the server a packet with the ACK flag set to conclude the session.

TIP TCP flags are considered testable topics. You should understand their use and purpose.

The TCP system of communication makes for robust communication but also allows a hacker many ways to craft packets in an attempt to coax a server to respond or to try to avoid detection of an *intrusion detection system (IDS)*. Many of these methods are built in to Nmap and other port-scanning tools. Before we take a look at those tools, though, some of the more popular port-scanning techniques are listed here:

- **TCP full connect scan:** This type of scan is the most reliable, although it is also the most detectable. It is easily logged and detected because a full connection is established. Open ports reply with a SYN/ACK, and closed ports respond with an RST/ACK.
- TCP SYN scan: This type of scan is known as *half open* because a full TCP three-way connection is not established. This type of scan was originally developed to be stealthy and evade IDSs, although most now detect it. Open ports reply with a SYN/ACK, and closed ports respond with an RST/ACK.
- TCP FIN scan: Forget trying to set up a connection; this technique jumps straight to the shutdown. This type of scan sends a FIN packet to the target port. An open port should return no response. Closed ports should send back an RST/ACK. This technique is usually effective only on UNIX devices or those compliant to RFC 793.
- **TCP NULL scan:** Sure, there should be some type of flag in the packet, but a NULL scan sends a packet with no flags set. If the OS has implemented TCP per RFC 793, open ports send no reply, whereas closed ports will return an RST.
- **TCP ACK scan:** This scan attempts to determine access control list (ACL) rule sets or identify if a firewall or simply stateless inspection is being used. A stateful firewall should return no response. If an ICMP destination is unreachable, and a communication administratively prohibited message is returned, the port is considered to be filtered. If an RST is returned, no firewall is present.
- TCP XMAS scan: Sorry, there are no Christmas presents here, just a port scan that has toggled on the FIN, URG, and PSH flags. Open ports should provide no response. Closed ports should return an RST. Systems must be designed per RFC 793 for this scan to work, as is common for Linux. It does not work against Windows computers.

TIP You should know common scan types, such as full and stealth, to successfully pass the exam. It's suggested that you download the Nmap tool and play with it to fully understand the options. The exam might test you over any type of Nmap scan.

Certain operating systems have taken some liberties when applying the TCP/IP RFCs and do things their own way. Because of this, not all scan types work against all systems. Results will vary, but full connect scans and SYN scans should work against all systems.

These are not the only types of possible scans; there are other scan types. Some scanning techniques can be used to obscure attackers and help hide their identity. One such technique is the idle or zombie scan. Before we go through an example of idle scanning, let's look at some basics on how TCP/IP connections operate. IP makes use of an identification number known as an IPID. This counter helps in the reassembly of fragmented traffic. TCP offers reliable service; it must perform a handshake before communication can begin. The initializing party of the handshake sends a SYN packet to which the receiving party returns a SYN/ACK packet if the port is open. For closed ports, the receiving party returns an RST. The RST acts as a notice that something is wrong, and further attempts to communicate should be discontinued. RSTs are not replied to; if they were replied to, we might have a situation in which two systems flood each other with a stream of RSTs. This means that unsolicited RSTs are ignored. When these characteristics are combined with IPID behavior, a successful idle scan is possible.

An open port idle scan works as follows:

- **Step 1.** An attacker sends an IDIP probe to the idle host to solicit a response. Suppose, for example, that the response produces an IPID of 12345.
- **Step 2.** Next, the attacker sends a spoofed packet to the victim. This SYN packet is sent to the victim but is addressed from the idle host. An open port on the victim's system will then generate a SYN ACK. Because the idle host was not the source of the initial SYN packet and did not at any time want to initiate communication, it responds by sending an RST to terminate communications. This increments the IPID by one to 12346.
- **Step 3.** Finally, the attacker again queries the idle host and is issued an IPID response of 12347. Because the IPID count has now been incremented by two from the initial number of 12345, the attacker can deduce that the scanned port on the victim's system is open.

Figure 3-10 provides an example of this situation.

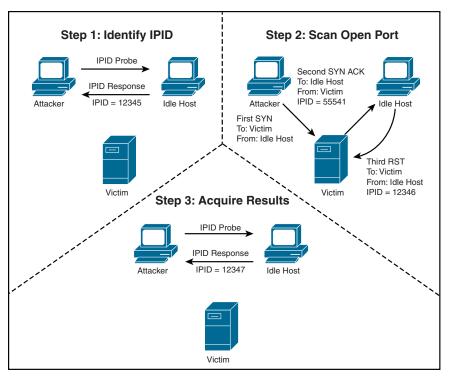


Figure 3-10 IPID Open Port

But what if the target system has its port closed? In that situation, the scan starts the same way as previously described:

- **Step 1.** An attacker makes an initial query to determine the idle host's IPID value. Note that the value returned was 12345.
- **Step 2.** The attacker sends a SYN packet addressed to the victim but spoofs it to appear that it originated from the idle host. Because the victim's port is closed, it responds to this query by issuing an RST. Because RSTs don't generate additional RSTs, the communication between the idle host and the victim ends here.
- Step 3. The attacker again probes the idle host and examines the response. Because the victim's port was closed, we can see that the returned IPID was 12346. It was only incremented by one because no communication had taken place since the last IPID probe that determined the initial value.

Figure 3-11 provides an example of this situation.

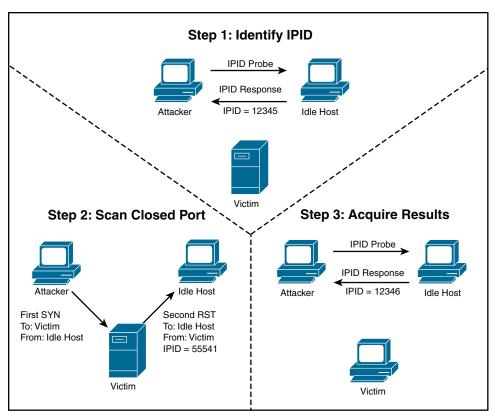


Figure 3-11 IPID Port Closed

Although not perfect, this scanning technique enables attackers to obscure their true address. However, limitations apply to the capability of an idle scan. First, the system designated to play the role of the idle host must truly be idle. A chatty system is of little use because the IPID will increment too much to be useful. There is also the fact that not all operating systems use an incrementing IPID. For example, some versions of Linux set the IPID to zero or generate a random IPID value. Again, these systems are of little use in such an attack. Finally, these results must be measured; by this, we mean that several passes need to be performed to validate the results and be somewhat sure that the attacker's conclusions are valid. Although the concept of idle scanning is interesting, there are a few other scan types worth briefly noting:

- ACK scan: Sends an ACK probe with random sequence numbers. ICMP type 3 code 13 responses may mean that stateless firewalls are being used, and an RST can mean that the port is not filtered.
- **FTP bounce scan:** Uses an FTP server to bounce packets off and make the scan harder to trace.

- **RPC scan:** Attempts to determine whether open ports are RPC ports.
- Window scan: Similar to an ACK scan but can sometimes determine open ports. It does so by examining the TCP window size of returned RST packets. On some systems, open ports return a positive window size and closed ones return a zero window size.

Now let's look at UDP scans. UDP is unlike TCP. TCP is built on robust connections, but UDP is based on speed. With TCP, the hacker can manipulate flags in an attempt to generate a TCP response or an error message from ICMP. UDP does not have flags, nor does UDP issue responses. It's a fire-and-forget protocol! The most you can hope for is a response from ICMP.

If the port is closed, ICMP attempts to send an ICMP type 3 code 3 port unreachable message to the source of the UDP scan. But, if the network is blocking ICMP, no error message is returned. Therefore, the response to the scans might simply be no response. If you are planning on doing UDP scans, plan for unreliable results.

Next, we discuss some of the programs that can be used for port scanning.

Nmap

Nmap was developed by a hacker named Fyodor Yarochkin. It is probably the most widely used port scanner ever developed. It can do many types of scans and OS identification. It also enables you to control the speed of the scan from slow to insane. Its popularity can be seen by the fact that it's incorporated into other products and was even used in the movie *The Matrix*. Nmap can be installed as a GUI or command-line program in Linux, Windows, and macOS; and it is installed by default in Linux distributions such as Kali Linux, Parrot Security OS, BlackArch, Pentoo, and others. You can download Nmap from https://nmap.org. Example 3-6 shows results from Nmap with the help option so that you can review some of its many switches.

Example 3-6 Displaying Nmap Switches

```
#nmap -h
Nmap 7.80 ( https://nmap.org )
Usage: nmap [Scan Type(s)] [Options] {target specification}
TARGET SPECIFICATION:
   Can pass hostnames, IP addresses, networks, etc.
   Ex: scanme.nmap.org, microsoft.com/24, 192.168.0.1; 10.0.0-255.1-254
   -iL <inputfilename>: Input from list of hosts/networks
```

```
-iR <num hosts>: Choose random targets
  --exclude <host1[,host2][,host3],...>: Exclude hosts/networks
  --excludefile <exclude file>: Exclude list from file
HOST DISCOVERY:
  -sL: List Scan - simply list targets to scan
  -sn: Ping Scan - disable port scan
  -Pn: Treat all hosts as online -- skip host discovery
  -PS/PA/PU/PY[portlist]: TCP SYN/ACK, UDP or SCTP discovery to given
ports
  -PE/PP/PM: ICMP echo, timestamp, and netmask request discovery
probes
  -PO[protocol list]: IP Protocol Ping
  -n/-R: Never do DNS resolution/Always resolve [default: sometimes]
  --dns-servers <serv1[,serv2],...>: Specify custom DNS servers
  --system-dns: Use OS's DNS resolver
  --traceroute: Trace hop path to each host
SCAN TECHNIOUES:
  -sS/sT/sA/sW/sM: TCP SYN/Connect()/ACK/Window/Maimon scans
  -sU: UDP Scan
  -sN/sF/sX: TCP Null, FIN, and Xmas scans
  --scanflags <flags>: Customize TCP scan flags
  -sI <zombie host[:probeport]>: Idle scan
  -sY/sZ: SCTP INIT/COOKIE-ECHO scans
  -s0: IP protocol scan
  -b <FTP relay host>: FTP bounce scan
PORT SPECIFICATION AND SCAN ORDER:
  -p <port ranges>: Only scan specified ports
    Ex: -p22; -p1-65535; -p U:53,111,137,T:21-25,80,139,8080,S:9
  --exclude-ports <port ranges>: Exclude the specified ports from
scanning
  -F: Fast mode - Scan fewer ports than the default scan
  -r: Scan ports consecutively - don't randomize
  --top-ports <number>: Scan <number> most common ports
  --port-ratio <ratio>: Scan ports more common than <ratio>
SERVICE/VERSION DETECTION:
  -sV: Probe open ports to determine service/version info
  --version-intensity <level>: Set from 0 (light) to 9 (try all
probes)
  --version-light: Limit to most likely probes (intensity 2)
  --version-all: Try every single probe (intensity 9)
  --version-trace: Show detailed version scan activity (for debugging)
```

```
SCRIPT SCAN:
  -sC: equivalent to --script=default
  --script=<Lua scripts>: <Lua scripts> is a comma separated list of
            directories, script-files or script-categories
  --script-args=<n1=v1, [n2=v2,...]>: provide arguments to scripts
  --script-args-file=filename: provide NSE script args in a file
  --script-trace: Show all data sent and received
  --script-updatedb: Update the script database.
  --script-help=<Lua scripts>: Show help about scripts.
            <Lua scripts> is a comma-separated list of script-files or
            script-categories.
OS DETECTION:
  -O: Enable OS detection
  --osscan-limit: Limit OS detection to promising targets
  --osscan-quess: Guess OS more aggressively
TIMING AND PERFORMANCE:
  Options which take <time> are in seconds, or append 'ms'
(milliseconds),
  's' (seconds), 'm' (minutes), or 'h' (hours) to the value (e.g.
30m).
  -T<0-5>: Set timing template (higher is faster)
  --min-hostgroup/max-hostgroup <size>: Parallel host scan group sizes
  --min-parallelism/max-parallelism <numprobes>: Probe parallelization
  --min-rtt-timeout/max-rtt-timeout/initial-rtt-timeout <time>:
Specifies
      probe round trip time.
  --max-retries <tries>: Caps number of port scan probe
retransmissions.
  --host-timeout <time>: Give up on target after this long
  --scan-delay/--max-scan-delay <time>: Adjust delay between probes
  --min-rate <number>: Send packets no slower than <number> per second
  --max-rate <number>: Send packets no faster than <number> per second
FIREWALL/IDS EVASION AND SPOOFING:
  -f; --mtu <val>: fragment packets (optionally w/given MTU)
  -D <decoy1, decoy2[,ME],...>: Cloak a scan with decoys
  -S <IP_Address>: Spoof source address
  -e <iface>: Use specified interface
  -q/--source-port <portnum>: Use given port number
  --proxies <url1, [url2],...>: Relay connections through HTTP/SOCKS4
proxies
  --data <hex string>: Append a custom payload to sent packetsc
```

```
--data-string <string>: Append a custom ASCII string to sent
packets
  --data-length <num>: Append random data to sent packets
  --ip-options <options>: Send packets with specified ip options
  --ttl <val>: Set IP time-to-live field
  --spoof-mac <mac address/prefix/vendor name>: Spoof your MAC address
  --badsum: Send packets with a bogus TCP/UDP/SCTP checksum
OUTPUT:
  -oN/-oX/-oS/-oG <file>: Output scan in normal, XML, s|<rIpt kIddi3,
     and Grepable format, respectively, to the given filename.
  -oA <basename>: Output in the three major formats at once
  -v: Increase verbosity level (use -vv or more for greater effect)
  -d: Increase debugging level (use -dd or more for greater effect)
  --reason: Display the reason a port is in a particular state
  --open: Only show open (or possibly open) ports
  --packet-trace: Show all packets sent and received
  --iflist: Print host interfaces and routes (for debugging)
  --append-output: Append to rather than clobber specified output
files
  --resume <filename>: Resume an aborted scan
  --stylesheet <path/URL>: XSL stylesheet to transform XML output to
HTMT.
  --webxml: Reference stylesheet from Nmap.Org for more portable XML
  --no-stylesheet: Prevent associating of XSL stylesheet w/XML output
MTSC .
  -6: Enable IPv6 scanning
  -A: Enable OS detection, version detection, script scanning, and
traceroute
  --datadir <dirname>: Specify custom Nmap data file location
  --send-eth/--send-ip: Send using raw ethernet frames or IP packets
  --privileged: Assume that the user is fully privileged
  --unprivileged: Assume the user lacks raw socket privileges
  -V: Print version number
  -h: Print this help summary page.
EXAMPLES:
  nmap -v -A scanme.nmap.org
  nmap -v -sn 192.168.0.0/16 10.0.0/8
  nmap -v -iR 10000 -Pn -p 80
SEE THE MAN PAGE (https://nmap.org/book/man.html) FOR MORE OPTIONS AND
EXAMPLES
```

TIP To better understand Nmap and fully prepare for the CEH exam, you can visit the Nmap cheat sheet I have created and hosted in my GitHub repository at https://github.com/The-Art-of-Hacking/h4cker/blob/master/cheat_sheets/NMAP_cheat_sheet.md. You can also review the official Nmap documentation at https://nmap.org/book/man.html.

NOTE One example of an Nmap switch you should know is decoy. The decoy switch is used to evade an IDS or firewall. The idea is to make it appear to the target that the decoys are the source of the scan, which obscures the real source of the attacker. Decoy can be used two ways. The first is with the RND option so that Nmap generates a random set of source IP addresses. The second is that the attacker can include a specific list of spoofed source addresses.

The Nmap Scripting Engine (NSE) is one of Nmap's most powerful and flexible features. It allows users to create and use simple scripts to automate a wide variety of networking tasks. You can use the Linux locate command to find where the NSE scripts are located in your system (as demonstrated in Example 3-7). In Parrot Security OS and Kali Linux, the default location is /usr/share/nmap/scripts.

Example 3-7 Locating NSE Scripts

<pre>#locate *.nse</pre>
/usr/share/nmap/scripts/acarsd-info.nse
/usr/share/nmap/scripts/address-info.nse
/usr/share/nmap/scripts/afp-brute.nse
/usr/share/nmap/scripts/afp-ls.nse
/usr/share/nmap/scripts/afp-path-vuln.nse
/usr/share/nmap/scripts/afp-serverinfo.nse
/usr/share/nmap/scripts/afp-showmount.nse
/usr/share/nmap/scripts/ajp-auth.nse
/usr/share/nmap/scripts/ajp-brute.nse
/usr/share/nmap/scripts/ajp-headers.nse
/usr/share/nmap/scripts/ajp-methods.nse
/usr/share/nmap/scripts/ajp-request.nse
/usr/share/nmap/scripts/allseeingeye-info.nse
/usr/share/nmap/scripts/amqp-info.nse
/usr/share/nmap/scripts/asn-query.nse
/usr/share/nmap/scripts/auth-owners.nse
/usr/share/nmap/scripts/auth-spoof.nse

```
/usr/share/nmap/scripts/backorifice-brute.nse
/usr/share/nmap/scripts/backorifice-info.nse
/usr/share/nmap/scripts/bacnet-info.nse
/usr/share/nmap/scripts/banner.nse
/usr/share/nmap/scripts/bitcoin-getaddr.nse
/usr/share/nmap/scripts/bitcoin-info.nse
/usr/share/nmap/scripts/bitcoinrpc-info.nse
/usr/share/nmap/scripts/bittorrent-discovery.nse
/usr/share/nmap/scripts/bjnp-discover.nse
/usr/share/nmap/scripts/broadcast-ataoe-discover.nse
/usr/share/nmap/scripts/broadcast-avahi-dos.nse
/usr/share/nmap/scripts/broadcast-bjnp-discover.nse
/usr/share/nmap/scripts/broadcast-db2-discover.nse
/usr/share/nmap/scripts/broadcast-dhcp-discover.nse
/usr/share/nmap/scripts/broadcast-dhcp6-discover.nse
/usr/share/nmap/scripts/broadcast-dns-service-discovery.nse
/usr/share/nmap/scripts/broadcast-dropbox-listener.nse
<output omitted for brevity>
```

Nmap's output provides the open port's well-known service name, number, and protocol. Ports can either be open, closed, or filtered. If a port is open, it means that the target device will accept connections on that port. A closed port is not listening for connections, and a filtered port means that a firewall, filter, or other network device is guarding the port and preventing Nmap from fully probing it or determining its status. If a port is reported as unfiltered, it means that the port is closed, and no firewall or router appears to be interfering with Nmap's attempts to determine its status.

To run Nmap from the command line, type **nmap**, followed by the switch, and then enter a single IP address or a range. Example 3-8 shows how the **-sT** option is used; it performs a full three-step TCP connection.

Example 3-8 Performing a Three-Step Connection with Nmap

```
#nmap -sT 192.168.78.7
Starting Nmap 7.80 ( https://nmap.org )
Nmap scan report for 192.168.78.7
Host is up (0.0028s latency).
Not shown: 994 closed ports
```

```
PORTSTATE SERVICE22/tcpopenssh111/tcpopenrpcbind139/tcpopennetbios-ssn445/tcpopenmicrosoft-ds2049/tcpopennfs3128/tcpopensquid-httpNmapdone:1IPaddress(1 host up)scannedin
```

The output shows several interesting ports found on this computer, including 80 and 139. Example 3-9 shows the results returned after running a UDP scan performed with the **-sU** switch.

Example 3-9 UDP Scan with Nmap

```
#nmap -sU 192.168.78.7
Starting nmap 7.80 (https://nmap.org/ )
Interesting ports on Server (192.168.78.7):
(The 1653 ports scanned but not shown below are in state: filtered)
PORTSTATE SERVICE
69/udpopentftp
Nmap run completed -- 1 IP address (1 host up) scanned in
843.713 seconds
```

TIP Regardless of the OS, scanning an IPv6 network is much harder than scanning IPv4 network ranges in that the search space is so much larger. The number of IP addresses that must be scanned in IPv6 makes it difficult to gather valid addresses. Other techniques are typically used to gather valid addresses. IPv6 addresses must be harvested in some way, such as by network traffic, recorded logs, or the source IP address.

For a quick trick to use the most common NSE scripts that are relevant to the ports that are open, you can use the **nmap -sC** command, as demonstrated in Example 3-10. Here, you can see additional details about the system (a Linux server running SSH, RPC, Samba, NFS, and a Squid HTTP proxy).

Example 3-10 nmap -sC Results

```
#nmap -sC 192.168.78.7
Starting Nmap 7.80 ( https://nmap.org )
Nmap scan report for 192.168.78.7
Host is up (0.0017s latency).
Not shown: 994 closed ports
PORT
       STATE SERVICE
22/tcp open ssh
| ssh-hostkey:
2048 79:81:aa:61:d5:bb:9e:35:21:e3:a4:82:9b:3f:a6:49 (RSA)
   256 ae:72:9b:ee:4d:ee:04:62:af:20:22:f9:06:07:06:8c (ECDSA)
_ 256 8a:c9:d3:dc:a3:57:99:9b:4f:cf:6b:c9:3f:07:59:cf (ED25519)
111/tcp open rpcbind
| rpcinfo:
program version port/proto service
                     111/tcp rpcbind
   100000 2,3,4
100000 2,3,4
                      111/udp rpcbind
L
                      111/tcp6 rpcbind
   100000 3,4
100000 3,4
                      111/udp6 rpcbind
L
   100003 3
                     2049/udp nfs
   100003 3
                     2049/udp6 nfs
   100003 3,4
                     2049/tcp nfs
L
   100003 3,4
                     2049/tcp6 nfs
                  37524/udp mountd
   100005 1,2,3
100005 1,2,3
                   42643/tcp6 mountd
   100005 1,2,3
51869/tcp mountd
100005 1,2,3
                    52545/udp6 mountd
   100021 1,3,4
                    36149/tcp6 nlockmgr
100021 1,3,4
                    41338/udp nlockmgr
L
   100021 1,3,4
                    44907/tcp nlockmgr
   100021 1,3,4
                    48342/udp6 nlockmgr
L
   100024 1
                    40980/udp status
   100024 1
                     50831/udp6 status
100024 1
                     52407/tcp status
   100024 1
                     57769/tcp6 status
100227 3
                     2049/tcp nfs_acl
2049/tcp6 nfs_acl
100227 3
   100227 3
                      2049/udp nfs_acl
|_ 100227 3
                      2049/udp6 nfs_acl
139/tcp open netbios-ssn
445/tcp open microsoft-ds
```

```
2049/tcp open nfs_acl
3128/tcp open squid-http
Host script results:
| clock-skew: mean: 1h39m52s, deviation: 2h53m12s, median: -7s
|_nbstat: NetBIOS name: POSEIDON, NetBIOS user: <unknown>, NetBIOS
MAC: <unknown> (unknown)
| smb-os-discovery:
    OS: Windows 6.1 (Samba 4.9.5-Debian)
Computer name: poseidon
   NetBIOS computer name: POSEIDON\x00
1
Domain name: ohmr.org
    FQDN: poseidon.ohmr.org
1
|_ System time: 2021-02-12T21:53:46-05:00
| smb-security-mode:
    account_used: guest
authentication_level: user
challenge_response: supported
message_signing: disabled (dangerous, but default)
| smb2-security-mode:
    2.02:
Message signing enabled but not required
| smb2-time:
    date: 2021-02-13T02:53:46
   start_date: N/A
Nmap done: 1 IP address (1 host up) scanned in 28.64 seconds
```

SuperScan

SuperScan is written to run on Windows machines. It's a versatile TCP/UDP port scanner, pinger, and hostname revolver. It can perform ping scans and port scans using a range of IP addresses, or it can scan a single host. It also has the capability to resolve or reverse-lookup IP addresses. It builds an easy-to-use HTML report that contains a complete breakdown of the hosts that were scanned. This includes information on each port and details about any banners that were found. It's free; therefore, it is another tool that all ethical hackers should have.

THC-Amap

THC-Amap is another example of a tool that is used for scanning and banner grabbing. One problem that traditional scanning programs have is that not all services are ready and eager to give up the appropriate banner. For example, some services, such as Secure Sockets Layer (SSL), expect a handshake. Amap handles this by storing a collection of responses that it can fire off at the port to interactively elicit it to respond. Amap was the first to perform this functionality, but it has been replaced by Nmap. One technique is to use this program by taking the greppable format of Nmap as an input to scan for those open services. Defeating or blocking Amap is not easy, although one technique would be to use a *port-knocking* technique. Port knocking is similar to a secret handshake or combination. Only after inputting a set order of port connections can a connection be made. For example, you may have to first connect on 80, 22, and 123 before connecting to 443. Otherwise, the port will show as closed.

Hping

Hping is another very useful ethical hacking tool that can perform both ping sweeps and port scans. Hping works on Windows and Linux computers and can function as a packet builder. You can find the Hping tool at http://www.hping.org or download the Linux Backtrack distribution, which also contains Hping. Hping2 and 3 can be used for firewall testing, identifying honeypots, and port scanning. Here are some other Hping3 syntax examples of note:

- ICMP pings: hping3 -C IP_Address
- SYN scan: hping3 -S IP_Address
- ACK scan: hping3 -A IP_Address
- **XMAS scan: hping3 -X** *IP_Address*

TIP Hping is a powerful tool that you can use to bypass filtering devices by injecting crafted or otherwise modified IP packets or to port scan and perform just about any type of scan that Nmap can. Hping syntax could come up on the exam. You can refer to the cheat sheet posted in the GitHub repository at https://github.com/The-Art-of-Hacking/h4cker/blob/master/cheat_sheets/hping3_cheatsheet.pdf.

Port Knocking

Port knocking is a method of establishing a connection to a host that does not initially indicate that it has any open ports. Port knocking works by having the remote device send a series of connection attempts to a specific series of ports. It is somewhat analogous to a secret handshake. After the proper sequence of port knocking has been detected, the required port is opened, and a connection is established. The advantage of using a port-knocking technique is that hackers cannot easily identify open ports. The disadvantages include the fact that the technique does not harden the underlying application. Also, it isn't useful for publicly accessible services. Finally, anyone who has the ability to sniff the network traffic will be in possession of the appropriate knock sequence.

Key Topic OS Discovery (Banner Grabbing/OS Fingerprinting) and Scanning Beyond IDS and Firewall

At this point in the information-gathering process, the hacker has made some real headway. IP addresses, active systems, and open ports have been identified. Although the hacker might not yet know the types of systems he is dealing with, he is getting close. Fingerprinting is the primary way to identify a specific system. Fingerprinting works because each vendor implements the TCP/IP stack in different ways. For example, it's much the same as when you text a specific friend who typically says something like, "Hey, what's up?" while another friend simply says, "Hi." There are two ways in which the hacker can attempt to identify the targeted devices. The hacker's first choice is passive fingerprinting. The hacker's second choice is to perform *active fingerprinting*, which basically sends malformed packets to the target in the hope of eliciting a response that will identify it. Although active fingerprinting is more accurate, it is not as stealthy as passive fingerprinting.

Passive fingerprinting is really sniffing, because the hacker is sniffing packets as they come by. These packets are examined for certain characteristics that can be pointed out to determine the OS. The following four commonly examined items are used to fingerprint the OS:

- **IP TTL value:** Different operating systems set the TTL to unique values on outbound packets.
- **TCP window size:** OS vendors use different values for the initial window size.
- **IP DF option:** Not all OS vendors handle fragmentation in the same way. A common size with Ethernet is 1500 bytes.
- IP Type of Service (TOS) option: TOS is a 3-bit field that controls the priority of specific packets. Again, not all vendors implement this option in the same way.

These are just four of many possibilities that can be used to passively fingerprint an OS. Other items that can be examined include IP identification number (IPID), IP options, TCP options, and even ICMP. Ofir Arkin wrote an excellent paper on this, titled "ICMP Usage in Scanning." An example of a passive fingerprinting tool is the Linux-based tool P0f. P0f attempts to passively fingerprint the source of all incoming connections after the tool is up and running. Because it's a truly passive tool, it does so without introducing additional traffic on the network. P0fv2 is available at http://lcamtuf.coredump.cx/p0f.tgz.

NOTE One of the most common methods used to determine the OS is to examine the TTL. For example, the default TTL of a Linux system is 64, the default TTL of Windows is 128, and the default TTL of routers is typically 254.

Active fingerprinting is more powerful than passive fingerprint scanning because the hacker doesn't have to wait for random packets, but as with every advantage, there is usually a disadvantage. This disadvantage is that active fingerprinting is not as stealthy as passive fingerprinting. The hacker actually injects the packets into the network. Active fingerprinting has a much higher potential for being discovered or noticed. Like passive OS fingerprinting, active fingerprinting examines the subtle differences that exist between different vendor implementations of the TCP/IP stack. Therefore, if hackers probe for these differences, the version of the OS can most likely be determined. One of the individuals who has been a pioneer in this field of research is Fyodor Yarochkin. He has an excellent chapter on remote OS fingerprinting at https://nmap.org/book/osdetect.html. Listed here are some of the basic methods used in active fingerprinting:

- **The FIN probe:** A FIN packet is sent to an open port, and the response is recorded. Although RFC 793 states that the required behavior is not to respond, many operating systems such as Windows will respond with an RST.
- **Bogus flag probe:** As you might remember from Table 3-7, the flag field is only 1 byte in the TCP header. A bogus flag probe sets one of the used flags along with the SYN flag in an initial packet. Linux will respond by setting the same flag in the subsequent packet.
- Initial sequence number (ISN) sampling: This fingerprinting technique works by looking for patterns in the ISN. Although some systems use truly random numbers, others, such as Windows, increment the number by a small fixed amount.
- **IPID sampling:** Many systems increment a systemwide IPID value for each packet they send. Others, such as older versions of Windows, do not put the IPID in network byte order, so they increment the number by 256 for each packet.
- **TCP initial window:** This fingerprint technique works by tracking the window size in packets returned from the target device. Many operating systems use exact sizes that can be matched against a database to uniquely identify the OS.
- ACK value: Again, vendors differ in the ways they have implemented the TCP/IP stack. Some operating systems send back the previous value +1, whereas others send back more random values.

- Type of service: This fingerprinting type tweaks ICMP port unreachable messages and examines the value in the TOS field. Whereas some use 0, others return different values.
- **TCP options:** Here again, different vendors support TCP options in different ways. By sending packets with different options set, the responses will start to reveal the server's fingerprint.
- Fragmentation handling: This fingerprinting technique takes advantage of the fact that different OS vendors handle fragmented packets differently. RFC 1191 specifies that the maximum transmission unit (MTU) is normally set between 68 and 65535 bytes. This technique was originally discovered by Thomas Ptacek and Tim Newsham.

Active Fingerprinting Tools

One of the first tools to be widely used for active fingerprinting back in the late 1990s was Queso. Although no longer updated, it helped move this genre of tools forward. Nmap is the tool of choice for active fingerprinting and is one of the most feature-rich free fingerprint tools in existence today. Nmap's database can fingerprint literally hundreds of different operating systems. Fingerprinting with Nmap is initiated by running the tool with the **-O** option. When started with this command switch, Nmap probes port 80 and then ports in the 20 to 23 range. Nmap needs one open and one closed port to make an accurate determination of what OS a particular system is running.

Example 3-11 demonstrates how fingerprinting works with Nmap.

```
Example 3-11 Fingerprinting with Nmap
```

```
#nmap -O 192.168.78.7
Starting Nmap 7.80 ( https://nmap.org )
Nmap scan report for 192.168.78.7
Host is up (0.0013s latency).
Not shown: 994 closed ports
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
2049/tcp open nfs
3128/tcp open squid-http
```

```
No exact OS matches for host (If you know what OS is running on it,
see https://nmap.org/submit/ ).
TCP/IP fingerprint:
OS:SCAN(V=7.80%E=4%D=2/12%OT=22%CT=1%CU=41024%PV=Y%DS=2%DC=1%G=Y%
TM=602742C
OS:C%P=x86 64-pc-linux-gnu)SEO(SP=106%GCD=1%ISR=109%TI=Z%CI=Z%II=I%
TS=A) OPS
OS: (01=M5B4ST11NW7%02=M5B4ST11NW7%03=M5B4NNT11NW7%04=M5B4ST11NW7%
05=M5B4ST1
OS:1NW7%O6=M5B4ST11)WIN(W1=FE88%W2=FE88%W3=FE88%W4=FE88%W5=FE88%
W6=FE88)ECN
OS: (R=Y%DF=Y%T=41%W=FAF0%O=M5B4NNSNW7%CC=Y%Q=)T1 (R=Y%DF=Y%T=41%S=O%
A=S+%F=A
OS:S%RD=0%O=)T2(R=N)T3(R=N)T4(R=Y%DF=Y%T=41%W=0%S=A%A=Z%F=R%O=%
RD=0%Q=) T5 (R
OS:=Y%DF=Y%T=41%W=0%S=Z%A=S+%F=AR%O=%RD=0%O=)T6(R=Y%DF=Y%T=41%W=0%
S=A%A=Z%F
OS:=R%O=%RD=0%Q=)T7(R=Y%DF=Y%T=41%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)
U1 (R=Y%DF=N%
OS:T=41%IPL=164%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G%RUD=G)IE(R=Y%
DFI=N%T=41%CD
OS:=S)
Network Distance: 2 hops
OS detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 11.79 seconds
```

You might also want to try Nmap with the **-v** or **-vv** switch. There are devices such as F5 Load Balancer that will not identify themselves using a normal **-O** scan but will reveal their ID with the **-vv** switch. Just remember that with Nmap or any other active fingerprinting tool, you are injecting packets into the network. This type of activity can be tracked and monitored by an IDS. Active fingerprinting tools, such as Nmap, can be countered by tweaking the OS's stack. Anything that tampers with this information can affect the prediction of the target's OS version.

Nmap's dominance of active fingerprinting is being challenged by several other tools. One such tool is Xprobe2, a Linux-based active OS fingerprinting tool with a different approach to OS fingerprinting. Xprobe is unique in that it uses a mixture of TCP, UDP, and ICMP to slip past firewalls and avoid IDS systems. Xprobe2 relies on fuzzy signature matching. In layman's terms, this means that targets are run through a variety of tests. These results are totaled, and the user is presented with a score that tells the probability of the targeted machine's OS—for example, 75 percent Windows 10 and 1 percent Windows Vista.

Fingerprinting Services

If there is any doubt left as to what a particular system is running, this next step of information gathering should serve to answer those questions. Knowing what services are running on specific ports enables a hacker to formulate and launch application-specific attacks. One way to ensure success at this pre-attack stage is to know the common default ports and services and to use tools such as Telnet and Netcat.

Default Ports and Services

A certain amount of default information and behavior can be gleaned from any system. For example, if a hacker discovers a Windows 2012 server with port 80 open, he can assume that the system is running IIS 8.0, just as a Linux system with port 25 open is likely to be running Sendmail. Although it's possible that the Windows 2012 machine might be running another version or type of web server, that most likely is not a common occurrence.

Keep in mind that at this point, the attacker is making assumptions. Just because a particular port is active or a known banner is returned, you cannot be certain that information is correct. Ports and banners can be changed, and assumptions by themselves can be dangerous. Additional work will need to be done to verify what services are truly being served up by any open ports.

Key Topic

Finding Open Services

The scanning performed earlier in the chapter might have uncovered other ports that were open. Most scanning programs, such as Nmap and SuperScan, report what common services are associated with those open ports. This easiest way to determine what services are associated with the open ports that were discovered is by banner grabbing.

Banner grabbing takes nothing more than the Telnet and FTP client built in to the Windows and Linux platforms. Banner grabbing provides important information about what type and version of software is running. Many servers can be exploited with just a few simple steps if the web server is not properly patched. Telnet is an easy way to do this banner grabbing for FTP, SMTP, HTTP, and others. The command issued to banner grab with the Linux **curl** command would contain the following syntax: **curl** *IP_Address* **port** as demonstrated in Example 3-12. This banner-grabbing attempt was targeted against a web server.

```
Example 3-12 Banner Grabbing with curl
```

```
> curl -I http://10.6.6.100
HTTP/1.1 200 OK
Server: nginx/1.17.2
Date: 14 Feb 2022 01:10:04 GMT
Content-Type: text/html
Content-Length: 8381
Last-Modified: Mon, 10 May 2021 07:24:47 GMT
Connection: keep-alive
ETag: "5eb8fdbf-20bd"
Accept-Ranges: bytes
```

After the **curl -I http://10.6.6.100** command was entered,, the output (aka "banner") indicates that the web server is running nginx version 1.17.2.

You can use many other tools to perform banner grabbing. For instance, you can even use the **telnet** command, as shown in Example 3-13.

```
Example 3-13 Banner Grabbing with Telnet
```

```
> telnet 10.6.6.100 80
Trying 10.6.6.100...
Connected to 10.6.6.100.
Escape character is '^]'.
GET
HTTP/1.1 400 Bad Request
Server: nginx/1.17.2
Content-Type: text/html
Content-Length: 157
Connection: close
<html>
<head><title>400 Bad Request</title></head>
<body>
<center><h1>400 Bad Request</h1></center>
<hr><center>nginx/1.17.2</center>
</body>
</html>
Connection closed by foreign host.
```

In Example 3-13, the **telnet** command is followed by the IP address of the target host and the port (port 80 in this example). After you press Enter, you can type **GET** to send an HTTP GET request to the server.

These tools are not your only option for grabbing banners; HTTPrint is another choice. It is available for both Windows and Linux distributions. It is not a typical banner-grabbing application, however, in that it can probe services to determine the version of services running. Its main fingerprinting technique has to do with the semantic differences in how web servers or applications respond to various types of probes. Example 3-14 provides an example of a scan.

Example 3-14 Banner Grabbing with HTTPrint

```
./httprint -h 192.168.1.175 -s signatures.txt
httprint - web server fingerprinting tool
Finger Printing on http://192.168.1.175:80/
Finger Printing Completed on http://192.168.1.175:80/
_____
Host: 192.168.1.175
Derived Signature:
Apache/2.2.0 (RedHat)
9E431BC86ED3C295811C9DC5811C9DC5050C5D32505FCFE84276E4BB811C9DC5
0D7645B5811C9DC5811C9DC5CD37187C11DDC7D7811C9DC5811C9DC58A91CF57FCCC5
35B6ED3C295FCCC535B811C9DC5E2CE6927050C5D336ED3C2959E431BC86ED3C295
E2CE69262A200B4C6ED3C2956ED3C2956ED3C2956ED3C295E2CE6923E2CE69236ED
3C295811C9DC5E2CE6927E2CE6923
Banner Reported: Apache/2.2.0 (RedHat)
Banner Deduced: Apache/2.0.x
Score: 140
Confidence: 84.31-----
```

Netcat can also be used for banner grabbing. Netcat is shown here to introduce you to its versatility. It is called the "Swiss-army knife of hacking tools" because of its many uses. To banner grab with Netcat, you issue the following command from the command line:

nc -v -n IP_Address Port

This command gives you the banner of the port you asked to check. Netcat is available for Windows and Linux. If you haven't downloaded Netcat, don't feel totally left behind; FTP is another choice for banner grabbing. Just FTP to the target server and review the returned banner. Another good tool is **whatweb**. It can enumerate additional information in the target system, as demonstrated in Example 3-15.

Example 3-15 whatweb Enumeration

```
> whatweb http://10.6.6.100
http://10.6.6.100 [200 OK] Country[RESERVED][ZZ],
HTML5, HTTPServer[nginx/1.17.2], IP[10.6.6.100], JQuery,
MetaGenerator[Mobirise v4.10.1, mobirise.com], Script, Title[WebSploit
Mayhem], X-UA-Compatible[IE=edge], nginx[1.17.2]
```

Most all port scanners, including those discussed in this chapter, also perform banner grabbing. However, the security professional can use lots of tools to analyze open ports and banners. Some of the more notable ones you may want to review include the following:

- ID Serve: https://www.grc.com/id/idserve.htm
- NetworkMiner: https://www.netresec.com/index.ashx?page=NetworkMiner
- Nikto2: https://cirt.net/Nikto2
- Netcraft: https://sitereport.netcraft.com

NOTE Nikto is a popular web application vulnerability scanner. To learn more about web application hacking, see Chapter 7, "Web Server Hacking, Web Applications, and Database Attacks."

Although changing banner information is not an adequate defense by itself, it might help to slow a hacker. In a Linux environment, you can change the ServerSignature line in the httpd.conf file to ServerSignature off. In a Windows environment, you can install the UrlScan security tool. UrlScan contains the RemoveServerHeader feature, which removes or alters the identity of the server from the "Server" response header in response to the client's request.

Draw Network Diagrams

Once you discover and enumerate the hosts in the targeted network, you should immediately start building your own network diagrams. Doing so allows you to create an "attack plan" to not only potentially exploit any vulnerabilities found but also perform post-exploitation activities such as lateral movement and pivoting. These network diagrams should not be static. The more devices, hosts, and applications you discover (even after exploitation), the more you should document the findings, including IP addresses, the operating systems running in the hosts, the services and ports open, and any discovered software versions. Figure 3-12 shows a simple network diagram.

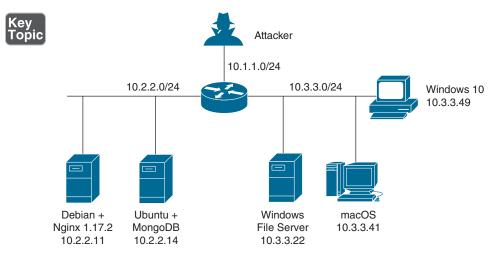


Figure 3-12 A Network Diagram of Discovered Devices and Applications

Mapping the network provides the hacker with a blueprint of the organization. There are manual and automated ways to compile this information. Manual and automated tools are discussed in the following paragraphs.

If you have been documenting findings, the matrix you began at the start of this chapter should be overflowing with information. This matrix should now contain domain name information, IP addresses, DNS servers, employee info, company location, phone numbers, yearly earnings, recently acquired organizations, email addresses, the publicly available IP address range, open ports, wireless access points, modem lines, and banner details.

If you prefer a more automated method of mapping the network, multiple tools are available. Visual traceroute programs, such as the SolarWinds Network Topology Mapper (http://www.solarwinds.com/network-topology-mapper), can help you map out the placement of these servers. You can even use Nmap scripts to trace a route and map the geolocation of a target. As an example, **nmap --traceroute --script traceroute-geolocation.nse -p 80 example.com** would perform a traceroute and provide geolocation data for each hop along the way. Geolocation allows you to identify information such as country, region, ISP, and the like. Examples of geolocation tools include IP Location Finder (https://tools.keycdn.com) and Maxmind (https://www.maxmind.com/en/geoip-demo).

Automatic mapping can be faster but might generate errors or sometimes provide erroneous results. Table 3-8 reviews some of the primary steps we have discussed.

Step	Title	Active/Passive	Common Tools
One	Information gathering	Passive	www.domaintools.com, ARIN, IANA, Whois, Nslookup
Two	Determining network range	Passive	RIPE, APNIC, LACNIC, ARIN
Three	Identifying active machines	Active	Ping, traceroute, SuperScan, Angry IP Scanner
Four	Finding open ports and access points	Active	Nmap, Hping, Angry IP Scanner, SuperScan
Five	OS fingerprinting	Active/passive	Nmap, P0f, Xprobe2
Six	Fingerprinting services	Active	Nmap, Telnet, FTP, Netcat
Seven	Mapping the network attack surface	Active	CartoReso, traceroute, Network Topology Mapper

 Table 3-8
 The Seven Steps of the Pre-Attack Phase

NLog is one option to help keep track of your scanning and mapping information. NLog enables you to automate and track the results of your Nmap scans. It allows you to keep all your Nmap scan logs in a database, making it possible to easily search for specific entries. It's browser based, so you can easily view the scan logs in a highly customizable format. You can add your own extension scripts for different services, so all hosts running a certain service will have a hyperlink to the extension script. NLog is available at http://nlog-project.org/.

CartoReso is another network mapping option. If run from the Internet, the tool will be limited to devices that it can contact. These will most likely be devices within the *demilitarized zone (DMZ)*. Run internally, it will diagram a large portion of the network. In the hands of a hacker, it's a powerful tool because it uses routines taken from a variety of other tools that permit it to perform OS detection port scans for service detection and network mapping using common traceroute techniques. You can download it from https://sourceforge.net/projects/cartoreso/.

A final item worth discussing is that the attacker will typically attempt to hide her activity while actively probing a victim's network. This can be attempted via anonymizers and proxies. The concept is to try to obscure the true source address. Examples of tools that are available for this activity include the following:

- Proxy Switcher
- Proxy Workbench

- CyberGhost
- Tor

TIP Kali Linux (https://kali.org) and Parrot Security OS (https://parrotsec.org) contain many of the tools discussed in this chapter and are used for penetration testing. EC-Council focuses on using Parrot Security OS since the introduction of CEHv11. I have also created a learning environment called WebSploit Labs (https://websploit.org). This learning environment can be set up on top of Kali Linux or Parrot Security OS. It includes multiple intentionally vulnerable applications running in Docker containers, as well as additional tools that do not come by default in Kali Linux or Parrot Security OS. WebSploit Labs also comes with thousands of additional cybersecurity references (a clone of my GitHub repository) and several other resources. It allows you to practice your skills in a safe environment by using only one system or virtual machine (VM).

Summary

In this chapter, you learned the seven steps that compose the pre-attack phase: information gathering, determining the network range, identifying active machines, finding open ports and access points, OS fingerprinting, fingerprinting services, and mapping the network attack surface.

This chapter is an important step for you, as an ethical hacker, because at this point you are gathering information to launch an attack and determining the best path forward. The more information that is gathered here, the better the chance of success. You might find enough information at this point to be able to launch an attack. If not, the information gathered will serve as a foundation for subsequent steps of the attack. An important part of ethical hacking is documentation. That's why the chapter shows several ways to collect and document your findings. There is no such thing as too much information. You may want to use a proxy or anonymizer to obscure the probes. These notes will prove useful when you prepare your report. Finally, make sure that the organization has given you written permission before beginning any work, even the reconnaissance.

Exam Preparation Tasks

As mentioned in the section "How to Use This Book" in the Introduction, you have several choices for exam preparation: the exercises here, Chapter 12, "Final Preparation," and the exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topic icon in the outer margin of the page. Table 3-9 lists a reference of these key topics and the page numbers on which each is found.

Key
Topic

Table 3-9	Key	Topics	for	Chapter	3
-----------	-----	--------	-----	---------	---

Key Topic Element	Description	Page Number	
Figure 3-1	Footprinting and Scanning Steps	93	
Section	Footprinting Methodology	93	
Paragraph/list	Advanced Google hacking	98	
Paragraph	Using Shodan to find vulnerable systems	100	
Section	Footprinting Through Social Networking Sites	101	
Section	Network Footprinting	118	
Section	Footprinting Countermeasures	122	
Section	Host Discovery	123	
Section	Port and Service Discovery	124	
Table 3-7	TCP Flag Types	126	
Section	OS Discovery (Banner Grabbing/OS Fingerprinting) and Scanning Beyond IDS and Firewall	141	
Section	Finding Open Services	145	
Figure 3-12 A Network Diagram of Discovered Devices and Applications		149	

Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

active fingerprinting, CNAMEs, covert channel, demilitarized zone (DMZ), denial of service (DoS), echo reply, echo request, EDGAR database, initial sequence number (ISN), Internet Assigned Numbers Authority (IANA),

intrusion detection system (IDS), Nslookup, open source, passive fingerprinting, ping sweep, port knocking, script kiddie, social engineering, synchronize sequence number, Time to Live (TTL), traceroute, Whois, zone transfer

Exercises

3-1 Performing Passive Reconnaissance

The best way to learn passive information gathering is to use the tools. In this exercise, you perform reconnaissance on several organizations. Acquire only the information requested.

Estimated Time: 20 minutes.

Step 1. Review Table 3-10 to determine the target of your passive information gathering.

Table 3-10	Passive	Information	Gathering
------------	---------	-------------	-----------

Domain Name	IP Address	Location	Contact Person	Address and Phone Number
h4cker.org				
Examcram.com				
	72.3.246.59			
Rutgers.edu				
secretcorp.org				

- Step 2. Start by resolving the IP address. You can do this by pinging the site.
- **Step 3.** Next, use a tool such as https://www.whois.net or any of the other tools mentioned throughout the chapter. Some of these include
 - http://www.betterwhois.com
 - https://whois.domaintools.com/
 - http://geektools.com
 - https://lookup.icann.org
 - https://talosintelligence.com/reputation_center
 - https://www.domain.com/whois/whois
- **Step 4.** To verify the location of the organization, perform a traceroute or a ping with the **-r** option.
- **Step 5.** Use the ARIN, RIPE, and IANA to fill in any information you have yet to acquire.

Step 6. Analyze the results.

3-2 Performing Active Reconnaissance

The best way to learn active information gathering is to use the tools. In this exercise, you perform reconnaissance on your own internal network. If you are not on a test network, make sure that you have permission before scanning it, or your action may be seen as the precursor of an attack.

Estimated Time: 15 minutes.

- **Step 1.** Download the most current version of Nmap from https://nmap.org/ download.html.
- **Step 2.** Open a command prompt and go to the directory in which you have installed Nmap.
- **Step 3.** Run **nmap -h** from the command line to see the various options.
- **Step 4.** You'll notice that Nmap has many options. Review and find the option for a full connect scan. Enter your result here:____
- Step 5. Review and find the option for a stealth scan. Enter your result here: ____
- **Step 6.** Review and find the option for a UDP scan. Enter your result here:
- **Step 7.** Review and find the option for a fingerprint scan. Enter your result here: ____
- **Step 8.** Perform a full connect scan on one of the local devices you have identified on your network. The syntax is **nmap -sT** *IP_Address*.
- **Step 9.** Perform a stealth scan on one of the local devices you have identified on your network. The syntax is **nmap -sS** *IP_Address*.
- **Step 10.** Perform a UDP scan on one of the local devices you have identified on your network. The syntax is **nmap -sU** *IP_Address*.
- **Step 11.** Perform a fingerprint scan on one of the local devices you have identified on your network. The syntax is **nmap -O** *IP_Address*.
- **Step 12.** Observe the results of each scan. Could Nmap successfully identify the system? Were the ports it identified correct?

Review Questions

- 1. Your client has asked you to run an Nmap scan against the servers it has located in its DMZ. The client would like you to identify the OS. Which of the following switches would be your best option?
 - a. nmap -P0
 - b. nmap -sO
 - c. nmap -sS
 - d. nmap -O
- 2. During an internal pen test, you have gained access to an internal switch. You have been able to SPAN a port and are now monitoring all traffic with Wireshark. While reviewing this traffic, you are able to identify the OS of the devices that are communicating. What best describes this activity?
 - a. Vulnerability scanning
 - **b.** Nmap port scanning
 - **c.** Active OS fingerprinting
 - d. Passive OS fingerprinting
- **3.** ICMP is a valuable tool for troubleshooting and reconnaissance. What is the correct type for a ping request and a ping response?
 - a. Ping request type 5, ping reply type 3
 - b. Ping request type 8, ping reply type 0
 - c. Ping request type 3, ping reply type 5
 - d. Ping request type 0, ping reply type 8
- 4. Which of the following is a vulnerability in the Bash shell that was discovered in 2014 and thereafter exploited to launch a range of attacks against Linux and UNIX systems?
 - a. Shellshock
 - **b.** Heartbleed
 - c. Bashshell
 - d. Poodle
- **5.** As part of a pen test, you have port scanned a Linux system. Listed here is the scan you performed: **nmap -sX -vv -P0 192.168.1.123 -p 80**. If the system had the specific listening port open, what would be returned?
 - a. RST
 - **b.** No response

- c. SYN ACK
- d. ACK
- 6. Which of the following Netcat commands could be used to perform a UDP scan of the lower 1024 ports?
 - a. Nc -sS -O target 1-1024
 - b. Nc -hU <*host(s*)>
 - c. Nc -sU -p 1-1024 < host(s)>
 - d. Nc -u -v -w2 <*host*> 1-1024
- **7.** You have been assigned a junior pen tester during a pen test. You performed the following scan:

```
nmap -sL www.example.com
Starting Nmap 6.25 ( http://nmap.org ) at 2016-10-12 18:46
Central Daylight Time
Host 93.184.216.34 not scanned
```

Your partner asks you to explain the results. Which of the following best describes the correct answer?

- a. The system was offline.
- b. The technique only checks DNS and does not scan.
- **c.** The syntax is incorrect.
- d. ICMP is blocked, so no scan is performed.
- 8. Which of the following sets all TCP flags to zeros?
 - a. nmap -sn 192.168.1.1/24
 - b. nmap -null 192.168.1.1/24
 - c. nmap -sX 192.168.1.1/24
 - d. nmap -sI 192.168.1.1/24
- **9.** You have captured some packets from a system you would like to passively fingerprint. You noticed that the IP header length is 20 bytes and there is a datagram length of 84 bytes. What do you believe the system to be?
 - a. Windows XP
 - **b.** Linux
 - c. Windows 7
 - d. Windows 8

- **10.** During the network mapping phase of a pen test, you have discovered the following two IP addresses: 192.168.1.24 and 192.168.1.35. They both have a mask of 255.255.255.224. Which of the following is true?
 - **a.** They are on the same network.
 - b. They both have a default gateway of 192.168.1.63.
 - c. They both have a default gateway of 192.168.1.254.
 - d. They are on separate subnets.
- 11. What type of scan is harder to perform because of the lack of response from open services and because packets could be lost due to congestion or from firewall blocked ports?
 - a. Stealth scanning
 - b. ACK scanning
 - c. UDP scanning
 - d. FIN scan
- **12.** You would like to perform a scan that runs a script against SSH and attempts to extract the SSH host key. Which of the following is the correct syntax?
 - a. nmap -sC -p21, 111, 139 -T3 www.knowthetrade.com
 - b. nmap -sC -p22, 111, 139 -T4 www.knowthetrade.com
 - c. nmap -sL -p21, 111, 139 -T3 www.knowthetrade.com
 - d. nmap -sI -p22, 111, 139 -T4 www.knowthetrade.com
- **13.** You have just performed an ACK scan and have been monitoring a sniffer while the scan was performed. The sniffer captured the result of the scan as an ICMP type 3 code 13. What does this result mean?
 - a. The firewall is only a router with an ACL.
 - b. The port is open.
 - c. Port knocking is used.
 - d. The port is closed.
- 14. One of the members of your security assessment team is trying to find out more information about a client's website. The Brazilian-based site has a .com extension. She has decided to use some online Whois tools and look in one of the Regional Internet Registries. Which of the following represents the logical starting point?
 - a. AfriNIC
 - b. ARIN

- c. APNIC
- d. RIPE
- **15.** You have captured the Wireshark scan results shown in Figure 3-13 and are attempting to determine what type of scan was performed against the targeted system. What is your answer?
 - a. SYN
 - b. IPID
 - c. NULL
 - d. XMAS

```
# Internet Protocol Version 4, Src: 192.168.1.8 (192.168.1.8), Dst: 192.168.1.123 (192.168.1.123)

# Transmission Control Protocol, Src Port: 33310 (33310), Dst Port: ftp (21), Seq: 1, Len: 0

Source port: 33310 (33310)

Destination port: ftp (21)

[Stream index: 44]

Sequence number: 1 (relative sequence number)

Header length: 20 bytes

# Flags: 0x00 (<None>)

Window size value: 2048

[Calculated window size: 2048]
```

Figure 3-13 Wireshark Scan Capture

16. What is the purpose of the following Nmap scan?

Nmap -sn 192.168.123.1-254

- a. Ping only on the targets, no port scan
- b. A NULL TCP scan
- c. A TCP port scan
- d. Port scan all targets
- **17.** You're starting a port scan of a new network. Which of the following can be used to scan all ports on the 192.168.123.1 network?
 - a. nmap -p 1,65536 192.168.123.1
 - b. nmap -p- 192.168.123.1
 - c. nmap 192.168.123.1 -ports "all"
 - d. nmap -p 0-65536 192.168.123.1
- **18.** Which of following port-scanning techniques can be used to map out the firewall rules on a router?
 - a. NULL scan
 - **b.** ACK scan

- c. Inverse flag scan
- d. Firewalk
- 19. What are the two ICMP codes used when performing a ping?
 - a. Type 0 and 8
 - **b.** Type 0 and 3
 - **c.** Type 3 and 5
 - d. Type 5 and 11
- **20.** You have successfully scanned a system and identified the following port 80 open. What is the next step you should perform?
 - a. Attempt to go to the web page and examine the source code.
 - **b.** Use FTP to connect to port 80.
 - c. Telnet to the open port and grab the banner.
 - d. Attempt to connect to port 443.

Suggested Reading and Resources

http://www.domaintools.com/: Online Whois query website

https://nmap.org/book/man-port-scanning-techniques.html: Port-scanning techniques

https://www.exploit-db.com/google-hacking-database/: The Google Hacking Database

https://github.com/The-Art-of-Hacking/h4cker/tree/master/osint: Open Source Intelligence (OSINT) Resources

https://github.com/The-Art-of-Hacking/h4cker/tree/master/recon: Recon Resources

https://hackingscenarios.com: Ethical Hacking Katacoda Scenarios

https://github.com/The-Art-of-Hacking/h4cker/blob/master/cheat_sheets/ NMAP_cheat_sheet.md: Nmap Cheat Sheet

https://osintframework.com/: OSINT Framework

https://blog.sucuri.net/2014/09/quick-analysis-of-a-ddos-attack-usingssdp.html: Simple Service Discovery Protocol (SSDP) usage in scanning

Index

A

ACL (access control lists), 513–514 active fingerprinting, 142-144 active sniffing, 314, 316 activity profiling, 350 AD (Active Directory), 166 ad-hoc WLANs, 462 AdMutate, 510 ADS (alternate data streams), 217–218 AES (Advanced Encryption Standard), 548, 550 Agile, 594–595 AI (artificial intelligence), viruses and, 250-251 aircrack-ng, 469 airmon-ng tool, 469 airodump-ng tool, 469-470 AirSnare, 486-487 AirSnort, 484 AirTraf, 484 Aitel, D., 394 ALE (annualized loss expectancy), 13 - 14algorithms, 544 encryption, 545-546 hashing, 571–572 Anderson, J., 495 Android, 451-453 applications, 454 Device Administration API, 453–454 malware, 455 rooting, 455 antivirus, 250, 283, 285

activity blockers, 285 heuristic scanning, 283-284 integrity checking, 284 signature scanning, 283 APIs (application programming interfaces), 281, 391 Device Administration, 453–455 documentation, 390-391 fuzzing, 391–392 securing, 392 application layer, session hijacking, 334 browser-based on-path attacks, 337 client-side attacks, 335–337 on-path attacks, 335-350 predictable session Token ID, 334-335 session fixation attacks, 338 session replay attacks, 338 session sniffing, 334 application-level attacks, 345-346 applications Android, 454–455 containers, 598-600 exploits, 200 Java, 202 StickyKeys, 200–201 ports, 62-63 testing, 24 vulnerabilities, 11 web, 362, 368-369 APTs (advanced persistent threats), 248 architecture, Windows, 164-165

ARIN (American Registry for Internet Numbers), 106 ARO (annual rate of occurrence), 13-14 ARP (Address Resolution Protocol), 59, 78, 316–317 messages, 317 poisoning, 317–318 spoofing, 320 arp -a command, 318 Arpwatch, 330 assets, 9 asymmetric encryption, 544, 546, 551–552 Diffie-Hellman, 552–553 ECC (Elliptic-Curve Cryptography), 553 ElGamal, 553 RSA, 552 attacks Bluejacking, 459 Bluesnarfing, 460 brute-force, 206 bump, 452 client-side, 335-337 cloning, 449 cloud computing, 592–593 cookie manipulation, 385 crypographic, 558–560 CSRF (cross-site request forgery), 408-409 cybercrime and, 31–32 cyberterrorism, 21 DDoS (distributed denial-of-service), 10, 347-348 deauthentication, 468-471 dictionary, 206 directory traversal, 382–384 disgruntled employees and, 21 DOM-based XSS, 404–405 DoS (denial-of-service), 10, 311, 341-343, 380 application-level, 345-346 countermeasures, 350–352

ICMP, 344–345 peer-to-peer, 345 permanent, 346–347 SYN flood, 344 volumetric, 343–344 evil twin, 468 fragmentation, 480-482 HTTP response splitting, 385 inference, 558–559 IV (initialization vector), 472–473 jamming, 472 **KARMA**, 481 KRACK (Key Reinstallation AttaCK), 479 obfuscated, 499-500 overlapping fragmentation, 72 parameter tampering, 393, 399 on-path, 318, 335–350, 384 phishing, 20-21 phreakers and, 20 poison apple, 258 preferred network, 472 reflected XSS, 401-402 RFID (radio frequency identification), 461 rogue APs, 467 rubber hose, 560 script kiddies and, 20–21 session fixation, 338 shellcode, 508 social engineering malvertising, 236-237 motivation techniques, 247 pharming, 235–236 phishing, 235 pretexting, 246-247 shoulder surfing, 248 SMS phishing, 245 spear phishing, 237-244 USB baiting, 248 vishing, 245 whaling, 245–246

software crackers/hackers and, 21 starvation, 321 stolen equipment, 24 stored XSS, 402-404 SYN flood, 611 system crackers/hackers and, 21 tumbling, 449 unvalidated input, 398-399 watering-hole, 52, 202, 260 web, 373 website defacement, 384 WEP (Wired Equivalent Privacy), 472-474 WPA (Wi-Fi Protected Access), 476-478 against WPA3, 479-480 attribute command, 217 authentication, 411-412, 543-544 certificate-based, 412 forms-based, 412 Kerberos, 198, 205 MD5, 412 multifactor, 196 Windows, 203–205 wireless, 485-486 automated exploit tools, 393-395 availability, 8 AWS Lambda, 598

В

backdoors, 54, 257–258, 416 backups, 11–12 banner grabbing, 519–520 using curl, 145–146 using Netcat, 147 using telnet, 146–147 using whatweb, 148 Base64, 562 BeEF (Browser Exploitation Framework), 394 BinText, 287 biometrics, 196–197 black box testing, 14–15 black hat hackers, 19 Blackberry, 457 BLE (Bluetooth Low Energy), 604 block cipher, 549 Bluesnarfing, 460 Bluetooth Bluejacking, 459 Bluesnarfing, 460 classifications, 458 versions, 458-459 bogons, 513 botnets, 606–607 countermeasures, 609-611 crimeware, 608 fast flux, 607 financial-based, 608 installation, 609 Brain virus, 252 brute-force attacks, 206, 414 Brutus, 563 buffer overflows, 201-202, 501 bump attacks, 452 Burger, Ralf, 252 Burneye, 264 Burp Proxy, 417 Burp Suite, 414 BYOD (bring your own device), 444, 452-453

С

Caesar's cipher, 545 Caffrey, A., 261 Cain and Abel, 484 Canvas, 394 CartoReso, 150 cell phones, 450–451. *See also* mobile devices cloning, 449 forensics, 452 tumbling, 449 CER (crossover error rate), 196 certificate-based authentication, 412 chosen plaintext attack, 559 CIA (confidentiality, integrity, and availability) triad, 8-9, 14 availability, 8 confidentiality, 8, 25, 543 integrity, 8, 544 CI/CD (continuous integration/delivery) pipelines, 596-597 Build stage, 597 Deploy stage, 597 Test stage, 597 cipher-text only attack, 559 circuit gateways, 515 Cisco Smart Install abuse, 524–526 Clark, Z., 19 clearing, log files, 214 clickjacking, 409 client-side attacks, 335-337 cloning, 449 closed port scanning, 129–131 cloud computing, 588-589, 591 access control, 590 attacks, 592-593 auditing, 590 CI/CD, 596–597 deployment models, 588-589 encryption and, 591 regulatory requirements, 590 security, 593 serverless computing, 598 training and, 590 cluster viruses, 250 code of ethics, 31 Code Red worm, 253 code signing, 393, 421 collision domain, 315-316 commands arp -a, 318 attribute, 217 hping2, 510 Linux, 211

expn, 184 locate, 170-171 rpcinfo -p, 183 showmount command, 184–185 tcpdump, 367-368 vrfy, 184 net use, 196-197 netstat, 280-281 no vstack, 524 ntpq -pn, 186 passwd encryption, 526 service rsyslog stop, 213 smtp-user-enum, 190 snmp-user-enum, 189-190 VRFY, 188–189 Windows, net, 168 company directories, footprinting and, 104 compliance PCI-DSS (Payment Card Industry Data Security Standard), 36 regulations and, 34–36 Conficker worm, 254 confidentiality, 8, 25 disclosure and, 10 encryption and, 543 containers, 598-599 Docker, 599 images, 600 registries, 599 scanning, 600-601 cookie(s), 414-415 manipulation attacks, 385 UID value, 415 Core Impact, 394–395 countermeasures botnet, 609-611 DDoS/DoS attacks, 350–352 enumeration, 192-193 footprinting, 122 malware, 279-280 Poodlebleed, 560

sniffing, 328–330 spoofing, 328-330 covering tracks, 20, 54, 213-214 covert communication, 268-269 port redirection, 274-276 tunneling ICMP, 270-272 IPv6, 269–270 TCP, 272–273 UDP, 273 via the application layer, 273–274 coWPAtty, 484 cracker(s), 19, 21 crimeware, 608-609 cross-site scripting, 400–401 crypters, 265-267 cryptography, 8, 543. See also encryption; steganography ATBASH, 545 Caesar's cipher, 545 CryptoTool, 563 CSMA/CA (carrier-sense multiple access with collision avoidance), 463 CSRF (cross-site request forgery), 408-409 CVSS (Common Vulnerability Scoring System), 292–295 CWE (Common Weakness Enumeration), 388 cyber kill chain, 18, 257 cyberattacks, 10 cybercrime, 31–32 cyberterrorism, 21

D

databases, 24 hacking, 421–422 SQL, 422–423 Datapipe, 276 DDoS (distributed denial-of-service) attacks, 10, 32, 347–348, 380

countermeasures, 350–352 tools, 348-350 deauthentication attacks, 468-471 deny all, 52, 78-79 DES (Data Encryption Standard), 548-550, 560 detecting malware, 280-283, 286 sniffers, 329 Device Administration API, 453–455 DevOps, 593, 595–596 DHCP (Dynamic Host Configuration Protocol), 64 redirect attack, 321–322 snooping, 322-323 dictionary attacks, 206 differential backups, 12 Diffie-Hellman, 552–553 digital certificate, 553-554, 557 PKI (public key infrastructure), 554-555 digital signature, 573 digital watermark, 571 directory traversal, 382-384 disaster recovery, 4, 591 disclosure, 10 disgruntled employees, 21 disk encryption, 557 DLL injection, 200 DNS (Domain Name System), 64–65 enumeration, 191–192 footprinting, 112–118 dig and, 117 Nslookup and, 116 records and types, 113 Security Extensions, 328–329 server hijacking, 380–382 SOA (Start of Authority) record, 113 spoofing, 323 zone files, 65 zone transfers, 112-116, 118

DNSSEC (Domain Name System Security Extensions), 65 Docker, 599 documentation, API, 390-391 domain proxy, 111 DOM-based XSS attacks, 404–405 DoS (denial-of-service) attacks, 10, 24, 311, 341–343, 380 application-level, 345-346 countermeasures, 350–352 ICMP, 344–345 peer-to-peer, 345 permanent, 346-347 SYN flood, 344 volumetric, 343–344 down-level software, 51-52 droppers, 265, 278 DSSS (direct-sequence spread spectrum), 464 dynamic analysis, 288–290

Ε

EAP (Extensible Authentication Protocol), 485-486 eavesdropping, 449 ECC (Elliptic-Curve Cryptography), 553 EC-council approach to incident response, 17-18, 93, 151, 218-219 EDGAR database, 105-106 EF (exposure factor), 13–14 egress filtering, 352-353 ElGamal, 553 ELSave, 214 email. See also SMTP (Simple Mail Transfer Protocol) encryption, 557 footprinting, 104, 106–107 phishing, 235 spear phishing, 237–244 Trojans and, 259 Emotet, 254

encryption, 411-412, 543 algorithms, 545-546 asymmetric, 544, 546, 551–552 Diffie-Hellman, 552–553 ECC (Elliptic-Curve Cryptography), 553 ElGamal, 553 RSA, 552 confidentiality and, 543 cracking, 484, 563 digital certificates, 553-554 email and disk, 557 nonrepudiation and, 544 processing power and, 563 public key, 553 symmetric, 544, 546-547 **AES** (Advanced Encryption Standard), 550 DES (Data Encryption Standard), 548-550, 560 disadvantages of, 547-548 Rivest Cipher, 551 shared keys, 547 weak, 561 Base64, 562 Uuencode, 562 XOR (exclusive ORing), 561 England, hacking laws, 33 ensapsulation, 61 enum4linux, 173–176 enumeration, 20, 51-52, 160, 164 countermeasures, 192-193 DNS (Domain Name System), 191 - 192firewalls banner grabbing, 519–520 firewalking, 518–519 hping, 517–518 port scanning, 517 traceroute and, 517 Linux/UNIX, 183-185

NetBIOS enum4linux and, 173–176 Hyena and, 177 locate command, 170–171 nbname and, 176–177 nbtscan and, 170 Nmap and, 172–173 NTP, 185–186 SMTP commands, 188–190 TCP ports, 187 SMTP (Simple Mail Transfer Protocol), 186–190 SNMP (Simple Network Monitoring Protocol), 177–183 NSE (Nmap Scripting Engine), 179 snmp-check tool, 179-183 web server Netcat, 376-377 Telnet, 375–376 WhatWeb, 375 websites Httprint, 378-379 NSE scripts, 377 Windows, 164 LDAP, 167–169 NetBIOS, 167–169 RIDs (relative identifiers), 166 SIDs (security identifiers), 165–166 error handling, 389 ethical hacking, 19, 31, 34 code of ethics, 31 compliance regulations, 34–36 methodology, 54–55 modes of, 23-24 pen testing, 21-22 reasons for, 26–27 report, 29-30 required skills, 22–23 rules of, 24–25 scope of engagement, 25-26 test phases establishing goals, 28-29

getting approval, 29 report, 29-30 Z. Clark and, 19 Ettercap, 320 European Union, privacy laws, 107 Evan's Debugger, 286 evil twin attack, 468 exploits, 12, 296 application, 200 buffer overflow, 201–202 JAD file, 457 Java, 202 PewDiePie printer hack, 13 SQL injection Boolean technique, 431–432 out-of-band technique, 432-433 union operator, 430-431 zero-day, 12 expn command, 184 expoit-db.com, 51–52 external assessments, 290 pen testing, 23

F

FAR (false acceptance rate), 196 fast flux botnet, 607 fast infection viruses, 250 FHSS (frequency-hopping spread spectrum), 464 finger, 183 fingerprinting, 141 active, 142-144 finding open services, 145–148 operating systems, 141 passive, 141 services, 145 SQL, 430 firewalking, 518–519 firewalls, 491, 511, 519–520 application gateways, 515 bypassing, 520–524

application layer tunneling, 521–522 Internet layer protocols, 520–521 TFTP (Trivial File Transfer Protocol), 523–524 transport layer protocols, 521 circuit gateways, 515 identifying, 516 banner grabbing, 519–520 firewalking, 518–519 hping, 517–518 port scanning, 517 traceroute and, 517 NAT (Network Address Translation), 512-513 packet filters, 513-514 stateful inspection, 515-516 types of, 512 Flame, 250 fog computing, 602, 603 footprinting, 20, 93. See also scanning countermeasures, 122 DNS, 112–118 dig and, 117 zone transfers, 113–116 documentation and, 95 email, 106–107 methodology, 93–95 NDP (Network Discovery Protocol), 116 network, 118 subnetting and, 119-120 traceroute, 120–121 through search engines, 96–101 Google search terms, 96–97 Shodan, 100–101 through social engineering, 121 through social networking sites, 101 - 102through web services and websites, 103 - 106company directories, 104 EDGAR database, 105–106

email, 104 job posting boards, 104–105 location information, 104 Wayback Machine, 104 Whois, 108–111 forensics, 352, 452 forms-based authentication, 412 **FPipe**, 276 fragAttacks, 480 fragmentation, 70-72, 481-482 freeware, 260 FRR (false rejection rate), 196 FTP (File Transfer Protocol), 63–64 full backups, 12 full-knowledge testing, 15 fuzzing, 391-392, 421

G

gaining access, 565 GDPR (General Data Protection Regulation), 26 geolocation, 451 Gilmore, J., 560 GitHub, 135 GLBA (Gramm-Leach-Bliley Act), 26 Google, 96, 453 Hacking Database, 98–99 search terms, 96–97 GPS mapping, 483 crack and compromise the Wi-Fi network, 484 launch wireless attack, 483–484 wireless traffic analysis, 483 gray box testing, 15 gray hat hackers, 19 Green, J., 261

Η

TheHackerGiraffe, 13 hacking, 10, 19, 21 black hat, 19 gray hat, 19

hacktivists, 32 IoT (Internet of Things), 606 laws evolution of, 33-34 US federal, 32–34 methodology, 20. See also covering tracks; enumeration; footprinting; maintaining access; privilege escalation; scanning covering tracks, 54 escalating privilege, 53 gaining access, 52–53 maintaining access, 53 reconnaissance and footprinting, 50 - 51scanning and enumeration, 51–52 social engineering, 51 suicide, 19 hard-coded credentials, 389 Hashcat, 207–209, 563 hashing, 8, 571–572 heap spraying, 202 Heartbleed, 565 hiding files, 213–214 hierarchical trust, 556 high-level assessment/audit, 16 HIPAA (Health Insurance Portability and Accountability Act), 26 honeypots, 491, 526-528 detecting, 529-530 types of, 528–529 host-based IDS (intrusion detection system), 495 hping, 76, 140, 517-518 hping2 command, 510 HTTP (Hypertext Transfer Protocol), 66, 366-369, 371-373, 414 proxies, 372 reponses, 369 requests, 369

status code messages, 370 URLs and, 370–371 Hyena, 177

I

IANA (Internet Assigned Numbers Authority), 106, 108 ICANN (Internet Corporation for Assigned Names and Numbers), 108 ICMP (Internet Control Message Protocol), 69 attacks, 344-345 tunneling, 270-272 type, 3 codes, 73 types and codes, 70-73 IDA Pro, 286 IDS (intrusion detection system), 51–52, 350, 486–487, 490 anomaly detection, 499-502 components, 495 evasion techniques, 509-510 flooding, 507 insertion and evasion, 507 session splicing, 508 shellcode, 508 evasion tools, 510–511 heuristic-based analysis, 500 host-based, 495 network-based, 495-496 pattern matching, 497-500 signatures, 498 stateful, 498 protocol analysis, 500 protocol-decoding, 499 responses, 496, 499 Snort, 502, 510 keywords, 503 rules, 502–505 Squert and, 505

tuning, 496-497 weaknesses, 501 IM (instant messaging), Trojans and, 259 impersonation, 246-247. See also pretexting incident response, 17-18 incremental backups, 12 inference attack, 558–559 inference-based assessments, 291 information gathering, 23, 50-51, 95. See also footprinting; reconnaissance InSpy, 102 INSTEON, 605 integrity, 8, 544 internal assessments, 290 pen testing, 24 IOC (indicator of compromise), 18 iOS, 455-456 IoT (Internet of Things), 449, 601-604 fog computing and, 602–603 hacking, 606 protocols, 604–605 security challenges, 602–603 IP Source Guard, 328–329 IP4/6 69–70 converting addresses to binary, 523 fragmentation, 70-72 private address ranges, 70 tunneling, 269-270 IPC\$ (InterProcess Communication), 168 IPS (intrusion prevention system), 490, 502 IPsec, 191, 564 IRC (Internet Relay chat), 259, 607 IV (initialization vector) attacks, 472–473

J

JAD (Java Application Descriptor) files, 457 jailbreaking, 452, 455–456 jamming, 472 Java, exploits, 202 job posting boards, 104–105 John the Ripper, 212–213, 563

K

Kali Linux, 151 Kanban, 595 KARMA attacks, 481 KerbCrack, 198 Kerberos, 198, 205 keyloggers, 198–199, 276–277 hardware, 277 software, 277–278 keywords, Snort, 509 Kismet, 484, 487 known plaintext attack, 559 Kocher, P., 560 KRACK (Key Reinstallation AttaCK) attacks, 479 Kubernetes, 55

L

LAN Turtle, 565 LDAP, enumeration, 167–169 LDM (loadable kernel module), 215 Linux, 151, 382 Arpwatch, 330 commands, 211 expn, 184 rcpinfo -p, 183 showmount, 184-185 tcpdump, 367–368 vrfy, 184 curl, 145–146 enumeration, 183-185 locate command, 170–171 Nmap, 131 passwd file, 210 password cracking, 209–213 rootkits, 214-216

salts, 211–212 Security Onion Distribution, 505–506 traceroute, 74-75 LM (LAN Manger), 203-205 locate command, 170–171 location, information gathering and, 104 log files, 416-417 clearing, 214 syslog service, 523 lookups, Whois, 109 LoRaWAN (Long Range Wide Area Network), 605 LRWPAN (Low Rate Wireless Personal Area Networks), 605 LSASS (Local Security Authority Server Service), 167

Μ

MAC (media access control), 59, 77-78 flooding, 320-321 spoofing, 323 MacOS, privilege escalation, 200 macro viruses, 250 maintaining access, 20, 203 Maltego, 99 malvertising, 236-237 malware, 10, 248. See also virus(es) analysis, 286 dynamic, 288–290 static, 286-288 countermeasures, 279-280 detecting, 280–283, 286 Emotet, 254 Flame, 250 mobile devices and, 451 transmission methods, 249-251 man-in-the-middle attack, 559 mapping, networks, 148-151 MD5, 412 Melissa virus, 253 Meltdown, 199 Mendax, 510

messages ARP, 317 HTTP, 370 Metasploit, 176-177, 393 methodology ethical hacking, 54-55 footprinting, 93-95 hacking, 20. See also covering tracks; enumeration; footprinting; maintaining access; privilege escalation; scanning covering tracks, 54 escalating privilege, 53 gaining access, 52-53 maintaining access, 53 reconnaissance and footprinting, 50 - 51scanning and enumeration, 51–52 information security systems and the stack, 57 MITRE ATT&CK framework, 218-219 NIST SP, 800–115 56 **OCTAVE** (Operationally Critical Threat, Asset, and Vulnerability Evaluation), 56 OSI model and, 57–60 OSSTMM (Open-Source Security Testing Methodology Manual), 56 - 57software development Agile, 594–595 DevOps, 595–596 waterfall, 594 MFA (multifactor authentication), 196 MFP (Management Frame Protection), 471 Microsoft, 19 Mimikatz, 197-198 misconfiguration, web server, 384–385 misuse direction, 486–487

MITRE ATT&CK framework, 18, 51, 94-95, 218-219 mobile devices, 449. See also wireless communication Android, 451–455 Blackberry, 457 bump attacks, 452 data exfiltration, 451 eavesdropping, 449 geolocation, 451 iOS, 455-456 jailbreaking, 452, 456 malware, 451 platforms, 452–453 security controls, 457 tumbling, 449 Windows Mobile Operating System, 456 Mognet, 482-483 money mule, 609 Moore's law, 548 Morris, R., 253 moving laterally, 20 MP3Stego, 568 multipartite viruses, 250

Ν

NAT (Network Address Translation), 512–513 nbname, 176–177 nbtscan, 170 NDA (nondisclosure agreement), 25 NDP (Network Discovery Protocol), 69–70 Nessus, 511 net commands, 168 net use command, 167–169 enum4linux and, 173–176 Hyena and, 177 locate command, 170–171

nbname and, 176–177 nbtscan and, 170 Nmap and, 172–173 tools, 169–177 Netcat, 275 banner grabbing, 147 web server enumeration, 376–377 netstat, 280-281 NetStumbler, 482 network evaluation, 17 footprinting, 118 subnetting and, 119–120 traceroute, 120-121 mapping, 148-151 network-based IDS (intrusion detection system), 495 detection methodologies, 496 protocol analysis, 500 NFS (Network File System), 184 NIDSbench, 511 Nikto, 148 Nimda worm, 253–254, 383 NIST (National Institute of Standards and Technology), 548 SP 800-31, 56 SP 800–145, 588 NLog, 150 Nmap, 131–139, 384 active fingerprinting, 143–144 decoy switch, 135 NetBIOS enumeration, 172–173 NSE scripts, 135–136, 314–315 performing a three-step connection, 136-137 switches, 131-134 no vstack command, 524 no-knowledge testing, 14–15 nonrepudiation, 544 nontechnical password attacks, 193–194 NSE (Nmap Scripting Engine), 135–136, 179, 377 Nslookup, 112–113, 116 NTLM, 203–205 NTP (Network Time Protocol), enumeration, 185–186 ntpq -pn command, 186

0

OCTAVE (Operationally Critical Threat, Asset, and Vulnerability Evaluation), 56 OFDM (orthogonal frequency-division multiplexing), 464 OllyDbg, 287 Omnipeek, 483 open services, finding, 145–148 open-source tools, FOCA, 99 OpenVAS, 52 operating systems fingerprinting, 141 vulnerabilities, 11 Ophcrack, 209 OSA (Open System Authentication), 478-479 OSI model, 57-60 application layer, 58 data-link layer, 59 network layer, 59 physical layer, 59-60 presentation layer, 58 session layer, 58 transport layer, 58–59 OSSTMM (Open-Source Security Testing Methodology Manual), 56-57 overlapping fragmentation attack, 72 OWASP, 389, 392, 406 Clickjacking Defense Cheat Sheet, 409 Cross-Site Scripting Prevention Cheat Sheet, 406-407 owning the box, 203

Ρ

packers, 265 packet filters, 513-514 packetforge-ng tool, 481–482 partial-knowledge testing, 15 pass the hash, 197-198 passive fingerprinting, 141 passive sniffing, 315–316 passwd encryption command, 526 passwd file, 210 password attacks nontechnical, 193-194 technical, 194-195 cracking Linux, 209–213 web application, 412–413 web server, 386 Windows, 205–209 guessing, 195-197 salts, 211–212 sniffing, 197–198 patch management, 351, 395 on-path attacks, 318, 335-350, 384 PCI-DSS (Payment Card Industry Data Security Standard), 36 peer-to-peer attacks, 345 pen testing, 2, 17, 21–22 external, 23 internal, 24 report confidentiality and, 30 sections, 30 permanent DoS attacks, 346–347 pharming, 235-236 phishing, 20–21, 235, 237–244. See also spear phishing phreakers, 20 physical security testing, 24 Piessens, M., 479 ping, 123–124

PKI (public key infrastructure), 554–555 poison apple attack, 258 policies, 17 Poodlebleed, 560 port(s), 62–63, 67–68 knocking, 140 redirection, 274-276 scanning, 124–131, 191, 517 closed, 129-131 open, 128–129 TCP, 126–127 tools, 131–140 UDP, 131, 137 security, 328-329 spanning, 314 TCP, 125, 167, 187 Trojans and, 257–258 PPTP (Point-to-Point Tunneling Protocol), 564 pre-attack phase, 150 preparing for the exam, 620–621 pretexting, 246-247 principle of least privilege, 63 privilege escalation, 53, 199-200, 202 DLL injection, 200 MacOS and, 200 processes, Trojans and, 280 programming, buffer overflows, 201–202, 410-411 protocol-decoding IDS (intrusion detection system), 499 protocols enumeration techniques, 191 IoT (Internet of Things), 604–605 security, 563-565 stateless, 366 public key encryption, 553 PWdump, 205–206

Q

qualitative risk assessment, 13 quantitative risk assessment, 13–14

R

race credentials, 389-390 ransomware, 254, 267-268 RATs, 261–263 Reaver, 481 reconnaissance, 20, 50, 51. See also footprinting red teaming, 17 reflected XSS attacks, 401–402 regulations, compliance and, 34-36 residual risk, 9 RFC (request for comments) 2613, 314 2827, 351 3704, 351 RFID (radio frequency identification) attacks, 461 RIDs (relative identifiers), 166 Rijndael, 550 rings of protection, 164 RIRs (Regional Internet Registries), 108 risk, 9 assessment, 13–14 qualitative, 13–14 assets, 9 backups and, 11–12 IOC (indicator of compromise), 18 residual, 9 threats, 9-10, 18 vulnerabilities, 11 Rivest Cipher, 551 RMF (Risk Management Framework), 9 Robin Sage, 102 rogue APs, 467 evil twin attack, 468 KARMA attacks, 481 Ronen, E., 480 rooting, 455 rootkits, 2, 53, 214-216 RSA, 552 rubber hose attack, 560

rules, of ethical hacking, 24–25 Ryan, T., 102

S

salts, 211-212 SAM (Security Account Manager), 166, 203 sandbox, 287, 452, 454 Sasser worm, 254 scanning, 20, 51-52. See also port scanning application-level, 420–421 for competitive intelligence, 102 containers, 600-601 host discovery, 123–124 open port idle, 128–129 port and service discovery, 124-131 vulnerability, 296-297 web server, 374 zombie, 128 script kiddies, 20–21 scripts client-side attacks and, 336-337 NSE (Nmap Scripting Engine) 135-136, 179, 377 Scrum, 595 search engines, 96-101 Google, search terms, 96–97 security. See also risk CIA (confidentiality, integrity, and availability) triad, 8-9 availability, 8 confidentiality, 8 integrity, 8 cloud computing, 593 goals of, 8–9 policies, 17 protocols, 563–565 testing, 14. See also ethical hacking full-knowledge, 15 high-level assessment/audit, 16 network evaluation, 17 no-knowledge, 14–15

partial-knowledge, 15 pen test, 17 physical, 24 types of, 15-17 usability and, 7 Windows, 166–167 Security and Exchange Commission, EDGAR database, 105–106 serverless computing, 598 AWS Lambda, 598 service rsyslog stop command, 213 services fingerprinting, 145 open, finding, 145-148 session fixation attacks, 338 session hijacking, 58, 311, 330 application layer, 334 browser-based on-path attacks, 337 client-side attacks, 335-337 on-path attacks, 335–350 predictable session Token ID, 334-335 session fixation attacks, 338 session replay attacks, 338 session sniffing, 334 preventing, 341 tools, 338-340 transport layer, 330–333 identify and find an active session, 331 predict the sequence number, 332-333 take control of the session, 333 take one of the parties offline, 333 session replay attacks, 338 shared keys, 547 shellcode attacks, 508 Shellshock, 97 Shodan, 100–101 shoulder surfing, 248 showmount command, 184-185 side-channel attack, 559

SIDs (security identifiers), 165–166 single-authority trust, 556 site rippers, 378 site survey, 485 SLA (service-level agreement), 591 Slammer worm, 254 SLE (single loss expectancy), 13–14 SMAC, 323 SmartWhois, 109 SMS phishing, 245 SMTP (Simple Mail Transfer Protocol), 64 enumeration, 186-190 commands, 188-190 TCP ports, 187 open relay, 187-188 smtp-user-enum command, 190 sniffers, 314–315, 328 active, 314, 316 countermeasures, 328–330 detecting, 329 filters, 326–327 passive, 315-316 password, 197–198 session, 334 Wireshark, 61, 324–328, 368 SNMP (Simple Network Monitoring Protocol), 64 enumeration, 177-183 NSE (Nmap Scripting Engine), 179 snmp-check tool, 179-183 snmp-check tool, 179–183 snmp-user-enum command, 189-190 Snort, 502, 510 keywords, 503, 509 rules, 502-505 Squert and, 505 Snow, 568 social engineering, 24, 51, 228, 234-235 footprinting and, 121 malvertising, 236-237 motivation techniques, 247

pharming, 235–236 phishing, 235 pretexting, 246-247 shoulder surfing, 248 SMS phishing, 245 spear phishing, 237–244 USB baiting, 248 vishing, 245 whaling, 245-246 social networks dangers of, 102 footprinting and, 101–102 software, 11 code signing, 421 down-level, 51-52 software development Agile, 594–595 CI/CD (continuous integration/ delivery) pipelines, 596–597 DevOps, 595–596 Scrum and, 595 waterfall methodology, 594 SolarWinds supply chain attack, 257 source code, commenting, 388 source routing, 74 SOX (Sarbanes-Oxley), 26 Spam Mimic, 569 spanning, 314 spear phishing, 237–244 Spectre, 199 spoofing, 74, 330, 543-544 ARP, 320 cell tower, 452 countermeasures, 328–330 DNS, 323-324 MAC, 323 spread-spectrum technology, 464 spyware, 229, 249, 278–279 SQL exploits Boolean technique, 431–432 out-of-band technique, 432-433

union operator, 430-431 fingerprinting, 430 injection, 425-429 hacking tools, 435-436 mitigations, 434–435 stored procedure, 434 time-delay, 433-434 statements, 422-425 Squert, 505 SSH (Secure Shell), 564 SSID (service set identifier), 469 SSL (Secure Sockets Layer), 564–565 starvation attack, 321 stateful inspection firewalls, 515-516 static analysis, 286-288 steganalysis, 571 steganography, 566 bitmaps and, 567 carriers, 566-567 digital watermarks, 571 filtering, 567 laser printers and, 570 masking, 567 sound files, 567 tools, 568-570 transformation, 567 types of, 566 StickyKeys, 200 Stingray device, 452 stolen equipment attack, 24 stored XSS attacks, 402-404 Storm bot/worm, 254 subnetting, 119-120 suicide hackers, 19 SuperScan, 139 symmetric encryption, 544, 546–547 AES (Advanced Encryption Standard), 550 DES (Data Encryption Standard), 548-550, 560 disadvantages of, 547-548 Rivest Cipher, 551

shared keys, 547 SYN flood attacks, 344, 611 syslog service, 523 system cracking/hacking, 21, 160, 193 automated password guessing, 197 keylogging, 198–199 nontechnical password attacks, 193–194 password guessing, 195–197 password sniffing, 197–198 privilege escalation, 199–200 technical password attacks, 194–195

Т

TCP (Transmission Control Protocol), 66-67 flags, 66-68, 126 ports, 67-68, 125, 167, 187 three-way handshake, 125-126 tunneling, 272–273 tcpdump command, 367–368 TCP/IP (Transmission Control Protocol/ Internet Protocol), 60–61 application layer, 62–66 Internet layer, 69–73 network access layer, 77-78 port-scanning techniques, 126-127 transport layer, 66–68 **TCSEC** (Trusted Computer System Evaluation Criteria), 268 technical password attacks, 194–195 Telnet, 64, 146–147 banner grabbing, 519–520 web server enumeration, 375–376 TFTP (Trivial File Transfer Protocol), 66, 523–524 THC-Amap, 139-140 THC-Hydra, 563 THC-Wardrive, 483 threats, 9-10, 18 throttling, 350 Tini, 261 TOE (target of evaluation), 14

too, Snort, rules, 504–505 tools, 30, 68. See also commands AdMutate, 510 aircrack-ng, 469 airmon-ng, 469 airodump-ng, 469-470 AirSnare, 486–487 AirSnort, 484 AirTraf, 484 automated exploit, 393-395 BeEF (Browser Exploitation Framework), 394 Brutus, 563 Burp Proxy, 417 Burp Suite, 414 Cain and Abel, 484 Canvas, 394 CartoReso, 150 Core Impact, 394–395 coWPAtty, 484 CryptoTool, 563 curl, 145-146 Datapipe, 276 DDoS, 348–350 ELSave, 214 enum4linux, 173-176 Ettercap, 320 finger, 183 FPipe, 276 Google Hacking Database, 98–99 Hashcat, 207-209, 563 hping, 76, 140, 517–518 IDS (intrusion detection system) evasion techniques, 509-510 flooding and, 507 insertion and evasion, 507 session splicing, 508 shellcode attacks and, 508 InSpy, 102 John the Ripper, 212–213, 563 KerbCrack, 198 Kismet, 484, 487

Maltego, 99 Meltdown, 199 Mendax, 510 Metasploit, 393 nbname, 176-177 Mimikatz, 197–198 nbtscan, 170 Nessus, 511 Netcat, 147, 275 web server enumeration, 376–377 NIDSbench, 511 Nikto, 148 NLog, 150 Nmap, 131–139, 384 decoy switch, 135 NSE scripts, 135–136 performing a three-step connection, 136-137 Nslookup, 112–113, 116 open-source, FOCA, 99 Ophcrack, 209 packetforge-ng, 481–482 password cracking, 413–414 ping, 123–124 PWdump, 205–206 RATs, 261–263 rcpinfo -p, 183 Reaver, 481 rootkits, 214-216 session hijacking, 338–340 Shodan, 100–101 site rippers, 378 SMAC, 323 SmartWhois, 109 sniffers, 328 countermeasures, 328-330 filters, 326–327 Wireshark, 61, 281–282, 324–328, 368 snmp-check, 179–183 Snort, 502, 510 keywords, 503, 509

rules, 502–503 Squert and, 505 Spectre, 199 SQL injection hacking, 435–436 static analysis, 286-288 steganographic, 567-570 SuperScan, 139 telnet, 146-147 THC-Amap, 139–140 THC-Hydra, 563 Tini, 261 traceroute, 74–76, 120–121, 149, 517 web proxies, 417-419 "What's that site running?", 103 WhatWeb, 375 whatweb, 148 Whois, 108–111 wireless hacking, 482–483 traceback, 610-611 traceroute, 74–76, 120–121, 149, 517 transport layer session hijacking identify and find an active session, 331 predict the sequence number, 332-333 take control of the session, 333 take one of the parties offline, 333 trapdoor functions, 551–552 tree-based assessments, 291 Triludan the Warrior, 33 Trojans, 255–256 banking, 608 distributing, 263–264 crypters, 265-267 droppers, 265 packers, 265 wrappers, 264-265 effects of, 260-261 goals of, 258–259 infection mechanisms, 259-260

ports and communication methods, 257 - 258processes and, 280 tools RATs, 261–263 Tini, 261 types of, 256-257 trust, 555 hierarchical, 556 single-authority, 556 web of, 557 TTL (Time To Live), 74–76 TTPs (tactics, techniques, and procedures), 18 tumbling, 449 tunneling ICMP, 270–272 IPv6, 269–270 TCP, 272-273 UDP, 273 via the application layer, 273–274

U

UDP (User Datagram Protocol), 68 port scanning, 131, 137 tunneling, 273 Unicode, 383-384 United States Computer Fraud and Abuse Act (1984), 33 - 34Cyber Security Enhancement Act (2002), 34Economic Espionage Act (1996), 34 Electronic Communications Privacy Act, 33 Federal Information and Security Management Act (FISMA, 2002), 34 Federal Sentencing Guidelines of 1991, 34 hacking laws, 32, 449-450

Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism (USA PATRIOT) Act, 34 UNIX, enumeration, 183–185 UPX, 287 URLs, 103, 370–371, 523 encoding, 382–383 obfuscation, 415–417 USB baiting, 248, 258 Uuencode, 562

V

Vanhoef, M., 479–480 Virdem, 252 virus(es), 10, 248–249 AI and, 250–251 anti-detection routine, 251 Brain, 252 cluster, 250 creation tools, 255 fast infection, 250 history of, 252–253 infection routine, 251 macro, 250 multipartite, 250 payloads, 251-252 propagation, 253-255 search routine, 251 transmission methods, 249-251 trigger routine, 251 vishing, 245 VM (virtual machine), 288 VoIP (Voice over IP), 191 volumetric attacks, 343-344 VRFY command, 188–189 vrfy command, 184 vulnerability(ies), 11, 145–146 analysis, 290 external vs. internal assessments, 290-291

passive vs. active assessmetns, 290 solutions, 291 tree-based vs. inference-based assessments, 291-292 exploits and, 296 keeping up to date, 30–31 scanners, 52, 296-297 Nikto, 148 scoring systems, 292 CVSS (Common Vulnerability Scoring System), 292–295 web application, cross-site scripting, 400-401 web server, 379, 386–388 comments in source code, 388 error handling, 389 hard-coded credentials, 389 race credentials, 389-390 unprotected APIs, 390–392

W

WannaCry, 267 war driving, 472 waterfall methodology, 594 watering-hole attack, 52, 202, 260 WaveStumbler, 483 Wayback Machine, 104 weak encryption, 561 Base64, 562 Uuencode, 562 XOR (exclusive ORing), 561 web applications attacking, 398, 410-411 DOM-based XSS attacks, 404–405 parameter tampering, 399 reflected XSS attacks, 401-402 stored XSS attacks, 402-404 unvalidated input, 398-399 buffer overflows, 410–411 clickjacking, 409 cookies, 414-415 cross-site scripting, 400-401

CSRF attacks, 408–409 injection flaws, 399-400 OWASP Cross-Site Scripting Prevention Cheat Sheet, 406–407 password cracking, 412–413 securing, 419-421 URL obfuscation, 415-417 XSS evasion techniques, 405–406 web browsers, 368–369 code signing, 393 on-path attacks, 337 Trojans and, 259–260 web of trust, 557 web proxies, 417-419 web servers, 366 attacking, 380 automated exploit tools, 393–395 directory traversal, 382–384 DNS server hijacking and amplification attacks, 380–382 DoS/DDoS attacks, 380 hidden element tampering, 393 HTTP response splitting, 385 on-path attacks, 384 disable unwanted services, 396 enumeration Netcat, 376-377 Telnet, 375–376 WhatWeb, 375 file system, 396 hardening, 395 logging and, 396 misconfiguration, 384-385 password cracking, 386 patch management, 395 scanning, 374 vulnerabilities, 386–388 comments in source code, 388 error handling, 389 hard-coded credentials, 389 race credentials, 389-390

unprotected APIs, 390–392 vulnerability identification, 379 vulnerability scanning, 397–398 WebGoat, 425 websites data aggregation brokerage, 106–107 defacement. 384 enumeration Httprint, 378–379 NSE scripts, 377 expoit-db.com, 51-52 financial information, 106 footprinting and, 103–106 GitHub, 135 Google Hacking Database, 98–99 keeping up with current vulnerabilities, 30 - 31w3schools.com, 370, 423 Wayback Machine, 104 Zabasearch, 107 WebSploit, 151 WEP (Wired Equivalent Privacy), 445, 464-466 attacking, 472-474 XORing, 465 whaling, 245-246 WhatWeb, 375 whatweb, banner grabbing, 148 white box testing, 15 Whois, 108–111 Wi-Fi, 461–462 IoT and, 605 Windows. See also NetBIOS AD (Active Directory), 166 architecture, 164-165 authentication, 203-205 enumeration, 164 IPC\$ (InterProcess Communication) and, 168 NetBIOS, 167-177

LSASS (Local Security Authority Server Service), 167 Mobile Operating System, 456 net commands, 168 null session, 168–169 password cracking, 205–209 brute-force attacks, 206 dictionary attacks, 206 Hashcat, 207-209 Ophcrack, 209 PWdump, 205–206 tools, 206–207 RIDs (relative identifiers), 166 SAM (Security Account Manager), 166 security, 166–167 SIDs (security identifiers), 165–166 StickyKeys, 200 wireless communication, 24, 444. See also **WLANs** authentication, 485-486 Bluetooth, 458, 460 classifications, 458 versions, 458-459 CSMA/CA (carrier-sense multiple access with collision avoidance), 463 hacking tools, 482-483 IDS (intrusion detection system), 486-487 jamming, 472 RFID (radio frequency identification) attacks, 461 spread-spectrum technology, 464 traffic analysis, 483 Wi-Fi, 461–462 WLANs, 462 ad-hoc, 462 hidden node problem, 463 infrastructure, 462–463 RTS (ready to send), 463 standards, 463-464

Wireshark, 61, 281–282, 324–328, 368 WLANs, 462 ad-hoc, 462 attacking the preferred network lists, 472 deauthentication attacks, 468-471 evil twin attacks, 468 fragAttacks, 480 fragmentation attacks, 481–482 infrastructure, 462–463 KRACK (Key Reinstallation AttaCK) attacks, 479 MFP (Management Frame Protection), 471 rogue APs, 467 RTS (ready to send), 463 security OSA (Open System Authentication), 478-479 WEP (Wired Equivalent Privacy), 464-466 WPA (Wi-Fi Protected Access), 466-467 standards, 463-464 war driving, 472 WPA3, attacks against, 479–480 WPS (Wi-Fi Protected Setup), 481 worms, 253 Code Red, 253 Conficker, 254 Nimda, 253–254, 383 Sasser, 254 Slammer, 254 Storm, 254 WPA (Wi-Fi Protected Access), 445, 466-467 4-way handshake, 475 attacking, 474–478 WPA3, attacks against, 479–480 WPS (Wi-Fi Protected Setup), 480–481 wrappers, 264–265

Χ

X.509, 554–555 XMAS tree scan, 68 XOR (exclusive ORing), 411–412, 561 WEP and, 465 Xprobe2, 144 XSS (cross-site scripting), 400–404 DOM-based attacks, 404–405 evasion techniques, 405–406 mitigations, 406–408 preventing, 407–408

Υ

Yahoo Boys, 20–21 Yarochkin, F., 131

Ζ

Zabasearch, 107 zero-day exploit, 12 Zigbee, 604 zombie scan, 128 zone transfers, 112–116, 118 Z-Wave, 604–605