
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137470358
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137470358
https://plusone.google.com/share?url=http://www.informit.com/title/9780137470358
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137470358
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137470358/Free-Sample-Chapter

Learning Deep Learning

This page intentionally left blank

Learning Deep Learning

THEORY AND PRACTICE OF NEURAL
NETWORKS, COMPUTER VISION, NATURAL
LANGUAGE PROCESSING, AND
TRANSFORMERS USING TENSORFLOW

MAGNUS EKMAN

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

NVIDIA makes no warranty or representation that the techniques described herein are free from any
Intellectual Property claims. The reader assumes all risk of any such claims based on his or her use of
these techniques.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021937264

Copyright © 2022 NVIDIA Corporation

Cover image: R.Eva Robot design by Gavriil Klimov and Gregor Kopka

Figures P-4, 8-8, 8-10, 16-1, 16-6, 16-7, B-1, J-1, J-2: Magnus Ekman

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-747035-8
ISBN-10: 0-13-747035-5

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

For my wife Jennifer, my children Sebastian and Sofia, my dog Babette,

and my parents Ingrid and Krister

This page intentionally left blank

vii

Contents

Foreword by Dr. Anima Anandkumar��� xxi

Foreword by Dr. Craig Clawson �� xxiii

Preface��� xxv

Acknowledgments �� li

About the Author ��� liii

1	 THE ROSENBLATT PERCEPTRON� 1

Example of a Two-Input Perceptron �� 4

The Perceptron Learning Algorithm �� 7

Limitations of the Perceptron�� 15

Combining Multiple Perceptrons �� 17

Implementing Perceptrons with Linear Algebra ���20

Vector Notation �� 21

Dot Product �� 23

Extending the Vector to a 2D Matrix ��� 24

Matrix-Vector Multiplication �� 25

Matrix-Matrix Multiplication �� 26

Summary of Vector and Matrix Operations Used for Perceptrons������������������ 28

Dot Product as a Matrix Multiplication �� 29

Extending to Multidimensional Tensors ��� 29

Contents

viii

Geometric Interpretation of the Perceptron���30

Understanding the Bias Term���33

Concluding Remarks on the Perceptron���34

2	 GRADIENT-BASED LEARNING� 37

Intuitive Explanation of the Perceptron Learning Algorithm �������������������������������������37

Derivatives and Optimization Problems���41

Solving a Learning Problem with Gradient Descent ��44

Gradient Descent for Multidimensional Functions ���46

Constants and Variables in a Network��48

Analytic Explanation of the Perceptron Learning Algorithm �������������������������������������49

Geometric Description of the Perceptron Learning Algorithm ����������������������������������51

Revisiting Different Types of Perceptron Plots ���52

Using a Perceptron to Identify Patterns ���54

Concluding Remarks on Gradient-Based Learning���57

3	 SIGMOID NEURONS AND BACKPROPAGATION� 59

Modified Neurons to Enable Gradient Descent for Multilevel Networks�������������������60

Which Activation Function Should We Use? ���66

Function Composition and the Chain Rule��67

Using Backpropagation to Compute the Gradient��69

Forward Pass��78

Backward Pass���78

Weight Adjustment���79

Backpropagation with Multiple Neurons per Layer���81

Programming Example: Learning the XOR Function��82

Contents

ix

Network Architectures�� 87

Concluding Remarks on Backpropagation��� 89

4	 FULLY CONNECTED NETWORKS APPLIED TO
MULTICLASS CLASSIFICATION� 91

Introduction to Datasets Used When Training Networks ��� 92

Exploring the Dataset ���94

Human Bias in Datasets��96

Training Set, Test Set, and Generalization �� 98

Hyperparameter Tuning and Test Set Information Leakage ������������������������� 100

Training and Inference�� 100

Extending the Network and Learning Algorithm to Do Multiclass
Classification ��� 101

Network for Digit Classification��� 102

Loss Function for Multiclass Classification �� 103

Programming Example: Classifying Handwritten Digits �� 104

Mini-Batch Gradient Descent���114

Concluding Remarks on Multiclass Classification ���115

5	 TOWARD DL: FRAMEWORKS AND NETWORK TWEAKS� 117

Programming Example: Moving to a DL Framework��118

The Problem of Saturated Neurons and Vanishing Gradients ������������������������������� 124

Initialization and Normalization Techniques to Avoid Saturated Neurons������������� 126

Weight Initialization ��126

Input Standardization �� 128

Batch Normalization��� 128

Cross-Entropy Loss Function to Mitigate Effect of Saturated Output Neurons � 130

Computer Implementation of the Cross-Entropy Loss Function ������������������� 135

Contents

x

Different Activation Functions to Avoid Vanishing Gradient in
Hidden Layers ��136

Variations on Gradient Descent to Improve Learning ���141

Experiment: Tweaking Network and Learning Parameters��������������������������������������143

Hyperparameter Tuning and Cross-Validation ���146

Using a Validation Set to Avoid Overfitting���148

Cross-Validation to Improve Use of Training Data���149

Concluding Remarks on the Path Toward Deep Learning���150

6	 FULLY CONNECTED NETWORKS APPLIED TO
REGRESSION� 153

Output Units ���154

Logistic Unit for Binary Classification��155

Softmax Unit for Multiclass Classification ���156

Linear Unit for Regression ��159

The Boston Housing Dataset��160

Programming Example: Predicting House Prices with a DNN ��������������������������������161

Improving Generalization with Regularization ���166

Experiment: Deeper and Regularized Models for House Price Prediction �����������169

Concluding Remarks on Output Units and Regression Problems ��������������������������170

7	 CONVOLUTIONAL NEURAL NETWORKS APPLIED TO
IMAGE CLASSIFICATION� 171

The CIFAR-10 Dataset ���173

Characteristics and Building Blocks for Convolutional Layers ��������������������������������175

Combining Feature Maps into a Convolutional Layer��180

Combining Convolutional and Fully Connected Layers into a Network �����������������181

Effects of Sparse Connections and Weight Sharing ��185

Contents

xi

Programming Example: Image Classification with a Convolutional Network ����� 190

Concluding Remarks on Convolutional Networks ��201

8	 DEEPER CNNs AND PRETRAINED MODELS� 205

VGGNet���206

GoogLeNet��� 210

ResNet ��� 215

Programming Example: Use a Pretrained ResNet Implementation ����������������������223

Transfer Learning���226

Backpropagation for CNN and Pooling���228

Data Augmentation as a Regularization Technique��229

Mistakes Made by CNNs ���231

Reducing Parameters with Depthwise Separable Convolutions ����������������������������232

Striking the Right Network Design Balance with EfficientNet����������������������������������234

Concluding Remarks on Deeper CNNs���235

9	 PREDICTING TIME SEQUENCES WITH RECURRENT
NEURAL NETWORKS� 237

Limitations of Feedforward Networks��� 241

Recurrent Neural Networks���242

Mathematical Representation of a Recurrent Layer ���243

Combining Layers into an RNN ���245

Alternative View of RNN and Unrolling in Time��246

Backpropagation Through Time ��248

Programming Example: Forecasting Book Sales ��250

Standardize Data and Create Training Examples �� 256

Creating a Simple RNN ��� 258

Contents

xii

Comparison with a Network Without Recurrence���262

Extending the Example to Multiple Input Variables��263

Dataset Considerations for RNNs�� 264

Concluding Remarks on RNNs �� 265

10	 LONG SHORT-TERM MEMORY� 267

Keeping Gradients Healthy ���267

Introduction to LSTM��� 272

LSTM Activation Functions �� 277

Creating a Network of LSTM Cells ��� 278

Alternative View of LSTM �� 280

Related Topics: Highway Networks and Skip Connections ������������������������������������� 282

Concluding Remarks on LSTM ��� 282

11	 TEXT AUTOCOMPLETION WITH LSTM AND
BEAM SEARCH� 285

Encoding Text ��� 285

Longer-Term Prediction and Autoregressive Models �� 287

Beam Search ��� 289

Programming Example: Using LSTM for Text Autocompletion������������������������������� 291

Bidirectional RNNs �� 298

Different Combinations of Input and Output Sequences��� 300

Concluding Remarks on Text Autocompletion with LSTM�� 302

12	 NEURAL LANGUAGE MODELS AND WORD
EMBEDDINGS� 303

Introduction to Language Models and Their Use Cases ��� 304

Examples of Different Language Models ��� 307

Contents

xiii

n-Gram Model ��� 307

Skip-Gram Model ��� 309

Neural Language Model��� 309

Benefit of Word Embeddings and Insight into How They Work ��������������������������������313

Word Embeddings Created by Neural Language Models ���315

Programming Example: Neural Language Model and Resulting
Embeddings ���319

King − Man + Woman! = Queen ��� 329

King − Man + Woman ! = Queen��� 331

Language Models, Word Embeddings, and Human Biases ������������������������������������� 332

Related Topic: Sentiment Analysis of Text��� 334

Bag-of-Words and Bag-of-N-Grams ��� 334

Similarity Metrics �� 338

Combining BoW and DL ��� 340

Concluding Remarks on Language Models and Word Embeddings ���������������������� 342

13	 WORD EMBEDDINGS FROM word2vec AND GloVe� 343

Using word2vec to Create Word Embeddings Without a Language Model ���������� 344

Reducing Computational Complexity Compared to a Language Model ������� 344

Continuous Bag-of-Words Model ��� 346

Continuous Skip-Gram Model ��� 348

Optimized Continuous Skip-Gram Model to Further Reduce
Computational Complexity ��349

Additional Thoughts on word2vec ��� 352

word2vec in Matrix Form �� 353

Wrapping Up word2vec ��� 354

Contents

xiv

Programming Example: Exploring Properties of GloVe Embeddings ������������������� 356

Concluding Remarks on word2vec and GloVe ��361

14	 SEQUENCE-TO-SEQUENCE NETWORKS AND NATURAL
LANGUAGE TRANSLATION� 363

Encoder-Decoder Model for Sequence-
to-Sequence Learning �� 366

Introduction to the Keras Functional API ��� 368

Programming Example: Neural Machine Translation ���371

Experimental Results ��� 387

Properties of the Intermediate Representation�� 389

Concluding Remarks on Language Translation�� 391

15	 ATTENTION AND THE TRANSFORMER� 393

Rationale Behind Attention ���394

Attention in Sequence-to-Sequence Networks�� 395

Computing the Alignment Vector��400

Mathematical Notation and Variations on the Alignment Vector ��������������������402

Attention in a Deeper Network��404

Additional Considerations ���405

Alternatives to Recurrent Networks �� 406

Self-Attention ��� 407

Multi-head Attention ��410

The Transformer �� 411

Concluding Remarks on the Transformer��415

Contents

xv

16	 ONE-TO-MANY NETWORK FOR IMAGE CAPTIONING� 417

Extending the Image Captioning Network with Attention ��420

Programming Example: Attention-Based Image Captioning ����������������������������������421

Concluding Remarks on Image Captioning ��443

17	 MEDLEY OF ADDITIONAL TOPICS� 447

Autoencoders ���448

Use Cases for Autoencoders�� 449

Other Aspects of Autoencoders �� 451

Programming Example: Autoencoder for Outlier Detection���������������������������� 452

Multimodal Learning ���459

Taxonomy of Multimodal Learning ��� 459

Programming Example: Classification with Multimodal Input Data �������������465

Multitask Learning ��469

Why to Implement Multitask Learning �� 470

How to Implement Multitask Learning �� 471

Other Aspects and Variations on the Basic Implementation �������������������������� 472

Programming Example: Multiclass Classification and Question
Answering with a Single Network��� 473

Process for Tuning a Network�� 477

When to Collect More Training Data�� 481

Neural Architecture Search���482

Key Components of Neural Architecture Search ��482

Programming Example: Searching for an Architecture for
CIFAR-10 Classification ���488

Implications of Neural Architecture Search ��� 501

Concluding Remarks ���502

Contents

xvi

18	 SUMMARY AND NEXT STEPS� 503

Things You Should Know by Now�� 503

Ethical AI and Data Ethics �� 505

Problems to Look Out For���506

Checklist of Questions��� 512

Things You Do Not Yet Know��512

Reinforcement Learning ��� 513

Variational Autoencoders and Generative Adversarial Networks ����������������� 513

Neural Style Transfer ��� 515

Recommender Systems �� 515

Models for Spoken Language�� 516

Next Steps��516

A	 LINEAR REGRESSION AND LINEAR CLASSIFIERS� 519

Linear Regression as a Machine Learning Algorithm ���519

Univariate Linear Regression ��520

Multivariate Linear Regression ��521

Modeling Curvature with a Linear Function ��522

Computing Linear Regression Coefficients �� 523

Classification with Logistic Regression ���525

Classifying XOR with a Linear Classifier�� 528

Classification with Support Vector Machines��531

Evaluation Metrics for a Binary Classifier��� 533

Contents

xvii

B	 OBJECT DETECTION AND SEGMENTATION� 539

Object Detection��540

R-CNN ��� 542

Fast R-CNN ��544

Faster R-CNN���546

Semantic Segmentation ���549

Upsampling Techniques��� 550

Deconvolution Network ��� 557

U-Net�� 558

Instance Segmentation with Mask R-CNN���559

C	 WORD EMBEDDINGS BEYOND word2vec AND GloVe� 563

Wordpieces ��564

FastText ��566

Character-Based Method �� 567

ELMo ��572

Related Work ���575

D	 GPT, BERT, AND RoBERTa� 577

GPT ���578

BERT ��582

Masked Language Model Task ��� 582

Next-Sentence Prediction Task ���583

BERT Input and Output Representations ���584

Applying BERT to NLP Tasks ��586

RoBERTa ��586

Contents

xviii

Historical Work Leading Up to GPT and BERT��� 588

Other Models Based on the Transformer ��� 590

E	 NEWTON-RAPHSON VERSUS GRADIENT DESCENT� 593

Newton-Raphson Root-Finding Method ���594

Newton-Raphson Applied to Optimization Problems���595

Relationship Between Newton-Raphson and Gradient Descent ���������������������������� 597

F	 MATRIX IMPLEMENTATION OF DIGIT CLASSIFICATION
NETWORK� 599

Single Matrix �� 599

Mini-Batch Implementation ��� 602

G	 RELATING CONVOLUTIONAL LAYERS TO MATHEMATICAL
CONVOLUTION� 607

H	 GATED RECURRENT UNITS� 613

Alternative GRU Implementation ���616

Network Based on the GRU ��616

I	 SETTING UP A DEVELOPMENT ENVIRONMENT� 621

Python ��� 622

Programming Environment ��� 623

Jupyter Notebook ��623

Using an Integrated Development Environment��624

Programming Examples��624

Supporting Spreadsheet ���625

Contents

xix

Datasets ��625

MNIST ��� 625

Bookstore Sales Data from US Census Bureau ��� 626

Frankenstein from Project Gutenberg �� 627

GloVe Word Embeddings �� 627

Anki Bilingual Sentence Pairs ��� 627

COCO�� 627

Installing a DL Framework ��628

System Installation�� 628

Virtual Environment Installation�� 629

GPU Acceleration��� 629

Docker Container��� 630

Using a Cloud Service �� 630

TensorFlow Specific Considerations��630

Key Differences Between PyTorch and TensorFlow ���631

Need to Write Our Own Fit/Training Function �� 631

Explicit Moves of Data Between NumPy and PyTorch ������������������������������������� 633

Explicit Transfer of Data Between CPU and GPU �� 633

Explicitly Distinguishing Between Training and Inference�������������������������������634

Sequential versus Functional API ���634

Lack of Compile Function�� 635

Recurrent Layers and State Handling ��� 635

Cross-Entropy Loss ��� 635

View/Reshape ���636

J	 CHEAT SHEETS� 637

Contents

xx

Works Cited ��647

Index ��667

xxi

Foreword

Artificial intelligence (AI) has seen impressive progress over the last decade.
Humanity’s dream of building intelligent machines that can think and act like
us, only better and faster, seems to be finally taking off. To enable everyone to
be part of this historic revolution requires the democratization of AI knowledge
and resources. This book is timely and relevant toward accomplishing these lofty
goals.

Learning Deep Learning by Magnus Ekman provides a comprehensive instructional
guide for both aspiring and experienced AI engineers. In the book, Magnus shares
the rich hands-on knowledge he has garnered at NVIDIA, an established leader in
AI. The book does not assume any background in machine learning and is focused
on covering significant breakthroughs in deep learning over the last few years.
The book strikes a nice balance and covers both important fundamentals such as
backpropagation and the latest models in several domains (e.g., GPT for language
understanding, Mask R-CNN for image understanding).

AI is a trinity of data, algorithms, and computing infrastructure. The launch of the
ImageNet challenge provided a large-scale benchmark dataset needed to train
large neural networks. The parallelism of NVIDIA GPUs enabled the training of
such large neural networks. We are now in the era of billion, and even trillion,
parameter models. Building and maintaining large-scale models will soon be
deemed a prerequisite skill for any AI engineer. This book is uniquely placed to
teach such skills. It provides in-depth coverage of large-scale models in multiple
domains.

The book also covers emerging areas such as neural architecture search, which
will likely become more prevalent as we begin to extract the last ounce of
accuracy and hardware efficiency out of current AI models. The deep learning
revolution has almost entirely occurred in open source. This book provides
convenient access to code and datasets and runs through the code examples
thoroughly. There is extensive program code available in both TensorFlow and
PyTorch, the two most popular frameworks for deep learning.

Foreword

xxii

I do not think any book on AI will be complete without a discussion of ethical
issues. I believe that it is the responsibility of every AI engineer to think critically
about the societal implications around the deployment of AI. The proliferation of
harassment, hate speech, and misinformation in social media has shown how
poorly designed algorithms can wreak havoc on our society. Groundbreaking
studies such as the Gender Shades project and Stochastic Parrots have shown
highly problematic biases in AI models that are commercially deployed at scale. I
have advocated for banning the use of AI in sensitive scenarios until appropriate
guidelines and testing are in place (e.g., the use of AI-based face recognition
by law enforcement). I am glad to see the book cover significant developments
such as model cards that improve accountability and transparency in training
and maintaining AI models. I am hoping for a bright, inclusive future for the AI
community.

—Dr. Anima Anandkumar
Bren Professor, Caltech

Director of ML Research, NVIDIA

xxiii

Foreword

By training I am an economist. Prior to my work in technical education, I spent
years teaching students and professionals well-developed frameworks for
understanding our world and how to make decisions within it. The methods and
skills you will discover in Learning Deep Learning by Magnus Ekman parallel the
tools used by economists to make forecasts and predictions in a world full of
uncertainty. The power and capabilities of the deep learning techniques taught in
this book have brought amazing advances in our ability to make better predictions
and inferences from the data in the world around us.

Though their future benefits and importance can sometimes be exaggerated,
there is no doubt the world and industry have been greatly affected by deep
learning (DL) and its related supersets of machine learning (ML) and artificial
intelligence (AI). Applications of these technologies have proven durable and are
profound. They are with us everywhere: at home and at work, in our cars, and on
our phones. They influence how we travel, how we communicate, how we shop,
how we bank, and how we access information. It is very difficult to think of an
industry that has not or will not be impacted by these technologies.

The explosion in the use of these technologies has uncovered two important
gaps in knowledge and areas of opportunity for those who endeavor to learn.
First is the technical skillset required to develop useful applications. And second,
importantly, is an understanding of how these applications can address problems
and opportunities in the world around us. This book helps to address both gaps.
For these reasons, Learning Deep Learning has arrived in the right place at the
right time.

As NVIDIA’s education and training arm, the Deep Learning Institute exists
to help individuals and organizations grow their understanding of DL and
other computing techniques so they can find creative solutions to challenging
problems. Learning Deep Learning is the perfect addition to our training library.
It is accessible to those with basic skills in statistics and calculus, and it doesn’t
require the reader to first wade through tangential topics. Instead, Ekman focuses

Foreword

xxiv

on the building blocks of DL: the perceptron, other artificial neurons, deep neural
networks (DNNs), and DL frameworks. Then he gradually layers in additional
concepts that build on each other, all the way up to and including modern natural
language processing (NLP) architectures such as Transformer, BERT, and GPT.

Importantly, Ekman uses a learning technique that in our experience has proven
pivotal to success—asking readers to think about using DL techniques in practice.
Simple yet powerful coding examples and exercises are provided throughout the
book to help readers apply their understanding. At the same time, explanations
of the underlying theory are present, and those interested in deepening their
knowledge of relevant concepts and tools without getting into programming code
will benefit. Plenty of citations with references for further study of a specific topic
are also provided.

For all these reasons, Learning Deep Learning is a very good place to start one’s
journey to understanding the world of DL. Ekman’s straightforward approach
to helping the reader understand what DL is, how it was developed, and how
it can be applied in our ever-changing world is refreshing. He provides a
comprehensive yet clear discussion of the technology and an honest assessment
of its capabilities and its limitations. And through it all, he permits the reader to
dream, just a bit, about where DL may yet take us. That is exciting. It is why this
economist finds this book so timely and important, and why I think you will too.

—Dr. Craig Clawson
Director, NVIDIA Deep Learning Institute

xxv

Preface

Deep learning (DL) is a quickly evolving field, which has demonstrated amazing
results in performing tasks that traditionally have been performed well only by
humans. Examples of such tasks are image classification, generating natural
language descriptions of images, natural language translation, speech-to-text,
and text-to-speech conversion.

Learning Deep Learning (this book, hereafter known as LDL) quickly brings you up
to speed on the topic. It teaches how DL works, what it can do, and gives you some
practical experience, with the overall objective of giving you a solid foundation for
further learning.

You will learn about the perceptron and other artificial neurons. They are the
fundamental building blocks of deep neural networks that have enabled the
DL revolution. You will learn about fully connected feedforward networks
and convolutional networks. You will apply these networks to solve practical
problems, such as predicting housing prices based on a large number of variables
or identifying to which category an image belongs. Figure P-1 shows examples of
such categories and images.

You will also learn about ways to represent words from a natural language using
an encoding that captures some of the semantics of the encoded words. You will
then use these encodings together with a recurrent neural network to create
a neural-based natural language translator. This translator can automatically
translate simple sentences from English to French or other similar languages, as
illustrated in Figure P-2.

In this book, we use green text boxes like this one to highlight concepts that we
find extra important. The intent is to ensure that you do not miss key concepts.
Let us begin by pointing out that we find Deep Learning important.

Preface

xxvi

Finally, you will learn how to build an image-captioning network that combines
image and language processing. This network takes an image as an input and
automatically generates a natural language description of the image.

What we just described represents the main narrative of LDL. Throughout this
journey, you will learn many other details. In addition, we end with a medley of
additional important topics. We also provide appendixes that dive deeper into a
collection of the discussed topics.

Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

Figure P-1  Categories and example images from the CIFAR-10 dataset
(Krizhevsky, 2009). This dataset will be studied in more detail in Chapter 7.
(Image source: https://www.cs.toronto.edu/~kriz/cifar.html)

Figure P-2  A neural network translator that takes a sentence in English as input
and produces the corresponding sentence in French as output

I am a student Je suis étudiant
Deep
Neural

Network

https://www.cs.toronto.edu/~kriz/cifar.html

Preface

xxvii

What Is Deep Learning?
We do not know of a crisp definition of what DL is, but one attempt is that DL is
a class of machine learning algorithms that use multiple layers of computational
units where each layer learns its own representation of the input data. These
representations are combined by later layers in a hierarchical fashion. This definition
is somewhat abstract, especially given that we have not yet described the concept
of layers and computational units, but in the first few chapters, we provide many
more concrete examples of what this means.

A fundamental part of DL is the deep neural network (DNN), a namesake of
the biological neuron, by which it is loosely inspired. There is an ongoing
debate about how closely the techniques within DL do mimic activity in a
brain, where one camp argues that using the term neural network paints the
picture that it is more advanced than it is. Along those lines, they recommend
using the terms unit instead of artificial neuron and just network instead of
neural network. No doubt, DL and the larger field of artificial intelligence (AI)
have been significantly hyped in mainstream media. At the time of writing this
book, it is easy to get the impression that we are close to creating machines
that think like humans, although lately, articles that express some doubt are
more common. After reading this book, you will have a more accurate view of
what kind of problems DL can solve. In this book, we choose to freely use the
words neural network and neuron but recognize that the algorithms presented
are more tied to machine capabilities than to how an actual human brain
works.

In this book, we use red text boxes like this one when we feel the urge to state
something that is somewhat beside the point, a subjective opinion or of similar
nature. You can safely ignore these boxes altogether if you do not find them
adding any value to your reading experience.

Let us dive into this book by stating the opinion that it is a little bit of a buzz
killer to take the stance that our cool DNNs are not similar to the brain. This is
especially true for somebody picking up this book after reading about machines
with superhuman abilities in the mainstream media. To keep the illusion alive,
we sometimes allow ourselves to dream a little bit and make analogies that
are not necessarily that well founded, but to avoid misleading you, we try not to
dream outside of the red box.

Preface

xxviii

To put DL and DNNs into context, Figure P-3 shows how they relate to the machine
learning (ML) and AI fields. DNN is a subset of DL. DL in turn is a subset of the
field of ML, which in turn is a subset of the greater field of AI.

In this book, we choose not to focus too much on the exact definition of DL and
its boundaries, nor do we go into the details of other areas of ML or AI. Instead,
we focus on details of what DNNs are and the types of tasks to which they can
be applied.

Brief History of Deep Neural Networks
In the last couple of sections, we loosely referred to networks without describing
what a network is. The first few chapters in this book discuss network
architectures in detail, but at this point, it is sufficient to think of a network as

Deep neural network (DNN) is a subset of DL.

DL is a subset of machine learning (ML), which is a subset of artificial
intelligence (AI).

Figure P-3  Relationship between artificial intelligence, machine learning, deep
learning, and deep neural networks. The sizes of the different ovals do not
represent the relative size of one field compared to another.

Artificial intelligence
(AI)

Machine learning
(ML)

Deep learning
(DL)

Deep Neural Networks
(DNN)

Preface

xxix

an opaque system that has inputs and outputs. The usage model is to present
something, for example, an image or a text sequence, as inputs to the network,
and the network will produce something useful on its outputs, such as an
interpretation of what the image contains, as in Figure P-4, or a natural language
translation in a different language, as was shown in Figure P-2.

As previously mentioned, a central piece of a neural network is the artificial neuron.
The first model of an artificial neuron was introduced in 1943 (McCulloch and Pitts,
1943), which started the first wave of neural network research. The McCulloch
and Pitts neuron was followed in 1957 by the Rosenblatt perceptron (Rosenblatt,
1958). A key contribution from the perceptron was its associated automated
learning algorithm that demonstrated how a system could learn desired behavior.
Details of how the perceptron works are found in Chapter 1. The perceptron has
some fundamental limitations, and although it was shown that these limitations
can be overcome by combining multiple perceptrons into a multilayer network, the
original learning algorithm did not extend to multilayer networks. According to a
common narrative, this resulted in neural network research falling out of fashion.
This is often referred to as the first AI winter, which was allegedly caused by a book
by Minsky and Papert (1969). In this book, they raised the absence of a learning
algorithm for multilayer networks as a serious concern.

This topic and narrative are controversial. Olazaran (1996) has studied whether
the statements of Minsky and Papert had been misrepresented. Further,
Schmidhuber (2015) pointed out that there did exist a learning algorithm for
multilevel networks (Ivakhnenko and Lapa, 1965) four years before the book by
Minsky and Papert was published.

Figure P-4  A deep neural network as an opaque system that can take an image as
an input and then output an indication of what type of object is in the image

Opaque
system

Dog

We note that in the days of Rosenblatt’s publications, they were certainly
not shy about comparing their work with the human brain. In reading about
the Rosenblatt perceptron (Rosenblatt, 1958), we see that the first paper he
references is called “Design for a Brain.”

Preface

xxx

The second wave of neural network research was initiated in the 1980s. It was
heavily influenced by a paper that described the backpropagation algorithm for
automatic training of multilayer networks (Rumelhart et al., 1986). Rumelhart
and colleagues showed that this algorithm could be used to overcome the
limitations of the perceptron. In the study, they explicitly pointed out that they
believed this addressed the concerns raised by Minsky and Papert. Rumelhart
and colleagues popularized the backpropagation algorithm in the context
of neural networks, but it was not the first occurrence of the algorithm in
the literature. The algorithm was applied to a similar problem domain in
1970 (Linnainmaa, 1970). Werbos (1981) described it in the context of neural
networks in 1981.

Details of how this algorithm works are found in Chapter 3. An important
outcome of this second wave of neural network research was the development
of LeNet in 1989. It was a convolutional neural network (CNN), which was shown
to be able to recognize handwritten zip codes (LeCun et al., 1990). It built on
Fukushima’s Neocognitron (Fukushima, 1980), which we believe is the first
published CNN.

An enhanced version of LeNet was later used by major US banks to read
handwritten checks, and it thereby became one of the first big commercial
applications of neural networks. Convolutional neural networks are described in
detail in Chapter 7. Despite the progress, neural networks fell out of fashion yet
again, partly because the limited computational capability at the time prevented
the networks from scaling to larger problems and partly because other traditional
ML approaches were perceived as better alternatives.

The third wave of neural network research was enabled by a combination of
algorithmic progress, availability of massive datasets, and the ability to use
graphics processing units (GPU) for general purpose computing. From an outsider
perspective, all this came together in 2012. At that point, the field had been
rebranded as DL and was popularized in large part due to AlexNet (Krizhevsky
et al., 2012), which was a CNN that scored significantly higher than any other
participant in a computer vision competition known as the ImageNet challenge.

In reality, this third wave was enabled by persistent research groups who had
continued to perform neural network research in the 1990s and first decade
of the 2000s. These insiders started using the term deep networks in 2006.
Further, the ImageNet challenge was not the first competition in which neural
networks, some of which were GPU accelerated, beat more traditional techniques.

Preface

xxxi

For example, Graves and colleagues (2009) won competitions in handwriting
recognition with a neural network in 2009. Similarly, Ciresan and colleagues
(2011) used a GPU accelerated network for image classification in 2011.

This work was shortly followed by similar breakthroughs in other fields, which
have led to the DL boom that is still ongoing as of the writing of this book. The rest
of this book will describe some of these key findings and how they can be applied
in practice. For a more detailed description of the history of DL, we recommend
Schmidhuber’s (2015) overview.

Is This Book for You?
There are already many books on this topic, and different people like to
approach subjects in different ways. In this book, we try to cut to the chase
while still providing enough background to give you a warm fuzzy feeling that
you understand why the techniques work. We decided to not start the book with
an overall introduction to the field of traditional ML. Although we believe that
anybody who wants to get serious about DL needs to also master traditional
ML, we do not believe that it is necessary to first learn about traditional ML
before learning the basics of DL. We even believe that having to first get through
multiple chapters that do not directly discuss DL can be a barrier to entry for
many people.

In this book, we use yellow text boxes like this one to highlight things that
we otherwise do not discuss or explore in detail but nonetheless think are
important for you to learn at some point. We believe that an important part of
learning about a new topic is to not only acquire some basic skills but also get
some insights into what the next steps are. We use the yellow boxes to signal
to you that at this point it is perfectly fine to ignore a certain topic, but it will be
important to learn as a next step.

Let us now begin by stating that it is important to know about traditional ML if
you want to get serious about DL, but you can wait to learn about traditional ML
until you have gotten a taste of DL.

Preface

xxxii

Apart from deciding whether to include traditional ML as a topic, any author of a
book on DL needs to take a position on whether to include code examples and how
deeply to dive into the mathematics. Our view is that because DL is an applied
field, a book on this topic needs to contain a good mix of theory and practice,
so code examples are necessary. We also believe that many topics in DL are
inherently mathematical, and it is necessary to include some of the mathematics
to provide a good description of how things work. With that background, we try to
describe certain concepts from different angles using a good mix of elements:

•	 Figures

•	 Natural language (English) descriptions

•	 Programming code snippets

•	 Mathematical formulas

Readers who master all of the preceding might find some descriptions redundant,
but we believe that this is the best way of making the book accessible to a large
audience.

This book does not aim to include details about all the most recent and advanced
techniques in the DL field. Instead, we include concepts and techniques that we
believe are fundamental to understanding the latest developments in the field.
Some of the appendixes describe how some major architectures are built on
these concepts, but most likely, even better architectures will emerge. Our goal is
to give you enough knowledge to enable you to continue learning by reading more
recent research papers. Therefore, we have also decided to sprinkle references
throughout the book to enable you to follow up on topics that you find extra

Not starting the book with traditional ML techniques is an attempt to avoid one
of the buzz killers that we have found in other books. One very logical, and
therefore typical, way of introducing DL is to first describe what ML is and,
as such, to start with a very simple ML technique, namely, linear regression.
It is easy, as an excited beginner, to be a little disheartened when you expect
to learn about cool techniques to classify cat images and instead get stuck
reading a discussion about fitting a straight line to a set of random data points
using mathematics that seem completely unrelated to DL. We instead try to
take the quickest, while still logical, path to getting to image classification to
provide you with some instant satisfaction, but you will notice that we still
sneak in some references and comparisons to linear regression over time.

Preface

xxxiii

interesting. However, it has been our intention to make the book self-contained
so that you should never need to look up a reference to be able to follow the
explanations in the book. In some cases, we include references to things that we
do not explain but mention only in passing. In those cases, we try to make it clear
that it is meant as future reading instead of being a central element of the book.

Is DL Dangerous?
There are plenty of science fiction books and movies that depict AI as a threat
against humanity. Machines develop a form of consciousness and perceive
humans as a threat and therefore decide to destroy us. There have also been
thought experiments about how an AI accidentally destroys the human species as
a side effect of trying to deliver on what it is programmed to do. One example is
the paperclip maximizer (Bostrom, 2003), which is programmed with the goal of
making as many paper clips as possible. In order to do so, it might kill all human
beings to free up atoms needed to make paper clips. The risk that these exact
scenarios will play out in practice is probably low, but researchers still see future
powerful AIs as a significant risk.

More urgently, DL has already been shown to come with serious unintended
consequences and malignant use. One example is a study of a commercially
available facial recognition system (Buolamwini and Gebru, 2018) used by law
enforcement. Although the system achieved 99% accuracy on lighter-skinned
men, its accuracy on darker-skinned women was only 65%, thereby putting them
at much greater risk of being incorrectly identified and possibly wrongly accused
of crimes. An example of malignant use of DL is fake pornography (Dickson, 2019)
whereby the technology is used to make it appear as if a person (often a celebrity)
is featured in a pornographic video.

DL learns from data created by humans and consequently runs the risk of
learning and even amplifying human biases. This underscores the need for
taking a responsible approach to DL and AI. Historically, this topic has largely
been neglected, but more recently started to receive more attention. A powerful
demonstration can be found on the website of the Algorithmic Justice League
(Buolamwini, n.d.) with a video showing how a face detection system fails to detect
the face of a dark-skinned woman (Buolamwini) until she puts on a white mask.

The references in the book are strictly for future reading and should not be
necessary to read to be able to understand the main topics of the book.

Preface

xxxiv

Another example is the emergence of algorithmic auditing, where researchers
identify and report human biases and other observed problems in commercial
systems (Raji and Buolamwini, 2019). Researchers have proposed to document
known biases and intended use cases of any released system to mitigate these
problems. This applies both to the data used to create such systems (Gebru, et al.,
2018) and to the released DL model itself (Mitchell et al., 2018). Thomas suggests a
checklist of questions to guide DL practitioners throughout the course of a project
to avoid ethical problems (Thomas, 2019). We touch on these topics throughout the
book. We also provide resources for further reading in Chapter 18.

Choosing a DL Framework
As a practitioner of DL, you will need to decide what DL framework to use. A DL
framework provides functionality that handles much of the low-level details
when implementing DL models. Just as the DL field is rapidly evolving, so are the
different frameworks. To mention a few, Caffe, Theano, MXNet, Torch, TensorFlow,
and PyTorch have all been influential throughout the current DL boom. In addition
to these full-fledged frameworks, there are specialized frameworks such as Keras
and TensorRT. Keras is a high-level API that makes it easier to program for some of
these frameworks. TensorRT is an inference optimizer and runtime engine that can
be used to run models built and trained by many of the mentioned frameworks.

As of the writing of this book, our impression is that the two most popular full-
fledged frameworks are TensorFlow and PyTorch, where TensorFlow nowadays
includes native support for the Keras API. Another significant framework is
MXNet. Models developed in either of these frameworks can be deployed using
the TensorRT inference engine.

Deciding on what DL framework to use can be viewed as a life-changing
decision. Some people would say that it is comparable to choosing a text
editor or a spouse. We do not share that belief but think that the world is big
enough for multiple competing solutions. We decided to provide programming
examples in both TensorFlow and PyTorch for this book. The TensorFlow
examples are printed in the book itself, but equivalent examples in PyTorch,
including detailed descriptions, can be found on the book’s website. We suggest
that you pick a framework that you like or one that makes it easy to collaborate
with people you interact with.

Preface

xxxv

The programming examples in this book are provided in a TensorFlow version
using the Keras API (printed in the book) as well as in a PyTorch version (online).
Appendix I contains information about how to install TensorFlow and PyTorch,
as well as a description of some of the key differences between the two
frameworks.

Prerequisites for Learning DL
DL combines techniques from a number of different fields. If you want to get
serious about DL, and particularly if you want to do research and publish your
findings, over time you will need to acquire advanced knowledge within the scope
of many of these skillsets. However, we believe that it is possible to get started
with DL with little or partial knowledge in these areas. The sections that follow
list the areas we find important, and in each section, we list the minimum set of
knowledge that we think you need in order to follow this book.

STATISTICS AND PROBABILITY THEORY

Many DL problems do not have exact answers, so a central theme is probability
theory. As an example, if we want to classify objects in an image, there is often
uncertainty involved, such as how certain our model is that an object of a specific
category, such as a cat, is present in the picture. Further, we might want to
classify the type of cat—for example, is it a tiger, lion, jaguar, leopard, or snow
leopard? The answer might be that the model is 90% sure that it is a jaguar, but
there is a 5% probability that it is a leopard and so on. This book does not require
deep knowledge in statistics and probability theory. We do expect you to be able
to compute an arithmetic mean and understand the basic concept of probability.
It is helpful, although not strictly required, if you know about variance and how to
standardize a random variable.

LINEAR ALGEBRA

As you will learn in Chapter 1, the fundamental building block in DL is based on
calculating a weighted sum of variables, which implies doing many additions
and multiplications. Linear algebra is a field of mathematics that enables us to

Preface

xxxvi

describe such calculations in a compact manner. This book frequently specifies
formulas containing vectors and matrices. Further, calculations involve

•	 Dot products

•	 Matrix-vector multiplications

•	 Matrix-matrix multiplications

If you have not seen these concepts in the past, you will need to learn about them
to follow the book. However, Chapter 1 contains a section that goes through these
concepts. We suggest that you read that first and then assess whether you need
to pick up a book about linear algebra.

CALCULUS

As you will learn in Chapters 2 and 3, the learning part in DL is based on
minimizing the value of a function known as a loss function or error function. The
technique used to minimize the loss function builds on the following concepts
from calculus:

•	 Computing the derivative of a function of a single variable

•	 Computing partial derivatives of a function of multiple variables

•	 Calculating derivatives using the chain rule of calculus

However, just as we do for linear algebra, we provide sections that go through the
basics of these concepts. These sections are found in Chapters 2 and 3.

NUMERICAL METHODS FOR CONSTRAINED AND UNCONSTRAINED
OPTIMIZATION

In DL, it is typically not feasible to find an analytical solution when trying to
minimize the loss function. Instead, we rely on numerical optimization methods.
The most prevalent method is an iterative method known as gradient descent.
It is helpful if you already know something about iterative methods and finding
extreme points in continuous functions. However, we do not require prior
knowledge of gradient descent, and we describe how it works before using it in
Chapter 3.

Preface

xxxvii

PYTHON PROGRAMMING

It is hard to do anything except specific DL applications without some
knowledge about programming in general. Further, given that the most
popular DL frameworks are based on Python, it is highly recommended to
acquire at least basic Python skills to enable trying out and modifying code
examples. There are many good books on the topic of programming, and
if you have basic programming skills, it should be relatively simple to get
started with Python by just following tutorials at python.org. It is possible for
nonprogrammers to read this book and just skip the coding sections, but if you
intend to apply your DL skills in practice, you should learn the basics of Python
programming.

You do not need to learn everything about Python to get started with DL. Many
DL applications use only a small subset of the Python language, extended with
heavy use of domain-specific DL frameworks and libraries. In particular, many
introductory examples make little or no use of object-oriented programming
constructs. A specific module that is used frequently is the NumPy (numerical
Python) module that, among other things, provides data types for vectors and
matrices. It is also common to use pandas (Python Data Manipulation Library)
to manipulate multidimensional data, but we do not make use of pandas in
this book.

The following Python constructs are frequent in most of the code examples in
the book:

•	 Integer and floating point datatypes

•	 Lists and dictionaries

•	 Importing and using external packages

•	 NumPy arrays

•	 NumPy functions

•	 If-statements, for-loops, and while-loops

•	 Defining and calling functions

•	 Printing strings and numerical datatypes

http://python.org

Preface

xxxviii

•	 Plotting data with matplotlib

•	 Reading from and writing to files

In addition, many of the programming examples rely on constructs provided by
a DL framework (TensorFlow in the book and PyTorch provided online). There is
no need to know about these frameworks up front. The functionality is gradually
introduced in the descriptions of the code examples. The code examples become
progressively harder throughout the book, so if you are a beginner to coding, you
will need to be prepared to spend some time honing your coding skills in parallel
with reading the book.

DATA REPRESENTATION

Much of the DL mechanics are handled by highly optimized ML frameworks.
However, your input data first needs to be converted into suitable formats that can
be consumed by these frameworks. As such, you need to know something about
the format of the data that you will use and, when applicable, how to convert it
into a more suitable format. For example, for images, it is helpful to know the
basics about RGB (red, green, blue) representation. Similarly, for the cases that
use text as input data, it is helpful to know something about how characters are
represented by a computer. In general, it is good to have some insight into how
raw input data is often of low quality and needs to be cleaned. You will often
find missing or duplicated data entries, timestamps from different time zones,
and typos originating from manual processing. For the examples in this book,
this is typically not a problem, but it is something you need to be aware of in a
production setting.

About the Code Examples
You will find much overlap between the code examples in this book and code
examples found in online tutorials as well as in other DL books (e.g., Chollet 2018;
Glassner, 2018). Many of these examples have evolved from various published
research papers in combination with publicly available datasets. (Datasets are
described in more detail in Chapter 4.) In other words, we want to stress that we
have not made up these examples from scratch, but they are heavily inspired by
previously published work. However, we have done the actual implementation
of these examples, and we have put our own touch on them to follow the
organization of this book.

Preface

xxxix

The longer code examples are broken up into smaller pieces and presented step
by step interspersed throughout the text in the book. You should be able to just
copy/paste or type each code snippet into a Python interpreter, but it is probably
better to just put all code snippets for a specific code example in a single file and
execute in a noninteractive manner. The code examples are also available for
download both as regular Python files and as Jupyter notebooks at https://github
.com/NVDLI/LDL/. See Appendix I for more details.

In most chapters, we first present a basic version of a code example, and then we
present results for variations of the program. We do not provide the full listings
for all variations, but we try to provide all the necessary constructs in the book to
enable you to do these variations yourself.

DL algorithms are based on stochastic optimization techniques. As such, the
results from an experiment may vary from time to time. That is, when you run a
code example, you should not expect to get exactly the same result that is shown
in the book. However, the overall behavior should be the same.

Another thing to note is that the chosen format, where we intersperse code
throughout the book and explain each snippet, results in certain restrictions, such
as minimizing the length of each program, and we have also tried to maintain

Modifying the code is left as an exercise for the reader. Hah, we finally got to
say that!

Seriously, we do believe that modifying existing code is a good way of getting
your hands dirty. However, there is no need to exactly recreate the variations
we did. If you are new to programming, you can start with just tweaking
existing parameter values instead of adding new code. If you already have more
advanced coding skills, you can consider defining your own experiments based
on what you find extra interesting.

We were tempted to not provide downloadable versions of the code examples
but instead force you to type them in yourself. After all, that is what we had to
do in the 1980s when typing in a code listing from a computer magazine was
a perfectly reasonable way of obtaining a new game. The youth of today with
their app stores simply do not know how lucky they are.

https://github.com/NVDLI/LDL/
https://github.com/NVDLI/LDL/

Preface

xl

a linear flow and to not heavily modularize the code into classes and functions
in most cases. Thus, instead of using sound coding practices to make the code
examples easy to extend and maintain, focus is on keeping the examples small
and readable.

Another thing to consider is what kind of development environment is needed to
follow this book. In our opinion, anybody who wants to do serious work in DL will
need to get access to a hardware platform that provides specific acceleration for
DL—for example, a suitable graphics processing unit (GPU). However, if you do not
have access to a GPU-based platform just yet, the code examples in the first few
chapters are small enough to be run on a somewhat modern central processing
unit (CPU) without too much pain. That is, you can start with a vanilla setup using
the CPU for the first few chapters and then spend the resources needed to get
access to a GPU-accelerated platform1 when you are getting to Chapter 7.

Instructions on how to set up a machine with the necessary development
environment can be found in Appendix I, which also contains links to the code
examples and datasets used in this book.

How to Read This Book
This book is written in a linear fashion and is meant to be read from beginning
to end. We introduce new concepts in each chapter and frequently build on and
refer back to discussions in previous chapters. It is often the case that we try
to avoid introducing too many new concepts at once. This sometimes results in
logically similar concepts being introduced in different chapters. However, we do
sometimes take a step back and try to summarize a group of related techniques
once they have all been introduced. You will see this for hidden units in Chapter 5,

1. Nothing prevents you from running all programming examples on a CPU, but in some cases, you
might need to do it overnight.

Medium term, you should get access to a GPU accelerated platform, but you can
live with a standard CPU for the beginning of the book.

That is a lame excuse for writing ugly code, but whatever works. . .

Preface

xli

output units in Chapter 6, and techniques to address vanishing and exploding
gradients in Chapter 10.

Readers who are complete beginners to neural networks and DL (the core target
audience of the book) will likely find the first four chapters more challenging to
get through than the remainder of the book. We introduce many new concepts.
There is a fair amount of mathematical content, and we implement a neural
network from scratch in Python. We encourage you to still try to get through these
four chapters, but we also think it is perfectly fine to skim through some of the
mathematical equations if you find them challenging. In Chapter 5, we move on
to using a DL framework, and you will find that it will handle many of the details
under the hood, and you can almost forget about them.

APPENDIXES

This book ends with a number of appendixes. Appendixes A through D could have
been included as regular chapters in the book. However, we wanted to avoid
information overload for first-time readers. Therefore, we decided to put some
of the material in appendixes instead because we simply do not think that you
need to learn those concepts in order to follow the narrative of the book. Our
recommendation if you are a complete beginner to ML and DL is to read these
appendixes last.

If you feel that you already know the basics about ML or DL, then it can make
sense for you to read the first four appendixes interspersed among other
chapters during your first pass through the book. Appendix A can be read after
Chapter 3. Appendix B logically follows Chapter 8. Appendix C naturally falls after
Chapter 13. Finally, Appendix D extends topics presented in Chapter 15.

Alternatively, even if you are a beginner but want to learn more details about a
specific topic, then do go ahead and read the appendix that relates to that topic in
the order just presented.

Appendixes E through H are shorter and focus on providing background or
additional detail on some very specific topics. Appendix I describes how to set
up a development environment and how to access the programming examples.
Appendix J contains cheat sheets that summarize many of the concepts described
throughout the book.2

2. Larger versions of these cheat sheets can be downloaded from http://informit.com/
title/9780137470358.

http://informit.com/title/9780137470358
http://informit.com/title/9780137470358

Preface

xlii

GUIDANCE FOR READERS WHO DO NOT WANT TO READ ALL OF
THIS BOOK

We recognize that some readers want to read this book in a more selective
manner. This can be the case if you feel that you already have some of the
basic skills or if you just want to learn about a specific topic. In this section, we
provide some pointers for such readers, but this also means that we use some
terminology that has not yet been introduced. If you are not interested in cherry
picking chapters to read, then feel free to skip this section.

Figure P-5 illustrates three different envisioned tracks to follow depending on
your interests. The leftmost track is what we just described, namely, to read the
book from beginning to end.

If you are very interested in working with images and computer vision,
we suggest that you read Appendix B about object detection, semantic
segmentation, and instance segmentation. Further, the last few chapters of the
book focus on natural language processing, and if that does not interest you,
then we suggest that you skip Chapters 12 through 17. You should still skim
Chapters 9 through 11 about recurrent neural networks. This track is shown in
the middle of the figure.

If you want to focus mostly on language processing, then you can select the
rightmost track. We suggest that you just skim Chapter 8 but do pay attention
to the description of skip connections because it is referenced in later chapters.
Then read Chapters 9 through 13, followed by Appendix C, then Chapters 14 and
15, and conclude with Appendix D. These appendixes contain additional content
about word embeddings and describe GPT and BERT, which are important
network architectures for language processing tasks.

Overview of Each Chapter and Appendix
This section contains a brief overview of each chapter. It can safely be skipped if
you just want to cut to the chase and get started with LDL!

CHAPTER 1 – THE ROSENBLATT PERCEPTRON

The perceptron, a fundamental building block of a neural network, is introduced.
You will learn limitations of the perceptron, and we show how to overcome

Preface

xliii

Figure P-5  Three different tracks to follow when reading this book

Chapters 8: Well known
deeper convolutional
networks. Consider
reading Appendix B:

Detection and
Segmentation.

Chapters 9 – 11:
Recurrent neural

networks and time series
prediction.

Chapters 9 – 11:
Recurrent neural

networks and time series
prediction.

Chapters 12 – 13: Basic
word embeddings.
Consider reading

Appendix C: Additional
word embeddings.

Chapters 14 – 15: Neural
language translation,

attention, and the
Transformer. Consider

reading Appendix D: GPT,
BERT, and RoBERTa.

Generic track

Computer
vision
track

Chapters 1 – 4: Basic
neural networks.
Consider reading

Appendix A about linear
regression and classifiers

after Chapter 3.

Chapters 5 – 6: Get
started with DL

framework. Techniques
enabling DL.

Appendix B: Object
detection, semantic
segmentation and

instance segmentation.

Language
processing

track
Just skim Chapter 8: Well

known deeper
convolutional networks.

Chapters 12 – 13: Basic
word embeddings.

Chapters 14 – 15: Neural
language translation,

attention, and the
Transformer.

Appendix D: GPT, BERT,
 and RoBERTa.

Chapter 7: Convolutional
neural networks and
image classification.

Chapter 18: Next steps.

Consider skipping or
skimming depending
on prior knowledge.

Appendix C: Additional
word embeddings.

Just skim Chapters 9 – 11:
Recurrent neural

networks and time series
prediction.

Chapter 16: Image
captioning.

Chapter 16: Image
captioning.

Chapter 17: Mix of
additional topics.

Preface

xliv

these limitations by combining multiple perceptrons into a network. The chapter
contains some programming examples of how to implement a perceptron and its
learning algorithm.

CHAPTER 2 – GRADIENT-BASED LEARNING

We describe an optimization algorithm known as gradient descent and the theory
behind the perceptron learning algorithm. This is used as a stepping-stone in the
subsequent chapter that describes the learning algorithm for multilevel networks.

CHAPTER 3 – SIGMOID NEURONS AND BACKPROPAGATION

We introduce the backpropagation algorithm that is used for automatic learning
in DNNs. This is both described in mathematical terms and implemented as a
programming example used to do binary classification.

CHAPTER 4 – FULLY CONNECTED NETWORKS APPLIED TO
MULTICLASS CLASSIFICATION

This chapter describes the concept of datasets and how they can be divided into a
training set and a test set. It also touches on a network’s ability to generalize. We
extend the neural network architecture to handle multiclass classification, and
the programming example then applies this to the task of classifying handwritten
digits. This programming example is heavily inspired by an example created by
Nielsen (2015).

CHAPTER 5 – TOWARD DL: FRAMEWORKS AND NETWORK TWEAKS

The example from the previous chapter is reimplemented using a DL framework.
We show how this framework vastly simplifies the code and enables us to model
many variations on our network. Chapter 5 also introduces many techniques that
are needed to enable training of deeper networks.

CHAPTER 6 – FULLY CONNECTED NETWORKS APPLIED TO
REGRESSION

In this chapter, we study how a network can be used to predict a numerical value
instead of classification problems studied in previous chapters. We do this with
a programming example in which we apply the network to a regression problem

Preface

xlv

where we are trying to predict sales prices of houses based on a number of
variables.

CHAPTER 7 – CONVOLUTIONAL NEURAL NETWORKS APPLIED TO
IMAGE CLASSIFICATION

You will learn about the one type of network that initiated the DL boom in 2012,
namely, the convolutional neural network, or just convolutional network. A CNN
can be used in multiple problem domains, but it has been shown to be especially
effective when applied to image classification/analysis. We explain how it works
and walk through a programming example that uses a CNN to classify a more
complex image dataset. In this example, instead of just distinguishing between
different handwritten digits, we identify more complex object classes such as
airplanes, automobiles, birds, and cats.

CHAPTER 8 – DEEPER CNNs AND PRETRAINED MODELS

Here we describe deeper CNNs such as GoogLeNet, VGG, and ResNet. As
a programming example, we show how to download a pretrained ResNet
implementation and how to use it to classify your own images.

CHAPTER 9 – PREDICTING TIME SEQUENCES WITH RECURRENT
NEURAL NETWORKS

One limitation of the networks described in the previous chapters is that they
are not well suited to handle data of different input lengths. Important problem
domains such as text and speech often consist of sequences of varying lengths.
This chapter introduces the recurrent neural network (RNN) architecture, which
is well suited to handle such tasks. We use a programming example to explore
how this network architecture can be used to predict the next data point in a time
series.

CHAPTER 10 – LONG SHORT-TERM MEMORY

We discuss problems that prevent RNNs from learning long-term dependencies.
We describe the long short-term memory (LSTM) technique that enables better
handling of long sequences.

Preface

xlvi

CHAPTER 11 – TEXT AUTOCOMPLETION WITH LSTM AND BEAM
SEARCH

In this chapter, we explore how to use LSTM-based RNNs for longer-term
prediction and introduce a concept known as beam search. We illustrate it with
a programming example in which we build a network that can be used for
autocompletion of text. This is a simple example of natural language generation
(NLG), which is a subset of the greater field of natural language processing (NLP).

CHAPTER 12 – NEURAL LANGUAGE MODELS AND WORD
EMBEDDINGS

The example in the previous chapter is based on individual characters instead of
words. In many cases, it is more powerful to work with words and their semantics
instead of working with individual characters. Chapter 12 introduces the concepts
language models and word encodings in a vector space (also known as embedding
space) that can be used to capture some important relationships between words.
As code examples, we extend our autocompletion example to work with words
instead of characters and explore how to create word vectors in an embedding
space. We also discuss how to build a model that can do sentiment analysis on
text. This is an example of natural language understanding (NLU), which is yet
another subfield of NLP.

CHAPTER 13 – WORD EMBEDDINGS FROM word2vec AND GloVe

In this chapter, we discuss two popular techniques for creating word embeddings.
We download a set of existing embeddings and show how they capture various
semantic relationships between words.

CHAPTER 14 – SEQUENCE-TO-SEQUENCE NETWORKS AND NATURAL
LANGUAGE TRANSLATION

At this point, we introduce a network known as a sequence-to-sequence network,
which is a combination of two recurrent neural networks. A key property of such
a network is that its output sequence can be of a different length than the input
sequence. We combine this type of network with the word encodings studied in
the previous chapter. We build a natural language translator that takes a word
sequence in one language (e.g., French) as an input and outputs a word sequence
in a different language (e.g., English). Further, the output might be a different
number of words and in a different word order than the input word sequence. The

Preface

xlvii

sequence-to-sequence model is an example of an architecture known as encoder-
decoder architecture.

CHAPTER 15 – ATTENTION AND THE TRANSFORMER

In this chapter, we describe a technique known as attention, which can improve
the accuracy of encoder-decoder architectures. We describe how it can be used
to improve the neural machine translator from the previous chapter. We also
describe the attention-based Transformer architecture. It is a key building block
in many NLP applications.

CHAPTER 16 – ONE-TO-MANY NETWORK FOR IMAGE CAPTIONING

We describe in this chapter how a one-to-many network can be used to create
textual descriptions of images and how to extend such a network with attention.
A programming example implements this image-captioning network and
demonstrates how it can be used to generate textual descriptions of a set of
pictures.

CHAPTER 17 – MEDLEY OF ADDITIONAL TOPICS

Up until this point, we have organized topics so that they build on each other. In
this chapter, we introduce a handful of topics that we did not find a good way of
including in the previous chapters. Examples of such topics are autoencoders,
multimodal learning, multitask learning, and neural architecture search.

CHAPTER 18 – SUMMARY AND NEXT STEPS

In the final chapter, we organize and summarize the topics discussed in earlier
chapters to give you a chance to confirm that you have captured the key concepts
described in the book. In addition to the summary, we provide some guidance to
future reading tailored according to the direction you want to take—for example,
highly theoretical versus more practical. We also discuss the topics of ethical AI
and data ethics.

APPENDIX A – LINEAR REGRESSION AND LINEAR CLASSIFIERS

The focus of this book is DL. Our approach to the topic is to jump straight into
DL without first describing traditional ML techniques. However, this appendix

Preface

xlviii

does describe very basic ML topics so you can get an idea of how some of the
presented DL concepts relate to more traditional ML techniques. This appendix
logically follows Chapter 3.

APPENDIX B – OBJECT DETECTION AND SEGMENTATION

In this appendix, we describe techniques to detect and classify multiple objects
in a single image. It includes both coarse-grained techniques that draw bounding
boxes around the objects and fine-grained techniques that pinpoint the individual
pixels in an image that correspond to a certain object. This appendix logically
follows Chapter 8.

APPENDIX C – WORD EMBEDDINGS BEYOND word2vec AND GloVe

In this appendix, we describe some more elaborate techniques for word
embeddings. In particular, these techniques can handle words that did not exist
in the training dataset. Further, we describe a technique that can handle cases
in which a word has a different meaning depending on its context. This appendix
logically follows Chapter 13.

APPENDIX D – GPT, BERT, AND RoBERTa

This appendix describes architectures that build on the Transformer. These
network architectures have resulted in significant improvements in many NLP
tasks. This appendix logically follows Chapter 15.

APPENDIX E – NEWTON-RAPHSON VERSUS GRADIENT DESCENT

In Chapter 2, we introduce a mathematical concept technique known as gradient
descent. This appendix describes a different method, known as Newton-Raphson,
and how it relates to gradient descent.

APPENDIX F – MATRIX IMPLEMENTATION OF DIGIT CLASSIFICATION
NETWORK

In Chapter 4, we include a programming example implementing a neural network
in Python code. This appendix describes two different optimized variations of that
programming example.

Preface

xlix

APPENDIX G – RELATING CONVOLUTIONAL LAYERS TO
MATHEMATICAL CONVOLUTION

In Chapter 7, we describe convolutional neural networks. They are based on,
and named after, a mathematical operation known as convolution. This appendix
describes this connection in more detail.

APPENDIX H – GATED RECURRENT UNITS

In Chapter 10, we describe a network unit known as long short-term memory
(LSTM). In this appendix, we describe a simplified version of this unit known as
gated recurrent unit (GRU).

APPENDIX I – SETTING UP A DEVELOPMENT ENVIRONMENT

This appendix contains information about how to set up a development
environment. This includes how to install a deep learning framework and where
to find the code examples. It also contains a brief section about key differences
between TensorFlow and PyTorch, which are the two DL frameworks used for the
code examples in this book.

APPENDIX J – CHEAT SHEETS

This appendix contains a set of cheat sheets that summarize much of the content
in this book. They are also available for download in a different form factor:
http://informit.com/title/9780137470358.

Register your copy of Learning Deep Learning on the InformIT site for convenient
access to updates and/or corrections as they become available. To start
the registration process, go to informit.com/register and log in or create an
account. Enter the product ISBN (9780137470358) and click Submit. Look
on the Registered Products tab for an Access Bonus Content link next to this
product, and follow that link to access any available bonus materials. If you
would like to be notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

http://informit.com/title/9780137470358
http://informit.com/register

This page intentionally left blank

li

Acknowledgments

I am incredibly grateful for all help I have received in the process of writing this
book. I would like to extend my warmest gratitude to all of you:

•	 Eric Haines for reading this book front to back and providing guidance and
feedback throughout the whole process. Having had you as a sounding board
and discussion partner was invaluable.

•	 Ankit Patel and Amanda Lam for believing in me. Without any prior interaction
with me, you worked extra hours to figure out how to make this book happen.
Thank you for finding the perfect publisher, and thanks to Jenny Chen for
working out the agreement. Being represented by a professional team allowed
me to focus solely on the content of the book.

•	 Nick Cohron, Orazio Gallo, Boris Ginsburg, Samuli Laine, Ryan Prenger, Raul
Puri, Kevin Shih, and Sophie Tabac for providing expert feedback on the
material. All of your comments greatly improved the book.

•	 Aaron Beddes and Torbjörn Ekman for reading an early manuscript and
providing valuable feedback, which gave me confidence to engage all the
people above.

•	 Anders Landin, Feihui Li, Niklas Lindström, Jatin Mitra, Clint Olsen, Sebastian
Sylvan, and Johan Överby for pointing out various issues, both in the
manuscript and in the code examples.

•	 Andy Cook for your vision of how to tie the book to efforts within the NVIDIA
Deep Learning Institute, as well as your involvement in the cover art proposal,
together with Sandra Froehlich and Chris Strach. Sandra and Chris also
contributed with other aspects of style and branding. The original image of the
R.Eva Robot was designed by Gavriil Klimov and Gregor Kopka.

•	 Anima Anandkumar and Craig Clawson for writing the forewords.

Acknowledgments

lii

•	 All people who Pearson involved in the publishing process, in particular Debra
Williams Cauley, Carol Lallier, Julie Nahil, Chuti Prasertsith, and Chris Zahn.

•	 Darrell Boggs for providing your support when I first introduced the idea of
starting this project. Further, the following NVIDIA colleagues all played a role
in making this happen by supporting the project or connecting me with the
right people: Tomas Akenine-Möller, Anima Anandkumar, Jonathan Cohen, Greg
Estes, Sanja Fidler, David Hass, Brian Kelleher, Will Ramey, and Mohammad
Shoeybi.

•	 The research community and other authors. This book does not contain original
ideas. Its focus is on describing published work from multiple sources in a
common framework. This would not have been possible without the original
publications as well as multiple books on the topic. I have done my best to list
all these sources in the bibliography.

Finally, I am grateful to my wife, Jennifer, and my children, Sebastian and Sofia,
for being understanding and enabling me to spend the time required to write this
book. I also want to give credit to our dog, Babette, and late cat, Stella, because I
used their pictures in various object classification examples.

liii

About the Author

Magnus Ekman, PhD, is a Director of Architecture at NVIDIA Corporation. His
doctorate is in computer engineering, and he holds multiple patents. He was
first exposed to artificial neural networks in the late 1990s in his native country,
Sweden. After some dabbling in evolutionary computation, he focused on
computer architecture and relocated to Silicon Valley, where he lives with his
wife, Jennifer, children, Sebastian and Sofia, and dog, Babette. He has previously
worked with processor design and R&D at Sun Microsystems and Samsung
Research America and has been involved in starting two companies, one of which
(Skout) was later acquired by The Meet Group, Inc. In his current role at NVIDIA,
he leads an engineering team working on CPU performance and power efficiency
for chips targeting markets ranging from autonomous vehicles to data centers for
artificial intelligence (AI).

As the deep learning (DL) field exploded in the past few years, fueled by NVIDIA’s
GPU technology and CUDA, Dr. Ekman found himself in the midst of a company
expanding beyond computer graphics and becoming a DL powerhouse. As a part
of that journey, he challenged himself to stay up to date with the most recent
developments in the field. He considers himself an educator, and in the process of
writing Learning Deep Learning (LDL) he partnered with the NVIDIA Deep Learning
Institute (DLI), which offers hands-on training in AI, accelerated computing, and
accelerated data science. He is thrilled about DLI’s plans to add LDL to its existing
portfolio of self-paced online courses; live, instructor-led workshops; educator
programs; and teaching kits.

This page intentionally left blank

117

Chapter 5

Toward DL:
Frameworks and
Network Tweaks

An obvious next step would be to see if adding more layers to our neural
networks results in even better accuracy. However, it turns out getting deeper
networks to learn well is a major obstacle. A number of innovations were needed
to overcome these obstacles and enable deep learning (DL). We introduce the
most important ones later in this chapter, but before doing so, we explain how to
use a DL framework. The benefit of using a DL framework is that we do not need
to implement all these new techniques from scratch in our neural network. The
downside is that you will not deal with the details in as much depth as in previous
chapters. You now have a solid enough foundation to build on. Now we switch
gears a little and focus on the big picture of solving real-world problems using
a DL framework. The emergence of DL frameworks played a significant role in
making DL practical to adopt in the industry as well as in boosting productivity of
academic research.

Chapter 5  Toward DL: Frameworks and Network Tweaks

118

Programming Example: Moving to a
DL Framework

In this programming example, we show how to implement the handwritten digit
classification from Chapter 4, “Fully Connected Networks Applied to Multiclass
Classification,” using a DL framework. In this book, we have chosen to use the two
frameworks TensorFlow and PyTorch. Both of these frameworks are popular and
flexible. The TensorFlow versions of the code examples are interspersed throughout
the book, and the PyTorch versions are available online on the book Web site.

TensorFlow provides a number of different constructs and enables you to
work at different abstraction levels using different application programming
interfaces (APIs). In general, to keep things simple, you want to do your work at
the highest abstraction level possible because that means that you do not need
to implement the low-level details. For the examples we will study, the Keras API
is a suitable abstraction level. Keras started as a stand-alone library. It was not
tied to TensorFlow and could be used with multiple DL frameworks. However, at
this point, Keras is fully supported inside of TensorFlow itself. See Appendix I for
information about how to install TensorFlow and what version to use.

Appendix I also contains information about how to install PyTorch if that is your
framework of choice. Almost all programming constructs in this book exist both
in TensorFlow and in PyTorch. The section “Key Differences between PyTorch
and TensorFlow” in Appendix I describes some key differences between the two
frameworks. You will find it helpful if you do not want to pick a single framework
but want to master both of them.

The frameworks are implemented as Python libraries. That is, we still write our
program as a Python program and we just import the framework of choice as
a library. We can then use DL functions from the famework in our program. The
initialization code for our TensorFlow example is shown in Code Snippet 5-1.

Code Snippet 5-1  Import Statements for Our TensorFlow/Keras Example

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.utils import to_categorical

import numpy as np

import logging

Programming Example: Moving to a DL Framework

119

As you can see in the code, TensorFlow has its own random seed that needs to
be set if we want reproducible results. However, this still does not guarantee
that repeated runs produce identical results for all types of networks, so for the
remainder of this book, we will not worry about setting the random seeds. The
preceding code snippet also sets the logging level to only print out errors while
suppressing warnings.

We then load and prepare our MNIST dataset. Because MNIST is a common
dataset, it is included in Keras. We can access it by a call to keras.datasets.
mnist and load_data. The variables train_images and test_images will
contain the input values, and the variables train_labels and test_labels
will contain the ground truth (Code Snippet 5-2).

Just as before, we need to standardize the input data and one-hot encode the
labels. We use the function to_categorical to one-hot encode our labels

Load training and test datasets.

mnist = keras.datasets.mnist

(train_images, train_labels), (test_images,

 test_labels) = mnist.load_data()

Standardize the data.

mean = np.mean(train_images)

stddev = np.std(train_images)

train_images = (train_images - mean) / stddev

test_images = (test_images - mean) / stddev

One-hot encode labels.

train_labels = to_categorical(train_labels, num_classes=10)

test_labels = to_categorical(test_labels, num_classes=10)

Code Snippet 5-2  Load and Prepare the Training and Test Datasets

tf.get_logger().setLevel(logging.ERROR)

tf.random.set_seed(7)

EPOCHS = 20

BATCH_SIZE = 1

Chapter 5  Toward DL: Frameworks and Network Tweaks

120

instead of doing it manually, as we did in our previous example. This serves
as an example of how the framework provides functionality to simplify our
implementation of common tasks.

We are now ready to create our network. There is no need to define variables for
individual neurons because the framework provides functionality to instantiate
entire layers of neurons at once. We do need to decide how to initialize the
weights, which we do by creating an initializer object, as shown in Code
Snippet 5-3. This might seem somewhat convoluted but will come in handy when
we want to experiment with different initialization values.

If you are not so familiar with Python, it is worth pointing out that functions can
be defined with optional arguments, and to avoid having to pass the arguments
in a specific order, optional arguments can be passed by first naming which
argument we are trying to set. An example is the num_classes argument in the
to_categorical function.

Object used to initialize weights.

initializer = keras.initializers.RandomUniform(

 minval=-0.1, maxval=0.1)

Create a Sequential model.

784 inputs.

Two Dense (fully connected) layers with 25 and 10 neurons.

tanh as activation function for hidden layer.

Logistic (sigmoid) as activation function for output layer.

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(25, activation='tanh',

 kernel_initializer=initializer,

 bias_initializer='zeros'),

 keras.layers.Dense(10, activation='sigmoid',

 kernel_initializer=initializer,

 bias_initializer='zeros')])

Code Snippet 5-3  Create the Network

Programming Example: Moving to a DL Framework

121

The network is created by instantiating a keras.Sequential object, which
implies that we are using the Keras Sequential API. (This is the simplest API, and
we use it for the next few chapters until we start creating networks that require a
more advanced API.) We pass a list of layers as an argument to the Sequential
class. The first layer is a Flatten layer, which does not do computations but only
changes the organization of the input. In our case, the inputs are changed from a
28×28 array into an array of 784 elements. If the data had already been organized
into a 1D-array, we could have skipped the Flatten layer and simply declared
the two Dense layers. If we had done it that way, then we would have needed to
pass an input_shape parameter to the first Dense layer because we always
have to declare the size of the inputs to the first layer in the network.

The second and third layers are both Dense layers, which means they are fully
connected. The first argument tells how many neurons each layer should have,
and the activation argument tells the type of activation function; we choose
tanh and sigmoid, where sigmoid means the logistic sigmoid function.
We pass our initializer object to initialize the regular weights using the
kernel_initializer argument. The bias weights are initialized to 0 using the
bias_initializer argument.

One thing that might seem odd is that we are not saying anything about the
number of inputs and outputs for the second and third layers. If you think about it,
the number of inputs is fully defined by saying that both layers are fully connected
and the fact that we have specified the number of neurons in each layer along
with the number of inputs to the first layer of the network. This discussion
highlights that using the DL framework enables us to work at a higher abstraction
level. In particular, we use layers instead of individual neurons as building blocks,
and we need not worry about the details of how individual neurons are connected
to each other. This is often reflected in our figures as well, where we work with
individual neurons only when we need to explain alternative network topologies.
On that note, Figure 5-1 illustrates our digit recognition network at this higher
abstraction level. We use rectangular boxes with rounded corners to depict a
layer of neurons, as opposed to circles that represent individual neurons.

We are now ready to train the network, which is done by Code Snippet 5-4. We
first create a keras.optimizer.SGD object. This means that we want to use
stochastic gradient descent (SGD) when training the network. Just as with the
initializer, this might seem somewhat convoluted, but it provides flexibility to
adjust parameters for the learning process, which we explore soon. For now,
we just set the learning rate to 0.01 to match what we did in our plain Python
example. We then prepare the model for training by calling the model’s compile

Chapter 5  Toward DL: Frameworks and Network Tweaks

122

function. We provide parameters to specify which loss function to use (where we
use mean_squared_error as before), the optimizer that we just created and
that we are interested in looking at the accuracy metric during training.

We finally call the fit function for the model, which starts the training process.
As the function name indicates, it fits the model to the data. The first two
arguments specify the training dataset. The parameter validation_data is

Fully connected 25 tanh neurons

Fully connected 10
logistic neurons

Ten outputs representing ten classes

28x28 pixel input image

Flatten

Figure 5-1  Digit classification network using layers as building blocks

Use stochastic gradient descent (SGD) with

learning rate of 0.01 and no other bells and whistles.

MSE as loss function and report accuracy during training.

opt = keras.optimizers.SGD(learning_rate=0.01)

model.compile(loss='mean_squared_error', optimizer = opt,

 metrics =['accuracy'])

Train the model for 20 epochs.

Shuffle (randomize) order.

Update weights after each example (batch_size=1).

history = model.fit(train_images, train_labels,

 validation_data=(test_images, test_labels),

 epochs=EPOCHS, batch_size=BATCH_SIZE,

 verbose=2, shuffle=True)

Code Snippet 5-4  Train the Network

Programming Example: Moving to a DL Framework

123

the test dataset. Our variables EPOCHS and BATCH_SIZE from the initialization
code determine how many epochs to train for and what batch size we use. We
had set BATCH_SIZE to 1, which means that we update the weight after a single
training example, as we did in our plain Python example. We set verbose=2 to
get a reasonable amount of information printed during the training process and
set shuffle to True to indicate that we want the order of the training data to be
randomized during the training process. All in all, these parameters match what
we did in our plain Python example.

Depending on what TensorFlow version you run, you might get a fair number of
printouts about opening libraries, detecting the graphics processing unit (GPU),
and other issues as the program starts. If you want it less verbose, you can set
the environment variable TF_CPP_MIN_LOG_LEVEL to 2. If you are using bash,
you can do that with the following command line:

export TF_CPP_MIN_LOG_LEVEL=2

Another option is to add the following code snippet at the top of your program.

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

The printouts for the first few training epochs are shown here. We stripped out
some timestamps to make it more readable.

Epoch 1/20

loss: 0.0535 - acc: 0.6624 - val_loss: 0.0276 - val_acc: 0.8893

Epoch 2/20

loss: 0.0216 - acc: 0.8997 - val_loss: 0.0172 - val_acc: 0.9132

Epoch 3/20

loss: 0.0162 - acc: 0.9155 - val_loss: 0.0145 - val_acc: 0.9249

Epoch 4/20

loss: 0.0142 - acc: 0.9227 - val_loss: 0.0131 - val_acc: 0.9307

Chapter 5  Toward DL: Frameworks and Network Tweaks

124

Epoch 5/20

loss: 0.0131 - acc: 0.9274 - val_loss: 0.0125 - val_acc: 0.9309

Epoch 6/20

loss: 0.0123 - acc: 0.9313 - val_loss: 0.0121 - val_acc: 0.9329

In the printouts, loss represents the mean squared error (MSE) of the training
data, acc represents the prediction accuracy on the training data, val_loss
represents the MSE of the test data, and val_acc represents the prediction
accuracy of the test data. It is worth noting that we do not get exactly the same
learning behavior as was observed in our plain Python model. It is hard to know
why without diving into the details of how TensorFlow is implemented. Most likely,
it could be subtle issues related to how initial parameters are randomized and
the random order in which training examples are picked. Another thing worth
noting is how simple it was to implement our digit classification application using
TensorFlow. Using the TensorFlow framework enables us to study more advanced
techniques while still keeping the code size at a manageable level.

We now move on to describing some techniques needed to enable learning in
deeper networks. After that, we can finally do our first DL experiment in the next
chapter.

The Problem of Saturated Neurons and
Vanishing Gradients

In our experiments, we made some seemingly arbitrary changes to the learning
rate parameter as well as to the range with which we initialized the weights. For
our perceptron learning example and the XOR network, we used a learning rate
of 0.1, and for the digit classification, we used 0.01. Similarly, for the weights, we
used the range −1.0 to +1.0 for the XOR example, whereas we used −0.1 to +0.1
for the digit example. A reasonable question is whether there is some method to
the madness. Our dirty little secret is that we changed the values simply because
our networks did not learn well without these changes. In this section, we discuss
the reasons for this and explore some guidelines that can be used when selecting
these seemingly random parameters.

The Problem of Saturated Neurons and Vanishing Gradients

125

To understand why it is sometimes challenging to get networks to learn, we
need to look in more detail at our activation function. Figure 5-2 shows our
two S-shaped functions. It is the same chart that we showed in Figure 3-4 in
Chapter 3, “Sigmoid Neurons and Backpropagation.”

One thing to note is that both functions are uninteresting outside of the shown
z-interval (which is why we showed only this z-interval in the first place). Both
functions are more or less straight horizontal lines outside of this range.

Now consider how our learning process works. We compute the derivative of the
error function and use that to determine which weights to adjust and in what
direction. Intuitively, what we do is tweak the input to the activation function
(z in the chart in Fig. 5-2) slightly and see if it affects the output. If the z-value is
within the small range shown in the chart, then this will change the output (the
y-value in the chart). Now consider the case when the z-value is a large positive or
negative number. Changing the input by a small amount (or even a large amount)
will not affect the output because the output is a horizontal line in those regions.
We say that the neuron is saturated.

Saturated neurons can cause learning to stop completely. As you remember, when
we compute the gradient with the backpropagation algorithm, we propagate the
error backward through the network, and part of that process is to multiply the
derivative of the loss function by the derivative of the activation function. Consider

Figure 5-2  The two S-shaped functions tanh and logistic sigmoid

Chapter 5  Toward DL: Frameworks and Network Tweaks

126

what the derivatives of the two activation functions above are for z-values of
significant magnitude (positive or negative). The derivative is 0! In other words, no
error will propagate backward, and no adjustments will be done to the weights.
Similarly, even if the neuron is not fully saturated, the derivative is less than 0.
Doing a series of multiplications (one per layer) where each number is less than
0 results in the gradient approaching 0. This problem is known as the vanishing
gradient problem. Saturated neurons are not the only reason for vanishing
gradients, as we will see later in the book.

Initialization and Normalization
Techniques to Avoid Saturated Neurons

We now explore how we can prevent or address the problem of saturated
neurons. Three techniques that are commonly used—and often combined—are
weight initialization, input standardization, and batch normalization.

WEIGHT INITIALIZATION

The first step in avoiding saturated neurons is to ensure that our neurons are
not saturated to begin with, and this is where weight initialization is important. It
is worth noting that, although we use the same type of neurons in our different
examples, the actual parameters for the neurons that we have shown are much
different. In the XOR example, the neurons in the hidden layer had three inputs
including the bias, whereas for the digit classification example, the neurons in
the hidden layer had 785 inputs. With that many inputs, it is not hard to imagine
that the weighted sum can swing far in either the negative or positive direction
if there is just a little imbalance in the number of negative versus positive inputs
if the weights are large. From that perspective, it kind of makes sense that if
a neuron has a large number of inputs, then we want to initialize the weights
to a smaller value to have a reasonable probability of still keeping the input
to the activation function close to 0 to avoid saturation. Two popular weight
initialization strategies are Glorot initialization (Glorot and Bengio, 2010) and He
initialization (He et al., 2015b). Glorot initialization is recommended for tanh- and

Saturated neurons are insensitive to input changes because their derivative is
0 in the saturated region. This is one cause of the vanishing gradient problem
where the backpropagated error is 0 and the weights are not adjusted.

Initialization and Normalization Techniques to Avoid Saturated Neurons

127

sigmoid-based neurons, and He initialization is recommended for ReLU-based
neurons (described later). Both of these take the number of inputs into account,
and Glorot initialization also takes the number of outputs into account. Both Glorot
and He initialization exist in two flavors, one that is based on a uniform random
distribution and one that is based on a normal random distribution.

We have previously seen how we can initialize the weights from a uniform
random distribution in TensorFlow by using an initializer, as was done in Code
Snippet 5-4. We can choose a different initializer by declaring any one of the
supported initializers in Keras. In particular, we can declare a Glorot and a He
initializer in the following way:

initializer = keras.initializers.glorot_uniform()

initializer = keras.initializers.he_normal()

Parameters to control these initializers can be passed to the initializer
constructor. In addition, both the Glorot and He initializers come in the two flavors
uniform and normal. We picked uniform for Glorot and normal for He because
that is what was described in the publications where they were introduced.

If you do not feel the need to tweak any of the parameters, then there is no
need to declare an initializer object at all, but you can just pass the name of the
initializer as a string to the function where you create the layer. This is shown
in Code Snippet 5-5, where the kernel_initializer argument is set to
'glorot_uniform'.

We do not go into the formulas for Glorot and He initialization, but they are
good topics well worth considering for further reading (Glorot and Bengio,
2010; He et al., 2015b).

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(25, activation='tanh',

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros'),

 keras.layers.Dense(10, activation='sigmoid',

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros')])

Code Snippet 5-5  Setting an Initializer by Passing Its Name as a String

Chapter 5  Toward DL: Frameworks and Network Tweaks

128

We can separately set bias_initializer to any suitable initializer, but as
previously stated, a good starting recommendation is to just initialize the bias
weights to 0, which is what the 'zeros' initializer does.

INPUT STANDARDIZATION

In addition to initializing the weights properly, it is important to preprocess the
input data. In particular, standardizing the input data to be centered around 0 and
with most values close to 0 will reduce the risk of saturating neurons from the
start. We have already used this in our implementation; let us discuss it in a little
bit more detail. As stated earlier, each pixel in the MNIST dataset is represented
by an integer between 0 and 255, where 0 represents the blank paper and a
higher value represents pixels where the digit was written.1 Most of the pixels
will be either 0 or a value close to 255, where only the edges of the digits are
somewhere in between. Further, a majority of the pixels will be 0 because a digit
is sparse and does not cover the entire 28×28 image. If we compute the average
pixel value for the entire dataset, then it turns out that it is about 33. Clearly, if we
used the raw pixel values as inputs to our neurons, then there would be a big risk
that the neurons would be far into the saturation region. By subtracting the mean
and dividing by the standard deviation, we ensure that the neurons get presented
with input data that is in the region that does not lead to saturation.

BATCH NORMALIZATION

Normalizing the inputs does not necessarily prevent saturation of neurons for
hidden layers, and to address that problem Ioffe and Szegedy (2015) introduced
batch normalization. The idea is to normalize values inside of the network as well
and thereby prevent hidden neurons from becoming saturated. This may sound
somewhat counterintuitive. If we normalize the output of a neuron, does that not
result in undoing the work of that neuron? That would be the case if it truly was
just normalizing the values, but the batch normalization function also contains
parameters to counteract this effect. These parameters are adjusted during
the learning process. Noteworthy is that after the initial idea was published,
subsequent work indicated that the reason batch normalization works is different
than the initial explanation (Santurkar et al., 2018).

1. This might seem odd because a value of 0 typically represents black and a value of 255 typically
represents white for a grayscale image. However, that is not the case for this dataset.

Batch normalization (Ioffe and Szegedy, 2015) is a good topic for further
reading.

Initialization and Normalization Techniques to Avoid Saturated Neurons

129

There are two main ways to apply batch normalization. In the original paper, the
suggestion was to apply the normalization on the input to the activation function
(after the weighted sum). This is shown to the left in Figure 5-3.

This can be implemented in Keras by instantiating a layer without an activation
function, followed by a BatchNormalization layer, and then apply an
activation function without any new neurons, using the Activation layer. This is
shown in Code Snippet 5-6.

However, it turns out that batch normalization also works well if done after
the activation function, as shown to the right in Figure 5-3. This alternative
implementation is shown in Code Snippet 5-7.

Figure 5-3  Left: Batch normalization as presented by Ioffe and Szegedy (2015). The
layer of neurons is broken up into two parts. The first part is the weighted sums for
all neurons. Batch normalization is applied to these weighted sums. The activation
function (tanh) is applied to the output of the batch normalization operation.
Right: Batch normalization is applied to the output of the activation functions.

keras.layers.Dense(64),

keras.layers.BatchNormalization(),

keras.layers.Activation('tanh'),

Code Snippet 5-6  Batch Normalization before Activation Function

keras.layers.Dense(64, activation='tanh'),

keras.layers.BatchNormalization(),

Code Snippet 5-7  Batch Normalization after Activation Function

Chapter 5  Toward DL: Frameworks and Network Tweaks

130

Cross-Entropy Loss Function to Mitigate
Effect of Saturated Output Neurons

One reason for saturation is that we are trying to make the output neuron get to
a value of 0 or 1, which itself drives it to saturation. A simple trick introduced by
LeCun, Bottou, Orr, and Müller (1998) is to instead set the desired output to 0.1 or
0.9, which restricts the neuron from being pushed far into the saturation region.
We mention this technique for historical reasons, but a more mathematically
sound technique is recommended today.

We start by looking at the first couple of factors in the backpropagation algorithm;
see Chapter 3, Equation 3-1(1) for more context. The formulas for the MSE loss
function, the logistic sigmoid function, and their derivatives for a single training
example are restated here:2

 : ˆ
(y ˆ)

2
, ˆ ˆ

2

MSE loss e y
y

e y y y() () ()=
−

′ = − −

:
1

1
, 1 Logistic S z

e
S z S z S zf z f f ff

()() () () ()=
−

′ = ⋅ −−

We then start backpropagation by using the chain rule to compute the derivative
of the loss function and multiply by the derivative of the logistic sigmoid function
to arrive at the following as the error term for the output neuron:

 :
ˆ

ˆ
ŷOutput neuron error term

e

z

e

y

y

z
y S z

f f
f()()∂

∂
=

∂
∂

⋅
∂
∂

= − − ⋅ ′

We chose to not expand S'(z
f
) in the expression because it makes the formula

unnecessarily cluttered. The formula reiterates what we stated in one of the
previous sections: that if S'(z

f
) is close to 0, then no error will backpropagate

through the network. We show this visually in Figure 5-4. We simply plot the
derivative of the loss function and the derivative of the logistic sigmoid function
as well as the product of the two. The chart shows these entities as functions
of the output value y (horizontal axis) of the output neuron. The chart assumes that
the desired output value (ground truth) is 0. That is, at the very left in the chart,
the output value matches the ground truth, and no weight adjustment is needed.

2. In the equations in Chapter 3, we referred to the output of the last neuron as f to avoid confusing it
with the output of the other neuron, g. In this chapter, we use a more standard notation and refer to
predicted value (the output of the network) as ŷ .

Cross-Entropy Loss Function to Mitigate Effect of Saturated Output Neurons

131

As we move to the right in the chart, the output is further away from the ground
truth, and the weights need to be adjusted. Looking at the figure, we see that the
derivative of the loss function (blue) is 0 if the output value is 0, and as the output
value increases, the derivative increases. This makes sense in that the further away
from the true value the output is, the larger the derivative will be, which will cause
a larger error to backpropagate through the network. Now look at the derivative
of the logistic sigmoid function. It also starts at 0 and increases as the output
starts deviating from 0. However, as the output gets closer to 1, the derivative is
decreasing again and starts approaching 0 as the neuron enters its saturation
region. The green curve shows the resulting product of the two derivatives
(the error term for the output neuron), and it also approaches 0 as the output
approaches 1 (i.e., the error term becomes 0 when the neuron saturates).

Looking at the charts, we see that the problem arises from the combination of
the derivative of the activation function approaching 0, whereas the derivative of
the loss function never increases beyond 1, and multiplying the two will therefore
approach 0. One potential solution to this problem is to use a different loss
function whose derivative can take on much higher values than 1. Without further
rationale at this point, we introduce the function in Equation 5-1 that is known as
the cross-entropy loss function:

 : (ŷ) y ln ˆ 1 y ln 1 ŷCross entropy loss e y()() () ()= − ⋅ + − ⋅ −

Equation 5-1  Cross-entropy loss function

1. Derivative of MSE loss
 increases as network output

moves further away from
ground truth.

The resulting error term for the3. T
tput neuron (green curve)out
zero(!) when the network outputis z
the opposite if ground truth.is t

2. Derivative of output neuron2
ogistic function initiallyl
ncreases as the network outputi
moves away from ground truthm
but decreases as neuron entersb
saturation region.s

Network output is
opposite of ground truth
(output value results from
a weighted sum z >>0).

Output neuron error term (green curve) is well behaved
in the range where network output matches ground truth
and up to a point where it is moderately far away.

Network output matches
ground truth
(output value results from
a weighted sum z << 0).

Figure 5-4  Derivatives and error term as function of neuron output when ground
truth y (denoted y_target in the figure) is 0

Chapter 5  Toward DL: Frameworks and Network Tweaks

132

Substituting the cross-entropy loss function into our expression for the error term
of the output neuron yields Equation 5-2:

ˆ

ˆ

ˆ
1 y

1 ŷ
ŷ y

e

z

e

y

y

z

y

y
S z

f f
f()∂

∂
=

∂
∂

⋅
∂
∂

= − +
−
−







⋅ ′ = −

Equation 5-2  Derivative of cross-entropy loss function and derivative of logistic
output unit combined into a single expression

We spare you from the algebra needed to arrive at this result, but if you squint
your eyes a little bit and remember that the logistic sigmoid function has some
ex terms, and we know that ln(ex) = x and the derivative of ln(x) = x−1, then it does
not seem farfetched that our seemingly complicated formulas might end up
as something as simple as that. Figure 5-5 shows the equivalent plot for these
functions. The y-range is increased compared to Figure 5-4 to capture more of
the range of the new loss function. Just as discussed, the derivative of the cross-
entropy loss function does increase significantly at the right end of the chart,
and the resulting product (the green line) now approaches 1 in the case where
the neuron is saturated. That is, the backpropagated error is no longer 0, and the
weight adjustments will no longer be suppressed.

Although the chart seems promising, you might feel a bit uncomfortable to just
start using Equation 5-2 without further explanation. We used the MSE loss
function in the first place, you may recall, on the assumption that your likely
familiarity with linear regression would make the concept clearer. We even stated
that using MSE together with the logistic sigmoid function is not a good choice.

Derivative of cross-entropy
loss increases steeply
toward infinity as network
output moves further away
from ground truth.

The resulting error term for the
output neuron (green curve)
is no longer zero when output is
opposite of ground truth.

Figure 5-5  Derivatives and error term when using cross-entropy loss function.
Ground truth y (denoted y_target in the figure) is 0, as in Figure 5-4.

Cross-Entropy Loss Function to Mitigate Effect of Saturated Output Neurons

133

We have now seen in Figure 5-4 why this is the case. Still, let us at least give you
some insight into why using the cross-entropy loss function instead of the MSE
loss function is acceptable. Figure 5-6 shows how the value of the MSE and cross-
entropy loss function varies as the output of the neuron changes from 0 to 1 in the
case of a ground truth of 0. As you can see, as y moves further away from the true
value, both MSE and the cross-entropy function increase in value, which is the
behavior that we want from a loss function.

Intuitively, by looking at the chart in Figure 5-6, it is hard to argue that one function
is better than the other, and because we have already shown in Figure 5-4 that
MSE is not a good function, you can see the benefit of using the cross-entropy loss
function instead. One thing to note is that, from a mathematical perspective, it does
not make sense to use the cross-entropy loss function together with a tanh neuron
because the logarithm for negative numbers is not defined.

Figure 5-6 V alue of the mean squared error (blue) and cross-entropy loss
(orange) functions as the network output ŷ changes (horizontal axis). The
assumed ground truth is 0.

As further reading, we recommend learning about information theory and
maximum-likelihood estimation, which provides a rationale for the use of the
cross-entropy loss function.

Chapter 5  Toward DL: Frameworks and Network Tweaks

134

In the preceding examples, we assumed a ground truth of 0. For completeness,
Figure 5-7 shows how the derivatives behave in the case of a ground truth of 1.

The resulting charts are flipped in both directions, and the MSE function shows
exactly the same problem as for the case when ground truth was 0. Similarly, the
cross-entropy loss function solves the problem in this case as well.

Figure 5-7  Behavior of the different derivatives when assuming a ground truth
of 1. Top: Mean squared error loss function. Bottom: Cross-entropy loss function.

Cross-Entropy Loss Function to Mitigate Effect of Saturated Output Neurons

135

COMPUTER IMPLEMENTATION OF THE CROSS-ENTROPY
LOSS FUNCTION

If you find an existing implementation of a code snippet that calculates the cross-
entropy loss function, then you might be confused at first because it does not
resemble what is stated in Equation 5-1. A typical implementation can look like
that in Code Snippet 5-8. The trick is that, because we know that y in Equation 5-1
is either 1.0 or 0.0, the factors y and (1-y) will serve as an if statement and
select one of the ln statements.

Apart from what we just described, there is another thing to consider when
implementing backpropagation using the cross-entropy loss function in a
computer program. It can be troublesome if you first compute the derivative of
the cross-entropy loss (as in Equation 5-2) and then multiply by the derivative
of the activation function for the output unit. As shown in Figure 5-5, in certain
points, one of the functions approaches 0 and one approaches infinity, and
although this mathematically can be simplified to the product approaching 1, due
to rounding errors, a numerical computation might not end up doing the right
thing. The solution is to analytically simplify the product to arrive at the combined
expression in Equation 5-2, which does not suffer from this problem.

In reality, we do not need to worry about these low-level details because we are
using a DL framework. Code Snippet 5-9 shows how we can tell Keras to use the
cross-entropy loss function for a binary classification problem. We simply state
loss='binary_crossentropy' as an argument to the compile function.

def cross_entropy(y_truth, y_predict):
 if y_truth == 1.0:

 return -np.log(y_predict)

 else:

 return -np.log(1.0-y_predict)

Code Snippet 5-8  Python Implementation of the Cross-Entropy Loss Function

model.compile(loss='binary_crossentropy',

 optimizer = optimizer_type,

 metrics =['accuracy'])

Code Snippet 5-9  Use Cross-Entropy Loss for a Binary Classification Problem in
TensorFlow

Chapter 5  Toward DL: Frameworks and Network Tweaks

136

In Chapter 6, “Fully Connected Networks Applied to Regression,” we detail
the formula for the categorical cross-entropy loss function, which is used for
multiclass classification problems. In TensorFlow, it is as simple as stating
loss='categorical_crossentropy'.

Different Activation Functions to Avoid
Vanishing Gradient in Hidden Layers

The previous section showed how we can solve the problem of saturated neurons
in the output layer by choosing a different loss function. However, this does not
help for the hidden layers. The hidden neurons can still be saturated, resulting
in derivatives close to 0 and vanishing gradients. At this point, you may wonder
if we are solving the problem or just fighting symptoms. We have modified
(standardized) the input data, used elaborate techniques to initialize the weights
based on the number of inputs and outputs, and changed our loss function
to accommodate the behavior of our activation function. Could it be that the
activation function itself is the cause of the problem?

How did we end up with the tanh and logistic sigmoid functions as activation
functions anyway? We started with early neuron models from McCulloch
and Pitts (1943) and Rosenblatt (1958) that were both binary in nature. Then
Rumelhart, Hinton, and Williams (1986) added the constraint that the activation
function needs to be differentiable, and we switched to the tanh and logistic
sigmoid functions. These functions kind of look like the sign function yet are still
differentiable, but what good is a differentiable function in our algorithm if its
derivative is 0 anyway?

Based on this discussion, it makes sense to explore alternative activation
functions. One such attempt is shown in Figure 5-8, where we have complicated
the activation function further by adding a linear term 0.2*x to the output to
prevent the derivative from approaching 0.

Although this function might well do the trick, it turns out that there is no good
reason to overcomplicate things, so we do not need to use this function. We
remember from the charts in the previous section that a derivative of 0 was a
problem only in one direction because, in the other direction, the output value
already matched the ground truth anyway. In other words, it is fine with a
derivative of 0 on one side of the chart. Based on this reasoning, we can consider

Different Activation Functions to Avoid Vanishing Gradient in Hidden Layers

137

the rectified linear unit (ReLU) activation function in Figure 5-9, which has been
shown to work for neural networks (Glorot, Bordes, and Bengio, 2011).

Now, a fair question is how this function can possibly be used after our entire
obsession with differentiable functions. The function in Figure 5-9 is not

Figure 5-8 M odified tanh function with an added linear term

Figure 5-9 R ectified linear unit (ReLU) activation function

Chapter 5  Toward DL: Frameworks and Network Tweaks

138

differentiable at x = 0. However, this does not present a big problem. It is true
that from a mathematical point of view, the function is not differentiable in
that one point, but nothing prevents us from just defining the derivative as
1 in that point and then trivially using it in our backpropagation algorithm
implementation. The key issue to avoid is a function with a discontinuity, like
the sign function. Can we simply remove the kink in the line altogether and use
y = x as an activation function? The answer is that this does not work. If you
do the calculations, you will discover that this will let you collapse the entire
network into a linear function and, as we saw in Chapter 1, “The Rosenblatt
Perceptron,” a linear function (like the perceptron) has severe limitations.
It is even common to refer to the activation function as a nonlinearity, which
stresses how important it is to not pick a linear function as an activation
function.

An obvious benefit with the ReLU function is that it is cheap to compute. The
implementation involves testing only whether the input value is less than 0,
and if so, it is set to 0. A potential problem with the ReLU function is when
a neuron starts off as being saturated in one direction due to a combination
of how the weights and inputs happen to interact. Then that neuron will not
participate in the network at all because its derivative is 0. In this situation, the
neuron is said to be dead. One way to look at this is that using ReLUs gives the
network the ability to remove certain connections altogether, and it thereby
builds its own network topology, but it could also be that it accidentally kills
neurons that could be useful if they had not happened to die. Figure 5-10
shows a variation of the ReLU function known as leaky ReLU, which is defined
so its derivative is never 0.

The activation function should be nonlinear and is even often referred to as a
nonlinearity instead of activation function.

Given that humans engage in all sorts of activities that arguably kill their brain
cells, it is reasonable to ask whether we should prevent our network from
killing its neurons, but that is a deeper discussion.

Different Activation Functions to Avoid Vanishing Gradient in Hidden Layers

139

All in all, the number of activation functions we can think of is close to unlimited,
and many of them work equally well. Figure 5-11 shows a number of important
activation functions that we should add to our toolbox. We have already seen tanh,
ReLU, and leaky ReLU (Xu, Wang, et al., 2015). We now add the softplus function
(Dugas et al., 2001), the exponential linear unit also known as elu (Shah et al.,
2016), and the maxout function (Goodfellow et al., 2013). The maxout function is
a generalization of the ReLU function in which, instead of taking the max value
of just two lines (a horizontal line and a line with positive slope), it takes the max
value of an arbitrary number of lines. In our example, we use three lines, one with
a negative slope, one that is horizontal, and one with a positive slope.

All of these activation functions except for tanh should be effective at fighting
vanishing gradients when used as hidden units. There are also some alternatives
to the logistic sigmoid function for the output units, but we save that for Chapter 6.

Figure 5-10  Leaky rectified linear unit (ReLU) activation function

The tanh, ReLU, leaky ReLU, softplus, elu, and maxout functions can all be
considered for hidden units, but tanh has a problem with vanishing gradients.

There is no need to memorize the formulas for the activation functions at this
point, but just focus on their shape.

Chapter 5  Toward DL: Frameworks and Network Tweaks

140

Figure 5-11  Important activation functions for hidden neurons. Top row: tanh,
ReLU. Middle row: leaky ReLU, softplut. Bottom row: elu, maxout.

Variations on Gradient Descent to Improve Learning

141

We saw previously how we can choose tanh as an activation function for the
neurons in a layer in TensorFlow, also shown in Code Snippet 5-10.

If we want a different activation function, we simply replace 'tanh' with one of
the other supported functions (e.g., 'sigmoid', 'relu', or 'elu'). We can also
omit the activation argument altogether, which results in a layer without an
activation function; that is, it will just output the weighted sum of the inputs. We
will see an example of this in Chapter 6.

Variations on Gradient Descent to
Improve Learning

There are a number of variations on gradient descent aiming to enable better and
faster learning. One such technique is momentum, where in addition to computing
a new gradient every iteration, the new gradient is combined with the gradient
from the previous iteration. This can be likened with a ball rolling down a hill
where the direction is determined not only by the slope in the current point but
also by how much momentum the ball has picked up, which was caused by the
slope in previous points. Momentum can enable faster convergence due to a more
direct path in cases where the gradient is changing slightly back and forth from
point to point. It can also help with getting out of a local minimum. One example of
a momentum algorithm is Nesterov momentum (Nesterov, 1983).

Another variation is to use an adaptive learning rate instead of a fixed learning
rate, as we have used previously. The learning rate adapts over time on the
basis of historical values of the gradient. Two algorithms using adaptive learning

keras.layers.Dense(25, activation='tanh',

 kernel_initializer=initializer,

 bias_initializer='zeros'),

Code Snippet 5-10  Setting the Activation Function for a Layer

Nesterov momentum, AdaGrad, RMSProp, and Adam are important variations
(also known as optimizers) on gradient descent and stochastic gradient descent.

Chapter 5  Toward DL: Frameworks and Network Tweaks

142

rate are adaptive gradient, known as AdaGrad (Duchi, Hazan, and Singer, 2011),
and RMSProp (Hinton, n.d.). Finally, adaptive moments, known as Adam (Kingma
and Ba, 2015), combines both adaptive learning rate and momentum. Although
these algorithms adaptively modify the learning rate, we still have to set an
initial learning rate. These algorithms even introduce a number of additional
parameters that control how the algorithms perform, so we now have even more
parameters to tune for our model. However, in many cases, the default values
work well.

Finally, we discussed earlier how to avoid vanishing gradients, but there can also
be a problem with exploding gradients, where the gradient becomes too big in
some point, causing a huge step size. It can cause weight updates that completely
throw off the model. Gradient clipping is a technique to avoid exploding gradients
by simply not allowing overly large values of the gradient in the weight update
step. Gradient clipping is available for all optimizers in Keras.

Code Snippet 5-11 shows how we set an optimizer for our model in Keras. The
example shows stochastic gradient descent with a learning rate of 0.01 and no
other bells and whistles.

We do not go into the details of how to implement momentum and adaptive
learning rate; we simply use implementations available in the DL framework.
Understanding these techniques is important when tuning your models,
so consider exploring these topics. You can find them summarized in Deep
Learning (Goodfellow, Bengio, and Courville, 2016), or you can read the original
sources (Duchi, Hazan, and Singer, 2011; Hinton, n.d.; Kingma and Ba, 2015;
Nesterov, 1983).

Gradient clipping is used to avoid the problem of exploding gradients.

opt = keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0,

 nesterov=False)

model.compile(loss='mean_squared_error', optimizer = opt,

 metrics =['accuracy'])

Code Snippet 5-11  Setting an Optimizer for the Model

Experiment: Tweaking Network and Learning Parameters

143

Just as we can for initializers, we can choose a different optimizer by declaring any
one of the supported optimizers in Tensorflow, such as the three we just described:

opt = keras.optimizers.Adagrad(lr=0.01, epsilon=None)

opt = keras.optimizers.RMSprop(lr=0.001, rho=0.8, epsilon=None)

opt = keras.optimizers.Adam(lr=0.01, epsilon=0.1, decay=0.0)

In the example, we freely modified some of the arguments and left out others,
which will then take on the default values. If we do not feel the need to modify the
default values, we can just pass the name of the optimizer to the model compile
function, as in Code Snippet 5-12.

We now do an experiment in which we apply some of these techniques to our
neural network.

Experiment: Tweaking Network and
Learning Parameters

To illustrate the effect of the different techniques, we have defined five different
configurations, shown in Table 5-1. Configuration 1 is the same network that
we studied in Chapter 4 and at beginning of this chapter. Configuration 2 is the
same network but with a learning rate of 10.0. In configuration 3, we change the
initialization method to Glorot uniform and change the optimizer to Adam with
all parameters taking on the default values. In configuration 4, we change the
activation function for the hidden units to ReLU, the initializer for the hidden layer
to He normal, and the loss function to cross-entropy. When we described the
cross-entropy loss function earlier, it was in the context of a binary classification
problem, and the output neuron used the logistic sigmoid function. For multiclass
classification problems, we use the categorical cross-entropy loss function,
and it is paired with a different output activation known as softmax. The details
of softmax are described in Chapter 6, but we use it here with the categorical

model.compile(loss='mean_squared_error', optimizer ='adam',

 metrics =['accuracy'])

Code Snippet 5-12  Passing the Optimizer as a String to the Compile Function

Chapter 5  Toward DL: Frameworks and Network Tweaks

144

cross-entropy loss function. Finally, in configuration 5, we change the mini-batch
size to 64.

Modifying the code to model these configurations is trivial using our DL
framework. In Code Snippet 5-13, we show the statements for setting up the
model for configuration 5, using ReLU units with He normal initialization in the
hidden layer and softmax units with Glorot uniform initialization in the output
layer. The model is then compiled using categorical cross-entropy as the loss
function and Adam as the optimizer. Finally, the model is trained for 20 epochs
using a mini-batch size of 64 (set to BATCH_SIZE=64 in the init code).

Table 5-1  Configurations with Tweaks to Our Network

CONFIGURATION
HIDDEN
ACTIVATION

HIDDEN
INITIALIZER

OUTPUT
ACTIVATION

OUTPUT
INITIALIZER

LOSS
FUNCTION OPTIMIZER

MINI-
BATCH
SIZE

Conf1 tanh Uniform 0.1 Sigmoid Uniform 0.1 MSE SGD
lr=0.01

1

Conf2 tanh Uniform 0.1 Sigmoid Uniform 0.1 MSE SGD
lr=10.0

1

Conf3 tanh Glorot
uniform

Sigmoid Glorot uniform MSE Adam 1

Conf4 ReLU He normal Softmax Glorot uniform CE Adam 1

Conf5 ReLU He normal Softmax Glorot uniform CE Adam 64

Note: CE, cross-entropy; MSE, mean squared error; SGD, stochastic gradient descent.

Code Snippet 5-13  Code Changes Needed for Configuration 5

model = keras.Sequential([

 keras.layers.Flatten(input_shape=(28, 28)),

 keras.layers.Dense(25, activation='relu',

 kernel_initializer='he_normal',

 bias_initializer='zeros'),

 keras.layers.Dense(10, activation='softmax',

Experiment: Tweaking Network and Learning Parameters

145

If you run this configuration on a GPU-accelerated platform, you will notice that
it is much faster than the previous configuration. The key here is that we have a
batch size of 64, which results in 64 training examples being computed in parallel,
as opposed to the initial configuration where they were all done serially.

The results of the experiment are shown in Figure 5-12, which shows how the test
errors for all configurations evolve during the training process.

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros')])

model.compile(loss='categorical_crossentropy',

 optimizer = 'adam',

 metrics =['accuracy'])

history = model.fit(train_images, train_labels,

 validation_data=(test_images, test_labels),

 epochs=EPOCHS, batch_size=BATCH_SIZE,

 verbose=2, shuffle=True)

We use Matplotlib to visualize the learning process. A more powerful approach
is to use the TensorBoard functionality that is included in TensorFlow. We highly
recommend that you get familiar with TensorBoard when you start building and
tuning your own models.

Figure 5-12  Error on the test dataset for the five configurations

Chapter 5  Toward DL: Frameworks and Network Tweaks

146

Configuration 1 (red line) ends up at an error of approximately 6%. We spent a
nontrivial amount of time on testing different parameters to come up with that
configuration (not shown in this book).

Configuration 2 (green) shows what happens if we set the learning rate to 10.0,
which is significantly higher than 0.01. The error fluctuates at approximately 70%,
and the model never learns much.

Configuration 3 (blue) shows what happens if, instead of using our tuned
learning rate and initialization strategy, we choose a “vanilla configuration” with
Glorot initialization and the Adam optimizer with its default values. The error is
approximately 7%.

For Configuration 4 (purple), we switch to using different activation functions and
the cross-entropy error function. We also change the initializer for the hidden
layer to He normal. We see that the test error is reduced to 5%.

For Configuration 5 (yellow), the only thing we change compared to Configuration
4 is the mini-batch size: 64 instead of 1. This is our best configuration, which ends
up with a test error of approximately 4%. It also runs much faster than the other
configurations because the use of a mini-batch size of 64 enables more examples
to be computed in parallel.

Although the improvements might not seem that impressive, we should recognize
that reducing the error from 6% to 4% means removing one-third of the error
cases, which definitely is significant. More important, the presented techniques
enable us to train deeper networks.

Hyperparameter Tuning and
Cross-Validation

The programming example showed the need to tune different hyperparameters,
such as the activation function, weight initializer, optimizer, mini-batch size, and
loss function. In the experiment, we presented five configurations with some
different combinations, but clearly there are many more combinations that we
could have evaluated. An obvious question is how to approach this hyperparameter
tuning process in a more systematic manner. One popular approach is known as
grid search and is illustrated in Figure 5-13 for the case of two hyperparameters
(optimizer and initializer). We simply create a grid with each axis representing a

Hyperparameter Tuning and Cross-Validation

147

single hyperparameter. In the case of two hyperparameters, it becomes a 2D grid,
as shown in the figure, but we can extend it to more dimensions, although we can
only visualize, at most, three dimensions. Each intersection in the grid (represented
by a circle) represents a combination of different hyperparameter values, and
together, all the circles represent all possible combinations. We then simply run an
experiment for each data point in the grid to determine what is the best combination.

What we just described is known as exhaustive grid search, but needless to say, it
can be computationally expensive as the number of combinations quickly grows
with the number of hyperparameters that we want to evaluate. An alternative is to
do a random grid search on a randomly selected a subset of all combinations. This
alternative is illustrated in the figure by the green dots that represent randomly
chosen combinations. We can also do a hybrid approach in which we start with
a random grid search to identify one or a couple of promising combinations, and
then we can create a finer-grained grid around those combinations and do an
exhaustive grid search in this zoomed-in part of the search space. Grid search is
not the only method available for hyperparameter tuning. For hyperparameters
that are differentiable, it is possible to do a gradient-based search, similar to the
learning algorithm used to tune the normal parameters of the model.

Figure 5-13 G rid search for two hyperparameters. An exhaustive grid search
would simulate all combinations, whereas a random grid search might simulate
only the combinations highlighted in green.

Chapter 5  Toward DL: Frameworks and Network Tweaks

148

Implementing grid search is straightforward, but a common alternative is to
use a framework known as sci-kit learn.3 This framework plays well with Keras.
At a high level, we wrap our call to model.fit() into a function that takes
hyperparameters as input values. We then provide this wrapper function to sci-kit
learn, which will call it in a systematic manner and monitor the training process.
The sci-kit learn framework is a general ML framework and can be used with both
traditional ML algorithms as well as DL.

USING A VALIDATION SET TO AVOID OVERFITTING

The process of hyperparameter tuning introduces a new risk of overfitting.
Consider the example earlier in the chapter where we evaluated five
configurations on our test set. It is tempting to believe that the measured error
on our test dataset is a good estimate of what we will see on not-yet-seen data.
After all, we did not use the test dataset during the training process, but there
is a subtle issue with this reasoning. Even though we did not use the test set to
train the weights of the model, we did use the test set when deciding which set of
hyperparameters performed best. Therefore, we run the risk of having picked a
set of hyperparameters that are particularly good for the test dataset but not as
good for the general case. This is somewhat subtle in that the risk of overfitting
exists even if we do not have a feedback loop in which results from one set of
hyperparameters guide the experiment of a next set of hyperparameters. This
risk exists even if we decide on all combinations up front and only use the test
dataset to select the best performing model.

We can solve this problem by splitting up our dataset into a training dataset, a
validation dataset, and a test dataset. We train the weights of our model using the
training dataset, and we tune the hyperparameters using our validation dataset.
Once we have arrived at our final model, we use our test dataset to determine
how well the model works on not-yet-seen data. This process is illustrated in
the left part of Figure 5-14. One challenge is to decide how much of the original
dataset to use as training, validation, and test set. Ideally, this is determined on
a case-by-case basis and depends on the variance in the data distribution. In
absence of any such information, a common split between training set and test
set when there is no need for a validation set is 70/30 (70% of original data used
for training and 30% used for test) or 80/20. In cases where we need a validation
set for hyperparameter tuning, a typical split is 60/20/20. For datasets with
low variance, we can get away with a smaller fraction being used for validation,
whereas if the variance is high, a larger fraction is needed.

3. https://scikit-learn.org

https://scikit-learn.org

Hyperparameter Tuning and Cross-Validation

149

CROSS-VALIDATION TO IMPROVE USE OF TRAINING DATA

One unfortunate effect of introducing the validation set is that we can now use
only 60% of the original data to train the weights in our network. This can be
a problem if we have a limited amount of training data to begin with. We can
address this problem using a technique known as cross-validation, which avoids
holding out parts of the dataset to be used as validation data but at the expense
of additional computation. We focus on one of the most popular cross-validation
techniques, known as k-fold cross-validation. We start by splitting our data into a
training set and a test set, using something like an 80/20 split. The test set is not
used for training or hyperparameter tuning but is used only in the end to establish
how good the final model is. We further split our training dataset into k similarly
sized pieces known as folds, where a typical value for k is a number between
5 and 10.

We can now use these folds to create k instances of a training set and validation
set by using k − 1 folds for training and 1 fold for validation. That is, in the case of
k = 5, we have five alternative instances of training/validations sets. The first one
uses folds 1, 2, 3, and 4 for training and fold 5 for validation, the second instance
uses folds 1, 2, 3, and 5 for training and fold 4 for validation, and so on.

Let us now use these five instances of train/validation sets to both train the
weights of our model and tune the hyperparameters. We use the example
presented earlier in the chapter where we tested a number of different
configurations. Instead of training each configuration once, we instead train each
configuration k times with our k different instances of train/validation data. Each
of these k instances of the same model is trained from scratch, without reusing
weights that were learned by a previous instance. That is, for each configuration,
we now have k measures of how well the configuration performs. We now
compute the average of these measures for each configuration to arrive at a
single number for each configuration that is then used to determine the best-
performing configuration.

Now that we have identified the best configuration (the best set of hyperparameters),
we again start training this model from scratch, but this time we use all of the
k folds as training data. When we finally are done training this best-performing
configuration on all the training data, we can run the model on the test dataset to
determine how well it performs on not-yet-seen data. As noted earlier, this process
comes with additional computational cost because we must train each configuration
k times instead of a single time. The overall process is illustrated on the right side of
Figure 5-14.

Chapter 5  Toward DL: Frameworks and Network Tweaks

150

We do not go into the details of why cross-validation works, but for more
information, you can consult The Elements of Statistical Learning (Hastie,
Tibshirani, and Friedman, 2009).

Concluding Remarks on the Path
Toward Deep Learning

This chapter introduced the techniques that are regarded as enablers of the DL
revolution that started with the AlexNet paper (Krizhevsky, Sutskever, and Hinton,
2012). In particular, the emergence of large datasets, the introduction of the ReLU

Train the model weights only using
the training set. Evaluate the

resulting model on validation set.

Model good
enough?

Split data into training, validation,
and test datasets.

Tune hyper-
parameters.

Evaluate final model
on test datasets.

START

DONE

Train the model weights for k instances of the same
model. Use di�erent combinations of k-1 folds as

input to each model instance. Evaluate each model
instance on the held-out fold. Compute average of

all model instances.

Model good
enough?

Split data into training and
test datasets. Split the
training set into k folds.

Tune hyper-
parameters.

Evaluate final
model on test

dataset.

START

DONE

Train model
using all k folds

as input.

k-fold cross-validationBaseline algorithm

NO

YES
YES

NO

Figure 5-14  Tuning hyperparameters with a validation dataset (left) and using
k-fold cross-validation (right)

Concluding Remarks on the Path Toward Deep Learning

151

unit and the cross-entropy loss function, and the availability of low-cost GPU-
powered high-performance computing are all viewed as critical components that
had to come together to enable deeper models to learn (Goodfellow et al., 2016).

We also demonstrated how to use a DL framework instead of implementing our
models from scratch. The emergence of these DL frameworks is perhaps equally
important when it comes to enabling the adoption of DL, especially in the industry.

With this background, we are now ready to move on to Chapter 6 and build our
first deep neural network!

This page intentionally left blank

667

Index

A
A Lite BERT (ALBERT), 588
Accountability, need for, 506–507
Accuracy in binary classifiers, 533–535
Activated neurons, 1
Activation functions

alignment vectors, 402
digit classification, 121
GPT, 580
gradient computation, 70–72, 74
gradient descent, 65
GRUs, 615
LSTM, 273, 276–278
perceptrons, 2–3
RNNs, 245
selecting, 66–67
vanishing gradients, 136–141, 250

Activation layer, 129
AdaGrad variation for gradient descent,

141–143
Adam variation for gradient descent, 141–143
Adaptive learning rate for gradient descent,

141–142
add() function

convolutional layers, 199–200
house prices example, 163–164

Addition of vectors, 22
Adversarial examples for modified images, 231
Adversarial networks, 514–515
Affine transformations, 176
Agents in reinforcement learning, 513
Aggregation bias, 509
AI (artificial intelligence), ethical, 505–512
ALBERT (A Lite BERT), 588
AlexNet network, 171–172
Alignment in multimodal learning, 463
Alignment vectors

attention technique, 400–404
computing, 400–402
mathematical notation and variations,

402–404

Amazon Web Services (AWS), 630
ANNs (Artificial neural networks). See Deep

neural networks
Analytic motivation in learning algorithm, 49–50
Anchor boxes in Faster R-CNN, 547–548
AND gates, 17, 19
Anki bilingual sentence pairs, 627
Architectures, 87–89
argmax() function, 111
Arguments for Python functions, 120
Arrays in NumPy, 260
Artifacts in semantic segmentation, 555–556
Artificial Intelligence (AI), xxvii–xxviii
Artificial intelligence (AI), ethical, 505–512
Artificial neural networks (ANNs). See Deep

neural networks
Artificial neurons

cheat sheet, 658
description, 2–3

Aspect ratios in Faster R-CNN, 547
Atari video games, 513
Attention, 393

alignment, 463
alignment vectors, 400–404
concluding remarks, 415–416
deeper networks, 404–406
encoder-decoder architecture, 394–399, 404
GPT, 578
image captioning, 420–443
multi-head attention, 410–411
rationale, 394
self-attention, 407–410
sequence-to-sequence networks, 395–406

Attentional vectors, 405
Audio filters, 608–611
Autocompletion. See Text autocompletion
Autoencoders, 448–449

aspects, 451–452
BERT, 589
evaluating, 455–456
initialization statements, 453

Index

668

Autoencoders (Continued)
outlier detection, 452–459
testing, 457–458
training, 450, 453–454
use cases, 449–451
variational, 513–515

Autoregressive text models, 287–289
Auxiliary classifiers in GoogLeNet, 212–213
Average pooling. See Pooling
AWS (Amazon Web Services), 630
Axons in biological neurons, 1

B
Backpropagation, 20

activation functions, 66–67
concluding remarks, 89
function composition and chain rule,

67–68
gradient computation, 69–80
gradient issues, 268–269
introduction, 59–60
modified neurons, 60–66
multiple neurons per layer, 81
network architectures, 87–89
pretrained models, 228–229
programming example, 82–87
vanishing gradients, 126

Backpropagation through time (BPTT),
248–250

Backward passes
backpropagation, 60, 76–80
MNIST learning, 109–111
word2vec, 352
XOR example, 85

Bag-of-character-n-grams, 568
Bag-of-n-grams, 337–338
Bag-of-words (BoW) model

CBOW, 346–347
combining with DL, 340–341
sentiment analysis of text, 334–338
similarity metrics, 339
word2vec, 355

Basic Linear Algebra Subprograms (BLAS), 20
Batch normalization

ResNet, 221
saturated neurons, 128–129
vanishing gradients, 270, 272

Batch size
book sales forecasting problem, 261
mini-batch gradient descent, 114
RoBERTa, 588

BatchNormalization layer, 129
Bayesian optimization, 487

Beam searches
text prediction, 289–291, 297
word-based language model, 305–307

BERT. See Bidirectional Encoder
Representations from Transformers
(BERT)

Bias
datasets, 96–97
neural language models, 332–333
types and sources, 508–511

Bias inputs, 2
Bias term for perceptrons, 33–34
Bidirectional Encoder Representations from

Transformers (BERT), 581
historical work on, 588–589
input and output representations, 584–585
masked language model task, 582–583
next-sentence prediction task, 583–584
NLP tasks, 586

Bidirectional language model, 572–573
Bidirectional RNNs, 298–300
Bigrams model, 307–309
Bilinear interpolation in semantic segmentation,

550–553, 555–556
BiLingual Evaluation Understudy (BLEU) score

machine translation, 517
natural language translation, 388

Binary classification
description, 238
evaluation metrics, 533–537
logistic sigmoid function, 155–156
output units, 154

Binary encoding, 101
Biological neurons, 1–2
BLAS (Basic Linear Algebra Subprograms), 20
Book sales forecasting problem, 239–240

census data for, 626–627
combining layers, 245–246
historical sales data, 254–255
initialization section, 253–254
multiple input variables, 263–264
naïve prediction code, 255–256
vs. networks without recurrence, 262–263
programming example, 250–264
RNNs, 258–262
standardize data, 256–258, 260
training examples, 251–253, 256–259

Boston Housing dataset
house prices, 161–165
input variables, 160–161

boston_housing() function, 161–165
Bounding boxes

Fast R-CNN, 544–546

Index

669

Faster R-CNN, 547–548
Mask R-CNN, 560–561
multitask learning, 470–471
object detection, 539–543

BoW model. See Bag-of-words (BoW) model
BPTT (backpropagation through time), 248–250
Branches

Mask R-CNN, 560–561
object detection, 540–541

Building blocks for convolutional layers,
175–179

Bypass paths in Keras Functional API, 370–371
Byte-pair encoding in GPT, 581

C
Callback functions in Keras Functional API, 385
CAM (content addressable memory), 400–401
Captioning images. See Image captioning
Categorical cross-entropy

LSTM, 295
multiclass classification, 143–145
multitask learning, 471
neural machine translation, 383–384
softmax output units, 154–155

categorical_crossentropy loss
function, 143, 193

CBOW (continuous-bag-of-words) model, 344
overview, 346–347
word2vec, 355

CEC. See Constant error carousel (CEC)
Celeb HQ dataset, 511
CelebFaces Attributes (CelebA) dataset, 96–97
Cell bodies in biological neurons, 1
Chain rule in backpropagation, 67–68
Channels

character-based embedding, 571
convolutional layers, 177–184, 186–193,

197–198
depthwise separable convolutions, 232
GoogLeNet, 210–215
Mask R-CNN, 560
ResNet, 219–221
semantic segmentation, 549–550
VGGNet, 206–208

Character-based embedding, 567–572
Character mappings in text autocompletion,

293
Character sequences in wordpieces, 564–565
Cheat sheets, 658–667
Checkerboard artifacts in semantic

segmentation, 555–556
CIFAR-10 dataset and classification

loading, 191–192, 488

programming example, 488–501
working with, 173–175

Cited works, 637–656
Classification branch in Mask R-CNN, 560
Clipping, gradient, 142, 270, 272
clone() function, 633
Closed-form solution in linear regression,

523–524
Cloud services, 630
CLS tokens in BERT, 584–585
Clustering algorithms for autoencoders, 452
CNNs. See Convolutional neural networks

(CNNs)
Co-learning in multimodal learning, 463–464
Co-training in multimodal learning, 463–464
COCO dataset

description, 627
image captioning, 422

Code examples. See Programming examples
Coefficients in linear regression, 523–525
Color channels in convolutional layers, 178
Column vectors, 22
Combination-based models for multimodal

learning, 463
Combining

BoW with DL, 340–341
convolutional and fully connected layers,

181–185
feature maps, 180–181
perceptrons, 17–20
RNN layers, 245–246

compile() function
digit classification, 121–122
PyTorch, 635

Composition function in backpropagation,
67–68

Computational complexity in word2vec,
344–346

Computational units in perceptrons, 2
Computer implementation in cross-entropy loss

function, 135–136
Computer vision cheat sheet, 667
Concatenation in multimodal learning,

460–461
Confusion matrices, 534–535
Constant error carousel (CEC)

gradient issues, 271–272
GRUs, 613, 615
LSTM, 273–276
vanishing gradients, 277–278

Constants in gradient-based learning, 48
Content addressable memory (CAM),

400–401

Index

670

Context
continuous skip-gram model, 348
ELMo, 572–574
sequence-to-sequence learning, 366–367
word2vec, 353

Contextualized word vectors (CoVe), 575
Continuous-bag-of-words (CBOW) model, 344

overview, 346–347
word2vec, 355

Continuous skip-gram model
optimized, 349–351
overview, 348–349
word2vec, 352, 355

Convex optimization problem in linear
regression, 524

Convolution matrices, 177
Convolutional layers

autoencoders, 454
initialization section, 191–192
mathematical convolution relation,

607–611
training, 192–193
training and test errors, 194–197

Convolutional neural networks (CNNs), 88–89
AlexNet, 171–173
backpropagation, 228–229
CIFAR-10 dataset, 173–175
combining layers, 181–185
concluding remarks, 201–203
depthwise separable convolutions, 232–234
EfficientNets, 234–235
feature maps, 179–180
GoogLeNet, 210–215
layer building blocks, 175–179
mistakes, 231
pretrained models. See Pretrained models
programming example, 190–200
ResNet, 215–226
sparse connections and weight sharing,

185–190
VGGNet, 206–209

Coordinated representation in multimodal
learning, 460–461

Cosine distance
GloVe, 357
sentiment analysis of text, 339–340

Cost function in logistic regression, 527
CoVe (contextualized word vectors), 575
cpu() function, 633
Credit cards

scores, 506–508
transactions, 451

Cross-correlation, 611

Cross-entropy and cross-entropy loss function
convolutional layers, 200
logistic regression, 527
multiclass classification, 158
multitask learning, 471
PyTorch vs. TensorFlow, 635
saturated neurons, 130–136
softmax output units, 154–155
tweaking, 144–145
weight decay, 166

Cross-validation
hyperparameter tuning, 146–150
network tuning, 479

Crossover operations in NAS, 486–487
CUDA BLAS (cuBLAS) library, 20
cuDNN library, 20
Curvature modeling, 522–523

D
DAGs (directed acyclic graphs), 19
Data augmentation in regularization, 229–231
data directory, 624
Data ethics, 505–512
Data moves in PyTorch vs. TensorFlow,

633–634
Data points, standardizing, 107
Datasets

cheat sheet, 661
generalization, 98–100
human bias in, 96–97
hyperparameter tuning and information

leakage, 100
for programming examples, 625–627
RNNs, 264
training networks, 92–100

Datasheets for datasets, 97
Dead neurons, 138
Debuggers in IDEs, 624
Decision boundaries for support vector

machines, 531–532
Decoder model. See Encoder-decoder

architecture and model
Deconvolution in semantic segmentation

checkerboard artifacts, 555–556
convolution relationship, 554–555
networks, 557–559
overview, 553–554

Deep neural networks (DNNs)
house prices example, 161–165
multiple perceptrons, 19

DELIM tokens in GPT, 580
Dendrites in biological neurons, 1–2
Denoising autoencoders, 452, 589

Index

671

Dense encoding, 101
Dense layers in digit classification, 121
Dependencies in BERT, 582
Deployment bias, 509
Depthwise separable convolutions, 232–234
Derivatives

gradient-based learning, 41–44
gradient descent, 46

detach() function, 633
Development environments, 621–622

datasets, 625–627
framework installation, 628–630
programming environments, 623–624
programming examples, 624–625
Python, 622–623
PyTorch vs. TensorFlow, 631–636
TensorFlow, 630–631

Differentiable functions in gradient descent,
60–61

Digit classification
example, 104–114
implementation, 118–124
import statements, 118–119
loading datasets, 119–120
loss function, 103–104
matrix implementation, 599–606
network architecture, 102–103
network creation, 120–122
programming example, 118–124
training, 122–123

Dimensions
autoencoder reduction of, 452
convolutional layers, 177

Directed acyclic graphs (DAGs), 19
Direction in vectors, 44
Discriminators in GAN, 514
Disinformation, 508
Distributed representations of words, 303–304,

310, 314
DNNs (deep neural networks)

house prices example, 161–165
multiple perceptrons, 19

Docker containers, 630
Document vectors in sentiment analysis of text,

338
Documentation, releasing, 506
Dot products

description, 23
matrices, 29
vectors, 57
word2vec, 353

Dropout
recurrent dropout, 265

convolutional layers, 197
regularization, 167–169

E
Early fusion in multimodal learning,

461–462
Early stopping for datasets, 99
Eclipse IDE, 624
EfficientNets, 234–235
Eigenvalues, 250
Elements of matrices, 24
Ellipses in logistic regression, 529
ELMo embeddings, 572–575
elu function, 139–140
Embedding images, 418–419
Embedding layers

CBOW model, 346–347
continuous skip-gram model, 349
GloVe, 356–361
neural language models, 345–346
optimized continuous skip-gram model,

350
self-attention, 408
sequence-to-sequence learning, 367
Transformer, 411
word2vec, 352–355

Encoder-decoder architecture and model
attention technique, 394–399, 404
autoencoders. See Autoencoders
image captioning, 418–419, 432–438
neural machine translation, 379–384
sequence-to-sequence learning, 366–368
Transformer, 411–415

Encoding text, 285–287
END tokens in GPT, 580–581
Enhanced Representation through Knowledge

Integration (ERNIE), 590
Environments in reinforcement learning, 513
Epochs, 111
ERNIE (Enhanced Representation through

Knowledge Integration), 590
Error function

backpropagation, 76–78, 81
gradient computation, 70–73

Error term in multiclass classification, 103–104
Errors in datasets, 99–100
Estimated weights in linear output units, 160
Ethical AI, 505–512
Ethics, 505–506

checklist, 512
problem areas, 506–512

Euclidean distance for vectors, 338–340
eval() function, 634

Index

672

Evaluation bias, 509
Evaluation metrics for binary classifiers,

533–537
Evolutionary algorithm in NAS, 485–487,

498–500
Example-based models in multimodal learning,

462–463
Excitatory synaptic signals, 2
Excited neurons, 1
Exhaustive grid search in hyperparameter

tuning, 147
Explicit alignment in multimodal learning, 463
Exploding gradient problems

clipping for, 142
mitigating, 267–272
RNNs, 273

Exponential functions in gradient descent, 62
Extreme Inception, 234

F
F scores for binary classifiers, 536
False negatives (FNs) in binary classifiers, 534
False positives (FPs)

binary classifiers, 534–535
pattern identification, 56

Fashion MNIST dataset, 455–459
Fast R-CNN, 541, 544–546
Faster R-CNN, 541, 546–549
FastText, 566–567
Feature engineering in logistic regression, 530
Feature identification in gradient-based

learning, 57
Feature maps

combining, 180–181
convolutional layers, 177, 179–181
Fast R-CNN, 544
Faster R-CNN, 546–547

Feature Pyramid Network (FPN), 561
Feature vectors in image captioning, 424–426
Feedback

neural language models, 325–326
text prediction, 288–289

Feedback loop issues, 507–508
Feedforward module in Transformer, 412
Feedforward networks

backpropagation, 87–89
cheat sheet, 658
language models, 310–311
limitations, 241–242
multiple perceptrons, 18–19
RNNs, 247
sentiment analysis of text, 341

FFhQ (Flickr-Faces hQ) dataset, 510–511

Filters, audio, 608–611
Fine tuning, 226–228
fit() function

digit classification, 122
multitask learning, 476
neural machine translation, 377, 385
PyTorch vs. TensorFlow, 632

fit_on_texts() function, 322
Fixed length datasets for time series, 264
Flatten layer, 121
Flickr-Faces hQ (FFhQ) dataset, 510–511
Folds in cross-validation, 149–150
Forecasting problem. See Book sales

forecasting problem
Forget gates in LSTM, 281
Forward passes

backpropagation, 60, 75–80
Fast R-CNN, 544
MNIST learning, 109–111
word2vec, 352
XOR example, 86

FPN (Feature Pyramid Network), 561
Fractional striding, 553
Frameworks, 117

concluding remarks, 150–151
cross-entropy loss function, 130–136
gradient descent variations, 141–143
hyperparameter tuning and cross-validation,

146–150
initialization and normalization techniques,

126–129
installation, 628–630
network and learning parameters, 143–146
programming example, 118–124
saturated neurons, 124–126
vanishing gradients, 124–126, 136–141

Frankenstein text, 627
from_numpy() function, 633
Fully connected layers, combining, 181–185
Fully connected networks, 153–154

backpropagation, 87–89
Boston Housing dataset, 160–161
concluding remarks, 170
generalization, 166–168
house prices example, 161–165
multiclass classification. See Multiclass

classification
multiple perceptrons, 18–19
output units, 154–160
regularization, 169–170
weights and calculations, 186

Fully connected softmax layer in text encoding,
286–287

Index

673

Function composition in backpropagation,
67–68

Functional API, 634–635
Functions in Python, 120
Fusion in multimodal learning, 461–462

G
GANs (generative adversarial networks),

513–515
Garbage-in/garbage-out (GIGO) problem in

datasets, 96–97
Gated Recurrent Units (GRUs)

alternate implementation, 616
networks based on, 616–619
overview, 613–615
sequence-to-sequence learning, 368

Gated units in LSTM, 272–273, 275, 281
Gating functions in LSTM, 278–279
Gender biases in neural language models, 333
Generalization

datasets, 98–100
regularization for, 166–168

Generative adversarial networks (GANs),
513–515

Generative Pre-Training (GPT), 578–582
Generators in GAN, 514
Geometric description for learning algorithm,

51
Geometric interpretation for perceptrons, 30–32
get_weights() function, 326
__getitem__() method, 431
GIGO (garbage-in/garbage-out) problem in

datasets, 96–97
Global pooling. See Pooling
Glorot initialization

vanishing gradients, 270, 272
weight initialization, 126–127

glorot_uniform() function, 127
GloVe algorithm, 343

concluding remarks, 361–362
properties, 356–361
word embeddings file, 627

Google Colab, 630
GPT (Generative Pre-Training), 578–582
GPUs. See Graphics processing units (GPUs)
Gradient-based learning

concluding remarks, 57
constants and variables, 48
derivatives and optimization problems,

41–44
gradient descent, 44–48
learning algorithm analytic motivation,

49–50

learning algorithm explanation, 37–41
learning algorithm geometric

description, 51
pattern identification, 54–57
plots, 52–54

Gradient clipping, 142, 270, 272
Gradient descent

backpropagation, 60
learning problem, 44–46
linear regression, 523–524
logistic regression, 527
mini-batch, 114–115
modified neurons, 60–66
multidimensional functions, 46–48
Newton-Raphson method, 597
variations, 141–143

Gradients
backpropagation, 69–80
cheat sheet, 662
GoogLeNet, 213
issues, 267–272
vanishing. See Vanishing gradients

Graphics processing units (GPUs)
acceleration, 629
AlexNet, 172
convolutional networks, 201
data transfer, 633
Google Colab, 630
mini-batches, 114
offload computations, 20–21
Transformer, 591

Grid search in hyperparameter tuning,
146–148

Ground truth, 7
GRUs. See Gated Recurrent Units (GRUs)

H
Handwritten digits

classification example, 104–114
Fashion MNIST dataset, 455–458
MNIST dataset, 93, 97
network architectures, 102–103
programming example, 118–124

Hard attention, 405–406
Hard parameter sharing in multitask learning,

472
He initialization

cross-entropy loss function, 144
vanishing gradients, 270, 272
weight initialization, 126–127

he_normal() function, 127
Head units in multitask learning, 471
Heads in networks, 540–541

Index

674

Hidden layers
digit classification, 102
house prices example, 162–163
multiple perceptrons, 19
neural language models, 345
RNNs, 245
sequence-to-sequence learning,

367–368
vanishing gradients in, 136–141

Hidden outputs in RNNs, 243
Hidden states

alignment vectors, 400, 402
RNNs, 246

Hidden units, 139
Hierarchical softmax

CBOW model, 346–347
continuous skip-gram model, 348
word2vec, 344–346

Highway networks, 282
Hill climbing in NAS, 485, 494–496
Hiring practice issues, 507–508
Historical bias, 508
Historical sales data in book sales forecasting

problem, 254–255
History of Neural Networks, xxviii–xxxi
House prices

Boston Housing dataset, 161–165
regularization, 169–170

Human biases
in datasets, 96–97
neural language models, 332–333

Hybrid data in multimodal learning, 464
Hyperbolic tangent (tanh) function

activation function, 136–137,
139–141

alignment vectors, 402
backpropagation, 78, 269–270
batch normalization, 129
convolutional layers, 200
derivative of, 75
Glorot initialization, 126–127
gradient descent, 61–67
LSTM, 273, 276–278
recurrent layers, 243–244

Hyperparameters
datasets, 100
learning rate, 8
tuning, 146–150

I
Identity functions for autoencoders, 448
IDEs (integrated development environments),

624

idx2numpy package
MNIST dataset reading, 94
versions, 622

Image captioning
architecture, 417–421
attention, 420–421
concluding remarks, 443–445
encoder-decoder architecture, 418–419,

432–438
feature vectors, 424–426
import statements, 422–423, 426–427
initialization statements, 427–428
json files, 422–425
programming example, 421–443
reading functions, 428
tokens, 429–430
training and evaluating, 439–443
training data, 431–432

Image classification
CIFAR-10 dataset, 173–175
concluding remarks, 201–203
convolutional neural networks, 171–173
feature maps, 180–181
fully connected layers, 181–185
programming example, 175–179, 190–200
sparse connections and weight sharing,

185–190
ImageNet challenge, 171
Images

autoencoders, 454–457
MNIST dataset, 94–95

Implicit alignment in multimodal learning, 463
Import statements

digit classification, 118–119
image captioning, 422–423, 426–427

Inception module in GoogLeNet, 210–214
Inference

Mask R-CNN, 561
multiclass classification, 100–101
neural language models, 325
neural machine translation, 384
PyTorch vs. TensorFlow, 634

Information leakage in test datasets, 100
Information theory, 133
Inhibitory synaptic signals, 2
Initialization

autoencoders, 453
book sales forecasting problem, 253–254
convolutional layers, 191–192
image captioning, 427–428
learning algorithm, 8–9
MNIST learning, 104–105
multimodal learning, 465–466

Index

675

multitask learning, 474–475
NAS, 488–489
neural language models, 319–320
neurons, 107–108
ResNet implementation, 223–224
saturated neurons, 126–129
text autocompletion, 292–293
XOR learning example, 82–83

Input activation in LSTM, 276, 278
Input word embedding in word2vec, 352–354
Inputs

attention technique, 394
autoencoders, 448, 453–454
BERT, 584–585
book sales forecasting problem, 251–253,

263–264
Boston Housing dataset, 160–161
cheat sheet, 664
curvature modeling, 523
digit classification, 121
gradient computation, 73
gradient descent, 48
language models, 310–311
learning algorithm, 8–9, 12
learning algorithm analytic motivation, 50
learning algorithm geometric

description, 51
linear regression, 521–523
logistic regression, 528–530
LSTM, 281
multimodal learning, 460–461
multiple perceptrons, 17–20
multitask learning, 476–477
neural language models, 321
pattern identification, 55–56
perceptrons, 2–3
plots, 52–53
prediction problems, 239
RNNs, 242–243
standardization in saturated neurons, 128
text autocompletion, 300–302
Transformer, 411–412
two-input example, 4–7

Instance segmentation
with Mask R-CNN, 559–561
object detection, 540

Instantiation of neurons, 107–108
Integrated development environments (IDEs),

624
Intermediate representation

autoencoders, 448–450
natural language translation, 389–391

Internal weights in plots, 53

Interpolation
Mask R-CNN, 561
semantic segmentation, 550–553, 555–556

Intersection over union (IoU) metric, 543
Iris Dataset, 93
IsNext category in BERT, 583–585
item() function, 633

J
Jaccard similarity, 338–339
Joint representation in multimodal learning,

460–461
json files for image captioning, 422–425
Jupyter Notebook environment, 623–624

K
K-fold cross-validation, 149–150
k-means clusters for autoencoders, 452
Keras Functional API

constants, 372
encoder-decoder model, 379–384
import statements, 371
introduction, 368–371
programming example, 371–387
reading files, 373
training and testing models, 385–387

Kernel in convolutional layers, 177
Kernel size

AlexNet, 173
convolutional layers, 178–179, 181, 183,

192–193, 195–197
depthwise separable convolutions, 232
GoogLeNet, 210
VGGNet, 206–207

Kernel trick for support vector machines, 533
Keys

alignment vectors, 401
multi-head attention, 410–411
self-attention, 409

L
L1 regularization, 166–167, 169–170
L2 regularization, 166–167, 169–170
Labeling datasets, 92
Language-independent representation in

sequence-to-sequence learning, 366–367
Language models. See Neural language models
Language models vs. computational complexity

reduction, 344–346
Late fusion in multimodal learning, 461–462
Layers

AlexNet, 172
alignment vectors, 401–403

Index

676

Layers (Continued)
autoencoders, 453–454
backpropagation, 81
CBOW model, 346–347
cheat sheet, 659
combining, 181–185, 245–246
continuous skip-gram model, 348–349
convolutional neural networks, 175–179
digit classification, 102, 121
ELMo, 573
Fast R-CNN, 544–545
GloVe, 356–361
GoogLeNet, 211, 213
house prices example, 162–163
image captioning, 424, 433–436
LSTM, 278–280
Mask R-CNN, 560–561
multiple perceptrons, 19
neural language models, 344–346
neural machine translation, 379–384
optimized continuous skip-gram model, 350
output units, 154–155
regularization, 167–168
ResNet, 215–222
RNNs, 242–245
self-attention, 408
semantic segmentation, 549–550, 554
sequence-to-sequence learning, 366–368
transfer learning, 228
Transformer, 411
unrolling, 246–247
vanishing gradients, 136–141
VGGNet, 206–209
word embeddings, 316–319
word2vec, 352–355

LDA (linear discriminant analysis), 533
leaky ReLU function, 139–140
Learning algorithm

analytic motivation, 49–50
geometric description, 51
initialization statements, 8–9
intuitive explanation, 37–41
linear regression as, 519–523
multiclass classification, 101
perceptrons, 7–15
ResNet, 216–217
training loops, 10
weight decay, 166

Learning curve plots, 481–482
Learning parameter tweaking, 143–146
Learning problem solutions with gradient

descent, 44–48
Learning process with saturated neurons, 125

Learning rate
gradient descent, 46
learning algorithm, 8

Leibniz notation, 68
LeNet, 171, 201
__len__() method, 431
Linear algebra

cheat sheet, 660
perceptron implementation, 20–21

Linear classification
plots, 53
XOR, 528–530

Linear discriminant analysis (LDA), 533
Linear output units, 154–155, 159–160
Linear regression

coefficients, 523–525
curvature modeling, 522–523
as machine learning algorithm, 519–523
multivariate, 521–522
R-CNN, 543
univariate, 520–521

Linear separability, 15–16, 32, 56
load_data function, 455
load_img function, 224
Loading

CIFAR-10 dataset, 191–192, 488
digit classification datasets, 119–120
GloVe embeddings, 356–357
MNIST dataset, 94, 119, 465

Logistic function
backpropagation, 269
gradient computation, 70
gradient descent, 61–67

Logistic output units, 154–155
Logistic regression

classification with, 525–527
support vector machines, 532–533
XOR classification, 528–530

Logistic sigmoid function
activation function, 136
backpropagation, 269–270
binary classification problems, 155–156
classification with, 526–527
digit classification, 121
LSTM, 273, 275
saturated output neurons, 130–133

Logistic sigmoid neurons, 615
Logistic sigmoid units, 453
Logit function, 155
Long short-term memory (LSTM), 265–266

activation functions, 277–278
alternative view, 280–281
cell networks, 278–280

Index

677

character-based embedding, 572
concluding remarks, 282–283
ELMo, 572–574
gradient health, 267–272
GRUs, 613–615
highway networks, 282
image captioning, 433–434
introduction, 272–277
neural language models, 322
neural machine translation, 379–384
programming example, 291–298
PyTorch vs. TensorFlow, 635
sequence-to-sequence learning,

366–368
skip connections, 282

Longer-term text prediction, 287–289
Loss functions

autoencoders, 451, 457
backpropagation, 269
convolutional layers, 200
digit classification, 122–124
GPT, 581
gradient computation, 70–71
logistic regression, 527
multiclass classification, 103–104, 158
multitask learning, 471
neural machine translation, 383–384
output units, 154–155
PyTorch vs. TensorFlow, 635
saturated neurons, 130–136
tweaking, 144–145
weight decay, 166

LSTM. See Long short-term memory (LSTM)

M
Machine learning algorithm, linear regression

as, 519–523
MAE (mean absolute error)

autoencoders, 457–458
book sales forecasting problem, 259–260

Magnitude of vectors, 44
Many-to-many networks in text autocompletion,

301
Many-to-one networks in text autocompletion,

301
Mask R-CNN, 559–561
MASK tokens in BERT, 585
Masked language model task in BERT, 582–583
Masked self-attention mechanism in GPT, 578
Masking words in RoBERTa, 587
Mathematical convolution, 607–611
Mathematical representation for recurrent

layers, 243–244

matmul function, 601
matplotlib package, 622
Matrices

binary classifiers, 534–535
convolutional layers, 177
dot products, 29
extending vectors to, 24–25
linear regression, 525
matrix-matrix multiplication, 26–30
matrix-vector multiplication, 25–26
mini-batch implementation, 602–606
neural machine translation, 375
recurrent layers, 243–244
single, 599–602
summary, 28–29
tensors, 30
word2vec, 353–354

Max pooling
AlexNet, 173
backpropagation, 228–229
character-based embedding, 571
convolutional layers, 183, 197–199
Fast R-CNN, 544–545
Faster R-CNN, 547–548
GoogLeNet, 211–214
ResNet, 218
semantic segmentation, 554, 556
VGGNet, 206–209

Maximum-likelihood estimation, 133
maxout function, 139–140
Maxout units, 156
Mean absolute error (MAE)

autoencoders, 457–458
book sales forecasting problem, 259–260

Mean squared error (MSE)
backpropagation, 269
book sales forecasting problem,

259–260
convolutional layers, 200
gradient computation, 70–71
gradient descent, 45
linear output units, 154–155, 160
linear regression, 523–524
multitask learning, 471

Mean squared error (MSE) loss function for
saturated output neurons, 130–134

Means in datasets, 107
Measurement bias, 509
Megatron-LM, 591
Metric cosine distance in sentiment analysis of

text, 339–340
Metrics for binary classifiers, 533–537
Mini-batch gradient descent, 114–115

Index

678

Mini-batch implementation for matrices,
602–606

MLP. See Multilevel perceptrons
MNIST learning. See Modified National Institute

of Standards and Technology (MNIST)
dataset

MobileNets network, 234
Modalities in multimodal learning. See

Multimodal learning
Model cards, 506
Modified National Institute of Standards and

Technology (MNIST) dataset
bias in, 97
contents, 93
description, 625–626
exploring, 94–96
loading, 94, 119, 465
multimodal learning, 465
multitask learning, 475
outlier detection program, 452, 457–459

Modified National Institute of Standards and
Technology (MNIST) learning

forward pass, backward pass, and weight
adjustment functions, 109–111

initialization section, 104–105
neuron instantiation and initialization,

107–108
progress reporting, 108–109
reading datasets, 105–107
training loop, 112–114

Modified neurons in gradient descent, 60–66
Momentum in gradient descent, 141
Movie Reviews Dataset, 334
MSE. See Mean squared error (MSE)
Multi-head attention, 407, 410–411
Multiclass classification

concluding remarks, 115–116
datasets used in, 92–100
digit classification, 102–103
example, 104–114
initialization statements, 104–105
introduction, 91–92
learning algorithm, 101
loss function, 103–104
mini-batch gradient descent, 114–115
multitask learning, 473–477
neuron instantiation and initialization,

107–108
output units, 154–158
progress reporting, 108–109
reading datasets, 105–107
training and inference, 100–101
training loop, 112–114

Multidimensional arrays in house prices
example, 164

Multidimensional functions in gradient descent,
46–48

Multidimensional tensors, 30
Multilevel networks

gradient computation, 69–80
gradient descent, 60–66

Multilevel perceptrons, 19
Multimodal learning, 459

alignment, 463
classification networks, 467–468
co-learning, 463–464
experiments, 468–469
fusion, 461–462
initialization statements, 465–466
programming example, 465–469
representation, 460–461
taxonomies, 459–464
training and testing, 466–467
translation, 462–463

Multiple dimensions in neural language models,
329–332

Multiple input variables in book sales
forecasting problem, 263–264

Multiple neurons per layer in
backpropagation, 81

Multiple perceptrons, combining, 17–20
Multiplication

matrix, 29
matrix-matrix, 26–30
matrix-vector, 25–26

Multitask learning, 469–470
benefits, 470
implementing, 471
initialization statements, 474–475
inputs, 476–477
programming example, 473–477
variations, 472–473

Multivariate linear regression, 521–522

N
n-gram model language model

vs. neural language models, 311–312
overview, 307–309

n-grams
character-based embedding, 567–571
FastText, 566–567

Naïve models
binary classifiers, 536
network tuning, 478

Naïve prediction code for book sales forecasting
problem, 255–256, 260

Index

679

Naïve solution for object detection, 540–541
Names for weights, 69
NAND gates

learning algorithm, 8, 11
two-input example, 5

NAS. See Neural architecture search (NAS)
Natural language processing (NLP)

BERT tasks, 584, 586
cheat sheet, 666
Transformer, 407

Natural language translation
concluding remarks, 391
encoder-decoder model, 366–368
experimental results, 387–389
intermediate representation, 389–391
Keras Functional API, 368–371
language model examples, 313
programming example, 371–387
sequence-to-sequence networks, 363–365
use case, 306–307

Nearest neighbor interpolation, 550–551
Negative samples

FastText, 566
optimized continuous skip-gram model,

350
Nesterov momentum in gradient descent, 141
Network architectures, 87–89
Network-in-network architecture in GoogLeNet,

210
Networks

backpropagation, 87–89
constants and variables, 48
creating, 120–122
digit classification, 102–103
fully connected, 154–160
learning algorithm, 7
LSTM, 278–280
multiclass classification, 101
parameter tweaking, 143–146
saturated neurons and vanishing gradients,

124–126
training and inference, 100–101
tuning, 477–482

Neural architecture search (NAS)
components, 482–483
evaluating, 487–488
implementing, 493–494
implications, 500–501
initialization statements, 488–489
model evaluation, 497–498
model generation, 490–491
programming example, 488–501
search space, 483–484

search strategy, 484–487
tensorflow model, 492–493

Neural language models
concluding remarks, 342
examples, 307–312
GPT, 578–582
human biases, 332–333
inference models, 325
initialization section, 319–320
programming example, 319–329
sentiment analysis of text, 334–341
subtraction, 329–332
training examples, 320–322
training process, 323
use cases, 304–307
word embeddings, 303–304, 315–319

Neural machine translation
encoder-decoder model, 379–384
programming example, 371–387
tokens, 372–377
training sets and test sets, 378, 385–387

Neural machine translator (NMT), 395, 405
Neural networks. See Deep neural networks
Neural style transfer, 515
neuron_w() function, 83
Neurons

artificial, 2–3
biological, 1–2
instantiation and initialization, 107–108
saturated, 124–126

Newton-Raphson method, 593
gradient descent, 597
optimization problems, 595–597
root-finding, 594–596

Next-sentence prediction task in BERT,
583–584

NLP (natural language processing)
BERT tasks, 584, 586
cheat sheet, 666
Transformer, 407

NMT (neural machine translator), 395, 405
No Fly List, 507
no_grad() function, 634
Nonlinear activation functions, 138
Nonlinear functions in LSTM, 273
Nonnormalized vectors, 339–340
Nonparallel data in multimodal learning, 464
Nonsaturating neurons in vanishing gradients,

270, 272
norm() function, 327
Normalization

ResNet, 221
saturated neurons, 126–129

Index

680

Normalization (Continued)
Transformer, 411
vanishing gradients, 270, 272

Normalized vectors in sentiment analysis of
text, 339–340

NotNext category in BERT, 583–585
numpy() function, 633
numpy package

arrays, 260
contents, 20
versions, 622

O
Object detection, 539–540

Fast R-CNN, 544–546
Faster R-CNN, 546–549
instance segmentation, 559–561
overview, 540–542
R-CNN, 542–543

Offload computations, 21
OLS (ordinary least squares) in linear

regression, 523
One-hot encoding

character-based embedding, 570
multiclass classification, 101, 107
text, 285–287, 292–294, 297
word embeddings, 312, 316–317, 321–322

One-to-many case in text autocompletion,
301

One-to-many networks for image captioning.
See Image captioning

Online classes, 517–518
Online learning, 114–115
Online shopping sites, 515
Optimization problems

gradient-based learning, 41–44
Newton-Raphson method, 595–597

OR functions, 15
Ordinary least squares (OLS) in linear

regression, 523
Out-of-vocabulary words

character-based embedding, 567–572
FastText, 567
GPT, 581
wordpieces, 564, 583

Outlier detection
autoencoders, 451
programming example, 452–459

Output activation in LSTM, 276, 278
Output error in backpropagation, 77
Output neurons, saturated, 130–136
Output sequences in text autocompletion,

300–302

Output units, 139
concluding remarks, 170
linear unit for regression, 159–160
logistic unit for binary classification, 155
multitask learning, 471
overview, 154–155
softmax unit for multiclass classification,

156–158
Output word embedding in word2vec, 353–354
Outputs

autoencoders, 448, 453–454
axons, 1
BERT, 584–585
book sales forecasting problem, 261–262
cheat sheet, 664
digit classification, 121
fully connected networks, 154–160
learning algorithm, 8–12
multiple perceptrons, 17–20
neural language models, 327
perceptrons, 2
plots, 53
RNNs, 243
two-input example, 5
XOR example, 86–87

Overfitting
convolutional layers, 197
datasets, 98–100
ResNet, 216
validation sets for, 148

P
Packages in Python, 622–623
pad_sequences() function, 377
Padding

AlexNet, 173
convolutional layers, 179, 183–184, 192
neural language models, 321
neural machine translation, 376–377
time series data, 264
VGGNet, 207

Pandas, xxxvii
Parallel data in multimodal learning, 464
Parameter reductions in depthwise separable

convolutions, 232–234
Parameter sharing in multitask learning, 472
Partial derivatives

gradient-based learning, 42–44
gradient computation, 73–75

Passes
backpropagation, 60, 75–80
Fast R-CNN, 544
MNIST learning, 109–111

Index

681

word2vec, 352
XOR example, 85–86

Pattern identification, 54–57
PCA (principal component analysis)

autoencoders, 452
natural language translation, 389–390

Perceptrons. See Rosenblatt perceptron
Perplexity metric in neural language models,

323
Phrase embedding, 390
pillow package, 622
Pixels in digit classification, 102–103
Planes

3D plots, 31–32
learning algorithm geometric description, 51
multivariate linear regression, 521–522

Plots
gradient-based learning, 52–54
perceptrons, 30–32

Pointwise convolutions, 232
Pooling
GlobalAveragePooling2D, 434
max pooling. See Max pooling
unpooling, 553–555, 557

Positional embeddings in BERT, 585
Positional encoding in Transformer, 414–415
Postpadding in neural machine translation, 376
Precision metric for binary classifiers, 535
predict() function

neural language models, 324
text autocompletion, 297

Predictions
house prices, 161–165
neural language models, 324
next-sentence prediction task, 583–584
text. See Text autocompletion
time sequences in RNNs. See Recurrent

Neural networks (RNNs)
Prepadding in neural machine translation,

376
preprocess_input function, 225
Pretrained models, 205

backpropagation, 228–229
concluding remarks, 235–236
data augmentation, 229–231
depthwise separable convolutions, 232–234
EfficientNets, 234–235
GoogLeNet, 210–215
mistakes, 231
programming example, 223–226
ResNet, 215–223
transfer learning, 226–228
VGGNet, 206–209

Pretraining
GPT, 578–579
RoBERTa, 587–588

Principal component analysis (PCA)
autoencoders, 452
natural language translation, 389–390

Probabilistic FastText embeddings, 575
Programming environments, 623–624
Programming examples, 624–625
Progress reporting in learning process,

108–109
Project Gutenberg, 627
Projection layers in word embeddings, 316
pt_framework directory, 624
PULSE model, 509–511
PyCharm IDE, 624
PyDev extension, 624
Python Data Manipulation Library, xxxvii
Python language

development environments, 622–623
dictionaries, 294
function definitions, 120
learning algorithm, 8–12
perceptron implementation, 4
versions, 622

PyTorch framework
GPU acceleration, 629
programming example, 118–124
vs. TensorFlow, 631–636

Q
Queries

alignment vectors, 401
multi-head attention, 410–411
self-attention, 409

Question answering in multitask learning,
473–477

R
R-CNN (region-based CNN), 541–543
Random restart hill climbing, 485
Random searches

algorithm implementation, 493–494
NAS, 484–486

Reading datasets in MNIST learning, 105–107
Recall metric for binary classifiers, 535
Receiver operating characteristic (ROC) curves,

536
Receiver operating characteristic (ROC) space,

535
Receptive fields

convolutional layers, 178, 183
GoogLeNet, 210

Index

682

Recommender systems, 515
Recourse, need for, 506–507
Rectified linear unit (ReLU) activation function

alignment vectors, 403
book sales forecasting problem, 258
convolutional layers, 192, 200
cross-entropy loss function, 144
He initialization, 127
LSTM, 273
ResNet, 217
vanishing gradients, 137–140
VGGNet, 208

Recurrent dropout, 265
Recurrent layers in PyTorch vs. TensorFlow,

635
Recurrent neural networks (RNNs)

alternative view, 246–247
alternatives to, 406–407
backpropagation through time, 248–250
bidirectional, 298–300
book sales forecasting problem, 258–262
combining layers, 245–246
concluding remarks, 265–266
dataset considerations, 264
description, 88–89
feedforward networks, 241–242
gradient issues, 267–268, 271–272
GRUs, 613, 616–619
image captioning, 419–421
introduction, 237–240
LSTM, 275, 278–279
LSTM cells, 273
mathematical representation, 243–244
programming example, 251–264
simple form, 242–243
text encoding, 286–287

Refinement branch in Mask R-CNN, 560
Region-based CNN (R-CNN), 541–543
Region of interest (ROI)

align layer in Mask R-CNN, 561
pooling layers in Fast R-CNN, 544–545

Region proposal networks (RPNs) in Faster
R-CNN, 546–548

Regions in learning algorithm, 12
Regression

classification with, 525–527
coefficients, 523–525
concluding remarks, 170
curvature modeling, 522–523
linear output units, 154–155, 159–160
as machine learning algorithm, 519–523
multitask learning, 471
multivariate, 521–522

object detection, 540
R-CNN, 543
support vector machines, 532–533
univariate, 520–521
XOR classification, 528–530

Regularization
cheat sheet, 662
convolutional layers, 195–197
data augmentation, 229–231
datasets, 99
for generalization, 166–168
house prices example, 169–170

Reinforcement learning
NAS, 487
overview, 513

ReLU. See Rectified linear unit (ReLU) activation
function

Representation bias, 509
Representation in multimodal learning,

460–461
Reset-after GRU implementation, 614,

616–617
Reset-before GRU implementation, 614,

616–617
reset_states() function, 324
reshape() function, 636
Residual networks. See ResNet
ResNet

Mask R-CNN, 561
pretrained models, 215–223
programming example, 223–226

ResNeXt, 561
Reward functions in reinforcement learning,

513
RMSProp variation in gradient descent,

141–143
RNNs. See Recurrent neural networks (RNNs)
RoBERTa (Robustly Optimized BERT Pretraining

Approach), 586–589
ROC (receiver operating characteristic) curves,

535–536
ROI (region of interest)

align layer in Mask R-CNN, 561
pooling layers in Fast R-CNN, 544–545

Root-finding method, 594–596
Rosenblatt perceptron

bias term, 33–34
combining, 17–20
components, 2
concluding remarks, 34–35
description, 3
dot products, 23, 29
geometric interpretation, 30–32

Index

683

gradient-based learning. See Gradient-based
learning

introduction, 1–4
learning algorithm, 7–15
limitations, 15–16
linear algebra implementation, 20–21
matrices, 24–25, 28–29
matrix-matrix multiplication, 26–30
matrix-vector multiplication, 25–26
Python implementation, 4
two-input example, 4–7
vector notation, 21–23, 28–29

Row vectors, 22
RPNs (region proposal networks) in Faster

R-CNN, 546–548

S
S-shaped function

gradient descent, 61, 63–64, 66–67
vanishing gradients, 248

Sales forecasting problem. See Book sales
forecasting problem

Saturated neurons
avoiding, 126–129
cross-entropy loss function, 130–136
vanishing gradients, 124–126

Scalar variables, 21
Sci-kit learn framework, 148
Searches

NAS. See Neural architecture search (NAS)
text prediction, 289–291, 297
word-based language model, 305–307

Segment embeddings in BERT, 584–585
Segmentation, 539–540

instance, 559–561
semantic. See Semantic segmentation

Self-attention
GPT, 578
overview, 407–410

Semantic segmentation, 540, 549–550
checkerboard artifacts, 555–556
deconvolution and unpooling, 553–554
deconvolution networks, 557–558
U-Net, 558–559
upsampling techniques, 550–552

Sensitivity in binary classifiers, 534
Sensitivity metric for binary classifiers,

534–536
Sentence embedding, 390
Sentence order prediction (SOP) in RoBERTa,

588
Sentence vectors in autoencoders,

449–450

Sentiment analysis of text, 334
bag-of-n-grams, 337–338
bag-of words, 334–338
GPT, 581
similarity metrics, 338–340

SEP tokens in BERT, 584–585
Sequence-to-sequence networks

attention technique, 395–406
concluding remarks, 391
encoder-decoder model, 366–368
experimental results, 387–389
intermediate representation, 389–391
Keras Functional API, 368–371
natural language translation, 363–365
programming example, 371–387

sequences_to_matrix() function, 341
Sequential API, 634–635
Sequential class, 121
Sequential prediction

concluding remarks, 265–266
feedforward networks, 241–242
introduction, 237–240
programming example, 250–264
RNNs. See Recurrent neural networks (RNNs)
unrolling in time, 246–247

SGD (stochastic gradient descent)
description, 114
network training, 121
vs. true gradient descent, 50

Shingles, 337
Sibling networks

Fast R-CNN, 545
Faster R-CNN, 547–548

Sigmoid function for gradient descent, 61–64
Sigmoid neurons

backpropagation. See Backpropagation
Glorot initialization, 127

Sign functions
gradient computation, 70
gradient descent, 61
perceptrons, 2–3

Signum function, 2–3
Similarity metrics in sentiment analysis of text,

338–340
Single matrices, 599–602
Skip connections

LSTM, 282
NAS, 484
ResNet, 216–221
Transformer, 412
vanishing gradients, 271–272

Skip-gram model, 309
Skip-grams in word2vec, 355

Index

684

Sliding windows in Faster R-CNN, 548
Soft attention, 405–406
Soft parameter sharing, 472
Softmax activation function in GPT, 580
softmax function, 182
Softmax layers

alignment vectors, 401–403
BERT, 585
character-based embedding, 572
continuous skip-gram model, 348
ELMo, 573
GoogLeNet, 212
neural language models, 345–346
text encoding, 286–287
text prediction, 288–289

Softmax output units, 154–158
softplus function, 139–140
SOP (sentence order prediction) in RoBERTa,

588
Source hidden state for alignment vectors, 400
sparse_categorical_crossentropy

function, 383–384
Sparse connections in convolutional neural

networks, 185–190
Sparsely connected neurons, 176, 179
Special symbols in wordpieces, 565–566
Speech recognition, 306, 516
Spoken language models, 516
Spreadsheet support, 625
Stacking convolutional layers, 184
stand_alone directory, 624
Standard deviation for datasets, 107
Standardize data, 256–258, 260
Standardizing data, 106–107
START tokens

GPT, 580
natural language translation, 363–365
neural machine translation, 372–377, 384
sequence-to-sequence learning, 366

State handling in PyTorch vs. TensorFlow, 635
Statistical language models, 304–307
Steepest ascent hill climbing in NAS, 485
step() method, 632
Stimuli for dendrites, 1
Stochastic gradient descent (SGD)

description, 114
network training, 121
vs. true gradient descent, 50

Stochastic hill climbing, 494
STOP tokens

GPT, 580
natural language translation, 363–365
neural machine translation, 372–375

Streaming services recommender systems, 515
Strides

AlexNet, 173
convolutional layers, 178–179, 183–184,

191–192, 195, 198
GoogLeNet, 211
semantic segmentation, 554–555
VGGNet, 206–207

StyleGAN model, 510–511
Subscripts for variables, 21
Subtraction in neural language models,

329–332
Subwords in wordpieces, 564
summary() function, 163
Supervised learning, 7, 513
Support vector machines (SVMs)

classification with, 531–533
R-CNN, 543

Support vector regression, 533
SVMs. See Support vector machines
Symbols in wordpieces, 564–566
Symmetric digital for gradient descent, 65
Synapses in biological neurons, 1
Synaptic weight, 2
Systems installation, 628–629

T
Tacotron speech recognition, 516
tanh function. See Hyperbolic tangent (tanh)

function
Target hidden states in alignment vectors, 402
Taxonomies, 459–464
Tensor processing unit (TPU) pods, 591
TensorBoard, 145
TensorFlow framework

considerations, 630–631
programming example, 118–124
vs. PyTorch, 631–636

Tensorflow model, 492–493
Tensors

book sales forecasting problem, 257–258
multidimensional, 30

Terminator Genisys, 231
Test datasets

convolutional layers, 176
digit classification, 119
information leakage, 100
multiclass classification, 98–100, 105–107
neural machine translation, 378
overfitting, 148–149
time series, 264

Test errors
convolutional layers, 194–197, 200

Index

685

house prices example, 165
multiclass classification, 98–101
network tuning, 479
regularization for, 166
ResNet, 216

Test images in CIFAR-10 dataset, 173–175
Testing and test examples

autoencoders, 457–458
house prices example, 164
multiclass classification, 113
multimodal learning, 466–467
neural machine translation, 385–387

Text autocompletion, 285
autoregressive models, 287–289
bidirectional RNNs, 298–300
character mappings, 293
concluding remarks, 302
initialization statements, 292–293
input and output sequences, 300–302
natural language sentences, 240
programming example, 291–298
text encoding, 285–287
training examples, 293–294
training model, 295–296

Text prediction and beam search, 289–291
Text sentiment analysis, 334–341
Text-To-Text Transfer Transformer (T5), 591
text_to_word_sequence() function

neural language models, 320
neural machine translation, 372

tf_framework directory, 624
Thought vectors, 366–367
3D plots for perceptrons, 30–32
Thresholds in bias term, 33
Time in backpropagation through, 248–250
Time sequences. See Recurrent Neural

networks (RNNs)
Timesteps in natural language translation,

364–365
to() function, 633
to_categorical() function, 119–120, 377
tokenize() function

image captioning, 429
neural machine translation, 373–374

Tokenizer class, 321
Tokens

BERT, 584–585
GPT, 580
image captioning, 429–430
natural language translation, 363–365
neural machine translation, 372–377, 384
sequence-to-sequence learning, 366

torch.no_grad() function, 633

TPU (tensor processing unit) pods, 591
train() function, 634
Training

algorithm cheat sheet, 661
autoencoders, 450, 453–454
book sales forecasting problem, 261
BPTT, 248
CBOW model, 347
convolutional layers, 192–193
digit classification, 122–123
image captioning, 439–443
multiclass classification, 100–101
multimodal learning, 466–467
multitask learning, 472
NAS, 487
PyTorch vs. TensorFlow functions, 631–632,

634
word embeddings, 323

Training data and datasets
collecting, 481–482
convolutional layers, 176
digit classification, 119
image captioning, 422, 431–432
multiclass classification, 98–100
networks, 92–100
neural machine translation, 378
overfitting, 148–149
reading, 105–107
RoBERTa, 587
time series, 264

Training errors
convolutional layers, 194–197
house prices example, 165
multiclass classification, 98–101
network tuning, 478–479, 481–482
regularization for, 166
ResNet, 215–216

Training examples
book sales forecasting problem, 251–253,

256–259
learning algorithm, 38–40
MNIST dataset, 95
multiclass classification, 113
multimodal learning, 464
natural language translation, 364–365
optimized continuous skip-gram model,

350–351
text autocompletion, 293–294
word embeddings, 316, 320–322
XOR example, 83, 86

Training loops
learning algorithm, 10
mini-batch implementation, 605–606

http://torch.no_grad(

Index

686

Training loops (Continued)
MNIST learning, 112–114
XOR example, 85–86

Training model
neural machine translation, 385–387
text autocompletion, 295–296

Transfer learning
multimodal learning, 464
multitask learning, 470
pretrained models, 226–228

Transformer, 393
architecture, 411–415
cheat sheet, 666
concluding remarks, 415–416
GPT, 578–581
image captioning, 422
models based on, 590–591
positional encoding, 414–415
recurrent layers, 407
self-attention, 409

Transformer-XL, 590–591
Translation in multimodal learning, 462–463
Translation invariance in convolutional layers,

175–176, 179
Transpose operation

matrices, 24–25
vector notation, 22

Transposed convolution in semantic
segmentation, 553–554

True negatives (TNs) in binary classifiers, 534
True positives (TPs) in binary classifiers,

534–535
Trunks in multitask learning, 471
Tuning networks, 477–482
tweak_model() function, 495–496
2D matrices, extending vectors to, 24–25
Two-input perceptron example, 4–7
Type I errors in binary classifiers, 534
Type II errors in binary classifiers, 534

U
U-Net, 558–559
ULMFiT (Universal Language Model Fine-

tuning), 589
Unbiased estimators for linear output units, 160
Uniform random searches in NAS, 486
United States Census Bureau data

book sales forecasting problem,
250–251

datasets, 626–627
Univariate linear regression, 520–521
Universal Language Model Fine-tuning

(ULMFiT), 589

Unlabeled data
autoencoders, 451–452
transfer learning, 228

Unpooling in semantic segmentation, 553–555,
557

Unrolling in time, 246–247
Unsupervised learning, 513
Update gates in GRUs, 615
Upsampling techniques

semantic segmentation, 550–552
U-Net, 558–559

Use cases for language models, 304–307

V
VAEs (variational autoencoders), 513–515
Validation datasets, 100
Validation sets, overfitting, 148
Vanishing gradients

activation function, 250
avoiding, 136–141
CEC, 277–278
mitigating, 267–272
RNNs, 273
S-shaped activation functions, 248
saturated neurons, 124–126

Variable length datasets in time series, 264
Variables

book sales forecasting problem, 263–264
Boston Housing dataset, 160–161
digit classification, 123
gradient-based learning, 43, 48
XOR example, 83–84

Variational autoencoders (VAEs), 513–515
VGGNet, 206–209
Vectors

attention technique, 395–398, 400–404
autoencoders, 449–450
BERT, 585
book sales forecasting problem, 251–252
CBOW model, 346–347
continuous skip-gram model, 349
dot products, 57
ELMo, 574
extending to matrices, 24–25
GloVe, 359–360
gradient descent, 47
gradients, 44
image captioning, 419–421, 424–426
multi-head attention, 410–411
natural language translation, 389–390
neural language models, 330–332
notation, 21–23
self-attention, 409

Index

687

sentiment analysis of text, 338–340
sequence-to-sequence learning,

366–367
summary, 28–29
support vector machines, 531–533
tensors, 30
word, 303–304, 316
word2vec, 353

Versions of Python, 622–623
VGG (Visual Geometry Group), 206
VGG19 network, 418–424
VGGNet-16 network

deconvolution networks, 557
Fast R-CNN, 544
Faster R-CNN, 546

view() function, 636
Virtual environment installation, 629
virtualenv tool, 629
Visual Geometry Group (VGG), 206
Vocabularies

FastText, 567
wordpieces, 564–565

W
W-shingling technique, 337
Weight decay in regularization, 166–167
Weight initialization for saturated neurons,

126–128
Weighted sums

batch normalization, 129
plots, 52–53

Weights and weight sharing
alignment vectors, 402
attention technique, 400, 405
audio filters, 611
backpropagation, 76–81, 269
backpropagation through time, 249
bias term, 33–34
character-based embedding, 569
convolutional layers, 176, 191, 229
convolutional neural networks, 88, 185–190
datasets, 99
depthwise separable convolutions,

232–233
dot products, 23
ELMo, 574–575
exploding gradients, 142
geometric interpretation, 31
gradient computation, 69–71
gradient descent, 44–45, 48, 65–66
GRUs, 615
input, 2–4
learning algorithm, 7–12, 14, 37–40

learning algorithm analytic motivation,
49–50

learning algorithm geometric description, 51
linear output units, 160
LSTM, 276, 279
matrix-matrix multiplication, 27–28
mini-batch implementation, 602–603
multi-head attention, 411
multiple perceptrons, 19–20
multitask learning, 471–472, 476
neural machine translation, 384
pattern identification, 55
perceptrons, 15–16
plots, 52–54
recurrent layers, 243–244, 246–247
ResNet, 216
self-attention, 408–409
semantic segmentation, 551, 554–555
synaptic, 2
transfer learning, 228
two-input example, 4–7
vanishing gradients, 250
VGGNet, 209
vector notation, 22
word embeddings, 317
word2vec, 352–353
XOR example, 84–85

Word embeddings, 303–304, 563–564
benefits and operation, 313–315
character-based method, 567–572
cheat sheet, 665
concluding remarks, 342
ELMo, 572–575
FastText, 566–567
GloVe, 356–362
human biases, 332–333
inference models, 325
initialization section, 319–320
language model examples, 307–312
language model use cases, 304–307
neural language models, 315–319
programming example, 319–329
related work, 575–576
sentiment analysis of text, 334–341
subtraction, 329–332
training examples, 320–322
training process, 323
word2vec. See word2vec algorithm
wordpieces, 564–566

Word-of-n-grams, 569
Word vectors, 303–304

GloVe, 359
neural language models, 316, 330–332

Index

688

word2vec algorithm, 343
autoencoder similarity, 450–451
CBOW model, 346–347
computational complexity, 344–346
concluding remarks, 361–362
continuous skip-gram model, 348–349,

352
evolution, 354–355
matrix form, 353–354
neural language models, 332
optimized continuous skip-gram model,

349–351
tweaking, 352–353
word embeddings, 344–351

Wordpieces
BERT, 583
overview, 564–566

X
Xception module, 234
XLNet, 590–591
XOR functions

backpropagation, 82–87
linear classification, 528–530
multiple perceptrons, 17–19
perceptrons, 15–16

Y
YouTube videos, 507

Z
zero_grad() method, 632
Zero-shot task transfer, 581–582
zeros() function, 107

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	5 TOWARD DL: FRAMEWORKS AND NETWORK TWEAKS
	Programming Example: Moving to a DL Framework
	The Problem of Saturated Neurons and Vanishing Gradients
	Initialization and Normalization Techniques to Avoid Saturated Neurons
	Weight Initialization
	Input Standardization
	Batch Normalization

	Cross-Entropy Loss Function to Mitigate Effect of Saturated Output Neurons
	Computer Implementation of the Cross-Entropy Loss Function

	Different Activation Functions to Avoid Vanishing Gradient in Hidden Layers
	Variations on Gradient Descent to Improve Learning
	Experiment: Tweaking Network and Learning Parameters
	Hyperparameter Tuning and Cross-Validation
	Using a Validation Set to Avoid Overt fi ting
	Cross-Validation to Improve Use of Training Data

	Concluding Remarks on the Path Toward Deep Learning

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

