
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137424603
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137424603
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137424603

Praise for Establishing SRE Foundations

“Many enterprises today face the challenge of establishing modern operations for their SaaS
offerings. This book provides a proven step-by-step guide for how this can be done from scratch using
Google’s SRE methodology. From achieving organizational buy-in to laying down the basic SRE foun-
dations, establishing incident response and implementing a suitable organizational structure—the
book contains a wealth of advice for development, operations, and leadership teams!”

—Dr. Peter Schardt, Chief Technology Officer at Siemens Healthcare GmbH

“Establishing SRE Foundations is a great introductory guide for anyone new to understanding and
implementing Site Reliability Engineering (SRE) in their organization. Vlad creates a solid platform for
anyone wishing to understand the SRE approach to building reliability into software services. As well
as practical advice on implementing techniques such as SLIs and SLOs, Vlad goes into detail on how to
achieve buy-in for SRE adoption and how to modify your organizational setup, rooted in his own expe-
riences of working in a large organization. Those experiences are sorely lacking elsewhere in SRE liter-
ature, and when I’m asked in the future about SRE, I’ll be referring people to this excellent book.”

—Steve Smith, author of Measuring Continuous Delivery (2020)

“I very much enjoyed reading this book, even in its early forms. Vlad treats the topic of SRE methodi-
cally and in great detail; if you have ever been wondering whether or not someone else has come across
your particular issue in an SRE implementation, this book can answer that question and probably has
an actionable solution as well. Destined to become a constantly referenced handbook by all those
involved in SRE change projects.”

—Niall Murphy, co-author of Site Reliability Engineering (2016) and
The Site Reliability Handbook (2018)

“There are an overwhelming number of blogs, books, podcasts, and ad hoc opinions covering the nitty-
gritty of SRE toolchains and technology choices. That being said, SRE initiatives rarely fail for techno-
logical reasons—they fail for structural or organizational reasons. In Establishing SRE Foundations,
Dr. Ukis has given us all a detailed, accessible, and actionable blueprint for the structures and practices
of a successful SRE organization. It is an excellent book and one I would recommend to anyone looking
to establish a scaled-out SRE practice in a complex environment.”

—Ben Sigelman, co-founder of Lightstep

“Establishing SRE Foundations provides far and away the clearest, most comprehensive, and most
actionable roadmap I have seen for driving, scaling, and sustaining SRE in an engineering organization.
I cannot recommend it highly enough!”

—Randy Shoup, eBay Chief Architect and former Google Engineering leader

9780137424603_print.indb 1 23/08/22 8:20 PM

“Establishing SRE Foundations is a comprehensive guide for anyone looking to take their software
operations to the next level. If you are a beginner, you will learn why SRE is a great methodology for
improving operations, what the challenges of introducing SRE are, how to achieve organizational buy-
in for SRE, how to lay the foundation for SRE in your teams, and how to drive continuous improve-
ment. If you are an experienced practitioner, you will learn how to set up an error budget policy, enable
error budget–based decision-making, and implement a suitable organizational structure. I think the
content of the book is spot on and highly recommend it!”

—Vitor dos Reis, Director of Software Engineering at Delivery Hero

“Vlad offers a detailed and comprehensive overview of the transformation to SRE. He covers assess-
ment, organizational structures, technical implementation, communication, and continuation. This
book is a clear roadmap for any organization starting or progressing their SRE journey, replete with
what to consider, options available, and real-world examples. If you are thinking about starting the SRE
Journey, have found yourself stalled along the way, or are looking for more ideas to help you continue
the journey successfully, then buy this book.”

—Doc Norton, Change Catalyst, OnBelay Consulting

9780137424603_print.indb 2 23/08/22 8:20 PM

Establishing SRE Foundations

9780137424603_print.indb 3 23/08/22 8:20 PM

9780137424603_print.indb 525 23/08/22 8:21 PM

This page intentionally left blank

Establishing SRE
Foundations
A Step-by-Step Guide to Introducing Site
Reliability Engineering in
Software Delivery Organizations

Vladyslav Ukis

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

9780137424603_print.indb 5 23/08/22 8:20 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800)
382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022937194

Copyright © 2023 Pearson Education, Inc.

Cover image: VAlex/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-742460-3
ISBN-10: 0-13-742460-4

ScoutAutomatedPrintCode

9780137424603_print.indb 6 23/08/22 8:20 PM

mailto:at$$$corpsales@pearsoned.comor(
mailto:contact$$$governmentsales@pearsoned.com
mailto:contact$$$intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the
many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, abil-
ity, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver opportuni-
ties that improve lives and enable economic mobility. As we work with authors to create content for every
product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse
scholarship so that everyone can achieve their potential through learning. As the world’s leading learning
company, we have a duty to help drive change and live up to our purpose to help more people create a better
life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich diversity of learners.

• Our educational content accurately reflects the histories and experiences of the learners we serve.

• Our educational content prompts deeper discussions with learners and motivates them to expand their
own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any concerns or needs
with this Pearson product so that we can investigate and address them.

• Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.

9780137424603_print.indb 7 23/08/22 8:20 PM

https://www.pearson.com/report-bias.html

9780137424603_print.indb 525 23/08/22 8:21 PM

This page intentionally left blank

To my wonderful wife, Lina, daughter, Annika,
and son, Jonas

9780137424603_print.indb 9 23/08/22 8:20 PM

9780137424603_print.indb 525 23/08/22 8:21 PM

This page intentionally left blank

xi

Contents

Foreword . xxi

Preface . xxv

Acknowledgments . xxix

About the Author . xxxiii

Part I Foundations . 1

Chapter 1 Introduction to SRE . 3

1.1 Why SRE? . 3
1.1.1 ITIL . 3
1.1.2 COBIT . 4
1.1.3 Modeling . 5
1.1.4 DevOps . 6
1.1.5 SRE . 7
1.1.6 Comparison . 8

1.2 Alignment Using SRE . 13
1.3 Why Does SRE Work? . 17
1.4 Summary . 19

Chapter 2 The Challenge . 21

2.1 Misalignment . 22
2.2 Collective Ownership . 23
2.3 Ownership Using SRE . 25

2.3.1 Product Development . 25
2.3.2 Product Operations . 28
2.3.3 Product Management . 32
2.3.4 Benefits and Costs . 36

2.4 The Challenge Statement . 38
2.5 Coaching . 39
2.6 Summary . 41

9780137424603_print.indb 11 23/08/22 8:20 PM

Contentsxii

Chapter 3 SRE Basic Concepts . 43

3.1 Service Level Indicators . 43
3.2 Service Level Objectives . 45
3.3 Error Budgets . 47

3.3.1 Availability Error Budget Example . 49
3.3.2 Error Budget of Zero . 50
3.3.3 Latency Error Budget Example . 52

3.4 Error Budget Policies . 53
3.5 SRE Concept Pyramid . 55
3.6 Alignment Using the SRE Concept Pyramid . 59
3.7 Summary . 63

Chapter 4 Assessing the Status Quo . 65

4.1 Where Is the Organization? . 65
4.1.1 Organizational Structure . 65
4.1.2 Organizational Alignment . 67
4.1.3 Formal and Informal Leadership . 68

4.2 Where Are the People? . 69
4.3 Where Is the Tech? . 71
4.4 Where Is the Culture? . 74

4.4.1 Is There High Cooperation? . 75
4.4.2 Are Messengers Trained? . 77
4.4.3 Are Risks Shared? . 77
4.4.4 Is Bridging Encouraged? . 78
4.4.5 Does Failure Lead to Inquiry? . 78
4.4.6 Is Novelty Implemented? . 78

4.5 Where Is the Process? . 79
4.6 SRE Maturity Model . 81
4.7 Posing Hypotheses . 81
4.8 Summary . 86

Part II Running the Transformation . 87

Chapter 5 Achieving Organizational Buy-In . 89

5.1 Getting People Behind SRE . 89
5.2 SRE Marketing Funnel . 92

5.2.1 Awareness . 93
5.2.2 Interest . 93

9780137424603_print.indb 12 23/08/22 8:20 PM

Contents xiii

5.2.3 Understanding . 95
5.2.4 Agreement . 95
5.2.5 Engagement . 96

5.3 SRE Coaches . 96
5.3.1 Qualities . 97
5.3.2 Responsibilities . 98

5.4 Top-Down Buy-In . 99
5.4.1 Stakeholder Chart . 100
5.4.2 Engaging the Head of Development . 103
5.4.3 Engaging the Head of Operations . 107
5.4.4 Engaging the Head of Product Management . 110
5.4.5 Achieving Joint Buy-In . 112
5.4.6 Getting SRE into the Portfolio . 114

5.5 Bottom-Up Buy-In . 117
5.5.1 Engaging the Operations Teams . 117
5.5.2 Engaging the Development Teams . 119

5.6 Lateral Buy-In . 122
5.7 Buy-In Staggering . 123
5.8 Team Coaching . 124
5.9 Traversing the Organization . 126

5.9.1 Grouping the Organization . 126
5.9.2 Traversing the Organization Versus SRE Infrastructure Demand 127
5.9.3 Team Engagements Over Time . 129

5.10 Organizational Coaching . 131
5.11 Summary . 133

Chapter 6 Laying Down the Foundations . 135

6.1 Introductory Talks by Team . 135
6.2 Conveying the Basics . 136

6.2.1 SLO as a Contract . 137
6.2.2 SLO as a Proxy Measure of Customer Happiness 138
6.2.3 User Personas . 138
6.2.4 User Story Mapping . 140
6.2.5 Motivation to Fix SLO Breaches . 142
6.2.6 SLOs Are Not About Technicalities . 144
6.2.7 Causes of SLO Breaches . 145
6.2.8 On Call for SLO Breaches . 146

9780137424603_print.indb 13 23/08/22 8:20 PM

Contentsxiv

6.3 SLI Standardization . 147
6.3.1 Application Performance Management Facility . 149
6.3.2 Availability . 150
6.3.3 Latency . 151
6.3.4 Prioritization . 152

6.4 Enabling Logging . 154
6.5 Teaching the Log Query Language . 156
6.6 Defining Initial SLOs . 157

6.6.1 What Makes a Good SLO? . 157
6.6.2 Iterating on an SLO . 159
6.6.3 Revising SLOs . 162

6.7 Default SLOs . 163
6.8 Providing Basic Infrastructure . 164

6.8.1 Dashboards . 165
6.8.2 Alert Content . 166

6.9 Engaging Champions . 167
6.10 Dealing with Detractors . 168

6.10.1 Issues with the Cause . 168
6.10.2 Issues with Alerting . 168
6.10.3 Issues with Tooling . 169
6.10.4 Issues with Product Owner Involvement . 170
6.10.5 Issues with Team Motivation . 170

6.11 Creating Documentation . 171
6.12 Broadcast Success . 172
6.13 Summary . 174

Chapter 7 Reacting to Alerts on SLO Breaches . 175

7.1 Environment Selection . 175
7.2 Responsibilities . 177

7.2.1 Dev Versus Ops Responsibilities . 177
7.2.2 Operational Responsibilities . 178
7.2.3 Splitting Operational Responsibilities . 179

7.3 Ways of Working . 180
7.3.1 Interruption-Based Working Mode . 181
7.3.2 Focus-Based Working Mode . 185

9780137424603_print.indb 14 23/08/22 8:20 PM

Contents xv

7.4 Setting Up On-Call Rotations . 185
7.4.1 Initial Rotation Period . 186
7.4.2 One Person On Call . 186
7.4.3 Two People On Call . 187
7.4.4 Three People On Call . 187

7.5 On-Call Management Tools . 188
7.5.1 Posting SLO Breaches . 188
7.5.2 Scheduling . 190
7.5.3 Professional On-Call Management Tools . 191

7.6 Out-of-Hours On-Call . 193
7.6.1 Using Availability Targets and Product Demand . 194
7.6.2 Trade-offs . 194

7.7 Systematic Knowledge Sharing . 196
7.7.1 Knowledge-Sharing Needs . 198
7.7.2 Knowledge-Sharing Pyramid . 199
7.7.3 On-Call Training . 201
7.7.4 Runbooks . 203
7.7.5 Internal Stack Overflow . 205
7.7.6 SRE Community of Practice . 206

7.8 Broadcast Success . 208
7.9 Summary . 209

Chapter 8 Implementing Alert Dispatching . 211

8.1 Alert Escalation . 212
8.2 Defining an Alert Escalation Policy . 214
8.3 Defining Stakeholder Groups . 216
8.4 Triggering Stakeholder Notifications . 218
8.5 Defining Stakeholder Rings . 219
8.6 Defining Effective Stakeholder Notifications . 222
8.7 Getting the Stakeholders Subscribed . 225

8.7.1 Subscribing Using the On-Call Management Tool 225
8.7.2 Subscribing Using Other Means . 226

8.8 Broadcast Success . 226
8.9 Summary . 227

9780137424603_print.indb 15 23/08/22 8:20 PM

Contentsxvi

Chapter 9 Implementing Incident Response . 229

9.1 Incident Response Foundations . 229
9.2 Incident Priorities . 230

9.2.1 SLO Breaches Versus Incidents . 232
9.2.2 Changing Incident Priority During an Incident . 233
9.2.3 Defining Generic Incident Priorities . 234
9.2.4 Mapping SLOs to Incident Priorities . 237
9.2.5 Mapping Error Budgets to Incident Priorities . 239
9.2.6 Mapping Resource-Based Alerts to Incident Priorities 240
9.2.7 Uncovering New Use Cases for Incident Priorities 242
9.2.8 Adjusting Incident Priorities Based on Stakeholder Feedback 242
9.2.9 Extending the SLO Definition Process . 244
9.2.10 Infrastructure . 245
9.2.11 Deduplication . 246

9.3 Complex Incident Coordination . 248
9.3.1 What Is a Complex Incident? . 248
9.3.2 Existing Incident Coordination Systems . 249
9.3.3 Incident Classification . 250
9.3.4 Defining Generic Incident Severities . 251
9.3.5 Social Dimension of Incident Classification . 252
9.3.6 Incident Priority Versus Incident Severity . 253
9.3.7 Defining Roles . 254
9.3.8 Roles Required by Incident Severity . 257
9.3.9 Roles On Call . 257
9.3.10 Incident Response Process Evaluation . 258
9.3.11 Incident Response Process Dynamics . 260
9.3.12 Incident Response Team Well-Being . 262

9.4 Incident Postmortems . 268
9.5 Effective Postmortem Criteria . 269

9.5.1 Initiating a Postmortem . 271
9.5.2 Postmortem Lifecycle . 272
9.5.3 Before the Postmortem . 273
9.5.4 During the Postmortem . 276
9.5.5 After the Postmortem . 283
9.5.6 Analyzing the Postmortem Process . 283

9780137424603_print.indb 16 23/08/22 8:20 PM

Contents xvii

9.5.7 Postmortem Template . 289
9.5.8 Facilitating Learning from Postmortems . 291
9.5.9 Successful Postmortem Practice . 291
9.5.10 Example Postmortems . 292

9.6 Mashing Up the Tools . 294
9.6.1 Connecting to the On-Call Management Tool . 294
9.6.2 Connections Among Other Tools . 296
9.6.3 Mobile Integrations . 297
9.6.4 Example Tool Landscapes . 298

9.7 Service Status Broadcast . 298
9.8 Documenting the Incident Response Process . 301
9.9 Broadcast Success . 302
9.10 Summary . 303

Chapter 10 Setting Up an Error Budget Policy . 305

10.1 Motivation . 305
10.2 Terminology . 307
10.3 Error Budget Policy Structure . 308
10.4 Error Budget Policy Conditions . 309
10.5 Error Budget Policy Consequences . 311
10.6 Error Budget Policy Governance . 312
10.7 Extending the Error Budget Policy . 314
10.8 Agreeing to the Error Budget Policy . 318
10.9 Storing the Error Budget Policy . 319
10.10 Enacting the Error Budget Policy . 320
10.11 Reviewing the Error Budget Policy . 321
10.12 Related Concepts . 322
10.13 Summary . 324

Chapter 11 Enabling Error Budget–Based Decision–Making 325

11.1 Reliability Decision-Making Taxonomy . 325
11.2 Implementing SRE Indicators . 330

11.2.1 Dimensions of SRE Indicators . 330
11.2.2 “SLOs by Service” Indicator . 330
11.2.3 SLO Adherence Indicator . 332
11.2.4 SLO Error Budget Depletion Indicator . 333

9780137424603_print.indb 17 23/08/22 8:20 PM

Contentsxviii

11.2.5 Premature SLO Error Budget Exhaustion Indicator 339
11.2.6 “SLAs by Service” Indicator . 343
11.2.7 SLA Error Budget Depletion Indicator . 345
11.2.8 SLA Adherence Indicator . 348
11.2.9 Customer Support Ticket Trend Indicator . 349
11.2.10 “On-Call Rotations by Team” Indicator . 353
11.2.11 Incident Time to Recovery Trend Indicator . 355
11.2.12 Least Available Service Endpoints Indicator . 356
11.2.13 Slowest Service Endpoints Indicator . 358

11.3 Process Indicators, Not People KPIs . 359
11.4 Decisions Versus Indicators . 359
11.5 Decision-Making Workflows . 362

11.5.1 API Consumption Decision Workflow . 363
11.5.2 Tightening a Dependency’s SLO Decision Workflow 366
11.5.3 Features Versus Reliability Prioritization Workflow 368
11.5.4 Setting an SLO Decision Workflow . 372
11.5.5 Setting an SLA Decision Workflow . 377
11.5.6 Allocating SRE Capacity to a Team Decision Workflow 380
11.5.7 Chaos Engineering Hypotheses Selection Workflow 383

11.6 Summary . 388

Chapter 12 Implementing Organizational Structure . 391

12.1 SRE Principles Versus Organizational Structure . 393
12.2 Who Builds It, Who Runs It? . 394

12.2.1 “Who Builds It, Who Runs It?” Spectrum . 395
12.2.2 Hybrid Models . 396
12.2.3 Reliability Incentives . 397
12.2.4 Model Comparison Criteria . 400
12.2.5 Model Comparison . 402

12.3 You Build It, You Run It . 403
12.4 You Build It, You and SRE Run It . 406

12.4.1 SRE Team Within the Development Organization 406
12.4.2 SRE Team Within the Operations Organization . 409
12.4.3 SRE Team in a Dedicated SRE Organization . 410
12.4.4 Comparison . 411
12.4.5 SRE Team Incentives, Identity, and Pride . 412
12.4.6 SRE Team Head Count and Budget . 414
12.4.7 SRE Team Cost Accounting . 417
12.4.8 SRE Team KPIs . 419

9780137424603_print.indb 18 23/08/22 8:20 PM

Contents xix

12.5 You Build It, SRE Run It . 421
12.5.1 SRE Team Within a Development Organization . 421
12.5.2 SRE Team Within an Operations Organization . 423
12.5.3 SRE Team in a Dedicated SRE Organization . 423

12.6 Cost Optimization . 424
12.7 Team Topologies . 426

12.7.1 Reporting Lines . 427
12.7.2 SRE Identity Triangle . 428
12.7.3 Holacracy: No Reporting Lines . 431

12.8 Choosing a Model . 432
12.8.1 Model Transformation Options . 432
12.8.2 Decision Dimensions . 434
12.8.3 Reporting Options . 435
12.8.4 Positioning the SRE Organization . 437
12.8.5 Conveying the Value to Executives . 439

12.9 A New Role: SRE . 440
12.9.1 Why Is a New Role Needed? . 440
12.9.2 Role Definition . 443
12.9.3 Role Naming . 445
12.9.4 Role Assignment . 447
12.9.5 Role Fulfillment . 448

12.10 SRE Career Path . 450
12.10.1 SRE Role Progressions . 451
12.10.2 SRE Role Transitions . 453
12.10.3 Cultural Importance . 455

12.11 Communicating the Chosen Model . 456
12.12 Introducing the Chosen Model . 457

12.12.1 Organization Changes . 458
12.12.2 Reporting Structure Changes . 460
12.12.3 Role Changes . 461

12.13 Summary . 462

Part III Measuring and Sustaining the Transformation 465

Chapter 13 Measuring the SRE Transformation . 467

13.1 Testing Transformation Hypotheses . 467
13.2 Outages Not Detected Internally . 469
13.3 Services Exhausting Error Budgets Prematurely . 470

9780137424603_print.indb 19 23/08/22 8:20 PM

Contentsxx

13.4 Executives’ Perceptions . 471
13.5 Reliability Perception by Users and Partners . 472
13.6 Summary . 473

Chapter 14 Sustaining the SRE Movement . 475

14.1 Maturing the SRE CoP . 475
14.2 SRE Minutes . 475
14.3 Availability Newsletter . 476
14.4 SRE Column in the Engineering Blog . 477
14.5 Promote Long-Form SRE Wiki Articles . 477
14.6 SRE Broadcasting . 478
14.7 Combining SRE and CD Indicators . 479

14.7.1 CD Versus SRE Indicators . 481
14.7.2 Bottleneck Analysis . 482

14.8 SRE Feedback Loops . 483
14.9 New Hypotheses . 484
14.10 Providing Learning Opportunities . 486
14.11 Supporting SRE Coaches . 487
14.12 Summary . 489

Chapter 15 The Road Ahead . 491

15.1 Service Catalog . 492
15.2 SLAs . 494
15.3 Regulatory Compliance . 494
15.4 SRE Infrastructure . 495
15.5 Game Days . 496

Appendix Topics for Quick Reference . 499

Index . 507

9780137424603_print.indb 20 23/08/22 8:20 PM

Foreword

I first met Vlad Ukis at a QCon conference in London a few years ago. He wanted to recruit me as a
consultant to help advise his team at Siemens Healthcare. I worked with the teamplay digital health
platform team that Vlad led in Siemens Healthcare over the course of the next year or so, and over that
period Vlad and I became friends.

Vlad has done an outstanding job helping the teamplay team, and more broadly Siemens Healthcare
to make fantastic progress. The hard-won lessons that he and his team worked through are writ large in
the pages of this book.

The teamplay team are applying the advanced, engineering-led, modern version of agile develop-
ment exemplified by Continuous Delivery, DevOps and SRE, to significant advantage. They demon-
strate the applicability of these ideas beyond the bounds of the big web companies that most people
tend to think of when we discuss these ideas.

I often see and hear organizations dismiss sometimes important ideas that were popularized by the
big web companies with comments like, “Yes, but we aren’t <Google, Amazon, Netflix, insert your
favorite here>.” This is a misreading of why these ideas work in those organizations.

It is not always that the problems in the big web companies are unique. Rather, it is that their scale
means that common problems often become limiting more quickly. This means that it becomes essen-
tial for them to solve these common problems. These big organizations don’t practice Continuous
Delivery (CD) and SRE because they are fads. They practice them because they work better than any
alternatives that we know and address problems at the heart of all software development.

As an early adopter and promoter of some of these ideas, I think that we have entered a new phase in
the evolution of some of these ideas. We are now seeing them being adopted more widely, and to very
significant advantage and effect, in all kinds of software development organizations. Automotive, aero-
space, telecoms, and medical sectors all have examples of their use. This book makes that clear with an
example from a real-world complex software development. It stops people being able to say “SRE is all
very well, but we are not Google.” It is also a lot more than only that, though.

I think there are very good reasons for the growth of ideas like CD and SRE. Both are true engineer-
ing approaches to solving problems. They both try to use measurement and apply scientific style rea-
soning to solving real-world, practical problems that we all face, whatever the scale of our software
development or the nature of the problem. I describe CD as being driven by enabling an experimental
approach to software development. SRE is profoundly that too.

I have written about my views on applying engineering thinking to the development of software. I
think learning, and evolving, our discipline in this direction is essential to doing a good job. Why does
this matter in the context of this book? I think it is important to remember that the “E” in “SRE”

xxi

9780137424603_print.indb 21 23/08/22 8:20 PM

Forewordxxii

means “Engineering”; it is not just the word “SRE”. My preferred definition for software engineer-
ing is this:

Software engineering is the application of an empirical, scientific approach to finding efficient,
economic solutions to practical problems in software.

SRE thinking is profoundly grounded in the principles at the heart of this definition. It also
adopts that other essential aspect of true engineering: We start off assuming that we will make
mistakes.

The world isn’t perfect. Our software won’t always perform as we hope. Every system fails
sometimes. SRE puts this kind of thinking front and center, and forces us, as teams and organiza-
tions, to think about how we would like our systems to cope—How much down time is too much?
and What shall we do when approaching those limits?

This book does two things and does both extremely well.
At its heart, this book describes how the engineering approach that underpins SRE provides

greater clarity and more effective collaboration between the three main strands of development:
People focused primarily on the product, its development, and its operation.

SRE provides the glue between these groups, focusing them on what really matters in a way that
is collaborative but also leaves each group with enough clarity to inform independent decision-
making in their own sphere.

The techniques and principles of SRE are not only clearly defined here, but also the rationale
behind them is explained in a way that will stick. This is not some dry definition, this is practical,
usable, understanding.

The second thing that this book does is to describe how to start making changes to apply this
kind of thinking, and the techniques of SRE, in a preexisting real-world, complex development
organization. This is clearly based on much more than a theoretical understanding or interpreta-
tion—these are words from a practitioner.

The teamplay team are not dealing with simple software. Their work cannot be easily dis-
missed, inaccurate as those dismissals usually are, as just being another simple website or online
shop. The teamplay team build real software that matters. Their software helps to save lives of
patients in hospitals. It integrates world-class medical devices in hospitals with information
systems in the cloud that enable new insights and new ways to help people. They adopt these lead-
ing-edge techniques, not because they are fashionable but because they work better than anything
else that we know how to do so far.

This book will certainly help you understand what ideas like Service Level Indicators (SLIs),
Service Level Objectives (SLOs), and Error Budgets really mean; their relationship to one another;
and how to apply them. It explores, in some detail, how to organize effective responses to incidents
and how to perform good post-mortems after incidents to reinforce learning. It describes effective
organizational structures. This is a wide-ranging book for a wide-ranging topic. For me, though, it
goes even beyond that.

I am a long-time practitioner of ideas that are incredibly well aligned and close to these ideas. I
have read around this subject for several years and thought that I really understood what it was
about. But my understanding is deeper now. I really get it and plan to add more use of SRE ideas to
the way that I communicate and explain things in my own work. I thank Vlad for that.

9780137424603_print.indb 22 23/08/22 8:20 PM

Foreword xxiii

There are nuggets in here that inform my own thinking and help me to develop my understand-
ing of what it takes to apply real engineering thinking to software development.

I already knew that in engineering it is all about trade-offs, but Vlad explains this very clearly
with examples in an SRE context and describes what some of the common trade-offs are and how
to think about them.

I laughed out loud when I read the now blindingly obvious statement that “If you set your SLO
to 100%, that means that features are always second priority.” Of course, that is true. I knew this,
but now I have better words and better models to express it with.

I was delighted and honored to be asked to write a foreword for this book. I confess that I may
have written a foreword for it anyway because Vlad is intelligent, thoughtful, and does really good
work, but also because he is my friend. I am doubly delighted that I don’t need to do this as a favor
to a friend, though. I can whole-heartedly recommend this book without any reservation. This is a
very good book on an important topic that helps to move the game forward for our discipline! I
hope that you enjoy it as much as I have.

—Dave Farley
Independent Software Development Consultant
Founder and CEO of Continuous Delivery Ltd.

9780137424603_print.indb 23 23/08/22 8:20 PM

9780137424603_print.indb 525 23/08/22 8:21 PM

This page intentionally left blank

xxv

Preface

This book is based on a site reliability engineering (SRE) transformation journey from a real software
delivery organization in the healthcare industry. The organization runs a cloud-based platform for
medical applications and services. The platform is deployed in many data centers and the applications
on the platform are used in hospitals around the world. Some of the applications are used when patients
are in critical condition. It follows, then, that the platform’s reliability is of paramount importance.

But what is reliability? How do you measure it? How do you create an environment where develop-
ment teams are motivated to invest in reliability? These were the questions I grappled with several years
ago when the organization struggled to provide a reliable platform for applications and users alike.
High-profile customer escalations were common. People were unaligned regarding backlog prioritiza-
tion of new features versus reliability work. The operations teams were struggling to operate the prod-
uct. The development teams happily implemented new features but paid very little attention to how the
existing features were running in production. Project management plans were impacted greatly by
deployment of large numbers of unexpected hotfixes. High-profile customers called the leadership
team demanding that the service be restored or that missing features be delivered. Everyone had an
opinion on what needed to be done to improve the situation, until the next outage took place, causing
new opinions to emerge.

I had attended the QCon London conference for several years. The conference helped me stay
abreast of new trends in software development and operations. SRE was one of the topics at the confer-
ence. I was aware of its existence but had not started learning about it. At one of the QCons, an entire
track was devoted to SRE. I spent a significant amount of time attending sessions in that track. At the
end of the conference, it was clear to me that SRE was gaining momentum in the industry.

While traveling back to work from the conference and looking over my notes, I decided that it was
the right time for the organization to try SRE in an attempt to improve operations. There was no other
structured approach to doing operations that I had come across. What we tried ourselves without SRE
did not yield visible improvements. Many companies at the conference reported being successful, what-
ever that meant, in doing operations using SRE. Getting started seemed to be easy. It would only take a
couple of basic indicators, like availability and latency, the definition of acceptable targets for each ser-
vice, and alerts on when the targets would be broken.

Once I was back at work, I started thinking about how to drive SRE from within my organizational
unit. Thinking deeper, I realized I would need engagement from the entire organization. The questions
I had in mind were as follows:

• How would I drum up support for SRE in the organization?

• How would I engage the leadership team?

9780137424603_print.indb 25 23/08/22 8:20 PM

Prefacexxvi

• How would I engage the operations teams?

• How would I engage the development teams? There was a growing number of them, soon
to be 20 or more. So, how would I drive SRE in a growing organization, in a way that would
scale with the growing number of teams expected to emerge in the future?

• What is SRE at a deeper level?

• Why does it work?

• How could I learn more about SRE?

• How could I learn enough about SRE to explain it to others quickly and easily?

• Is there an alternative to SRE?

• How could I engage with people who had already introduced SRE in their organizations?

• What are the common pitfalls of introducing SRE in an organization and how would I avoid
them?

With these questions in mind, a period of soul searching followed. To cut a long story short, we
managed to establish SRE as the central discipline in the organization’s development and opera-
tions departments. Doing so significantly and measurably improved our ability to operate the
global platform.

Moreover, the organization is in touch with many teams that build applications on top of the
platform. How to operate those applications effectively is a common question from the teams. We
now routinely teach SRE as a preferred method of doing operations. The teams introduce it and
use the SRE infrastructure we provide.

During the SRE transformation, we got a chance to visit Delivery Hero in Berlin. They were
running operations at a world-class level. It was inspiring to learn from them back then. It was even
more inspiring to later see our own teams getting close to being world class.

Along the way, many lessons were learned. Introducing SRE at scale to a development organiza-
tion that had never done operations and to an operations organization that had never enabled
others to do operations is a very significant undertaking. It requires deep, long-term engagement
with the development teams providing coaching on their individual journeys toward growing
maturity in operational capabilities. At the same time, it requires long-term engagement with the
operations teams providing coaching on their journey toward becoming an SRE infrastructure
framework provider to enable the development teams to do operations. The transformation is a
unique blend of changes in the domains of technology, people, culture, and process on both sides:
development and operations.

9780137424603_print.indb 26 23/08/22 8:20 PM

Preface xxvii

We started publishing our experience with SRE on InfoQ in a data-driven decision-making arti-
cle series1 and later in a corresponding eMag.2 The SRE article3 from the series got attention, and
I was approached to write a book on SRE transformation. The rest is history.

Publishing with Addison-Wesley is a privilege beyond imagination. While at university studying
computer science, I read so many books from Addison-Wesley that I could identify them from a
distance in the library. When I was offered the chance to publish a book with Addison-Wesley, I
took it without much hesitation.

It is also a privilege to have some knowledge that might be worth publishing in a book in an
industry that is very fast paced and where experience is not always valuable. At the same time,
because of the pace of the industry and the bias for the new over the existing, it is a bit frightening
that the knowledge I have is certainly not complete and will become obsolete quickly. More to the
point, I seem to be one of the few people who was never affiliated with Google but has dared to
write a book about SRE.

Further, lots of reading and gaining hands-on professional experience on my end led to a grow-
ing motivation to write. It is about giving back to the software engineering community at large
where numerous authors of great books and talks shaped my thinking over the past decades.

Moreover, I consider it an entitlement in a world full of digital distractions to be able to work
on a project that requires the highest levels of concentration. Writing a book certainly falls into
this category. Writing this book taught me to stay away from digital distractions and develop an
ability to concentrate quickly for longer time spans. It feels like my ability to concentrate is back to
where it was before the era of connected devices.

My intention for the book is to support organizations that are starting an SRE adoption
journey. The journey is a rewarding but difficult multiyear ride with lots of ups and downs. Adopt-
ing SRE means changing the culture, organization, responsibilities, practices, and technology
around product operations. Product operations is what matters to users and customers. They only
interact with the products in production. So, tending to production better is about directly improv-
ing the user and customer experience. How do you tend to production better to measurably
improve the user and customer experience? How do you establish SRE as a means to getting there?
How do you transform the organization toward SRE? This is what we will explore in the book.

The book is divided into three main parts. In Part I, “Foundations,” you will establish a general
understanding of SRE, its usefulness, and its place in the overall discipline of software operations.
Additionally, I outline the challenge of SRE transformation in an organization new to the topic
and explain how an organization’s status quo can be assessed in terms of operations and readiness
for SRE transformation.

1. Ukis, Vladyslav. 2021. “The InfoQ EMag: Effective Software Delivery with Data-Driven Decision Making.”
InfoQ, March 16, 2021. https://www.infoq.com/minibooks/data-driven-decision-making.
2. Ukis, “The InfoQ EMag.”
3. Ukis, Vladyslav. 2020. “Data-Driven Decision Making – Product Operations with Site Reliability Engineer-
ing.” InfoQ, March 25, 2020. https://www.infoq.com/articles/data-driven-decision-product-operations.

9780137424603_print.indb 27 23/08/22 8:20 PM

https://www.infoq.com/minibooks/data-driven-decision-making
https://www.infoq.com/articles/data-driven-decision-product-operations

Prefacexxviii

In Part II, “Running the Transformation,” the transformation activities get rolling and unfold.
For an SRE transformation to succeed, you must achieve proper organizational buy-in from the
start. Here, I explain how to achieve this buy-in, initiate the transformation activities in the teams,
and implement alerting, on-call rotations, and an appropriate incident response process in the
organization. Accomplishing these tasks marks the establishment of the basic SRE foundations in
the organization.

Part II continues with discussions about putting the advanced SRE foundations in place, includ-
ing error budget policy and error budget–based decision–making. Following this, a suitable organ-
izational structure for SRE is created. By the end of Part II, the organization has established the
basic and advanced SRE foundations as well as an organizational structure for the long term.

In Part III, “Measuring and Sustaining the Transformation,” I discuss how to measure the suc-
cess of an SRE transformation and sustain the SRE movement. The book concludes with a look at
the road ahead for SRE transformation beyond the established foundations.

Table P.1 shows the structural elements found throughout the book. They are embedded in the
text and can be used as references on their own.

Table P.1 Structural elements in the book

Element Description
Key Insight A significant insight generated by the discussion in the book that is

important to remember to be used in casual SRE conversations.

SRE Myth A myth about SRE prevalent in the industry debunked in the book.

SRE Cheat Sheet A reference of SRE topics to be looked up for a quick reminder.

From the Trenches A story or insight based on hard-won lessons from the SRE
transformation and practice. It is a description of what really worked at
an organization in a particular context.

If you have any questions as you read through the book, feel free to reach out to me on
LinkedIn.4 I look forward to hearing from you!

Register your copy of Establishing SRE Foundations on the InformIT site for convenient
access to updates and/or corrections as they become available. To start the registration pro-
cess, go to informit.com/register and log in or create an account. Enter the product ISBN
(9780137424603) and click Submit. Look on the Registered Products tab for an Access
Bonus Content link next to this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on new editions and updates,
please check the box to receive email from us.

4. Ukis, Vladyslav. n.d. “Dr. Vladyslav Ukis LinkedIn Profile Page.” LinkedIn. https://www.linkedin.com/in/
dr-vladyslav-ukis-5172ba32.

9780137424603_print.indb 28 23/08/22 8:20 PM

http://informit.com/register
https://www.linkedin.com/in/dr-vladyslav-ukis-5172ba32
https://www.linkedin.com/in/dr-vladyslav-ukis-5172ba32

xxix

Acknowledgments

First I would like to thank my family. You are the emotional, intellectual, and spiritual foundation of
my universe. My wife, Lina, is at the center. Being a UI/UX designer, she managed to listen carefully to
me as I talked about a topic as technical as SRE, sometimes saying, “I got it, you do not need to go into
more details right now!” It is Lina’s enthusiasm, encouragement, and patience that made writing the
book possible. Further, our children, Annika, age six, and Jonas, age two, are cheerfully around us.
Jonas made it a habit to scroll through various black-cover and white-cover SRE books lying around at
home. He might have learned something about reliability from them that could be applied at his age. It
is our peace at home that made writing this book possible. Further, my parents; my brother’s family;
my mother’s father, age 102; my uncles’ families; my brother-in-law’s family; my in-laws; the family of
my wife’s uncle and their children’s families; other more distant relatives; as well as my friends all con-
tribute to the firm family foundation I have that fueled this book project.

Second, as time is one of the most precious resources a person has, I would like to thank you, the
reader, for taking the time to read this book. I hope the learnings from the book will shape your think-
ing about software operations in general and SRE in particular. My intention is to help make your SRE
transformation as smooth and fast as possible. Get in touch; I long to find out how your SRE transfor-
mation is unfolding!

Siemens Healthineers is the center of gravity for my professional development. Specifically, the Sie-
mens Healthineers teamplay digital health platform1 has become a career-changing product suite and
team. It provides an experimental environment necessary for introducing new ways of working. The
new ways of working are tried out, and the ones that work well get adopted way beyond the teams that
initially introduced them. This benefits the entire company in the end.

Specifically, a big thank-you goes to the teamplay leadership, Dr. Thomas Friese (previous executive)
and Carsten Spies (current executive), for being open and supportive of my writing this book. With the
book, SRE is going to be one of the most comprehensively documented processes at teamplay.

The QCon London conference became career defining as well. Literally all big organizational
changes to improve technology at teamplay originated from talks, conversations, tracks, and meetings
at QCon London. Both Continuous Delivery and SRE transformations originated there.

A big professional milestone for me was to meet Dave Farley at QCon London. He taught me and
the entire team at teamplay the value, fundamentals, strategy, and tactics of Continuous Delivery. His
way of thinking about Continuous Delivery is rooted in the scientific method. The scientific method is
about answering questions using hypotheses that are put to the test with experiments. The application
of the scientific method in the context of software development is why Continuous Delivery works.
Interestingly, the application of the scientific method in the context of software operations is why

1. Siemens Healthineers. n.d. “teamplay Digital Health Platform.” Accessed January 11, 2022. https://www.siemens-
healthineers.com/digital-health-solutions/teamplay-digital-health-platform.

9780137424603_print.indb 29 23/08/22 8:20 PM

https://www.siemens-healthineers.com/digital-health-solutions/teamplay-digital-health-platform
https://www.siemens-healthineers.com/digital-health-solutions/teamplay-digital-health-platform

Acknowledgmentsxxx

SRE works. My thanks go to Dave not only for Continuous Delivery but also for introducing me to
Pearson.

On that note, a big thank-you goes to the book’s executive editor, Haze Humbert, for the trust
she put in my ability to write the book. She was very professional and a delight to work with from
the moment of our first contact until the book’s publication. Moreover, the manuscript reviewer,
Niall Murphy, provided deep insights, uncovered flaws, and suggested improvements in a very
timely fashion, which upon incorporation made the book so much better. Finally, the development
editor, Mark Taber, the copy editor, Audrey Doyle, the production editor, Julie Nahil, the produc-
tion project manager, Aswini Kumar, and many others made an incredibly effective and efficient
team that turned the original manuscript into a high quality book. Thank you so much!

Specifically in the context of SRE, I am endlessly indebted to the teamplay operations engineer,
Philipp Guendisch, for his enthusiasm around SRE as a discipline, dedication to driving it, and
implementation of the SRE infrastructure at teamplay. It is his wit that made the SRE infrastruc-
ture reliable and a pleasure to use. Likewise, my thanks go to the many student interns supporting
Philipp with the SRE infrastructure implementation.

My gratitude certainly goes to Google for coming up with the SRE concepts and turning them
into a new computer science and software engineering discipline! Some Google insiders said that
at the time the first Google SRE book was being written, there was not a single team in the Google
SRE department doing things uniformly with other teams. So, compiling these different ways of
working in a coherent set of SRE principles and practices was a tremendous task. This was, how-
ever, absolutely necessary to push SRE beyond Google. At some point the push reached me and,
with that, the Siemens Healthineers teamplay digital health platform. The rest is history.

SRE conversations with Niall Murphy, one of the SRE pioneers at Google, and Steve Smith, one
of the original operability thinkers at Equal Experts, shaped my thinking about many SRE aspects.
Thank you for the time invested!

Interestingly, I had several people in my early development and early career who were particularly
focused on establishing good processes in what they did. My father’s father had worked as a chief
technologist at a chemistry plant. He spent lots of time explaining to me the processes introduced at
the plant to make the operations more efficient and effective over time. Although I did not under-
stand the chemistry behind it, the outcomes of the process improvements were clear and exciting.

My friends during my school years fueled an initially rather modest interest in computer sci-
ence. It is those collaborative conversations about our early programming attempts on calculators
and PCs connected to tape recorders and TVs that ignited the sparks necessary to genuinely dig
deep into the discipline.

My physics teacher in school, Vladimir Jakobi, taught the class to openly discuss the process of
learning. Learning process sharing and improvement was one of the focus points in his physics les-
sons. It was unusual but had very positive effects on the students’ learning outcomes. It taught me
early on that the process of doing a thing right is as important as doing the right thing. Early in my
professional career, Karlheinz Dorn at Siemens Healthineers taught me the value of a disciplined
process in the context of software architecture.

Moreover, I am very thankful to Prof. Dr. Stefan Jablonski for supervising my bachelor thesis at
the University of Erlangen-Nuremberg in Germany, as well as Gerold Herold for supervising my
masters thesis at Siemens Healthineers. These signficant projects gave me unique opportunities to

9780137424603_print.indb 30 23/08/22 8:20 PM

Acknowledgments xxxi

grow professionally in technical, interpersonal, and organizational dimensions. The associated
thesis write-ups showed me the value and impact of clear technical writing.

Further, big thanks go to Kung-Kiu Lau, my PhD supervisor at the University of Manchester in
the UK. It is his endless patience that honed my writing skills. I remember numerous meetings in
his office discussing our joint research papers. Me calling out, “How can I explain this to some-
body who does not know anything about computer science?” was a rather frequent question in
these meetings. Undaunted, Kung-Kiu kept at it until our research papers could be understood by
people without a background in what we were writing about. As a result, my writing skills and
speed improved over time too.

Writing this book certainly required a strict writing routine to be introduced into a busy profes-
sional and family life. Being mentally prepared for the need of such a routine to be put in place and
stuck to for a long time simplified the decision to write the book and follow through on all aspects
of publishing.

There is an interesting quote about writing by E. L. Doctorow: “Writing is like driving at night
in the fog. You can only see as far as your headlights, but you can make the whole trip that way.”2 I
can relate well to the quote. It is amazing how much information the brain contains on just a single
topic in a condensed and foggy structure, which gets uncompressed on hundreds of pages in a form
that can be learned from by others.

Before I embarked on my PhD studies, many people said that doing research would be a unique
opportunity to focus on a single topic which would not present itself in my future professional life.
I guess that was not quite right. Writing this book certainly allowed me to focus on the subject of
software operations as much as I focused on software architecture back in the days of my post-
graduate studies.

An anecdote is that the original manuscript of the book was written in Google Docs. As I was
writing about SRE, I was thinking about how the Google Docs SLOs might get broken while I was
writing. Knowing the level of rigor applied to the SRE process by Google contributed to my peace of
mind that even if Google Docs SLOs get broken, the services will be brought back within the SLOs
rather soon. Writing about SRE using a word processor operated using SRE by the company that
invented and practiced SRE might be one of the best representations of “eating your own dog food.”

Finally, this book should serve as an inspiration to the world of writing to my daughter, Annika,
who started school in 2021, the year the manuscript of this book was finished. Likewise, it should
inspire my son, Jonas, who started learning to read letters the same year, to continue by combining
them into syllables, words, sentences, paragraphs, stories, and, finally, books. I enjoyed writing the
book and, throughout the process, realized that I might wish to write another one in the future.

These people and organizations influenced me to a great degree. I am very appreciative of being
in such an innovative professional and caring family environment. Simply said, you all put me
where I am today. Thank you!

2. Doctorow, E. L. n.d. “A Quote from Writers At Work.” Accessed January 8, 2022. https://www.goodreads.
com/quotes/53414-writing-is-like-driving-at-night-in-the-fog-you.

9780137424603_print.indb 31 23/08/22 8:20 PM

https://www.goodreads.com/quotes/53414-writing-is-like-driving-at-night-in-the-fog-you
https://www.goodreads.com/quotes/53414-writing-is-like-driving-at-night-in-the-fog-you

Acknowledgmentsxxxii

Coming originally from Ukraine, I am compelled to extend my deepest sympathies for the inno-
cent civilians who remain or have been forced to flee Ukraine because of the current war. I stand in
solidarity with Ukrainians during this humanitarian crisis. I join the UN General Assembly resolu-
tion demanding an end to this Russian offensive in Ukraine.

Vladyslav Ukis
April 2022

9780137424603_print.indb 32 23/08/22 8:20 PM

xxxiii

About the Author

Dr. Vladyslav Ukis is Head of R&D for the Siemens Healthineers teamplay digital health platform
and reliability lead for all Siemens Healthineers Digital Health products. Previously, as software devel-
opment lead, he drove Continuous Delivery, SRE, and DevRel transformation, helping this large dis-
tributed development organization evolve architecture, deployment, testing, operations, and culture to
implement these new processes at scale.

Dr. Ukis earned a degree in computer science from the University of Erlangen–Nuremberg, Ger-
many, and later from the University of Manchester, UK. During his career, he has been working on
software architecture, enterprise architecture, innovation management, private and public cloud com-
puting, team management, engineering management, portfolio management, partner management,
and digital transformation at large.

9780137424603_print.indb 33 23/08/22 8:20 PM

9780137424603_print.indb 525 23/08/22 8:21 PM

This page intentionally left blank

21

Chapter 2

The Challenge

In Section 1.2, Alignment Using SRE, I presented an example of how a product delivery organization
works without alignment on operational concerns. The example showed that without alignment, oper-
ational concerns are addressed only once production issues occur. This is done using ad hoc urgent
meetings involving product operations, product development, and product management. The example
is representative and can be generalized to better understand the challenge of SRE transformation.

A product delivery organization unaligned on operational concerns does not weave aspects of oper-
ations consistently and evenly throughout the product creation life cycle. Operational concerns are
seen by most, as the name suggests, with production operations. Because product operations is the last
part in the chain of product management, product development, and product operations, people think
about operational concerns as the last thing on their to-do list. This is not a product-centric way of
thinking. Users touch the product in production. Therefore, that touch point needs to be centric with all
activities in the product creation life cycle. Indeed, product operations needs to be elevated and treated
on par with user research, user story mapping, user experience design, architecture, and development.

The consequence of not thinking about production throughout the product creation life cycle can
be illustrated using an example from the grocery industry. Imagine that a grocery store chain has a wide
variety of products displayed in beautifully designed stores throughout the country, but neglects the
checkout counters at the point of sale. The entire supply chain is working flawlessly, but issues arise at
the checkout where the customers are trying to purchase their groceries: for example, they might not be
able to pay for their groceries quickly, and the checkout queues might be getting longer. The checkout
staff might not be able to resolve the issues themselves. The point-of-sale devices are supported by the
operations team, which receives an enormous number of support requests. It turns out that the issues
are with the software on the devices; the support team cannot resolve the software issues themselves.

While the crisis is unfolding, the developers are happily working on new features for the point-
of-sale devices. The product owners are happily specifying additional new features to be handed over
to the developers after they finish the current work. The operations engineers are reaching out to the
developers, who are not sure whether to prioritize the requests by the operations engineers or the fea-
tures in development. The developers reach out to the product owners for a prioritization decision.
Finally, the operations engineers, developers, and product owners swarm over the problem and decide
to fix the product issues with the highest priority.

9780137424603_print.indb 21 23/08/22 8:20 PM

22

2.1 Misalignment

Figure 2.1 illustrates the preceding example of how a product delivery organization misaligned
on operational concerns works.

The left-hand side of the figure shows how product development is working on the feature back-
log prioritized by product management. By and large, product development ignores what is going
on in production. There is no ongoing visibility into how the system is performing in production.
Nor have they set up any alerts to be notified about abnormal situations. Product development’s
focus is entirely on new feature development. Product operations is not part of their backlog.

Product operations is shown on the right-hand side of the figure. The product operations team
is trying really hard to operate the product in production. However, they lack insider knowledge
about the product in order to be able to operate it properly. This insider knowledge is with prod-
uct development. Furthermore, this knowledge is changing quite rapidly with new releases being
deployed to production on a frequent basis. Lacking insider knowledge about the product in oper-
ation, the operations team sets up alerts on technical resources that are visible outside. These are
parameters such as memory consumption, CPU utilization, queue fill levels, disk storage fill lev-
els, and network monitoring, among others. The parameters’ thresholds are alerted upon. Once
the alerts arrive, the operations team tries to understand whether there is anything wrong with the
system. Often, they have to consult the product development team to analyze potential issues. The
issue backlog is growing, which frustrates the product operations team. They do not understand
product development’s attitude toward solving issues in production. If production is where the
customers use the product, how on earth can it be less important than anything else?

This frustration reflects a core issue in product delivery organizations that do not excel at
operations. In such organizations, being product and user centric means different things to dif-
ferent parties. From a product operations point of view, it means production issues are tackled
with the highest priority. From a product development point of view, it means features requested
by product owners are developed as quickly as possible. From a product management point
of view, it means user stories requested by customers are turned into features in production as
quickly as possible. This fundamental misalignment of what it means to be product and user
centric when approaching product creation is one of the core reasons for difficulties in operating

Dev Product
Development

Product

Product Management

Ignorance
Production OpsProduct

Operations
Trying to Operate

with Lack of
Knowledge

Ig
no

ra
nc

e

Figure 2.1 Product delivery organization misaligned on operational concerns

Chapter 2 The Challenge

9780137424603_print.indb 22 23/08/22 8:20 PM

232.2 Collective Ownership

the product in production to the customer’s satisfaction. This is where SRE contributes greatly
to aligning the parties in the product delivery organization.

The product management discipline is depicted toward the bottom of Figure 2.1. Product
management is very far away from production thinking. In their view, it is a job for product
operations to resolve. The product management team are busy talking to executives, stakehold-
ers, customers, partners, and users, trying to figure out where the product fits in the market,
identify missed user journeys, pinpoint ways to optimize workflows, and so on. Product man-
agement maintains a backlog of features to implement. Although the backlog is prioritized, as
mentioned earlier, it doesn’t consider product operations requirements. The product manage-
ment team expects product development to develop and product operations to operate. This is
what the names of the departments suggest, do they not?

In essence, the three parties in the product delivery organization operate under three differ-
ent flags, as depicted in the figure. Product operations is proud to run under the Ops flag; they
man production. Product development runs under the Dev flag; they are proud developers of
new features. Product management runs under the Product flag; they are all about the product
and shape it in a fundamental way: What is it? Who are the customers? What is the competition?
What is the product’s competitive advantage? What are the most important user journeys? What
are the features? What is on the backlog?

It turns out that in a setup like this, no one really owns production operations. Who is it,
indeed? Is it product operations? Not really, because they lack the knowledge necessary to truly
own production operations. There is no proper continuous knowledge transfer from product
development and product management toward product operations, and vice versa.

Is it product development? Certainly not. Their focus is the feature backlog. The feature
backlog is void of product operations. Shipping occasional necessary production hotfixes after
escalations from product operations is not what owning production operations actually means.

Is it product management? For sure it is not. Their focus is the definition of the product.
Their expectation is that product development implements the product and product operations
operates it in production. Despite the word owner in their title, the product owners do not own
the product all the way to and including production.

In this context, it is no wonder that it is precisely in production that the product ends up
being neglected. Where there is no ownership, there is no commitment. It would require com-
mitment from all the parties in the product delivery organization to contribute to product opera-
tions in production. But how? Who would need to commit to what to establish a meaningful
partial ownership of product operations? Would the ownership of product operations be a
collective ownership, then? Let us explore these questions in detail.

2.2 Collective Ownership

According to Wikipedia, “collective ownership is the ownership of means of production by all
members of a group for the benefit of all its members.”1 The definition shows that everyone
needs to benefit from the ownership. In the context of product operations, it means that if col-
lective ownership is to be established in a product delivery organization, the ownership needs to

1. Wikipedia. 2021. “Collective ownership.” https://en.wikipedia.org/wiki/Collective_ownership.

9780137424603_print.indb 23 23/08/22 8:20 PM

https://en.wikipedia.org/wiki/Collective_ownership

Chapter 2 The Challenge24

benefit all the parties involved. Specifically, if collective ownership of production operations is to
be established among product operations, product development, and product management,
each party needs to benefit from it.

This is an interesting point to delve into. In the product operations team’s view, they own
product operations. However, they encounter great difficulties engaging the product develop-
ment and product management teams in their operations activities. Therefore, product opera-
tions will welcome it if the product development and product management teams take partial
ownership of production operations.

In the product development team’s view, they are feature developers. Shipping new features to
production quickly is at the core of their activities. What kind of benefit would they gain if they were
to own production operations in some partial manner? What would it look like? Would the backlog
contain operational user stories? This is not really feasible, as the operations work is not predictable
compared to feature work that can be planned using a feature backlog. What would be beneficial
is if the partial ownership of production operations led to insights that would lead to an improved
development process augmented by a full operational context. In turn, it would be beneficial if the
improved development process led to the reduction of production issues that interrupt feature work.

In the product management team’s view, they define the product. The features should be
developed by the product development team and operated by the product operations team. What
would be the benefit for product management to own production operations in a partial way?
To answer this question, customer escalations need to be looked at. Product management par-
ticularly dislike customer escalations. Customer escalations disrupt their work, require imme-
diate focus, take a lot of time to justify the product to various stakeholders despite customer
dissatisfaction, and chip away the stakeholders’ trust. Diminishing stakeholder trust might lead
to budget reductions for the product. This is a difficult situation every product owner works to
avoid. To be sure, every customer escalation is about an issue in production. So, if the partial
ownership of production operations would lead to a reduction of customer escalations, it would
be a great and welcomed benefit for product management.

Table 2.1 shows the benefits each party would see in a product delivery organization if a col-
lective ownership of product operations were established.

Table 2.1 Benefits of Collective Ownership of Production Operations

Discipline Benefit

Collective
ownership
of
production
operations

Product
operations

Appropriate engagement of product development and product
management in operations activities as needed. No more
chasing product development and product management on every
production issue to decide how to proceed.

Product
development

Appropriate insight in product operations to get to an improved
feature development process augmented by the full operational
context. Feature development performed with the full context
of what is necessary to make the features technically successful
in production leads to a reduction of customer escalations. This
leads to more uninterrupted time for working on new features.

Product
management

Reduction of customer escalations and time investment to handle
them.

9780137424603_print.indb 24 23/08/22 8:20 PM

252.3 Ownership Using SRE

Having clarified the benefits a collective ownership of production operations may bring to
product operations, product development, and product management, the next question to explore
is how to get the benefits. An associated question would be the cost of getting the benefits for each
party involved. In other words, in the context of an SRE transformation, how do you implement
collective ownership of production operations using SRE with a positive cost–benefit ratio?

2.3 Ownership Using SRE

What does it mean to have partial ownership of production operations using SRE? This ques-
tion needs to be answered specifically for each party in the product delivery organization.

2.3.1 Product Development

In product development, the benefits of partially owning production operations are rooted in
the insights of how the system behaves in production under real user, data, and infrastructure
load. The most effective way to continuously learn about a system in production is to observe it
in production. This is done using on-call rotations. Traditionally, product operations would go
on call for services in production. This way, production insights do not go directly to product
development. It follows that product development needs to get involved in on-call rotations for
their services in production. Each development team owns some services. For exactly those ser-
vices, the respective developers would need to be involved in on-call rotations to gain insights
from operating the services under real conditions. These insights lead to the following improve-
ments in product development and operations.

• Developers with product implementation knowledge conduct product failure investigations.

• The number of steps in the chain between a production issue occurring and a person with
the best knowledge to fix it can be exactly one. The issue can go directly to the developer
who implemented the service and can fix it the fastest, provided the alerting is targeted
well and there is an agreement with the product owner to fix production issues immedi-
ately. The developer can take the learnings from the failure itself, the failure analysis, and
the fix into the new-feature development process, supporting infrastructure and debug-
ging tools. This should lead to the product being more operable in the future with less
time required to operate it. In turn, it should lead to more time for feature development.

• Developers get to experience the quality of the product in the real world by testing it at
production sites. Internal testing is rarely as intensive as the strain a system undergoes in
production. Seeing real-world scenarios informs the development of automated test suites
and contributes greatly to closing the gap between the internal testing and production sce-
narios. Thus, confidence is increased in deploying the product to production once the test
results from the internal test suites are green. This should lead to fewer failures in produc-
tion due to scenarios that were untested internally. In turn, it should require less time to fix
production issues, leading to more time for feature development.

9780137424603_print.indb 25 23/08/22 8:20 PM

Chapter 2 The Challenge26

• Developers gain the knowledge necessary to operate and troubleshoot the product. This
informs the development process, among other things, leading to better tools for opera-
tions. In turn, it leads to less time spent on troubleshooting production issues, which frees
up more time for feature development.

• Developers use the knowledge from product operations in the development of new fea-
tures. For example, scalability and performance requirements can be learned, and this can
often lead to architecture changes. Although making such changes requires a significant
amount of work, it is necessary to implement resilience in accordance with the load pro-
files seen in production. Only then can the system’s operational burden (also known as
toil) reduce, freeing time for more feature development.

• Developers gain a better understanding of the kind of testing and tooling necessary to
deliver a product that works well. Test scenarios, test levels, test runs, and test environ-
ments need to be designed in such a way that all the testing activities combined address
important scenarios the system encounters in production. To be sure, production itself
can be one of the test environments with tests running there 24/7. Gaining insight into
product operations in production can greatly inform the entire test management process.
This should lead to test suites and test runs being more focused on the scenarios taking
place in production, which can reduce the amount of time spent on tests that are not effec-
tive in catching bugs encountered in production, as well as the rework and maintenance
of such tests. Streamlining test management may lead to more time available for feature
development.

• Developers have the incentive to implement reliability features and tools for a great prod-
uct operations experience. This is because if the developers go on call, they actually want
to spend as little time as possible dealing with production issues. In this context, they have
full control of the situation. It is in their power to implement the product with production
operations in mind. Doing this leads to spending as little time as possible on production
issues and maximizing the time spent on feature development. This benefits customers
and product management alike. Customers also do not want to deal with product failures
in production. Rather, they want existing features to work in production and new fea-
tures added to the product quickly. The product management team, driven by customer
requests, wants product development to work on new features.

• Developers with experience in product operations are more highly valued in the indus-
try. Going on call directly contributes to learning the skills necessary to command higher
wages in the marketplace.

The idea of going on call for the developers gives rise to a plethora of questions, such as the
following.

• Do the developers always need to go on call for their services? No.

• Could the developers go on call only during business hours? Yes.

• Can the on-call responsibility be shared with product operations? Yes.

9780137424603_print.indb 26 23/08/22 8:20 PM

272.3 Ownership Using SRE

• What is the best setup for a given organization? It depends.

• Would a development team setup need to be adapted to enable on call? Yes.

• Can developers in a team perform the on-call duties on rotation? Yes.

• Can focused feature development still be done despite going on call? Yes.

• How do you achieve it? It depends.

• Can developers stay developers if they go on call? Yes. They will become better developers.
Their skills will be more highly valued in the job market.

These and other related questions will be explored in the book in due course. It is not nec-
essary to answer them in-depth here. For now, I will only outline the scope of the challenge
posed by the SRE transformation. What is important to understand at this point is that product
development needs to go on call to one extent or another depending on the organizational setup
chosen for the organization’s SRE implementation.

Without developers going on call to some extent, the benefits of collective ownership of pro-
duction operations cannot be realized by product development. Feature development is difficult
to improve from an operational standpoint without a live feedback loop between the production
and development teams. An outage profile in production cannot be sustainably influenced if the
feature development team is not well informed using the live feedback loop from production
experienced by those who implement the features. In other words, without developers going on
call to some extent, things in product development remain the same by and large as far as opera-
tional concerns go.

Key Insight: Developers must go on call for some percentage of their time. This can
range from very little time to nearly full time.

This key insight is illustrated on the left-hand side of Figure 2.2.

Product
Development

Enable Dev to
Operate Production

Product
Operations

Production

Product Management

On call

Data-driven
Prioritization
Decisions
About
Operational
Concerns

Figure 2.2 Collective ownership of product operations using SRE

9780137424603_print.indb 27 23/08/22 8:20 PM

Chapter 2 The Challenge28

2.3.2 Product Operations

The product operations discipline is depicted on the right-hand side of Figure 2.2. With develop-
ers going on call, the product operations team would need to provide support to enable the
developers to do operations.

What kind of support would the developers need? They may never have done operations
before, in which case this will be unfamiliar turf for them. Are there trainings for this? Does the
operations team provide some onboarding? What does “good” look like in product operations?
Is there any documentation available? These are the questions that come to mind for developers
when confronted with going on call for the first time.

The entire body of knowledge about product operations is with the operations team. But
what kind of knowledge is that? Mostly it is about taking the product as a black box, putting it
into the production environment, activating monitoring of IT resources, and alerting on some
threshold violations. Developers can learn and understand this. With their insider knowledge
of the product, they will also be able to find many more scenarios that can be monitored and
alerted upon. The developers’ knowledge about the architecture, implementation, configura-
tion, and deployment of the product is an invaluable resource for improving monitoring of the
product in production. But how can they utilize that knowledge to improve product operations?
How can they bridge the gap between development and operations as suggested by the term
DevOps?

Let us look more closely at what the developers know. They know how specific routines that
contribute to the fulfillment of user requests are implemented. They know the paths the user
requests go all the way from the user interface to the deepest service in the service network, and
from there to the infrastructure. If the product exposes APIs to customers, the developers also
know the paths the API requests take from the API gateway through the network of services all
the way down to the infrastructure. Moreover, the developers know which services they imple-
mented versus those implemented by the company and third parties. They know which third-
party services are difficult to integrate with, where the domain model of the third-party services
is overly complicated and cluttered, where the third-party services are slow occasionally, and
where there is simply sporadic behavior that can be explained. The developers also know all this
for the internal services of the company, which are the services they depend upon.

Their knowledge does not stop there. The developers and architects know the strengths and
weaknesses of their architecture. They know where the architecture limitations lead to perfor-
mance and scalability issues. They know the circumstances where the performance and scalabil-
ity issues are likely to exhibit and probably impact the customer. They know the architectural
debt in the system and which part of it is planned to be paid off in the near future. They know of
any major architectural refactorings that must take place, which are not planned due to the size
of the effort involved.

The developers’ knowledge goes much further. They know about the infrastructure limita-
tions the product is running on. They know how each service can impact the others; for exam-
ple, they know what will happen if a particular service in the service network eats up the lion’s
share of memory in a given area of the infrastructure. They might know some parameters of the
container clusters the services are running in and anticipate issues that might occur based on the
changing data and user load profiles.

9780137424603_print.indb 28 23/08/22 8:20 PM

292.3 Ownership Using SRE

There is yet more to the developers’ knowledge. They may know the way the services are
deployed: Which infrastructure parameters are set by the deployment infrastructure, and which
ones are set in the service at the deployment time, startup time, or runtime. They know which ser-
vices are deployed independently, which ones use a shared deployment pipeline, and which ones
are deployed manually for the time being. They may know the tests running on the deployment
pipelines, the quality of those tests, and whether the test results can be trusted. They may know
the test management process for a service, the test levels available, the test infrastructure, and any
test gaps that exist.

Additionally, the developers might be aware of security implications in the architecture and
implementation. Which security vulnerabilities are taken care of? Which are mitigated? Which
are known but are not currently taken care of ? Which bugs from penetration testing were not
yet fixed?

Finally, the developers know the most painful product areas from a development point of
view. What area is the most difficult to integrate with? To test? To speed up? To debug?

This amount of knowledge is staggering to the operations engineers. How do they take all
this knowledge from the developers and apply it to product operations? Can it be done with
some tool support? What kind of role would automation play here? Does it all sit between the
ears of the software developers and cannot be easily repurposed to improve product operations?
How can it support the developers effectively?

In other words, the developers know the car engine from the inside. But how do you help
them use that knowledge to improve how the car operates?

To approach these questions, we need to turn our attention to how developers make known
to the outside world what is going on with the system on the inside. This is done using logging.
During development, developers decide what to log and under what circumstances. This way,
once the product runs in production, log entries are generated that contain logging information.
The log entries stored in, for example, log files or other storage systems can then be analyzed to
understand what was going on in the system at runtime. This is the basic process of how devel-
opers make known to the outside world what is going on inside a system at runtime. The process
is sophisticatedly supported by tools providing all sorts of runtime instrumentation out of the
box. That is, the developers’ knowledge about the product can be encoded in logs that can be
analyzed outside the system.

The next question to ask is what should be logged to improve product operations? Let us
imagine, these questions would be answered.

Once that question is answered, we would consider how to log relevant information in a uni-
form way. What should be the log format? Which log format would lend itself to automated log
processing? Would several log formats be required for different operational aspects; for example,
one log format for calculating service availability and another for calculating service latency?
What about asynchronous operations—how do you log those? Where do you store the logs?
Should the logs be stored in regional data centers or centrally? How long should the logs be
stored? Let us imagine, also these questions would be answered.

With the answers to these questions, we would next consider how to detect abnormal situ-
ations. What should be considered broken availability? What should be considered broken
latency? What should be considered insufficient throughput? Which aspects beyond availability,
latency, and throughput are important to consider? Let us imagine, these questions would be
answered too.

9780137424603_print.indb 29 23/08/22 8:20 PM

Chapter 2 The Challenge30

Next, we would want to know how to alert in abnormal situations. Should alerts be generated
as soon as the abnormal situation has been detected, or a bit later? Should the alerts be sampled?
How do you avoid alert fatigue, in which those who receive the alerts become overwhelmed with
too many alerts and stop reacting to them? How do you strike a good balance between alerting
people so often that it causes alert fatigue and so rarely that it causes incidents to go unnoticed?
What kind of information needs to be included in the alert? Even if these questions would also
be answered, there would be more.

The next questions would be about whom to alert—specifically, which developers receive the
alert? How do you alert developers in such a way that they do not get distracted from their fea-
ture development work? How do you alert developers in such a way that they will actually react
to the alerts, provided the alerting does not lead to alert fatigue? Can any developer in general
be alerted? What kind of knowledge would a developer need to have to be able to react to alerts
within a reasonable time frame and with reasonable effort?

The list of questions can go on. What it shows is that a comprehensive framework that would
enable developers to conduct product operations is required. But what is a framework? Accord-
ing to Wikipedia, “a software framework is an abstraction in which software providing generic
functionality can be selectively changed by additional user-written code, thus providing appli-
cation-specific software.”2 So, what is needed in the context of an operational framework is
some generic functionality that can selectively be changed. In the context of SRE, a framework
like that can be referred to as SRE infrastructure. It needs to provide generic functionality sup-
porting the use cases exemplarily outlined previously, implemented within an SRE context. The
generic functionality needs to be selectively changeable to adapt the infrastructure to a specific
use within the overall set of SRE activities.

Key Insight: Operations engineers need to provide frameworks to enable developers to
do service operations. In an SRE context, such a framework can be referred to as SRE
infrastructure.

At the time of this writing, some off-the-shelf tool support for the SRE infrastructure exists,
but it is not comprehensive enough to eliminate the need for custom development of missing
pieces. Therefore, in all likelihood, building an SRE infrastructure is going to require some cus-
tom software development combined with ready-to-use off-the-shelf tools. This means product
operations would need to learn to do software development.

The challenge for product operations is lack of experience providing frameworks that enable
others to do operations work. The product operations has always conducted operations work
in a hands-on manner using existing tools. What is required from product operations now is
the enablement of product development to perform service operations. The enablement is done
using the envisioned SRE infrastructure. The SRE infrastructure needs to be built using first-
class software development techniques.

This is in line with SRE and the words of Benjamin Treynor Sloss: “SRE is what happens
when you ask a software engineer to design an operations team.” Following this, it should be
no surprise that enabling the product development team to do operations work requires the

2. Wikipedia. 2022. “Software framework.” https://en.wikipedia.org/wiki/Software_framework.

9780137424603_print.indb 30 23/08/22 8:20 PM

https://en.wikipedia.org/wiki/Software_framework

312.3 Ownership Using SRE

software development team to build a suitable SRE infrastructure. Building frameworks is com-
mon in software development. Using frameworks is familiar to software developers. Neither of
these will be familiar turf for operations engineers from the product operations discipline.

The following now unfolds as a challenge in SRE transformation.

• Software developers need to learn how to do product operations work by going on call.

• Operations engineers need to learn how to enable software developers to do operations
work by developing the SRE infrastructure as a framework.

This is illustrated in Figure 2.3. The two arrows resemble the moves from fencing. It might
sound ironic, but this is exactly what needs to happen during SRE transformation.

Neither of those arrows is easy to achieve. However, as evidenced by the growing number of
software delivery organizations around the world, it is entirely possible, and will be explored at
length in this book.

Figure 2.3 shows what it truly means and takes to implement DevOps. It is about developers
doing operations work and operations engineers doing development work. It goes to the heart
of both long-standing disciplines, product development and product operations, and shakes
their fundamental responsibilities. Truly implementing DevOps takes far more than just achiev-
ing good collaboration between product development and product operations.

The difficulties are especially great in traditional software delivery organizations. A develop-
ment organization that has never done operations and an operations organization that has never
enabled others to do operations lack the very foundations on which SRE can be established.
Developers do not understand why they should be doing operations. Operations engineers do
not provide frameworks to enable developers to do operations. Managers do not promote the
endeavor, let alone fund it.

Despite these difficulties, it is well worth the effort to embark on an SRE transformation. The
kind of DevOps implementation that can be achieved using SRE is where developers maximize their
feature development time while having evidence that the product works well for customers in pro-
duction. Without SRE, developers maximize their feature development time, ignoring production.

Further, in a DevOps implementation using SRE, operations engineers scale well by provid-
ing the SRE infrastructure to the developers, which enables them to do production operations.

Software
Development

Work

SRE Transformation

Software
Operations

Work

Development
Department

Operations
Department

Figure 2.3 Key SRE transformation challenge

9780137424603_print.indb 31 23/08/22 8:20 PM

Chapter 2 The Challenge32

Without SRE, the operations engineers are the bottlenecks. They do production operations
purely by themselves, regardless of the product quality and insider knowledge available about
the product.

2.3.3 Product Management

Having clarified what collective ownership of production operations means for product devel-
opment and product operations, it is time for such a clarification in the context of product man-
agement. What does the product management team need to do to partially own product
operations?

Traditionally, product management is pretty far away from product operations. As discussed
in Section 2.2, Collective Ownership, product management’s benefit in getting involved in pro-
duction operations is to reduce customer escalations. How on earth can product management
reduce customer escalations if everything the customers escalate about is a technically broken
product? Product owners are not technical experts. They neither implemented nor deployed the
product.

To approach this, let us explore what leads to customer escalations. Before a customer gets to
the point of picking up the phone and calling customer support to complain, a series of events
take place. The customer works with the product and notices something annoying. It might
be a sluggish display of data; an inconvenient way of accomplishing a task in too many back-
and-forth steps; an action taken, like a button click, that does not result in the action actu-
ally performed; or a downright crash with accompanying data loss. Whatever the reason, it is
directly linked to the customer having lost so much time or money that they call customer sup-
port to release their anger and get help.

Now, could the technical experts—namely, the product development or product operations
team—have noticed anything wrong with the product and fixed it earlier? Are product develop-
ment and product operations set up for such incident detection and resolution? Again, this is
technical, so what does it have to do with product management?

Let us dive deeper. Imagine that product development and product operations want to set up
incident detection and resolution to detect and fix abnormal situations before customers esca-
late. How would they go about doing this?

As you saw in Section 2.3.1, Product Development, the developers have an enormous amount
of knowledge about all sorts of technical aspects regarding the product. The operations engi-
neers have vast experience with customer escalations. They remember a lot of past escalations
by heart. They can cluster them. They know by means of anticipation the weak areas of the
product that are going to be escalated about soon because product development has not started
fixing them. Overall, this is a good mix of knowledge that is brought to the table by product
development and product operations. The product development team brings knowledge of tech-
nical implementation while the product operations team brings knowledge of the actual issues
from production. Taken together, this knowledge can be used to create an incident detection
and resolution process rooted in technical implementation and past customer escalations. This
is great. It would be a huge leap from ad hoc, unsystematic incident response. It would reduce
customer escalations.

The goal, however, is to aim higher. The goal is to create an incident response and resolution
process that for every existing and new feature would detect abnormal situations early enough

9780137424603_print.indb 32 23/08/22 8:20 PM

332.3 Ownership Using SRE

for product development to fix and then to deploy the fixes before customers escalate. This
would be a real benefit to product management. To emphasize, the process should work for
every existing and new feature, not just for features known to product operations based on the
experience of past customer escalations. Also, to emphasize, the developers would allocate their
time in such a way that they fix detected issues and deploy the fixes to production before the
customers get angry enough to escalate. This means the developers would not just work on the
feature backlog prioritized by the product owners. The other prioritization driver would be
the product reliability issues detected by the incident response process.

With that, the contribution of product management to the collective ownership of product
operations is starting to emerge.

1. Product owners would need to contribute user journey knowledge to the incident
detection process. Impaired and broken user journeys should be at the core of incident
detection. Which user journeys are the most important ones to detect incidents with?
What are the most important steps within a given user journey that must work for the user
journey to still make sense? Conversely, which steps of a user journey could fail, and how
badly, without rendering the entire user journey broken? Overall, the incident detection
process is as good as the defined incidents it can detect. To define detectable incidents
well, the user journey knowledge of the product owners, the implementation knowledge
of the developers, and the operations knowledge of the operations engineers need to be
combined.

2. Product owners would need to understand and agree to the importance of setting up a
backlog management procedure in which developers can flexibly allocate time to fix pro-
duction issues as they are detected by the incident detection process. Traditionally, the
product owners prioritize the backlog of user stories, and they want developers to focus
on the backlog. To reduce customer escalations, the product owners would want the
developers to take immediate action on the issues reported by incident detection.

This now makes sense to the product owners. They were part of and shaped the incident
detection definition. They know what the incident detection is going to detect. It is going to
detect real broken user journeys and not merely some technical deviations. Now it is easier for
the product owners to accept the engineering time being spent on incident resolution. Why?
Because spending that time directly contributes to the reduction of customer escalations. If
developers do not fix the incidents in production within a reasonable time frame, the customers
will still escalate despite the right incidents being detected early enough.

That is, to reduce customer escalations, the following criteria need to be fulfilled.

• The incident detection detects broken and impaired user journeys as defined together by
the operations engineers, developers, and product owners.

• The developers prioritize fixing broken and impaired user journeys as they are detected
without having to negotiate with product owners every time about the engineering time
allocation.

• The developers fix the broken and impaired user journeys in production within a specified
time frame before customers get angry and frustrated enough to escalate.

9780137424603_print.indb 33 23/08/22 8:20 PM

Chapter 2 The Challenge34

This process is shown in Figure 2.4.
The top left of Figure 2.4 shows the incident detection definition process. It takes as input the

implementation knowledge by developers, the operations knowledge by operations engineers,
and the user journey knowledge by product owners. The outcome of the incident detection defi-
nition process is an understanding of the incidents to detect in production. It is about detection
of unhealthy patterns in

• The user journeys from an operational criticality perspective

• The critical service dependencies fulfilling the user journeys

• The critical infrastructure components and their scaling, fulfilling the user journeys

Operations
Engineers Developers

Incident
Detection
Definition
Process

Product Owners
Production

Incident
Backlog

Incident 1

Incident 2

Dev Deployed
the Fix

Time
Dev Finished

Fixing
Dev Started

Fixing
Incident
Detected

Incident
Started

100%

User Story 1

User Story 2

User Story 3
.
.
.

.

.

.

User Story
Backlog

Customer Escalation
Potential, %

Escalation

Figure 2.4 Process for reducing customer escalations

9780137424603_print.indb 34 23/08/22 8:20 PM

352.3 Ownership Using SRE

With the definition of what to look for in production to detect incidents, incident detection
can be switched on. The production environment in the middle of Figure 2.4 can now run under
monitoring for fulfillment of real user journeys, instead of having monitoring for fulfillment of
technical parameters. Monitoring for fulfillment of real user journeys is more targeted to reduce
customer escalations, which is product management’s benefit in terms of getting involved in
product operations.

Once the incident detection process has detected some incidents, it will put them into a back-
log. This is shown on the right-hand side of Figure 2.4. The incident backlog exists side by side
with the user story backlog. The user story backlog is prioritized by the product owner. The
incident backlog also needs prioritization. This prioritization needs to be done as a just-in-time
process while the incidents get detected. It also needs to be done very quickly. Lengthy negotia-
tions between the operations engineers, developers, and product owners cannot take place to
efficiently prioritize the incident backlog. This means prior agreements among the three par-
ties need to be reached. A good place for timely incident prioritization agreements is the inci-
dent detection definition process itself. As part of the process, not only are the incidents defined
but also their relative priority can be agreed. These agreements should enable all the people on
call, and especially the developers, to make autonomous incident prioritization decisions for a
majority of the incidents.

Because the incidents from the incident backlog need to be worked on in a just-in-time man-
ner, the developers working on the incidents cannot work on the user stories from the user story
backlog at the same time. Also, just-in-time switching between the incident backlog and the
user story backlog leads to a great context switching overhead. Not only is this inefficient, it
also places a significant mental burden on the developers. To counter this, there are strategies
to setting up development teams in such a way that the ongoing on-call work from the incident
backlog and the focused user story work from the user story backlog are well balanced. These
strategies will be explored later.

The bottom of Figure 2.4 shows the incident processing timeline. It begins with an incident,
shown on the far left. At the time of the incident, the potential for customer escalation is very
low. It grows to 100% over time, which is the point to avoid. The goal is to fix the incident before
the customer gets angry and frustrated enough to call customer support with an escalation.

After the incident started, it can be detected by incident detection. The next step on the time-
line is the point in time when the developer starts working on the fix. Once the issue has been
fixed, it needs to be deployed to production. Once it is deployed, the fix needs to be monitored
to ensure that the incident has truly been resolved. The goal is to perform the fix deployment
and associated monitoring, confirming the incident resolution before the red line of customer
escalation.

The incidents that have started may go unnoticed, or be noticed too late or too early by inci-
dent detection. Conversely, the incidents may represent false positives. This happens when an
incident is reported that does not lead to deterioration in the user experience. All these cases
need to serve as input for adjusting the incident detection definition. This is an important part
of the overall process. It enables the incident definition adjustments to be done regularly based
on the real feedback loop from production. The feedback loop is data driven. This enables the
three parties—product operations, product development, and product management—to decide
on the incident definitions in an opinion-neutral, data-driven way.

9780137424603_print.indb 35 23/08/22 8:20 PM

Chapter 2 The Challenge36

In the context of SRE, such an incident detection and response process is set up using specific
mechanisms and terms, such as service level indicators (SLIs), service level objectives (SLOs), and
error budget policies. Soon, an exploration of these concepts will begin. Before this exploration, let
us summarize the benefits and costs of the collective production operations ownership using SRE.

2.3.4 Benefits and Costs

The analysis in the previous chapter showed what it would take for product operations, product
development, and product management to truly work together as a team using SRE methodol-
ogy. It showed the deep integration among the three parties necessary to implement DevOps
using SRE. It takes much more than only a good collaboration among the three parties. Table 2.2
juxtaposes the benefits and costs.

Now that the benefits and costs of the common ownership of production operations using
SRE are clear, let us take a look at the overall picture of what SRE is trying to achieve (Figure 2.5).

Table 2.2 Benefits and Costs of Collective Ownership of Production Operations Using SRE

Discipline Benefit Cost

Collective
ownership
of
production
operations
using SRE

Product
operations

Appropriate engagement of product
development and product management in
operations activities as needed. No more
chasing product development and product
management on every production issue to
decide how to proceed.

Enabling others to
do operations by
implementing SRE
infrastructure as a
framework.

Product
development

Appropriate insight in production
operations to get to an improved feature
development process augmented by the full
operational context. Feature development
performed with the full context of
what is necessary to make the features
technically successful in production leads
to a reduction in customer escalations.
This leads to more uninterrupted time for
working on new features. Additionally,
there is a developer skill upgrade valued by
the job market.

Doing product
operations by being
on call during
defined times.

Product
management

Reduction of customer escalations and
time investment to handle them. Ad hoc
involvement in numerous production issues
is also reduced, and there is an added ability
to make decisions in a data-driven manner
about engineering capacity allocation to
features versus operational concerns.

Involvement in the
incident detection
definitions and data-
driven prioritization
decision-making
based on production
data.

9780137424603_print.indb 36 23/08/22 8:20 PM

372.3 Ownership Using SRE

SRE aligns the product delivery organization on operational concerns under its flag. Product
development contributes to production operations by going on call to get firsthand experience
with how the product meets customer demands in production. This experience is fed into the
new feature and infrastructure development. The result is a maximization of feature develop-
ment time while ensuring that the product meets customer demands in production.

Product operations makes a contribution by enabling developers to do production operations
themselves. This is done through development of the SRE infrastructure as a framework to be
used by the developers.

Product management contributes by making data-driven prioritization decisions about the
most important user journeys for which the incidents need to be detected. Further, the contri-
bution is in agreements with the autonomous incident backlog prioritization by the people on
call. Additionally, the contribution is to be aligned with the data-driven prioritization decisions
about reliability enablers to be included in the user story backlog.

The SRE transformation does not come for free. An investment in time, money, and effort
is required to align the product delivery organization on operational concerns using SRE. That
is why the executives need to also get involved. The executives can contribute twofold to the
SRE transformation. First, they need to support the topic. This can be done in all-hands meet-
ings, smaller conversations, and one-on-one discussions. Executive communication regarding

Product
Development

Product
Operations

Enable dev to
Operate
Production

Data-driven
Prioritization
Decisions
about
Operational
Concerns

Product
Management

On call

SRE

Support &
Funding

Executives

Production

Figure 2.5 Collective ownership of production operations using SRE

9780137424603_print.indb 37 23/08/22 8:20 PM

Chapter 2 The Challenge38

SRE needs to clarify to everyone in the organization that the topic has executive support. This
goes a long way toward creating alignment behind SRE at every level of the product delivery
organization.

Moreover, the SRE transformation requires some slight investments in tooling and infra-
structure. Although they are small scale, these investments need to be done in a timely manner
so as not to impede the speed of transformation. In a large enterprise, it could take a significant
amount of time to place orders due to supplier selection and data protection processes. Still, it
is worth the effort. Voting with one’s wallet is a good way for executives to underpin the verbal
message of endorsing the SRE transformation.

2.4 The Challenge Statement

With an in-depth understanding of what to strive for during SRE transformation, the challenge
statement can be concisely presented. Following is what the challenge is about.

SRE is an operations methodology that aligns the product delivery organization on opera-
tional concerns. The key challenge in traditional software delivery organizations is the misalign-
ment on production operations. In such organizations, the following is true.

• Developers do not know why they should be doing operations.

• Operations engineers do not know why developers are not interested in operations.

• Product managers think operations work is done by operations engineers.

• Management does not promote and fund the topic.

In such a software delivery organization, there are no solid foundations on top of which SRE
can be built as a practice. The foundations need to be put in place first. This will be a major part
of the SRE transformation. The transformation will need to shift stakeholders’ mindsets in the
following ways.

• Developers should want to be involved in on-call processes to gain enough current opera-
tional knowledge to develop features that work well in production.

• Operations engineers should want to enable developers to perform service operations by
providing the SRE infrastructure as a framework in order to distribute the operational
work throughout the product delivery organization in an optimal way.

• Product managers should want to be involved in operations to help reduce customer esca-
lations by making decisions based on production data. The decisions are about the pri-
oritization of user journeys for which the incidents need to be detected, agreements on
incident backlog handling, and prioritization of reliability features.

• Executives should want to enable effective and efficient product operations by promoting
SRE and providing appropriate funding in a timely fashion.

9780137424603_print.indb 38 23/08/22 8:20 PM

392.5 Coaching

Each party in the software delivery organization benefits from SRE. The benefits make it
worth undergoing the SRE transformation. The benefits can be used as a beacon to aspire for,
unleashing fun on the SRE transformation journey. This book will take you on the journey of
transforming a software delivery organization bit by bit into one that does operations the SRE
way and enjoys doing so. To get started, in the next section let us look at the general way the SRE
transformation can be executed.

2.5 Coaching

A product delivery organization consists of many people who are organized in teams. The SRE
transformation process has a clear goal to establish SRE as the central methodology for produc-
tion operations in the teams. However, running the SRE transformation is not like running a
project with predefined milestones to be tracked. Rather, the SRE transformation process is a
network of induced changes and feedback on the changes cast in parallel at different teams and
individuals. Many teams will be transforming at the same time, but the changes and feedback
loops will be unique per team and individual. This is illustrated in Figure 2.6.

Now, how do you set up the SRE transformation process in the way shown in Figure 2.6?
One way to run the SRE transformation is by means of coaching. According to Wikipedia,

“coaching is a form of development in which an experienced person, called a coach, supports a
learner or client in achieving a specific personal or professional goal by providing training and

Feedback 3

Change 3

Change 2

Change 1

Person 1

Team 1

Team 2

Feedback 1

Feedback 2

SRE Transformation
Process

Figure 2.6 SRE transformation process

9780137424603_print.indb 39 23/08/22 8:20 PM

Chapter 2 The Challenge40

guidance.”3 It follows that coaching works with people and teams on an individual basis. This is
the kind of approach needed for being empathetic and structured at the same time when running
the transformation.

What makes coaching particularly interesting in the context of the SRE transformation is
that it already exists as a discipline at both the organizational and team levels. According to the
Institute of Coaching, “Organizational coaching aims at fostering positive, systemic transfor-
mation within organizations.”4 Within the broad theme of coaching, organizational coaching is
a well-established discipline.

Team coaching, on the other hand, is a more recent and less structured discipline. It gained
significance in the past decade. According to TPC Leadership, “team coaching is the art of facil-
itating and challenging a real team to maximize its performance and enjoyment in service of
meaningful organizational goals.”5

That is, coaching as a discipline with distinct subdomains of organizational coaching and
team coaching is going to be a suitable approach for running the SRE transformation. Both
types of coaching would be applied simultaneously and would work in tandem. However, when
choosing organizational and team coaching as a methodology to run the SRE transformation,
the question is, who would do the coaching? Who can act as a coach if the organization is new to
SRE? Would external coaches be required? Would it be possible to develop internal coaches? If
so, who would develop the internal coaches? Different approaches are possible here.

External coaches can be valuable to bring a fresh experience-based SRE perspective to an
organization and quickly establish an understanding of SRE basics across the board. However,
SRE coaches with experience doing successful SRE transformations are really difficult to find in
the industry. This is because the first original SRE book by Google, Site Reliability Engineering:
How Google Runs Production Systems, was only published in 2016.6 Given that SRE transfor-
mations are taking several years to achieve in larger organizations, the pool of available coaches
is going to be rather small.

Another aspect is that precisely because an SRE transformation takes several years to run in
a larger organization, employing external coaches for the transformation time frame is hardly a
financially viable option. It follows that coaches for SRE transformation need to be found and
grown internally.

Which options would the coaches have to learn about SRE and bring themselves to a
level that is necessary to coach others? Both the aforementioned Google book Site Reliabil-
ity Engineering and Google’s The Site Reliability Workbook: Practical Ways to Implement
SRE7 are a great and necessary starting point. These books will show potential coaches what
needs to be done to achieve SRE with the sophistication and scale of Google. Additional
books by former Googlers—Implementing Service Level Objectives: A Practical Guide to

3. Wikipedia. 2021. “Coaching.” https://en.wikipedia.org/wiki/Coaching.
4. David, Susan. 2015. “Introduction to Organizational Coaching.” Institute of Coaching, January 13,
2015. https://instituteofcoaching.org/resources/introduction-organizational-coaching.
5. Cardillo, Andrea. 2019. “How Is Team Coaching Different from Group Coaching?” TPC Leadership,
July 10, 2019. https://tpcleadership.com/how-is-team-coaching-different-from-group-coaching.
6. Murphy, Niall Richard, Betsy Beyer, Chris Jones, and Jennifer Petoff. 2016. Site Reliability Engineering:
How Google Runs Production Systems. Sebastopol, CA: O’Reilly Media.
7. Beyer, Betsy, Niall Richard Murphy, David K. Rensin, Stephen Thorne, and Kent Kawahara. 2018. The
Site Reliability Workbook: Practical Ways to Implement SRE. Sebastopol, CA: O’Reilly Media.

9780137424603_print.indb 40 23/08/22 8:20 PM

https://en.wikipedia.org/wiki/Coaching
https://instituteofcoaching.org/resources/introduction-organizational-coaching
https://tpcleadership.com/how-is-team-coaching-different-from-group-coaching

412.6 Summary

SLIs, SLOs, and Error Budgets8 and Real-World SRE: The Survival Guide for Responding
to a System Outage and Maximizing Uptime9—provide additional in-depth experience per-
spectives on SRE.

It is our aspiration that this book in particular will show potential coaches how SRE can be
put in place in an organization that has never done operations the SRE way before. Further, the
coaches can network with others at relevant conferences and industry events. Two conferences
can be of special interest: SRECon10 by USENIX and the DevOps Enterprise Summit11 by IT
Revolution. These conferences can be a great place to develop relationships with others practic-
ing SRE or running SRE transformations. These relationships might lead to opportunities to
visit other companies that are further along in the SRE journey. Seeing is believing, and seeing
another company running the SRE process in a sophisticated manner can significantly boost
one’s own transformation. 12

Finally, the coaches can learn while running the SRE transformation in their own organiza-
tion. In a larger organization, teams will inevitably adopt SRE at different speeds. Taking the
learnings from the teams that lead the SRE transformation and transporting them to the teams
catching up is a very valuable part of coaching. It enables the coach to gain experience and the
teams to learn from each other.

From the Trenches: Long-lasting team-based coaching12 that includes all team
members—product owners, architects, developers, operations engineers and, at times,
designers—is the most effective way to run the SRE transformation at the team level.

2.6 Summary

Introducing SRE requires changes in product operations, product development, and product
management. The biggest change in product operations is the development of the SRE infra-
structure as a framework that enables developers to go on call and operate their services in pro-
duction. The biggest change in product development is to actually get involved in on call and
operate the services developed in a real production environment. The delineation of how much
developers are on call compared to how much operations are on call will vary by organization.

The challenge of the SRE transformation is that in a traditional software delivery organiza-
tion, the product operations team has never provided frameworks enabling others to do opera-
tions work. Likewise, product development has never done operations work. Thus, there is

8. Hidalgo, Alex. 2020. Implementing Service Level Objectives: A Practical Guide to SLIs, SLOs & Error
Budgets. Sebastopol, CA: O’Reilly Media.
9. Welch, Nat. 2018. Real-World SRE: The Survival Guide for Responding to a System Outage and
Maximizing Uptime. Birmingham, UK: Packt Publishing Ltd.
10. “SRECon.” 2017. USENIX. August 25, 2017. https://www.usenix.org/srecon.
11. IT Revolution Events. n.d. “DevOps Enterprise Summit 2022.” Accessed January 12, 2022. https://
events.itrevolution.com.
12. Guendisch, Philipp, and Vladyslav Ukis. 2022. “Employing Agile Coaching to Establish SRE in an
Organization.” InfoQ, August 23, 2022. https://www.infoq.com/articles/establish-SRE-coaching.

M02_Ukis_C02_p021-p042.indd 41 25/08/22 4:05 PM

https://www.usenix.org/srecon.
https://events.itrevolution.com.
https://events.itrevolution.com.
https://www.infoq.com/articles/establish-SRE-coaching

Chapter 2 The Challenge42

a lack of foundation on which SRE can be established. Developers do not understand why
they should be doing operations. Operations engineers do not provide frameworks to enable
developers to do operations. Managers do not promote the topic, let alone fund it. To drive
the SRE transformation throughout the organization, SRE coaches need to be developed and
designated.

In the next chapters, the journey of transforming a software delivery organization toward
SRE will unfold. To get started, we will learn the basic SRE concepts in the next chapter.

9780137424603_print.indb 42 23/08/22 8:20 PM

507

Index

Numerics
100% availability, 50–52

A
Adzic, G., Fifty Quick Ideas to Improve Your User

Stories, 99
agile/agility

coach, 272
delivery, 1
enterprise-level, 318

AIDA marketing funnel, 92
agreement, 95–96
awareness, 92
desire/understanding, 93–94
engagement, 96
interest, 93–94

alert(s), 25, 34, 108, 152, 166–167, 168–169. See also
reacting to alerts on SLO breaches

deduplication, 246–248
dispatching, 211–212

escalation policy, 212–215
stakeholder groups, 216–217
stakeholder notifications, 216, 217–219, 222–226
stakeholder rings, 219–222

error budget, 54
escalation, 212–214
mapping to incident priorities, 240–241

alignment
mis-, 22–30
organizational, 67–68
SRE, 23–17, 29, 100

on-call rotation and, 62
concept pyramid and, 59–63
error budget policies and, 62–63
SLOs, 60–62

allocating SRE capacity to a team decision workflow,
380–381

Allspaw, J., 253
The Future of Monitoring, 421

API, 33, 363–366
application performance management facility,

149–150. See also infrastructure
automation

DevOps and, 6
incident response, 260–262

availability, 148, 149, 150–151, 159–160. See also SLI(s)
(service level indicator/s)

error budget, 49, 50–52
newsletter, 476
SLO, 17
targets, 194

awareness, ways of promoting, 92
availability newsletter, 476
broadcasting, 478–479
CoP (community of practice), 475
long-form wiki articles, 477–478
SRE column in the engineering blog, 477
SRE minutes, 475–476
success stories, 172–173, 208–209, 226–227

B
backlog, 30

incident detection and resolution, 36
product development, 25–26, 29

BDD (behavior-driven development), 336
Blank-Adelman, D. N., Seeking SRE: Conversations

About Running Production Systems at Scale, 393
bottleneck analysis, 482–483
bottom-up buy-in, 90, 117

development team, 119–121
operations team, 117–119

bridging, 78
broadcasting

service status, 299
success stories, 302
system, 478–479

9780137424603_print.indb 507 23/08/22 8:21 PM

Index

C
“The Calculus of Service Availability”, 372
CALMS (Culture, Automation, Lean, Measurement, and

Sharing), 6
champions, 167
chaos engineering hypotheses selection workflow,

383–388
“Chaos Engineering: the history, principles, and

practice”, 388
chart, stakeholder, 100–103. See also graphs; tables;

visualizations
CIOs (chief information officers), operations

methodologies, 15–19
coach(ing), 39–40, 65–67, 96, 107, 115, 122, 123,

127–129. See also team(s)
agile, 272, 315–316
assessing transformation readiness, 137
buy-in and, 90–91
champions and, 167
conveying the basics, 136–137

on call for SLO breaches, 146–147
causes of SLO breaches, 140–145
motivation to fix SLO breaches, 142–144
SLO as a contract, 137–138
SLO as a proxy measure of customer happiness,

138
SLO versus technical monitoring, 144–145
user personas, 138–140
user story mapping, 140–142

dealing with detractors, 168–171
implementing transformation in all teams, 129–131
organizational, 131–133
qualities, 97–98
responsibilities, 98–99
SRE transformation meeting and, 112–114
support system, 487–489
teaching the log query language, 156–157
team, 124–125, 126–127
COBIT (Control Objectives for Information and

Related Technologies), 4–5, 8–23, 27–17
Code Red, 322
Code Yellow, 322
collective ownership, 67

of production operations, 23–32
benefits and costs, 36–38
product development and, 25–27
product management and, 32–36
product operations, 28–35

complex incident(s), 248. See also incident(s)
classification, 250, 252–253
existing incident coordination systems, 249–250

LFI (Learning from Incidents in Software)
community, 253

response
on-call roles, 257–258
process diagram, 260–262
process evaluation, 258–259
responsibilities, 256
roles, 254–256
team well-being, 262–268

severity, 250, 251–252, 253–254, 257
concept pyramid, 55–59, 130, 136, 147, 305, 329, 491

error budget, 57–58
reliability stack, 55–56
SLIs, 56
SLOs, 56
SRE alignment, 59–63

conferences, 40
DevOps Enterprise Summit, 487
QCon, 487
SREcon, 487

Continuous Delivery, 6, 317
indicators

bottleneck analysis, 482–483
combining with SRE indicators, 479–480
versus SRE indicators, 481

Cook R., LFI (Learning from Incidents in Software), 253
cooperation, status quo and, 75–77
CoP (community of practice), 206–208, 475
correctness, 44
cost accounting, SRE team, 417–419
cost optimization

domain rotation, 425
thin-layer on-call rotation, 426

Covey, S. R., The Speed of Trust: The One Thing that
Changes Everything, 458

CPOs (chief product officers), operations
methodologies, 15–19

CRE (Customer Reliability Engineering), 102
cross-pair rotation, 183
CTOs (chief technical officers), operations

methodologies, 15–19
culture

generative, 75–76
organizational, 74–75, 89

customer(s). See also user
escalation, 35–36
incident response and, 252–253
support ticket trend indicator, 349–350

graph representation, 350–351
table representation, 352–353

508

9780137424603_print.indb 508 23/08/22 8:21 PM

Index 509

D
dashboards, SLI/SLO, 165–166
decision-making

error budget-based, 57–58, 325
“On-Call Rotations by Team” indicator,

353–354
customer support ticket trend indicator,

349–353
dimensions of SRE indicators, 330
implementing SRE indicators, 330
incident time to recovery trend indicator,

354–356
least available service endpoints indicator,

356–357
premature SLO error budget exhaustion

indicator, 339–343
reliability decision-making taxonomy, 325–329
SLA adherence indicator, 348–349
SLA error budget depletion indicator, 345–348
“SLAs by Service” indicator, 343–344
SLO adherence indicator, 332–333
SLO error budget depletion indicator, 333–339
“SLOs by Service” indicator, 330–332
slowest service endpoints indicator, 358

incident response, 255
versus indicators, 359–362
joint, 105–106
workflows, 362–363

allocating SRE capacity to a team decision,
380–381

API consumption, 363–366
chaos engineering hypotheses selection,

383–388
features versus reliability prioritization,

368–372
setting an SLA, 377–380
setting an SLO, 372–377
tightening a dependency’s SLO, 366–368

default SLOs, 163–164
defining

escalation policy, 214–215
generic incident priorities, 234–237
hypotheses, 484–486
incident priorities, 244
SLOs, 158
stakeholder notifications, 224

defining an SLO, 161
detractors, 168–171
DevOps, 1, 2, 6, 25, 33, 180

CALMS, 6

comparison with other operations methodologies,
8–23

Enterprise Summit, 40, 487
head of development, 106–107
implementation, 35
pillars of success, 6
in the “who builds it, who runs it?” spectrum,

441–442
Dickerson, M., Site Reliability Engineering: How

Google Runs Production Systems, 71
documentation

application performance management facility,
149–150

creating, 171–172
incident response, 301–302
log query language, 156
runbooks, 203–205

domain rotation, 425. See also on-call work
durability, 44

E
engagement, 96. See also buy-in
enterprise

-level agility, 318
radical, 431–432

error budget(s), 47–49, 57
alerts, 54
availability SLO and, 49
-based decision making, 325

allocating SRE capacity to a team decision
workflow, 380–381

API consumption decision workflow, 363–366
“On-Call Rotations by Team” indicator,

353–354
chaos engineering hypotheses selection

workflow, 383–388
customer support ticket trend indicator,

349–353
dimensions of SRE indicators, 330
features versus reliability prioritization

workflow, 368–372
implementing SRE indicators, 330
incident time to recovery trend indicator,

354–356
least available service endpoints indicator,

356–357
premature SLO error budget exhaustion

indicator, 339–343
reliability decision-making taxonomy, 325–329
setting an SLA decision workflow, 377–380

9780137424603_print.indb 509 23/08/22 8:21 PM

Index

setting an SLO decision workflow, 372–377
SLA adherence indicator, 348–349
SLA error budget depletion indicator, 345–348
“SLAs by Service” indicator, 343–344
SLO adherence indicator, 332–333
SLO error budget depletion indicator, 333–339
“SLOs by Service” indicator, 330–332
slowest service endpoints indicator, 358
tightening a dependency’s SLO decision

workflow, 366–368
Code Red, 322
Code Yellow, 322
debt, 55
decision-making, 57–58
latency, 52
logging, 154–155
mapping to incident priorities, 239–240
policy, 53–55, 57, 305

agreeing to, 318–319
clause, 312–313
conditions, 309–310
consequences, 311
effectiveness, 314
enacting, 320
extending, 314–318
feature development and, 305–306
governance, 312–314
motivation for, 305–306
reliability and, 306
review, 309
reviewing, 321
scope, 308
storing, 319–320
structure, 308–309
template, 308
value, 313

premature depletion, 307
silver bullet, 322
thaw tax, 323
top-up, 323
of zero, 50–52

escalation policy, 212–215, 258, 308–309
Evans, D., Fifty Quick Ideas to Improve Your User

Stories, 99
experiments, chaos, 383–385

F
failures, 78
feature development, 26, 32

backlogs, 30

error budget policy, 305–306
versus reliability prioritization workflow, 368–372

feedback
customer, 394
loops, 483–484
postmortem, 282, 288–289

fidelity, 44
focus-based working mode, 185
formal leadership, 69
Forsgren, N., Accelerate, 103–104
forums, 94, 206, 283
frameworks, 34. See also COBIT (Control Objectives

for Information and Related Technologies);
DevOps; ITIL; operations methodologies

COBIT, 4–5
ITIL, 3–4
Scaled Agile, 315–316

freshness, 44
funding, SRE team, 414–417

G
game days, 476–478
Gates, B., The Road Ahead, 491
generic incident priorities, 234–237
GitHub, 289–290, 293
Goodhart’s law, 359
Google, 2

CRE (Customer Reliability Engineering), 102
online searches, 25
SRE (Site Reliability Engineering). See SRE (Site

Reliability Engineering)
governance, error budget policy, 312–314
graphs, 152–154

customer support ticket trends, 350–351
error budget depletion, 333–335, 345–347
premature error budget exhaustion, 339–341

H
Hand, J., 43
Helfand, H., Dynamic Reteaming: The Art and

Wisdom of Changing Teams, 267
Hohpe, G., The Software Architect Elevator:

Redefining the Architect’s Role in the Digital
Universe, 437

holacracy, 431
HTTP response codes, availability SLO and, 150–151
Humble, J., 6

Accelerate, 103–104
hypotheses, 18, 107, 159

510

9780137424603_print.indb 510 23/08/22 8:21 PM

Index 511

chaos engineering and, 383–388
defining, 484–486
posing, 81–84
testing, 467–469

I
ICS (Incident Command System), 249
identity

team, 413–414
triangle, 429–431

Implementing Service Level Objectives: A Practical
Guide to SLIs, SLOs, and Error Budgets, 40

incident(s), 35, 51, 229–230
backlog, 36
classification, 250, 252–253
complex, 248
deduplication, 246–248
game days, 476–478
infrastructure, 245
LFI (Learning from Incidents in Software)

community, 253
manual creation, 260
MTTR

MTBF and, 420–421
versus reliability user experience, 420

postmortem, 77, 268–269. See also postmortem
action items, 283, 284–285
analyzing recorded conversations, 274
content consumption statistics, 285–288
criteria, 269–271
distribution of findings, 280–282
drafting the write-up, 274
examples, 292–293
facilitating learning from, 291
generating action items, 278–280
initiating, 271–272
internal write-up, 283
lifecycle, 272–273
participant feedback, 282
practice measurements, 291–292
prime directive, 276–277
reviewing the timeline, 277
soliciting feedback on outcomes, 288–289
taking care of people issues, 274–276
template, 289–290
timeline reconstruction, 273

priorities, 230, 253–254
adjusting based on stakeholder feedback,

242–244
changing during an incident, 233–234

defining, 244
generic, 234–237
mapping to alerts, 240–241
mapping to error budgets, 239–240
mapping to SLOs, 237–239
uncovering new use cases, 242

recovery time, 354–356
reducing customer escalations, 35–36
response

broadcasting successes, 302
documenting, 301–302
on-call roles, 257–258
process diagram, 260–262
process evaluation, 258–259
responsibilities, 256
roles, 254–256
team well-being, 262–268
transparency and, 298

service status page, 298–301
severity, 250, 251–252, 253–254, 257
SLO breaches and, 232–233
timeline, 36

informal leadership, 68
information sharing, 131–133
infrastructure, 34, 127–129, 147–148, 164, 495–

496. See also alert(s); SLI(s) (service level
indicator/s); SLO(s) (service level objective/s)

alerts, 166–167
application performance management facility,

149–150
dashboards, 165–166
incident response, 245
logging, 154–155
prioritization of features, 152–154, 167
SRE indicators, 330

innovation, status quo, 78–79
insider knowledge. See also knowledge sharing

on-call rotation, 32–33
product operations, 29, 33
software development, 33–34

interest, 93–94
internal Stack Overflow, 205–206
inter-pair rotation, 183
interruption-based working mode, 181–184
IT organizations, 437
iterating on an SLO, 159–162
ITIL, 3–4, 27–17

comparison with other operations methodologies,
8–23

incident response process, 229–230

9780137424603_print.indb 511 23/08/22 8:21 PM

Index

J
Jeli, 274
joint

buy-in, 112–114
decision-making, 105–106

Jones, N., Learning from Incidents in Software (LFI)
community, 253

K
Kanban board, visualizing SRE transformation,

132–133
Kim, G., Accelerate, 103–104
knowledge sharing, 196–197

needs, 198–199
pyramid, 199–201
runbooks, 203–205

“Known Known”, 387
“Known Unknown”, 387
KPIs (key performance indicators)

SRE indicators and, 359
SRE team, 419–421

L
latency, 43, 52, 148, 149, 151–152, 160–161
lateral buy-in, 90, 122–123
leadership, 68. See also buy-in

formal, 69
head of development, engaging

assessing cost and effort, 106–107
buy-in, 103
DevOps best practices, 106–107
improving relationships, 104–106

head of operations, engaging, 107–108
assessing cost and effort, 109–110
improving on-call setup, 108
improving the state of production reporting,

108
head of product management, engaging, 110–112
informal, 68
joint decision-making, 105–106
stakeholder chart, 100–103

Lean, 6
learning opportunities, 486–487
least available service endpoints indicator, 356–357
LFI (Learning from Incidents in Software) community,

253

log query languages, 156–157
logging, 34–29, 74, 154–155
long-form wiki articles, 477–478

M
marketing, AIDA, 92

agreement, 95–96
awareness, 93
desire/understanding, 93–94
engagement, 96
interest, 93–94

maturity model, 81
McGhee, S., 49, 373
measurement, 6. See also metrics; SLI(s) (service level

indicator/s); SLO(s) (service level objective/s)
availability, 150–151
error budget policy effectiveness, 314
latency, 151–152
logging and, 154–155
postmortem practice, 291–292

meetings
incident response, documenting, 301–302
postmortem

distribution of findings, 280–282
generating action items, 278–280
participant feedback, 282
prime directive, 276–277
reviewing the timeline, 277

SRE transformation, 112–114
metrics, 102, 103–104, 105

postmortem content consumption, 285–288
transformation

executives’ perception, 471–472
reliability perception by users and partners,

472–473
services exhausting error budgets prematurely,

470–471
undetected outages, 469–470

middle management, lateral buy-in, 122–123
misalignment, product delivery and, 22–30
mobile devices, 297
modeling, 5–6, 8–23
monitoring, SLOs and, 144–145
movement, 89–90. See also awareness, ways of

promoting
MTBF, 420–421
MTTR

MTBF and, 420–421
versus reliability user experience, 420

512

9780137424603_print.indb 512 23/08/22 8:21 PM

Index 513

N
“Nonviolent Communication” approach, 275–276
“not-invented-here” syndrome, 11
novelty, 78–79. See also innovation
NPS (Net Promoter Score), 472–473
Nygard, M. T., Release It!: Design and Deploy

Production-Ready Software, 338

O
on-call work, 182, 183

incident response, 257–258
knowledge sharing, 196–197

needs, 198–199
pyramid, 199–201

management tools, 188, 190–193, 246, 294
connecting to, 294–296
status page capability, 298–301
subscribing to stakeholder notifications,

225–226
out-of-hours, 193
rotation, 32–33, 185

cross-pair, 183
inter-pair, 183
one person on call, 186–187
scheduling, 186
thin-layer, 426
three people on call, 187–188
two people on call, 187

runbooks, 203–205
scheduling, 190–191
setup, 108
SLO breaches and, 143–144, 146–147
SRE alignment and, 62
trade-offs, 194–196
training, 198, 200, 201–203
using availability targets and product demand, 194

online searches, Google, 25
operations methodologies. See also COBIT (Control

Objectives for Information and Related
Technologies); DevOps; ITIL; modeling; SRE
(Site Reliability Engineering)

comparing, 8–23
organizational. See also product delivery organization

alignment, 67–68
coaching, 131–133
culture, 74–75, 89, 256
structure, 65–67, 391. See also “who builds it, who

runs it?” spectrum

questions driving, 391–392
versus SRE principles, 393–394

organizational buy-in, 89–91
bottom-up, 90, 117

development team, 119–121
operations team, 117–119

joint, 112–114
lateral, 90, 122–123
staggering, 123
top-down, 90, 99. See also top-down buy-in

assessing cost and effort, 106–107
head of development, engaging, 103–107
head of operations, engaging, 107–110
head of product management, engaging,

110–112
metrics and, 103–104, 105
stakeholder chart, 100–103

outages, strategies for coping with, 244. See also
incident(s)

out-of-hours on-call, 193
ownership. See also collective ownership

collective, 23–32, 67
of production operations

in product development, 25–27
in product management, 32–36
in product operations, 28–35

P
PagerDuty, 249, 250, 268
Parker, M., A Radical Enterprise: Pioneering the

Future of High-performing Organizations,
431–432

partial ownership, of production operations
in product development, 25–27
in product management, 32–36
in product operations, 28–35

people. See also buy-in
communication and, 274–276
movements, 89–90
in the product delivery organization, 69–71

PI (Program Increment), 315
policy

error budget, 53–55
agreeing to, 318–319
clause, 312–313
conditions, 309–310
consequences, 311
effectiveness, 314
enacting, 320

9780137424603_print.indb 513 23/08/22 8:21 PM

Index

extending, 314–318
feature development, 305–306
governance, 312–314
motivation, 305–306
reliability, 306
review, 309
reviewing, 321
scope, 308
storing, 319–320
structure, 308–309
template, 308
value, 313

escalation, 212–215, 258, 308–309
portfolio management, SRE transformation and,

114–116, 131
posing hypotheses, 81–84
posting SLO breaches, 188–190
postmortem, 77, 244, 268–269

action items, 283
generating, 278–280
lead and cycle times, 284–285

analyzing recorded conversations, 274
content consumption statistics, 285–288
criteria, 269–271
distribution of findings, 280–282
drafting the write-up, 274
examples, 292–293
facilitating learning from, 291
initiating, 271–272
internal write-up, 283
participant feedback, 282
practice measurements, 291–292
prime directive, 276–277
reviewing the timeline, 277
soliciting feedback on outcomes, 288–289
taking care of people issues, 274–276
template, 289–290
timeline reconstruction, 273

premature
error budget depletion, 307
SLO error budget exhaustion indicator, 339

graph representation, 339–341
table representation, 341–343

presentations, 95–96
introduction to SRE transformation, 135–136
slide decks, awareness-related, 93

principles
COBIT, 5
ITIL 4
SRE, 7–11

processes, 79–80, 122

incident response
dynamics, 260–262
evaluating, 258–259

SRE transformation and, 316–317
product delivery organization, 2, 11, 15. See also

DevOps; SRE (Site Reliability Engineering)
alignment, 29, 67–68
assessing the status quo

bridging, 78
cooperation, 75–77
culture, 74–75
formal leadership, 69
handling failures, 78
informal leadership, 68
innovation, 78–79
leadership, 68
people, 69–71
process, 79–80
risk sharing, 77
structure, 65–67
technology, 71–74

misalignment, 22–30
operations methodologies, 16–23
product operations, 29
SRE alignment, 23–17
SRE buy-in, 90–91

product development, 29, 106–107. See also
DevOps

backlogs, 25–26
buy-in, 119–121
on-call rotation, 32–33
head of, engaging

buy-in and, 103–104
improving relationships, 104–106

incident detection and resolution, 35–36
learning the log query language, 156–157
partial ownership of production operations, 25–27
team coaching, 126–127

product management, 30, 32
head of, engaging, 110–112
partial ownership of production operations, 32–36

product operations, 1, 29. See also DevOps; SRE (Site
Reliability Engineering)

alerts, 25
buy-in, 117–119
collective ownership, 23–32
comparison of methodologies, 8–23
head of, engaging, 107–108

assessing cost and effort, 109–110
improving on-call setup, 108

514

9780137424603_print.indb 514 23/08/22 8:21 PM

Index 515

improving the state of production reporting,
108

head of product management, engaging, 110–112
insider knowledge, 29, 33
partial ownership of production operations, 28–35
team coaching, 126

product owners, team coaching, 124–125
production, 30

on-call rotation, 32–33
collective ownership, 67

benefits and costs, 36–38
product development and, 25–27
product management and, 32–36
product operations, 28–35

deployment, 59
fixing issues in, 25–15, 29
processes, 79–80
service reliability hierarchy, 71–72
testing, 32

professional on-call management tools, 191–193

Q-R
QCon, 487
radical enterprise, 431–432
reacting to alerts on SLO breaches, 175, 177. See also

on-call work
environment selection, 175–177
internal Stack Overflow, 205–206
on-call rotation, 185, 197

knowledge sharing needs, 198–199
one person on call, 186–187
scheduling, 186
systematic knowledge sharing, 196–197
three people on call, 187–188
two people on call, 187

operational responsibilities, 178–179
versus development responsibilities, 177–178
splitting, 179–180

out-of-hours on-call, 193
responsibilities, 177
runbooks, 203–205
working modes, 180–181

focus-based, 185
interruption-based, 181–184

Real-World SRE: The Survival Guide for Responding
to a System Outage and Maximizing Uptime,
40

regulatory compliance, 27–17, 316, 494–495
release lifecycle phases, 315
reliability, 44, 115. See also error budget(s)

error budget policy, 306
error budget-based decision making, 325–329
versus features prioritization workflow, 368–372
service, 71–72
user experience, 111

resiliency, 51
resource-based alerts, mapping to incident

priorities, 240–241. See also alert(s)
revising SLOs, 162
risk sharing, 77
rollouts, 316
runbooks, 225

S
SAFe (Scaled Agile Framework), 315–316
Safety II perspective, 253
scheduling, on-call work, 186, 190–191
scientific method, 18. See also hypotheses
Scrum of Scrums, 94
security, modeling, 6
self-service, 171–172

documentation, 171–172
SLO setting and editing, 161, 164
teaching and learning, 156–157

service
catalog, 492–493
reliability, 71–72

service status page, 298–301
Shook, J., “How to Change a Culture: Lessons from

NUMMI”, 79
silver bullet, 322
Site Reliability Engineering: How Google Runs

Production Systems, 40, 43, 45, 71, 269
Site Reliability Workbook, 1–2, 7, 40, 112–115,

305–306, 393, 472
SLA(s) (service-level agreement/s), 101, 494

adherence indicator, 348–349
error budget depletion indicator, 345

graph representation, 345–347
table representation, 347–348

setting, 377–380
“SLAs by Service” indicator, 343–344

slide decks, awareness-related, 93
SLI(s) (service level indicator/s), 36, 43–44, 47–48

availability, 43
correctness, 44
dashboards, 165–166
durability, 44
fidelity, 44
freshness, 44

9780137424603_print.indb 515 23/08/22 8:21 PM

Index516

latency, 43, 151–152
logging, 154–155
reliability, 43
SRE concept pyramid and, 56
standardization, 147–149
system categories and, 45–44
user personas, 138–140

SLO(s) (service level objective/s), 17, 18, 45–48
adherence indicator, 332–333
alignment and, 60–62
availability, 17

100%, 50–52
error budget and, 49

breaches, 17, 142–144, 161–162. See also
incident(s); reacting to alerts on SLO breaches
alerts, 152, 166–167
on call for, 146–147
causes of, 145–140
deduplication and, 246–248
incidents and, 232–233
log query language and, 156–157
posting, 188–190
visualizations, 152–154

as a contract, 137–138
dashboards, 165–166
default, 163–164
defining, 158, 161
error budget depletion indicator, 333

graph representation, 333–335
table representation, 335–339

“good”, 157–158
iteration, 159–162
latency, 151–152
logging, 154–155
mapping to incident priorities, 237–239
as a proxy measure of customer happiness, 138
revising, 162
setting, 372–377
SRE concept pyramid and, 56
versus technical monitoring, 144–145
tightening a dependency’s decision workflow,

366–368
user personas, 138–140
“SLOs by Service” indicator, 330–332

Sloss, B. T., 27, 34
slowest service endpoints indicator, 358
Smith, S., 395

“Aim for Operability, not SRE as a Cult”, 416
“Implementing You Build It You Run It at Scale”,

194

software development, 1. See also DevOps; product
development

alerts, 34
backlogs, 25–26
on-call rotation, 32
feature development, 26
insider knowledge, 33–34
logging, 34–29

SRE (Site Reliability Engineering), 1–2, 7
AIDA marketing funnel, 92

agreement, 95–96
awareness, 92
desire/understanding, 93–94
engagement, 96
interest, 93–94

alignment, 23–17, 100
on-call rotation and, 62
concept pyramid and, 59–63
error budget policies and, 62–63
organizational, 67–68
SLO, 60–62

buy-in, 89–91. See also buy-in
bottom-up, 90, 117
joint, 112–114
lateral, 90, 122–123
staggering, 123
top-down, 90, 99

challenge statement, 38–39
coaches. See also coaches

qualities, 97–98
responsibilities, 98–99

COBIT, 4–5
collective ownership of production operations

benefits and costs, 36–38
product development and, 25–27
product management and, 32–36
product operations, 28–35

comparison with other operations methodologies,
8–23

concept pyramid, 55–59, 130, 136, 147, 305, 329,
491
error budget, 57–58
reliability stack, 55–56
SLIs, 56
SLOs, 56

CoP (community of practice), 206–208
DevOps, 6
error budget, 47–49. See also error budget(s)

alerts, 54
availability SLO and, 49
debt, 55

9780137424603_print.indb 516 23/08/22 8:21 PM

Index 517

latency, 52
policies, 53–55
premature depletion, 307
of zero, 50–52

feedback loops, 483–484
generative culture, 75–76
identity triangle, 429–431
indicators, 330, 359

bottleneck analysis, 482–483
“On-Call Rotations by Team”, 353–354
combining SRE with CD, 479–480
customer support ticket trend, 349–353
versus decisions, 359–362
dimensions, 330
Goodhart’s law, 359
incident time to recovery trend, 354–356
KPIs, 359
least available service endpoints, 356–357
premature SLO error budget exhaustion,

339–343
SLA adherence, 348–349
SLA error budget depletion, 345–348
“SLAs by Service”, 343–344
SLO adherence, 332–333
SLO error budget depletion, 333–339
“SLOs by Service”, 330–332
slowest service endpoints, 358
SRE versus CD, 481

infrastructure, 34, 127–129, 147–148, 164,
495–496
alerts and, 166–167
dashboards, 165–166
incident response and, 245
logging, 154–155
prioritization of features, 152–154, 167
SRE indicators, 330

ITIL, 3–4
for large enterprise, 148
learning opportunities, 486–487
maturity model, 81
metrics, 103–104, 105
minutes, 475–476
modeling and, 5–6
movement, 89–90
organizations, 437–438
principles, 7–11, 393–394
reasons for using, 2
scientific method and, 18
SLIs (service level indicators), 36, 43–44

availability, 43, 150–151
correctness, 44

dashboards, 165–166
durability, 44
fidelity, 44
freshness, 44
latency, 43, 151–152
reliability, 43
system categories and, 45–44
user personas, 138–140

SLOs (service level objectives), 17, 18, 45–47
availability, 17
breaches, 17, 142–144, 145–140, 146–147,

161–162
as a contract, 137–138
dashboards, 165–166
default, 163–164
defining, 158
“good”, 157–158
iteration, 159–162
mapping to incident priorities, 237–239
as a proxy measure of customer happiness, 138
revising, 162
user personas, 138–140

support for regulatory IT compliance, 27–17
transformation, 29, 31, 32, 35, 38, 65, 66, 68, 69,

71, 81, 89, 123. See also collective ownership;
transformation
coaching and, 39–40
detractors, 168–171
hypotheses, 84
implementing in all teams, 129–131
introductory presentations, 135–136
leadership and, 98
meeting, 112–114
portfolio management and, 114–116
processes and, 316–317
stakeholders’ exaggerated expectations, 83
team coaching and, 124–125
testing hypotheses, 467–469
visualizing, 132–133

ways of practicing, 440–441
wiki, 204, 238, 241, 245, 259

error budget policy and, 320
incident response documentation, 301–302
long-form articles, 477–478

SRE Weekly, 293
SREcon, 487
stability, 338
stakeholder

chart, 100–103
feedback, adjusting incident priorities based on,

242–244

9780137424603_print.indb 517 23/08/22 8:21 PM

Index

groups, 216
notification(s), 216, 222–224, 225, 243

characteristics, 222–223
defining, 224
feedback questions, 224
subscribing, 225–226
targeting, 217–218
triggering, 218–219

rings, 219–222
subgroups, 216–217

standardization, SLI, 147–149
“State of DevOps 2021” report, 104
status quo, assessing, 66, 67–68

bridging, 78
cooperation, 75–77
handling failures, 78
innovation, 78–79
leadership, 68

formal, 69
informal, 68

organizational culture, 74–75
people, 69–71
process, 79–80
risk sharing, 77
structure, 65–67
technology, 71–74

storage, error budget policy, 319–320
Strathern, M., 359
subscribing, to stakeholder notifications, 225–226
success stories, broadcasting, 172–173, 208–209,

226–227, 302

T
tables

customer support ticket trends, 352–353
error budget depletion, 335–339, 347–348
premature error budget exhaustion, 341–343

team(s), 126. See also “who builds it, who runs it?”
spectrum

bridging, 78
coaching, 39–40, 124–125, 126–129
cost accounting, 417–419
development

buy-in, 119–121
versus incident response, 268
introductory presentation, 136
service status broadcasting, 300
SLOs and, 137–138

funding, 414–417
head count allowance, 417

holacracy, 431
identity, 413–414
incentives, 412–413
incident response

versus development, 268
on-call roles, 257–258
responsibilities, 256
roles, 254–256
well-being, 262–268

KPIs, 419–421
operations

buy-in, 117–119
introductory presentation, 135

SRE transformation, 129–131
technical monitoring, versus SLO, 144–145
technology, 71–74

logging, 74
testing, 74

template
error budget policy, 308
postmortem, 289–290
runbook, 204

testing, 32, 74
hypotheses, 467–469

thaw tax, 323
thin-layer on-call rotation, 426
Thomas, Z., “The Smallest Possible SRE Team”, 475
throughput, 44
tool(s)

connections, 296–297
internal Stack Overflow, 205–206
Jeli, 274
landscapes, 298
mashups, 296, 297
mobile devices, 297
on-call management, 190–193, 225–226, 294–296
status page capability, 298–301

top-down buy-in, 90, 99
head of development, engaging, 103

assessing cost and effort, 106–107
improving relationships, 104–106
metrics, 103–104, 105

head of operations, engaging, 107–108
assessing cost and effort, 109–110
improving on-call setup, 108
improving the state of production reporting,

108
head of product management, engaging, 110–112
stakeholder chart, 100–103

top-up, 323
training

on-call work, 198, 200, 201–203
SRE coaches, 489

518

9780137424603_print.indb 518 23/08/22 8:21 PM

Index 519

transformation, 29, 31, 32, 35, 38, 65, 66, 68, 69, 71,
81, 89, 123. See also collective ownership

coaching and, 39–40
detractors, 168–171
hypotheses, 84, 467–469
implementing in all teams, 129–131
introductory presentations, 135–136
leadership and, 98
meeting, 112–114
metrics

executives’ perception, 471–472
reliability perception by users and partners,

472–473
services exhausting error budgets prematurely,

470–471
undetected outages, 469–470

portfolio management and, 114–116
processes and, 316–317
service catalog and, 492–493
stakeholders’ exaggerated expectations, 83
team coaching and, 124–125
visualizing, 132–133

U
UI/UX design, 110–111, 138, 140, 148
“Unknown Known”, 388
“Unknown Unknown”, 388
USENIX, 40
user

personas, 138–140
story mapping, 140–142

V
visualizations, 152–154, 241, 260. See also graphs;

tables
visualizing, SRE transformation, 132–133
Vogels, W., “A Conversation with Werner Vogels,”

ACM Queue, 394

W
Westrum, R., “A Typology of Organisational

Cultures”, 75
“who builds it, who runs it?” spectrum, 395

choosing a model, 432
conveying the value to executives, 439–440
decision dimensions, 434–435

model transformation options, 433–434
positioning the SRE organization, 437–438
reporting options, 435–437

communicating the chosen model, 456–457
cost optimization, 424

domain rotation, 425
thin-layer on-call rotation, 426

DevOps role in, 441–442
introducing the chosen model, 457
model comparison, 400–403
reliability incentives, 397–399
reporting structure change options, 458–461
role changes, 461–462
SRE role, 440, 441, 442–443

assigning, 447–448
cultural importance of, 455
defining, 443–444, 445
fulfillment, 448–450
naming, 445–447
progressions, 451–453
responsibilities and skills, 445
transitions, 453–455

team topologies, 426–427
holacracy, 431
reporting lines, 427
SRE identity triangle, 429–431

ways of practicing SRE, 440–441
workers’ council, 460
“you build it, ops run it” model, 398–399
“you build it, ops sometimes run it” model, 396
“you build it, SRE run it” model, 395, 421

SRE team in a dedicated SRE organization,
423–424

SRE team within a development organization,
422

SRE team within an operations organization,
423

“you build it, you and SRE run it” model, 395–396,
406
comparison of implementations, 411–412
price models for different SRE services,

418–419
SRE team cost accounting, 417–419
SRE team head count and budget, 414–417
SRE team in a dedicated SRE organization,

410–411
SRE team incentives, identity, and pride,

412–414
SRE team KPIs, 419–421
SRE team within the development

organization, 406–408

9780137424603_print.indb 519 23/08/22 8:21 PM

Index

SRE team within the operations organization,
409

“you build it, you run it but some specific use cases
are additionally monitored by ops” model, 396

“you build it, you run it” model, 403–406
wiki, 204, 238, 241, 245, 259

error budget policy and, 320
incident response documentation, 301–302
long-form articles, 477–478

workflow, 362–363
allocating SRE capacity to a team decision,

380–381
API consumption decision, 363–366
chaos engineering hypotheses selection, 383–388

features versus reliability prioritization, 368–372
setting an SLA, 377–380
setting an SLO, 372–377
tightening a dependency’s SLO decision, 366–368

working modes, 180–181
focus-based, 185
interruption-based, 181–184

X-Y-Z
“you build it” models. See “who builds it, who runs

it?” spectrum

520

9780137424603_print.indb 520 23/08/22 8:21 PM

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 2 The Challenge
	2.1 Misalignment
	2.2 Collective Ownership
	2.3 Ownership Using SRE
	2.3.1 Product Development
	2.3.2 Product Operations
	2.3.3 Product Management
	2.3.4 Benefits and Costs

	2.4 The Challenge Statement
	2.5 Coaching
	2.6 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

