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Praise for Establishing SRE Foundations

“Many enterprises today face the challenge of establishing modern operations for their SaaS 
offerings. This book provides a proven step-by-step guide for how this can be done from scratch using 
Google’s SRE methodology. From achieving organizational buy-in to laying down the basic SRE foun-
dations, establishing incident response and implementing a suitable organizational structure—the 
book contains a wealth of advice for development, operations, and leadership teams!” 

—Dr. Peter Schardt, Chief Technology Officer at Siemens Healthcare GmbH

“Establishing SRE Foundations is a great introductory guide for anyone new to understanding and 
implementing Site Reliability Engineering (SRE) in their organization. Vlad creates a solid platform for 
anyone wishing to understand the SRE approach to building reliability into software services. As well 
as practical advice on implementing techniques such as SLIs and SLOs, Vlad goes into detail on how to 
achieve buy-in for SRE adoption and how to modify your organizational setup, rooted in his own expe-
riences of working in a large organization. Those experiences are sorely lacking elsewhere in SRE liter-
ature, and when I’m asked in the future about SRE, I’ll be referring people to this excellent book.” 

—Steve Smith, author of Measuring Continuous Delivery (2020)

“I very much enjoyed reading this book, even in its early forms. Vlad treats the topic of SRE methodi-
cally and in great detail; if you have ever been wondering whether or not someone else has come across 
your particular issue in an SRE implementation, this book can answer that question and probably has 
an actionable solution as well. Destined to become a constantly referenced handbook by all those 
involved in SRE change projects.” 

—Niall Murphy, co-author of Site Reliability Engineering (2016) and 
The Site Reliability Handbook (2018)

“There are an overwhelming number of blogs, books, podcasts, and ad hoc opinions covering the nitty-
gritty of SRE toolchains and technology choices. That being said, SRE initiatives rarely fail for techno-
logical reasons—they fail for structural or organizational reasons. In Establishing SRE Foundations, 
Dr. Ukis has given us all a detailed, accessible, and actionable blueprint for the structures and practices 
of a successful SRE organization. It is an excellent book and one I would recommend to anyone looking 
to establish a scaled-out SRE practice in a complex environment.” 

—Ben Sigelman, co-founder of Lightstep

“Establishing SRE Foundations provides far and away the clearest, most comprehensive, and most 
actionable roadmap I have seen for driving, scaling, and sustaining SRE in an engineering organization. 
I cannot recommend it highly enough!” 

—Randy Shoup, eBay Chief Architect and former Google Engineering leader
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“Establishing SRE Foundations is a comprehensive guide for anyone looking to take their software 
operations to the next level. If you are a beginner, you will learn why SRE is a great methodology for 
improving operations, what the challenges of introducing SRE are, how to achieve organizational buy-
in for SRE, how to lay the foundation for SRE in your teams, and how to drive continuous improve-
ment. If you are an experienced practitioner, you will learn how to set up an error budget policy, enable 
error budget–based decision-making, and implement a suitable organizational structure. I think the 
content of the book is spot on and highly recommend it!” 

—Vitor dos Reis, Director of Software Engineering at Delivery Hero

“Vlad offers a detailed and comprehensive overview of the transformation to SRE. He covers assess-
ment, organizational structures, technical implementation, communication, and continuation. This 
book is a clear roadmap for any organization starting or progressing their SRE journey, replete with 
what to consider, options available, and real-world examples. If you are thinking about starting the SRE 
Journey, have found yourself stalled along the way, or are looking for more ideas to help you continue 
the journey successfully, then buy this book.” 

—Doc Norton, Change Catalyst, OnBelay Consulting
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Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace the 
many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic status, abil-
ity, age, sexual orientation, and religious or political beliefs. 

Education is a powerful force for equity and change in our world. It has the potential to deliver opportuni-
ties that improve lives and enable economic mobility. As we work with authors to create content for every 
product and service, we acknowledge our responsibility to demonstrate inclusivity and incorporate diverse 
scholarship so that everyone can achieve their potential through learning. As the world’s leading learning 
company, we have a duty to help drive change and live up to our purpose to help more people create a better 
life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich diversity of learners.

• Our educational content accurately reflects the histories and experiences of the learners we serve.

• Our educational content prompts deeper discussions with learners and motivates them to expand their 
own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any concerns or needs 
with this Pearson product so that we can investigate and address them. 

• Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.
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Foreword

I first met Vlad Ukis at a QCon conference in London a few years ago. He wanted to recruit me as a 
consultant to help advise his team at Siemens Healthcare. I worked with the teamplay digital health 
platform team that Vlad led in Siemens Healthcare over the course of the next year or so, and over that 
period Vlad and I became friends. 

Vlad has done an outstanding job helping the teamplay team, and more broadly Siemens Healthcare 
to make fantastic progress. The hard-won lessons that he and his team worked through are writ large in 
the pages of this book. 

The teamplay team are applying the advanced, engineering-led, modern version of agile develop-
ment exemplified by Continuous Delivery, DevOps and SRE, to significant advantage. They demon-
strate the applicability of these ideas beyond the bounds of the big web companies that most people 
tend to think of when we discuss these ideas.

I often see and hear organizations dismiss sometimes important ideas that were popularized by the 
big web companies with comments like, “Yes, but we aren’t <Google, Amazon, Netflix, insert your 
favorite here>.” This is a misreading of why these ideas work in those organizations. 

It is not always that the problems in the big web companies are unique. Rather, it is that their scale 
means that common problems often become limiting more quickly. This means that it becomes essen-
tial for them to solve these common problems. These big organizations don’t practice Continuous 
Delivery (CD) and SRE because they are fads. They practice them because they work better than any 
alternatives that we know and address problems at the heart of all software development.

As an early adopter and promoter of some of these ideas, I think that we have entered a new phase in 
the evolution of some of these ideas. We are now seeing them being adopted more widely, and to very 
significant advantage and effect, in all kinds of software development organizations. Automotive, aero-
space, telecoms, and medical sectors all have examples of their use. This book makes that clear with an 
example from a real-world complex software development. It stops people being able to say “SRE is all 
very well, but we are not Google.” It is also a lot more than only that, though.

I think there are very good reasons for the growth of ideas like CD and SRE. Both are true engineer-
ing approaches to solving problems. They both try to use measurement and apply scientific style rea-
soning to solving real-world, practical problems that we all face, whatever the scale of our software 
development or the nature of the problem. I describe CD as being driven by enabling an experimental 
approach to software development. SRE is profoundly that too.

I have written about my views on applying engineering thinking to the development of software. I 
think learning, and evolving, our discipline in this direction is essential to doing a good job. Why does 
this matter in the context of this book? I think it is important to remember that the “E” in “SRE” 

xxi
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Forewordxxii

means “Engineering”; it is not just the word “SRE”. My preferred definition for software engineer-
ing is this:

Software engineering is the application of an empirical, scientific approach to finding efficient, 
economic solutions to practical problems in software.

SRE thinking is profoundly grounded in the principles at the heart of this definition. It also 
adopts that other essential aspect of true engineering: We start off assuming that we will make 
mistakes. 

The world isn’t perfect. Our software won’t always perform as we hope. Every system fails 
sometimes. SRE puts this kind of thinking front and center, and forces us, as teams and organiza-
tions, to think about how we would like our systems to cope—How much down time is too much? 
and What shall we do when approaching those limits?

This book does two things and does both extremely well. 
At its heart, this book describes how the engineering approach that underpins SRE provides 

greater clarity and more effective collaboration between the three main strands of development: 
People focused primarily on the product, its development, and its operation. 

SRE provides the glue between these groups, focusing them on what really matters in a way that 
is collaborative but also leaves each group with enough clarity to inform independent decision-
making in their own sphere. 

The techniques and principles of SRE are not only clearly defined here, but also the rationale 
behind them is explained in a way that will stick. This is not some dry definition, this is practical, 
usable, understanding. 

The second thing that this book does is to describe how to start making changes to apply this 
kind of thinking, and the techniques of SRE, in a preexisting real-world, complex development 
organization. This is clearly based on much more than a theoretical understanding or interpreta-
tion—these are words from a practitioner. 

The teamplay team are not dealing with simple software. Their work cannot be easily dis-
missed, inaccurate as those dismissals usually are, as just being another simple website or online 
shop. The teamplay team build real software that matters. Their software helps to save lives of 
patients in hospitals. It integrates world-class medical devices in hospitals with information 
systems in the cloud that enable new insights and new ways to help people. They adopt these lead-
ing-edge techniques, not because they are fashionable but because they work better than anything 
else that we know how to do so far.

This book will certainly help you understand what ideas like Service Level Indicators (SLIs), 
Service Level Objectives (SLOs), and Error Budgets really mean; their relationship to one another; 
and how to apply them. It explores, in some detail, how to organize effective responses to incidents 
and how to perform good post-mortems after incidents to reinforce learning. It describes effective 
organizational structures. This is a wide-ranging book for a wide-ranging topic. For me, though, it 
goes even beyond that. 

I am a long-time practitioner of ideas that are incredibly well aligned and close to these ideas. I 
have read around this subject for several years and thought that I really understood what it was 
about. But my understanding is deeper now. I really get it and plan to add more use of SRE ideas to 
the way that I communicate and explain things in my own work. I thank Vlad for that.
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There are nuggets in here that inform my own thinking and help me to develop my understand-
ing of what it takes to apply real engineering thinking to software development. 

I already knew that in engineering it is all about trade-offs, but Vlad explains this very clearly 
with examples in an SRE context and describes what some of the common trade-offs are and how 
to think about them.

I laughed out loud when I read the now blindingly obvious statement that “If you set your SLO 
to 100%, that means that features are always second priority.” Of course, that is true. I knew this, 
but now I have better words and better models to express it with. 

I was delighted and honored to be asked to write a foreword for this book. I confess that I may 
have written a foreword for it anyway because Vlad is intelligent, thoughtful, and does really good 
work, but also because he is my friend. I am doubly delighted that I don’t need to do this as a favor 
to a friend, though. I can whole-heartedly recommend this book without any reservation. This is a 
very good book on an important topic that helps to move the game forward for our discipline! I 
hope that you enjoy it as much as I have. 

—Dave Farley
Independent Software Development Consultant
Founder and CEO of  Continuous Delivery Ltd.
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Preface

This book is based on a site reliability engineering (SRE) transformation journey from a real software 
delivery organization in the healthcare industry. The organization runs a cloud-based platform for 
medical applications and services. The platform is deployed in many data centers and the applications 
on the platform are used in hospitals around the world. Some of the applications are used when patients 
are in critical condition. It follows, then, that the platform’s reliability is of paramount importance. 

But what is reliability? How do you measure it? How do you create an environment where develop-
ment teams are motivated to invest in reliability? These were the questions I grappled with several years 
ago when the organization struggled to provide a reliable platform for applications and users alike. 
High-profile customer escalations were common. People were unaligned regarding backlog prioritiza-
tion of new features versus reliability work. The operations teams were struggling to operate the prod-
uct. The development teams happily implemented new features but paid very little attention to how the 
existing features were running in production. Project management plans were impacted greatly by 
deployment of large numbers of unexpected hotfixes. High-profile customers called the leadership 
team demanding that the service be restored or that missing features be delivered. Everyone had an 
opinion on what needed to be done to improve the situation, until the next outage took place, causing 
new opinions to emerge. 

I had attended the QCon London conference for several years. The conference helped me stay 
abreast of new trends in software development and operations. SRE was one of the topics at the confer-
ence. I was aware of its existence but had not started learning about it. At one of the QCons, an entire 
track was devoted to SRE. I spent a significant amount of time attending sessions in that track. At the 
end of the conference, it was clear to me that SRE was gaining momentum in the industry. 

While traveling back to work from the conference and looking over my notes, I decided that it was 
the right time for the organization to try SRE in an attempt to improve operations. There was no other 
structured approach to doing operations that I had come across. What we tried ourselves without SRE 
did not yield visible improvements. Many companies at the conference reported being successful, what-
ever that meant, in doing operations using SRE. Getting started seemed to be easy. It would only take a 
couple of basic indicators, like availability and latency, the definition of acceptable targets for each ser-
vice, and alerts on when the targets would be broken. 

Once I was back at work, I started thinking about how to drive SRE from within my organizational 
unit. Thinking deeper, I realized I would need engagement from the entire organization. The questions 
I had in mind were as follows: 

• How would I drum up support for SRE in the organization? 

• How would I engage the leadership team? 
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• How would I engage the operations teams? 

• How would I engage the development teams? There was a growing number of them, soon 
to be 20 or more. So, how would I drive SRE in a growing organization, in a way that would 
scale with the growing number of teams expected to emerge in the future? 

• What is SRE at a deeper level? 

• Why does it work?

• How could I learn more about SRE? 

• How could I learn enough about SRE to explain it to others quickly and easily? 

• Is there an alternative to SRE? 

• How could I engage with people who had already introduced SRE in their organizations? 

• What are the common pitfalls of introducing SRE in an organization and how would I avoid 
them? 

With these questions in mind, a period of soul searching followed. To cut a long story short, we 
managed to establish SRE as the central discipline in the organization’s development and opera-
tions departments. Doing so significantly and measurably improved our ability to operate the 
global platform. 

Moreover, the organization is in touch with many teams that build applications on top of the 
platform. How to operate those applications effectively is a common question from the teams. We 
now routinely teach SRE as a preferred method of doing operations. The teams introduce it and 
use the SRE infrastructure we provide. 

During the SRE transformation, we got a chance to visit Delivery Hero in Berlin. They were 
running operations at a world-class level. It was inspiring to learn from them back then. It was even 
more inspiring to later see our own teams getting close to being world class. 

Along the way, many lessons were learned. Introducing SRE at scale to a development organiza-
tion that had never done operations and to an operations organization that had never enabled 
others to do operations is a very significant undertaking. It requires deep, long-term engagement 
with the development teams providing coaching on their individual journeys toward growing 
maturity in operational capabilities. At the same time, it requires long-term engagement with the 
operations teams providing coaching on their journey toward becoming an SRE infrastructure 
framework provider to enable the development teams to do operations. The transformation is a 
unique blend of changes in the domains of technology, people, culture, and process on both sides: 
development and operations. 
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We started publishing our experience with SRE on InfoQ in a data-driven decision-making arti-
cle series1  and later in a corresponding eMag.2  The SRE article3  from the series got attention, and 
I was approached to write a book on SRE transformation. The rest is history. 

Publishing with Addison-Wesley is a privilege beyond imagination. While at university studying 
computer science, I read so many books from Addison-Wesley that I could identify them from a 
distance in the library. When I was offered the chance to publish a book with Addison-Wesley, I 
took it without much hesitation. 

It is also a privilege to have some knowledge that might be worth publishing in a book in an 
industry that is very fast paced and where experience is not always valuable. At the same time, 
because of the pace of the industry and the bias for the new over the existing, it is a bit frightening 
that the knowledge I have is certainly not complete and will become obsolete quickly. More to the 
point, I seem to be one of the few people who was never affiliated with Google but has dared to 
write a book about SRE. 

Further, lots of reading and gaining hands-on professional experience on my end led to a grow-
ing motivation to write. It is about giving back to the software engineering community at large 
where numerous authors of great books and talks shaped my thinking over the past decades. 

Moreover, I consider it an entitlement in a world full of digital distractions to be able to work 
on a project that requires the highest levels of concentration. Writing a book certainly falls into 
this category. Writing this book taught me to stay away from digital distractions and develop an 
ability to concentrate quickly for longer time spans. It feels like my ability to concentrate is back to 
where it was before the era of connected devices. 

My intention for the book is to support organizations that are starting an SRE adoption 
journey. The journey is a rewarding but difficult multiyear ride with lots of ups and downs. Adopt-
ing SRE means changing the culture, organization, responsibilities, practices, and technology 
around product operations. Product operations is what matters to users and customers. They only 
interact with the products in production. So, tending to production better is about directly improv-
ing the user and customer experience. How do you tend to production better to measurably 
improve the user and customer experience? How do you establish SRE as a means to getting there? 
How do you transform the organization toward SRE? This is what we will explore in the book. 

The book is divided into three main parts. In Part I, “Foundations,” you will establish a general 
understanding of SRE, its usefulness, and its place in the overall discipline of software operations. 
Additionally, I outline the challenge of SRE transformation in an organization new to the topic 
and explain how an organization’s status quo can be assessed in terms of operations and readiness 
for SRE transformation. 

1. Ukis, Vladyslav. 2021. “The InfoQ EMag: Effective Software Delivery with Data-Driven Decision Making.” 
InfoQ, March 16, 2021. https://www.infoq.com/minibooks/data-driven-decision-making.
2. Ukis, “The InfoQ EMag.”
3. Ukis, Vladyslav. 2020. “Data-Driven Decision Making – Product Operations with Site Reliability Engineer-
ing.” InfoQ, March 25, 2020. https://www.infoq.com/articles/data-driven-decision-product-operations.
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In Part II, “Running the Transformation,” the transformation activities get rolling and unfold. 
For an SRE transformation to succeed, you must achieve proper organizational buy-in from the 
start. Here, I explain how to achieve this buy-in, initiate the transformation activities in the teams, 
and implement alerting, on-call rotations, and an appropriate incident response process in the 
organization. Accomplishing these tasks marks the establishment of the basic SRE foundations in 
the organization. 

Part II continues with discussions about putting the advanced SRE foundations in place, includ-
ing error budget policy and error budget–based decision–making. Following this, a suitable organ-
izational structure for SRE is created. By the end of Part II, the organization has established the 
basic and advanced SRE foundations as well as an organizational structure for the long term. 

In Part III, “Measuring and Sustaining the Transformation,” I discuss how to measure the suc-
cess of an SRE transformation and sustain the SRE movement. The book concludes with a look at 
the road ahead for SRE transformation beyond the established foundations. 

Table P.1 shows the structural elements found throughout the book. They are embedded in the 
text and can be used as references on their own. 

Table P.1 Structural elements in the book

Element Description
Key Insight A significant insight generated by the discussion in the book that is 

important to remember to be used in casual SRE conversations. 

SRE Myth A myth about SRE prevalent in the industry debunked in the book. 

SRE Cheat Sheet A reference of SRE topics to be looked up for a quick reminder. 

From the Trenches A story or insight based on hard-won lessons from the SRE 
transformation and practice. It is a description of what really worked at 
an organization in a particular context. 

If you have any questions as you read through the book, feel free to reach out to me on 
LinkedIn.4 I look forward to hearing from you! 

Register your copy of Establishing SRE Foundations on the InformIT site for convenient 
access to updates and/or corrections as they become available. To start the registration pro-
cess, go to informit.com/register and log in or create an account. Enter the product ISBN 
(9780137424603) and click Submit. Look on the Registered Products tab for an Access 
Bonus Content link next to this product, and follow that link to access any available bonus 
materials. If you would like to be notified of exclusive offers on new editions and updates, 
please check the box to receive email from us. 

4. Ukis, Vladyslav. n.d. “Dr. Vladyslav Ukis LinkedIn Profile Page.” LinkedIn. https://www.linkedin.com/in/
dr-vladyslav-ukis-5172ba32.
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Chapter 2

The Challenge

In Section 1.2, Alignment Using SRE, I presented an example of how a product delivery organization 
works without alignment on operational concerns. The example showed that without alignment, oper-
ational concerns are addressed only once production issues occur. This is done using ad hoc urgent 
meetings involving product operations, product development, and product management. The example 
is representative and can be generalized to better understand the challenge of SRE transformation. 

A product delivery organization unaligned on operational concerns does not weave aspects of oper-
ations consistently and evenly throughout the product creation life cycle. Operational concerns are 
seen by most, as the name suggests, with production operations. Because product operations is the last 
part in the chain of product management, product development, and product operations, people think 
about operational concerns as the last thing on their to-do list. This is not a product-centric way of 
thinking. Users touch the product in production. Therefore, that touch point needs to be centric with all 
activities in the product creation life cycle. Indeed, product operations needs to be elevated and treated 
on par with user research, user story mapping, user experience design, architecture, and development. 

The consequence of not thinking about production throughout the product creation life cycle can 
be illustrated using an example from the grocery industry. Imagine that a grocery store chain has a wide 
variety of products displayed in beautifully designed stores throughout the country, but neglects the 
checkout counters at the point of sale. The entire supply chain is working flawlessly, but issues arise at 
the checkout where the customers are trying to purchase their groceries: for example, they might not be 
able to pay for their groceries quickly, and the checkout queues might be getting longer. The checkout 
staff might not be able to resolve the issues themselves. The point-of-sale devices are supported by the 
operations team, which receives an enormous number of support requests. It turns out that the issues 
are with the software on the devices; the support team cannot resolve the software issues themselves. 

While the crisis is unfolding, the developers are happily working on new features for the point-
of-sale devices. The product owners are happily specifying additional new features to be handed over 
to the developers after they finish the current work. The operations engineers are reaching out to the 
developers, who are not sure whether to prioritize the requests by the operations engineers or the fea-
tures in development. The developers reach out to the product owners for a prioritization decision. 
Finally, the operations engineers, developers, and product owners swarm over the problem and decide 
to fix the product issues with the highest priority. 
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2.1 Misalignment

Figure 2.1 illustrates the preceding example of how a product delivery organization misaligned 
on operational concerns works. 

The left-hand side of the figure shows how product development is working on the feature back-
log prioritized by product management. By and large, product development ignores what is going 
on in production. There is no ongoing visibility into how the system is performing in production. 
Nor have they set up any alerts to be notified about abnormal situations. Product development’s 
focus is entirely on new feature development. Product operations is not part of their backlog. 

Product operations is shown on the right-hand side of the figure. The product operations team 
is trying really hard to operate the product in production. However, they lack insider knowledge 
about the product in order to be able to operate it properly. This insider knowledge is with prod-
uct development. Furthermore, this knowledge is changing quite rapidly with new releases being 
deployed to production on a frequent basis. Lacking insider knowledge about the product in oper-
ation, the operations team sets up alerts on technical resources that are visible outside. These are 
parameters such as memory consumption, CPU utilization, queue fill levels, disk storage fill lev-
els, and network monitoring, among others. The parameters’ thresholds are alerted upon. Once 
the alerts arrive, the operations team tries to understand whether there is anything wrong with the 
system. Often, they have to consult the product development team to analyze potential issues. The 
issue backlog is growing, which frustrates the product operations team. They do not understand 
product development’s attitude toward solving issues in production. If production is where the 
customers use the product, how on earth can it be less important than anything else? 

This frustration reflects a core issue in product delivery organizations that do not excel at 
operations. In such organizations, being product and user centric means different things to dif-
ferent parties. From a product operations point of view, it means production issues are tackled 
with the highest priority. From a product development point of view, it means features requested 
by product owners are developed as quickly as possible. From a product management point 
of view, it means user stories requested by customers are turned into features in production as 
quickly as possible. This fundamental misalignment of what it means to be product and user 
centric when approaching product creation is one of the core reasons for difficulties in operating 
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Figure 2.1 Product delivery organization misaligned on operational concerns
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the product in production to the customer’s satisfaction. This is where SRE contributes greatly 
to aligning the parties in the product delivery organization. 

The product management discipline is depicted toward the bottom of Figure 2.1. Product 
management is very far away from production thinking. In their view, it is a job for product 
operations to resolve. The product management team are busy talking to executives, stakehold-
ers, customers, partners, and users, trying to figure out where the product fits in the market, 
identify missed user journeys, pinpoint ways to optimize workflows, and so on. Product man-
agement maintains a backlog of features to implement. Although the backlog is prioritized, as 
mentioned earlier, it doesn’t consider product operations requirements. The product manage-
ment team expects product development to develop and product operations to operate. This is 
what the names of the departments suggest, do they not? 

In essence, the three parties in the product delivery organization operate under three differ-
ent flags, as depicted in the figure. Product operations is proud to run under the Ops flag; they 
man production. Product development runs under the Dev flag; they are proud developers of 
new features. Product management runs under the Product flag; they are all about the product 
and shape it in a fundamental way: What is it? Who are the customers? What is the competition? 
What is the product’s competitive advantage? What are the most important user journeys? What 
are the features? What is on the backlog? 

It turns out that in a setup like this, no one really owns production operations. Who is it, 
indeed? Is it product operations? Not really, because they lack the knowledge necessary to truly 
own production operations. There is no proper continuous knowledge transfer from product 
development and product management toward product operations, and vice versa. 

Is it product development? Certainly not. Their focus is the feature backlog. The feature 
backlog is void of product operations. Shipping occasional necessary production hotfixes after 
escalations from product operations is not what owning production operations actually means. 

Is it product management? For sure it is not. Their focus is the definition of the product. 
Their expectation is that product development implements the product and product operations 
operates it in production. Despite the word owner in their title, the product owners do not own 
the product all the way to and including production. 

In this context, it is no wonder that it is precisely in production that the product ends up 
being neglected. Where there is no ownership, there is no commitment. It would require com-
mitment from all the parties in the product delivery organization to contribute to product opera-
tions in production. But how? Who would need to commit to what to establish a meaningful 
partial ownership of product operations? Would the ownership of product operations be a 
collective ownership, then? Let us explore these questions in detail. 

2.2 Collective Ownership

According to Wikipedia, “collective ownership is the ownership of means of production by all 
members of a group for the benefit of all its members.”1 The definition shows that everyone 
needs to benefit from the ownership. In the context of product operations, it means that if col-
lective ownership is to be established in a product delivery organization, the ownership needs to 

1. Wikipedia. 2021. “Collective ownership.” https://en.wikipedia.org/wiki/Collective_ownership.
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benefit all the parties involved. Specifically, if collective ownership of production operations is to 
be established among product operations, product development, and product management, 
each party needs to benefit from it. 

This is an interesting point to delve into. In the product operations team’s view, they own 
product operations. However, they encounter great difficulties engaging the product develop-
ment and product management teams in their operations activities. Therefore, product opera-
tions will welcome it if the product development and product management teams take partial 
ownership of production operations. 

In the product development team’s view, they are feature developers. Shipping new features to 
production quickly is at the core of their activities. What kind of benefit would they gain if they were 
to own production operations in some partial manner? What would it look like? Would the backlog 
contain operational user stories? This is not really feasible, as the operations work is not predictable 
compared to feature work that can be planned using a feature backlog. What would be beneficial 
is if the partial ownership of production operations led to insights that would lead to an improved 
development process augmented by a full operational context. In turn, it would be beneficial if the 
improved development process led to the reduction of production issues that interrupt feature work. 

In the product management team’s view, they define the product. The features should be 
developed by the product development team and operated by the product operations team. What 
would be the benefit for product management to own production operations in a partial way? 
To answer this question, customer escalations need to be looked at. Product management par-
ticularly dislike customer escalations. Customer escalations disrupt their work, require imme-
diate focus, take a lot of time to justify the product to various stakeholders despite customer 
dissatisfaction, and chip away the stakeholders’ trust. Diminishing stakeholder trust might lead 
to budget reductions for the product. This is a difficult situation every product owner works to 
avoid. To be sure, every customer escalation is about an issue in production. So, if the partial 
ownership of production operations would lead to a reduction of customer escalations, it would 
be a great and welcomed benefit for product management. 

Table 2.1 shows the benefits each party would see in a product delivery organization if a col-
lective ownership of product operations were established. 

Table 2.1 Benefits of  Collective Ownership of  Production Operations

Discipline Benefit 

Collective 
ownership 
of 
production 
operations

Product 
operations

Appropriate engagement of product development and product 
management in operations activities as needed. No more 
chasing product development and product management on every 
production issue to decide how to proceed. 

Product 
development

Appropriate insight in product operations to get to an improved 
feature development process augmented by the full operational 
context. Feature development performed with the full context 
of what is necessary to make the features technically successful 
in production leads to a reduction of customer escalations. This 
leads to more uninterrupted time for working on new features. 

Product 
management

Reduction of customer escalations and time investment to handle 
them. 

9780137424603_print.indb   24 23/08/22   8:20 PM



252.3 Ownership Using SRE

Having clarified the benefits a collective ownership of production operations may bring to 
product operations, product development, and product management, the next question to explore 
is how to get the benefits. An associated question would be the cost of getting the benefits for each 
party involved. In other words, in the context of an SRE transformation, how do you implement 
collective ownership of production operations using SRE with a positive cost–benefit ratio? 

2.3 Ownership Using SRE

What does it mean to have partial ownership of production operations using SRE? This ques-
tion needs to be answered specifically for each party in the product delivery organization. 

2.3.1 Product Development

In product development, the benefits of partially owning production operations are rooted in 
the insights of how the system behaves in production under real user, data, and infrastructure 
load. The most effective way to continuously learn about a system in production is to observe it 
in production. This is done using on-call rotations. Traditionally, product operations would go 
on call for services in production. This way, production insights do not go directly to product 
development. It follows that product development needs to get involved in on-call rotations for 
their services in production. Each development team owns some services. For exactly those ser-
vices, the respective developers would need to be involved in on-call rotations to gain insights 
from operating the services under real conditions. These insights lead to the following improve-
ments in product development and operations. 

• Developers with product implementation knowledge conduct product failure investigations. 

• The number of steps in the chain between a production issue occurring and a person with 
the best knowledge to fix it can be exactly one. The issue can go directly to the developer 
who implemented the service and can fix it the fastest, provided the alerting is targeted 
well and there is an agreement with the product owner to fix production issues immedi-
ately. The developer can take the learnings from the failure itself, the failure analysis, and 
the fix into the new-feature development process, supporting infrastructure and debug-
ging tools. This should lead to the product being more operable in the future with less 
time required to operate it. In turn, it should lead to more time for feature development. 

• Developers get to experience the quality of the product in the real world by testing it at 
production sites. Internal testing is rarely as intensive as the strain a system undergoes in 
production. Seeing real-world scenarios informs the development of automated test suites 
and contributes greatly to closing the gap between the internal testing and production sce-
narios. Thus, confidence is increased in deploying the product to production once the test 
results from the internal test suites are green. This should lead to fewer failures in produc-
tion due to scenarios that were untested internally. In turn, it should require less time to fix 
production issues, leading to more time for feature development. 
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• Developers gain the knowledge necessary to operate and troubleshoot the product. This 
informs the development process, among other things, leading to better tools for opera-
tions. In turn, it leads to less time spent on troubleshooting production issues, which frees 
up more time for feature development. 

• Developers use the knowledge from product operations in the development of new fea-
tures. For example, scalability and performance requirements can be learned, and this can 
often lead to architecture changes. Although making such changes requires a significant 
amount of work, it is necessary to implement resilience in accordance with the load pro-
files seen in production. Only then can the system’s operational burden (also known as 
toil) reduce, freeing time for more feature development. 

• Developers gain a better understanding of the kind of testing and tooling necessary to 
deliver a product that works well. Test scenarios, test levels, test runs, and test environ-
ments need to be designed in such a way that all the testing activities combined address 
important scenarios the system encounters in production. To be sure, production itself 
can be one of the test environments with tests running there 24/7. Gaining insight into 
product operations in production can greatly inform the entire test management process. 
This should lead to test suites and test runs being more focused on the scenarios taking 
place in production, which can reduce the amount of time spent on tests that are not effec-
tive in catching bugs encountered in production, as well as the rework and maintenance 
of such tests. Streamlining test management may lead to more time available for feature 
development. 

• Developers have the incentive to implement reliability features and tools for a great prod-
uct operations experience. This is because if the developers go on call, they actually want 
to spend as little time as possible dealing with production issues. In this context, they have 
full control of the situation. It is in their power to implement the product with production 
operations in mind. Doing this leads to spending as little time as possible on production 
issues and maximizing the time spent on feature development. This benefits customers 
and product management alike. Customers also do not want to deal with product failures 
in production. Rather, they want existing features to work in production and new fea-
tures added to the product quickly. The product management team, driven by customer 
requests, wants product development to work on new features. 

• Developers with experience in product operations are more highly valued in the indus-
try. Going on call directly contributes to learning the skills necessary to command higher 
wages in the marketplace. 

The idea of going on call for the developers gives rise to a plethora of questions, such as the 
following. 

• Do the developers always need to go on call for their services? No. 

• Could the developers go on call only during business hours? Yes. 

• Can the on-call responsibility be shared with product operations? Yes. 
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• What is the best setup for a given organization? It depends. 

• Would a development team setup need to be adapted to enable on call? Yes. 

• Can developers in a team perform the on-call duties on rotation? Yes. 

• Can focused feature development still be done despite going on call? Yes. 

• How do you achieve it? It depends. 

• Can developers stay developers if they go on call? Yes. They will become better developers. 
Their skills will be more highly valued in the job market. 

These and other related questions will be explored in the book in due course. It is not nec-
essary to answer them in-depth here. For now, I will only outline the scope of the challenge 
posed by the SRE transformation. What is important to understand at this point is that product 
development needs to go on call to one extent or another depending on the organizational setup 
chosen for the organization’s SRE implementation. 

Without developers going on call to some extent, the benefits of collective ownership of pro-
duction operations cannot be realized by product development. Feature development is difficult 
to improve from an operational standpoint without a live feedback loop between the production 
and development teams. An outage profile in production cannot be sustainably influenced if the 
feature development team is not well informed using the live feedback loop from production 
experienced by those who implement the features. In other words, without developers going on 
call to some extent, things in product development remain the same by and large as far as opera-
tional concerns go. 

Key Insight: Developers must go on call for some percentage of their time. This can 
range from very little time to nearly full time.

This key insight is illustrated on the left-hand side of Figure 2.2. 

Product
Development

Enable Dev to
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Product Management
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Data-driven
Prioritization
Decisions
About
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Figure 2.2 Collective ownership of  product operations using SRE
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2.3.2 Product Operations

The product operations discipline is depicted on the right-hand side of Figure 2.2. With develop-
ers going on call, the product operations team would need to provide support to enable the 
developers to do operations. 

What kind of support would the developers need? They may never have done operations 
before, in which case this will be unfamiliar turf for them. Are there trainings for this? Does the 
operations team provide some onboarding? What does “good” look like in product operations? 
Is there any documentation available? These are the questions that come to mind for developers 
when confronted with going on call for the first time. 

The entire body of knowledge about product operations is with the operations team. But 
what kind of knowledge is that? Mostly it is about taking the product as a black box, putting it 
into the production environment, activating monitoring of IT resources, and alerting on some 
threshold violations. Developers can learn and understand this. With their insider knowledge 
of the product, they will also be able to find many more scenarios that can be monitored and 
alerted upon. The developers’ knowledge about the architecture, implementation, configura-
tion, and deployment of the product is an invaluable resource for improving monitoring of the 
product in production. But how can they utilize that knowledge to improve product operations? 
How can they bridge the gap between development and operations as suggested by the term 
DevOps? 

Let us look more closely at what the developers know. They know how specific routines that
contribute to the fulfillment of user requests are implemented. They know the paths the user 
requests go all the way from the user interface to the deepest service in the service network, and 
from there to the infrastructure. If the product exposes APIs to customers, the developers also 
know the paths the API requests take from the API gateway through the network of services all 
the way down to the infrastructure. Moreover, the developers know which services they imple-
mented versus those implemented by the company and third parties. They know which third-
party services are difficult to integrate with, where the domain model of the third-party services 
is overly complicated and cluttered, where the third-party services are slow occasionally, and 
where there is simply sporadic behavior that can be explained. The developers also know all this 
for the internal services of the company, which are the services they depend upon. 

Their knowledge does not stop there. The developers and architects know the strengths and 
weaknesses of their architecture. They know where the architecture limitations lead to perfor-
mance and scalability issues. They know the circumstances where the performance and scalabil-
ity issues are likely to exhibit and probably impact the customer. They know the architectural 
debt in the system and which part of it is planned to be paid off in the near future. They know of 
any major architectural refactorings that must take place, which are not planned due to the size 
of the effort involved. 

The developers’ knowledge goes much further. They know about the infrastructure limita-
tions the product is running on. They know how each service can impact the others; for exam-
ple, they know what will happen if a particular service in the service network eats up the lion’s 
share of memory in a given area of the infrastructure. They might know some parameters of the 
container clusters the services are running in and anticipate issues that might occur based on the 
changing data and user load profiles. 

9780137424603_print.indb   28 23/08/22   8:20 PM



292.3 Ownership Using SRE

There is yet more to the developers’ knowledge. They may know the way the services are 
deployed: Which infrastructure parameters are set by the deployment infrastructure, and which 
ones are set in the service at the deployment time, startup time, or runtime. They know which ser-
vices are deployed independently, which ones use a shared deployment pipeline, and which ones 
are deployed manually for the time being. They may know the tests running on the deployment 
pipelines, the quality of those tests, and whether the test results can be trusted. They may know 
the test management process for a service, the test levels available, the test infrastructure, and any 
test gaps that exist. 

Additionally, the developers might be aware of security implications in the architecture and 
implementation. Which security vulnerabilities are taken care of? Which are mitigated? Which 
are known but are not currently taken care of ? Which bugs from penetration testing were not 
yet fixed? 

Finally, the developers know the most painful product areas from a development point of 
view. What area is the most difficult to integrate with? To test? To speed up? To debug? 

This amount of knowledge is staggering to the operations engineers. How do they take all 
this knowledge from the developers and apply it to product operations? Can it be done with 
some tool support? What kind of role would automation play here? Does it all sit between the 
ears of the software developers and cannot be easily repurposed to improve product operations? 
How can it support the developers effectively? 

In other words, the developers know the car engine from the inside. But how do you help 
them use that knowledge to improve how the car operates? 

To approach these questions, we need to turn our attention to how developers make known 
to the outside world what is going on with the system on the inside. This is done using logging. 
During development, developers decide what to log and under what circumstances. This way, 
once the product runs in production, log entries are generated that contain logging information. 
The log entries stored in, for example, log files or other storage systems can then be analyzed to 
understand what was going on in the system at runtime. This is the basic process of how devel-
opers make known to the outside world what is going on inside a system at runtime. The process 
is sophisticatedly supported by tools providing all sorts of runtime instrumentation out of the 
box. That is, the developers’ knowledge about the product can be encoded in logs that can be 
analyzed outside the system. 

The next question to ask is what should be logged to improve product operations? Let us 
imagine, these questions would be answered. 

Once that question is answered, we would consider how to log relevant information in a uni-
form way. What should be the log format? Which log format would lend itself to automated log 
processing? Would several log formats be required for different operational aspects; for example, 
one log format for calculating service availability and another for calculating service latency? 
What about asynchronous operations—how do you log those? Where do you store the logs? 
Should the logs be stored in regional data centers or centrally? How long should the logs be 
stored? Let us imagine, also these questions would be answered. 

With the answers to these questions, we would next consider how to detect abnormal situ-
ations. What should be considered broken availability? What should be considered broken 
latency? What should be considered insufficient throughput? Which aspects beyond availability, 
latency, and throughput are important to consider? Let us imagine, these questions would be 
answered too.
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Next, we would want to know how to alert in abnormal situations. Should alerts be generated 
as soon as the abnormal situation has been detected, or a bit later? Should the alerts be sampled? 
How do you avoid alert fatigue, in which those who receive the alerts become overwhelmed with 
too many alerts and stop reacting to them? How do you strike a good balance between alerting 
people so often that it causes alert fatigue and so rarely that it causes incidents to go unnoticed? 
What kind of information needs to be included in the alert? Even if these questions would also 
be answered, there would be more. 

The next questions would be about whom to alert—specifically, which developers receive the 
alert? How do you alert developers in such a way that they do not get distracted from their fea-
ture development work? How do you alert developers in such a way that they will actually react 
to the alerts, provided the alerting does not lead to  alert fatigue? Can any developer in general 
be alerted? What kind of knowledge would a developer need to have to be able to react to alerts 
within a reasonable time frame and with reasonable effort? 

The list of questions can go on. What it shows is that a comprehensive framework that would 
enable developers to conduct product operations is required. But what is a framework? Accord-
ing to Wikipedia, “a software framework is an abstraction in which software providing generic 
functionality can be selectively changed by additional user-written code, thus providing appli-
cation-specific software.”2 So, what is needed in the context of an operational framework is 
some generic functionality that can selectively be changed. In the context of SRE, a framework 
like that can be referred to as SRE infrastructure. It needs to provide generic functionality sup-
porting the use cases exemplarily outlined previously, implemented within an SRE context. The 
generic functionality needs to be selectively changeable to adapt the infrastructure to a specific 
use within the overall set of SRE activities. 

Key Insight: Operations engineers need to provide frameworks to enable developers to 
do service operations. In an SRE context, such a framework can be referred to as SRE 
infrastructure. 

At the time of this writing, some off-the-shelf tool support for the SRE infrastructure exists, 
but it is not comprehensive enough to eliminate the need for custom development of missing 
pieces. Therefore, in all likelihood, building an SRE infrastructure is going to require some cus-
tom software development combined with ready-to-use off-the-shelf tools. This means product 
operations would need to learn to do software development. 

The challenge for product operations is lack of experience providing frameworks that enable 
others to do operations work. The product operations has always conducted operations work 
in a hands-on manner using existing tools. What is required from product operations now is 
the enablement of product development to perform service operations. The enablement is done 
using the envisioned SRE infrastructure. The SRE infrastructure needs to be built using first-
class software development techniques. 

This is in line with SRE and the words of Benjamin Treynor Sloss: “SRE is what happens 
when you ask a software engineer to design an operations team.” Following this, it should be 
no surprise that enabling the product development team to do operations work requires the 

2. Wikipedia. 2022. “Software framework.” https://en.wikipedia.org/wiki/Software_framework.
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software development team to build a suitable SRE infrastructure. Building frameworks is com-
mon in software development. Using frameworks is familiar to software developers. Neither of 
these will be familiar turf for operations engineers from the product operations discipline. 

The following now unfolds as a challenge in SRE transformation. 

• Software developers need to learn how to do product operations work by going on call. 

• Operations engineers need to learn how to enable software developers to do operations 
work by developing the SRE infrastructure as a framework. 

This is illustrated in Figure 2.3. The two arrows resemble the moves from fencing. It might 
sound ironic, but this is exactly what needs to happen during SRE transformation. 

Neither of those arrows is easy to achieve. However, as evidenced by the growing number of 
software delivery organizations around the world, it is entirely possible, and will be explored at 
length in this book. 

Figure 2.3 shows what it truly means and takes to implement DevOps. It is about developers 
doing operations work and operations engineers doing development work.  It goes to the heart 
of both long-standing disciplines, product development and product operations, and shakes 
their fundamental responsibilities. Truly implementing DevOps takes far more than just achiev-
ing good collaboration between product development and product operations. 

The difficulties are especially great in traditional software delivery organizations. A develop-
ment organization that has never done operations and an operations organization that has never 
enabled others to do operations lack the very foundations on which SRE can be established. 
Developers do not understand why they should be doing operations. Operations engineers do 
not provide frameworks to enable developers to do operations. Managers do not promote the 
endeavor, let alone fund it. 

Despite these difficulties, it is well worth the effort to embark on an SRE transformation. The 
kind of DevOps implementation that can be achieved using SRE is where developers maximize their 
feature development time while having evidence that the product works well for customers in pro-
duction. Without SRE, developers maximize their feature development time, ignoring production. 

Further, in a DevOps implementation using SRE, operations engineers scale well by provid-
ing the SRE infrastructure to the developers, which enables them to do production operations. 
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Work
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Software
Operations

Work

Development
Department
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Figure 2.3 Key SRE transformation challenge
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Without SRE, the operations engineers are the bottlenecks. They do production operations 
purely by themselves, regardless of the product quality and insider knowledge available about 
the product. 

2.3.3 Product Management

Having clarified what collective ownership of production operations means for product devel-
opment and product operations, it is time for such a clarification in the context of product man-
agement. What does the product management team need to do to partially own product 
operations? 

Traditionally, product management is pretty far away from product operations. As discussed 
in Section 2.2, Collective Ownership, product management’s benefit in getting involved in pro-
duction operations is to reduce customer escalations. How on earth can product management 
reduce customer escalations if everything the customers escalate about is a technically broken 
product? Product owners are not technical experts. They neither implemented nor deployed the 
product. 

To approach this, let us explore what leads to customer escalations. Before a customer gets to 
the point of picking up the phone and calling customer support to complain, a series of events 
take place. The customer works with the product and notices something annoying. It might 
be a sluggish display of data; an inconvenient way of accomplishing a task in too many back-
and-forth steps; an action taken, like a button click, that does not result in the action actu-
ally performed; or a downright crash with accompanying data loss. Whatever the reason, it is 
directly linked to the customer having lost so much time or money that they call customer sup-
port to release their anger and get help. 

Now, could the technical experts—namely, the product development or product operations 
team—have noticed anything wrong with the product and fixed it earlier? Are product develop-
ment and product operations set up for such incident detection and resolution? Again, this is 
technical, so what does it have to do with product management? 

Let us dive deeper. Imagine that product development and product operations want to set up 
incident detection and resolution to detect and fix abnormal situations before customers esca-
late. How would they go about doing this? 

As you saw in Section 2.3.1, Product Development, the developers have an enormous amount 
of knowledge about all sorts of technical aspects regarding the product. The operations engi-
neers have vast experience with customer escalations. They remember a lot of past escalations 
by heart. They can cluster them. They know by means of anticipation the weak areas of the 
product that are going to be escalated about soon because product development has not started 
fixing them. Overall, this is a good mix of knowledge that is brought to the table by product 
development and product operations. The product development team brings knowledge of tech-
nical implementation while the product operations team brings knowledge of the actual issues 
from production. Taken together, this knowledge can be used to create an incident detection 
and resolution process rooted in technical implementation and past customer escalations. This 
is great. It would be a huge leap from ad hoc, unsystematic incident response. It would reduce 
customer escalations. 

The goal, however, is to aim higher. The goal is to create an incident response and resolution 
process that for every existing and new feature would detect abnormal situations early enough 
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for product development to fix and then to deploy the fixes before customers escalate. This 
would be a real benefit to product management. To emphasize, the process should work for 
every existing and new feature, not just for features known to product operations based on the 
experience of past customer escalations. Also, to emphasize, the developers would allocate their 
time in such a way that they fix detected issues and deploy the fixes to production before the 
customers get angry enough to escalate. This means the developers would not just work on the 
feature backlog prioritized by the product owners. The other prioritization driver would be 
the product reliability issues detected by the incident response process. 

With that, the contribution of product management to the collective ownership of product 
operations is starting to emerge. 

1. Product owners would need to contribute user journey knowledge to the incident 
detection process. Impaired and broken user journeys should be at the core of incident 
detection. Which user journeys are the most important ones to detect incidents with? 
What are the most important steps within a given user journey that must work for the user 
journey to still make sense? Conversely, which steps of a user journey could fail, and how 
badly, without rendering the entire user journey broken? Overall, the incident detection 
process is as good as the defined incidents it can detect. To define detectable incidents 
well, the user journey knowledge of the product owners, the implementation knowledge 
of the developers, and the operations knowledge of the operations engineers need to be 
combined. 

2. Product owners would need to understand and agree to the importance of setting up a 
backlog management procedure in which developers can flexibly allocate time to fix pro-
duction issues as they are detected by the incident detection process. Traditionally, the 
product owners prioritize the backlog of user stories, and they want developers to focus 
on the backlog. To reduce customer escalations, the product owners would want the 
developers to take immediate action on the issues reported by incident detection. 

This now makes sense to the product owners. They were part of and shaped the incident 
detection definition. They know what the incident detection is going to detect. It is going to 
detect real broken user journeys and not merely some technical deviations. Now it is easier for 
the product owners to accept the engineering time being spent on incident resolution. Why? 
Because spending that time directly contributes to the reduction of customer escalations. If 
developers do not fix the incidents in production within a reasonable time frame, the customers 
will still escalate despite the right incidents being detected early enough. 

That is, to reduce customer escalations, the following  criteria need to be fulfilled. 

• The incident detection detects broken and impaired user journeys as defined together by 
the operations engineers, developers, and product owners. 

• The developers prioritize fixing broken and impaired user journeys as they are detected 
without having to negotiate with product owners every time about the engineering time 
allocation. 

• The developers fix the broken and impaired user journeys in production within a specified 
time frame before customers get angry and frustrated enough to escalate. 
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This process is shown in Figure 2.4. 
The top left of Figure 2.4 shows the incident detection definition process. It takes as input the 

implementation knowledge by developers, the operations knowledge by operations engineers, 
and the user journey knowledge by product owners. The outcome of the incident detection defi-
nition process is an understanding of the incidents to detect in production. It is about detection 
of unhealthy patterns in

• The user journeys from an operational criticality perspective

• The critical service dependencies fulfilling the user journeys

• The critical infrastructure components and their scaling, fulfilling the user journeys 
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Figure 2.4 Process for reducing customer escalations
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With the definition of what to look for in production to detect incidents, incident detection 
can be switched on. The production environment in the middle of Figure 2.4 can now run under 
monitoring for fulfillment of real user journeys, instead of having monitoring for fulfillment of 
technical parameters. Monitoring for fulfillment of real user journeys is more targeted to reduce 
customer escalations, which is product management’s benefit in terms of getting involved in 
product operations. 

Once the incident detection process has detected some incidents, it will put them into a back-
log. This is shown on the right-hand side of Figure 2.4. The incident backlog exists side by side 
with the user story backlog. The user story backlog is prioritized by the product owner. The 
incident backlog also needs prioritization. This prioritization needs to be done as a just-in-time 
process while the incidents get detected. It also needs to be done very quickly. Lengthy negotia-
tions between the operations engineers, developers, and product owners cannot take place to 
efficiently prioritize the incident backlog. This means prior agreements among the three par-
ties need to be reached. A good place for timely incident prioritization agreements is the inci-
dent detection definition process itself. As part of the process, not only are the incidents defined 
but also their relative priority can be agreed. These agreements should enable all the people on 
call, and especially the developers, to make autonomous incident prioritization decisions for a 
majority of the incidents. 

Because the incidents from the incident backlog need to be worked on in a just-in-time man-
ner, the developers working on the incidents cannot work on the user stories from the user story 
backlog at the same time. Also, just-in-time switching between the incident backlog and the 
user story backlog leads to a great context switching overhead. Not only is this inefficient, it 
also places a significant mental burden on the developers. To counter this, there are strategies 
to setting up development teams in such a way that the ongoing on-call work from the incident 
backlog and the focused user story work from the user story backlog are well balanced. These 
strategies will be explored later. 

The bottom of Figure 2.4 shows the incident processing timeline. It begins with an incident, 
shown on the far left. At the time of the incident, the potential for customer escalation is very 
low. It grows to 100% over time, which is the point to avoid. The goal is to fix the incident before 
the customer gets angry and frustrated enough to call customer support with an escalation. 

After the incident started, it can be detected by incident detection. The next step on the time-
line is the point in time when the developer starts working on the fix. Once the issue has been 
fixed, it needs to be deployed to production. Once it is deployed, the fix needs to be monitored 
to ensure that the incident has truly been resolved. The goal is to perform the fix deployment 
and associated monitoring, confirming the incident resolution before the red line of customer 
escalation. 

The incidents that have started may go unnoticed, or be noticed too late or too early by inci-
dent detection. Conversely, the incidents may represent false positives. This happens when an 
incident is reported that does not lead to deterioration in the user experience. All these cases 
need to serve as input for adjusting the incident detection definition. This is an important part 
of the overall process. It enables the incident definition adjustments to be done regularly based 
on the real feedback loop from production. The feedback loop is data driven. This enables the 
three parties—product operations, product development, and product management—to decide 
on the incident definitions in an opinion-neutral, data-driven way. 
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In the context of SRE, such an incident detection and response process is set up using specific 
mechanisms and terms, such as service level indicators (SLIs), service level objectives (SLOs), and 
error budget policies. Soon, an exploration of these concepts will begin. Before this exploration, let 
us summarize the benefits and costs of the collective production operations ownership using SRE. 

2.3.4 Benefits and Costs

The analysis in the previous chapter showed what it would take for product operations, product 
development, and product management to truly work together as a team using SRE methodol-
ogy. It showed the deep integration among the three parties necessary to implement DevOps 
using SRE. It takes much more than only a good collaboration among the three parties. Table 2.2 
juxtaposes the benefits and costs. 

Now that the benefits and costs of the common ownership of production operations using 
SRE are clear, let us take a look at the overall picture of what SRE is trying to achieve (Figure 2.5). 

Table 2.2 Benefits and Costs of  Collective Ownership of  Production Operations Using SRE

Discipline Benefit Cost 

Collective 
ownership 
of 
production 
operations 
using SRE

Product 
operations

Appropriate engagement of product 
development and product management in 
operations activities as needed. No more 
chasing product development and product 
management on every production issue to 
decide how to proceed. 

Enabling others to 
do operations by 
implementing SRE 
infrastructure as a 
framework. 

Product 
development

Appropriate insight in production 
operations to get to an improved feature 
development process augmented by the full 
operational context. Feature development 
performed with the full context of 
what is necessary to make the features 
technically successful in production leads 
to a reduction in customer escalations. 
This leads to more uninterrupted time for 
working on new features. Additionally, 
there is a developer skill upgrade valued by 
the job market.  

Doing product 
operations by being 
on call during 
defined times. 

Product 
management

Reduction of customer escalations and 
time investment to handle them. Ad hoc 
involvement in numerous production issues 
is also reduced, and there is an added ability 
to make decisions in a data-driven manner 
about engineering capacity allocation to 
features versus operational concerns. 

Involvement in the 
incident detection 
definitions and data-
driven prioritization 
decision-making 
based on production 
data.
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SRE aligns the product delivery organization on operational concerns under its flag. Product 
development contributes to production operations by going on call to get firsthand experience 
with how the product meets customer demands in production. This experience is fed into the 
new feature and infrastructure development. The result is a maximization of feature develop-
ment time while ensuring that the product meets customer demands in production. 

Product operations makes a contribution by enabling developers to do production operations 
themselves. This is done through development of the SRE infrastructure as a framework to be 
used by the developers. 

Product management contributes by making data-driven prioritization decisions about the 
most important user journeys for which the incidents need to be detected. Further, the contri-
bution is in agreements with the autonomous incident backlog prioritization by the people on 
call. Additionally, the contribution is to be aligned with the data-driven prioritization decisions 
about reliability enablers to be included in the user story backlog. 

The SRE transformation does not come for free. An investment in time, money, and effort 
is required to align the product delivery organization on operational concerns using SRE. That 
is why the executives need to also get involved. The executives can contribute twofold to the 
SRE transformation. First, they need to support the topic. This can be done in all-hands meet-
ings, smaller conversations, and one-on-one discussions. Executive communication regarding 
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Figure 2.5 Collective ownership of  production operations using SRE
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SRE needs to clarify to everyone in the organization that the topic has executive support. This 
goes a long way toward creating alignment behind SRE at every level of the product delivery 
organization. 

Moreover, the SRE transformation requires some slight investments in tooling and infra-
structure. Although they are small scale, these investments need to be done in a timely manner 
so as not to impede the speed of transformation. In a large enterprise, it could take a significant 
amount of time to place orders due to supplier selection and data protection processes. Still, it 
is worth the effort. Voting with one’s wallet is a good way for executives to underpin the verbal 
message of endorsing the SRE transformation. 

2.4 The Challenge Statement

With an in-depth understanding of what to strive for during SRE transformation, the challenge 
statement can be concisely presented. Following is what the challenge is about. 

SRE is an operations methodology that aligns the product delivery organization on opera-
tional concerns. The key challenge in traditional software delivery organizations is the misalign-
ment on production operations. In such organizations, the following is true. 

• Developers do not know why they should be doing operations. 

• Operations engineers do not know why developers are not interested in operations. 

• Product managers think operations work is done by operations engineers. 

• Management does not promote and fund the topic. 

In such a software delivery organization, there are no solid foundations on top of which SRE 
can be built as a practice. The foundations need to be put in place first. This will be a major part 
of the SRE transformation. The transformation will need to shift stakeholders’ mindsets in the 
following ways. 

• Developers should want to be involved in on-call processes to gain enough current opera-
tional knowledge to develop features that work well in production. 

• Operations engineers should want to enable developers to perform service operations by 
providing the SRE infrastructure as a framework in order to distribute the operational 
work throughout the product delivery organization in an optimal way.

• Product managers should want to be involved in operations to help reduce customer esca-
lations by making decisions based on production data. The decisions are about the pri-
oritization of user journeys for which the incidents need to be detected, agreements on 
incident backlog handling, and prioritization of reliability features. 

• Executives should want to enable effective and efficient product operations by promoting 
SRE and providing appropriate funding in a timely fashion. 
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Each party in the software delivery organization benefits from SRE. The benefits make it 
worth undergoing the SRE transformation. The benefits can be used as a beacon to aspire for, 
unleashing fun on the SRE transformation journey. This book will take you on the journey of 
transforming a software delivery organization bit by bit into one that does operations the SRE 
way and enjoys doing so. To get started, in the next section let us look at the general way the SRE 
transformation can be executed. 

2.5 Coaching

A product delivery organization consists of many people who are organized in teams. The SRE 
transformation process has a clear goal to establish SRE as the central methodology for produc-
tion operations in the teams. However, running the SRE transformation is not like running a 
project with predefined milestones to be tracked. Rather, the SRE transformation process is a 
network of induced changes and feedback on the changes cast in parallel at different teams and 
individuals. Many teams will be transforming at the same time, but the changes and feedback 
loops will be unique per team and individual. This is illustrated in Figure 2.6. 

Now, how do you set up the SRE transformation process in the way shown in Figure 2.6? 
One way to run the SRE transformation is by means of coaching. According to Wikipedia, 

“coaching is a form of development in which an experienced person, called a coach, supports a 
learner or client in achieving a specific personal or professional goal by providing training and 

Feedback 3

Change 3

Change 2

Change 1

Person 1

Team 1

Team 2

Feedback 1

Feedback 2

SRE Transformation
Process

Figure 2.6 SRE transformation process
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guidance.”3 It follows that coaching works with people and teams on an individual basis. This is 
the kind of approach needed for being empathetic and structured at the same time when running 
the transformation. 

What makes coaching particularly interesting in the context of the SRE transformation is 
that it already exists as a discipline at both the organizational and team levels. According to the 
Institute of Coaching, “Organizational coaching aims at fostering positive, systemic transfor-
mation within organizations.”4 Within the broad theme of coaching, organizational coaching is 
a well-established discipline. 

Team coaching, on the other hand, is a more recent and less structured discipline. It gained 
significance in the past decade. According to TPC Leadership, “team coaching is the art of facil-
itating and challenging a real team to maximize its performance and enjoyment in service of 
meaningful organizational goals.”5

That is, coaching as a discipline with distinct subdomains of organizational coaching and 
team coaching is going to be a suitable approach for running the SRE transformation. Both 
types of coaching would be applied simultaneously and would work in tandem. However, when 
choosing organizational and team coaching as a methodology to run the SRE transformation, 
the question is, who would do the coaching? Who can act as a coach if the organization is new to 
SRE? Would external coaches be required? Would it be possible to develop internal coaches? If 
so, who would develop the internal coaches? Different approaches are possible here. 

External coaches can be valuable to bring a fresh experience-based SRE perspective to an 
organization and quickly establish an understanding of SRE basics across the board. However, 
SRE coaches with experience doing successful SRE transformations are really difficult to find in 
the industry. This is because the first original SRE book by Google, Site Reliability Engineering: 
How Google Runs Production Systems, was only published in 2016.6 Given that SRE transfor-
mations are taking several years to achieve in larger organizations, the pool of available coaches 
is going to be rather small. 

Another aspect is that precisely because an SRE transformation takes several years to run in 
a larger organization, employing external coaches for the transformation time frame is hardly a 
financially viable option. It follows that coaches for SRE transformation need to be found and 
grown internally. 

Which options would the coaches have to learn about SRE and bring themselves to a 
level that is necessary to coach others? Both the aforementioned Google book Site Reliabil-
ity Engineering and Google’s The Site Reliability Workbook: Practical Ways to Implement 
SRE7 are a great and necessary starting point. These books will show potential coaches what 
needs to be done to achieve SRE with the sophistication and scale of  Google. Additional 
books by former Googlers—Implementing Service Level Objectives: A Practical Guide to 

3. Wikipedia. 2021. “Coaching.” https://en.wikipedia.org/wiki/Coaching.
4. David, Susan. 2015. “Introduction to Organizational Coaching.” Institute of Coaching, January 13, 
2015. https://instituteofcoaching.org/resources/introduction-organizational-coaching.
5. Cardillo, Andrea. 2019. “How Is Team Coaching Different from Group Coaching?” TPC Leadership, 
July 10, 2019. https://tpcleadership.com/how-is-team-coaching-different-from-group-coaching.
6. Murphy, Niall Richard, Betsy Beyer, Chris Jones, and Jennifer Petoff. 2016. Site Reliability Engineering: 
How Google Runs Production Systems. Sebastopol, CA: O’Reilly Media.
7. Beyer, Betsy, Niall Richard Murphy, David K. Rensin, Stephen Thorne, and Kent Kawahara. 2018. The 
Site Reliability Workbook: Practical Ways to Implement SRE. Sebastopol, CA: O’Reilly Media. 
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412.6 Summary 

SLIs, SLOs, and Error Budgets8 and Real-World SRE: The Survival Guide for Responding 
to a System Outage and Maximizing Uptime9—provide additional in-depth experience per-
spectives on SRE. 

It is our aspiration that this book in particular will show potential coaches how SRE can be 
put in place in an organization that has never done operations the SRE way before. Further, the 
coaches can network with others at relevant conferences and industry events. Two conferences 
can be of special interest: SRECon10 by USENIX and the DevOps Enterprise Summit11 by IT 
Revolution. These conferences can be a great place to develop relationships with others practic-
ing SRE or running SRE transformations. These relationships might lead to opportunities to 
visit other companies that are further along in the SRE journey. Seeing is believing, and seeing 
another company running the SRE process in a sophisticated manner can significantly boost 
one’s own transformation. 12

Finally, the coaches can learn while running the SRE transformation in their own organiza-
tion. In a larger organization, teams will inevitably adopt SRE at different speeds. Taking the 
learnings from the teams that lead the SRE transformation and transporting them to the teams 
catching up is a very valuable part of coaching. It enables the coach to gain experience and the 
teams to learn from each other. 

From the Trenches: Long-lasting team-based coaching12 that includes all team 
members—product owners, architects, developers, operations engineers and, at times, 
designers—is the most effective way to run the SRE transformation at the team level.

2.6 Summary 

Introducing SRE requires changes in product operations, product development, and product 
management. The biggest change in product operations is the development of the SRE infra-
structure as a framework that enables developers to go on call and operate their services in pro-
duction. The biggest change in product development is to actually get involved in on call and 
operate the services developed in a real production environment. The delineation of how much 
developers are on call compared to how much operations are on call will vary by organization. 

The challenge of the SRE transformation is that in a traditional software delivery organiza-
tion, the product operations team has never provided frameworks enabling others to do opera-
tions work. Likewise, product development has never done operations work. Thus, there is 

8. Hidalgo, Alex. 2020. Implementing Service Level Objectives: A Practical Guide to SLIs, SLOs & Error 
Budgets. Sebastopol, CA: O’Reilly Media. 
9. Welch, Nat. 2018.  Real-World SRE: The Survival Guide for Responding to a System Outage and 
Maximizing Uptime. Birmingham, UK: Packt Publishing Ltd. 
10. “SRECon.” 2017. USENIX. August 25, 2017. https://www.usenix.org/srecon. 
11. IT Revolution Events. n.d. “DevOps Enterprise Summit 2022.” Accessed January 12, 2022. https://
events.itrevolution.com. 
12. Guendisch, Philipp, and Vladyslav Ukis. 2022. “Employing Agile Coaching to Establish SRE in an 
Organization.” InfoQ, August 23, 2022. https://www.infoq.com/articles/establish-SRE-coaching.
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a lack of foundation on which SRE can be established. Developers do not understand why 
they should be doing operations. Operations engineers do not provide frameworks to enable 
developers to do operations. Managers do not promote the topic, let alone fund it. To drive 
the SRE transformation throughout the organization, SRE coaches need to be developed and 
designated. 

In the next chapters, the journey of transforming a software delivery organization toward 
SRE will unfold. To get started, we will learn the basic SRE concepts in the next chapter. 
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