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“Coupling is one of those words that is used a lot, but little understood. Vlad propels us from simplistic slogans 
like ‘always decouple components’ to a nuanced discussion of coupling in the context of complexity and software 
evolution. If you build modern software, read this book!” 

—Gregor Hohpe, author of  The Software Architect Elevator

“Get ready to unravel the multi-dimensional nature of coupling and the forces at work behind the scenes. The  
reference for those looking for a means to both assess and understand the real impact of design decisions.” 

—Chris Bradford, Director of  Digital Services, Cambridge Consultants

“Coupling is a tale as old as software. It’s a difficult concept to grasp and explain, but Vlad effortlessly lays out the 
many facets of coupling in this book, presenting a tangible model to measure and balance coupling in modern 
distributed systems. This is a must-read for every software professional!” 

—Laila Bougria, solutions architect & engineer

“This book is essential for every software architect and developer, offering an unparalleled, thorough, and directly 
applicable exploration of the concept of coupling. Vlad’s work is a crucial resource that will be heavily quoted 
and referenced in future discussions and publications.” 

—Michael Plöd, fellow @ INNOQ

“Every software engineer is sensitive to coupling, the measure of interconnection between parts. Still, many times the 
understanding of such a fundamental property remains unarticulated. In this book, Vlad introduces a much-needed 
intellectual tool to reason about coupling in a systematic way, offering a novel perspective on this essential topic.” 

—Ilio Catallo, senior software engineer

“Coupling is among the most slippery topics in software development. However, with this book, Vlad simplifies 
for us how coupling, from a great villain, can become a design tool when well understood. This is an indispensable 
guide for anyone dealing with software design—especially complex ones.” 

—William Santos, software architect

“Balancing Coupling in Software Design is a must-read for any software architect. Vlad Khononov masterfully 
demystifies coupling, offering practical insights and strategies to balance it effectively. This book is invaluable for 
creating modular, scalable, and maintainable software systems. Highly recommended!” 

—Vadim Solovey, CEO at DoiT International

“Balancing Coupling in Software Design by Vlad Khononov is an essential read for architects aiming for quality, 
evolvable systems. Khononov expertly classifies depen dencies and reveals how varying designs impact effort based 
on component distance and change frequency, introducing a unified metric for coupling. With insightful case stud-
ies, he guides readers toward achieving optimal modularity and long-term system adaptability by illustrating and 
rectifying imbalances.” 

—Asher Sterkin, independent software technology expert

“Khononov’s groundbreaking work unifies paramount forces of software design into a coherent model for evalu-
ating coupling of software systems. His insights provide an invaluable framework for architects to design modular, 
evolving systems that span legacy and modern architectures.” 

—Felipe Henrique Gross Windmoller, staff  software engineer, Banco do Brasil

“This book systematizes over five decades of software design knowledge, offering a comprehensive guide on cou-
pling, its dimensions, and how to manage it effectively. If software design is a constant battle with complexity, then 
this book is about mastering the art of winning.” 

—Ivan Zakervsky, IT architect
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xv

Series Editor Foreword

I recall meeting Vladik at a conference or two nearly a decade ago, by the publication 
date of this, his new book. I recall Vladik, or Vlad if you like, being a quiet and 
thoughtful person, and with a good sense of humor, which scored high with me. 
He’s not overly quiet though, as he’s proven by his insightful conference talks. Since 
that time, we met up now and then, with our last in-person opportunity in New York 
City at a software architecture conference just prior to the COVID-19 lockdown. 
Although I find that reference point distasteful, it was thereafter a pivotal time when 
my signature series got life. Shortly thereafter, I asked Vladik if he would write a 
book for it. To my delight, he agreed. During the following years, Vladik encoun-
tered several challenges, some of a personal family nature, and others dealing with 
life and work during the crazy pandemic period. Yet, he endured and persisted in his 
work. I reviewed Vladik’s book a few different times and watched it transition from 
rough draft to finished product. I have to say that experiencing the blend of past 
practices framed in a fresh and powerful way was fascinating. I’ll explain more about 
that after I introduce the purpose of this series.

My Signature Series is designed and curated to guide readers toward advances in 
software development maturity and greater success with business-centric practices. 
The series emphasizes organic refinement with a variety of approaches—reactive, 
object, as well as functional architecture and programming; domain modeling; right-
sized services; patterns; and APIs—and covers best uses of the associated underlying 
technologies.

From here I am focusing now on only two words: organic refinement.
The first word, organic, stood out to me recently when a friend and colleague 

used it to describe software architecture. I have heard and used the word organic in 
connection with software development, but I didn’t think about that word as care-
fully as I did then when I personally consumed the two used together: organic 
architecture.

Think about the word organic, and even the word organism. For the most part 
these are used when referring to living things, but are also used to describe inanimate 
things that feature some characteristics that resemble life forms. Organic originates 
in Greek. Its etymology is with reference to a functioning organ of the body. If you 
read the etymology of organ, it has a broader use, and in fact organic followed suit: 
body organs; to implement; describes a tool for making or doing; a musical 
instrument.
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We can readily think of numerous organic objects—living organisms—from the 
very large to the microscopic single-celled life forms. With the second use of organ-
ism, though, examples may not as readily pop into our mind. One example is an 
organization, which includes the prefix of both organic and organism. In this use of 
organism, I’m describing something that is structured with bidirectional dependen-
cies. An organization is an organism because it has organized parts. This kind of 
organism cannot survive without the parts, and the parts cannot survive without the 
organism.

Taking that perspective, we can continue applying this thinking to nonliving 
things because they exhibit characteristics of living organisms. Consider the atom. 
Every single atom is a system unto itself, and all living things are composed of atoms. 
Yet, atoms are inorganic and do not reproduce. Even so, it’s not difficult to think of 
atoms as living things in the sense that they are endlessly moving, functioning. Atoms 
even bond with other atoms. When this occurs, each atom is not only a single system 
unto itself but also becomes a subsystem along with other atoms as subsystems, with 
their combined behaviors yielding a greater whole system.

So then, all kinds of concepts regarding software are quite organic in that nonliv-
ing things are still “characterized” by aspects of living organisms. When we discuss 
software model concepts using concrete scenarios, or draw an architecture diagram, 
or write a unit test and its corresponding domain model unit, software starts to come 
alive. It isn’t static, because we continue to discuss how to make it better, subjecting 
it to refinement, where one scenario leads to another, and that has an impact on the 
architecture and the domain model. As we continue to iterate, the increasing value in 
refinements leads to incremental growth of the organism. As time progresses so does 
the software. We wrangle with and tackle complexity through useful abstractions, 
and the software grows and changes shapes, all with the explicit purpose of making 
work better for real living organisms at global scales.

Sadly, software organics tend to grow poorly more often than they grow well. 
Even if they start out life in good health, they tend to get diseases, become deformed, 
grow unnatural appendages, atrophy, and deteriorate. Worse still is that these symp-
toms are caused by efforts to refine the software that go wrong instead of making 
things better. The worst part is that with every failed refinement, everything that 
goes wrong with these complexly ill bodies doesn’t cause their death. Oh, if they 
could just die! Instead, we have to kill them and killing them requires nerves, skills, 
and the intestinal fortitude of a dragon slayer. No, not one, but dozens of vigorous 
dragon slayers. Actually, make that dozens of dragon slayers who have really big 
brains.

That’s where this series comes into play. I am curating a series designed to help 
you mature and reach greater success with a variety of approaches—reactive, object, 
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and functional architecture and programming; domain modeling; right-sized  
services; patterns; and APIs. And along with that, the series covers best uses of the 
associated underlying technologies. It’s not accomplished at one fell swoop. It 
requires organic refinement with purpose and skill. I and the other authors are here 
to help. To that end, we’ve delivered our very best to achieve our goal.

Is balancing software coupling organic? Absolutely! Start with a sinkhole of a 
repository where all goopy code has gone to collect as sludge. Triple yuk! How can 
you possibly grow any new, bright life from the quagmire? Simple. Start scooping 
and separating, add some good soil and nutrients, build some modular containers 
around the mounds of enriched earth, and start planting seeds in each—some com-
mon, some special, and even a few exotics. Before you know it, poof, and there’s 
fresh life!

Well, sort of, but not exactly. You’ll have to learn about “software gardening.” 
That includes soaking up the basic almanac of coupling: what coupling is exactly; 
the bad and the good of it; how coupling relates to system design and levels of com-
plexity; and how modularity helps, of course. After you are on solid ground, there’s 
a whole set of dimensions to learn that will help you evaluate the environment for 
sustained growth: strength, space, and time. There’s the introduction to module cou-
pling and connascence, which leads to Vladik’s own new model: integration strength. 
This might flow like flood irrigation but keep gulping. What about distance and how 
it plays into different crops being planted and nourished, and how can cultivating 
and pruning one crop lead to positive and [or?] negative impacts on another? It’s 
sprouting.

“Wait a minute, let me catch up,” you say? That’s a fitting response to how time 
plays into planting rotations and potential volatility due to various elements. All this 
requires balance to avoid the enemy of all software; that is, growth over time. Exam-
ples of how other gardens have grown will help your plantings to sustain life despite 
those harsh elements. And it works because it’s all backed by decades of research and 
development by renown software practitioners—umm, horticulturalists.

You are now ready to roll up your sleeves, open the spigot, and absorb. Get to 
growing excellent software!

—Vaughn Vernon
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xix

Foreword

Successful software systems grow and evolve—to add new features and capabilities, 
and to support new technologies and platforms. But is it inevitable that over time 
they become unmaintainable “Big Balls of Mud?” 

Well, given that complex software systems are structured out of modular interre-
lated units of functionality, each with discrete responsibilities, there will always be 
coupling. But the ways modules communicate and how they share information have 
implications on our ability to change them.

In this book, Vlad, after informing us of the original design ideas of module cou-
pling and connascence, updates us with fresh ways to think about the various dimen-
sions of coupling: integration strength, volatility, and distance. He then leads us on a 
journey to deeply understanding coupling and offers a comprehensive model for 
evaluating coupling options when designing or refactoring parts of a system. Most 
authors explain coupling in a paragraph or a page. Vlad gives us an entire book.

There are various ways we can reduce coupling, and Vlad explains them. Should 
we always look at coupling as something bad? Of course not. But we shouldn’t be 
complacent either. The last section of Vlad’s book introduces the notion of balanced 
coupling, and a process for thinking through design implications as you “rebalance” 
the coupling in your system.

Thanks, Vlad, for persisting in writing this comprehensive treatment of coupling, 
balancing, and then rebalancing (design always involves trade-offs). You provide us 
with a wealth of new and insightful ways to think about structuring and restructur-
ing complex systems to keep them working and evolvable. This book gives me hope 
that in the hands of thoughtful designers, software system entropy isn’t inevitable.

—Rebecca J. Wirfs-Brock
May 2, 2024
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Foreword

Design happens in the cracks.
At first as a programmer you don’t even know what the things are. You learn 

about functions. You learn about types. You learn about classes and modules and 
packages and services. You still haven’t learned to design. You can make all the 
things, but you can’t design. Because design happens in the cracks.

Design prepares change. The things, those are the change. Design makes places 
for the new things, the functions and types and classes and modules and packages 
and services.

What Vlad has done is catalog the cracks, the seams, the dark squishy in between 
of software. If you want to not just make changes, but make changes easy, this is the 
vocabulary you’ll need. The glossary. The dictionary of cracks.

Vlad understands well that experts learn by doing and reflecting. The review 
questions with each chapter are stepping stones to learning for those willing to put in 
the work required to learn.

Since Vlad did me the honor of inviting me to invite you to read this book, I’ll take 
a moment to complain about vocabulary. Vlad uses “integration strength” to mean 
what I mean by “coupling”, the relationship between elements where changing one 
in a particular way requires changing the other. He uses “coupling” to mean a more 
general connection between elements, at runtime or compile time. It’s not a huge 
deal but it’s important for me to say.

Having said that, I heartily recommend reading Balancing Coupling in Software 
Design. Strike that. I heartily recommend learning from Balancing Coupling in Soft-
ware Design. Read about a kind of crack, a connection, go find it in your own code, 
find it in other people’s code, try out variations on it, try out timings for changing it, 
watch how it affects the behavioral changes you want to make. Then read about 
another kind of crack. Compare and contrast. Dig in.

Your software can get easier to change over time, but it’s hard work to make that 
happen. With the concepts and skills you’ll gain from this book, though, you will be 
well on your way.

—Kent Beck
San Francisco, California

2024
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Preface

Books on software design typically dedicate a few pages to coupling. On rare occa-
sions, you’ll find a whole chapter on the subject. Yet, while fads come and go, cou-
pling has been, is, and, I bet, always will be relevant. Don’t believe me? Just take a 
moment and listen to the industry chatter. You will hear the “coupling is bad” man-
tra everywhere. But what exactly is this “coupling” thing? Is it always that bad, or 
does it become really bad after a certain point? Can you even measure it? If so, how? 
These are the questions I’ve sought answers to since I started working as a software 
engineer. All I encountered was more and more of “Avoid coupling!” or “This archi-
tectural pattern will save you from coupling!” or, even worse, “The only way to avoid 
coupling is to use our product!” Sigh.

Around 2014, yet another “decoupling salvation” emerged: microservices. I even 
remember a slide from some conference that read “Microservices is the architecture 
for decoupling.” It was “microservices this” and “microservices that,” but back then 
nobody could really define what a microservice was. That didn’t stop me (or anyone 
else) from trying. Pumped by the microservices/decoupling hype, we aimed to 
“decouple” everything in the project I was working on. For that, we designed micros-
ervices around business entities, with each API resembling mostly CRUD1 opera-
tions. Each entity can be evolved independently, we said. The result? A fiasco. No, a 
cosmic-scale fiasco.

That failed project, however, turned out to be a blessing in disguise. I had to figure 
out why what promised decoupling resulted in a coupling Godzilla. I had to get it 
right. So, I set out to read all the papers and books that could explain how to do 
microservices better. Eventually, I found an explanation. All our design mistakes 
were described in Chapter 6 of the book Structured Design (Yourdon and Constan-
tine 1975). The title of the chapter? “Coupling.”

That’s how my journey into coupling in software design started. I wanted to learn 
everything that we knew but had forgotten. A few years later, all the puzzle pieces 
started falling into place. Everything I learned began to form a coherent picture—a 
three-dimensional model of how coupling affects software projects. Gradually, I 
started applying this model in my day-to-day work. It worked! What’s more, it com-
pletely changed the way I think about software design.

1. Create, Read, Update, and Delete.
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At some point, I couldn’t keep it inside anymore, and I wanted to share my find-
ings. This led to a talk I gave at the Domain-Driven Design Europe 2020 conference, 
titled “Balancing Coupling in Distributed Systems.” As I was walking off the stage, 
cortisol and adrenaline were conducting a stress hormone conference of their own in 
my bloodstream. The only thing I remember is Rebecca Wirfs-Brock telling me that I 
had to keep developing these ideas and to write a book about it. Who am I to argue 
with Rebecca Wirfs-Brock? 

I had to write this book for the same reason I gave that conference talk. All this 
knowledge that we have, but have forgotten, is far too important. So, if you’re read-
ing these words, it means that after long years of hard work, I managed to finish this 
book before it could finish me. I wholeheartedly believe that this material will be as 
useful to you as it has been to me.

Who Should Read This Book?

As I’m writing this Preface, Pearson’s style guidelines instruct me to “be precise and 
resist the temptation to create a long list of potential readers.” Well, then, I will 
define the book’s target audience as people who create software. 

Whether you are a junior, senior, or principal software engineer or architect, as 
long as you are making software design decisions at any level of abstraction, cou-
pling can make or break your efforts. Learning to tame the forces of coupling is 
essential for building modular and evolvable systems.

How This Book Is Organized

This book is divided into three parts.
Part I, Coupling—The first part of the book is about the big picture: how cou-

pling fits in the contexts of software design, complexity, and modularity.
Chapter 1, Coupling and System Design—In the first part of this chapter, you will 

learn what systems are, how they are built, and the role coupling plays in any system. 
The second part of the chapter switches the focus to software systems and introduces 
the terminology that will be used to describe coupling in the chapters that follow.

Chapter 2, Coupling and Complexity: Cynefin—Since complexity is something 
we would rather avoid, it’s important to understand what it is in the first place. To 
that end, the chapter introduces the basic principles of the Cynefin framework that 
precisely defines what complexity is. 
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Chapter 3, Coupling and Complexity: Interactions—This chapter shifts the dis-
cussion to systems in general and software design complexity in particular. You will 
learn what makes a software system complex and what that has to do with 
coupling.

Chapter 4, Coupling and Modularity—This chapter switches the focus to what 
we would rather achieve: modularity. It defines the notions of modularity and soft-
ware modules. Most importantly, it discusses coupling: the rudder that can steer a 
system toward either complexity or modularity.

Part II, Dimensions—The second part of the book homes in on coupling. You 
will learn the different ways coupling affects systems and a number of models for 
evaluating its effect.

Chapter 5, Structured Design’s Module Coupling—This chapter starts the jour-
ney through time and introduces the first model of evaluating coupling in software 
design, a model that was formulated in the late 1960s but is still relevant today.

Chapter 6, Connascence—This chapter introduces a model that reflects a differ-
ent aspect of coupling: connascence. You will learn what it means for modules to be 
“born together” and the different magnitudes of this kind of relationship.

Chapter 7, Integration Strength—Here, we combine the aspects of coupling 
reflected by structured design’s module coupling and connascence into a combined 
model known as integration strength. You will learn to use this model to evaluate the 
knowledge shared among the components of a system.

Chapter 8, Distance—In this chapter, we switch the focus to a different dimen-
sion: space. You will learn how the physical position of modules in a codebase can 
affect their coupling.

Chapter 9, Volatility—Here, we switch the focus to the dimension of time. We 
will discuss the reasons for changes in software modules, how a module’s volatility 
can propagate across the system, and how you can evaluate a module’s expected rate 
of change.

Part III, Balance—This part of the book connects the topics in Parts I and II by 
turning the dimensions of coupling into a tool for designing modular software.

Chapter 10, Balancing Coupling—In this chapter, we explore the insights you can 
gain by combining the dimensions of coupling. The chapter also introduces the bal-
anced coupling model: a holistic model for evaluating the effects of coupling on the 
overarching system.

Chapter 11, Rebalancing Coupling—Here, we discuss the strategic evolution of a 
software system, the changes it brings, and how these changes can be accommodated 
by rebalancing the coupling forces.

Chapter 12, Fractal Geometry of  Software Design—In this chapter, we continue 
the topic of system evolution, focusing on the most common and important change: 
growth. This chapter combines knowledge from other industries, and even nature, to 
uncover the underlying design principles guiding software design.
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Chapter 13, Balanced Coupling in Practice—We move from theory to practical 
application in this chapter by discussing case studies that demonstrate how the bal-
anced coupling model can be used to improve software design. The case studies also 
demonstrate that the balanced coupling model can be observed at the heart of well-
known architectural styles, design patterns, and design principles.

Chapter 14, Conclusion—This chapter summarizes the book’s content and  
provides final advice on applying the learned principles in your day-to-day work.

Case Studies and WolfDesk

This book is grounded in practice: Everything you’ll read has been battle-tested and 
proven useful across multiple software projects and business domains. This real-
world experience is reflected in the case studies you’ll find in each chapter. Though I 
can’t divulge specific details about the projects, I wanted to provide concrete case 
studies to make the material less abstract. To do this, I transformed stories from the 
trenches into case studies about a fictional company, WolfDesk. While the company 
is fictional, all the case studies are drawn from real projects. Here’s a brief descrip-
tion of WolfDesk and its business domain.

WolfDesk

WolfDesk provides a help desk management system as a service. If your startup com-
pany needs to offer support to your customers, WolfDesk’s solution can get you up 
and running in no time.

WolfDesk uses a payment model that sets it apart from its competitors. Rather 
than charging a fee per user, it allows tenants to set up as many users as they need, 
charging based on the number of support cases opened per billing period. There is 
no minimum fee, and automatic volume discounts are offered at certain thresholds 
of monthly cases.

To prevent tenants from exploiting the business model by reusing existing support 
cases, the lifecycle algorithm ensures that inactive support cases are automatically 
closed, encouraging customers to open new ones when more support is needed. Fur-
thermore, WolfDesk implements a fraud detection system that analyzes messages 
and identifies instances of unrelated topics being discussed within the same support 
case.

In an effort to help tenants streamline their support-related work, WolfDesk has 
implemented a “support autopilot” feature. This autopilot analyzes new inquiries 
and attempts to automatically find a matching solution from the tenant’s history. 
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This function helps to further reduce the lifespan of cases, encouraging customers to 
open new cases for additional questions.

The administration interface allows tenants to configure possible values for sup-
port case categories, as well as a list of the tenant’s products that require support. To 
ensure that support cases are routed to agents only during their working hours, 
WolfDesk allows users to configure different shift schedules for different depart-
ments and organizational units.

Register your copy of Balancing Coupling in Software Design on the InformIT 
site for convenient access to updates and/or corrections as they become available. 
To start the registration process, go to informit.com/register and log in or create 
an account. Enter the product ISBN (9780137353484) and click Submit. If you 
would like to be notified of exclusive offers on new editions and updates, please 
check the box to receive email from us. 

http://informit.com/register


9780135346563_web.indb   12 28/08/24   1:04 PM

This page intentionally left blank 



xxix

Acknowledgments

I would like to extend my deepest gratitude to Vaughn Vernon, without whom this 
book would not have become a reality. Vaughn not only provided me with the incred-
ible opportunity to bring these ideas to the printed page, but he also supported me 
throughout the writing process. Thank you for always being there when I needed 
help, and for your invaluable advice and insights, which have significantly enriched 
this book.

Haze Humbert is the book’s guardian angel or, more formally, its executive editor. 
The work on this book lasted for four years, and I know I didn’t make those years 
easy for Haze. Everything that could go wrong did, and then some. Haze, you are 
among the most patient people I know. Thank you for making this happen, and for 
your support in the moments when I needed it most.

What a relief it was to finish writing this book! However, that was just one battle. 
To win the war, it needed to be prepared for printing, and what an array of curveballs 
this entailed. I want to thank Julie Nahil, the book’s content producer, for being on 
my side and helping me get the book laid out and formatted just as I envisioned.

This book transcends different eras of software engineering and diverse fields of 
study. This is hands down the most challenging project I have ever worked on, and it 
wouldn’t have seen the light of day without the contributions of so many people who 
helped me along the way. I want to thank the subject matter experts whom I con-
sulted during the writing process2: Alistair Cockburn, Gregor Hohpe, Liz Keogh, 
Ruth Malan, David L. Parnas, Dave Snowden, and Nick Tune.

Heartfelt thanks to the reviewers who were brave enough to read the book’s early, 
unedited drafts, providing feedback that played a crucial role in refining the manu-
script: Ilio Catallo, Ruslan Dmytrakovych, Savvas Kleanthous, Hayden Melton, 
Sonya Natanzon, Artem Shchodro, and Ivan Zakrevsky. 

Last but not least, I want to thank two special people from whom I’ve learned so 
much, and it’s an immense honor to have them as foreword authors: Rebecca  
J. Wirfs-Brock and Kent Beck. Thank you both for your warm and inspiring words!

2. Whenever I mention a group of people, the list is in alphabetical order by last name.



9780135346563_web.indb   12 28/08/24   1:04 PM

This page intentionally left blank 



xxxi

About the Author

Vlad (Vladik) Khononov wanted to make his own computer games, so at eight 
years old, he picked up a book on BASIC. Although he has yet to publish a game, 
software engineering became his passion and trade. With over two decades of indus-
try experience, Vlad has worked for companies large and small, in roles ranging from 
webmaster to chief architect. As a consultant and trainer, he currently helps compa-
nies make sense of their business domains, untangle legacy systems, and tackle com-
plex architectural challenges.

Vlad maintains an active media career as an author and keynote speaker. Besides the 
book you are holding, he has written Learning Domain-Driven Design (O’Reilly, 
2021), which has been translated into eight languages. As a speaker, Vlad has pre-
sented at leading software engineering and architecture conferences around the 
world. He is known for his ability to explain complex concepts in simple, accessible 
terms, benefitting both technical and nontechnical audiences. You can reach out to 
Vlad on X (@vladikk) and LinkedIn.



9780135346563_web.indb   12 28/08/24   1:04 PM

This page intentionally left blank 



57

Chapter 4

Coupling and Modularity

Modularity’s perks, we cannot ignore,
But its true essence, we still must explore.
What makes a design coherent and fluent? 
It’s all about value—future and current.

“95% of the words are spent extolling the benefits of modularity, and little, if any-
thing, is said about how to achieve it” (Myers 1979). These words were written over 
40 years ago, but the observation remains true to this day. The significance of modu-
larity is unquestionable: It is the cornerstone of any well-designed system. Yet, 
despite the many new patterns, architectural styles, and methodologies that have 
emerged over the years, attaining modularity is still a challenge for many software 
projects.

The topic of this chapter is modularity and its relationship to coupling. I’ll start 
by defining what modules are and what makes a system modular. Next, you will 
learn about design considerations that are essential for increasing the modularity 
of a system and avoiding complex interactions. Ultimately, the chapter discusses the 
role of cross-component interactions in modular systems, which paves the way for 
using coupling as a design tool in the chapters that follow.

Modularity

Not only is the notion of modularity not unique to software design, but the term 
“module” predates software design by about 500 years. At its core, modularity refers 
to systems composed of self-contained units called modules. At the same time, you 
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may recall that in Chapter 1, I defined a system as a set of components. This natu-
rally raises an intriguing question: What distinguishes the components of a tradi-
tional system from the modules of a modular system?

A system has a goal: the functionality it has to implement. The components of the 
system are working together to achieve the goal. For example, a social media app ena-
bles people to connect, share, and interact, while an accounting system streamlines 
financial tasks for businesses. However, these functionalities only address the present 
requirements. As time goes on, the users’ needs may change, and new requirements 
may emerge. That’s where modularity comes into play.

Modular design aims to address a wider range of goals than a nonmodular sys-
tem can. It expands the system’s goal to accommodate requirements that are cur-
rently unknown but may be needed in the future. Of course, the future requirements 
are not expected to be available out of the box on day one, but the design should 
make it possible to evolve the system with a reasonable effort.

By investing in modularity, we design an adaptable and flexible system. That is, 
the primary goal of modularity is to allow the system to evolve (Cunningham 1992). 
A famous quote that is often (mis)attributed to Charles Darwin1 captures this idea 
perfectly: “It is not the strongest of the species that survives, but the most adapta-
ble.” This principle applies to systems as well. Even the most finely tuned, faultlessly 
performing system of today will face obsolescence if it cannot flex and grow with 
tomorrow’s changes. The less flexible a system is, the less stress it can tolerate. The 
less stress it can tolerate, the more prone it is to breaking under the pressure of evolv-
ing requirements. By being prepared to handle changes, a modular system is better 
positioned for long-term success. 

Modularity also serves as a cognitive tool, streamlining the comprehension of a 
system. Instead of a monolithic, inscrutable black box, a modular system presents as 
a collective of individual parts, each performing its function yet able to function col-
laboratively. This separation into modules allows for a clearer understanding of the 
system’s inner mechanics and how it ultimately delivers the desired output.

But why does this matter? Is it simply a matter of satisfying intellectual curiosity? 
Not really. A deep understanding of how a system operates is the key to modifying 
and improving it. This might involve altering existing behavior, such as fixing bugs, 
or it could involve evolution of the system by introducing new functionalities. The 
simplicity and transparency of a modular design enable you to tinker, adjust, and 
innovate more effectively and with more confidence.

With this understanding of the importance of modularity, let’s dig deeper into the 
concept of a module and its role in making a flexible system.

1. Quote Investigator delves into the history of this quotation (https://quoteinvestigator.com/2014/05/04/
adapt). 

https://quoteinvestigator.com/2014/05/04/adapt
https://quoteinvestigator.com/2014/05/04/adapt
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Modules

The terms “module” and “component” are often used interchangeably, which causes 
confusion. As I mentioned earlier, any system is composed of components. There-
fore, a module is a component. However, not every component is a module. To 
design a flexible system, it’s not enough to decompose the system into an arbitrary 
set of components. Instead, a modular design should enable you to alter the system 
by combining, reconfiguring, or replacing its components—its modules.

Let’s consider two examples of modules from our everyday lives (Figure 4.1):

 1. LEGO bricks are a straightforward illustration of modularity in action. Each 
brick is a self-contained unit that can be connected with other bricks to form 
a variety of structures. The ease with which these bricks can be assembled and 
disassembled illustrates a perfectly modular system.

 2. Another widespread example of modularity is the interchangeable camera 
lenses used by photography enthusiasts. The ability to switch lenses enables 
photographers to adapt their cameras to different shooting conditions and 
achieve various effects, all without requiring multiple cameras.

The success of a modular system depends on the design of its modules. To enable 
the desired flexibility of a system, its design has to focus on clear boundaries and 
well-defined interactions between modules. To reason about the design of a module, 

Figure 4.1 Modularity in real-life systems

(Images: left, focal point/Shutterstock; right, Kjpargeter/Shutterstock)
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it’s helpful to examine three fundamental properties describing a module: function, 
logic, and context:2 

 1. Function is the module’s goal, the functionality it provides. It is exposed to 
consumers of the module through its public interface. The interface has to 
reflect the tasks that can be achieved by using the module, how the module can 
be integrated, and its interactions with other modules.

 2. A module’s logic is all about how the module’s function is implemented; 
that is, the implementation details of the module. Unlike function, which is 
explicitly exposed to consumers, a module’s logic should be hidden from other 
modules. 

 3. Finally, a module’s context is the environment in which the module should be 
used. This includes both explicit requirements and implicit assumptions the 
design makes on the module’s usage scenarios and environment.

These fundamental properties provide valuable insights into a module’s role 
within the broader system, as summarized in Table 4.1.

To effectively design a module, its function should be clear and explicitly 
expressed in its public interface. The module’s implementation details, or logic, on 
the other hand, should be hidden from consumers by the module’s boundary. Ulti-
mately, a clear and explicit definition of the context is essential for consumers to be 
able to integrate the module, as well as to be aware of how the module’s behavior 
might be affected by changes in its environment.

Let’s have a look at how these properties are reflected in the aforementioned mod-
ular systems: LEGO bricks and interchangeable camera lenses.

2. In later sources, you may encounter different terms used to describe the properties: border, implemen-
tation, and environment. For consistency, I’ll stick to the original terminology (Myers 1979).

Table 4.1 Comparison of  the Three Fundamental Properties of  a Module

Property Reflects Type of information

Function Module’s goal Public, explicit

Logic How module works Hidden by the module

Context Assumptions about the 
environment

Public, less explicit than 
function
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LEGO Bricks

The goal of the overall system—the LEGO constructor—is to form structures from 
individual building blocks. The modules of the system are LEGO bricks. As a mod-
ule, each brick has the following properties:

 • Function: A brick’s goal is to connect with other bricks. It’s explicitly reflected 
by the “integration interface”: studs and holes through which it can be easily 
attached to other bricks.

 • Logic: The bricks are made from a material that supports the required weight 
to build sturdy structures and guarantees reliable attachment to other bricks.

 • Context: Since LEGOs are (generally) a toy for children, they have to be safe 
and appropriate for kids to play with. Furthermore, because of their purpose 
as a creative and fun playtime tool, using LEGO bricks to build actual houses 
would not be a good fit, as they are not designed or intended for such a task.

Camera Lenses

As I mentioned earlier in this chapter, interchangeable camera lenses enable photog-
raphy enthusiasts to adapt to different shooting conditions without having to use 
multiple cameras. Both the camera body and the attachable lenses are modules. Let’s 
focus on the properties of camera lenses as modules:

 • Function: Enable capturing images with specific properties, such as focal 
length or aperture. The interface defines what kinds of cameras the lenses can 
be used with, as well as the supported range of optical capabilities.

 • Logic: The inner workings of lenses allowing them to be connected to a camera 
and capture the required optical capabilities.

 • Context: The supported ranges of camera models, as well as varying function-
alities for different cameras (e.g., whether autofocus is supported or not).

Now that we have established an understanding of modularity in general, let’s 
explore how these concepts apply in the context of software design.
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Modularity in Software Systems

Although the term “module” is used extensively in software engineering, defining 
what a software module is, is not as straightforward as one might expect. The ambi-
guity arises from the term’s long-standing use, during which its original meaning 
was obscured as software engineering evolved, leading to diverse reinterpretations 
and loss of a precise definition. 

What makes a software module? Is it a library, a package, an object, a group of 
objects, or a service? Furthermore, what is a nonmodule software component, and 
how does it differ from a module?

Some argue that a module embodies a logical boundary, such as a namespace, a 
package, or an object, while a component signifies a physical boundary, encompass-
ing artifacts such as services and redistributable libraries. However, the juxtaposition 
of logical and physical boundaries is not accurate. To understand why it’s not accu-
rate, as well as what exactly a software module is, let’s go back in time and examine 
what was meant by “module” when the term was originally introduced to software 
design.

Software Modules

In his seminal paper “On the Criteria to Be Used in Decomposing Systems into Mod-
ules,” David L. Parnas (1971) succinctly defined a module as “a responsibility assign-
ment” rather than just an arbitrary boundary around statements of a program.

Four years later, in their book Structured Design, Edward Yourdon and Larry L. 
Constantine (1975) described a module as “a lexically contiguous sequence of pro-
gram statements, bounded by boundary elements, having an aggregate identifier.” 
Or, in simpler terms, a module is any collection of executable program statements 
meeting all of the following criteria (Myers 1979):

 • The statements implement self-contained functionality.

 • The functionality can be called from any other module.

 • The implementation has the potential to be independently compiled.

The self-contained functionality criterion implies that a specific functionality is 
encapsulated within a module, rather than, for example, being spread across multi-
ple modules. Next, the module makes this functionality accessible to other modules 
of the system through its public interface. Ultimately, the module’s implementation 
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can potentially be independently compiled. Consequently, according to this defini-
tion, the type of a module’s boundary—physical or logical—is not essential. As long 
as it has the potential of being extracted into an independent unit that can be com-
piled, it is a module. What is more important than the type of the module’s bound-
ary is the functionality it implements and provides to other modules.

This focus on the well-defined functionality rather than the type of a boundary 
makes modules ubiquitous all across software design. (Micro)services, frameworks, 
libraries, namespaces, packages, objects, classes—all can be modules. Furthermore, 
because nowadays a class’s methods can be compiled independently,3 even individual 
methods/functions can be considered modules.

That means a service-based system can be modular if its services are designed as 
effective modules. A service of that system can be modular on its own if, for exam-
ple, it consists of modular namespaces. Modular objects can form a modular name-
space, and the same is true for methods or functions constituting objects. “It’s turtles 
all the way down,” as illustrated in Figure 4.2. Modules are not flat; modular design 
is hierarchical.  

3. For example, extension methods in C# or functions in languages such as Python and JavaScript.
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Figure 4.2 Hierarchical modular design
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To reiterate, a module is a boundary encompassing a well-defined functionality, 
which it exposes for use by other parts of the system. Consequently, a module could 
represent nearly any type of logical or physical boundary within a software system, 
be it a service, a namespace, an object, or something else. 

Throughout this book, I’ll use the term “module” to signify a boundary enclosing 
specific functionality. This functionality is exposed to external consumers and either 
is or has the potential to be independently compiled.

Function, Logic, and Context of Software Modules

We can use the three properties of a module—function, logic, and context—to 
describe all kinds of the aforementioned software modules.

Function
A software module’s function is the functionality it exposes to its consumers over its 
public interface. For example:

 • A service’s functionality can be exposed through a REST API or asynchro-
nously through publishing and subscribing to messages.

 • An object’s function is expressed in its public methods and members.

 • The function of a namespace, package, or distributed library consists of the 
functionality implemented by its members.

 • If a distinct method or a function is treated as a module, its name and signa-
ture reflect its function.

Logic
A software module’s logic encompasses all the implementation and design decisions 
that are needed to implement its function. It includes its source code,4 as well as 
internal infrastructural components (e.g., databases, message buses) that are not 
needed for describing the module’s function.

4. Rumor has it that this is where the term “business logic” comes from. This implies that there are differ-
ent kinds of “logics” encompassed in a module: logic for integrating infrastructural components, and 
logic for business tasks. That said, I couldn’t find any sources that can prove this observation.
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Context
All types of software modules depend on various attributes of their execution envi-
ronments and/or make assumptions regarding the context in which they operate. For 
example:

 • At a very basic level, a certain runtime environment is needed to execute a mod-
ule. Moreover, a specific version of the runtime environment may be required.

 • A certain level of compute resources, such as CPU, memory, or network  
bandwidth, may be needed for the module to function properly.

 • A module may assume that the calls are pre-authorized instead of performing 
authorization itself.

Going back to the definition of a module’s context, the main difference between 
function and context is that the assumptions and requirements tied to the context are 
not reflected in the module’s public interface—its function.

Now that you have a solid understanding of what a software module is, let’s delve 
into the design considerations for designing a modular system.

Effective Modules

As noted in the previous sections, an arbitrary decomposition of a system into com-
ponents won’t make it modular. The hierarchical nature of modules doesn’t make it 
any easier. Failing to properly design modules at any level in the hierarchy can poten-
tially undermine the whole effort.

Effective design of modules is not trivial, and failures to do so can be spotted 
all across the history of software engineering. For example, not so long ago, many 
believed that a microservices-based architecture is the easy solution for designing 
flexible, evolvable systems. However, without a proper principle guiding the decom-
position of a system into microservices (modules), many teams ended up with dis-
tributed monoliths—solutions that were much less flexible than the original design. 
As they say, history tends to repeat itself, and almost exactly the same situation  
happened when modularity was introduced to software design:

When I came on the scene (in the late 1960s) software development managers had real-
ized that building what they called monolithic systems wasn’t working. They wanted 
to divide the work to be done into parts (which they called modules) and each part or 
module would be assigned to a different team or team member. Their hope was that 
(a) when they put the parts together they would “fit” and the system would work and 
(b) when they had to make changes, the changes would be confined to a single module. 
Neither of those things happened. The reason was that they were doing a “bad job” 
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of dividing the work into modules. Those modules had very complex interfaces, and 
changes almost always affected many modules. —David L. Parnas, personal correspon-
dence to author (May 3, 2023)

Following that experience, Parnas (1971) proposed a principle intended to guide 
more effective decomposition of systems into modules: information hiding. According 
to the principle, an effective module is one that hides decisions. If a decision has to be 
revisited, the change should only affect one module, the one that “hides” it, thus mini-
mizing cascading changes rippling across multiple components of the system.

In Parnas’s later work (1985, 2003), he equated modules following the  
information-hiding principle to the concept of abstraction. Let’s see what an abstrac-
tion is, what makes an effective abstraction, and how to use this knowledge to craft 
module boundaries.

Modules as Abstractions

The goal of an abstraction is to represent multiple things equally well. For example, 
the word “car” is an abstraction. When thinking about a “car,” one does not need to 
consider a specific make, model, or color. It could be a Tesla Model 3, an SUV, a taxi, 
or even a Formula 1 race car; it could be red, blue, or silver. These specific details are 
not necessary to understand the basic concept of a car.

For an abstraction “to work,” it has to eliminate details that are relevant to concrete 
cases but are not shared by all. Instead, to represent multiple things equally well, it 
has to focus on aspects shared by all members of a group. Going back to the previ-
ous example, the word “car” simplifies our understanding by focusing on the common 
characteristics of all cars, such as their function of providing transportation and their 
typical structure, which often includes four wheels, an engine, and a steering wheel.

By focusing only on the details that are shared by a group of entities, an 
abstraction hides decisions that are likely to change. As a result, the more general  
an abstraction is, the more stable it is. Or, the fewer details that are shared by an 
abstraction, the less likely it is to change.

 

Note

Interestingly, the term “software module” is an abstraction itself. As you learned 
in the preceding section, a software module can represent a variety of bound-
aries, including services, namespaces, and objects. That’s the concept of 
abstraction in action. It eliminates details relevant to concrete types of software 
boundaries, while focusing on what is essential: responsibility assignment, or 
the encapsulated functionality. Hence, you can use the term “module” to repre-
sent all kinds of software boundaries equally well. 
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A well-designed module is an abstraction. Its public interface should focus on the 
functionality provided by the module, while hiding all the details that are not shared 
by all possible implementations of that functionality. Going back to the example of 
a repository object in Chapter 3, the interface described in Listing 4.1 focuses on the 
required functionality, while encapsulating the concrete implementation details.

Listing 4.1 A Module Interface That Focuses on the Functionality It Provides, While 
Encapsulating Its Implementation Details
interface CustomerRepository {
    Customer Load(CustomerId id);
    void Save(Customer customer);
    Collection<Customer> FindByName(Name name);
    Collection<Customer> FindByPhone(PhoneNumber phone);
}

A concrete implementation of the repository could use a relational database, a doc-
ument store, or even a polyglot persistence–based implementation that leverages mul-
tiple databases. Moreover, this design allows the consumers of the repository to switch 
from one concrete implementation to another, without being affected by the change. 

The notion of effortlessly switching from one database to another often has a 
somewhat questionable reputation within the software engineering community. 
Such changes aren’t common.5 That said, there’s a more frequent and crucial need 
to switch the implementation behind a stable interface. When you’re altering a mod-
ule’s implementation without changing its interface, such as fixing a bug or chang-
ing its behavior, you’re essentially replacing its implementation. For example, the 
kinds of queries used in the FindByName() and FindByPhone() methods can be 
changed even when retaining the use of the same database. It could be that an index, 
name, and phone number are added to the database schema itself. Or it could be that 
the data is restructured to better optimize queries. Neither of these changes should 
impact the client’s use of the module interface.     

That said, the possibility of switching an implementation is not the only goal of 
introducing an abstraction. As Edsger W. Dijkstra (1972) famously put it, “The pur-
pose of abstraction is not to be vague, but to create a new semantic level in which one 
can be absolutely precise.”

It may seem that using an abstraction introduces vagueness or lack of detail. 
However, as Dijkstra argues, that’s not the goal. Instead, an abstraction should cre-
ate a new level of understanding—a “semantic level”—where one can be “absolutely 
precise.” Balance is needed to reach a proper level of abstraction to convey the cor-
rect semantics. Consider this: If you use an abstraction called “vehicle” to represent 

5. With the exception of running a suite of unit tests that replace a physical database with an in-memory 
mock.
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cars, it might be an overly broad generalization. Ask yourself: Are you actually mod-
eling a range of vehicles, such as motorcycles and buses, necessitating such a wide-
ranging abstraction? If the answer is no, then using “car” as your abstraction is more 
appropriate and precisely conveys the intended meaning.       

By focusing on the essentials—functionality of modules—while ignoring extrane-
ous information, abstractions allow us to reason about complex systems without 
getting lost in the details. A common example of a modular system is a personal 
computer. We can reason about the interactions of its modules—CPU, motherboard, 
random-access memory, hard drive, and others—all without understanding the intri-
cate technicalities of each individual component. When troubleshooting a problem, 
we don’t need to comprehend how a CPU processes instructions or how a hard drive 
stores data at a microscopic level. Instead, we consider their roles within the larger 
system: a new semantic level provided by effective abstractions.

Finally, abstractions, like modules, are hierarchical. In software design, “levels of 
abstraction”6 are used to refer to different levels of detail when reasoning about sys-
tems. Higher levels of abstraction are closer to user-facing functionality, while lower 
levels are more about components related to low-level implementation details. Dif-
ferent levels of detail require different languages for discussing the functionalities 
implemented at each level. Those languages, or (as Dijkstra called them) semantic 
levels, are formed by designing abstractions.

Hierarchical abstractions also serve as further illustration of modularity’s hier-
archical nature. Since abstractions adhere to the same design principles at all lev-
els, modular design exhibits not only a hierarchical but also a fractal structure. In 
upcoming chapters, I will discuss in detail how the same rules govern modular struc-
tures at different scales. But for now, let’s revisit the topic of the previous chapters, 
complexity, and analyze its relationship with modularity.

Modularity, Complexity, and Coupling

Poor design of a system’s modules leads to complexity. As we discussed in Chapter 3, 
complexity can be both local and global, while the exact meaning of local/global 
depends on point of view: Global complexity is local complexity at a higher level of 
abstraction, and vice versa. But what exactly makes one design modular and another 
one complex?

Both modularity and complexity result from how knowledge is shared across the 
system’s design. Sharing extraneous knowledge across components increases the 

6. Or layers of abstraction.
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cognitive load required to understand the system and introduces complex interac-
tions (unintended results, or intended results but in unintended ways).

Modularity, on the other hand, controls complexity of a system in two ways:

 1. Eliminating accidental complexity; in other words, avoiding complexity driven 
by the poor design of a system.

 2. Managing the system’s essential complexity. The essential complexity is an 
inherent part of the system’s business domain and, thus, cannot be eliminated. 
On the other hand, modular design contains its effect by encapsulating the 
complex parts in proper modules, preventing its complexity from “spilling” 
across the system.

In terms of knowledge, modular design optimizes how knowledge is distributed 
across the components (modules) of a system. 

Essentially, a module is a knowledge boundary. A module’s boundary defines 
what knowledge will be exposed to other parts of the system and what knowledge 
will be encapsulated (hidden) by the module. The three properties of a module that 
were introduced earlier in the chapter define three kinds of knowledge reflected by 
the design of a module:

 1. Function: The explicitly exposed knowledge

 2. Logic: Knowledge that is hidden within the module

 3. Context: Knowledge the module has about its environment

An effective design of a module maximizes the knowledge it encapsulates, while 
sharing only the minimum that is required for other components to work with the 
module.

Deep Modules

In his book A Philosophy of  Software Design, John Ousterhout (2018) proposes  
a visual heuristic for evaluating a module’s boundary. Imagine that a module’s  
function and logic are represented by a rectangle, as illustrated in Figure 4.3. The 
rectangle’s area reflects the module’s implementation details (logic), while the  
bottom edge is the module’s function (public interface).
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According to Ousterhout, the resultant “depth” of the rectangle reflects how 
effective it is at hiding knowledge. The higher the ratio between the module’s func-
tion and logic, the “deeper” the rectangle.

If the module is shallow, as in Figure 4.3A, the difference between the function 
and logic is small. That is, the complexity encapsulated by the module’s boundary 
is low as well. In the extreme case, the function and logic are precisely the same—
the public interface reflects how the module is implemented. Such an interface pro-
vides no value; it doesn’t encapsulate any complexity. You could just as well read the 
module’s implementation. Listing 4.2 shows an extreme example of a shallow mod-
ule. The method’s interface doesn’t encapsulate any knowledge. Instead, it simply 
describes its implementation (adding two numbers).

Listing 4.2  An Example of  a Shallow Module
addTwoNumbers(a, b) {
    return a + b;
}

On the other hand, a deep module (Figure 4.3B) encapsulates the complexity of 
the implementation details behind a concise public interface. The consumer of such 
a module need not be aware of its implementation details. Instead, the consumer can 
reason about the module’s functionality and its role in the overarching system, while 
being ignorant of how the module is implemented—at a higher semantic level.

Shallow Module

Deep Module

Logic

Function (Public interface)
BA

Figure 4.3 A shallow module (A) and a deep module (B)
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That said, the metaphor of deep modules has its limitations. For instance, there 
can be two perfectly deep modules implementing the same business rule. If this busi-
ness rule changes, both modules will need to be modified. This could lead to cascad-
ing changes throughout the system, creating an opportunity for inconsistent system 
behavior if only one of the modules is updated. This underscores the hard truth 
about modularity: Confronting complexity is difficult.

Modularity Versus Complexity

Modularity and complexity are two competing forces. Modularity aims to make  
systems easier to understand and to evolve, while complexity pulls the design in the 
opposite direction.

The complete opposite of modularity, and the epitome of complexity, is the Big 
Ball of Mud anti-pattern (Foote and Yoder 1997): 

A Big Ball of Mud is haphazardly structured, sprawling, sloppy, duct-tape and bail-
ing wire, spaghetti code jungle. These systems show unmistakable signs of unregulated 
growth, and repeated, expedient repair. Information is shared promiscuously among 
distant elements of the system, often to the point where nearly all the important infor-
mation becomes global or duplicated. The overall structure of the system may never 
have been well defined. If it was, it may have eroded beyond recognition. —Brian Foote 
and Joseph Yoder

In the preceding definition of the Big Ball of Mud anti-pattern, unregulated 
growth, sharing information promiscuously among distant elements of the system, 
and important information becoming global or duplicated all demonstrate how 
unoptimized and inefficient flow of knowledge cripples systems.

These points can also be formulated in terms of ineffective abstractions. An effec-
tive abstraction removes all extraneous information, retaining only what is absolutely 
necessary for effective communication. In contrast, an ineffective abstraction creates 
noise by failing to eliminate unimportant details, removing essential details, or both.

If an abstraction includes extraneous details, it exposes more knowledge than is 
actually necessary. That causes accidental complexity in multiple ways. The consum-
ers of the abstraction are exposed to more details than are actually needed to use 
the abstraction. First, this results in accidental cognitive load, or cognitive load that 
could have been avoided by encapsulating the extraneous detail. Second, this lim-
its the scope of the abstraction: It is no longer able to represent a group of entities 
equally well, but only those for which the extraneous details are relevant.

On the other hand, an abstraction can fail if it omits important information. 
For example, a database abstraction layer that doesn’t communicate its transaction 
semantics may result in users expecting a different level of data consistency than the 
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one provided by concrete implementation. This situation creates what is referred to 
as a leaking abstraction;7 that is, when details from the underlying system “leak” 
through the abstraction. This happens when the consumer of the abstraction needs 
to understand the underlying concrete implementation to use it correctly. As in the 
case of an abstraction sharing extraneous details, it increases the consumer’s cogni-
tive load and can lead to misuse or misunderstandings of the module, complicating 
maintenance, debugging, and extension.

Hence, encapsulating knowledge is a double-edged sword. Going overboard can 
make it hard or even impossible to use the module, but the same is true when too lit-
tle knowledge is being communicated. To make modularity even more challenging, 
even if a system is decomposed into seemingly perfect modules, it is still not guaran-
teed to be modular.

Modularity: Too Much of a Good Thing

In the beginning of the chapter, I defined modular design as one that allows the sys-
tem to adapt to future changes. But how flexible should it be? As they say, the more 
reusable something is, the less useful it becomes. That is the cost of flexibility and, 
consequently, of modularity.

When designing a modular system, it’s crucial to watch for the two extremes: 
not making a system so rigid that it can’t change, and not designing a system to be 
so flexible that it’s not usable. As an example, let’s revisit the repository object in  
Listing 4.1. Its interface allows two ways of querying for customers: by name and by 
phone number. What would that interface look like if we were to attempt to address 
all possible query types; for example, by a wider range of fields, or even by looking 
up customers based on aggregations of values? That would make the interface much 
harder to work with. Moreover, optimizing the underlying database to efficiently 
handle all possible queries wouldn’t be trivial.

Hence, a modular design should focus on reasonable changes. In other words, the 
system should expose only reasonable degrees of freedom. For example, changing 
the functionality of a blog engine into a printer driver is not a reasonable change.

Unfortunately, identifying reasonable future changes is not an exact science, but 
is based on our current knowledge and assumptions about the system. An assump-
tion is essentially a bet against the future (Høst 2023). The future can support or 

7. Spolsky, Joel. “The Law of Leaky Abstractions.” Joel on Software. November 11, 2002. https:// 
www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions.

http://ww.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions
http://ww.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions
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invalidate assumptions. However, if modular design entails making bets, we can 
gather as much information as possible and do our best to make informed bets. 

Coupling in Modularity

Many aspects of modularity can be understood only by considering the modules not 
as individual entities, but by examining them in relation to one another. This was 
demonstrated in the Deep Modules section earlier: Even perfectly “deep” modules 
can still introduce complex interactions. As Alan Kay said, the big idea of object-
oriented programming is messaging, not classes;8 in other words, the relationships 
and interactions between objects.9 Traditionally, when systems are designed the main 
focus is on the components, or boxes. But what about the arrows and lines connect-
ing them?

The modularity of a system cannot be evaluated by examining designs of indi-
vidual modules in isolation. The goal of modular design is to simplify the relation-
ships between components of a system. Hence, modularity can only be evaluated in 
the scope of the relationships and interactions between the components. The knowl-
edge that is shared among the components controls whether the overarching system 
will be more modular or more complex. Coupling is the aspect of a system that 
defines what knowledge is shared between components of a system. Different ways 
of coupling components share different types and amounts of knowledge. Some will 
increase complexity, while others will contribute to modularity. 

This is a good time to mention the counterpart of coupling: cohesion. The con-
cept of cohesion was introduced in tandem with coupling in Structured Design 
(Yourdon and Constantine 1975). Cohesion refers to the degree to which the ele-
ments inside a module belong together. In other words, it’s a measure of how closely 
the responsibilities of a module are related to each other. High cohesion is generally 
seen as a desirable characteristic because it promotes a single, well-defined purpose 
for each module, improving understandability, maintainability, and robustness. 

Under the hood, however, cohesion is based on coupling. Some software engi-
neers even refer to cohesion as “good coupling.” That’s my preferred approach as 
well. The chapters in Part II, Dimensions, scrutinize how coupling affects system 
design and the dimensions in which effects of coupling can be observed. Later in the 
book I will combine these insights into a concise framework for guiding modular 
design that will also reflect cohesion of the system’s modules.

8. Kay, Alan. “Alan Kay on Messaging.” October 10, 1998. http://wiki.c2.com/?AlanKayOnMessaging.
9. According to the original definition, objects are modules and, therefore, the same design principles 

that apply to objects apply to modules at other levels of abstraction.

http://wiki.c2.com/?AlanKayOnMessaging
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Key Takeaways

Modularity strives to minimize complexity by managing the distribution of knowl-
edge across modules. However, the overarching goal of modularity is to enable evolu-
tion of the system according to future goals and needs. Hence, modular design 
requires awareness not only of the current requirements, but also of those that might 
arise in the future.

Nevertheless, be aware of the “too much of a good thing” syndrome. A system 
that is flexible to accommodate any change is likely to be overly complicated. Strik-
ing a balance is crucial to prevent systems from becoming exceedingly rigid or overly 
flexible.

To train your “muscle” of predicting future changes, learn about the business 
domain of your system. Analyze the trends: what changes were required in the past, 
and why. Learn about competing products: what they are doing differently, why they 
are doing these things differently, and how likely the functionality is to change in 
your system.

When designing modules, reason about their core properties. Can you state a 
module’s function (purpose) without revealing its implementation details (logic)? Is 
a module’s usage scenario (context) explicitly stated, or is it based on assumptions 
that might be forgotten over time?

Ultimately, to truly design modular systems, one must consider modules in rela-
tion to each other, acknowledging that their interplay significantly impacts modular-
ity. Coupling defines what knowledge is shared between components, and cohesion 
indicates how related a module’s responsibilities are. These topics will be expanded 
upon in the forthcoming chapters, eventually forming a robust framework to inform 
modular design.

Quiz

 1. What are the basic properties of a module?

a. API, database, and business logic

b. Source code

c. Function and logic

d. Function, logic, and context
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 2. What makes an effective module?

a. Runtime performance

b. Maximizing the complexity it encapsulates

c. Maximizing the complexity it encapsulates while supporting the system’s 
flexibility needs

d. Correct implementation of the business logic

 3. Which property of a module is the most explicit?

a. Function

b. Logic

c. Context

d. Answers B and C are correct.

 4. Which of the following software design elements can be considered modules?

a. Services

b. Namespaces

c. Classes

d. All of the answers are correct.

 5. What makes an effective abstraction?

a. Omitting as much information as possible

b. Retaining as much detail as possible

c. Creating a language that allows discussing about functionalities of compo-
nents, without having to know how they are implemented

d. Describing as many objects as possible
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