
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137353484
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137353484
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137353484

Praise for Balancing Coupling in Software Design

“Coupling is one of those words that is used a lot, but little understood. Vlad propels us from simplistic slogans
like ‘always decouple components’ to a nuanced discussion of coupling in the context of complexity and software
evolution. If you build modern software, read this book!”

—Gregor Hohpe, author of The Software Architect Elevator

“Get ready to unravel the multi-dimensional nature of coupling and the forces at work behind the scenes. The
reference for those looking for a means to both assess and understand the real impact of design decisions.”

—Chris Bradford, Director of Digital Services, Cambridge Consultants

“Coupling is a tale as old as software. It’s a difficult concept to grasp and explain, but Vlad effortlessly lays out the
many facets of coupling in this book, presenting a tangible model to measure and balance coupling in modern
distributed systems. This is a must-read for every software professional!”

—Laila Bougria, solutions architect & engineer

“This book is essential for every software architect and developer, offering an unparalleled, thorough, and directly
applicable exploration of the concept of coupling. Vlad’s work is a crucial resource that will be heavily quoted
and referenced in future discussions and publications.”

—Michael Plöd, fellow @ INNOQ

“Every software engineer is sensitive to coupling, the measure of interconnection between parts. Still, many times the
understanding of such a fundamental property remains unarticulated. In this book, Vlad introduces a much-needed
intellectual tool to reason about coupling in a systematic way, offering a novel perspective on this essential topic.”

—Ilio Catallo, senior software engineer

“Coupling is among the most slippery topics in software development. However, with this book, Vlad simplifies
for us how coupling, from a great villain, can become a design tool when well understood. This is an indispensable
guide for anyone dealing with software design—especially complex ones.”

—William Santos, software architect

“Balancing Coupling in Software Design is a must-read for any software architect. Vlad Khononov masterfully
demystifies coupling, offering practical insights and strategies to balance it effectively. This book is invaluable for
creating modular, scalable, and maintainable software systems. Highly recommended!”

—Vadim Solovey, CEO at DoiT International

“Balancing Coupling in Software Design by Vlad Khononov is an essential read for architects aiming for quality,
evolvable systems. Khononov expertly classifies depen dencies and reveals how varying designs impact effort based
on component distance and change frequency, introducing a unified metric for coupling. With insightful case stud-
ies, he guides readers toward achieving optimal modularity and long-term system adaptability by illustrating and
rectifying imbalances.”

—Asher Sterkin, independent software technology expert

“Khononov’s groundbreaking work unifies paramount forces of software design into a coherent model for evalu-
ating coupling of software systems. His insights provide an invaluable framework for architects to design modular,
evolving systems that span legacy and modern architectures.”

—Felipe Henrique Gross Windmoller, staff software engineer, Banco do Brasil

“This book systematizes over five decades of software design knowledge, offering a comprehensive guide on cou-
pling, its dimensions, and how to manage it effectively. If software design is a constant battle with complexity, then
this book is about mastering the art of winning.”

—Ivan Zakervsky, IT architect

The Pearson Addison-Wesley Signature Series provides readers with
practical and authoritative information on the latest trends in modern
technology for computer professionals. The series is based on one
simple premise: great books come from great authors.

Vaughn Vernon is a champion of simplifying software architecture and
development, with an emphasis on reactive methods. He has a unique
ability to teach and lead with Domain-Driven Design using lightweight
tools to unveil unimagined value. He helps organizations achieve
competitive advantages using enduring tools such as architectures,
patterns, and approaches, and through partnerships between business
stakeholders and software developers.

Vaughn’s Signature Series guides readers toward advances in software
development maturity and greater success with business-centric
practices. The series emphasizes organic refinement with a variety
of approaches—reactive, object, and functional architecture and
programming; domain modeling; right-sized services; patterns; and
APIs—and covers best uses of the associated underlying technologies.

Visit informit.com/awss/vernon for a complete list of available publications.

Pearson Addison-Wesley
Signature Series

Make sure to connect with us!
i n f o r m i t . c o m / c o n n e c t

http://informit.com/awss/vernon
http://informit.com/connect

Balancing Coupling in
Software Design

Universal Design Principles for Architecting
Modular Software Systems

Vlad Khononov

Hoboken, New Jersey

Cover image: pernsanitfoto/Shutterstock

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Please contact us with concerns about any potential bias at pearson.com/report-bias.html.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2024942574

Copyright © 2025 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate
contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/
permissions/.

ISBN-13: 978-0-13-735348-4
ISBN-10: 0-13-735348-0

$PrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://pearson.com/report-bias.html
http://informit.com/aw
http://www.pearsoned.com/permissions/
http://www.pearsoned.com/permissions/

Dedicated to everyone who kept asking when this
book would finally be published.

#AdoptDontShop

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

vii

Contents

Series Editor Foreword . xv

Foreword by Rebecca Wirfs-Brock . xix

Foreword by Kent Beck . xxi

Preface . xxiii

Acknowledgments . xxix

About the Author . xxxi

Introduction . 1

Part I: Coupling . 3

Chapter 1: Coupling and System Design . 5

What Is Coupling? . 5
Magnitude of Coupling . 6

Shared Lifecycle . 7
Shared Knowledge . 8

Flow of Knowledge . 10
Systems . 10

Coupling in Systems . 11
Optional: Coupling and Cost Management in

Mechanical Engineering . 15
Key Takeaways . 16
Quiz . 17

Chapter 2: Coupling and Complexity: Cynefin . 19

What Is Complexity? . 19
Complexity in Software Design . 20
Complexity Is Subjective . 20

Cynefin . 20
Clear . 21

Contentsviii

Complicated . 22
Complex . 22
Chaotic . 24
Disorder . 25

Comparing Cynefin Domains . 26
Cynefin in Software Design . 27

Example A: Integrating an External Service 27
Example B: Changing Database Indexes 29

Cynefin Applications . 31
Cynefin and Complexity . 32
Key Takeaways . 32
Quiz . 33

Chapter 3: Coupling and Complexity: Interactions 35

Nature of Complexity . 35
Complexity and System Design . 36

Linear Interactions . 36
Complex Interactions . 37
Complexity and System Size . 39

Hierarchical Complexity . 39
Optimizing Only the Global Complexity 41
Optimizing Only the Local Complexity 42
Balancing Complexity . 43

Degrees of Freedom. 43
Degrees of Freedom in Software Design 43
Degrees of Freedom and Complex Interactions 45

Complexity and Constraints . 46
Example: Constraining Degrees of Freedom 46
Constraints in Cynefin Domains . 47

Coupling and Complex Interactions . 47
Example: Connecting Coupling and Complexity 48

Design A: Using SQL to Filter Support Cases 48
Design B: Using a Query Object . 50
Design C: Using Specialized Finder Methods 51
Coupling, Degrees of Freedom, and Constraints 52

Key Takeaways . 54
Quiz . 54

Contents ix

Chapter 4: Coupling and Modularity . 57

Modularity . 57
Modules . 59

LEGO Bricks . 61
Camera Lenses . 61

Modularity in Software Systems . 62
Software Modules . 62
Function, Logic, and Context of Software Modules 64
Effective Modules . 65
Modules as Abstractions . 66

Modularity, Complexity, and Coupling . 68
Deep Modules . 69
Modularity Versus Complexity . 71
Modularity: Too Much of a Good Thing 72

Coupling in Modularity . 73
Key Takeaways . 74
Quiz . 74

Part II: Dimensions . 77

Chapter 5: Structured Design’s Module Coupling . 79

Structured Design . 80
Module Coupling . 80

Content Coupling . 81
Common Coupling . 83
External Coupling . 86
Control Coupling . 88
Stamp Coupling . 90
Data Coupling . 92

Comparison of Module Coupling Levels . 94
Key Takeaways . 95
Quiz . 96

Chapter 6: Connascence . 97

What Is Connascence? . 97
Static Connascence . 98

Connascence of Name . 98
Connascence of Type . 100
Connascence of Meaning . 100

Contentsx

Connascence of Algorithm . 102
Connascence of Position . 102

Dynamic Connascence . 104
Connascence of Execution . 105
Connascence of Timing . 105
Connascence of Value . 107
Connascence of Identity . 109

Evaluating Connascence . 110
Managing Connascence . 111
Connascence and Structured Design’s Module Coupling 111

Key Takeaways . 113
Quiz . 114

Chapter 7: Integration Strength . 117

Strength of Coupling . 118
Structured Design, Connascence, or Both? 119
Structured Design and Connascence: Blind Spots 119
Different Strategy . 120

Integration Strength . 121
Running Example: Sharing a Database 121

Intrusive Coupling . 122
Examples of Intrusive Coupling . 123
Running Example: Intrusive Coupling by

Sharing a Database . 123
Effects of Intrusive Coupling . 123

Functional Coupling . 125
Degrees of Functional Coupling . 125
Causes for Functional Coupling . 127
Running Example: Functional Coupling by

Sharing a Database . 128
Effects of Functional Coupling . 128

Model Coupling . 128
Degrees of Model Coupling . 132
Running Example: Model Coupling by

Sharing a Database . 132
Effects of Model Coupling . 133

Contract Coupling . 134
Example of Contract Coupling . 135

Contents xi

Degrees of Contract Coupling . 138
Depth of Contract Coupling . 139
Running Example: Contract Coupling by

Sharing a Database . 141
Effects of Contract Coupling . 141

Integration Strength Discussion . 143
Example: Distributed System . 144

Integration Strength and Asynchronous Execution 146
Key Takeaways . 147
Quiz . 148

Chapter 8: Distance . 151

Distance and Encapsulation Boundaries . 151
Cost of Distance . 152
Distance as Lifecycle Coupling . 154
Evaluating Distance . 156

Additional Factors Affecting Distance . 157
Distance and Socio-Technical Design . 157
Distance and Runtime Coupling . 159
Asynchronous Communication and Cost of Change 160

Distance Versus Proximity . 160
Distance Versus Integration Strength . 161
Key Takeaways . 161
Quiz . 162

Chapter 9: Volatility . 165

Changes and Coupling . 165
Why Software Changes . 166

Solution Changes . 167
Problem Changes . 168

Evaluating Rates of Changes . 169
Domain Analysis . 169
Source Control Analysis . 174

Volatility and Integration Strength . 175
Inferred Volatility . 177
Key Takeaways . 178
Quiz . 179

Contentsxii

Part III: Balance . 181

Chapter 10: Balancing Coupling . 183

Combining the Dimensions of Coupling . 184
Measurement Units . 185
Stability: Volatility and Strength . 186
Actual Costs: Volatility and Distance . 187
Modularity and Complexity: Strength and Distance 187

Combining Strength, Distance, and Volatility 189
Maintenance Effort: Strength, Distance, Volatility 189
Balanced Coupling: Strength, Distance, Volatility 191

Balancing Coupling on a Numeric Scale . 192
Scale . 193
Balanced Coupling Equation . 194
Balanced Coupling: Examples . 195

Key Takeaways . 198
Quiz . 199

Chapter 11: Rebalancing Coupling . 201

Resilient Design . 201
Software Change Vectors . 202

Tactical Changes . 202
Strategic Changes . 203

Rebalancing Coupling . 205
Strength . 206
Volatility . 209
Distance . 212
Rebalancing Complexity . 212

Key Takeaways . 213
Quiz . 213

Chapter 12: Fractal Geometry of Software Design 215

Growth . 215
Network-Based Systems . 216
Software Design as a Network-Based System 217
Why Do Systems Grow? . 218
Growth Limits . 219
Growth Dynamics in Software Design 220

Contents xiii

Innovation . 223
Innovation in Software Design . 225
Abstraction as Innovation . 226

Fractal Geometry . 228
Fractal Modularity . 230
Key Takeaways . 230
Quiz . 231

Chapter 13: Balanced Coupling in Practice . 233

Microservices . 233
Case Study 1: Events Sharing Extraneous Knowledge 234
Case Study 2: Good Enough Integration 238

Architectural Patterns . 239
Case Study 3: Reducing Complexity . 239
Case Study 4: Layers, Ports, and Adapters 241

Business Objects . 245
Case Study 5: Entities and Aggregates . 246
Case Study 6: Organizing Classes . 249

Methods . 251
Case Study 7: Divide and Conquer . 251
Case Study 8: Code Smells . 253

Key Takeaways . 256
Quiz . 256

Chapter 14: Conclusion .257

Epilogue . 261

Appendix A: The Ballad of Coupling . 263

Appendix B: Glossary of Coupling . 265

Appendix C: Answers to Quiz Questions . 271

Bibliography . 275

Index . 279

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

xv

Series Editor Foreword

I recall meeting Vladik at a conference or two nearly a decade ago, by the publication
date of this, his new book. I recall Vladik, or Vlad if you like, being a quiet and
thoughtful person, and with a good sense of humor, which scored high with me.
He’s not overly quiet though, as he’s proven by his insightful conference talks. Since
that time, we met up now and then, with our last in-person opportunity in New York
City at a software architecture conference just prior to the COVID-19 lockdown.
Although I find that reference point distasteful, it was thereafter a pivotal time when
my signature series got life. Shortly thereafter, I asked Vladik if he would write a
book for it. To my delight, he agreed. During the following years, Vladik encoun-
tered several challenges, some of a personal family nature, and others dealing with
life and work during the crazy pandemic period. Yet, he endured and persisted in his
work. I reviewed Vladik’s book a few different times and watched it transition from
rough draft to finished product. I have to say that experiencing the blend of past
practices framed in a fresh and powerful way was fascinating. I’ll explain more about
that after I introduce the purpose of this series.

My Signature Series is designed and curated to guide readers toward advances in
software development maturity and greater success with business-centric practices.
The series emphasizes organic refinement with a variety of approaches—reactive,
object, as well as functional architecture and programming; domain modeling; right-
sized services; patterns; and APIs—and covers best uses of the associated underlying
technologies.

From here I am focusing now on only two words: organic refinement.
The first word, organic, stood out to me recently when a friend and colleague

used it to describe software architecture. I have heard and used the word organic in
connection with software development, but I didn’t think about that word as care-
fully as I did then when I personally consumed the two used together: organic
architecture.

Think about the word organic, and even the word organism. For the most part
these are used when referring to living things, but are also used to describe inanimate
things that feature some characteristics that resemble life forms. Organic originates
in Greek. Its etymology is with reference to a functioning organ of the body. If you
read the etymology of organ, it has a broader use, and in fact organic followed suit:
body organs; to implement; describes a tool for making or doing; a musical
instrument.

Series Editor Forewordxvi

We can readily think of numerous organic objects—living organisms—from the
very large to the microscopic single-celled life forms. With the second use of organ-
ism, though, examples may not as readily pop into our mind. One example is an
organization, which includes the prefix of both organic and organism. In this use of
organism, I’m describing something that is structured with bidirectional dependen-
cies. An organization is an organism because it has organized parts. This kind of
organism cannot survive without the parts, and the parts cannot survive without the
organism.

Taking that perspective, we can continue applying this thinking to nonliving
things because they exhibit characteristics of living organisms. Consider the atom.
Every single atom is a system unto itself, and all living things are composed of atoms.
Yet, atoms are inorganic and do not reproduce. Even so, it’s not difficult to think of
atoms as living things in the sense that they are endlessly moving, functioning. Atoms
even bond with other atoms. When this occurs, each atom is not only a single system
unto itself but also becomes a subsystem along with other atoms as subsystems, with
their combined behaviors yielding a greater whole system.

So then, all kinds of concepts regarding software are quite organic in that nonliv-
ing things are still “characterized” by aspects of living organisms. When we discuss
software model concepts using concrete scenarios, or draw an architecture diagram,
or write a unit test and its corresponding domain model unit, software starts to come
alive. It isn’t static, because we continue to discuss how to make it better, subjecting
it to refinement, where one scenario leads to another, and that has an impact on the
architecture and the domain model. As we continue to iterate, the increasing value in
refinements leads to incremental growth of the organism. As time progresses so does
the software. We wrangle with and tackle complexity through useful abstractions,
and the software grows and changes shapes, all with the explicit purpose of making
work better for real living organisms at global scales.

Sadly, software organics tend to grow poorly more often than they grow well.
Even if they start out life in good health, they tend to get diseases, become deformed,
grow unnatural appendages, atrophy, and deteriorate. Worse still is that these symp-
toms are caused by efforts to refine the software that go wrong instead of making
things better. The worst part is that with every failed refinement, everything that
goes wrong with these complexly ill bodies doesn’t cause their death. Oh, if they
could just die! Instead, we have to kill them and killing them requires nerves, skills,
and the intestinal fortitude of a dragon slayer. No, not one, but dozens of vigorous
dragon slayers. Actually, make that dozens of dragon slayers who have really big
brains.

That’s where this series comes into play. I am curating a series designed to help
you mature and reach greater success with a variety of approaches—reactive, object,

Series Editor Foreword xvii

and functional architecture and programming; domain modeling; right-sized
services; patterns; and APIs. And along with that, the series covers best uses of the
associated underlying technologies. It’s not accomplished at one fell swoop. It
requires organic refinement with purpose and skill. I and the other authors are here
to help. To that end, we’ve delivered our very best to achieve our goal.

Is balancing software coupling organic? Absolutely! Start with a sinkhole of a
repository where all goopy code has gone to collect as sludge. Triple yuk! How can
you possibly grow any new, bright life from the quagmire? Simple. Start scooping
and separating, add some good soil and nutrients, build some modular containers
around the mounds of enriched earth, and start planting seeds in each—some com-
mon, some special, and even a few exotics. Before you know it, poof, and there’s
fresh life!

Well, sort of, but not exactly. You’ll have to learn about “software gardening.”
That includes soaking up the basic almanac of coupling: what coupling is exactly;
the bad and the good of it; how coupling relates to system design and levels of com-
plexity; and how modularity helps, of course. After you are on solid ground, there’s
a whole set of dimensions to learn that will help you evaluate the environment for
sustained growth: strength, space, and time. There’s the introduction to module cou-
pling and connascence, which leads to Vladik’s own new model: integration strength.
This might flow like flood irrigation but keep gulping. What about distance and how
it plays into different crops being planted and nourished, and how can cultivating
and pruning one crop lead to positive and [or?] negative impacts on another? It’s
sprouting.

“Wait a minute, let me catch up,” you say? That’s a fitting response to how time
plays into planting rotations and potential volatility due to various elements. All this
requires balance to avoid the enemy of all software; that is, growth over time. Exam-
ples of how other gardens have grown will help your plantings to sustain life despite
those harsh elements. And it works because it’s all backed by decades of research and
development by renown software practitioners—umm, horticulturalists.

You are now ready to roll up your sleeves, open the spigot, and absorb. Get to
growing excellent software!

—Vaughn Vernon

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

xix

Foreword

Successful software systems grow and evolve—to add new features and capabilities,
and to support new technologies and platforms. But is it inevitable that over time
they become unmaintainable “Big Balls of Mud?”

Well, given that complex software systems are structured out of modular interre-
lated units of functionality, each with discrete responsibilities, there will always be
coupling. But the ways modules communicate and how they share information have
implications on our ability to change them.

In this book, Vlad, after informing us of the original design ideas of module cou-
pling and connascence, updates us with fresh ways to think about the various dimen-
sions of coupling: integration strength, volatility, and distance. He then leads us on a
journey to deeply understanding coupling and offers a comprehensive model for
evaluating coupling options when designing or refactoring parts of a system. Most
authors explain coupling in a paragraph or a page. Vlad gives us an entire book.

There are various ways we can reduce coupling, and Vlad explains them. Should
we always look at coupling as something bad? Of course not. But we shouldn’t be
complacent either. The last section of Vlad’s book introduces the notion of balanced
coupling, and a process for thinking through design implications as you “rebalance”
the coupling in your system.

Thanks, Vlad, for persisting in writing this comprehensive treatment of coupling,
balancing, and then rebalancing (design always involves trade-offs). You provide us
with a wealth of new and insightful ways to think about structuring and restructur-
ing complex systems to keep them working and evolvable. This book gives me hope
that in the hands of thoughtful designers, software system entropy isn’t inevitable.

—Rebecca J. Wirfs-Brock
May 2, 2024

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

xxi

Foreword

Design happens in the cracks.
At first as a programmer you don’t even know what the things are. You learn

about functions. You learn about types. You learn about classes and modules and
packages and services. You still haven’t learned to design. You can make all the
things, but you can’t design. Because design happens in the cracks.

Design prepares change. The things, those are the change. Design makes places
for the new things, the functions and types and classes and modules and packages
and services.

What Vlad has done is catalog the cracks, the seams, the dark squishy in between
of software. If you want to not just make changes, but make changes easy, this is the
vocabulary you’ll need. The glossary. The dictionary of cracks.

Vlad understands well that experts learn by doing and reflecting. The review
questions with each chapter are stepping stones to learning for those willing to put in
the work required to learn.

Since Vlad did me the honor of inviting me to invite you to read this book, I’ll take
a moment to complain about vocabulary. Vlad uses “integration strength” to mean
what I mean by “coupling”, the relationship between elements where changing one
in a particular way requires changing the other. He uses “coupling” to mean a more
general connection between elements, at runtime or compile time. It’s not a huge
deal but it’s important for me to say.

Having said that, I heartily recommend reading Balancing Coupling in Software
Design. Strike that. I heartily recommend learning from Balancing Coupling in Soft-
ware Design. Read about a kind of crack, a connection, go find it in your own code,
find it in other people’s code, try out variations on it, try out timings for changing it,
watch how it affects the behavioral changes you want to make. Then read about
another kind of crack. Compare and contrast. Dig in.

Your software can get easier to change over time, but it’s hard work to make that
happen. With the concepts and skills you’ll gain from this book, though, you will be
well on your way.

—Kent Beck
San Francisco, California

2024

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

xxiii

Preface

Books on software design typically dedicate a few pages to coupling. On rare occa-
sions, you’ll find a whole chapter on the subject. Yet, while fads come and go, cou-
pling has been, is, and, I bet, always will be relevant. Don’t believe me? Just take a
moment and listen to the industry chatter. You will hear the “coupling is bad” man-
tra everywhere. But what exactly is this “coupling” thing? Is it always that bad, or
does it become really bad after a certain point? Can you even measure it? If so, how?
These are the questions I’ve sought answers to since I started working as a software
engineer. All I encountered was more and more of “Avoid coupling!” or “This archi-
tectural pattern will save you from coupling!” or, even worse, “The only way to avoid
coupling is to use our product!” Sigh.

Around 2014, yet another “decoupling salvation” emerged: microservices. I even
remember a slide from some conference that read “Microservices is the architecture
for decoupling.” It was “microservices this” and “microservices that,” but back then
nobody could really define what a microservice was. That didn’t stop me (or anyone
else) from trying. Pumped by the microservices/decoupling hype, we aimed to
“decouple” everything in the project I was working on. For that, we designed micros-
ervices around business entities, with each API resembling mostly CRUD1 opera-
tions. Each entity can be evolved independently, we said. The result? A fiasco. No, a
cosmic-scale fiasco.

That failed project, however, turned out to be a blessing in disguise. I had to figure
out why what promised decoupling resulted in a coupling Godzilla. I had to get it
right. So, I set out to read all the papers and books that could explain how to do
microservices better. Eventually, I found an explanation. All our design mistakes
were described in Chapter 6 of the book Structured Design (Yourdon and Constan-
tine 1975). The title of the chapter? “Coupling.”

That’s how my journey into coupling in software design started. I wanted to learn
everything that we knew but had forgotten. A few years later, all the puzzle pieces
started falling into place. Everything I learned began to form a coherent picture—a
three-dimensional model of how coupling affects software projects. Gradually, I
started applying this model in my day-to-day work. It worked! What’s more, it com-
pletely changed the way I think about software design.

1. Create, Read, Update, and Delete.

Prefacexxiv

At some point, I couldn’t keep it inside anymore, and I wanted to share my find-
ings. This led to a talk I gave at the Domain-Driven Design Europe 2020 conference,
titled “Balancing Coupling in Distributed Systems.” As I was walking off the stage,
cortisol and adrenaline were conducting a stress hormone conference of their own in
my bloodstream. The only thing I remember is Rebecca Wirfs-Brock telling me that I
had to keep developing these ideas and to write a book about it. Who am I to argue
with Rebecca Wirfs-Brock?

I had to write this book for the same reason I gave that conference talk. All this
knowledge that we have, but have forgotten, is far too important. So, if you’re read-
ing these words, it means that after long years of hard work, I managed to finish this
book before it could finish me. I wholeheartedly believe that this material will be as
useful to you as it has been to me.

Who Should Read This Book?

As I’m writing this Preface, Pearson’s style guidelines instruct me to “be precise and
resist the temptation to create a long list of potential readers.” Well, then, I will
define the book’s target audience as people who create software.

Whether you are a junior, senior, or principal software engineer or architect, as
long as you are making software design decisions at any level of abstraction, cou-
pling can make or break your efforts. Learning to tame the forces of coupling is
essential for building modular and evolvable systems.

How This Book Is Organized

This book is divided into three parts.
Part I, Coupling—The first part of the book is about the big picture: how cou-

pling fits in the contexts of software design, complexity, and modularity.
Chapter 1, Coupling and System Design—In the first part of this chapter, you will

learn what systems are, how they are built, and the role coupling plays in any system.
The second part of the chapter switches the focus to software systems and introduces
the terminology that will be used to describe coupling in the chapters that follow.

Chapter 2, Coupling and Complexity: Cynefin—Since complexity is something
we would rather avoid, it’s important to understand what it is in the first place. To
that end, the chapter introduces the basic principles of the Cynefin framework that
precisely defines what complexity is.

Preface xxv

Chapter 3, Coupling and Complexity: Interactions—This chapter shifts the dis-
cussion to systems in general and software design complexity in particular. You will
learn what makes a software system complex and what that has to do with
coupling.

Chapter 4, Coupling and Modularity—This chapter switches the focus to what
we would rather achieve: modularity. It defines the notions of modularity and soft-
ware modules. Most importantly, it discusses coupling: the rudder that can steer a
system toward either complexity or modularity.

Part II, Dimensions—The second part of the book homes in on coupling. You
will learn the different ways coupling affects systems and a number of models for
evaluating its effect.

Chapter 5, Structured Design’s Module Coupling—This chapter starts the jour-
ney through time and introduces the first model of evaluating coupling in software
design, a model that was formulated in the late 1960s but is still relevant today.

Chapter 6, Connascence—This chapter introduces a model that reflects a differ-
ent aspect of coupling: connascence. You will learn what it means for modules to be
“born together” and the different magnitudes of this kind of relationship.

Chapter 7, Integration Strength—Here, we combine the aspects of coupling
reflected by structured design’s module coupling and connascence into a combined
model known as integration strength. You will learn to use this model to evaluate the
knowledge shared among the components of a system.

Chapter 8, Distance—In this chapter, we switch the focus to a different dimen-
sion: space. You will learn how the physical position of modules in a codebase can
affect their coupling.

Chapter 9, Volatility—Here, we switch the focus to the dimension of time. We
will discuss the reasons for changes in software modules, how a module’s volatility
can propagate across the system, and how you can evaluate a module’s expected rate
of change.

Part III, Balance—This part of the book connects the topics in Parts I and II by
turning the dimensions of coupling into a tool for designing modular software.

Chapter 10, Balancing Coupling—In this chapter, we explore the insights you can
gain by combining the dimensions of coupling. The chapter also introduces the bal-
anced coupling model: a holistic model for evaluating the effects of coupling on the
overarching system.

Chapter 11, Rebalancing Coupling—Here, we discuss the strategic evolution of a
software system, the changes it brings, and how these changes can be accommodated
by rebalancing the coupling forces.

Chapter 12, Fractal Geometry of Software Design—In this chapter, we continue
the topic of system evolution, focusing on the most common and important change:
growth. This chapter combines knowledge from other industries, and even nature, to
uncover the underlying design principles guiding software design.

Prefacexxvi

Chapter 13, Balanced Coupling in Practice—We move from theory to practical
application in this chapter by discussing case studies that demonstrate how the bal-
anced coupling model can be used to improve software design. The case studies also
demonstrate that the balanced coupling model can be observed at the heart of well-
known architectural styles, design patterns, and design principles.

Chapter 14, Conclusion—This chapter summarizes the book’s content and
provides final advice on applying the learned principles in your day-to-day work.

Case Studies and WolfDesk

This book is grounded in practice: Everything you’ll read has been battle-tested and
proven useful across multiple software projects and business domains. This real-
world experience is reflected in the case studies you’ll find in each chapter. Though I
can’t divulge specific details about the projects, I wanted to provide concrete case
studies to make the material less abstract. To do this, I transformed stories from the
trenches into case studies about a fictional company, WolfDesk. While the company
is fictional, all the case studies are drawn from real projects. Here’s a brief descrip-
tion of WolfDesk and its business domain.

WolfDesk

WolfDesk provides a help desk management system as a service. If your startup com-
pany needs to offer support to your customers, WolfDesk’s solution can get you up
and running in no time.

WolfDesk uses a payment model that sets it apart from its competitors. Rather
than charging a fee per user, it allows tenants to set up as many users as they need,
charging based on the number of support cases opened per billing period. There is
no minimum fee, and automatic volume discounts are offered at certain thresholds
of monthly cases.

To prevent tenants from exploiting the business model by reusing existing support
cases, the lifecycle algorithm ensures that inactive support cases are automatically
closed, encouraging customers to open new ones when more support is needed. Fur-
thermore, WolfDesk implements a fraud detection system that analyzes messages
and identifies instances of unrelated topics being discussed within the same support
case.

In an effort to help tenants streamline their support-related work, WolfDesk has
implemented a “support autopilot” feature. This autopilot analyzes new inquiries
and attempts to automatically find a matching solution from the tenant’s history.

Preface xxvii

This function helps to further reduce the lifespan of cases, encouraging customers to
open new cases for additional questions.

The administration interface allows tenants to configure possible values for sup-
port case categories, as well as a list of the tenant’s products that require support. To
ensure that support cases are routed to agents only during their working hours,
WolfDesk allows users to configure different shift schedules for different depart-
ments and organizational units.

Register your copy of Balancing Coupling in Software Design on the InformIT
site for convenient access to updates and/or corrections as they become available.
To start the registration process, go to informit.com/register and log in or create
an account. Enter the product ISBN (9780137353484) and click Submit. If you
would like to be notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

http://informit.com/register

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

xxix

Acknowledgments

I would like to extend my deepest gratitude to Vaughn Vernon, without whom this
book would not have become a reality. Vaughn not only provided me with the incred-
ible opportunity to bring these ideas to the printed page, but he also supported me
throughout the writing process. Thank you for always being there when I needed
help, and for your invaluable advice and insights, which have significantly enriched
this book.

Haze Humbert is the book’s guardian angel or, more formally, its executive editor.
The work on this book lasted for four years, and I know I didn’t make those years
easy for Haze. Everything that could go wrong did, and then some. Haze, you are
among the most patient people I know. Thank you for making this happen, and for
your support in the moments when I needed it most.

What a relief it was to finish writing this book! However, that was just one battle.
To win the war, it needed to be prepared for printing, and what an array of curveballs
this entailed. I want to thank Julie Nahil, the book’s content producer, for being on
my side and helping me get the book laid out and formatted just as I envisioned.

This book transcends different eras of software engineering and diverse fields of
study. This is hands down the most challenging project I have ever worked on, and it
wouldn’t have seen the light of day without the contributions of so many people who
helped me along the way. I want to thank the subject matter experts whom I con-
sulted during the writing process2: Alistair Cockburn, Gregor Hohpe, Liz Keogh,
Ruth Malan, David L. Parnas, Dave Snowden, and Nick Tune.

Heartfelt thanks to the reviewers who were brave enough to read the book’s early,
unedited drafts, providing feedback that played a crucial role in refining the manu-
script: Ilio Catallo, Ruslan Dmytrakovych, Savvas Kleanthous, Hayden Melton,
Sonya Natanzon, Artem Shchodro, and Ivan Zakrevsky.

Last but not least, I want to thank two special people from whom I’ve learned so
much, and it’s an immense honor to have them as foreword authors: Rebecca
J. Wirfs-Brock and Kent Beck. Thank you both for your warm and inspiring words!

2. Whenever I mention a group of people, the list is in alphabetical order by last name.

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

xxxi

About the Author

Vlad (Vladik) Khononov wanted to make his own computer games, so at eight
years old, he picked up a book on BASIC. Although he has yet to publish a game,
software engineering became his passion and trade. With over two decades of indus-
try experience, Vlad has worked for companies large and small, in roles ranging from
webmaster to chief architect. As a consultant and trainer, he currently helps compa-
nies make sense of their business domains, untangle legacy systems, and tackle com-
plex architectural challenges.

Vlad maintains an active media career as an author and keynote speaker. Besides the
book you are holding, he has written Learning Domain-Driven Design (O’Reilly,
2021), which has been translated into eight languages. As a speaker, Vlad has pre-
sented at leading software engineering and architecture conferences around the
world. He is known for his ability to explain complex concepts in simple, accessible
terms, benefitting both technical and nontechnical audiences. You can reach out to
Vlad on X (@vladikk) and LinkedIn.

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

57

Chapter 4

Coupling and Modularity

Modularity’s perks, we cannot ignore,
But its true essence, we still must explore.
What makes a design coherent and fluent?
It’s all about value—future and current.

“95% of the words are spent extolling the benefits of modularity, and little, if any-
thing, is said about how to achieve it” (Myers 1979). These words were written over
40 years ago, but the observation remains true to this day. The significance of modu-
larity is unquestionable: It is the cornerstone of any well-designed system. Yet,
despite the many new patterns, architectural styles, and methodologies that have
emerged over the years, attaining modularity is still a challenge for many software
projects.

The topic of this chapter is modularity and its relationship to coupling. I’ll start
by defining what modules are and what makes a system modular. Next, you will
learn about design considerations that are essential for increasing the modularity
of a system and avoiding complex interactions. Ultimately, the chapter discusses the
role of cross-component interactions in modular systems, which paves the way for
using coupling as a design tool in the chapters that follow.

Modularity

Not only is the notion of modularity not unique to software design, but the term
“module” predates software design by about 500 years. At its core, modularity refers
to systems composed of self-contained units called modules. At the same time, you

Chapter 4 Coupling and Modularity58

may recall that in Chapter 1, I defined a system as a set of components. This natu-
rally raises an intriguing question: What distinguishes the components of a tradi-
tional system from the modules of a modular system?

A system has a goal: the functionality it has to implement. The components of the
system are working together to achieve the goal. For example, a social media app ena-
bles people to connect, share, and interact, while an accounting system streamlines
financial tasks for businesses. However, these functionalities only address the present
requirements. As time goes on, the users’ needs may change, and new requirements
may emerge. That’s where modularity comes into play.

Modular design aims to address a wider range of goals than a nonmodular sys-
tem can. It expands the system’s goal to accommodate requirements that are cur-
rently unknown but may be needed in the future. Of course, the future requirements
are not expected to be available out of the box on day one, but the design should
make it possible to evolve the system with a reasonable effort.

By investing in modularity, we design an adaptable and flexible system. That is,
the primary goal of modularity is to allow the system to evolve (Cunningham 1992).
A famous quote that is often (mis)attributed to Charles Darwin1 captures this idea
perfectly: “It is not the strongest of the species that survives, but the most adapta-
ble.” This principle applies to systems as well. Even the most finely tuned, faultlessly
performing system of today will face obsolescence if it cannot flex and grow with
tomorrow’s changes. The less flexible a system is, the less stress it can tolerate. The
less stress it can tolerate, the more prone it is to breaking under the pressure of evolv-
ing requirements. By being prepared to handle changes, a modular system is better
positioned for long-term success.

Modularity also serves as a cognitive tool, streamlining the comprehension of a
system. Instead of a monolithic, inscrutable black box, a modular system presents as
a collective of individual parts, each performing its function yet able to function col-
laboratively. This separation into modules allows for a clearer understanding of the
system’s inner mechanics and how it ultimately delivers the desired output.

But why does this matter? Is it simply a matter of satisfying intellectual curiosity?
Not really. A deep understanding of how a system operates is the key to modifying
and improving it. This might involve altering existing behavior, such as fixing bugs,
or it could involve evolution of the system by introducing new functionalities. The
simplicity and transparency of a modular design enable you to tinker, adjust, and
innovate more effectively and with more confidence.

With this understanding of the importance of modularity, let’s dig deeper into the
concept of a module and its role in making a flexible system.

1. Quote Investigator delves into the history of this quotation (https://quoteinvestigator.com/2014/05/04/
adapt).

https://quoteinvestigator.com/2014/05/04/adapt
https://quoteinvestigator.com/2014/05/04/adapt

Modules 59

Modules

The terms “module” and “component” are often used interchangeably, which causes
confusion. As I mentioned earlier, any system is composed of components. There-
fore, a module is a component. However, not every component is a module. To
design a flexible system, it’s not enough to decompose the system into an arbitrary
set of components. Instead, a modular design should enable you to alter the system
by combining, reconfiguring, or replacing its components—its modules.

Let’s consider two examples of modules from our everyday lives (Figure 4.1):

 1. LEGO bricks are a straightforward illustration of modularity in action. Each
brick is a self-contained unit that can be connected with other bricks to form
a variety of structures. The ease with which these bricks can be assembled and
disassembled illustrates a perfectly modular system.

 2. Another widespread example of modularity is the interchangeable camera
lenses used by photography enthusiasts. The ability to switch lenses enables
photographers to adapt their cameras to different shooting conditions and
achieve various effects, all without requiring multiple cameras.

The success of a modular system depends on the design of its modules. To enable
the desired flexibility of a system, its design has to focus on clear boundaries and
well-defined interactions between modules. To reason about the design of a module,

Figure 4.1 Modularity in real-life systems

(Images: left, focal point/Shutterstock; right, Kjpargeter/Shutterstock)

Chapter 4 Coupling and Modularity60

it’s helpful to examine three fundamental properties describing a module: function,
logic, and context:2

 1. Function is the module’s goal, the functionality it provides. It is exposed to
consumers of the module through its public interface. The interface has to
reflect the tasks that can be achieved by using the module, how the module can
be integrated, and its interactions with other modules.

 2. A module’s logic is all about how the module’s function is implemented;
that is, the implementation details of the module. Unlike function, which is
explicitly exposed to consumers, a module’s logic should be hidden from other
modules.

 3. Finally, a module’s context is the environment in which the module should be
used. This includes both explicit requirements and implicit assumptions the
design makes on the module’s usage scenarios and environment.

These fundamental properties provide valuable insights into a module’s role
within the broader system, as summarized in Table 4.1.

To effectively design a module, its function should be clear and explicitly
expressed in its public interface. The module’s implementation details, or logic, on
the other hand, should be hidden from consumers by the module’s boundary. Ulti-
mately, a clear and explicit definition of the context is essential for consumers to be
able to integrate the module, as well as to be aware of how the module’s behavior
might be affected by changes in its environment.

Let’s have a look at how these properties are reflected in the aforementioned mod-
ular systems: LEGO bricks and interchangeable camera lenses.

2. In later sources, you may encounter different terms used to describe the properties: border, implemen-
tation, and environment. For consistency, I’ll stick to the original terminology (Myers 1979).

Table 4.1 Comparison of the Three Fundamental Properties of a Module

Property Reflects Type of information

Function Module’s goal Public, explicit

Logic How module works Hidden by the module

Context Assumptions about the
environment

Public, less explicit than
function

Modules 61

LEGO Bricks

The goal of the overall system—the LEGO constructor—is to form structures from
individual building blocks. The modules of the system are LEGO bricks. As a mod-
ule, each brick has the following properties:

 • Function: A brick’s goal is to connect with other bricks. It’s explicitly reflected
by the “integration interface”: studs and holes through which it can be easily
attached to other bricks.

 • Logic: The bricks are made from a material that supports the required weight
to build sturdy structures and guarantees reliable attachment to other bricks.

 • Context: Since LEGOs are (generally) a toy for children, they have to be safe
and appropriate for kids to play with. Furthermore, because of their purpose
as a creative and fun playtime tool, using LEGO bricks to build actual houses
would not be a good fit, as they are not designed or intended for such a task.

Camera Lenses

As I mentioned earlier in this chapter, interchangeable camera lenses enable photog-
raphy enthusiasts to adapt to different shooting conditions without having to use
multiple cameras. Both the camera body and the attachable lenses are modules. Let’s
focus on the properties of camera lenses as modules:

 • Function: Enable capturing images with specific properties, such as focal
length or aperture. The interface defines what kinds of cameras the lenses can
be used with, as well as the supported range of optical capabilities.

 • Logic: The inner workings of lenses allowing them to be connected to a camera
and capture the required optical capabilities.

 • Context: The supported ranges of camera models, as well as varying function-
alities for different cameras (e.g., whether autofocus is supported or not).

Now that we have established an understanding of modularity in general, let’s
explore how these concepts apply in the context of software design.

Chapter 4 Coupling and Modularity62

Modularity in Software Systems

Although the term “module” is used extensively in software engineering, defining
what a software module is, is not as straightforward as one might expect. The ambi-
guity arises from the term’s long-standing use, during which its original meaning
was obscured as software engineering evolved, leading to diverse reinterpretations
and loss of a precise definition.

What makes a software module? Is it a library, a package, an object, a group of
objects, or a service? Furthermore, what is a nonmodule software component, and
how does it differ from a module?

Some argue that a module embodies a logical boundary, such as a namespace, a
package, or an object, while a component signifies a physical boundary, encompass-
ing artifacts such as services and redistributable libraries. However, the juxtaposition
of logical and physical boundaries is not accurate. To understand why it’s not accu-
rate, as well as what exactly a software module is, let’s go back in time and examine
what was meant by “module” when the term was originally introduced to software
design.

Software Modules

In his seminal paper “On the Criteria to Be Used in Decomposing Systems into Mod-
ules,” David L. Parnas (1971) succinctly defined a module as “a responsibility assign-
ment” rather than just an arbitrary boundary around statements of a program.

Four years later, in their book Structured Design, Edward Yourdon and Larry L.
Constantine (1975) described a module as “a lexically contiguous sequence of pro-
gram statements, bounded by boundary elements, having an aggregate identifier.”
Or, in simpler terms, a module is any collection of executable program statements
meeting all of the following criteria (Myers 1979):

 • The statements implement self-contained functionality.

 • The functionality can be called from any other module.

 • The implementation has the potential to be independently compiled.

The self-contained functionality criterion implies that a specific functionality is
encapsulated within a module, rather than, for example, being spread across multi-
ple modules. Next, the module makes this functionality accessible to other modules
of the system through its public interface. Ultimately, the module’s implementation

Modularity in Software Systems 63

can potentially be independently compiled. Consequently, according to this defini-
tion, the type of a module’s boundary—physical or logical—is not essential. As long
as it has the potential of being extracted into an independent unit that can be com-
piled, it is a module. What is more important than the type of the module’s bound-
ary is the functionality it implements and provides to other modules.

This focus on the well-defined functionality rather than the type of a boundary
makes modules ubiquitous all across software design. (Micro)services, frameworks,
libraries, namespaces, packages, objects, classes—all can be modules. Furthermore,
because nowadays a class’s methods can be compiled independently,3 even individual
methods/functions can be considered modules.

That means a service-based system can be modular if its services are designed as
effective modules. A service of that system can be modular on its own if, for exam-
ple, it consists of modular namespaces. Modular objects can form a modular name-
space, and the same is true for methods or functions constituting objects. “It’s turtles
all the way down,” as illustrated in Figure 4.2. Modules are not flat; modular design
is hierarchical.

3. For example, extension methods in C# or functions in languages such as Python and JavaScript.

Packages

Subpackages

Objects

Services Support Cases
Service

Distribution
Service

Core

Agents &
Departments

Service

Application Infrastructure

SupportCases Products Messaging

SupportCase Priority Notification

...

...

...

...

Figure 4.2 Hierarchical modular design

Chapter 4 Coupling and Modularity64

To reiterate, a module is a boundary encompassing a well-defined functionality,
which it exposes for use by other parts of the system. Consequently, a module could
represent nearly any type of logical or physical boundary within a software system,
be it a service, a namespace, an object, or something else.

Throughout this book, I’ll use the term “module” to signify a boundary enclosing
specific functionality. This functionality is exposed to external consumers and either
is or has the potential to be independently compiled.

Function, Logic, and Context of Software Modules

We can use the three properties of a module—function, logic, and context—to
describe all kinds of the aforementioned software modules.

Function
A software module’s function is the functionality it exposes to its consumers over its
public interface. For example:

 • A service’s functionality can be exposed through a REST API or asynchro-
nously through publishing and subscribing to messages.

 • An object’s function is expressed in its public methods and members.

 • The function of a namespace, package, or distributed library consists of the
functionality implemented by its members.

 • If a distinct method or a function is treated as a module, its name and signa-
ture reflect its function.

Logic
A software module’s logic encompasses all the implementation and design decisions
that are needed to implement its function. It includes its source code,4 as well as
internal infrastructural components (e.g., databases, message buses) that are not
needed for describing the module’s function.

4. Rumor has it that this is where the term “business logic” comes from. This implies that there are differ-
ent kinds of “logics” encompassed in a module: logic for integrating infrastructural components, and
logic for business tasks. That said, I couldn’t find any sources that can prove this observation.

Modularity in Software Systems 65

Context
All types of software modules depend on various attributes of their execution envi-
ronments and/or make assumptions regarding the context in which they operate. For
example:

 • At a very basic level, a certain runtime environment is needed to execute a mod-
ule. Moreover, a specific version of the runtime environment may be required.

 • A certain level of compute resources, such as CPU, memory, or network
bandwidth, may be needed for the module to function properly.

 • A module may assume that the calls are pre-authorized instead of performing
authorization itself.

Going back to the definition of a module’s context, the main difference between
function and context is that the assumptions and requirements tied to the context are
not reflected in the module’s public interface—its function.

Now that you have a solid understanding of what a software module is, let’s delve
into the design considerations for designing a modular system.

Effective Modules

As noted in the previous sections, an arbitrary decomposition of a system into com-
ponents won’t make it modular. The hierarchical nature of modules doesn’t make it
any easier. Failing to properly design modules at any level in the hierarchy can poten-
tially undermine the whole effort.

Effective design of modules is not trivial, and failures to do so can be spotted
all across the history of software engineering. For example, not so long ago, many
believed that a microservices-based architecture is the easy solution for designing
flexible, evolvable systems. However, without a proper principle guiding the decom-
position of a system into microservices (modules), many teams ended up with dis-
tributed monoliths—solutions that were much less flexible than the original design.
As they say, history tends to repeat itself, and almost exactly the same situation
happened when modularity was introduced to software design:

When I came on the scene (in the late 1960s) software development managers had real-
ized that building what they called monolithic systems wasn’t working. They wanted
to divide the work to be done into parts (which they called modules) and each part or
module would be assigned to a different team or team member. Their hope was that
(a) when they put the parts together they would “fit” and the system would work and
(b) when they had to make changes, the changes would be confined to a single module.
Neither of those things happened. The reason was that they were doing a “bad job”

Chapter 4 Coupling and Modularity66

of dividing the work into modules. Those modules had very complex interfaces, and
changes almost always affected many modules. —David L. Parnas, personal correspon-
dence to author (May 3, 2023)

Following that experience, Parnas (1971) proposed a principle intended to guide
more effective decomposition of systems into modules: information hiding. According
to the principle, an effective module is one that hides decisions. If a decision has to be
revisited, the change should only affect one module, the one that “hides” it, thus mini-
mizing cascading changes rippling across multiple components of the system.

In Parnas’s later work (1985, 2003), he equated modules following the
information-hiding principle to the concept of abstraction. Let’s see what an abstrac-
tion is, what makes an effective abstraction, and how to use this knowledge to craft
module boundaries.

Modules as Abstractions

The goal of an abstraction is to represent multiple things equally well. For example,
the word “car” is an abstraction. When thinking about a “car,” one does not need to
consider a specific make, model, or color. It could be a Tesla Model 3, an SUV, a taxi,
or even a Formula 1 race car; it could be red, blue, or silver. These specific details are
not necessary to understand the basic concept of a car.

For an abstraction “to work,” it has to eliminate details that are relevant to concrete
cases but are not shared by all. Instead, to represent multiple things equally well, it
has to focus on aspects shared by all members of a group. Going back to the previ-
ous example, the word “car” simplifies our understanding by focusing on the common
characteristics of all cars, such as their function of providing transportation and their
typical structure, which often includes four wheels, an engine, and a steering wheel.

By focusing only on the details that are shared by a group of entities, an
abstraction hides decisions that are likely to change. As a result, the more general
an abstraction is, the more stable it is. Or, the fewer details that are shared by an
abstraction, the less likely it is to change.

Note

Interestingly, the term “software module” is an abstraction itself. As you learned
in the preceding section, a software module can represent a variety of bound-
aries, including services, namespaces, and objects. That’s the concept of
abstraction in action. It eliminates details relevant to concrete types of software
boundaries, while focusing on what is essential: responsibility assignment, or
the encapsulated functionality. Hence, you can use the term “module” to repre-
sent all kinds of software boundaries equally well.

Effective Modules 67

A well-designed module is an abstraction. Its public interface should focus on the
functionality provided by the module, while hiding all the details that are not shared
by all possible implementations of that functionality. Going back to the example of
a repository object in Chapter 3, the interface described in Listing 4.1 focuses on the
required functionality, while encapsulating the concrete implementation details.

Listing 4.1 A Module Interface That Focuses on the Functionality It Provides, While
Encapsulating Its Implementation Details
interface CustomerRepository {
 Customer Load(CustomerId id);
 void Save(Customer customer);
 Collection<Customer> FindByName(Name name);
 Collection<Customer> FindByPhone(PhoneNumber phone);
}

A concrete implementation of the repository could use a relational database, a doc-
ument store, or even a polyglot persistence–based implementation that leverages mul-
tiple databases. Moreover, this design allows the consumers of the repository to switch
from one concrete implementation to another, without being affected by the change.

The notion of effortlessly switching from one database to another often has a
somewhat questionable reputation within the software engineering community.
Such changes aren’t common.5 That said, there’s a more frequent and crucial need
to switch the implementation behind a stable interface. When you’re altering a mod-
ule’s implementation without changing its interface, such as fixing a bug or chang-
ing its behavior, you’re essentially replacing its implementation. For example, the
kinds of queries used in the FindByName() and FindByPhone() methods can be
changed even when retaining the use of the same database. It could be that an index,
name, and phone number are added to the database schema itself. Or it could be that
the data is restructured to better optimize queries. Neither of these changes should
impact the client’s use of the module interface.

That said, the possibility of switching an implementation is not the only goal of
introducing an abstraction. As Edsger W. Dijkstra (1972) famously put it, “The pur-
pose of abstraction is not to be vague, but to create a new semantic level in which one
can be absolutely precise.”

It may seem that using an abstraction introduces vagueness or lack of detail.
However, as Dijkstra argues, that’s not the goal. Instead, an abstraction should cre-
ate a new level of understanding—a “semantic level”—where one can be “absolutely
precise.” Balance is needed to reach a proper level of abstraction to convey the cor-
rect semantics. Consider this: If you use an abstraction called “vehicle” to represent

5. With the exception of running a suite of unit tests that replace a physical database with an in-memory
mock.

Chapter 4 Coupling and Modularity68

cars, it might be an overly broad generalization. Ask yourself: Are you actually mod-
eling a range of vehicles, such as motorcycles and buses, necessitating such a wide-
ranging abstraction? If the answer is no, then using “car” as your abstraction is more
appropriate and precisely conveys the intended meaning.

By focusing on the essentials—functionality of modules—while ignoring extrane-
ous information, abstractions allow us to reason about complex systems without
getting lost in the details. A common example of a modular system is a personal
computer. We can reason about the interactions of its modules—CPU, motherboard,
random-access memory, hard drive, and others—all without understanding the intri-
cate technicalities of each individual component. When troubleshooting a problem,
we don’t need to comprehend how a CPU processes instructions or how a hard drive
stores data at a microscopic level. Instead, we consider their roles within the larger
system: a new semantic level provided by effective abstractions.

Finally, abstractions, like modules, are hierarchical. In software design, “levels of
abstraction”6 are used to refer to different levels of detail when reasoning about sys-
tems. Higher levels of abstraction are closer to user-facing functionality, while lower
levels are more about components related to low-level implementation details. Dif-
ferent levels of detail require different languages for discussing the functionalities
implemented at each level. Those languages, or (as Dijkstra called them) semantic
levels, are formed by designing abstractions.

Hierarchical abstractions also serve as further illustration of modularity’s hier-
archical nature. Since abstractions adhere to the same design principles at all lev-
els, modular design exhibits not only a hierarchical but also a fractal structure. In
upcoming chapters, I will discuss in detail how the same rules govern modular struc-
tures at different scales. But for now, let’s revisit the topic of the previous chapters,
complexity, and analyze its relationship with modularity.

Modularity, Complexity, and Coupling

Poor design of a system’s modules leads to complexity. As we discussed in Chapter 3,
complexity can be both local and global, while the exact meaning of local/global
depends on point of view: Global complexity is local complexity at a higher level of
abstraction, and vice versa. But what exactly makes one design modular and another
one complex?

Both modularity and complexity result from how knowledge is shared across the
system’s design. Sharing extraneous knowledge across components increases the

6. Or layers of abstraction.

Modularity, Complexity, and Coupling 69

cognitive load required to understand the system and introduces complex interac-
tions (unintended results, or intended results but in unintended ways).

Modularity, on the other hand, controls complexity of a system in two ways:

 1. Eliminating accidental complexity; in other words, avoiding complexity driven
by the poor design of a system.

 2. Managing the system’s essential complexity. The essential complexity is an
inherent part of the system’s business domain and, thus, cannot be eliminated.
On the other hand, modular design contains its effect by encapsulating the
complex parts in proper modules, preventing its complexity from “spilling”
across the system.

In terms of knowledge, modular design optimizes how knowledge is distributed
across the components (modules) of a system.

Essentially, a module is a knowledge boundary. A module’s boundary defines
what knowledge will be exposed to other parts of the system and what knowledge
will be encapsulated (hidden) by the module. The three properties of a module that
were introduced earlier in the chapter define three kinds of knowledge reflected by
the design of a module:

 1. Function: The explicitly exposed knowledge

 2. Logic: Knowledge that is hidden within the module

 3. Context: Knowledge the module has about its environment

An effective design of a module maximizes the knowledge it encapsulates, while
sharing only the minimum that is required for other components to work with the
module.

Deep Modules

In his book A Philosophy of Software Design, John Ousterhout (2018) proposes
a visual heuristic for evaluating a module’s boundary. Imagine that a module’s
function and logic are represented by a rectangle, as illustrated in Figure 4.3. The
rectangle’s area reflects the module’s implementation details (logic), while the
bottom edge is the module’s function (public interface).

Chapter 4 Coupling and Modularity70

According to Ousterhout, the resultant “depth” of the rectangle reflects how
effective it is at hiding knowledge. The higher the ratio between the module’s func-
tion and logic, the “deeper” the rectangle.

If the module is shallow, as in Figure 4.3A, the difference between the function
and logic is small. That is, the complexity encapsulated by the module’s boundary
is low as well. In the extreme case, the function and logic are precisely the same—
the public interface reflects how the module is implemented. Such an interface pro-
vides no value; it doesn’t encapsulate any complexity. You could just as well read the
module’s implementation. Listing 4.2 shows an extreme example of a shallow mod-
ule. The method’s interface doesn’t encapsulate any knowledge. Instead, it simply
describes its implementation (adding two numbers).

Listing 4.2 An Example of a Shallow Module
addTwoNumbers(a, b) {
 return a + b;
}

On the other hand, a deep module (Figure 4.3B) encapsulates the complexity of
the implementation details behind a concise public interface. The consumer of such
a module need not be aware of its implementation details. Instead, the consumer can
reason about the module’s functionality and its role in the overarching system, while
being ignorant of how the module is implemented—at a higher semantic level.

Shallow Module

Deep Module

Logic

Function (Public interface)
BA

Figure 4.3 A shallow module (A) and a deep module (B)

Modularity, Complexity, and Coupling 71

That said, the metaphor of deep modules has its limitations. For instance, there
can be two perfectly deep modules implementing the same business rule. If this busi-
ness rule changes, both modules will need to be modified. This could lead to cascad-
ing changes throughout the system, creating an opportunity for inconsistent system
behavior if only one of the modules is updated. This underscores the hard truth
about modularity: Confronting complexity is difficult.

Modularity Versus Complexity

Modularity and complexity are two competing forces. Modularity aims to make
systems easier to understand and to evolve, while complexity pulls the design in the
opposite direction.

The complete opposite of modularity, and the epitome of complexity, is the Big
Ball of Mud anti-pattern (Foote and Yoder 1997):

A Big Ball of Mud is haphazardly structured, sprawling, sloppy, duct-tape and bail-
ing wire, spaghetti code jungle. These systems show unmistakable signs of unregulated
growth, and repeated, expedient repair. Information is shared promiscuously among
distant elements of the system, often to the point where nearly all the important infor-
mation becomes global or duplicated. The overall structure of the system may never
have been well defined. If it was, it may have eroded beyond recognition. —Brian Foote
and Joseph Yoder

In the preceding definition of the Big Ball of Mud anti-pattern, unregulated
growth, sharing information promiscuously among distant elements of the system,
and important information becoming global or duplicated all demonstrate how
unoptimized and inefficient flow of knowledge cripples systems.

These points can also be formulated in terms of ineffective abstractions. An effec-
tive abstraction removes all extraneous information, retaining only what is absolutely
necessary for effective communication. In contrast, an ineffective abstraction creates
noise by failing to eliminate unimportant details, removing essential details, or both.

If an abstraction includes extraneous details, it exposes more knowledge than is
actually necessary. That causes accidental complexity in multiple ways. The consum-
ers of the abstraction are exposed to more details than are actually needed to use
the abstraction. First, this results in accidental cognitive load, or cognitive load that
could have been avoided by encapsulating the extraneous detail. Second, this lim-
its the scope of the abstraction: It is no longer able to represent a group of entities
equally well, but only those for which the extraneous details are relevant.

On the other hand, an abstraction can fail if it omits important information.
For example, a database abstraction layer that doesn’t communicate its transaction
semantics may result in users expecting a different level of data consistency than the

Chapter 4 Coupling and Modularity72

one provided by concrete implementation. This situation creates what is referred to
as a leaking abstraction;7 that is, when details from the underlying system “leak”
through the abstraction. This happens when the consumer of the abstraction needs
to understand the underlying concrete implementation to use it correctly. As in the
case of an abstraction sharing extraneous details, it increases the consumer’s cogni-
tive load and can lead to misuse or misunderstandings of the module, complicating
maintenance, debugging, and extension.

Hence, encapsulating knowledge is a double-edged sword. Going overboard can
make it hard or even impossible to use the module, but the same is true when too lit-
tle knowledge is being communicated. To make modularity even more challenging,
even if a system is decomposed into seemingly perfect modules, it is still not guaran-
teed to be modular.

Modularity: Too Much of a Good Thing

In the beginning of the chapter, I defined modular design as one that allows the sys-
tem to adapt to future changes. But how flexible should it be? As they say, the more
reusable something is, the less useful it becomes. That is the cost of flexibility and,
consequently, of modularity.

When designing a modular system, it’s crucial to watch for the two extremes:
not making a system so rigid that it can’t change, and not designing a system to be
so flexible that it’s not usable. As an example, let’s revisit the repository object in
Listing 4.1. Its interface allows two ways of querying for customers: by name and by
phone number. What would that interface look like if we were to attempt to address
all possible query types; for example, by a wider range of fields, or even by looking
up customers based on aggregations of values? That would make the interface much
harder to work with. Moreover, optimizing the underlying database to efficiently
handle all possible queries wouldn’t be trivial.

Hence, a modular design should focus on reasonable changes. In other words, the
system should expose only reasonable degrees of freedom. For example, changing
the functionality of a blog engine into a printer driver is not a reasonable change.

Unfortunately, identifying reasonable future changes is not an exact science, but
is based on our current knowledge and assumptions about the system. An assump-
tion is essentially a bet against the future (Høst 2023). The future can support or

7. Spolsky, Joel. “The Law of Leaky Abstractions.” Joel on Software. November 11, 2002. https://
www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions.

http://ww.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions
http://ww.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions

Coupling in Modularity 73

invalidate assumptions. However, if modular design entails making bets, we can
gather as much information as possible and do our best to make informed bets.

Coupling in Modularity

Many aspects of modularity can be understood only by considering the modules not
as individual entities, but by examining them in relation to one another. This was
demonstrated in the Deep Modules section earlier: Even perfectly “deep” modules
can still introduce complex interactions. As Alan Kay said, the big idea of object-
oriented programming is messaging, not classes;8 in other words, the relationships
and interactions between objects.9 Traditionally, when systems are designed the main
focus is on the components, or boxes. But what about the arrows and lines connect-
ing them?

The modularity of a system cannot be evaluated by examining designs of indi-
vidual modules in isolation. The goal of modular design is to simplify the relation-
ships between components of a system. Hence, modularity can only be evaluated in
the scope of the relationships and interactions between the components. The knowl-
edge that is shared among the components controls whether the overarching system
will be more modular or more complex. Coupling is the aspect of a system that
defines what knowledge is shared between components of a system. Different ways
of coupling components share different types and amounts of knowledge. Some will
increase complexity, while others will contribute to modularity.

This is a good time to mention the counterpart of coupling: cohesion. The con-
cept of cohesion was introduced in tandem with coupling in Structured Design
(Yourdon and Constantine 1975). Cohesion refers to the degree to which the ele-
ments inside a module belong together. In other words, it’s a measure of how closely
the responsibilities of a module are related to each other. High cohesion is generally
seen as a desirable characteristic because it promotes a single, well-defined purpose
for each module, improving understandability, maintainability, and robustness.

Under the hood, however, cohesion is based on coupling. Some software engi-
neers even refer to cohesion as “good coupling.” That’s my preferred approach as
well. The chapters in Part II, Dimensions, scrutinize how coupling affects system
design and the dimensions in which effects of coupling can be observed. Later in the
book I will combine these insights into a concise framework for guiding modular
design that will also reflect cohesion of the system’s modules.

8. Kay, Alan. “Alan Kay on Messaging.” October 10, 1998. http://wiki.c2.com/?AlanKayOnMessaging.
9. According to the original definition, objects are modules and, therefore, the same design principles

that apply to objects apply to modules at other levels of abstraction.

http://wiki.c2.com/?AlanKayOnMessaging

Chapter 4 Coupling and Modularity74

Key Takeaways

Modularity strives to minimize complexity by managing the distribution of knowl-
edge across modules. However, the overarching goal of modularity is to enable evolu-
tion of the system according to future goals and needs. Hence, modular design
requires awareness not only of the current requirements, but also of those that might
arise in the future.

Nevertheless, be aware of the “too much of a good thing” syndrome. A system
that is flexible to accommodate any change is likely to be overly complicated. Strik-
ing a balance is crucial to prevent systems from becoming exceedingly rigid or overly
flexible.

To train your “muscle” of predicting future changes, learn about the business
domain of your system. Analyze the trends: what changes were required in the past,
and why. Learn about competing products: what they are doing differently, why they
are doing these things differently, and how likely the functionality is to change in
your system.

When designing modules, reason about their core properties. Can you state a
module’s function (purpose) without revealing its implementation details (logic)? Is
a module’s usage scenario (context) explicitly stated, or is it based on assumptions
that might be forgotten over time?

Ultimately, to truly design modular systems, one must consider modules in rela-
tion to each other, acknowledging that their interplay significantly impacts modular-
ity. Coupling defines what knowledge is shared between components, and cohesion
indicates how related a module’s responsibilities are. These topics will be expanded
upon in the forthcoming chapters, eventually forming a robust framework to inform
modular design.

Quiz

 1. What are the basic properties of a module?

a. API, database, and business logic

b. Source code

c. Function and logic

d. Function, logic, and context

Quiz 75

 2. What makes an effective module?

a. Runtime performance

b. Maximizing the complexity it encapsulates

c. Maximizing the complexity it encapsulates while supporting the system’s
flexibility needs

d. Correct implementation of the business logic

 3. Which property of a module is the most explicit?

a. Function

b. Logic

c. Context

d. Answers B and C are correct.

 4. Which of the following software design elements can be considered modules?

a. Services

b. Namespaces

c. Classes

d. All of the answers are correct.

 5. What makes an effective abstraction?

a. Omitting as much information as possible

b. Retaining as much detail as possible

c. Creating a language that allows discussing about functionalities of compo-
nents, without having to know how they are implemented

d. Describing as many objects as possible

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

279

Index

A
A/B testing, 23
abstraction, 66, 136–137, 192, 226, 241

car, 66, 67–68
effective, 71
hierarchical, 68
as innovation, 226, 228
leaking, 72
modules as, 66–68
software module, 66

accidental complexity, 36, 37, 71
act–sense–respond, 25
adapter, 138
afferent coupling, 265
aggregate pattern, 248–249
Agile software development, 165–166
algorithm, 120

connascence of, 102
machine learning (ML), 195

anti-pattern, Big Ball of Mud, 71
API, 64, 135, 137, 138, 140
application layer, 239, 241–243
architecture, 239

layered, 239, 240, 243
ports and adapters, 243, 244
vertical slice, 241

arithmetic constraint, 107
assumptions, 72–73, 205
asynchronous execution, 146–147
asynchronous integration, 146–147, 159, 160

B
balance, 191, 192, 206
balanced coupling, 230, 258–259

defined, 265
equation, 194–195
examples, 195–198
high/low, 191, 192
numeric scale, 192–193

balancing complexity, 43
Berard, Edward V., 168
Berners-Lee, Tim, 39
best practice, 21–22
Big Ball of Mud, 42, 53, 71, 225
boundary/ies

component, 14–15, 69, 70
distance, 152
encapsulation, 151, 152–153, 158, 167
knowledge, 69
upstream module, 82–83

bounded context, 236–237
bridge, 138
bug fixes, 167, 202
business

domain, 35–36, 169
logic, 242, 244
strategy, 203, 204
subdomains, 169, 170–171

business logic layer, 239, 240

C
cause-and-effect relationship, 21, 26, 36
change/s, 201–202

collateral, 156, 161
cost of, 157, 160, 187
distance, 212
environmental, 205
organizational, 204–205
organization-driven, 167
problem, 168
in software development, 165–166
solution, 167–168
source control analysis, 174
strategic, 203, 205–206, 226
tactical, 202

chaotic domain, 24–25, 26, 29, 31, 38
class/es, 11, 109, 246

one-to-many relationships, 246, 247

Index280

organizing, 249–250
Triangle, 107, 108

clear domain, 26, 27, 29–30
linear interactions, 36
sense–categorize–respond, 21–22

click-through rate, 23
clockwork system, 11, 36
Cloud Spanner, 50
CMS (content management system), 211
code/codebase

assembly, 81–82
complexity, 20
smells, 253–255

cognitive load, 20, 36, 68–69, 71, 152, 187, 188
cohesion, 73, 188, 265
collaboration, 167–168
collateral change, 156, 161
Commands, 137
common coupling, 83–84, 85, 87, 89–90, 95,

112
defined, 265
versus content coupling, 86
versus external coupling, 88
versus stamp coupling, 91

complex domain, 22–25, 26, 28–29, 31
complex interactions, 54, 118, 166

coupling, 47, 48, 49–50, 51, 52–53
and Cynefin, 38
degrees of freedom, 45–46
intended effects in unexpected ways, 37–38
unintended results, 38

complexity, 19, 22, 54, 258
accidental, 36, 37, 71
balancing, 43
Cynefin, 31–32
defined, 266
essential, 35–36, 69
global, 40–41, 42, 68, 188, 191, 192
hierarchical, 39, 40–41
interface, 118
local, 40–41, 42, 68, 188, 191, 192
modularity and, 69, 71–72
software design, 20
subjectivity, 20
and system size, 39

complicated domain, 26, 28, 30–31
linear interactions, 36
sense–analyze–respond, 22

components, 13, 14, 54. See also modules
boundary, 14–15, 69, 70
complex interactions, 39
downstream, 10
local complexity, 40–41, 42
shared knowledge, 8, 9
upstream, 10

concurrency management, 85, 126
connascence, 97, 118

of algorithm, 102, 110, 120
blind spots, 119, 120
defined, 266
dynamic, 114
evaluating, 110
of execution, 105
of identity, 109, 126
managing, 111
of meaning, 100–101, 110
of name, 98, 99, 100, 110, 113
of position, 102–104, 110
static, 98, 113, 132
of timing, 105–107
of type, 100, 110
of value, 107, 108, 126

Constantine, Larry L., Structured Design, 62,
73, 80

constraint/s, 46, 47, 48, 52–53, 54
arithmetic, 107
business rule, 108

construction, innovation, 224
content coupling, 81–83, 86, 113, 123, 266
context, 22–23, 60

bounded, 236–237
interchangeable camera lenses, 61
LEGO bricks, 61
software module, 65

contract coupling, 134, 135–138, 139–140, 141,
142, 185, 255, 266

control coupling, 88–90, 112
defined, 266
versus external coupling, 90
versus stamp coupling, 91

Conway’s Law, 158, 167–168
core layer, 243
core subdomains, 171–172, 176–177, 178, 207,

243, 270
cost management, 15
coupling, 5, 6, 11, 15, 52–53

Index 281

afferent, 265
balanced, 191, 192–193, 194–195, 196–198,

258–259
cause-and-effect relationship, 26
common, 83–84, 85–86, 95, 112
content, 81–83, 113, 123
contract, 134, 135–138, 139–140, 141, 142,

185, 255
control, 88–90, 112
data, 92–94, 95, 111
defined, 267
distance, 153, 154
external, 86–88, 112
flow of knowledge, 10, 15
functional, 125–126, 127, 128, 185, 196,

208, 209, 210
“good”, 73
implicit shared knowledge, 9
intrusive, 122, 123, 124, 184
lifecycle, 7–8, 154, 155–156, 159
loose, 188, 189
magnitude, 6, 7
maintenance effort, 189–190, 191
in mechanical engineering, 15, 16
model, 128–131, 132, 133–134, 185, 254
in modularity, 73
module, 80–81
runtime, 159
semantic, 142
sequential, 125
shared knowledge, 8, 9, 15
shared lifecycle, 7–8
stability, 186
stamp, 90–92, 95, 112
strength, 146–147
strength of, 118–119
symmetric functional, 126, 127
time dimension, 165
tolerances, 16
transactional, 125–126

Cynefin, 20, 171
act–sense–respond, 25
applications, 31
chaotic domain, 24–25, 29, 31, 38
clear domain, 21–22, 26, 27, 29–30, 36
complex domain, 22–25, 26, 28–29, 31
complex interactions, 38
and complexity, 32

complicated domain, 22, 26, 28, 30–31, 36
defined, 267
disorder domain, 26
probe–sense–respond, 23
sense–analyze–respond, 22
sense–categorize–respond, 21–22
in software design, 27–32

D
data access layer, 240
data coupling, 92–94, 95, 111, 267
data transfer objects (DTOs), 93, 140, 141
database, 44, 67

changing indexes, 29–31
Cloud Spanner, 50
relational, 106
schema, 51
sharing, 121, 122, 123, 132, 141, 142
SQL, 48–50, 53

decision-making. See also Cynefin
act–sense–respond approach, 25
experimentation, 23
known unknowns, 22
probe–sense–respond approach, 23, 25
sense–analyze–respond approach, 22
sense–categorize–respond approach,

21–22
unknown unknowns, 22

decomposition, 15, 42, 65, 66
decoupling, 15
deep modules, 70–71, 73
degrees of freedom, 52–53, 72

and complex interactions, 45–46
constraints, 46, 47
in software design, 43, 44, 45

dependencies, 244
compile-time, 132
flow of knowledge, 10

design patterns, 138
design-time coupling, 267
Desks microservice, 238
development coupling, 267
Dijkstra, Edsger W., 67, 136
disorder domain, 26
distance, 195, 230, 257–259

boundaries, 153
changes, 212

Index282

cost of, 153, 154
defined, 267–268
high/low, 185–187
versus integration strength, 161
as lifecycle coupling, 154,

155–156
numeric scale, 192–193
organizational, 168
ownership, 158
versus proximity, 160
runtime coupling and, 159
socio-technical aspect, 157, 158
and strength, 187, 188
and volatility, 186, 187

distributed system, 144, 145
Distribution microservice, 238
domain/s. See also Cynefin

analysis, 169
business, 169
constraints, 47
-driven design, 169

downstream module, 10, 81, 184
dynamic connascence, 104, 114

connascence of execution, 105
connascence of identity, 109, 126
connascence of timing, 105–107
connascence of value, 107, 108, 126

E
economies of scale, 218
effective modules, 65–66
efferent coupling, 268
efficiency, growth and, 219, 230
encapsulation, 140, 152–153, 158, 167
environmental change, 205
essential complexity, 35–36, 69
Evans, Eric, 184
events, 234–235, 236

integration-specific, 237
private, 237, 238
public, 237

experimentation, 21, 23, 26, 28, 29
expertise, 20, 22, 29
explicit knowledge, 52–53
external coupling, 86–88, 112

versus common coupling, 88
versus control coupling, 90

external coupling, 268

F
facade, 138
failure, system, 38
false negatives, 174
false positives, 174
flow of knowledge, 10, 15, 184
Foote, Brian, 71
Fortran, COMMON statement, 83
fractal geometry, 228–230
fractal modularity, 230
Fulfillment service, 119, 120
functional coupling, 125–126, 127, 128, 185,

196, 208, 209, 210, 268
function/ality, 58

boundary-enclosing, 63–64
business subdomains, 169, 170–171
constraints, 53
core subdomains, 171–172
generic subdomains, 172–173
interchangeable camera lenses, 61
LEGO brick, 61
module, 60, 68
objects, 156
software module, 62–63, 64
symmetric, 126, 127

G
Galilei, Galileo, The Discourses and

Mathematical Demonstrations Relating
to Two New Sciences, 220, 223

General Data Protection Regulation
(GDPR), 205

generic subdomains, 172–173, 211, 212
GetTime method, 106
global complexity, 40, 41, 42, 54, 68, 188,

191, 192
global variable, 87
growth

and efficiency, 219, 230
innovation, 223–224, 225, 226
limits, 219–220, 225
limits, overcoming, 223, 224–225
linear, 221
software, 215–216
sublinear, 218
superlinear, 221
system, 218, 219, 220

Index 283

H
Hawking, Stephen, 19
hierarchical complexity, 39, 40–41
high balance, 191

I
implementation, 67
implicit interface, 118
implicit knowledge, 53
implicit shared knowledge, 9
inferred volatility, 177, 178
infrastructure layer, 243, 244
innovation, 241

abstraction as, 226
construction, 224
software design, 225

integration, 89
asynchronous, 146–147, 159, 160
contract, 134, 135–138, 139–140
legacy system, 190
maintenance effort, 189–190, 191
-specific event, 237
strength, 161, 170, 175, 176–177, 195, 268.

See also integration strength
synchronous, 159

integration strength, 121, 143, 144, 147, 161,
170, 175–177, 195, 230, 268

contract coupling, 134, 135–138, 139–140,
141, 142

functional coupling, 125–126, 127, 128
intrusive coupling, 122, 123, 124

interactions, 39, 54, 178
complex, 37, 39, 118, 166
global complexity, 40–41, 42
linear, 36
superlinear growth, 221
system, 13, 14–15

interchangeable camera lenses, 59, 61
interface, 72

complexity, 118
implicit, 118
module, 67
transparency, 118
type, 118

Interface Segregation Principle, 253
intrusive coupling, 122, 123, 124, 184, 268

J-K
Kay, Alan, 73
knowledge, 50–51, 54, 72, 98, 203, 226, 237

boundary, 69
component, 14
constraints, 53
encapsulation, 140
expertise, 20, 22, 29
explicit, 52–53
flow, 10, 15, 184
hiding, 70
implicit, 53
shared, 8, 9, 15, 16–17, 68–69, 73, 89, 92,

133, 152, 166, 183, 185, 244, 257
sharing, 131
tacit, 37

known unknowns, 22

L
layered architecture, 239, 240, 243
leaking abstraction, 72
LEGO bricks, 59, 60
lifecycle

coupling, 154, 155–156, 159
shared, 7–8

lifecycle coupling, 268
“lift-and-shift” strategy, 205
linear interactions, 36, 54
local complexity, 40–41, 42, 43, 54, 68, 188,

191, 192
logic, 60

duplicated, 153
interchangeable camera lenses, 61
LEGO bricks, 61
software module, 64

loose coupling, 188
low balance, 191

M
machine learning (ML) algorithm, 195
magic values, 101
magnitude of coupling, 6, 7
maintenance effort, 189–190, 191
Malan, Ruth, 14
Meadows, Donella H., Thinking in Systems:

A Primer, 11

Index284

mechanical engineering, coupling, 16
method/s, 11, 64, 156

GetTime, 106
SendEmail, 103
sendNotification, 88–89
SetEdges, 46
SetReplyDueDate, 254
TrackCustomerEmail, 253–254

Myers, Glenford J. Reliable Software Through
Composite Design, 80

microservices, 29, 39, 42, 65, 153, 158, 206,
207, 233, 239

Desks, 238
Distribution, 238
Support Autopilot, 236
Support Case Management (SCM),

234–235, 236–237, 238
model coupling, 128–131, 132, 133–134, 185,

254, 268
modules and modularity, 15, 57–58, 59, 74,

192–193, 257–259. See also balanced
coupling; coupling

as abstraction, 66–68
cohesion, 73
common-coupled, 85
comparison of coupling levels, 94, 95
complexity and, 69, 71–72
context, 60, 65
control coupling, 88–90
coupling, 15, 73, 80–81, 268
data-coupled, 92–94
defined, 268
deep, 69, 70–71, 73
distance between, 153, 154
downstream, 81, 184
effective, 65–66
fractal, 230
function, 60, 64
functionality, 62–63, 68
interchangeable camera lenses, 59, 61
interface, 67
LEGO bricks, 59, 60
lifecycle, 154
logic, 60, 64
properties, 74
queries, 137
shallow, 70
shared lifecycle, 7–8

software, 62–63, 64
stamp coupled, 90–92

Myers, Glenford J., Composite/Structured
Design, 40

MySQL, 9

N
name, connascence, 98, 99, 100
nature, fractal geometry, 229
network-based system/s, 225

growth limit, 220
properties, 216, 218
software design as, 217

O
Object-Relational Mapping (ORM) library,

123, 247
object/s, 15, 39

business, 245
duplicated logic, 154
functionality, 156
-oriented programming, 11, 73, 97
Query, 50–51, 53
SupportCase, 156

one-to-many relationships, 246, 247
optimizing

global complexity, 41, 42
local complexity, 42, 43

organizational change, 204–205
organizational distance, 168
Ousterhout, John, A Philosophy of Software

Design, 69, 70
overcoming growth limits, 223, 224–225
ownership distance, 158

P
Page-Jones, Meilir, 97
Parnas, David L., 65–66, 127, 136, 228

“On the Criteria to Be Used in Decomposing
Systems into Modules”, 62

pathological coupling, 81–83
Perrow, Charles, Normal Accidents: Living

with High-Risk Technologies, 36, 39
PL/I language, 86
ports and adapters architecture, 243, 244
presentation layer, 239, 240

Index 285

private events, 237, 238
probe–sense–respond, 23, 25
programming language, object-oriented, 11
proximity, 160
public events, 237
purpose, system, 13, 14
push notification, 123

Q-R
queries, 137
Query object, 50–51, 53

race condition, 85
refactoring, 167, 184
reflection, 82, 113, 123
regulations, 205
relational database, 106
remote work, 168
repository, 48
REST API, 64
results

intended, 37–38
unintended, 38

Retail service, 119, 120
runtime coupling, 159, 269

S
scaling, 220. See also growth

sublinear, 218
superlinear, 218

self-similarity, 228, 229, 230
semantic coupling, 142, 269
SendEmail method, 103
sendNotification method, 88–89
sense–analyze–respond, 22
sense–categorize–respond, 21–22
sequential coupling, 125, 269
serialization, 85
service/s, 11, 15

-based system, 63
Fullfilment, 119, 120
Retail, 119, 120

SetEdges method, 46
SetReplyDueDate method, 254
shallow module, 70
shared knowledge, 8, 9, 15, 16–17, 68–69, 73,

89, 92, 131, 133, 153, 166, 183, 185,
244, 257. See also integration strength

implicit, 9
shared lifecycle, 7–8

Single Responsibility Principle, 156, 251
size, system, 39, 43
SMS messages, 27, 28
Snowden, Dave, 21, 32
socio-technical design, distance and, 157, 158
software development

Agile, 165–166
tactical changes, 202

software/software design. See also modules
and modularity

bug fixes, 167
changing database indexes, 29–31
complexity, 20
contract, 134
Conway’s Law, 158, 167–168
coupling, 15
“crisis”, 80
Cynefin, 27–32
degrees of freedom, 43, 44, 45
effective modules, 65–66
growth, 215–216
growth dynamics, 221, 222, 223
innovation, 225
integrating an external service, 27–29
integration, 27
model, 129–130, 131
modularity, 57–58
module, 62–63, 64, 66
as network-based system, 217–218
problem space, 166
proximity, 160
refactoring, 167
solution space, 166–168
strategic changes, 203
system, 11, 14
tactical changes, 202

source control analysis, 173
SQL, 48–50, 53
stability, 186
stamp coupling, 90, 95, 112, 269

versus common coupling, 91
versus control coupling, 92

start-up, 167
state, system, 45
static connascence, 98, 110, 113, 132

connascence of algorithm, 102
connascence of meaning, 100–101

Index286

connascence of name, 98, 99–100
connascence of position, 102–104
connascence of type, 100

strategic changes, 203, 205–206, 226
strategy

business, 203
“lift-and-shift”, 205

strength, integration, 121, 143, 144, 147, 161,
170, 175–177, 195, 230, 268

changes, 206–207, 208, 209, 210
and distance, 187, 188
high/low, 185–187
numeric scale, 192–193

structured design, 79, 118, 144, 147
blind spots, 119, 120
control coupling, 88–90, 95
data coupling, 92–94, 95
defined, 269
external coupling, 86–88, 95
module coupling, 80–81

subdomains
business, 169, 170–171
core, 171–172, 176–177, 178, 207, 210, 243
generic, 172–173, 211, 212
supporting, 173, 210, 238
volatility, 173, 174

subjectivity, complexity, 20
sublinear scaling, 218
superlinear growth, 218, 221
Support Autopilot microservice, 236
Support Case Management (SCM)

microservice, 234–235, 236–237, 238
SupportCase class, 251–253
SupportCase object, 156
supporting subdomains, 173, 210, 238
symmetric functional coupling, 126, 127
synchronous integration, 159
system design

complexity, 36
flow of knowledge, 10

system/s, 10–11
accidental complexity, 36
change, 201–202
class, 11
classes, 11
clockwork, 11, 36
complex interactions, 37
complexity, 19–20, 22, 54
components, 13, 14

coupling, 11
decomposition, 15, 42, 65–66
degrees of freedom, 43, 44, 45–46, 72
distributed, 144, 145
essential complexity, 35–36
evolution, 74
failure, 38
growth, 215, 218, 219–220
interactions, 13, 14–15
linear interactions, 36
method, 11
modularity, 57–58
monolithic, 65
network-based, 216, 217–218
purpose, 13, 14
service-based, 63
size, 39, 43
software, 11, 14
state, 45

T
tacit knowledge, 37
tactical changes, 202
teams, organizational distance, 167–168
technical debt, 167
testing, A/B, 23, 24
tolerances, 16
TrackCustomerEmail method, 253–254
transactional coupling, 125–126, 270
transparency, interface, 118
Triangle class, 107, 108
type, connascence, 100

U
uncertainty, 32
unknown unknowns, 22–23
upstream module, 10, 82–83, 184

V
variable, global, 87
vertical slice architecture, 241
volatility, 183, 192, 195, 210. See also change/s

core subdomains, 171
defined, 270
and distance, 187
high/low, 185–187
inferred, 177, 178

Index 287

and integration strength, 175, 176–177
numeric scale, 192–193
subdomain, 173, 174

W
West, Geoffrey, 216
Where clause, SQL, 48–50
WolfDesk, 27, 39, 48, 129–130, 140, 219, 224.

See also microservices
business subdomains, 170–171
core subdomains, 172
Distribution microservice, 206, 207, 208
microservices, 233

one-to-many relationships between classes,
246, 247

organizing classes, 249–250
Real-Time Analytics subsystem, 208
Support Case Management (SCM)

microservice, 234–235, 236–237, 238
support cases, 246, 247, 248
SupportCase class, 251–253

X-Y-Z
Yoder, Joseph, 71
Yourdon, Edward, Structured Design,

62, 73, 80

	Cover
	Title Page
	Copyright Page
	Contents
	Series Editor Foreword
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Introduction
	Chapter 4: Coupling and Modularity
	Modularity
	Modules
	LEGO Bricks
	Camera Lenses

	Modularity in Software Systems
	Software Modules
	Function, Logic, and Context of Software Modules
	Effective Modules
	Modules as Abstractions

	Modularity, Complexity, and Coupling
	Deep Modules
	Modularity Versus Complexity
	Modularity: Too Much of a Good Thing

	Coupling in Modularity
	Key Takeaways
	Quiz

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

