
PHP and MySQL

Marc Wandschneider

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

PHP and MySQL

Marc Wandschneider

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Wandschneider.book Page i Tuesday, August 5, 2008 2:14 PM

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. No part of this
LiveLessons book or DVD set may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without written permission from the publisher,
except for the inclusion of brief quotations in a review.

For information regarding permissions, write to: Pearson Education, Inc., Rights and
Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 02116, Fax (617)
671-3447.

Library of Congress Control Number: 2008933546

Visit us on the Web: informit.com/ph

Corporate and Government Sales

The publisher offers excellent discounts on this LiveLesson when ordered in quantity for
bulk purchases or special sales, which may include custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more
information, please contact: U.S. Corporate and Government Sales, (800) 382-3419,
corpsales@pearsontechgroup.com.

For sales outside the United States, please contact: International Sales,
international@pearsoned.com.

Warning and Disclaimer

This book and video product is designed to provide information about PHP and MySQL
programming. Every effort has been made to make it as complete and as accurate as
possible, but no warranty or fitness is implied. The information is provided on an “as is”
basis. The author and Pearson shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the information contained in
this book or from the use of the disc or programs that may accompany it. The opinions
expressed in this LiveLesson belong to the author and are not necessarily those of
Pearson.

Feedback Information

At Pearson, our goal is to create in-depth technical products of the highest quality and
value. Each product is crafted with care and precision, undergoing rigorous development
that involves the unique expertise of members from the professional technical community.
Readers’ feedback is a natural continuation of this process. If you have any comments
regarding how we could improve the quality of this LiveLesson, or otherwise alter it to
better suit your needs, you can contact us through e-mail at mylivelessons@pearsoned.com.
Please make sure to include the title and ISBN in your message.

We greatly appreciate your assistance.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Neither Prentice Hall nor Pearson Education, Inc., can
attest to the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

ISBN-13: 978-0-13-715575-0
ISBN-10: 0-13-715575-1

Text printed in the United States at RR Donnelley in Crawfordsville, Indiana.
First printing, September 2008

Publisher
Paul Boger

Editor-in-Chief
Mark L. Taub

Video Project Manager
John A. Herrin

Editorial Assistant
Kim Boedigheimer

Managing Editor
John Fuller

Project Editor
Julie B. Nahil

Copy Editor
Ruth Davis

Proofreader
Julie Lonergan

Multimedia Developer
Eric Strom, Pearson Video
Production Services

Designer
Gary Adair

Wandschneider.book Page ii Tuesday, August 5, 2008 2:14 PM

iii

Contents

Lesson 1 Installation of MySQL, Apache, and PHP..1

Windows.. 1

MySQL .. 1

Apache HTTPD Server.. 1

PHP ... 2

Mac / Unix ... 2

Xcode.. 2

MySQL .. 2

Apache HTTP Server .. 2

PHP ... 4

Starting and Stopping the Servers ... 5

Troubleshooting.. 5

Lesson 2 Your First Web Application ..7

Getting Started ... 7

Entering PHP Scripts ... 8

Marking Sections of PHP Code .. 8

Mixing PHP and HTML ... 9

Statements and Comments .. 10

Variables .. 11

Numbers ... 11

Strings... 12

Booleans ... 13

Working with Multiple Pages .. 13

Lesson 3 Language Basics ...15

Arrays .. 15

Testing Variables.. 15

Simple Variable Substitution ... 16

Arithmetic Operators .. 16

Type Conversions .. 17

NULL.. 18

The if Statement.. 18

Comparison Operators: Equality and Identity .. 18

Wandschneider.book Page iii Tuesday, August 5, 2008 2:14 PM

iv Contents

Lesson 4 More Language Features ...21

Script Lifetime ... 21

Strings, Newlines, and the Web Browser.. 21

Constants .. 22

More Comparison Operators.. 22

Logical Operators ... 22

The switch Statement ... 23

Lesson 5 Functions and Loops ..25

Loops .. 25

while loop... 25

Functions... 26

Byval and Byref Parameters .. 27

Scoping ... 28

Lesson 6 Text and Strings ...29

Review of Strings in PHP... 29

More on Variable Expansion ... 30

String Operators ... 30

Common Operations and Functions for Strings ... 31

strlen... 31

strcmp .. 31

strcasecmp ... 31

strncmp .. 31

strtolower / strtoupper... 31

trim / ltrim / rtrim ... 31

ord / chr.. 32

substr.. 32

strpos.. 32

Blowing Up Stuff (and Fixing It) ... 32

Sending Data via GET Parameters.. 33

PHP and Unicode.. 33

Lesson 7 Arrays, File Organization..35

Review of Array Basics .. 35

Multidimensional Arrays ... 36

Counting Array Elements.. 36

Removing and Deleting .. 36

Iterating over Array Contents – foreach Loops .. 36

Common Array Operations... 37

sort ... 37

Wandschneider.book Page iv Tuesday, August 5, 2008 2:14 PM

Contents: v

array_merge.. 37

array_slice ... 37

File Inclusion.. 38

Lesson 8 Object-Oriented Programming I ..39

Declaring New Types... 39

Constructors .. 41

Access Levels... 41

Lesson 9 Object-Oriented Programming II..43

Better Code Reuse with Inheritance ... 43

Further Refining Our Objects.. 44

Lesson 10 Object-Oriented Programming III...47

Class Constants ... 47

Static Class Data.. 48

Static Methods .. 48

Operations on Objects.. 48

Comparison .. 49

Converting to String... 49

Iterating over Object Properties .. 49

Copying Objects... 50

Structured Exception Handling ... 50

Lesson 11 Learning about the Web Server ...53

More FORM Elements... 53

Checkboxes .. 53

Text Areas ... 53

POST vs. GET .. 54

GET vs. POST in Our Applications ... 55

The $_SERVER superglobal ... 56

FORM Security .. 58

strip_tags .. 58

htmlspecialchars ... 58

More on Processing Forms.. 58

Serializing Objects... 60

Lesson 12 Getting Started with the Database ..61

Getting to MySQL ... 61

Creating Our Database ... 62

Creating a Database User ... 62

Creating the First Table ... 62

Inserting Data into Tables.. 64

Wandschneider.book Page v Tuesday, August 5, 2008 2:14 PM

vi Contents

Wrecking Things ... 64

Working with MySQL from within PHP ... 64

Securing User Data ... 65

Lesson 13 Fetching Data from the Database ..67

Retrieving Data ... 67

More on Query Expressions: Functions .. 68

Sorting Result Sets .. 69

Fetching Subsets of the Result Sets ... 69

Modifying a Table ... 69

Lesson 14 Modifying Data in the Database ..71

Modifying Rows in Our Tables .. 71

Deleting Rows from a Table.. 71

FULLTEXT Indexes .. 72

Joining Fetches ... 72

Transacting Queries .. 73

Using Hidden Fields on Forms.. 74

Lesson 15 Remembering Things: Cookies and Sessions..77

Carrying Information across Page Requests: Cookies .. 77

Setting Cookies.. 77

Accessing Cookie Values.. 77

How Cookies Work... 78

Controlling Cookie Validity .. 78

Deleting Cookies.. 79

Sessions... 79

Basic Usage .. 80

Configuring PHP for Sessions .. 81

FULLTEXT Searching in MySQL .. 81

Lesson 16 Files and File Uploads ..83

Uploading User Files... 83

Configuring PHP for Uploading ... 83

The Client Form ... 84

The Server Code .. 84

File Functions .. 87

File Stream Functions... 87

Browsing Directories ... 89

Lesson 17 Formatted Output, Output Buffering, and Security91

Formatting Strings with printf and sprintf .. 91

Wandschneider.book Page vi Tuesday, August 5, 2008 2:14 PM

Contents: vii

Date and Time Functions .. 93

Time.. 93

Date .. 93

Converting strings to timestamps .. 95

Output Buffering ... 96

How It Works .. 96

Using Output Buffering .. 97

Lesson 18 When Things Go Wrong ...99

Errors in PHP ... 99

PHP Language Engine Errors ... 99

Application Errors (Bugs).. 99

External Errors .. 100

User Errors .. 100

Handling Errors.. 100

Thorough Debugging and Testing ... 100

The @ Operator .. 100

Setting Global Error Handlers .. 101

Configuring php.ini Correctly... 101

Regular User of Structured Exception Handling .. 101

Debugging with Xdebug... 101

Installation .. 101

Configuration.. 101

var_dump Extensions ... 102

Better Error Handlers ... 102

Other Functionality... 103

Wandschneider.book Page vii Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page viii Tuesday, August 5, 2008 2:14 PM

1

Installation of MySQL, Apache, and PHP

Windows
To install MySQL, Apache, and PHP on Microsoft Windows, we will largely use installers that we can
download from the appropriate Web sites.

MySQL
We will visit http://mysql.com, where we click “Downloads” to download the Community Server Edition
of MySQL, which is a free and open-source package. Select the appropriate version of Windows and
choose the Windows ZIP/Setup.EXE option.

After downloading, extract the setup program from the ZIP file and then run it. We will use the default val-
ues for all of the steps in the dialog, except that we will choose a custom install and select C:\MySQL as
our install path instead of the recommended location. When you enter the administrator password for this
new installation, don’t forget to write it down somewhere. You will need this in later lessons (and indeed
any other time you want to administer your MySQL installation).

After the installation is complete, we will configure the server right away, opting to use default values for
almost everything except for character-set support, where we will use UTF-8 as the default. Set a password,
and then MySQL will be ready to go!

Apache HTTPD Server
Visit http://httpd.apache.org to download the latest version of the Apache Web server software, and down-
load the MSI installer package. After downloading, run this program, and follow the steps for installation.
Choose a custom installation and install the software to C:\Apache\HttpServer2.2 instead of the default
location.

By default, this Web server software will use C:\Apache\HttpServer2.2\htdocs as its DocumentRoot for the
localhost host. The DocumentRoot is where Apache looks for any requested documents or scripts for a
given host.

So, if the user wants to view http://localhost/test.php, Apache looks in C:\Apache\HttpServer2.2\htdocs for
a (script) file called test.php, and executes it if it finds it.

Wandschneider.book Page 1 Tuesday, August 5, 2008 2:14 PM

2 PHP and MySQL

PHP
Finally, visit http://php.net and download the PHP binary installer for Windows. You can run this, and
change the default installation location to C:\PHP. Then, in addition to the default installation, install the
Multi-byte Strings and MySQLi extensions, and also choose to install PEAR and the PHP manual under the
final section of installation.

The PHP installer will ask you where the Apache configuration files are. They are located in
C:\Apache\HttpServer2.2\conf, assuming you chose that as your Apache HTTPD installation location.
With that, PHP configures almost everything itself.

You have to do one more configuration step yourself, however, and that is to tell the Apache Server that
files with the extension .php should go to the PHP interpreter. To do this, open up notepad.exe, edit
C:\Apache\HttpServer2.2\conf\httpd.conf, and in the section <IfModule mime_module>, add the following:

AddType application/x-httpd-php .php

PHP places its configuration file in C:\PHP, and the file is named php.ini. It is a simple text file that can be
edited with a simple program such as notepad.exe on Windows.

With this, you’ll be ready to go.

Mac / Unix
We’ll cover the installation steps for the Mac here. Since it’s a reasonably standard Unix operating system
these days, the instructions for operating systems such as Linux or FreeBSD are very similar.

Xcode
To compile programs on the Mac, you need to download and install Apple’s Xcode tools from http://
developer.apple.com/tools/download. Version 3.0 is for Leopard users and 2.5 is for Tiger users. The
Leopard install DVD comes with this in the section of extras, saving you a huge download.

Install this and just choose all the default options.

MySQL
We will actually use the package installer that MySQL provides for its software, since it’s quite convenient
and handles all the user account setup and permissions for us.

Visit http://mysql.com and download the Mac package format appropriate for your version of Mac OS X
and your processor architecture. Mount the Disk Image (.dmg) file and run through the installer, after which
MySQL will be installed on your machine (but not running yet).

Apache HTTP Server
We visit http://httpd.apache.org to download the Apache Web server; the 2.2.x series was current as we wrote
this document. Download the .tar.bz2 version of it, then open up /Applications/Utilities/Terminal.app/.
We’ll create a new temporary directory to build it in:

mkdir tmp

cd tmp

Wandschneider.book Page 2 Tuesday, August 5, 2008 2:14 PM

Lesson 1: Installation of MySQL, Apache, and PHP 3

tar xfj ../Downloads/httpd-2.2.9.tar.bz2

cd http2.2.9

./configure --prefix=/usr/local/apache2 --enable-modules=so

make

sudo make install

After the server software is installed, you must then do some configuration. We will create a virtual host
called livelessons with which to do all of our development. This is a two-step process:

1. Add a virtual host for livelessons to the httpd.conf file.

2. Add a hostname entry to /etc/hosts to let the operating system know about the host.

Our virtual host will have a DocumentRoot in the Sites subdirectory of our home directory. On my Mac
computer this is /Users/marcw/Sites—substitute the path for your own home directory in the Virtual Host
section below.

To edit the Apache configuration files, we will have to use the sudo command, which lets us execute com-
mands as the super user. We will also need to be familiar with a Unix command line text editor, such as
emacs, vim, or jove.

sudo emacs /usr/local/apache2/conf/httpd.conf

We will first make sure the following line near the bottom is uncommented:

Virtual hosts

Include conf/extra/httpd-vhosts.conf

Next, we will open up /usr/local/apache2/conf/extra/httpd-vhosts.conf, and replace the two <VirtualHost *:80>
sections with the following:

<VirtualHost *:80>

 DocumentRoot "/Users/marcw/Sites"

 ServerName livelessons

</VirtualHost>

We also will need to make sure the server thinks it has permission to serve content from the DocumentRoot,
so we must add the following as well:

<Directory "/Users/marcw/Sites">

 #

 # Possible values for the Options directive are "None", "All",

 # or any combination of:

 # Indexes Includes FollowSymLinks SymLinksifOwnerMatch #

 # Note that "MultiViews" must be named *explicitly* ---

 # doesn't give it to you.

 #

 Options Indexes FollowSymLinks

 #

 # AllowOverride controls what directives may be placed in .htaccess

Wandschneider.book Page 3 Tuesday, August 5, 2008 2:14 PM

4 PHP and MySQL

 # It can be "All", "None", or any combination of the keywords:

 # Options FileInfo AuthConfig Limit

 #

 AllowOverride None

 #

 # Controls who can get stuff from this server.

 #

 Order allow,deny

 Allow from all

</Directory>

This actually completes the basic configuration of the Apache server.

The second step is to create the hostname entry in /etc/hosts so that the local computer knows how to find
the livelessons host.

sudo emacs /etc/hosts

We will then add the following entry near the top:

127.0.0.1 livelessons

This tells the computer that the host livelessons has an IP address of 127.0.0.1, which is actually our local
computer!

PHP
We will visit http://php.net/download to download the .tar.bz2 for the latest version of PHP source code.
We will then compile and install it from Terminal.app, much like for the Web server:

cd ~

cd tmp

tar xfj ../Downloads/php-5.2.6.tar.bz2

cd php-5.2.6

/configure --prefix=/usr/local/php5 \

--with-apxs2=/usr/local/apache2/bin/apxs \

--with-mysqli=/usr/local/mysql/bin/mysql_config \

--enable-mbstring --enable-mbregex

make

sudo make install

Once the software is compiled and installed, the only thing left to do is to tell the Apache httpd.conf about
the .php file extension:

sudo emacs /usr/local/apache/conf/httpd.conf

In the section <IfModule mime_module>, add the following:

AddType application/x-httpd-php .php

Wandschneider.book Page 4 Tuesday, August 5, 2008 2:14 PM

Lesson 1: Installation of MySQL, Apache, and PHP 5

Finally, we’ll copy over a suggested php.ini file to /usr/local/php5/lib, so we have something to work with
in later lessons when we want to change the default behavior of PHP:

sudo cp ~/tmp/php-5.2.6/php.ini-dist /usr/local/php5/lib/php.ini

Starting and Stopping the Servers
To start and stop the MySQL server on your Mac machine:

sudo /usr/local/mysql/bin/safe_mysqld --user=mysql

Press CTRL+Z to pause it, then type bg to put the process into the background.

To stop MySQL:

sudo /usr/local/mysql/bin/mysqladmin shutdown

To start the Apache Web server:

sudo /usr/local/apache2/bin/apachectl start

To stop it:

sudo /usr/local/apache2/bin/apachectl stop

To restart in case of configuration file change:

sudo /usr/local/apache2/bin/apachectl restart

Troubleshooting
The three most common errors you will encounter when trying to run PHP scripts are as follows:

■ Permission denied—This is almost always because the <Directory> entry for your DocumentRoot
in httpd.conf or http-vhosts.conf doesn’t match the actual DocumentRoot directory in your
<VirtualHost> section.

■ Couldn’t connect to host, or the browser tries to connect to livelessons.com—Your Web server is
probably not running. Start the Apache server software again.

■ Source code prints on the screen instead of being executed—You forgot to add the AddType section
to <IfModule mime_module> in httpd.conf. Apache does not know that the script is PHP, so it
assumes it’s something like HTML and sends the file’s contents down to the user.

Wandschneider.book Page 5 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 6 Tuesday, August 5, 2008 2:14 PM

2

Your First Web Application

Getting Started
The first part of writing our sample Hello World application will be to identify the directory where the
Apache HTTPD server software loads documents. This location is called the DocumentRoot, and we will
refer to this frequently throughout the LiveLessons and documentation.

■ On Apple Macintosh and Unix machines, when we installed the server software, we created a new
virtual host in /etc/hosts called “livelessons”. We set the DocumentRoot for this virtual server to be
~/Sites, which is the Sites subdirectory of our home directory.

■ On Windows machines, we decided to use the default “localhost” virtual server, and also used the
default DocumentRoot, which is in C:\Apache\HttpServer2.2\htdocs.

Thus, whenever we say we’re going to add a document to our DocumentRoot, you will just be creating a
file in this directory.

To create files, you will want to select any program that will let you enter and save plain text files. Those
that handle UTF-8 are slightly more useful if you ever plan to enter accented or foreign letters—fortunately,
most modern editors support this. Some common editors that people use are:

■ emacs—available on almost any platform that PHP is

■ vi (and its open-source cousin vim)—also available on both Windows and Mac/Unix platforms

■ BBEdit—a Macintosh-only editor that’s quite popular with PHP programmers

■ Programmer’s Notepad—a Windows-only editor

■ TextEdit.app—The default Macintosh text editor works fine for editing plain text files, as long as
you go to the Format menu and select “Make Plain Text”.

■ Notepad.exe—The default Windows text editor also works fine for editing plain text.

Our first little Web application is roughly as follows:

<html>

 <head>

 <title>My first PHP Web Application</title>

 </head>

Wandschneider.book Page 7 Tuesday, August 5, 2008 2:14 PM

8 PHP and MySQL

 <body>

 <?php

 echo "Hello World!";

 ?>

 </body>

 </html>

When you view the source in the client Web browser, you see that none of the PHP code is there, and
there’s only HTML markup. This is because the PHP code is executed on the server. When the client
browser makes a request, the server loads PHP and tells it to process the script. The PHP language engine,
in turn, processes the script, outputting whatever text it sees, and only starts processing PHP language when
it sees the <?php marker. It then executes the code we have, which tells it to print out a single line. After the
?>, it just continues dumping the text it sees as it works through the file.

Entering PHP Scripts
Marking Sections of PHP Code
There are a few ways to indicate that a section of the input file contains PHP script. The most common way,
which we have seen before, is as follows:

<?php

 echo "Hello Everybody!";

?>

Another similar way to demarcate PHP script is as follows:

<?

 echo "Bonjour tout le monde!";

?>

This is called using short tags, and is available only if the short_open_tag setting is enabled in your
php.ini configuration file. We have turned this setting on in all of our configuration files.

A third way of entering script is:

<script language="php">

 echo "Ciao a tutti!";

</script>

One final style of inputting script exists to support some older graphical HTML editing programs that did
not (do not) understand script directives very well. To let users continue to use these editors, PHP script can
be marked using these ASP tags:

<%

 echo "Guten Tag alle!";

%>

ASP tags can only be used if the asp_tags setting is enabled in the php.ini configuration file.

Wandschneider.book Page 8 Tuesday, August 5, 2008 2:14 PM

Lesson 2: Your First Web Application 9

Mixing PHP and HTML
There is nothing that compels or requires large blocks of PHP code when writing HTML and PHP. You are
completely free to mix the markup and script as much as you wish:

<?php

 $userName = "Chippy the Chipmunk";

?>

<p align='left'>

 Hello there, <?php echo $userName; ?>

</p>

There is a shortcut that exists for this particular usage, involving the short tags discussed in the previous
section along with an equals sign (=):

<?= $userName ?>

This is the same as typing in full:

<?php echo expression; ?>

The flexibility available when mixing PHP and HTML lets us get creative when we get into more advanced
language constructs. You are perfectly welcome to mix them with various control structures, which we will
introduce in the next lesson:

<?php

 if ($file_received_successfully === TRUE)

 {

?>

 <p align='center'> Thank for your contribution </p>

<?php

 }

 else

 {

?>

 <p align='left'>

 Error: The file was not correctly received.

 </p>

<?php

 }

?>

Wandschneider.book Page 9 Tuesday, August 5, 2008 2:14 PM

10 PHP and MySQL

Statements and Comments
Statements in PHP, like many other languages, are separated by a semi-colon (;) character. Statements can
be grouped together by wrapping them in brackets ({ and }); this is sometimes called a block of code. Any
number of statements can be placed on one line, individual items (also known as tokens) within a statement
can be separated by arbitrary amounts of white-space (space, newline characters, or tabs), and statements
can span more than one line:

<?php

 $x = 123; $y = 456; $z = "hello there"; $a = "moo";

 {

 echo "This is a group of statements";

 $m = "oink";

 }

 $userName

 =

 "Chippy the Chipmunk"

 ;

?>

There are three basic styles for entering comments in PHP.

<?php

 /*

 * This is our first style of comments. They can span multiple

 * lines.

 */

 echo "Style 1";

 //

 // This is our second style of comments. It is "single line", but

 // you can use as many of them as you'd like.

 //

 echo "Style 2";

 #

 # This third style is also "single line"

 #

 echo "Style 3";

?>

The two types of comments that are single line cause the PHP language processor to ignore all code until
the end of the current line or current PHP script section.

Wandschneider.book Page 10 Tuesday, August 5, 2008 2:14 PM

Lesson 2: Your First Web Application 11

<?php

 // all of this line is ignored.

 echo "But this line prints just fine.";

?>

<?php #Comment!! ?>This prints<?php echo "this prints" ?>

Variables
To declare a variable in PHP, you simply assign it a value. Variable names in PHP are represented by a
dollar sign ($) followed by an identifier that begins with either a letter or underscore, which in turn can be
followed by any number of underscores, numbers, or letters.

<?php

 $varname = "moo"; // ok

 $var______Name = "oink"; // ok

 $__12345var = 12345; // ok

 $12345__var = 12345; // NOT ok - starts w/ number

?>

In versions of PHP prior to version 4, variables would be declared at their first use (instead of first assign-
ment), which often proved tricky when debugging problems with your code.

<?php

 $cieling = "roof"; // whoops misspelled it!

 echo "$ceiling"; // prints an empty string.

?>

Fortunately, PHP 5 will now print a warning saying that “$ceiling” has not been assigned a value.

Numbers
There are two basic types of numbers in the language, integer and float, associated with the keywords int
and float (or double).

Integers are specified in code either in octal (base-8 notation), decimal (base-10 notation), or hexadecimal
(base-16 notation)

<?php

 $abc = 123; // decimal

 $def = -123;

 $ghi = 0173; // octal, value is 123 in decimal

 $jkl = -0173; // octal, value is -123 in decimal

 $mno = 0x7b; // hexadecimal, 123

 $pqr = -0x7B; // hexadecimal, -123

?>

Wandschneider.book Page 11 Tuesday, August 5, 2008 2:14 PM

12 PHP and MySQL

Integer precision varies largely by the underlying operating system, but 32 bits is common. There are no
unsigned integers in PHP, so the maximum value for an integer is typically larger than 2 billion. Unlike
some other languages that will overflow large positive integers into large negative integers, however, PHP
will actually overflow integers to floating-point numbers.

<?php

 $large = 2147483647;

 var_dump($large);

 $large = $large + 1;

 var_dump($large)

?>

The output of this script will be:

int(2147483647) float(2147483648)

Floating-point variables can be input in a few different ways, as follows:

<?php

 $floatvar1 = 7.555;

 $floatvar2 = 6.43e2; // same as 643.0

 $floatvar3 = 1.3e+4; // same as 13000.0;

 $floatvar4 = 5.555e-4; // same as 0.0005555;

 $floatvar5 = 1000000000000; // too big for int ==> float

?>

Strings
A string is a sequence of characters. In PHP, these characters are 8-bit values. There are three ways to spec-
ify a string value.

Single-Quoted
Single-quoted strings are sequences of characters that begin and end with a single quote (') character.

 <?php echo 'This is a single-quoted string.'; ?>

In order to include a single quote within one, you simply put a backslash in front of it, which is called
escaping the character.

 <?php echo 'This is a single-quoted (\') string.'; ?>

Double-Quoted
Double-quoted strings are similar to single-quoted strings, except that the PHP language processor will
actually dissect them looking for special escape sequences and variables, which will be replaced.

 <?php echo "This is a double-quoted string."; ?>

Both single- and double-quoted strings can span multiple lines. The newline characters are simply inter-
preted as part of the input string.

Wandschneider.book Page 12 Tuesday, August 5, 2008 2:14 PM

Lesson 2: Your First Web Application 13

Heredoc Notation
The third way to input strings in PHP script is to use the heredoc syntax. In this, a string begins with <<<
and an identifier, and continues until PHP sees an input line of text consisting only of the left-aligned
(same) identifier and a semicolon character (;). For example:

<?php

 echo <<<HTML

 <p align='center'>

 This is an example of text being input using the heredoc

 notation in PHP.

 </p>

HTML;

?>

Heredoc strings behave much like double-quoted strings as above, although you do not need to escape as
many of the characters—newline characters and tabs can be freely entered.

Booleans
Booleans are the simplest type in the PHP type system, and express a binary value: true or false, yes or no,
one or zero. The value of a Boolean variable can be either TRUE or FALSE. These two keywords are not at all
case sensitive.

Working with Multiple Pages
The simple calculator application that we start working on in this lesson is our first serious, multipage Web
application. It demonstrates one way of sending data from one page to another— using the HTML <form>
element.

<form method='post' action='results.php' name='calc_form'>

 <input type='text' name='input1' size='15'>

 <input type='submit' value='Go!'>

</form>

The key elements to the form are the action attribute, which tells the client browser where to send the form
contents, and the method attribute, which tells the browser how to send these form contents. We will cover
the POST method and how it works in a later lesson. The value the user enters in the client browser is in the
input element with the name input1. The name is important, because it is how we will refer to the data in
the results page of the application.

To access the form data on the second page, we use the $_POST variable provided by PHP. It is an array,
and the value of the input element named input1 is at the key or index “input1”.

Wandschneider.book Page 13 Tuesday, August 5, 2008 2:14 PM

14 PHP and MySQL

<?php

$input1 = $_POST['input1'];

?>

We assign the data from the form to a local variable, which we have also named input1, and then we can
print it out later on the page.

Wandschneider.book Page 14 Tuesday, August 5, 2008 2:14 PM

3

Language Basics

Arrays
We have already learned about the $_POST array. Arrays in PHP are a very powerful and flexible tool, and
we will use this data type very frequently in our Web applications. In this lesson, we’ll look at some of the
basics of using them.

Arrays can be created in two ways: by using the array function or by using the [] operators to add values
to a variable:

$arr1 = array(234, 32.234, 'fish fish', true);

// or

$arr2[] = 100;

$arr2[] = 200;

$arr2[] = 'cat';

$arr2[] = true;

Once you’ve created the array, you use the [] operators to add more elements to the array:

$arr1[] = 'a new value!';

By default, PHP assigns numeric indexes for each of the values in the array, starting at zero.

Testing Variables
If you are not sure if a variable is set or not, and want your code to be robust for those cases where it is not,
you can use the isset function in PHP to tell if you a variable or array index has been defined previously in
the script.

if (!isset($x))

 echo "\$x is not set yet";

if (!isset($_POST['input1']))

 echo "You did not provide the correct input, sorry!";

Wandschneider.book Page 15 Tuesday, August 5, 2008 2:14 PM

16 PHP and MySQL

Simple Variable Substitution
PHP has a very handy feature with strings by which it can substitute values from variables directly into the
strings. This is called variable substitution, and we will look at the simple kind now:

$number_of_fish = 10;

echo "There are $number_of_fish in the bowl";

$arr = array(235, 436262436, 4.55e10, 'hat');

echo "The 2nd element of the array is: $arr[1]";

Simple variable substitution works in double-quote strings and heredoc strings, but not in single-quote
strings. If you want to print a $ symbol in these two types, you can escape it with a backslash character (\).

Arithmetic Operators
PHP comes with a full set of arithmetic operators, which operate on numbers. These are:

■ Addition: +

■ Subtraction: –

■ Multiplication: *

■ Division: /

■ Modulus: % (This returns the integer remainder when dividing the second operand into the first.)

You can use these to build up expressions by simply providing two operands for each:

$x = 10 + 20;

$a = $b * $c;

$z = $f – 20;

All of these operators have what are called self-assigning versions, as follows:

$x += 10;

// this is the same as:

$x = $x + 10;

$x /= 10; // divide $x by 10 and assign result back to $x

There are two other operators in PHP: increment, represented by ++, and decrement, represented by ––
(minus minus). They can be placed before or after a variable, and behave slightly differently in each case:

$x++ takes the current value of $x, and then increments its value by one behind the scenes. ++$x immedi-
ately increments $x by one, and then uses that value in whatever context we are operating. The decrement
operator similarly decrements the value of a variable before or after evaluating its value:

Wandschneider.book Page 16 Tuesday, August 5, 2008 2:14 PM

Lesson 3: Language Basics 17

$x = 10;

echo $x++; // prints 10, AFTER, $x is 11

echo ++$x; // prints 12, AFTER $x is 12

echo $x--; // prints 12, AFTER $x is 11

echo --$x; // prints 10, AFTER $x is 10.

Type Conversions
Everything that comes to us via the $_POST array is a string. However, our calculator wants to perform
arithmetic operations on numbers. So, how do we convert from strings to numbers? The answer is that PHP
implicitly does a lot of these type conversions for us.

$x = '10';

$y = '20';

$z = $x + $y; // PHP first converts $x and $y to numbers, then adds them!

echo $z; // prints 30!

Similarly, if we perform an operation that creates a result that doesn’t fit into an integer, PHP will automat-
ically convert it to a float:

echo 5 / 2; // prints 2.5, a float!

For those cases where the implicit type conversions aren’t what we want or we want to force something else
to happen, we can use explicit type conversions, or type casting. We do this by using (type)in front of the
value (constant or variable) to convert:

$x = 5.55;

$y = (int)$x; // $y is now integer 5

$z = 2;

$a = (float)$z; // $z is now 2.0 float.

When converting strings to numbers, PHP parses as much of a number as it can until a non-numeric charac-
ter appears, and then stops. If the string does not start with any numeric characters, the conversion results in
0.

$x = (int)"123 Happy Lane"; // $x = 123 (integer)

$y = (int)"Three little pigs"; // $y = 0.

$z = (float)"123.45 is a number"; // $z = 123.45 (float)

When converting strings to Booleans, the rule is as follows:

■ The string "0" or the empty string "" evaluates to FALSE.

■ All other strings evaluate to TRUE.

This means that both 'true' and 'false' convert to TRUE because neither is empty nor "0".

Wandschneider.book Page 17 Tuesday, August 5, 2008 2:14 PM

18 PHP and MySQL

NULL
NULL (case insensitive) is a special value you can assign to variables in PHP. It means the variable is
declared, but has no real value.

The if Statement
The first control statement we’ll see in PHP is the if statement, which allows for conditional evaluation of
code depending on an expression. The basic syntax is:

if (expression)

 statement or code block

else

 statement or code block

If the expression evaluates to true, then the first statement or block of code (wrapped in ({ and }) is exe-
cuted, otherwise the second block is executed. The else and second block are optional. You can chain
together any number of these by using else if or elseif.

For example:

if (!isset($x))

 echo "\$x is not set yet!"

else if ($x != null)

 echo "\$x is not null. Its value is: $x";

else

 echo "\$x is null. No value, sorry!";

Comparison Operators: Equality and Identity
PHP has a number of comparison operators. In this lesson, we will look at testing for equality. The ==
(equality) operator evaluates to TRUE if the two operands have the same basic value. This can, however, use
PHP’s implicit conversion, and will return TRUE even if the values are of different types:

// All of these evaluate to true:

10 == 10

10 == '10'

0 == false

0 == null

1 == true

The === (identity) operator, however, only evaluates to TRUE if the two operands have the same value and
are of the same type:

10 === '10' // false!

'10' === '10' // true

0 === false // false – different types

0 === null // false – different types

Wandschneider.book Page 18 Tuesday, August 5, 2008 2:14 PM

Lesson 3: Language Basics 19

Both have versions with the ! character in them which evaluate to TRUE if the operands are not equal
(identical):

// These all evaluate to true.

0 != 1

0 !== false

null !== false

11 != '10'

'11' !== '11'

Wandschneider.book Page 19 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 20 Tuesday, August 5, 2008 2:14 PM

4

More Language Features

Script Lifetime
We have mentioned in the past that each time the browser requests a page from the server, Apache starts up
the PHP language engine to process the request. We’ve also mentioned that variables in PHP are valid for
the duration of the currently executing script. Let’s then look at the following script:

if (!isset($x))

{
 echo "initializing \$x";

 $x = 10;

}

echo $x;

$x++;

One might expect that the first time we run this script, $x would be initialized to 10, and then each subse-
quent time we run it, we’d see it incremented by one. But, in fact, this script prints out 10 every single time.

This is because PHP is completely stateless. Each time you start executing a new script, the language
engine starts with a “clean sheet of paper,” and everything initializes to empty. We will learn in later lessons
how to remember state between different page executions.

Strings, Newlines, and the Web Browser
We can insert newline characters into our double-quoted strings with “\n”, and in heredoc strings by simply
pressing the Enter key. However, when we display these strings in the browser, the newlines are not dis-
played. The problem is that our output medium, HTML, is a markup language that formats the output based
on specially tagged instructions in the input stream.

If you look at the source for the Web page, you’ll see the newlines rendered correctly, but if you want to see
them in HTML, you’ll have to do one of three things:

■ Wrap the text to print in a block-level HTML markup element, such as <p> or <div>. These elements
have implied newlines at the end of them.

Wandschneider.book Page 21 Tuesday, August 5, 2008 2:14 PM

22 PHP and MySQL

■ Use the preformatted output markup element, <pre>. This says that any content in between the
<pre> and </pre> should be displayed exactly as it is shown. This is frequently used for showing
code on a Web page.

■ Use the line-break markup element,
, after the line of text you want to break. This is used less
and less, as more people move to using proper block-level elements. If you have a string with lots of
newlines in it, you can easily convert these to
 tags with the nl2br function.

Constants
For those cases where we want to use the same value throughout our code, PHP provides a convenient fea-
ture called constants. This lets us predefine values and give them a simple name to use throughout our
script. When executing the script, PHP substitutes in the defined value before continuing.

Constants are declared with the define function. Once they have been defined, they can never be changed
in the same script. When using constants, you do not need a $ character as you do with variables.

define('ERROR', "Error: Something bad happened!");

if (!isset($x))

 echo ERROR;

Constants can be any scalar value, such as strings, numbers, Booleans, or null.

More Comparison Operators
We’ve already seen the == and === operators, along with their negative counterparts. PHP has a few more
comparisons:

■ Greater than: >

■ Greater than or equals to: >=

■ Less than: <

■ Less than or equals to: <=

■ Not equals: <> (equivalent to !=)

■ Inequality: !

All of these operators take two operands except for the last, which only evaluates to TRUE if its operand
evaluates to FALSE.

Logical Operators
We can combine expressions using comparison or arithmetic operators by using the logical operators in
PHP. There are three of these:

Wandschneider.book Page 22 Tuesday, August 5, 2008 2:14 PM

Lesson 4: More Language Features 23

■ and (also &&)—This evaluates to TRUE if both its operands evaluate to TRUE.

■ or (also ||)—This evaluates to TRUE if either of its operands evaluates to TRUE. If the first does, the
second is not even evaluated.

■ xor—This evaluates to TRUE if, and only if, one of the operands evaluates to TRUE.

You can combine expressions in PHP to arbitrary degrees of complexity. You can wrap expressions in
parentheses to force a certain order of evaluation or help with readability. Otherwise, PHP has built-in rules
describing in which order complicated expressions should be evaluated:

$x + 20 > 50 or $y - 430 < 1000

// same as

(($x + 20) > 50) or (($y - 430) < 1000)

You are encouraged to use parentheses as much as possible to help maintain some degree of readability in
your code.

The switch Statement
At some point, complex if/elseif/elseif/else statements can become cumbersome to read and maintain. For
these situations, another control structure exists in PHP, called the switch statement. It basically takes an
expression and evaluates it over possible values (called cases), then executes a block of code when a case
match is found. You can optionally provide a default case for when no other one matches:

switch ($day)

{

 case 0:

 echo "Monday";

 break;

 case 1:

 echo "Tuesday";

 break;

 // etc

 case 7:

 echo "Sunday";

 break;

 default:

 echo "Unknown day of the week";

 break;

}

Once a case matches, PHP starts executing all statements inside the switch statement after the case match,
ignoring any other case declarations. To have it stop, use the keyword break.

Wandschneider.book Page 23 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 24 Tuesday, August 5, 2008 2:14 PM

5

Functions and Loops

Loops
PHP provides several ways to iterate over the same code, called loop statements. We’ll take a look at the
most common types here.

while loop
The basic syntax of the while loop is as follows:

while (expression)

 statement or block

The body of a while loop can either be a single statement or a block inside of brackets. The basic function-
ality of the loop is as follows:

■ PHP evaluates the expression inside the parentheses. If it evaluates to TRUE, PHP executes the body
of the loop.

■ Repeat.

For example, to calculate one number to the power of n (that is, xy):

$base = 10;

$exponent = 3;

$result = $base;

while ($exponent > 1)

{

 $result *= $base;

 $exponent--;

}

Another type of loop is the do…while loop, which works like the while loop, except that it evaluates the
expression after executing the statement(s) in the body. Thus, the body must execute at least once.

Wandschneider.book Page 25 Tuesday, August 5, 2008 2:14 PM

26 PHP and MySQL

do

{

 // statements

}

while (expression);

Another type of loop is the for loop, which at first seems more complex than the others, but is actually quite
useful and powerful:

for (expr1; expr2; expr3)

 statement or block

It works as follows:

■ PHP executes or evaluates expr1 once before doing anything with the loop.

■ PHP evaluates expr2. If it evaluates to TRUE, it executes the body of the loop.

■ After executing the body of the loop, PHP always executes expr3.

■ PHP then goes back and evaluates expr2 a further time. If TRUE, it continues executing the body and
evaluating expr3. Otherwise, it breaks.

So, to do our exponent calculation using a for loop:

$base = 10;

$exponent = 3;

$result = $base;

for ($x = 1; $x < $exponent; $x++)

$result *= $base;

To break out of a loop, regardless of what the expression would evaluate to, you can use the break keyword
in PHP. To have the loop stop executing the body and go back to the expression evaluation, use the continue
keyword.

Functions
To declare a function in PHP, you use the function keyword. Afterward comes the name of the function,
which must start with a letter or an underscore character (_). The rest of the name can be any combination
of letters, numbers, or underscores.

You can pass data to functions by passing arguments, or parameters to the function declaration. These look
like regular variable declarations in the language.

Wandschneider.book Page 26 Tuesday, August 5, 2008 2:14 PM

Lesson 5: Functions and Loops 27

function power_of($base, $exponent)

{
 $result = $base;

 while ($exponent --> 1)

 $result *= $base;

 return $result;

}

By default, all functions in PHP evaluate to null. To have a function return a value other than null, you use
the return keyword, as shown above.

To call a function, simply name the function and give any parameter values in parentheses, separated by
commas:

echo power_of(10, 3); // prints 1000

You can provide default values for parameters in function declarations as follows:

function power_of($base, $exponent = 1)

{

 // etc.

}

echo power_of(10); // prints 10^1, or just 10.

echo power_of(10, 2); // prints 100

To use a default parameter, you don’t specify its value when calling the function.

Byval and Byref Parameters
By default, PHP passes parameters to functions using a convention called by-value, or byval. This means
that PHP passes a copy of the parameter to the function (this is true for numbers, strings, arrays, Booleans,
and null).

$x = 10;

function f($y)

{

 $y++;
}

f($x);

echo $x; // prints 10 because $y is a COPY of $x

If you want a function to actually modify a parameter when using it, you want to use what are called by-
reference, or byref, parameters. These are declared in the function header by prefixing them with the amper-
sand character (&). Byref parameters cause PHP to actually work with the outer variable in your script:

Wandschneider.book Page 27 Tuesday, August 5, 2008 2:14 PM

28 PHP and MySQL

$x = 10;

function f(&$y)

{

 $y++;
}

f($x);

echo $x; // prints 11 because $y is a reference to $x

Scoping
You can declare variables inside of functions in PHP. These variables are not accessible to code executing
outside of the context of that function. Furthermore, you cannot use variables declared outside of a function
from within that function’s body. If you declare a variable inside of a function using the same name as one
outside of the function, nothing unusual or bad happens: It’s a local copy strictly for that function.

If you do want to use a variable from your outer script from within your function body, you make the func-
tion aware of that variable by using the global keyword.

$x = 10;

function f()

{

 global $x;

 $x++;

}

f();

echo $x; // prints 11

There are some variables in PHP, such as the $_POST variable we’ve seen earlier, that are called superglobals.
These are always accessible from anywhere within our script, and the global declaration is not necessary.

As for functions, if you declare a function inside of a script, you can use it from anywhere within that
script, either before or after it is declared. To see if a function exists or not, you can use the
function_exists function.

Wandschneider.book Page 28 Tuesday, August 5, 2008 2:14 PM

6

Text and Strings

Review of Strings in PHP
We’ve seen that there are three ways to enter strings in PHP: single-quoted, double-quoted, and heredoc
strings:

$str1 = 'single quoted';

$str2 = "double quoted";

$str3 = <<<EODOC

this is a heredoc string.

EODOC;

$str4 = 'strings

can

span

multiple

lines';

To use single quotes inside a single-quoted string, we escape them with the backslash character. We do the
same to insert double quotes inside of double-quoted strings. To print a backslash character, we escape it
with a backslash:

$str1 = 'Marc\'s car';

$str2 = "Hello \"Marc\", if that IS your real name";

$str3 = 'I \\ love \\ backslashes';

Double-quoted strings can contain other escape characters, such as newlines, tabs, and linefeeds (\n, \t,
and \r, respectively).

$str4 = "One\nword\n\per\line";

Any newlines or TAB characters in heredoc strings are preserved.

Wandschneider.book Page 29 Tuesday, August 5, 2008 2:14 PM

30 PHP and MySQL

More on Variable Expansion
We’ve already seen simple variable expansion, by which we can have PHP insert variable values into
strings for us. This works for double-quoted strings and heredoc strings, but not single-quoted.

$thing = 'jar';

$contents = 'cookies';

$arr = array('fish', 'dogs', 'cats', 'birds');

echo "The $thing is full of $contents.";

echo <<<EOM

My favorite animal is: $arr[2]

EOM;

There are two key limitations to the simple variable expansion. The first comes if we want to use string
indexes for arrays, such as $_POST['input1']. The second comes if we want to embed a variable expan-
sion right next to other letters or words. To solve both of these, we’ll use complex variable expansion,
which just involves us wrapping the variable expansion in brackets ({ and }).

$thing = 'jar';

$contents = 'cookie';

echo "The $thing is full of {$contents}s";

echo <<<EOM

The "input1" textbox has the value: {$_POST['input1']}

EOM;

String Operators
The key language operator on strings in PHP is the concatenation operator, or “.”. There is also a self-
assigning version of this operator, which concatenates the operand to the end of the string:

$str1 = 'happy';

$str2 = 'the cat is ' . $str1;

$str2 .= ". Really happy.";

Unlike some other languages that use the PLUS sign (+) for string concatenation, in PHP, if you use this
operator on strings, they will first be converted to numbers before the operation is evaluated as a numeric
arithmetic operation.

If you use the == operator on strings in PHP, it will return TRUE if the two strings have the same text content.
This comparison is case sensitive:

Wandschneider.book Page 30 Tuesday, August 5, 2008 2:14 PM

Lesson 6: Text and Strings 31

'fish' == 'fish' TRUE

'Chupacabra' == 'chupacabra' FALSE

Common Operations and Functions for Strings
While PHP contains a dizzying array of string functions, here are some that you’ll use most frequently in
your Web applications.

strlen
The strlen function tells you how many characters there are in a string. If your string is holding binary data,
then this function tells you how many bytes are in the data—strings in PHP are simply 8-bit byte sequences.

$str = 'happy happy 123';

echo strlen($str); // prints 15

strcmp
The strcmp function compares two strings in the same way that the == operator works on strings. It, how-
ever, does not evaluate to a Boolean. Instead, it returns:

■ 0 if the two strings are the same

■ 1 if the first string is considered to be greater than the second string ("F" > "B")

■ -1 if the first string is considered to be less than the second string. ("m" < "z")

strcasecmp
This function is similar to the strcmp function, except that it operates in a case-insensitive manner:

Strcasecmp('Fish', "FISH") == 0 // TRUE

strncmp
This function lets you compare the first n characters of two strings, ignoring any others.

strncmp("I like motorcycles", "I like puppies", 6) == 0 // TRUE

strtolower / strtoupper
These two functions are used to convert strings to and from upper and lower case. They are straightforward
to use:

echo strtolower("I AM YELLING"); // prints i am yelling

echo strtoupper("feeling sluggish"); // prints FEELING SLUGGISH

trim / ltrim / rtrim
These functions remove white space at both ends of a string (trim), or at one end (left – ltrim, right – rtrim).
Any white space in the middle of the string is left untouched.

echo trim(' blah

'); // prints 'blah'

Wandschneider.book Page 31 Tuesday, August 5, 2008 2:14 PM

32 PHP and MySQL

echo rtrim(" fish "); // prints " fish"

echo ltrim(" fish "); // prints "fish "

ord / chr
The ord function returns the ASCII character code for a given character in a string, while the chr function
takes a numeric ASCII code and returns a string with that single character in it:

$num = ord('a'); // $num is 97

$str = chr($num); // $str = "a"

substr
This function gives you a way to extract a substring from another string. You provide it with the string to
use, the starting index (zero-based) of the substring to extract, and how many characters long that substring
should be:

echo substr('Wankel-Rotary Engine', 7, 6); // prints "Rotary"

strpos
If you want to find a string inside of another, this is the function to use. The first argument is the haystack in
which to search, while the second is the needle you are looking for.

echo strpos("The house that I built", "house"); // prints 4

The return value of the function is the zero-based index of the first character of the string you are looking
for, or FALSE if it’s not found.

Complex return values

Many functions in PHP return an integer sometimes and FALSE in other situations (typically a failure
situation). Since 0 would then be a valid success return value, you cannot use the following code to test
failure:

$ret = substr("Cats are cute", "Cats");

if ($ret == false)

 echo "FAIL!";

This doesn't work because using this simple comparison, 0 would evaluate to false, and thus you'd see
an unexpected "FAIL!".

To get around this problem, use the === or !== comparison operators:

$ret = substr("Cats are cute", "Cats");

if ($ret === false)

 echo "FAIL";

Blowing Up Stuff (and Fixing It)
Two incredibly useful functions in PHP are the explode and implode functions. The former takes a string
and explodes it around a specifier you provide, returning an array, while the latter takes an array of strings
and implodes it, joining the strings with the provided glue:

Wandschneider.book Page 32 Wednesday, August 6, 2008 9:15 AM

Lesson 6: Text and Strings 33

$string = "It is hot today";

$arr = explode(" ", $string);

// arr = Array([0] => It, [1] => is, [2] => hot, [3] => today)

$string2 = implode(":", $arr);

// string2 is now: "It:is:hot:today";

Sending Data via GET Parameters
We’ve thus far been using POST parameters to send data from one page to another in our Web application.
Another way to send information is to add it to the URL you request for any given page. You can add
parameters (name/value pairs) to this URL by using ?, &, and = characters. These name/value pairs are
called GET parameters, and work as follows:

http://site/page.php?first=value1&subsequent1=value2&sub2&sub3=value3

The = sign and value are optional.

These values are accessed from within your PHP scripts by using the $_GET superglobal, which is much
like its $_POST counterpart.

echo $_GET['first']; // prints value1

echo $_GET['subsequent1']; // prints value2

var_export(isset($_GET['sub2'])); // prints "true"

PHP and Unicode
Most modern Web pages are written in UTF-8, especially if they want to support more than simple ASCII
characters. PHP was written to be internally 8-bit, which at first would seem quite incompatible with UTF-
8 (in which letters can span multiple bytes).

The good news, however, is that PHP works quite well with UTF-8 if you use the multibyte string
(mbstring) extension in the language and its string manipulation functions. Please consult the PHP Online
Manual for more information on this extension and how to use it.

Wandschneider.book Page 33 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 34 Tuesday, August 5, 2008 2:14 PM

7

Arrays, File Organization

Review of Array Basics
Arrays in PHP are associative maps of key/value pairs, much like a dictionary or hash table data structure
seen in other languages. Keys can be either strings or numbers, and there is no required or implied ordering
to the contents of an array.

Reviewing what we saw in Lesson 2, arrays are created in two ways: with the array function or by assign-
ing values to a variable with the array access operator []:

$arr = array(234, 6823.32523, 'zebra', false);

$arr2[] = 'oink';

$arr2[] = 'wiggles';

$arr2[] = 9.5321e+11;

By default, PHP assigns numeric indexes to array contents. You can also provide string indexes for values.
These can be specified in the array function call by separating names and values with the => operator.

$user = array('name' => 'Marc', 'address' => '123 Happy Street',

 'favorite number' => 75, 'location' => 'Beijing');

$user['email'] = 'marcwan';

In general, it is not a great idea to mix numeric and string indexes within a given array.

To access values in an array, you use the array access operator ([]) with the index you want:

echo $user['email']; // prints "marcwan"

echo $arr[0]; // prints 234

$field = "address";

echo $user[$address]; // prints "123 Happy Street"

Wandschneider.book Page 35 Tuesday, August 5, 2008 2:14 PM

36 PHP and MySQL

Multidimensional Arrays
Arrays in PHP can actually contain other arrays as contents. This array nesting can be arbitrarily deep. The
array that results is referred to as a multidimensional array.

$the_matrix = array(array(1, 2, 3), array(4, 5, 6), array(7, 8, 9));

PHP provides some syntactic help for working with multidimensional arrays by letting you use multiple
groups of [] operators on an array:

echo $the_matrix[0][2]; // prints 3

echo $the_matrix[2][0]; // prints 7

echo $the_matrix[5][43]; // invalid offset error message

Counting Array Elements
To find out how many elements an array has, use the count function. This counts the number of top-level
items in the array, and does not count the items in subarrays:

$arr = array(234, 5, true, array(3, 5, 1, 5, 6));

echo count($arr); // prints

If you provide an argument that is not an array, count returns 0.

Removing and Deleting
To remove an element from an array, use the PHP unset function with that index:

$arr = array(1, 2, 3, 4);

unset($arr[0]);

var_dump($arr);

/* prints: array(3) {[1]=> int(2) [2]=> int(3) [3]=> int(4)} */

To delete an entire array, simply use the unset function on the array variable:

unset($arr); // Array $arr is no longer defined.

Indeed, you can use the unset function on any variable in PHP, after which it will no longer be declared or
available to your scripts. If you attempt to reference that variable, you will get an error saying it has not
been declared yet.

Iterating over Array Contents – foreach Loops
PHP provides a very powerful way to iterate over array contents in your scripts, called the foreach loop. In
its most basic form:

$arr = array(1, 2, 3, 4);

foreach ($arr as $value)

 echo $value; // prints 1 2 3 4

Wandschneider.book Page 36 Tuesday, August 5, 2008 2:14 PM

Lesson 7: Arrays, File Organization 37

PHP executes the body of the function once for each value in your array, putting the value each time in the
variable whose name you provide (here we use $value).

For those cases where you want to actually see the keys as well, you can tell PHP to give you these in the
foreach loop as well by providing a keyname variable and separating it from the value variable by a =>
operator:

$arr = array(1, 2, 3, 4);

foreach ($arr as $key => $value)

 echo "$key: $value"; // prints 0:1 1:2 2:3 3:4

Common Array Operations
There are a few functions that are very useful on arrays, beside the count function seen earlier.

sort
There are actually a number of functions that can sort your arrays in PHP. They differ depending on
whether you want to sort values or keys, sort forward or backward, or want to use your own sorting
algorithm.

All take the array to sort and modify it directly in place.

$arr = array('fish', 'cat', 'zebra', 'tiger');

sort($arr);

// arr order is now ('cat', 'fish', 'tiger', 'zebra').

array_merge
This function takes two arrays and merges them into one, returning the resulting array.

$arr1 = array(318, 68, 38, 23, 36.26, true);

$arr2 = array(342, 'cat', 325, 1968, 381.23861);

$arrm = array_merge($arr1, $arr2));

/* $arrm now has contents:

array(11) {

 [0]=> int(318) [1]=> int(68) [2]=> int(38) [3]=> int(23)

 [4]=> float(36.26) [5]=> bool(true) [6]=> int(342)

 [7]=> string(3) 'cat' [8]=> int(325) [9]=> int(1968)

 [10]=> float(381.23861)

}

array_slice
This function extracts a section of an array and returns this as a new array, much like the substr function
works on a string:

$arr1 = array(318, 68, 38, 23, 36.26, true);

$arr2 = array_slice($arr1, 2, 3); // This has 3 values: 38, 23, 36.26

Wandschneider.book Page 37 Tuesday, August 5, 2008 2:14 PM

38 PHP and MySQL

File Inclusion
As our files and code libraries expand, we want to be able to manage them better, and maybe even reuse
them in other Web applications on which we work. A common way to do this is to split them into different
files, and then include or require those files in our other scripts.

This is done by using one of the following functions:

include

include_once

require

require_once

The difference between include and require is that the former only prints out a warning if the requested
file cannot be found, and continues processing your script. On the other hand, require, will abort execution
if the file cannot be loaded.

The _once versions of the function make sure that no matter how many times you ask to include or require
the given file, it is only included once in your actual executing script. This prevents errors from redefining
variables or functions.

PHP looks for requested files by first looking in the current directory (that of the currently executing script),
and then looking through its include_path. This is defined in php.ini, and can be modified there, or at run-
time in your scripts by calling the set_include_path function. You can inspect the current value by calling
the get_include_path function. Any changes that are made to the include_path with the set_include_path
function are only valid for the duration of the currently executing script. Each time PHP starts a new script,
it goes back to the default values specified in php.ini.

You are free to use relative paths when including other files, and often this will help you avoid changing the
include_path altogether.

Wandschneider.book Page 38 Tuesday, August 5, 2008 2:14 PM

8

Object-Oriented Programming I

Declaring New Types
Arrays are a powerful and interesting data type in PHP, but they have some limitations if you want to repre-
sent complex objects, such as users. You have to remember to use the same key names on each instance of
an array; you must be sure not to forget to include the same key/value pairs each time you create one; and
you must be sure to pass the arrays to functions that might modify them as byref parameters, because by
default parameters in PHP are byval.

At some point, we would like to just be able to declare new types in PHP, somehow encompassing all the
properties and operations that we would like to have associated with any given thing. To do this, we use
Object-Oriented Programming (OOP), which lets us declare these new types.

Using objects, you declare classes, which contain properties (“member” variables describing the object)
and methods (operations on the object and its property data). By combining these all into one place, we
make our code easier to work with and less error prone.

To declare a class in PHP, we use the class keyword:

class User

{

}

To add properties to a class, you just declare variables inside the class, and we’ll prefix those with public
(more on this later):

class User
{

 public $Username;

 public $FullName;

 public $EmailAddress;

}

You can even set default values for member variables:

class A
{

 public $Variable = 123;

}

Wandschneider.book Page 39 Tuesday, August 5, 2008 2:14 PM

40 PHP and MySQL

To create one of these objects, called an instance of that class, you use the new keyword in PHP:

$user = new User();

To access member variables and set their values, use the -> operator:

$user = new User();

$user->Username = 'marcwan';

$user->FullName = 'Marc Wandschneider';

While we’ve been saying that everything in PHP is byval, objects in PHP are the exception to this: You
always work with a reference to an object. When you pass an object to a function, it’s not a copy of the
object, just a reference to the same one. Similarly, if you do the following:

$a = new User();

$b = $a;

The variables $a and $b refer to the same underlying object instance.

To add an operation or a method to an object class, you simply declare the function inside the class:

class User
{

 public $Username;

 public $FullName;

 public $EmailAddress;

 public $Password;

 public function changePassword($new_pw)

 {
 $this->Password = md5($new_pw);

 }

}

To call a member function on an object instance, you also use the -> operator.

$user->changePassword('secret key');

To refer to a member variable or function within our object class, we use the object pointer $this:

class User
{

 public $Username;

 public $FullName;

 public $EmailAddress;

 public $Password;

 public $LoggedIn = FALSE;

 public login($pw)

 {

Wandschneider.book Page 40 Tuesday, August 5, 2008 2:14 PM

Lesson 8: Object-Oriented Programming I 41

 if ($this->checkPasword($pw) == false)

 return FALSE;

 $this->LoggedIn = TRUE;

 }

}

Constructors
One of the problems with our object thus far, however, is that we can still forget to set member variables
after instantiating it with the new operator. We’d like for there to be a way to force the user to provide all the
object information necessary when creating the object instance. This is done with constructors. This is a
function that is called as PHP creates a new instance of your class. To implement one, you create a function
called __construct in your class:

class User

{

 // etc

 public function __construct($un, $fn, $pw, $em)

 {

 $this->Username = $un;

 $this->FullName = $fn;

 $this->Password = $pw;

 $this->EmailAddress = $em;

 }

}

Now, in order to instantiate a User object, we have to provide parameters to the new operator:

$user = new User('marcwan', 'Marc Wands...', 'secret', 'marcwan@');

Now, if we change the class, we can change the constructor, and PHP will immediately complain in all
those places where we’re not calling the constructor correctly—we’ve made it so that we can be sure to fix
our code in all the right places!

Access Levels
We’ve been declaring all of our member variables and functions with the public keyword thus far. Public
means that anybody inside or outside of the class can access the variable or the function. Here are all three
possible values for the access modifier:

■ public—Anybody can access the member variable or function from within or outside of the class.

■ protected—Only code inside of this class or one of its descendants can use the member variable or
function. (We’ll learn about descendants and inheritance in Lesson 9.)

Wandschneider.book Page 41 Tuesday, August 5, 2008 2:14 PM

42 PHP and MySQL

■ private—Only code inside of this class can access the variable or function. Nobody may view or
modify it.

If you try to call a member function or access a member variable in a context where you do not have per-
missions, PHP will print an error.

Wandschneider.book Page 42 Tuesday, August 5, 2008 2:14 PM

9

Object-Oriented Programming II

Better Code Reuse with Inheritance
With our ability to declare new types, we have solved one major problem previously facing us in PHP. We
still do not have a solution, however, for the cases where we’d like to have two classes that are basically the
same, and share much of the same code, or we’d like to declare a new type that is an extension or slight
modification of an existing type.

To solve this problem, we use another feature of object-oriented languages called inheritance. With it, we
can declare a class as extending from another class, or inheriting from it. It would thus also inherit all the
basic properties and operations from the base or parent class, and we could then add our own new features
or modify any existing behavior as necessary.

To extend a class in PHP, we use the extends keyword:

class SuperUser extends User

{
 protected $Permissions;

 public function deleteExistingUser($username)

 { // etc }

}

We do have one problem to solve with these inheriting classes: What if we want to override some function-
ality in our parent class, but still use that functionality in addition to our new code? We solve this by using
the parent keyword and the :: scoping operator, which tells PHP to execute the same function on our par-
ent class:

class SuperUser extends User

{
 public $Permissions;

 public function __construct($un, $fn, $pw, $em, $prms)

 {

 parent::__construct($en, fn, $pw, $em);

 $this->Permissions = $prms;

 }

}

Wandschneider.book Page 43 Wednesday, August 6, 2008 9:16 AM

44 PHP and MySQL

To reference a member variable defined in our parent class, just use the $this pointer as before:

class SuperUser extends User

{
 // etc

 public function printUser()

 {

 echo "HAHAHA! I am a SuperUser: " . $this->Username;

 }

}

With object inheritance, we are now free to create hierarchies with objects that share as much code as we
want.

Further Refining Our Objects
For those cases where we declare a base class that we actually only ever want to use as a base class, and not
have anybody instantiate, we can tell PHP to enforce this by declaring the class as abstract:

abstract class A

{

 public $Var1;

}

class B extends A

{

 public function printVar() { echo $this->Var1; }

}

$a = new A(); // Error! It's abstract!

$b = new B(); // OK!

We can actually declare member functions in an abstract class as abstract themselves. This means that any
inheriting class must implement that function or else PHP will consider it abstract and flag an error if you
create an instance of it:

abstract class A

{

 // Inheriting classes MUST implement:

 public abstract function method1();

}

class B extends A

{

 public function method1()

 {

Wandschneider.book Page 44 Tuesday, August 5, 2008 2:14 PM

Lesson 9: Object-Oriented Programming II 45

 echo "This is method 1";

 }

}

If you declare a method on a class as abstract, you must also declare the class as abstract.

If we want to declare a method in our class that no inheriting class can override, we can use the final key-
word to ensure this:

class A

{

 public final function method1()

 {

 echo "You can't override me, MUAHAHAHHA!";

 }

}

class B extends A

{

 public function method1() // PHP will generate an error here.

 {

 // etc

 }
}

Wandschneider.book Page 45 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 46 Tuesday, August 5, 2008 2:14 PM

10

Object-Oriented Programming III

Class Constants
We can assign constants to our classes in PHP by using the const keyword.

class SuperUser extends User

{

 const PERMS_DELETE_USERS = 0x1;

 const PERMS_CREATE_USERS = 0x2;

 const PERMS_MODIFY_USERS = 0x4;

 // etc.

}

These are much like regular constants in PHP, but they are now closely coupled to our new data type. To
refer to these constants in regular code, you scope the reference with the class name and :: characters:

if ($su->Permissions == User::PERM_DELETE_USERS) ...

To refer to these class constants from within the class, we can either use the same class_name:: syntax, or
instead we can use self:: as follows:

class SuperUser extends User

{

 const PERMS_DELETE_USERS = 0x1;

 const PERMS_CREATE_USERS = 0x2;

 const PERMS_MODIFY_USERS = 0x4;

 public function canDeleteUser()

 {

 if ($this->Permissions == self::PERMS_DELETE_USERS)

 // etc

 }

}

Wandschneider.book Page 47 Tuesday, August 5, 2008 2:14 PM

48 PHP and MySQL

Static Class Data
You can actually scope global variables inside of a class in PHP by declaring a member variable as static.
These variables are not associated with any particular instance of that class, but are a way to associate data
with that class “namespace.”

class User

{

 public static $s_num_instances;

 public function __construct(...)

 {

 self::$s_num_instances++;

 // etc

 }

}

To reference these static class variables, you again can use the class name or self keywords and the ::
scoping operator.

Static Methods
You can also associate functions with a class’s namespace without making it an instance method by declar-
ing it as static:

class User

{

 public static $s_num_instances;

 // etc

 public static function instCount()

 {

 echo "There have been " . User::$s_num_instances

 . " instances created while running this script";

 }

}

User::instCount();

Referencing these static functions is the same as for member variables or constants.

Operations on Objects
PHP lets us use a number of the operators available for other types on objects.

Wandschneider.book Page 48 Tuesday, August 5, 2008 2:14 PM

Lesson 10: Object-Oriented Programming III 49

Comparison
If we use the == operator on two objects, PHP indicates TRUE if the two objects are of the same class and
have the same values for all of their instance variables (even if they’re separate instances).

If we use the === operator on two objects, PHP indicates TRUE if, and only if, the two objects are the exact
same object instance.

$user1 = new User('marcwan', 'Marc', 'secret', 'emailaddr');

$user2 = new User('marcwan', 'Marc', 'secret', 'emailaddr');

$user1 == $user2 TRUE!

$user1 === $user2 FALSE – not the same instance

Converting to String
We might eventually want to convert objects to strings in PHP, either with the (string) type-cast operator,
the tostring function, or simply by typing something like:

echo "The current user is: " . $user1;

Unfortunately, by default, PHP just prints out an error saying it doesn’t know how to perform this conversion.

We can, however, provide the code so that PHP can do this conversion. This is done by implementing a
function in our class called __toString:

class User

{

 // etc

 public function __toString()

 {

 return <<< EOM

UserName: {$this->Username}

FullName: {$this->FullName"}

EOM;

 }

}

Iterating over Object Properties
PHP will let us use the foreach loop on objects. When we do this, each of the member properties become
the values over which we iterate:

$user = new User('marcwan', 'Marc', 'secret', 'emailaddr');

foreach ($user as $prop => $value)
 echo "$prop: $value";

Wandschneider.book Page 49 Tuesday, August 5, 2008 2:14 PM

50 PHP and MySQL

Copying Objects
As we explained, when assigning an object variable to another, PHP just copies a reference to the object.
For those cases where we truly want to copy the object, we have to do something else. For this, PHP pro-
vides the clone keyword, which causes it to create an instance of the same class and copy over all the same
values for the member variables.

$user1 = new User('marcwan', "Marc", 'secret', 'emailaddr');

$user2 = clone $user1; // $user2 is separate instance

If the default variable copying behavior is not sufficient, then you can implement a __clone function in
your class, which PHP will call when cloning to let you perform other operations.

Structured Exception Handling
One problem with our objects so far is that there is no way to report errors in the constructor: Constructor
functions cannot return values since they are invoked only by the new operator. Indeed, even in other places
in our application, we would like a better way to handle errors.

The solution to this in PHP is to use what is called structured exception handling. With this, you declare
classes of errors, all of which inherit from the Exception class and each of which signals a specific error
condition.

Once we have determined that an error condition exists, we create an instance of the appropriate exception
class, and then we throw this exception. Other parts of our code can then catch this exception, and depend-
ing on exactly what type it was, either process it, ignore it, or rethrow it for somebody else to process.

A basic example would be as follows:

class MyInvalidArgumentException extends Exception { }

class User

{

 // etc

 public function __construct($un, $fn, $pw, $em)

 {

 if ($un == '' or $fn == '' or $pw == '' or $em == '')

 throw new MyInalidArgumentException();

 // etc

 }

}

To work with exceptions, we use a try/catch block in our code. We effectively try an operation or set of
operations, and then catch any errors that this code throws:

Wandschneider.book Page 50 Tuesday, August 5, 2008 2:14 PM

Lesson 10: Object-Oriented Programming III 51

try
{

 $user = new User('', '', '', '');

}

catch (MyInvalidArgumentException $e)

{

 echo "Invalid Arguments provided to User constructor!!!";
}

catch (Exception $e)

{

 echo "Augh! Some other exception was thrown! Re-throwing!!!";

 throw $e;

}

PHP processes try/catch blocks as follows:

■ PHP executes the body of the try block.

■ If an exception is thrown, PHP starts working through the various catch blocks (there can be any
number of them, provided each has a different specific class of exception). For each block, PHP
checks to see if the thrown exception is of that type or one of its parent types.

■ If the catch block matches, PHP executes that body.

■ If no catch block matches, PHP assumes the exception is uncaught, and looks elsewhere for some-
body to catch it.

If no block of code anywhere catches an exception, PHP has a default exception handler that just aborts
script execution and prints out a message about the exception.

When we say “PHP looks elsewhere” for somebody to catch the exception, we are referring to what is
called the call stack in PHP. As we call functions, that in turn call other functions, that in turn call other
functions, and so on, we are building up a “stack” of function calls. When we throw an exception, PHP
aborts all code execution and starts walking back up the stack. If the current function body doesn’t catch
the exception, then PHP stops executing code in it, and sees if the current function call is in a try/catch
block in the parent function on the stack. If not, it keeps unrolling the stack until a try/catch block catches
the exception, or there are no functions left on the stack, and PHP resorts to the global exception handler. If
a try/catch block does catch the exception, then that function can resume execution of code after the catch
block.

We will generally try to avoid using the global exception handler, and instead be aware of all the different
ways our pages can fail as we write the code for them.

Wandschneider.book Page 51 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 52 Tuesday, August 5, 2008 2:14 PM

11

Learning about the Web Server

More FORM Elements
We have seen a wide variety of elements we can put in forms, including text boxes, select/option drop-
downs, and buttons. We even saw radio buttons in Lesson 6 with our simple calculator. We’ll introduce two
more now—checkboxes and text areas—just to round out our knowledge of forms.

Checkboxes
You can add checkboxes to your forms by using the INPUT markup element, but with the type checkbox.
The input element has no place for the text of the checkbox, so you put this in markup next to the element:

<input type='checkbox' name='remember'> Remember Login

Checkboxes are, by default, not checked. To indicate in markup that you would like a checkbox to be
checked, you use the checked keyword, much as we did for the radio buttons previously:

<input type='checkbox' name='remember' checked> Remember Login

To find out, in our server scripts, whether a checkbox element was checked when the form was sent to us,
we look to see if the appropriate entry in $_POST is set to "on".

if ($_POST['remember'] == "on")

 remember_login();

Text Areas
The text input boxes we have seen thus far have all been limited to a single line and don’t typically provide
a lot of space. For those situations where you’d like to let your users write more, such as a user bio or a let-
ter, you can use the HTML element TEXTAREA. This element also has the name attribute, as well as the
number of rows and columns you would like the text area to have.

<textarea name='user_bio' rows='10' cols='50'></textarea>

Wandschneider.book Page 53 Tuesday, August 5, 2008 2:14 PM

54 PHP and MySQL

To place some initial text in the text area, you put it between the opening and closing tags:

<textarea name='user_bio' rows='10' cols='50'>

This is the initial text for the text area.

</textarea>

Data from text areas in our forms are sent to the server in the same way a regular textbox’s data are sent: by
just accessing the appropriate slot in the $_POST superglobal:

echo $_POST['user_bio'];

POST vs. GET
All of the forms we have been submitting thus far in our Web applications have used the “POST” method.
We also saw once in our simple calculator application that we used GET params. Let’s finally solve the
mystery of what those two terms mean now.

When your Web browser requests a page from the server, it makes a network connection and then proceeds
to talk to the server using the HyperText Transfer Protocol, or HTTP. This is a simple request/response pro-
tocol, in which the browser or client application makes a request of the server, and the server responds.

These requests are made up of a number of headers, and then optionally followed by a body. The response
also is made up of a number of headers and then the body of the response contains the content for the
browser to render.

When your browser makes a request of the server, it can choose among a number of types of requests, two
of which are POST and GET. GET requests simply tell the server that we want the contents of the given URL
(which might have some GET parameters tagged on to the end of it). POST requests, while also requesting the
contents of a given URL, sends a request body to the server with some data for the server to process.

Your computer comes with a little program called telnet (telnet.exe on Windows) that lets you connect to
your Web server and simulate HTTP conversations. By using this, we can also figure out why we might
want to check input parameters so carefully in our server scripts, despite the fact that forms clearly specify
all possible values:

Murasaki:Sites marcw$ telnet livelessons http

Trying 127.0.0.1...

Connected to livelessons

Escape character is '^]'.

POST /Lesson06/results.php HTTP/1.1

Host: livelessons

Wandschneider.book Page 54 Tuesday, August 5, 2008 2:14 PM

Lesson 11: Learning about the Web Server 55

Content-type: application/x-www-form-urlencoded

Content-length: 42

radix=dec&input1=10&input2=3&operator=FISH

After entering all of these headers, the server then sends us the response:

HTTP/1.1 200 OK

Date: Mon, 26 May 2008 05:26:50 GMT

Server: Apache/2.2.6 (Unix)

Content-Length: 205

Content-Type: text/html

<html>
<head>

 <title>Results</title>

</head>

<body>

 <h3>Your Results!</h3>

 <p> The final result is: ERROR: Invalid Operator</p>

 <p> start again</p>

</body>

</html>

If you ever want to simulate a simple page request that your browser does, you can just use the GET request:

GET /Lesson06/calc.php HTTP/1.1

Host: livelessons

The PHP software, once it gets the request from the Apache server, will help us out and convert the POST
and GET data into the $_POST and $_GET superglobals, respectively.

One downside to using POST parameters is that many programmers believe that, since users can’t see them,
they’re inherently more secure than GET parameters (which are easily visible in the address bar of the Web
browser). This is, however, a false sense of security, as HTTP operates over the network in simple plain-text
format, and anybody with a program like tcpdump who is watching your network traffic can see what’s
going on.

GET vs. POST in Our Applications
To decide when to use GET parameters and when to use POST parameters, the following guidelines are
typically used:

■ For data that only modify the output or display of your page, such as sorting on a particular column,
refining the contents displayed with a filter or search string, or otherwise effecting a change of an
ephemeral nature, use GET parameters.

■ For other data, use POST parameters.

These are not concrete rules, but rough guidelines that many users try to follow.

Wandschneider.book Page 55 Tuesday, August 5, 2008 2:14 PM

56 PHP and MySQL

The $_SERVER superglobal
In addition to the $_GET and $_POST superglobals we’ve seen already, another one we will use often in our
Web applications is the $_SERVER superglobal, which contains all sorts of information about the current
server configuration and the incoming request that caused this script to start executing.

You can see the full contents of it by using the var_dump function. We’ll look at a couple of interesting
members here:

PHP_SELF
This key in the $_SERVER array tells us the URI of the currently executing script, relative to the root of the
Web site being accessed. For example, if the user asked to see:

http://www.cutefluffybunnies.com/scripts/showbunnies.php

a request to see $_SERVER["PHP_SELF"] would return /scripts/showbunnies.php. Please note that if we
ask for the value of this from within a script that is included in another script, the outermost executing
script (the one that performed the inclusion) will be the value returned here.

SERVER_NAME
This is the name of the server to which the request was sent. It will not be prefixed with the http:// that
one might expect, but will simply be the name of the server, such as www.cutefluffybunnies.com. This
will correctly return the name of the requested virtual server for those situations where the current Web
server is actually serving up the content for more than one named Web site (most modern Web servers sup-
port this feature).

SERVER_SOFTWARE
This value will tell you what software the server is running. While there are few situations in which we will
actually care about which server on which we are running, we can test the value in a manner similar to the
following:

<?php

 if (strcmp(substr($_SERVER['SERVER_SOFTWARE'], 0, 6),

 'Apache') == 0)

 {

 // call some apache specific function

 }

?>

SERVER_PROTOCOL
This value tells us via which protocol the client requested this page. The value will nearly always be
“HTTP/1.1,” although it is possible that some clients will send us an older version (such as HTTP/1.0),

Wandschneider.book Page 56 Wednesday, August 6, 2008 9:16 AM

Lesson 11: Learning about the Web Server 57

implying that some functionality will not be available or understood. We will learn more about the HTTP
protocol in Lesson 13.

REQUEST_METHOD
This is the data submission method used by the HTTP request sent to us. In addition to the GET and POST
methods, which we learned about earlier in this lesson, this value could alternately contain PUT or HEAD,
which we will not have much occasion to use. Although we can use this to learn whether a form was sent to
us via GET or POST, we will generally know how our scripts are interacting, and will not often query this.

REQUEST_TIME
This variable is not available under all servers, but for those that support it, it serves as a way to learn when
a request was received by the server. For those who really need this information and are on a server where
it is not provided, the date and time functions will serve as a reasonable compromise. The best place to
learn more about these functions is via the PHP Online Manual, found at http://php.net/manual.

DOCUMENT_ROOT
To find out in which directory we are executing code, we can query the DOCUMENT_ROOT field .

HTTP_USER_AGENT
If you want to see via which agent (browser, program, etc.) the client has made the request for the page, you
can look at this field. Values for a very old version of Mozilla.org’s Firefox Browser on Windows will print
the following:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.5)

 Gecko/20041107 Firefox/1.0

Some Web applications insist on being sure that the connecting program is a valid Web browser to try and
prevent “bots” (automated programs that crawl the Web without requiring user interaction) from accessing
their content. This is only a marginally effective tactic, however, as the user agent is an easily included field
in the HTTP request.

We will take this opportunity to strongly discourage Web application authors from using this field to
require users to visit their site with a particular browser. This is only likely to annoy prospective customers
or users of your site, and will not save you significant amounts of work.

REMOTE_ADDR
If you want to know (and perhaps even log in your database) from which IP address the client is connect-
ing, this is the field to query. Although not foolproof, as advanced users can modify (“spoof”) this on
incoming packets, it can still be a useful tool for identifying people for some applications, such as public
forums or discussion areas.

It should be noted that individual requests from the same user in the same “session” can, in fact, come from
different IP addresses—depending on the Internet Service Provider via which the user is connecting to the
Internet, data might be routed by multiple machines in a short span of time.

Wandschneider.book Page 57 Tuesday, August 5, 2008 2:14 PM

58 PHP and MySQL

FORM Security
What happens if somebody enters the following for his user name?

<script>alert('owned');</script>

If we have any code in our Web application that accepts user input and then prints it back out to the user, we
will have discovered that users can cause arbitrary JavaScript to be executed on anybody who views that
page’s browser. While the example we created was a simple annoying dialog, there are much more mischie-
vous things that can be done.

To prevent this, we absolutely must screen all user input in our applications. Two functions will help us
with this.

strip_tags
The PHP strip_tags function will attempt to remove any markup tags from a given string. For example:

strip_tags("<script>alert('owned');</script>");

will print:

alert('owned');

which is quite harmless.

This function is, unfortunately, pretty limited in its functionality, and pretty easy to get around. Thus, even
if you use the strip_tags function, you will still want to use the next function.

htmlspecialchars
This function takes a string and escapes any characters in it that could be part of HTML markup, rendering
them completely harmless for display. For example:

echo htmlspecialchars("<script>alert('owned');</script>");

prints out:

<script>alert('owned');</script>

With any tag markers such as < or > converted to HTML entities, anything the user has entered is now com-
pletely harmless (even if it’s still uninteresting or unattractive).

More on Processing Forms
If a user of our application fills in a form on a page and then clicks Submit, he will be taken to the results
page. If the user, for some reason, tries to refresh the page, he might see the following:

Wandschneider.book Page 58 Tuesday, August 5, 2008 2:14 PM

Lesson 11: Learning about the Web Server 59

This message is alarming and nonintuitive to most users, and it borders on too long. What we’d like is some
way to avoid this for users altogether.

We do this by creating an intermediate processing page for our forms before redirecting users to the final
results page in the application.

If we want to do some processing and then send the user to a new page from within PHP script, we will use
a new function called header, which allows us to manipulate what HTTP headers are sent back to the client
as we process a page. This function can be used to generate any HTTP headers, but we will use the Location:
header for now. For example, our process_new_user.php might look similar to the following:

<?php

 // create new user account from $_POST information.

 // etc ...

 //

 $processing_error = create_new_user_account(

 $_POST['username'], $_POST['fullname'],

 $_POST['password']);

 //

 // Now go and redirect to welcome page if no error.

 //

 if ($processing_error === FALSE)

 {

 header('Location: http://' . $_SERVER['HTTP_HOST']

 . dirname($_SERVER['PHP_SELF'])

 . '/welcome_new_user.php');

 }

 else

 {

 // Send them back to the form entry page.

 header('Location: http://' . $_SERVER['HTTP_HOST']

 . dirname($_SERVER['PHP_SELF'])

Wandschneider.book Page 59 Tuesday, August 5, 2008 2:14 PM

60 PHP and MySQL

 . '/create_account.php?err='

 . $processing_error);

 }

?>

One critical point to note with the header function is that there can be absolutely no text output before the
header function. Any white-space or other characters will cause PHP to start sending an output stream and
will cause your header function call to generate an error. The following code, for example, will generate an
error because of the spaces sent before the opening <?php tag:

 <?php

 header('Location: http://' . $_SERVER['HTTP_HOST']

 . '/welcome2.php');

?>

Any white-space characters occurring outside of PHP section markers in any files included by our script
will also cause the same problem!

Serializing Objects
If we ever want to get a string representation of an object (or array) in PHP that we can either pass to
another page or store in a database, we can use the serialize function:

$user = new User('marcwan', 'Marc W', 'secret', 'emailaddr');

$save_me = serialize($user);

This creates a string that contains all the information needed to save and later reload the object of type User.

To then recreate the object from the serialized string, you use the unserialize function:

$user = unserialize($save_me);

Note that if the class that is referenced in the serialized string is not currently declared in PHP when
unserialize is called, the language will print an error message saying so.

To make a serialized object safe for passing between pages in GET parameters, you can use the urlencode
function, which makes sure that any characters that are not allowed or have special meaning in URLs are
processed properly:

 $url = 'ViewUser.php?user=' . urlencode(serialize($user));

Note that PHP automatically urldecodes POST and GET parameters for us when building up the superglobals.

Wandschneider.book Page 60 Tuesday, August 5, 2008 2:14 PM

12

Getting Started with the Database

Getting to MySQL
One of the more common ways to access the MySQL server, with which we will be working through the
next few lessons, is the MySQL command-line client. On Windows, we put this in C:\MySQL\bin\mysql.exe;
on Mac and Unix machines, we put it in /usr/local/mysql/bin/mysql. Once the database server is running,
we can then run this program with the name of the user to connect to and the -p flag, telling it to ask for a
password:

/usr/local/mysql/bin/mysql –u root –p

Once we have entered our password (you did remember to write it down after installing in Lesson 1, didn’t
you?) we are in the client and connected to the server.

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 37

Server version: 5.0.45-log MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Now you can try the following three commands and see what output you get:

SHOW DATABASES;

SHOW CHARACTER SET;

SHOW COLLATION;

The first of these just shows us which databases the server is managing, while the latter two tell us about
characters and collations (sort orders) of which the server is aware. A vast majority of the Web applications
we develop will use the UTF-8 character set in the database, and will tell the server to use the
utf8_general_ci collation (UTF-8 case-insensitive sorting/ordering).

Wandschneider.book Page 61 Tuesday, August 5, 2008 2:14 PM

62 PHP and MySQL

Creating Our Database
For the PhotoShare application we’re going to develop over the rest of these LiveLessons, we will create a
database for our system, which we’ll call PhotoShareApp. This is done with the MySQL query CREATE
DATABASE:

CREATE DATABASE PhotoShareApp

 DEFAULT CHARACTER SET utf8

 DEFAULT COLLATE utf8_general_ci;

Now, if we run the SHOW DATABASES command again, we’ll see our new database listed.

Creating a Database User
While we play around with the MySQL command-line client, we will use the root user account, but within
our Web apps, we will want to use more restricted accounts. To create one of these, you use the GRANT
query, which takes a set of permissions to grant a user, the user to whom they should be granted, and the
password via which they should be identified.

So, for our PhotoShareApp database, we’ll create the following user:

GRANT SELECT,UPDATE,INSERT,DELETE

 ON PhotoShareApp.*

 TO 'psa_user'@'localhost'

 IDENTIFIED BY 'secret_password';

We have granted this new user the ability to fetch, change, insert, and delete data from all the tables (.*) in
our PhotoShareApp database. The user’s name is psa_user and the password is “secret_password,” as
shown above.

Creating the First Table
We’ll start by creating a table to represent users in our database. This is done with the CREATE TABLE com-
mand, and you specify each of the columns you want to have in your table, separating them by commas. A
column specification is roughly as follows:

name TYPE extra_flags,

So, for our first version of the Users table, we’ll have a user ID, user name, full name, password, email
address, last login time, and privilege level.

Before we call CREATE TABLE, we must first tell the MySQL server which database we’re using right now,
and we do that with the USE query:

USE PhotoShareApp;

Now we’re ready to create our table:

Wandschneider.book Page 62 Tuesday, August 5, 2008 2:14 PM

Lesson 12: Getting Started with the Database 63

CREATE TABLE Users

(

 id INTEGER AUTO_INCREMENT PRIMARY KEY,

 user_name VARCHAR(100) NOT NULL UNIQUE,

 full_name VARCHAR(255) NOT NULL,

 password VARCHAR(32) NOT NULL,

 email_address VARCHAR(255) NOT NULL,

 last_login DATETIME,

 priv_level INTEGER NOT NULL DEFAULT 0,

 INDEX(user_name)

)

ENGINE = InnoDB;

We’ve given our table the name Users. Whenever we refer to this in queries or code, this is the name we
will use.

■ The first field is the user ID, and we’ve said it is of type INTEGER. We’ve also told MySQL to fill in
the values for us by specifying AUTO_INCREMENT. Thus, we will never actually select an ID for a user—
the server will always do this for us and will be sure to use a value that was not used previously.

■ The user_name field we declared as a VARCHAR of length 100, which means the field will be a string
of somewhere from 1 to 100 characters long. We have indicated that a value must be specified by
indicating NOT NULL, and we have also said that no duplicate values are allowed by specifying
UNIQUE.

■ Our full_name, email_address, and password fields are simply variable character strings and must
both contain a value that is non-null.

■ The last_login field uses a type called DATETIME, which is how MySQL represents a date and time
value in a single field. There are also DATE and TIME types for when both are not needed.

■ We declare a field called priv_level to represent the user’s privilege level. This is also of type INTE-
GER, must have a value, and will be given the DEFAULT value 0 if you don’t specify a value when cre-
ating the row.

■ We create this table using the language engine InnoDB. The two primary language engines you will
run into initially when working with MySQL are InnoDB and MyISAM. The former is more robust
and supports more features that make it better suited to multi-user transactional environments, while
the latter is quite lightweight and fast, and has some nice text-searching functionality available.

There are two other things in our table creation code that we must look at now, and they relate to how
MySQL finds data in a table. By default, when looking for something (a user ID or user name for example),
it searches through all the rows in the table until it finds what it is looking for. This is extremely inefficient.

Thus, you have the option to build what are called indexes. These are special data structures that allow MySQL
to find very quickly any data you’re looking for in a given table. By declaring the user ID field as a PRIMARY
KEY, we’ve made that an index for searches on user IDs (and a few properties we won’t use for now).

Wandschneider.book Page 63 Tuesday, August 5, 2008 2:14 PM

64 PHP and MySQL

However, we might also want to search for users giving only their user name (a login form, for example).
Thus, we’ll create an index for the user_name field, which we did by adding the INDEX(user_name) to the
CREATE TABLE query. Now, whether we search for user IDs or user names, MySQL will be able to do so
quite efficiently.

Inserting Data into Tables
Now that we have a table, we will want to begin putting data in it. The primary way we do this is via the
INSERT INTO query. The basic syntax is:

INSERT INTO TableName (fields to insert) VALUES (values for fields);

So, to insert a new user into our table we will want to do the following:

INSERT INTO Users

 (user_name, full_name, password, email_address, priv_level)

 VALUES ('marcwan', 'Marc W', 'secret', 'emailaddr', 1);

When inserting strings, we’ll wrap those in single or double quotes. Also note that we didn’t bother insert-
ing a value for the user ID field, since MySQL will create one for us.

Wrecking Things
To delete a table in MySQL, you use the DROP TABLE command:

DROP TABLE Users;

Please be aware that MySQL is extremely obedient and doesn’t ask questions. If you tell it to remove the table, it
will immediately and quietly do so. If you didn’t mean to and don’t have a backup, you are out of luck.

To delete an entire database, you similarly use the DROP DATABASE command:

DROP DATABASE PhotoShareApp;

Again, if you tell it to do so, MySQL will immediately do so. Make sure you really want to do this.

Working with MySQL from within PHP
The primary means via which we’ll interact with MySQL in our PHP scripts is the Improved MySQL
extension, or mysqli. This system provides a nice object-oriented interface to the database server, and lets
us manage connections and queries quite well.

To create a connection to the server, you just instantiate a mysqli object with the host, user name, pass-
word, and database to use.

$conn = new mysqli('localhost',

 'psa_user',

 'secret_password',

 'PhotoShareApp');

Wandschneider.book Page 64 Tuesday, August 5, 2008 2:14 PM

Lesson 12: Getting Started with the Database 65

Once we have the connection established, we will quickly execute the following query to make sure that all
text data being sent to the database are interpreted as UTF-8:

$conn->query('SET NAMES "utf8"');

Now we’re ready to do our INSERT INTO query. We do this by using the query function on the mysqli object:

$query = <<<EOQ

INSERT INTO Users

 (user_name, full_name, password, email_address, priv_level)

 VALUES ('bobotheclown', 'Bobo the Clown',

 'weak password', 'bobo@theinvalidclowndomainblah.com', 0)

EOQ;

$conn->query($query);

Once a query has executed, we test its success or failure by looking at the errno member variable on the
mysqli object. If the value is 0, then all is well; but if not, then we can look at the error member of the
mysqli object to see what the error message was.

if ($conn->errno != 0)

 echo "Something bad happened: " . $conn->error;

else

 echo 'It worked!';

Securing User Data
Just as we had to worry about users sending us mischievous data via forms in HTML, we also need to
worry about this security problem when we send user-form information to the database.

The problem arises when a user enters the following user name:

'; DELETE FROM Users;

As we will see in a later lesson, this will delete all of the rows from a given table, irrevocably and immedi-
ately. Such user input could wreak havoc on our databases and tables. If we weren’t careful with user per-
missions and granted too many permissions, bad input could cause worse to happen (DROP DATABASE).

The solution to this problem is to use the mysqli function real_escape_string on any string data before
sending them to the server:

$safe_un = $conn->real_escape_string($_POST['user_name']);

$safe_fn = $conn->real_escape_string($_POST['full_name']);

$query = <<<EOQ
INSERT INTO TableName (user_name, full_name)

 VALUES ('$safe_un', '$safe_fn');

EOQ;

Wandschneider.book Page 65 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 66 Tuesday, August 5, 2008 2:14 PM

13

Fetching Data from the Database

Retrieving Data
The primary query we will use to retrieve data from our MySQL tables is the SELECT query. The basic syn-
tax is as follows:

SELECT what FROM where

To fetch all of the information our database contains for all of the users in our system, we would use:

SELECT * FROM Users;

The asterisk tells MySQL to fetch all columns for the table. If you only want user names and IDs, you
might do the following instead:

SELECT id, user_name FROM Users;

We will not always want every single row in our table. In such cases, we can qualify the SELECT query by
telling it how to restrict the result set. This is done with the WHERE clause, which can contain many kinds of
expressions, comparisons, and functions.

SELECT * FROM Users WHERE id = 3;

SELECT * FROM Users WHERE id < 3;

SELECT * FROM Users WHERE id > 1000 OR id = 1;

SELECT * FROM Users WHERE last_login > '2008-08-01';

To test if a column has a NULL value in MySQL, you use some slightly special syntax:

SELECT * FROM Users WHERE last_login IS NULL;

SELECT * FROM Users WHERE last_login IS NOT NULL;

If we want to do partial matches on string fields, we can use the keyword LIKE along with the string
wildcard character, %.

SELECT * FROM Users WHERE user_name LIKE '%ma%';

SELECT * FROM Users WHERE user_name LIKE '%ma';

SELECT * FROM Users WHERE user_name LIKE 'ma%';

Wandschneider.book Page 67 Tuesday, August 5, 2008 2:14 PM

68 PHP and MySQL

The first query returns those users whose user name contains the string “ma” anywhere in it. The second
returns only those users whose name starts with “ma,” while the last returns only those whose name ends
with the two characters.

It should be noted that LIKE matching is not terribly efficient, so we should try to add as many other quali-
fiers as possible to our query to restrict the amount of searching MySQL has to do. LIKE should definitely
not be used as a means for implementing text searches.

More on Query Expressions: Functions
You can use a number of MySQL functions in your queries to the database server.

Functions come in two formats: aggregate and scalar. Aggregate functions operate on a result set and look
at all the values for a particular column in that set, while a scalar function operates on individual values and
can be used to either effect the query or modify the values from the returned result set.

The most common aggregate function is COUNT, which returns the number of rows in the complete result
set. For example, to count the number of users who have logged in since January 1, 2008:

SELECT COUNT(*) FROM Users WHERE last_login >= '2008-01-01';

Two other common functions are MIN and MAX, which return the minimum and maximum value, respec-
tively, for a column in the result set. To find the user who logged in most recently:

SELECT MAX(login_date) FROM Users;

An aggregate function to compute the average value of a column, named AVG, is also available, among
many others.

We’ll look at a few of the more common other functions now.

■ CURRENT_DATE—Returns the current date, for example, '2008-09-19'.

■ NOW—Returns the current date and time, for example, '2008-09-19 09:32:16'.

■ YEAR, MONTH, DAY—Returns the respective part of the given date or date/time field.

■ SUBSTRING—Lets you extract part of a string, for example, SUBSTRING(user_name, 1, 4). Note that
indexes are offset from 1 instead of 0 as with the PHP substr function.

■ TRIM—Returns the value of the given field value, trimming any white space from the beginning or
end.

Let’s look at some examples:

SELECT SUBSTRING(user_name, 1, 5) FROM Users

This returns the first five characters of the user name for all rows.

SELECT YEAR(last_login), MONTH(last_login) FROM Users;

This returns the year and month of the last login for all users.

Wandschneider.book Page 68 Tuesday, August 5, 2008 2:14 PM

Lesson 13: Fetching Data from the Database 69

SELECT * FROM Users WHERE YEAR(last_login) = '2008'

This returns all users whose last login date was sometime in the year 2008.

SELECT * FROM Users WHERE last_login = CURRENT_DATE();

This returns all users whose last login was today.

Sorting Result Sets
To sort the data returned by a MySQL query, you use the ORDER BY clause in the SELECT query. You can
specify one or more columns on which to sort, and for each column, whether it should be sorted ascending
(ASC—the default), or descending (DESC). This clause always goes after the WHERE clause.

SELECT * FROM Users WHERE YEAR(last_login) > '2008' ORDER BY id;

SELECT * FROM Users ORDER BY DATE(last_login) DESC, user_name ASC;

The first query above just sorts the users by their IDs, while the second query first sorts the user by the date
of the last login, and within those sorted dates, sorts the user names in an ascending order.

Please note that if you use the ORDER BY clause on a particular field, you should have an index for it, as
MySQL will frequently be able to use that to help perform the sorting.

Fetching Subsets of the Result Sets
If our system has a large number of users, we might want to present them to the viewer one page a time,
perhaps only 25 or 50 per page. Having MySQL fetch all of the rows each time and then discarding a vast
majority of them is horrendously inefficient. We’d like to be able to just specify that subset of rows right
when doing the query.

This is done with the LIMIT clause in MySQL, which comes at the end of the SELECT query. You specify the
row to start fetching at (0-based offset), and the number of rows to fetch:

SELECT * FROM Users LIMIT 101, 25

This fetches 25 rows, starting at the 101st row of the result set.

Modifying a Table
On occasion, we will want to modify the structure in the database. We will use the ALTER TABLE query for this.

To change the type of a column—for example, to make our password accept 100 characters instead of just
32—we would enter:

ALTER TABLE Users MODIFY password VARCHAR(100) NOT NULL;

To add a new column to the table, we enter:

ALTER TABLE Users ADD COLUMN join_date DATETIME AFTER last_login;

This tells MySQL to add the new column with type date/time right after the last_login field.

Wandschneider.book Page 69 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 70 Tuesday, August 5, 2008 2:14 PM

14

Modifying Data in the Database

Modifying Rows in Our Tables
We have thus far been able to insert and retrieve rows from our database tables. Next, we would like to
learn how to modify existing data in the database. To do this, we will use the UPDATE query in MySQL. Its
basic syntax is as follows:

UPDATE table SET field1=value1, field2=value,... WHERE ...

So, to change the password for the user with ID 2:

UPDATE Users SET password = 'super awesome password' WHERE id = 2;

You can change as many fields as you want. If somebody wanted to change her user name and full name at
the same time:

UPDATE Users

 SET user_name = 'maryjones',

 Full_name = 'Mary Jones'

 WHERE user_name = 'marysmith';

Note: You must use a WHERE clause with an UPDATE query, otherwise MySQL will simply change all of the
specified values for all rows in the table. So be careful when using UPDATE and don’t forget the WHERE clause!

Deleting Rows from a Table
To delete a row from a MySQL table, use the DELETE query with a WHERE clause specifying which rows to
remove.

DELETE FROM Users WHERE id = 2;

DELETE FROM Users WHERE YEAR(last_login) < '2006';

Note: Be very careful to use the WHERE clause! If you simply type:

DELETE FROM Users;

MySQL will remove all rows from the table, with no way to get them back.

Wandschneider.book Page 71 Tuesday, August 5, 2008 2:14 PM

72 PHP and MySQL

FULLTEXT Indexes
We mentioned in Lesson 13 that using LIKE in WHERE clauses was not a very efficient way to search through
tables and that it should definitely not be used with advanced searches. Fortunately, there exists a way to
get good search results from MySQL— by using a MyISAM table with a FULLTEXT index. (We talked about
table engine types like MyISAM and InnoDB in Lesson 12.)

Our problem is that we would like to use InnoDB for most of our tables, since it scales a bit better for our
application needs. So, in order to store a fully searchable user bio for our Users table, what we will do is
create a second “helper” table to mirror our Users table. This table will contain only the user ID (to help
match rows to the first table), and then a field of type TEXT, which allows for much bigger values than
VARCHAR permits.

We will create an index for the user ID, so that MySQL can quickly find the matching row in the helper
table, and then we will create a FULLTEXT index for the user bios, which will cause MySQL to set up robust
searching on that column as well.

CREATE TABLE UserBios

(

 userid INTEGER NOT NULL,

 userbio TEXT,

 INDEX(userid),

 FULLTEXT(userbio)

)

ENGINE = MyISAM;

We will see in Lesson 15 exactly how to make proper use of these FULLTEXT indexes.

Joining Fetches
The first new problem we have created for ourselves now is that we will have to fetch data from two tables
to fetch all of the user data. To solve this problem, we will use a special type of SELECT query, called a join.
By using these joins, we will be able to fetch data from multiple tables at the same time.

The basic technique is to specify from which tables you are fetching the data, and then specify a join condi-
tion to tell MySQL how to match up the rows from the two tables. We will include this as part of the WHERE
clause.

SELECT Users.*, UserBios.*

 FROM Users, UserBios

 WHERE UserBios.userid = Users.id

 AND Users.id = 1;

The first part of the WHERE clause in the previous query tells MySQL that if you match up the userid in the
UserBios table with the id of the Users table, the rows should be considered as one. Thus, our above query
has retrieved all of the information we have for the user with ID 1.

Wandschneider.book Page 72 Tuesday, August 5, 2008 2:14 PM

Lesson 14: Modifying Data in the Database 73

You can create joins that are much more complicated than this, involving multiple tables, join clauses, and
all sorts of extra conditions, but the performance degrades as the complexity increases, so we will endeavor
to keep our joins reasonably simple.

Transacting Queries
The second problem we have created for ourselves is that in order to insert a new user into our database, we
now have to update two tables. We, however, want to make sure that exactly both of these INSERT INTO
queries succeeds. If one fails, we don’t want our database to be in an inconsistent state where there is half a
user’s information but the rest is missing.

The way we solve this is by using transactions. This lets us group a bunch of operations together and tell
the database server “either all of these or none of these succeed.” Once we have begun or started the trans-
action, we will either then commit the results, or rollback and abort the entire transaction. The MySQL
commands for these, respectively, are:

START TRANSACTION;

COMMIT;

ROLLBACK;

Thus, to update a user, we would:

START TRANSACTION

INSERT INTO Users (fields ...) VALUES (...);
INSERT INTO UserBios (fields ...) VALUES (...);

COMMIT; (or ROLLBACK if something bad happened)

You can see one problem we’d have with our new user insertion code: When we create the new row in the
UserBios table, we need to know the user’s ID from the Users table. We would like to avoid doing another
query to get this ID, so how do we fetch it?

The good news is that the mysqli object comes to our rescue here with the insert_id property, which gives
the value of the auto-generated ID from the AUTO_INCREMENT column of the last query. Thus, our code in
PHP would become:

$conn->query('START TRANSACTION');

try
{

 $query = 'INSERT INTO Users ...';

 $conn->query($query);

 if ($conn-errno != 0)

 throw new DatabaseErrorException($conn->error);

 $query = 'INSERT INTO UserBios ...';

Wandschneider.book Page 73 Tuesday, August 5, 2008 2:14 PM

74 PHP and MySQL

 $conn->query($query);

 if ($conn->errno != 0)

 throw new DatabaseErrorException($conn->error);

 $conn->query('COMMIT');

}

catch (Exception $e)

{

 $conn->query('ROLLBACK'); // abort

 throw $e; // re-throw to let somebody else process

}

Using Hidden Fields on Forms
When we implement a modify user form in our Web application, we face an interesting problem: When we
submit the form, the processing page needs to know exactly which user’s data are being edited. One possi-
ble solution would be:

<form action='process_user.php?userid=234' method='post'

 name='modify_user'>

 <!-- etc -->

</form>

This feels a little odd for some reason, as the rest of the user’s data are in the form, but we have to put their
user ID in a GET parameter when calling the processing script. We’d like for there to be a way to put the user
ID in the form along with all the other form data, but without it showing up visually on the page.

Enter the input element of type hidden. When you add one of these to the form, you can add a name and a
value. This value is sent along with the rest of the form data to the server but is never shown visually on the
page:

<form method='post' action='SubmitModifyUser.php'

 name='modify_user_form'>

 <input type='hidden' name='userid' value='{$user->Userid}'>

 <div>

 <label>Full Name:</label>

 <input type='text' name='full_name' value='$sfn' size='30'>

 </div>

 <div>

 <label>Email Address:</label>

 <input type='text' name='email_address' value='$sem' size='30'>

 </div>

 <div>

 <label>User Bio:</label>

 <textarea name='user_bio' rows='10' cols='40'>$sbi</textarea>

 </div>

 <p><input type='submit' value='Modify User'></p>

 </form>

Wandschneider.book Page 74 Tuesday, August 5, 2008 2:14 PM

Lesson 14: Modifying Data in the Database 75

Using these hidden input elements, we can embed as much data in our forms as we want and have them
sent back to our server scripts for processing.

We should again note that just because these input elements are hidden does not make them secure or
immune to mischief. Viewing the source of the page will show the hidden values—and, as always, anyone
with the TELNET command can send arbitrary form data to your server.

Wandschneider.book Page 75 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 76 Tuesday, August 5, 2008 2:14 PM

15

Remembering Things: Cookies and
Sessions

Carrying Information across Page Requests: Cookies
We have previously mentioned that HTTP is a simple request/response protocol, which maintains no state
between requests. The solution to this problem, introduced in HTTP/1.1, is known as cookies; it’s a mecha-
nism enabling the server to send a small tidbit of information back to the client along with the server
response for a given request. This tidbit consists of a name and a value, both sent as text strings. When the
client subsequently sends another request to the server, it sends back any cookies it has for that server along
with the new request, and the server can process them as appropriate.

Setting Cookies
Setting cookies in PHP is easy, requiring the use of but one function: setcookie.

 setcookie(cookie_name, cookie_value);

The setcookie function will make sure to escape the cookie value you give it so that it can be safely sent as
part of an HTTP response message. The cookie name parameter should consist of alphanumeric characters
only, although some special characters, such as underscores (_) and dashes (-) are permitted. The result-
ing cookie will last as long as a client browser is open, and will be deleted when they are all closed.

The one trick to calling setcookie is that, like the header function seen previously, absolutely no output
can come before this function is called. That is because cookies are sent as part of the response header, and
if you send any output to the client, PHP will quietly send the headers before beginning the output stream
for you. This can be somewhat tricky to always prevent, as even a single blank line or space character (that
is not part of a PHP code block) in any part of the script—or indeed in any of the include files included
from within the script—will cause output to be sent.

Accessing Cookie Values
When the client browser sends a cookie back to the server with a request, you can access its value by using
the $_COOKIE superglobal array. PHP only populates the $_COOKIE array, however, with cookies sent along
with the request to the page. Thus, if we executed the following code before any other script had called
setcookie('loaded_okay', '...'):

Wandschneider.book Page 77 Tuesday, August 5, 2008 2:14 PM

78 PHP and MySQL

<?php

 setcookie('loaded_okay', 'TRUE');

 echo "{$_COOKIE['loaded_okay']}"; // not OK: not set yet!!

?>

we would receive a warning that the loaded_okay key in the $_COOKIE array had not been set. Only after a
new page is loaded (and hence we have received a new request) will this array be populated correctly.

How Cookies Work
The server sets a cookie in the client by sending a Set-Cookie header along with the response. Multiple
cookies require multiple headers. As an example, consider a simple page to remember a color the user has
selected. When the user clicks the Submit button after selecting a color, the browser sends an HTTP GET
request to the server. That script, as part of its output, will send the following response headers (we will
omit the body for brevity):

HTTP/1.x 200 OK

Server: Microsoft-IIS/5.1

Date: Fri, 07 Oct 2005 18:38:55 GMT

X-Powered-By: ASP.NET, PHP/5.0.2

Connection: close

Content-Type: text/html

Set-Cookie: user_color=green; path=/

The next time the user clicks Submit, the request will now look something such as:

GET /setcookie.php?colour=blue HTTP/1.1

Host: localhost

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; rv:1.7.3)

 Gecko/20040913 Firefox/0.10.1

Keep-Alive: 300

Connection: keep-alive

Referer: http://phpsrvr/setcookie.php?color=green

Cookie: user_color=green

Although multiple cookies are sent with individual Set-Cookie headers in the response, they are all sent
back to the server in one single Cookie header in requests, each cookie name/value pair being separated by
semicolons:

Cookie: user_color=orange; animal=moo+cow

Controlling Cookie Validity
The setcookie function actually accepts up to six parameters, not only the two shown above.

 setcookie(name, value, expires, path, domain, secure)

Wandschneider.book Page 78 Tuesday, August 5, 2008 2:14 PM

Lesson 15: Remembering Things: Cookies and Sessions 79

We have already seen the cookie name and cookie value parameters. The remaining parameters are useful
for controlling and restricting the availability of the cookie you set.

The expire parameter lets you control how long the cookie will be valid. It specifies the expiration date for
the cookie, specified in seconds since midnight, January 1, 1970 (you find the current time in seconds since
that date by calling the time function). For example, to specify that a cookie is to expire in one hour (there
are 3,600 seconds in one hour), you might write:

 setcookie('one_hour', 'still good', time() + 3600);

 After a cookie has expired, the Web browser will no longer send it back to the server as part of requests. A
value of 0 for this parameter (the default value if it is omitted) indicates that this should be considered what
is called a session cookie. This means that it is stored in memory instead of on disk and is valid only as long
as the user is browsing. Once the user closes down the Web browser, the value is lost.

The path parameter lets you restrict the set of pages within the site for which the cookie is valid. For exam-
ple, if you set the path parameter to “/”, then the cookie is valid for all pages in the site, but if you set it to
“/admin”, then it is only valid for those URLs on that site beginning with /admin. If no path is specified, the
default value is the directory in which the cookie is being set.

The domain parameter lets you restrict or expand the set of machines for which the cookie is valid. By
default, it is valid for the server from which it was sent. But, if you have a large series of servers with names
like www1.example.com, www2.example.com, www3.example.com, and so on, which are sharing the Web
application load, then you might want to set this to “.example.com”, which says that the cookie is valid for
any machine within the domain.

Finally, the secure parameter merely lets you state that a cookie should be valid only over HTTPS connec-
tions by specifying a value of 1. It defaults to allowing them over both secure and insecure connections,
represented by the value 0. This does not change the fact that the cookies are still stored as plain text on the
user’s computer.

Deleting Cookies
There come times when you no longer need a cookie and would like to get rid of it. One option is to just
leave it on the client machine, waiting for it to expire and not worrying about it at all. This, unfortunately, is
probably not a good idea. Most cookies are stored on client machines in an easily-read text file. If the user
was on a public machine at an Internet café or library, then any information in this cookie could be read by
the next user.

Much better is to explicitly delete the cookie. Doing this in PHP is trivial: You merely set a new value into
the same cookie, but with an expiration date in the past:

 setcookie('loaded_okay', '', time() – 3600);

This causes the client to realize it has expired and clean it up.

Sessions
Along with the ability to send small tidbits of information back and forth between client and server, PHP
provides us with the ability to actually follow the progress of a particular client (user) as he or she works

Wandschneider.book Page 79 Tuesday, August 5, 2008 2:14 PM

80 PHP and MySQL

through our Web application. This is done via the feature called sessions, which is integrated directly into
PHP, requiring no extra compilation or installation efforts.

Sessions work by using session cookies (cookies with an expiration of 0) and associate with the user or cli-
ent a unique identifier called a session id, typically a long series of alphanumeric characters. The Web
application can store data along with these sessions, and have these data move from page to page along
with the user.

Basic Usage
A session is initiated by calling the session_start function. This is called near the top of each and every
script for which you wish the session to be active or valid. Calling this function makes sure that a session
cookie has been assigned to the client, and initializes what is called the session storage for the session. If
this is the first time the session is started, then new storage is created for the session, and the $_SESSION
superglobal array representing this session storage is empty. If, on the other hand, there is already a session
associated with this visitor when session_start is called, the $_SESSION array will have any session data
as members.

The most basic example showing how to use sessions is one in which we create a session and store a single
variable—such as one counting how many visits the user has made to a particular page. The code is as follows:

<?php

session_start();

// Create session variable if it doesn't exist yet.

if (isset($_SESSION['counter']))

 $_SESSION['counter'] ++;

else

 $_SESSION['counter'] = 1;

var_dump($_SESSION); echo "
\n";

var_dump(session_id()); echo "
\n";

var_dump(session_name()); echo "
\n";

var_dump(session_get_cookie_params()); echo "
\n";

?>

Each time you reload this page in the client Web browser, you will see that the counter variable inside of
the $_SESSION array is increased by one. The output will look roughly as follows:

array(1) { ["counter"]=> int(7) }
string(32) "2412e9b2ac02dac44eae25d06b8601c7"
string(9) "PHPSESSID"
array(4) { ["lifetime"]=> int(0) ["path"]=> string(1) "/"

 ["domain"]=> string(0) "" ["secure"]=> bool(false)}

You access the session ID by calling the session_id function, while the session_name function shows you
the name of the session. This session name is simply the name of the cookie that PHP returns to the client

Wandschneider.book Page 80 Tuesday, August 5, 2008 2:14 PM

Lesson 15: Remembering Things: Cookies and Sessions 81

to hold the session ID. It can be set in .php, or can be individually set by calling this function with a new
name. Finally, the session_get_cookie_params shows you the details of the session cookie associated
with the session.

Configuring PHP for Sessions
There are a number of configuration options in php.ini to control the way in which PHP sessions operate.
We will show the more interesting of these options now, and refer the reader to the PHP manual for other
options.

■ session.auto_start—We fibbed slightly above when we said that you must use session_start to
initiate sessions in PHP. If this configuration option is set to 1 (it defaults to 0), a session will be ini-
tiated every time a new page is requested in PHP.

■ session.name—This is the name of the cookie sent to the client browser to hold the session ID. All
users connected to our page(s) using sessions will get this same session name, but different session
ids. The default value is "PHPSESSID".

■ session.save_path—If you are using the PHP session data storage mechanism (that is, when ses-
sion.save_handler is set to “files”), this specifies the directory into which session data files are
stored. It defaults on Unix machines to /tmp and on Windows machines to C:\php\sessiondata.

FULLTEXT Searching in MySQL
In Lesson 14, we created a MyISAM database table with a TEXT field and FULLTEXT index on that field.
When you do this, MySQL can do quite powerful text searches on the field, provided there are enough rows
in the table with which to build an index (usually, three to five rows is enough).

The syntax in MySQL to perform a full-text search is to use the MATCH . . . AGAINST expression in your
query.

MATCH(field_name) AGAINST(text to search for)

So, to search through our user bios for those bios that contain the words computer and programmer, we
could write:

SELECT Users.*, UserBios.*

 FROM Users, UserBios

 WHERE UserBios.userid = Users.id

 AND MATCH(UserBios.userbio) AGAINST('computer programmer');

The MySQL full-text searching functionality is highly configurable and tunable, and you should definitely
consult the database documentation for this feature to learn more about it.

Wandschneider.book Page 81 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 82 Tuesday, August 5, 2008 2:14 PM

16

Files and File Uploads

Uploading User Files
Allowing file uploads in your PHP Web applications requires a few key steps:

■ Configuring PHP to allow file uploads.

■ Modifying your forms in HTML to have the browser send files to the server.

■ Adding the server code to handle the recently uploaded content.

Configuring PHP for Uploading
While PHP includes built-in support for file uploads, it typically requires some configuration before it can
be used without any problems. There are a few key directives that you’ll want to check in php.ini.

■ file_uploads—Indicates whether or not file uploads are permitted at all. Defaults to yes (1).

■ upload_tmp_dir—Must be set to a valid directory into which uploaded files can be temporarily
placed to await processing.

■ max_input_time—Specifies the amount of time (in seconds) a POST request may take to submit all
of its data, after which it is cut off.

The max_input_time directive effectively limits the amount of time a client may stay connected to a partic-
ular server uploading the contents of a request (including any attached files). Thus, if our Web application
is designed to allow users to attach 15MB files on a regular basis, and we expect them to be using normal
Internet connections such as DSL or cable modems, then we will definitely need to increase the value
beyond 60 seconds. For sites that are going to want to limit their data to maybe 500KB, then 60 seconds
would be an entirely acceptable value.

Many installations of PHP come without the upload_tmp_dir configured at all. You will absolutely need to
set this to some directory to which the user that the PHP server operates as has write permissions. If not, no
uploads will succeed, and you may spend some time puzzling why that is. To try to be a bit more secure, we
will use some empty and unimportant file system where no problems will be caused if it completely fills up.

upload_tmp_dir = z:/webapp_uploads ; Windows

upload_tmp_dir = /export/uploads ; Unix

Wandschneider.book Page 83 Tuesday, August 5, 2008 2:14 PM

84 PHP and MySQL

The Client Form
Modifying a form to allow file uploads in HTML requires two changes:

1. You add a new <input> markup tag with the "file" type.

2. You next add the enctype attribute to the form to show that you will use the new multipart/form-data
MIME type.

To create a simple file upload form:

<form enctype="multipart/form-data"

 action="processfile.php" method="POST">

 Image File:

 <input name="userfile" type="file"/>

 <input type="submit" value="Upload! " />

</form>

Once the user selects a file and clicks the Upload! button, the client browser sends a new request to the
server.

The Server Code
Once our request is on the way to the server with any files attached to it, we then must look at how to actu-
ally access these files on the server. This is primarily done through the superglobal array called $_FILES.
This contains one element, with the key being the same name as the <input> field from the HTML file (in
our previous example, this was userfile). The value of this is itself an array containing information about
the uploaded file.

array(1) {

 ["userfile"]=> array(5) {

 ["name"]=> string(8) "fair.jpg"

 ["type"]=> string(10) "image/jpeg"

 ["tmp_name"]=> string(28)

 "/export/uploads/phpC9.tmp"

 ["error"]=> int(0)

 ["size"]=> int(48823)

 }

}

One feature of file uploads in PHP is that they are not immediately placed for all to see in a visible place on
the file system. When they are first received by the server they are placed in the location specified by the
upload_tmp_dir directive in php.ini. From here, you must perform any validation on them (if necessary)
and then move them to some other location. You find the location of the temporary file location by querying
the tmp_name key in the $_FILES array for the appropriate uploaded file. Any uploaded files still in the tem-
porary upload directory after script execution ends will be deleted by PHP in the name of security.

Wandschneider.book Page 84 Tuesday, August 5, 2008 2:14 PM

Lesson 16: Files and File Uploads 85

To process any uploaded file, we must perform the following actions:

1. Check the error code associated with that file to see if the upload was successful (more in a
moment).

2. If the error code indicates the file was uploaded properly, perform any validation or antivirus scan-
ning we wish to do on this file.

3. Once we are comfortable with the file, move it to whatever location we wish it to reside in. This
should be done with the move_uploaded_file function.

The error field for our file in the $_FILES array will have one of the values shown in Table 16-1.

Thus, only if the error code in $_FILES['userfile']['error'] is UPLOAD_ERR_OK (0) should we continue
processing the file at all. In this case, we could do some validation, depending on how advanced our system
is and what requirements we had. If we were allowing users to upload arbitrary binary data, we might want
to run a virus scanner on the file to make sure it is safe for our networks. We might otherwise just wish to
make sure the file is an image file and reject other types.

Once we have done this, we need to move the file from its temporary location to its final resting place (at
least as far as this page is concerned). While this can be done with any file functions such as copy or
rename, it is best done with the move_uploaded_file function. This ensures that the file being moved truly
was one of those uploaded to the server with the request.

This helps to prevent possible situations where a malicious user could try to trick us into moving a system
file (/etc/passwd, c:\windows\php.ini) into the location where we eventually put uploaded files. The
move_uploaded_file function actually makes sure that the specified file was uploaded fully and success-
fully. Using this function and then checking the error result in the $_FILES superglobal significantly
reduces the exposure to attacks through file uploading.

Table 16-1 Error Codes for File Uploads

Code
Integer
Value Description

UPLOAD_ERR_OK 0 The file uploaded successfully.

UPLOAD_ERR_INI_SIZE 1 The file was larger than the value in upload_max_filesize in
php.ini.

UPLOAD_ERR_FORM_SIZE 2 The file was larger than the value specified in the MAX_FILE_SIZE
field of the form. This functionality is rarely used.

UPLOAD_ERR_PARTIAL 3 The file was not completely uploaded (usually because the
request took too long to complete and was cut off).

UPLOAD_ERR_NO_FILE 4 No file was uploaded with the request.

UPLOAD_ERR_NO_TMP_DIR 6 There is no temporary folder specified in php.ini. (This error
code was added as of PHP 5.0.3).

Wandschneider.book Page 85 Tuesday, August 5, 2008 2:14 PM

86 PHP and MySQL

Our code in the file to process the uploaded thus becomes something along the following lines:

//

// Did the upload succeed or fail?

//

if ($_FILES['userfile']['error'] == UPLOAD_ERR_OK)

{

 //

 // Verify (casually) that this appears to be an image file.

 //

 $ext = strtolower(pathinfo($_FILES['userfile']['name'],

 PATHINFO_EXTENSION));

 switch ($ext)

 {

 case 'jpg': case 'jpeg': case 'gif':

 case 'png': case 'bmp':

 break; // File type is okay!

 default:

 throw new PSInvalidFileTypeException($ext);

 }

 //

 // Move the file to the appropriate location.

 //

 $destfile = '../user_files/' .

 basename($_FILES['userfile']['name'];

 $ret = @move_uploaded_file($_FILES['userfile']['tmp_name'],

 $destfile);

 if ($ret === FALSE)

 echo "Unable to move user file!
\n";

 else

 echo "Moved user file to appropriate directory
\n";

}

else

{

 //

 // See what the error was.

 //

 switch ($_FILES['userfile']['error'])

 {

 case UPLOAD_ERR_INI_SIZE:

 case UPLOAD_ERR_FORM_SIZE:

 throw new PSFileSizeException();

 break;

Wandschneider.book Page 86 Tuesday, August 5, 2008 2:14 PM

Lesson 16: Files and File Uploads 87

 case UPLOAD_ERR_PARTIAL:

 throw new PSIncompleteUploadException();

 break;

 case UPLOAD_ERR_NO_FILE:

 throw new PSNoFileReceivedException();

 break;

 case UPLOAD_ERR_NO_TMP_DIR:

 throw new PSInternalError('no upload directory'); >\n";

 break;

 default:

 throw new PSInternalError('Unknown error!!');

 break;

 }

}

File Functions
To read in the entire contents of a file into a variable in PHP, you can use one of two functions:

■ file_get_contents—Reads in an entire file and puts all of its contents into the returned string.

■ file—Reads in an entire file and returns an array—one element in the array for each line in the orig-
inal file. Newline characters are included in these individual elements.

To write the contents of a string to a file, you can use the file_put_contents function in PHP. It takes the
entire string and simply creates a file with those contents.

file_put_contents('userdata.txt', serialize($user));

File Stream Functions
In addition to the simple one-line file functions, PHP provides a full set of functions to read, write, and seek
on files. You begin by getting a file pointer with the fopen function. This function takes a filename to open
and a mode in which it should be opened. Possible modes are shown in Table 16-2.

Table 16-2 Values for the Mode Parameter for the fopen Function

Mode Description

r The file will be opened for reading (only), and the file pointer (see text) will be positioned at the
beginning of the file. Writing to the file is not possible.

r+ The file will be opened for both reading and writing, and the file pointer will be positioned at the
beginning of the file. Any writes before the end of existing content will overwrite that content.

continues

Wandschneider.book Page 87 Wednesday, August 6, 2008 9:17 AM

88 PHP and MySQL

Thus, to open an existing file for reading, we could use:

$f = fopen('userdata.txt', 'r');

To open a file for writing (which will create the file if it doesn’t exist):

$f = fopen('newuserdata.txt', 'w');

The fopen function will fail if you attempt to open a file for reading that does not exist.

Once you have a file handle, the two key operations you will use on it are fread and fwrite, for reading
and writing, respectively.

The fread function takes a file handler, and a number of characters to read, advancing the file pointer that
many characters after each successful read. It returns those characters in the return value, a string. If the
requested number of characters is greater than the remaining contents in the file, then a shortened string is
returned and no further reads will succeed (they’ll return FALSE).

$f = fopen('userdata.txt', 'r');

$entire_contents = '';

while (($str = fread($f, 512)) !== FALSE)

 $entire_contents .= $str;

$user = unserialize($entire_contents);

A handy cousin to the fread function is the fgets function, which assumes the opened file is a text file and
reads one line at a time until there are no more. Newline characters remain in the returned string.

w The file will be opened for writing (only). If the file exists, its contents will be deleted, and it will
have a size of 0. If the file does not exist, an attempt to create it will be made. The file pointer is
placed at the beginning of the file.

w+ The file will be opened for both reading and writing. If the file exists, its contents will be
deleted, and it will have a size of 0. If the file does not exist, an attempt to create it will be
made. The file pointer is placed at the beginning of the file.

a The file will be opened for appending (writing) only. If the file does not exist, an attempt to
create it will be made. The file pointer is placed at the end of the file.

a+ The file will be opened for reading and appending (writing). If the file does not exist, an attempt
to create it will be made. The file pointer is placed at the end of the file.

x The file will be created and opened for writing (only). If the file already exists, the function will
return FALSE and a warning will be generated. If the file does not exist, an attempt to create it
will be made.

x+ The file will be created and opened for reading and writing. If the file already exists, the function
will return FALSE and a warning will be generated. If the file does not exist, an attempt to create
it will be made.

Table 16-2 Values for the Mode Parameter for the fopen Function (Continued)

Mode Description

Wandschneider.book Page 88 Wednesday, August 6, 2008 9:17 AM

Lesson 16: Files and File Uploads 89

$f = fopen('userdata.txt', 'r');

$entire_contents = '';

while (($str = fgets($f)) !== FALSE)

$entire_contents .= $str;

$user = unserialize($entire_contents);

To write to a file opened with one of the appropriate write flags in fopen, you use the fwrite function. You
give the function a file handle and a string to write to the file:

fwrite($f, serialize($user));

Once you have finished working with a file using fopen, it is very important to close it properly using the
fclose function. This ensures that all the file structures are cleaned up properly and any unsaved data are
written to disk:

fclose($f);

Browsing Directories
Viewing the contents of a directory is most easily done in PHP5 with a pseudo-object-oriented class called
dir, which behaves largely like a regular PHP class, except in the way it is created:

$dir = dir('/path/to/some/directory');

 if ($dir === FALSE)

 throw new NoSuchDirectoryException();

Note that we do not use the new keyword for this class. To browse the contents of the directory, you call the
read method until it returns FALSE.

 while (($entry = @$dir->read()) !== FALSE)

 {

 echo $entry;

 }

Note that we have to perform the explicit comparison !== instead of merely using !=. If we did not do this,
and there was a directory entry named “0” (zero), the != operator would say it is equal to FALSE! With the
!== operator, there is no chance for this confusion, as it will verify that the value of $entry is typed as a
Boolean.

Items returned by the dir class are in no particular order (they are not sorted for us). To go back to the
beginning and start browsing through the contents again, we can call the rewind method on this class:

 $dir->rewind();

Finally, when we are done with the dir object, we call the close method on it:

 $dir->close();

Wandschneider.book Page 89 Tuesday, August 5, 2008 2:14 PM

Wandschneider.book Page 90 Tuesday, August 5, 2008 2:14 PM

17

Formatted Output, Output Buffering,
and Security

Formatting Strings with printf and sprintf
One useful technique for customizing output in our programs is to use parameterized strings. In this
scheme, you have a template string with some placeholders in it, and right before sending the string to out-
put you insert data into those placeholders.

In PHP5, this functionality is obtained by using the printf and sprintf functions. They take a format
string with placeholders and some parameters to insert into those placeholders. The placeholders all begin
with the % character, and vary according to which type of data you are inserting (see Table 17-1).

Table 17-1 Type Specifiers for printf and sprintf

Type Specifier Description

% Prints a % character.

d Prints an integer value.

f Prints as a (locale aware) floating-point number.

s Prints as a string.

b Prints an integer number in binary format.

c Prints an integer number as the ASCII character with that value.

e Prints a number in scientific notation (for example, 6.02214e23).

u Prints an integer as an unsigned integer.

F Prints a floating-point number in a non-locale-aware format (such as U.S. English).

o Prints an integer number in octal format.

x Prints an integer value in hexadecimal format (with letters in lower case).

X Prints an integer value in hexadecimal format (with letters in upper case).

Wandschneider.book Page 91 Tuesday, August 5, 2008 2:14 PM

92 PHP and MySQL

To demonstrate a basic usage for inserting an integer and a string into a format string, we might execute the
following:

<?php

 echo sprintf("There are %d books in %s's room.",

 $cbooks, $name);

?>

The output from this, if $cbooks were 123 and $name were Michiko, would be:

 There are 123 books in Michiko's room.

There are a number of key options we can include with this type specifier that further control how the out-
put is generated.

■ We can include a + sign before numeric type specifiers to indicate that positive numbers should have
a number sign (instead of the default of only negative numbers having a sign). An example would be
%+d.

■ We can specify the number of decimal digits we would like for floating-point numbers by including
.## before the type specifier f, where ## is the number of decimal digits we want to see. For exam-
ple, %.10f would cause us to show 10 digits after the decimal place.

■ We can specify a width for the output data. This is a minimum width, and if the output is greater than
this, it is not truncated at all. If the output is less than this, the output is padded from the left with
spaces by default. An example would be %10d.

■ We can specify the character to use for padding if our minimum width is greater than the width spec-
ified for the output. The default character is a space, but we can make it other characters by using a
single quote (') and the character we wish to use. This must be a single-byte character. For exam-
ple, to use the _ character instead of spaces: %'_10f.

■ Finally, we can also specify whether the padding should be on the right or on the left if our width is
too wide. This is done with a minus sign (-), specified before the width specifier: %-10f. By default,
padding occurs on the left.

To see all of these in action, we show some examples:

<?php

$floatv = 123456.78;

$negi = -123456;

$posi = 54829384;

$name = "Taleen";

echo sprintf("%d", $posi); // prints: 54829384

echo sprintf("%d", $negi); // prints: -123456

echo sprintf("+%d", $posi); // prints: +54829384

echo sprintf("0x%x", $posi); // prints: 0x344a148

echo sprintf("0x%X", $posi); // prints: 0x344A148

Wandschneider.book Page 92 Tuesday, August 5, 2008 2:14 PM

Lesson 17: Formatted Output, Output Buffering, and Security 93

echo sprintf("%e", $floatv); // prints: 1.23457e+5

echo sprintf("%14.4f", $floatv); // prints: 123456.7800 '

echo sprintf("%'_15.4f", $floatv); // prints: ____123456.7800

echo sprintf("%-'_15.4f", $floatv); // prints: 123456.7800____

echo sprintf("%s", $name); // prints: Taleen

echo sprintf("'%'_12s'", $name); // prints: '______Taleen'

?>

Date and Time Functions
Time
The most common way to obtain a date/time value is with the time function. It, as well as the various file
functions that give us time-based information about files (such as filemtime), return a 32-bit integer value,
usually called a timestamp. The value represents the number of seconds that have elapsed since midnight
on January 1, 1970 (sometimes referred to as “the Epoch”). This starting time is represented by the value 0,
while the maximum positive 32-bit integer value of 2147483647 represents the evening of January 18, 2038.

Without some sort of processing of the integer value, the information is of limited use:

<?php

 $now = time();

 echo "The time is now: $now\n";

?>

The output of this would be something such as:

 The time is now: 1108437029

Date
PHP provides a number of functions for the format and output of dates as strings. The most commonly used
of these is the date function.

The date Function
The date function allows for a very high degree of flexibility in the output of date and time information.
The function has the following parameter list:

 string date($format[, $timestamp]);

The first parameter specifies the way in which we would like the date information formatted, while the sec-
ond is optional and lets us specify the timestamp to format for output. If omitted, the current time returned
by the time function is used.

The format string is basically a sequence of placeholder characters that represent various tidbits of informa-
tion to be inserted, along with any extra white space or punctuation characters that are all ignored. The pos-
sible values of the placeholder characters are listed in Table 17-2.

Wandschneider.book Page 93 Tuesday, August 5, 2008 2:14 PM

94 PHP and MySQL

Table 17-2 Format Placeholder Characters for the date() Function

Character Output Description

a am or pm Lowercase ante meridiem (am) or post meridiem (pm)
value (12-hour time only).

A AM or PM Uppercase ante meridiem (AM) or post meridiem value
(PM) (12-hour time only).

B 000 through 999 Swatch Internet Time value. In this system, the day is
divided into 1000 equal parts (each of which is 1 minute,
26.4 seconds long).

c Something like:
2001-09-08T13:11:56-09:00

The date printed in ISO 8601 format.

d 01 to 31 Day of the month, with leading zeros (if necessary).

D Mon through Sun Three-letter textual representation of the day of week.

F January through December Full textual representation of the month name.

g 1 through 12 12-hour format of hour, without leading zeros.

G 0 through 23 24-hour format of hour, without leading zeros.

h 01 through 12 12-hour format of hour, with leading zeros.

H 00 through 23 24-hour format of hour, with leading zeros.

i 00 through 59 Minutes, with leading zeros.

I 1 if Daylight Savings Time, else
0

Whether or not the date falls in daylight savings time.

j 1 to 31 Day of the month, without leading zeros.

l Sunday through Saturday Full textual representation of the day of the week.

L 1 if it is a leap year, else 0 Whether or not it is a leap year.

m 01 through 12 Numerical value of month, with leading zeros.

M Jan through Dec Three-letter textual representation of month.

n 1 through 12 Numerical value of month, without leading zeros.

O Something similar to:
+0200 or -0800

Difference from Greenwich Mean Time (GMT), in hours.

r Something similar to:
Mon, 13 Feb 1995 20:45:54 EST

The date output in RFC 2822 format.

s 00 through 59 Number of seconds, with leading zeros.

S st, nd, rd, or th The English ordinal suffix for the day of the month (com-
monly used with the j format character).

t 28 through 31 The number of days in the month.

T Something such as:
PST, EDT, CET

The abbreviated name for the time zone used on the
server machine.

continues

Wandschneider.book Page 94 Tuesday, August 5, 2008 2:14 PM

Lesson 17: Formatted Output, Output Buffering, and Security 95

These placeholder characters can be put together in any order in the format string to create the output
string:

<?php

 $time = strtotime('2005-09-12 21:11:15'); // see below

 echo date('Y-m-d H:i:s'); // 2005-09-12 21:11:15

 echo date('l, F jS, Y'); // Monday, September 12th, 2005

 echo date('c'); // 2005-09-12T21:11:15-09:00

 echo date('r'); // Mon, 12 Sep 2005 21:11:15 -0700

?>

The date function only prints output in the locale of the PHP server (that is, U.S. English). To see formatted
output that correctly honors a different locale, you use the setlocale function and the strtotime function.

Converting strings to timestamps
For those situations where somebody gives you a date, time, or timestamp in some sort of string format,
you can use the strtotime function, which will go to Herculean lengths to try to parse it and determine the
correct value. For most common formats and those standardized formats, the function performs exceed-
ingly well:

<?php

 // yyyy-mm-dd

 $time = strtotime('2004-12-25');

 // mm/dd/yyyy

 $time = strtotime('12/25/2004');

 // RFC 2822 formatted date

 $time = strtotime('Mon, 13 Feb 1995 20:45:54 EST');

U Output of time function The number of seconds since January 1, 1970.

w 0 (Sunday) through 6 (Saturday) Numerical value of the day of the week.

W 0 through 51 (30 is the 30th
week in the year, etc.)

The ISO-8601 week number in the year, where weeks
always start on a Monday.

y Something such as: 75 or 04 A two-digit representation of the year.

Y Something like: 1950, 2049 Full numerical value of the year, four digits.

z 0 through 365 The day of the year (starting at 0).

Z -43200 through 43200 Time zone offset in seconds. West of GMT are negative
values, east are positive.

Table 17-2 Format Placeholder Characters for the date() Function (Continued)

Character Output Description

Wandschneider.book Page 95 Tuesday, August 5, 2008 2:14 PM

96 PHP and MySQL

 // ISO 8601 formatted date

 $time = strtotime('2001-09-08T13:11:56-09:00');

 // it even understands some English words!

 $time = strtotime('yesterday');

?>

The RFC 2822 date format is frequently used in various Internet technologies, while the ISO 8601 format
was specified by the International Standards Organization in an attempt to merge and reduce the myriad
possible date/time formats currently in use.

Output Buffering
We have repeatedly had to be careful throughout these LiveLessons to avoid sending any output before par-
ticular PHP functions, most notably the setcookie and header functions. A single blank line in any of our
script files before a call to these functions causes a warning about headers already being sent and these
functions not working correctly.

To help alleviate this problem, PHP includes a feature called output buffering, or output control. This is a
group of functions that, when used, gather all of our output in a buffer before sending it to the client
machine. This has the advantage of being able to wait for any and all setcookie and header function calls
to execute properly before sending the output. Some users have even seen some performance improvements
when using this extension.

How It Works
Output buffering works by not sending the output headers and content right as they are emitted from within
script (either through the print and echo functions, or by non-code blocks in the various script files being
processed). Instead, it holds all of these in a memory area called a buffer, and only sends them (and any
necessary headers) to the client when instructed.

There are functions to turn on buffering, get the current contents of the buffer, submit the current contents
for output (also called flushing the buffers), discard the buffer, and close the output buffer, among others.
This functionality is built in to PHP. No extra effort is required to compile or enable it at runtime.

Configuration of this feature area is limited to three options in php.ini, as follows:

1. output_buffering (default value of "0")—If this is set to 'On', then output buffering will be
enabled for all pages processed by the PHP engine. Instead of 'On', you can also specify a numeric
value, which then sets the maximum size of the output buffer.

2. output_handler (defaults to NULL)—This controls through which function the buffered output is
redirected before being sent to the client. By default, it is simply sent to the client when script execu-
tion ends or the buffers are flushed.

3. implicit_flush (defaults to "0")—This controls whether the output buffers are flushed every time
the user calls print or echo. This has some serious negative performance implications, and should
only be used for debugging purposes.

Wandschneider.book Page 96 Tuesday, August 5, 2008 2:14 PM

Lesson 17: Formatted Output, Output Buffering, and Security 97

Using Output Buffering
Using output buffering in your pages is remarkably easy. You begin output buffering in your scripts by
calling the ob_start function at the very top of them:

<?php

 ob_start(); // no output before me !!

 require_once('filea.inc');

 require_once('fileb.inc');

 etc ...

At the end of your script, when you are done with your output, you call the ob_end_flush function to end
buffered output and cause the current buffered content to be sent to the client (along with any headers):

<?php

 ob_start();

 ...

 ..

 .

 echo "Thank you for visiting
\n";

 ob_end_flush();

?>

Another way to end output buffering is to call the ob_end_clean function. This not only ends output buffer-
ing, but deletes the contents of the output buffers. This is most typically used in error situations when you
want to then redirect the user to some other page, as follows:

<?php

 ob_start();

 // includes/requires here ...

 echo "Listing users from database:";

 $conn = @new mysqli('host', 'user', 'pwd', 'dbname');

 if (mysqli_connect_errno() != 0)

 {

 ob_end_clean();

 header("Location: showerror.php?err=" . $conn->errno);

 exit;

 }

Wandschneider.book Page 97 Tuesday, August 5, 2008 2:14 PM

98 PHP and MySQL

 // otherwise, proceed as normal.

 ob_end_flush();

?>

One of the most compelling aspects of output buffering is that it is so easy to use! Apart from these func-
tions, there are only a few others that we might occasionally make use of:

■ ob_flush—Causes any current output in the buffers to be flushed (sent) to the client.

■ ob_clean—Erases (cleans) the current contents of the output buffers. Output buffering remains
enabled, however.

■ ob_get_length—This returns the current size of the output buffer in bytes.

■ ob_get_content—This function allows us to fetch the current contents of the output buffer, in case
we wish to do additional processing on it before sending it to the client.

Wandschneider.book Page 98 Tuesday, August 5, 2008 2:14 PM

18

When Things Go Wrong

Errors in PHP
We will investigate four primary sources of errors in our Web applications.

PHP Language Engine Errors
Although, theoretically, all errors in our Web application come from the PHP language engine (since it is
what is running these applications), we will specially note those errors that occur because of problems with
our code or the actual execution environment itself.

Examples of this include:

■ Syntax errors in our code—We may have forgotten a semicolon, bracket, etc.

■ Undeclared variable errors.

■ Undefined reference errors—For example, if you try to create an instance of the User class, but PHP
doesn’t know about that class, it will throw an error.

■ The PHP language engine couldn’t start or run properly—Possible reasons include low system
resources (memory) or an improperly configured php.ini file.

These errors are things we should try to hammer out as much as possible during development, and then take
measures to note them carefully when executing our live Web applications.

Application Errors (Bugs)
Most of the problems that we face when developing Web applications will be minor errors or incorrect
assumptions in our code, more commonly known as bugs. For example, if we’re not careful:

$x = load_int_value();

$y = 2523 / $x; // will generate error if $x == 0

$x = 1

while ($x < 10)

{

 echo $x; // whoops, forgot to increment $x;

}

Wandschneider.book Page 99 Tuesday, August 5, 2008 2:14 PM

100 PHP and MySQL

If we don’t check return values, or otherwise forget a simple little line of code, our application will have
problems. Most of the time, when something goes horribly wrong, we’ll either be told by PHP right away,
or we’ll notice that something isn’t right—in the above infinite loop example, the script will take an unusu-
ally long time to execute (indeed, it will never stop until PHP terminates it).

External Errors
Another source of errors in our applications will be from external components we might use, such as a
MySQL database server or some other external resource, such as temporary files on the local file system.
These will occasionally start to fail, and it’s very important that our applications be able handle this grace-
fully and not start doing unpredictable things or, worse, creating security problems.

This is why, every single time we do a MySQL query or try to create a file in our Web applications, we
should check the return codes very carefully and make sure things worked properly before continuing. Of
course 99.99999 percent of the time it will, but you must be prepared for when it doesn’t.

User Errors
If you ask for a phone number in a form, and the user enters “Little Fluffy Bunnies”, this is an error and
something that must be flagged to them. This category of errors is a little different in that it’s something the
user can correct and we want to report it a little differently, but it is still something we must deal with in our
applications.

Handling Errors
Once an error condition occurs, we must be able to handle it correctly. Applications with random error
messages littered across the pages look extremely unprofessional and usually don’t impress visitors.

Here are some common ways to handle our errors.

Thorough Debugging and Testing
For language and configuration errors, the best way to eliminate them will be to thoroughly test and debug
our applications, making sure to cover as much code as possible. The more code we’ve run and tested, the
more confident we can be that something will actually work. If we never run a particular piece of code, we
might not find out until it’s too late that it is broken.

The @ Operator
For errors that come from external sources such as files, databases, or other external components, we can
prefix the function call with the @ operator, to tell PHP to not report any errors that occur when the function
is called. This helps to keep our application nice and quiet and doesn’t confuse the user, but has the big dis-
advantage of masking a potentially serious error condition of which we’d like to be aware.

We will typically only use the @ operator for those situations where we know something is highly likely to
fail, but for some reason, that’s okay and we’re willing to ignore it, or when nothing can be done about it.

Wandschneider.book Page 100 Tuesday, August 5, 2008 2:14 PM

Lesson 18: When Things Go Wrong 101

Setting Global Error Handlers
We will want to always set global error and exception handlers in our code that will log errors, perhaps
e-mail key people, and otherwise tell the user something that something has gone wrong and you’re aware
of it. By doing this, you don’t risk people learning unwanted details about your code, and you don’t confuse
your users with strange programming messages.

Configuring php.ini Correctly
For development, we will always have errors turned on in php.ini, but for deployment to live servers, we
will definitely turn these off. Instead, we will have PHP log the errors to a file so that we can periodically
check it and see what is happening.

Regular User of Structured Exception Handling
To handle user errors, and even a lot of system or resource errors, we will use structured exception handling
in our applications. We can use try / catch blocks to make sure that we deal with the appropriate errors in
the appropriate way, and we can let errors trickle up the call stack to let different functions handle different
types of errors.

Debugging with Xdebug
We’ve used var_dump a lot in the past to debug our Web applications, and while it is a very helpful way of
doing things, it can prove a little limiting sometimes. To help us out, we’ll use a popular debugging tool for
PHP call Xdebug, developed by Derick Rethans.

Installation
To install Xdebug on the Mac or on Unix, you can simply execute (as a super-user):

/usr/local/php5/bin/pecl install xdebug

PHP will do a bunch of downloading and compiling, and when it’s done, in your /usr/local/php5/lib/php/
extensions directory, there will be a subdirectory with a complicated name like no-debug-non-zts-20060613
or so, and in that will be an xdebug.so file.

Windows users should go to http://xdebug.org and download a precompiled version of xdebug.dll appropri-
ate for their version of PHP.

For all platforms, to enable Xdebug in PHP, you have to add the following to your php.ini file:

zend_extension="/path/to/xdebug.so"

zend_extension="x:\path\to\xdebug.dll"

Note that you cannot just use the regular extension= syntax as for other PHP modules.

Configuration
Xdebug is configurable to an insane degree, and has controllable options for just about everything. You are
best off visiting http://xdebug.org for a full list of options, but as we look at the individual features, we will
show one or two of the more common ones.

Wandschneider.book Page 101 Tuesday, August 5, 2008 2:14 PM

102 PHP and MySQL

Xdebug is turned on by default when the extension is loaded. To turn it off, you should just comment out
the zend_extension entry in php.ini by putting a semicolon in front of it.

var_dump Extensions
Xdebug provides a replacement for the var_dump function which gives you nicer formatting and slightly
better information than the regular one. It is also formatted to look better in the browser as opposed to forc-
ing you to view the source all the time.

array

 0 => int 1

 1 => int 2

 2 => int 5636

 3 => int -3523

 4 => string 'cat' (length=3)

 5 => boolean true

 6 => float 342.23

 7 => int 325

 8 => float 5.55E+10

 9 => boolean false

 10 => int 234324

By using color and nicer formatting, we can see our variables more clearly.

For those cases where we have objects containing arrays containing objects and arrays and so on, Xdebug
has configuration options that will let you control how many children to display in an array, and to what
level, or depth, it will keep expanding objects and array values:

■ xdebug.var_display_max_depth – Defaults to 3, controls how many levels of objects and array
values deep to traverse.

■ xdebug.var_display_max_children – Defaults to 128, controls the maximum number of values to
display from arrays or member variables on objects.

You can set these values in php.ini, or you can use the ini_set function at the top of your scripts:

ini_set('xdebug.var_display_max_depth', 10);

Better Error Handlers
The default error reporting in PHP tends to be quite sterile and not terribly helpful beyond the basic infor-
mation, such as a basic error message along with file and line number information.

Xdebug replaces this with a much friendlier error handler that prints out robust HTML messages (when
running for the browser) and also prints out a call stack, showing which functions were called before the
current error message was generated (see Figure 18-1).

You can turn this off by calling xdebug_disable at the top of your scripts.

Wandschneider.book Page 102 Tuesday, August 5, 2008 2:14 PM

Lesson 18: When Things Go Wrong 103

Other Functionality
This extension contains a number of other useful features such as printing out a list of all functions called in
your scripts, helping to analyze script execution times, and even functioning as a remote debugging pro-
gram for your scripts. Spending a few hours reviewing the online documentation for it and playing around
with these features is entirely a worthwhile use of time.

Figure 18-1 Xdebug printing out error message information.

Wandschneider.book Page 103 Tuesday, August 5, 2008 2:14 PM

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.10000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.10000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

