

The author works for VMware as a senior member of the technical staff. The opinions
expressed here are the author's personal opinions. Content published here was not read or
approved in advance by VMware and does not necessarily reflect the views and opinions
of VMware. This is the author's book—not a VMware book.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

The Library of Congress Cataloging-in-Publication data is on file.

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

The VMware VI SDK is Copyright © 2008 VMware, Inc. All Rights Reserved. The VI Java APIs are open-source
software and are governed by the BSD license.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL VMWARE, INC. OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ISBN-13: 978-0-137-15363-3
ISBN-10: 0-137-15363-5
Text printed in the United States on recycled paper at R.R. Donnelly in Crawfordsville, Indiana.
First printing September 2009

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Jessica Goldstein

Development Editor
Sheri Cain

Managing Editor
Kristy Hart

Project Editor
Jovana
San Nicolas-
Shirley

Copy Editor
Karen A. Gill

Indexer
Erika Millen

Proofreader
Williams Woods
Publishing
Services

Publishing
Coordinator

Romny French
Cover Designer

Chuti Prasertsith
Compositor

Jake McFarland

Preface
Virtualization is not a new concept, but it is changing the computing industry in a
profound way. Server virtualization is now #1 on enterprises’ budget lists.
According to analysts, it will continue to be the highest impact trend, changing
infrastructure and operations through 2012.

Virtualization became popular for two reasons. First, the hardware (especially
x86–based servers) capacity has increased so much that most servers are under
utilized. The market demand is strong for consolidating servers and saving opera-
tion and management cost. Virtualization has clearly provided a proven solution
for this demand. Second, the social awareness of environment protection and
energy saving has put green technology into the spotlight. Virtualization addresses
this social requirement well by saving electricity consumption.

Today, more than 4 million virtual machines are installed. With the accelera-
tion of hypervisor toward commodity because of increased competition, even more
virtual machines will be running along the way.

In this virtualization game, VMware is by far the market leader, with 100 per-
cent coverage of Fortune 100 enterprises. In 2007, the company achieved $1.3 bil-
lion revenue and has been growing steadily about 80 percent since its inception in
1998. There were 100,000 customers and 10,000 partners in 2008. The VMware
annual conference, VMworld, attracted more than 14,000 attendees in 2008.

With the proliferation of the VMware platform, the demand for management
of the virtualization environment is clear. In general, for every dollar spent on the
initial infrastructure investment, $6 or more is needed for management and opera-
tion. VMware has done a great job of providing best-of-the-breed management

xix

Preface

xx

products, including VirtualCenter server and other value-added solutions, such as
Site Recovery Manager.

Clearly, VMware cannot do everything. As a platform company, VMware needs
to enable partners and customers to come up with solutions to the integration,
customization, and automation of VMware platforms. To achieve these, you need a
solid understanding and hands-on expertise of VI SDK. This is where this book
fits into the big picture of whole virtualization technology and industry.

This book helps you with the basic concepts of virtualization, the VMware VI
SDK, and how to effectively use the SDK in your projects.

Who Should Read This Book
This book is for anyone interested in virtual system management of VMware plat-
forms. It specifically targets the following audiences:

■ System administrators who want to automate, customize, and optimize the
VMware virtualization platforms. This book uncovers many interfaces under
the hook of VI Client, RCLI, VI PowerShell, and so on.

■ Software architects, engineers, and solution developers who want to
design and develop applications with VI SDK. Possible vendors include the
following:
■ Hardware vendors who use the VI SDK for developing management soft-

ware to manage their specific system or device
■ Independent software vendors who develop applications or components

using the SDK
■ System integrators who develop solutions targeting specific industry

sectors
■ VMware competitors who use VI SDK as a reference for their own

designs

■ Technical managers, including program managers, who oversee virtualiza-
tion projects for a good sense of the SDK.

■ Researchers and students interested in VMware virtualization technology
and might use it in their projects.

■ Anyone interested in system management of virtualization platforms.

Preface

xxi

Prerequisites
To read this book, you need to have the following skills and knowledge:

■ Basic Java programming skills—Most of our code samples are written in
Java. It’s not because VI SDK favors Java over others, but because Java is a
popular programming language that runs on all major platforms and has the
widest audience today.

If you use other programming languages, the samples are still helpful even
though they cannot be used as they are. The methods and data objects don’t
change much across the languages. Reading the Java sample for these can
help you develop in other languages as well.

■ OS virtualization basics, especially the VMware virtualization platforms—
They are the management target of the SDK; therefore, a solid understand-
ing of how things work in the virtual world offers an advantage toward
understanding the model behind the APIs.

■ Web Services—It’s optional, and only needed to understand the VI SDK Web
Services interfaces. This book covers a little background when it gets there.

This book gives you in-depth knowledge, the best practices of VMware VI SDK
development, and hands-on experience with many useful samples that can be eas-
ily modified for your own automation or application development.

Structure of This Book
This book takes a pragmatic approach to show you how to program or script VI SDK
for your work. As a long-time software professional, I know how software engineers
think and work. We don’t start a new technology by reading hundreds of pages of
documents. Instead, we start with samples and read some documents when we have
doubts with some concepts and API usages. With this in mind, this book provides
you with many useful samples1 that you can use as is or adapt to your projects.2

Although samples are important, so are the basic concepts and best practices.
I show you both the big pictures and details that can be easily ignored or missed.
While helping VMware strategic partners with their development projects and

1 For easy reading, I highlighted all Java keywords in bold in the samples.

2 These samples are intended to illustrate the usage and best practices of the APIs. They are not necessarily

comprehensive or production ready.

Preface

xxii

community members with their questions, I have seen how the SDK can be mis-
used. I explain some of these pitfalls and how to effectively avoid them. I also intro-
duce how to best use these APIs. This book is not just another reference book.

Better than a typical SDK book, this book introduces the VI Java API I have
created. With the API, you can build much shorter, faster, and more importantly
much more readable and maintainable code. Most of the samples used in this
book are written using this higher-level API.

Most chapters are organized around various management tasks, which are
supported by VI SDK managed objects. When applicable, the related managed
objects involved are listed in the following overview as well as the beginning of
each chapter so that you can easily locate a chapter given a managed object.

This book contains 18 chapters and 6 appendixes:

■ Chapter 1, “VMware Infrastructure Overview”—This chapter introduces the
virtualization basics and VMware products, especially VMware
Infrastructure. It explains how VI SDK fits in the big picture.

■ Chapter 2, “VI SDK Basics”—Here, you examine the VI SDK from the bot-
tom up. This chapter covers the Web Services API, the object model, and
various tools that help to familiarize you with the SDK.

■ Chapter 3, “Hello VI”—In this chapter, you learn how to set up the develop-
ment environment and run your first “Hello World” sample code. Debugging
techniques are also included here.

■ Chapter 4, “Using PropertyCollector and SearchIndex”—Exclusive
attention is devoted in this chapter to how to retrieve properties and search
managed entities using PropertyCollector and SearchIndex.
PropertyCollector is one of the most often-used services; it’s also regard-
ed as one of the most difficult ones in the SDK.

■ Chapter 5, “Introducing the VI Java API”—This chapter examines the open
source Java API, which is built on top of the Web Services API. Using this
API instead of Web Services, you can have much shorter, faster, and more
readable code.

■ Chapter 6, “Managing Inventory”—The structure of inventory and how to
manage it are covered here. Also covered are the View family of managed
objects, which can be used in GUI applications.

The managed objects covered include ManagedEntity, Folder,
Datacenter, CustomFieldsManager, View, ManagedObjectView,
ViewManager, ContainerView, InventoryView, and ListView.

Preface

xxiii

■ Chapter 7, “Managing Host Systems”—In this chapter, focus is on the hyper-
visor on which virtual machines are running. It covers all the aspects except
networking and storage, which are covered in detail in Chapters 10 and 11,
respectively.

The managed objects discussed are HostSystem, HostDateTimeSystem,
HostBootDeviceSystem, HostDiagnosticSystem,
HostCpuSchedulerSystem, HostFirmwareSystem,
HostHealthStatusSystem, HostAutoStartManager,
HostMemorySystem, and HostPatchManager.

■ Chapter 8, “Managing Virtual Machines, Snapshots, and VMotion”—A virtual
machine is the equivalent of a physical machine in the virtual world. This
chapter shows how to manage its life cycle, change its configuration, find
out more about the guest OS running on it, and migrate it and its storage
live. Also covered are the virtual machine snapshots, including how they are
structured and how to manage them.

This chapter focuses on three managed objects: VirtualMachine,
CustomizationSpecManager, and VirtualMachineSnapshot.

■ Chapter 9, “Managing Clusters and Resource Pools”—Clustering is an
advanced feature in which multiple hosts are grouped for high availability,
load balancing, and energy saving, among other things. This chapter intro-
duces how to manage VMware HA and DRS/DPM clusters. Resource pools
and various resource allocation policies are also introduced here.

This chapter covers three managed objects: ComputeResource,
ClusterComputeResource, and ResourcePool.

■ Chapter 10, “Managing Networking”—Networking is an important and
sometimes confusing aspect of virtualization. This chapter guides you
through the basic concepts of how to manage the virtual switches, port
groups, virtual NIC, and network policies, as well as how to manage SNMP,
network services, firewalls, and more.

This chapter covers these managed objects: HostNetworkSystem, Network,
HostFirewallSystem, HostSnmpSystem, HostServiceSystem, and
HostVMotionSystem.

■ Chapter 11, “Managing Storage and Datastores”—Storage is one of the most
confusing parts because it involves many enterprise-level storage systems
and how ESX virtualizes them. This chapter introduces basic concepts and
how to perform various tasks from storage to datastore and files.

Preface

xxiv

This chapter discusses the following managed objects:
HostStorageSystem, HostDatastoreSystem, Datastore,
HostDatastoreBrowser, and FileManager.

■ Chapter 12, “Events and Alarms”—This chapter introduces what events and
alarms are. It also shows how to retrieve events and how to set up alarms to
monitor the virtual systems.

The managed objects in focus are EventManager,
EventHistoryCollector, Alarm, and AlarmManager.

■ Chapter 13, “Performance Monitoring”—Performance is one of the biggest
concerns people have when coming to virtualization. This chapter intro-
duces the basic concepts of performance monitoring and how to retrieve
performance statistics and monitor performance in real time.

The sole managed object covered is PerformanceManager.
■ Chapter 14, “Task and ScheduledTask”—This chapter introduces tasks and

scheduled tasks. It shows how to monitor/cancel a task and how to set up
scheduled tasks for automation.

The managed objects covered are Task, TaskManager,
TaskHistoryCollector; ScheduledTask, and ScheduledTaskManager.

■ Chapter 15, “User and License Administration”—Here, you learn how user
and license management work in VMware Infrastructure and how you can
manage them using the SDK.

The managed objects discussed are AuthorizationManager,
HostLocalAccountManager, UserDirectory, SessionManager, and
LicenseManager.

■ Chapter 16, “Extending the VI Client”—The VI SDK provides an extension
API. This chapter introduces how it works and what it takes to plug into the
VI Client.

The managed object involved is ExtensionManager.
■ Chapter 17, “Scripting the VI SDK with Jython, Perl, and PowerShell”—This

chapter introduces development of scripts with three major scripting lan-
guages that are commonly used in system administration: VI Perl,
PowerShell, and Jython (Python).

■ Chapter 18, “Advanced Topics”—This chapter covers topics that are important
but do not fit in previous chapters (for example, multithreading, versioning,
best practices for performance and scalability, and I18N).

Preface

xxv

The managed objects involved are OptionManager, DiagnosticManager,
and HostSystem.

■ Appendix A, “The Managed Object Types”— This appendix lists all the
managed object types in VI SDK 2.5 and vSphere 4.

■ Appendix B, “The Performance Counters”— This appendix lists all the per-
formance counters you might need to retrieve performance statistics.

■ Appendix C, “Cmdlets in the VI Toolkit (for Windows)”— This appendix
includes the cmdlets in the toolkit 1.0.

■ Appendix D, “Unified Modeling Language”—This appendix provides you
with the basic knowledge to understand this book’s UML diagrams.

■ Appendix E, “VI SDK Web Services”— This appendix examines the Web
Services in greater detail than Chapter 2.

■ Appendix F, “What Is New in vSphere 4 SDK?”—This appendix summarizes
the changes in the newly released vSphere 4 SDK, which is the next version
after VI SDK 2.5.

How to Read This Book
This book is organized in an order best for most readers. It starts with an overview
of virtualization technology and VMware VI products, trying to give you the big
picture of virtualization and the importance of system management in a virtual-
ized environment. Chapter 1 is recommended, but it’s not required.

This book then covers the VI SDK basics (Chapter 2), how to set up the devel-
opment environment (Chapter 3), and the basic managed objects
PropertyCollector and SearchIndex (Chapter 4). Chapter 3 is a must-read if
you want to get hands on with the samples. Chapter 4 is optional, but crucial to
understand the implementation of VI Java API discussed in the chapter after.

Chapter 5 is a must-read for Java developers, because after this chapter, the
Java API is used primarily. You don’t necessarily read how the API is designed, but
definitely how it should be used.

The chapters following Chapter 5 cover different parts/aspects of the VI SDK,
from inventory management, host and virtual machine management, and storage
to networking, performance statistics, and event management. You can randomly
read these chapters, which are in braces ({}) in the following list, depending on
your interest and preference.

Preface

Not all readers are application developers. More often than not, system admin-
istrators write scripts to automate daily tasks. If you’re only looking for scripting,
you can jump directly to Chapter 17, where three basic scripting languages are
covered.

The following summarizes the critical reading paths based on your interests:

■ General knowledge—Chapters 1 and 2
■ Java development—Chapters 3, 5, {2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18}
■ Jython development—Chapters 2, 5, 17, {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

18}
■ VI PowerShell development—Chapter 17, Appendix C, {6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 18}
■ VI Perl development—Chapters 2, 17, {6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18}

xxvi

502

Chapter 18
Advanced Topics

This chapter discusses several topics that do not quite fit into the previous chapters.
However, you may find them useful in your application development:

■ Managing global settings with OptionManager
■ Collecting logs using DiagnosticManager
■ Sharing sessions with multiple clients
■ Using single sign-on from the VI SDK to CIM
■ Downloading and uploading files using HTTP access
■ Versioning VI SDKs
■ Multithreading with the VI SDK
■ Following best practices for performance and scalability
■ Considering internationalization

Managed Objects: OptionManager, DiagnosticManager, HostSystem

Managing Global Settings with OptionManager

503

Managing Global Settings with OptionManager
OptionManager manages key/value pairs as a mechanism for flexible settings. It can
be reached from both ServiceInstance and HostSystem.

When connecting directly to an ESX server, you can get the OptionManager
object from the ServiceInstance, but it doesn’t have much information. The
OptionManager object from the HostSystem has a real data setting that you can find
and modify from the Advanced Setting dialog box of the ESX system in the VI
Client.

When connecting to a VirtualCenter server, you can get an OptionManager
object from the ServiceInstance with VirtualCenter server settings. You can find
and change these settings in the VirtualCenter Management Server Configuration
dialog box in the VI Client. The OptionManager object from a HostSystem is the same
that you would get from the HostSystem on ESX.

The OptionManager type has two properties defined:

■ supportedOption—List of OptionDef objects. The OptionDef data object,
whose UML diagram is shown in Figure 18-1, is extended from
ElementDescription. The ElementDescription has a string property key, which
normally uses a dot-separated notation to indicate its position in the whole
hierarchy, such as mail.smtp.port for the SMTP port option under the Mail
section.

OptionDef includes OptionType, which has one property indicating whether
the option is read-only. OptionType has six subtypes, each of which repre-
sents a data type of the option. Most of them include defaultValue for the
option. FloatOption, IntOption, and LongOption have the same structure but
different data types for the properties.

■ Setting—List of OptionValue data objects to hold real key/value pairs. The
key is one of the keys in the OptionDef objects in supportedOption. The value,
as you expect, is defined as xsd:anyType because it can be any value as
defined in the six types in OptionDef.

The optionManager defines two methods:

■ queryOption() retrieves a specific node or nodes in the option hierarchy. It
takes in a string parameter name as the key to the OptionDef. You can pro-
vide a full key, or the starting part of the key ending with dot, such as snmp,

Chapter 18—Advanced Topics

504

+valueIsReadOnly : xsd:boolean

OptionType

+defaultValue : xsd:boolean
+supported : xsd:boolean

BoolOption
+choiceInfo : ElementDescription[]
+defaultIndex : xsd:int

ChoiceOption

+defaultValue : xsd:float
+max : xsd:float
+min : xsd:float

FloatOption
+defaultValue : xsd:int
+max : xsd:int
+min : xsd:int

IntOption

+defaultValue : xsd:long
+max : xsd:long
+min : xsd:long

LongOption

+defaultValue : xsd:string
+validCharacters : xsd:string

StringOption

OptionDef

+optionType

1

+key : xsd:string

ElementDescription

Figure 18-1 The OptionDef and its subtypes

which returns all the OptionValue objects under the snmp node. You must
include the dot for the parameter to be valid.

■ updateOptions() updates one or more options specified by the OptionValue[]
parameter. The changes are done atomically; they are all changed, or none
are changed.

For both methods, the option key must be valid, or the InvalidName fault is
thrown. For updateOptions(), you must provide a valid value for the option as
required in the OptionDef; otherwise, the InvalidArgument fault is thrown.

These two methods do not change the available OptionDef objects. In fact, you
cannot add a new OptionDef or remove an existing OptionDef. You can add a new
OptionValue without matching OptionDef, but that is not a typical use case.

In the VirtualCenter Management Server Configuration dialog box of the VI
Client, you can add more key/value pairs when you select Advanced Settings.
Whatever key you enter in is prefixed with config in the OptionManager object. Just
use the Managed Object Browser (MOB) to check it out. Awkwardly, the next
time you bring back the same dialog box, the newly added key/value pair doesn’t
display.

Collecting Logs Using DiagnosticManager

505

+hostd
+install
+recordLog
+serverd
+vpxa
+vpxClient
+vpxd

«enumeration»
DiagnosticManagerLogCreator

+creator : xsd :string
+fileName : xsd :string
+format : xsd :string
+info : Description
+key : xsd:string
+mimeType : xsd:string

DiagnosticManagerLogDescriptor

+plain

«enumeration»
DiagnosticManagerLogFormat

Figure 18-2 The DiagnosticManagerLogDescriptor data object

Collecting Logs Using DiagnosticManager
The DiagnosticManager provides services to access low-level debugging logs or gen-
erate diagnostic bundles for either the VirtualCenter server or ESX server.

The managed object defines no property but three methods:

■ queryDescriptions() provides a list of diagnostic files for a given system. It
takes in an optional parameter host for specifying the HostSystem to extract
information from. When you connect to the ESX server directly, the parame-
ter isn’t needed. When you connect to the VirtualCenter server and the
parameter isn’t specified, the method assumes you’re looking for
VirtualCenter logs. The return of this method is an array of
DiagnosticManagerLogDescriptor data objects. The data object includes six
properties, as shown in Figure 18-2.

The creator property represents the component that creates the log; the
value has to be one of the string values defined in the
DiagnosticManagerLogCreator enumeration type. The filename is the full path
to the log file on the ESX server, such as /var/log/vmware/hostd.log, or a sim-
ple filename on the VirtualCenter server, such as vpxd-0.log. The format has
only one choice—plain—as defined in the DiagnosticManagerLogFormat enu-
meration type. The property key is used by other methods for browsing or
downloading; it can have values like vpxd:vpxd-0.log on VirtualCenter, or
hostd, messages, vmkernel, vmksummary, vmkwarning, or vpxa on the ESX server.

Chapter 18—Advanced Topics

506

The mimeType is Multipurpose Internet Mail Extensions (MIME). With the
format as plain, the mimeType is limited to text/plain.

■ browseDiagnosticLog() allows you to “browse” a log file that is identified by
the key as returned from the queryDescriptions() method. In addition to the
key parameter, you can optionally specify two integers as the starting line
and the number of lines in the log file you want to browse. If not specified,
the starting line defaults to the top, and the number of lines defaults to the
total from the starting to the end of the log. To browse the entire log, just
leave the two optional parameters empty.

The return from the method is a DiagnosticManagerLogHeader data object,
which has properties such as lineStart for the starting line and lineEnd for
the ending line, as well as an array of strings as log entries in the log file.

■ generateLogBundles_Task() creates diagnostic bundles on the server side to be
downloaded. A diagnostic bundle includes log files and other configura-
tions, such as a virtual machine configuration that can be used to investi-
gate potential server issues. The method has a boolean parameter,
includeDefault, that specifies whether to include the default server, and
optionally an array of HostSystems while connecting to a VirtualCenter
server.

The return of the method, as its name suggests, is a Task. When it’s done
successfully, the info.result property contains a list of
DiagnosticManagerBundleInfo data object. The data object includes two prop-
erties: a system pointing to the HostSystem from which the diagnostic bundle
is generated; and url, which represents the location where you can down-
load the bundle. When you connect to the ESX server directly, url might
have * as a placeholder for the real host name. Just replace it with the real
host name or IP address before downloading it.

https://*:443/downloads/esxsupport-5224f0a4-becc-cf30-0d30-1bc28a26f7ce.tgz

As the file extension suggests, the bundle is a compressed archive file. Use
tools like 7-Zip to extract the files inside. Depending on your environment,
the bundle could have thousands of files for you to do a thorough analysis
of the system.

Sharing Sessions Among Different Applications

507

Sharing Sessions Among Different Applications
When a client first logs into VC or ESX server, a username and password are
required to authenticate the user and grant access privileges. In the successive
interactions with VC server, no username and password are needed. The HTTP
session ID is instead used to track the user.

This HTTP session is different from the UserSession discussed earlier. Their session IDs
are in the same format, but they have different values. You can find one sample in the
following code.

The HTTP session ID is essentially an HTTP cookie that is pushed from the
server when the connection with the server is established. A UserSession is created
after the login succeeds. There is mapping from the HTTP session to the user ses-
sion on the server side so that the consecutive SOAP requests carrying an HTTP
session ID automatically assume the privileges of a user. In other words, if your
request has the same HTTP session ID as a current user, the system takes you as
the user. There won’t be a new UserSession for the new client.

In some of the cases, different clients need to share a user session. For exam-
ple, in a VI Client plug-in, a Web application needs to use the session ID passed in
from the VI Client in URL so that it can interact with the VC Server as if from the
login user in the VI Client.

Now let’s look at how to get the session ID and how to use it from another
client.

Getting the Session ID
The code to get the session ID is as follows:

...

VimPortType vimService = null;

ManagedObjectReference mor = null;

ServiceContent serviceContent = null;

VimServiceLocator serviceLocator = new VimServiceLocator();

serviceLocator.setMaintainSession(true);

Chapter 18—Advanced Topics

508

try

{

vimService = serviceLocator.getVimPort(new URL(urlStr));

ManagedObjectReference serviceRef = new ManagedObjectReference();

serviceRef.setType(“ServiceInstance”);

serviceRef.set_value(“ServiceInstance”);

serviceContent = imService.retrieveServiceContent(serviceRef);

if(serviceContent.getSessionManager()!=null)

{

vimService.login(serviceContent.getSessionManager(), username,
password, null);

}

}

catch (Exception e)

{

System.err.println(“Exception: “ + e.getMessage());

}

VimBindingStub vimStub = (VimBindingStub) vimService;

org.apache.axis.client.Call call = vimStub._getCall();

org.apache.axis.MessageContext msgContext = call.getMessageContext();

String sessionString = (String) msgContext.getProperty(

org.apache.axis.transport.http.HTTPConstants.HEADER_COOKIE);

System.out.println(sessionString);

...

Notice that after logging in, the code converts the VimPortType to VimBindingStub
and gets the Call, MessageContext objects. From the MessageContext, the session ID
is extracted and printed.

In most cases, you only use the interface com.vmware.vim.VimPortType for opera-
tions in the VI SDK. This is, however, not enough to access the session informa-
tion. The VimPortType interface provides a login service, but it does not expose ses-
sion information.

To share a session, just grab the real implementation class, which is
com.vmware.vim.VimBindingStub. With this implementation class, you can get and set
session information, as shown in the previous samples.

Sharing Sessions Among Different Applications

509

public class com.vmware.vim.VimBindingStub extends org.apache.axis.client.Stub
implements com.vmware.vim.VimPortType ()

The content of sessionString looks like this:

vmware_soap_session=”B3240D15-34DF-4BB9-B902-A844FDF42E85”

This sample code is not always needed. In the case of the VI client plug-in, the
VI client extracts the session ID and passes it in the URL to the Web application,
which can use it to interact with the VC Server.

Using Session ID
Now, let’s see how another client can use the session ID:

VimPortType vimService = null;

ManagedObjectReference mor = null;

ServiceContent serviceContent = null;

VimServiceLocator serviceLocator = new VimServiceLocator();

serviceLocator.setMaintainSession(true);

try

{

vimService = serviceLocator.getVimPort(

new URL(“https://localhost/sdk”));

}

catch (Exception e)

{

System.err.println(“Exception: “ + e.getMessage());

}

VimBindingStub vimStub = (VimBindingStub) vimService;

vimStub._setProperty(

org.apache.axis.transport.http.HTTPConstants.HEADER_COOKIE,
“vmware_soap_session=\”B3240D15-34DF-4BB9-B902-A844FDF42E85\””);

...

This code’s flow differs from the last code’s flow because it doesn’t require
you to log in. The VimPortType is casted to VimBindingStub, and the session ID is set
as the HTTP cookie.

Chapter 18—Advanced Topics

510

Essentially, the session ID is a cookie string. It can be sent from one client to
others in string format, in a local file, a URL, or messaging through the network.
When setting the session, include “vmware_soap_session.”

From the last line on, the consecutive code can send SOAP requests as if they
were from the previous client, which prints the session ID.

While sharing the session, it’s critical for the user of the session not to log out of the
session. As a rule of thumb, whoever logs in first should close the session—nobody else.
It’s up to the designer of the client applications to track the numbers of clients who are
sharing the same session.

Further Discussion
This introduction covers how to share the sessions in the code samples using Java.
The previous samples actually assume using AXIS as the underlying Web Services
engine. If you are using a different Web Services engine, find out how to retrieve
the HTTP session and change the code accordingly.

Although the sample is only in Java, clients that share a session can write in
any language that Web Services supports. For example, the session ID can be
extracted by a Java client and consumed by a Perl client. If Perl is used for a re-use
session, refer to the VI Perl Toolkit Programming Guide.1

Note that the session file format used in the VI Perl Toolkit is not simply the
session ID string, but something more. The format of the session file is as follows:

#LWP-Cookies-1.0

Set-Cookie3: vmware_soap_session=”\”52dc490b-a6e7-0e65-65a7-a926b924e72c\””;
path=”/”; domain=192.20.143.205; path_spec; discard; version=0

I leave it to you to figure out how to construct such a session file with a known session
ID and how to use a session file saved in Perl.2 You might have similar exercises with
other language bindings.

1 www.vmware.com/support/developer/viperltoolkit/doc/perl_toolkit_guide_idx.html
2 Hint: Consider the load_session() method. Check out the VI Perl programming guide, pages
35–36, for details (www.vmware.com/support/developer/viperltoolkit/viperl16/doc/viperl_
proggd.pdf).

www.vmware.com/support/developer/viperltoolkit/doc/perl_toolkit_guide_idx.html
www.vmware.com/support/developer/viperltoolkit/viperl16/doc/viperl_proggd.pdf
www.vmware.com/support/developer/viperltoolkit/viperl16/doc/viperl_proggd.pdf

Using Single Sign-On from the VI SDK to CIM

511

As mentioned, passing the session ID poses a security risk especially over the
wire. The session ID is enough for a client to carry over all the privileges of the
original user—whatever operation the user can do, the consumer client is able to
do the same. This session cookie can also be used to access files over HTTP. Even
worse, the session ID does not expire, so it allows enough time to prepare an
attack. To avoid security issues, carefully consider whom to share a session with
and how to send the session ID.

Using Single Sign-On from the VI SDK to CIM
When a client connects to the ESX server via the VI SDK, it has to log in. If it
wants to further access the Common Information Model (CIM), it has to log in
again using the same username and password. So the client has to either get input
from users again or save the username/password somewhere. Neither of these two
approaches is good for system security.

In some cases, like VI Client plug-in development, the Web application gets
only the session string. It’s impossible to get the password, which presumably can
also be used for CIM access. So it is necessary for the VI SDK to provide a mecha-
nism to issue tokens that can be used for CIM service login.

Starting with VI 3.5, VMware provides a new API to make possible single sign-
on from the VI SDK to CIM. The following discusses how to get it done with sam-
ple Java code.

VI SDK 2.5 provides acquireCimServicesTicket() on a HostSystem managed
object to get a HostServiceTicket object. The definition of the HostServiceTicket
data object and related classes are shown in Figure 18-3. Some of its properties,
such as host, port, and sslThumpprint, could be null because the API reference indi-
cates “need not to be set.”

+host : xsd:string
+service : xsd:string
+serviceVersion : xsd:string
+sessionId : xsd:string
+sslThumpprint : xsd:string
+port : xsd:int

HostServiceTicket

Figure 18-3 The HostServiceTicket data object class and related classes

Chapter 18—Advanced Topics

512

The sessionId is a string with a format as follows. It can be used as both user-
name and password for CIM access login.

5259c389-9891-c650-b108-e10a0ff5c781

Now let’s look at a Java program that shows how it can be done (see
Listing 18-1).

Listing 18-1
CimTicket.java

package vim25.samples.mo.cim;

import java.net.URL;

import java.util.Enumeration;

import org.sblim.wbem.cim.CIMNameSpace;

import org.sblim.wbem.cim.CIMObject;

import org.sblim.wbem.cim.CIMObjectPath;

import org.sblim.wbem.client.CIMClient;

import org.sblim.wbem.client.PasswordCredential;

import org.sblim.wbem.client.UserPrincipal;

import com.vmware.vim25.HostServiceTicket;

import com.vmware.vim25.mo.Folder;

import com.vmware.vim25.mo.HostSystem;

immport com.vmware.vim25.mo.InventoryNavigator;

import com.vmware.vim25.mo.ServiceInstance;

public class CimTicket

{

public static void main(String[] args) throws Exception

{

if(args.length!=3)

{

System.out.println(“Usage: java CimTicket <url> “ +

“<username> <password>”);

return;

}

Using Single Sign-On from the VI SDK to CIM

513

String urlStr = args[0];

String username = args[1];

String password = args[2];

ServiceInstance si = new ServiceInstance(new URL(urlStr),

username, password, true);

Folder rootFolder = si.getRootFolder();

HostSystem host = (HostSystem) new InventoryNavigator(

rootFolder).searchManagedEntities(“HostSystem”)[0];

System.out.println(host.getName());

HostServiceTicket ticket = host.acquireCimServicesTicket();

System.out.println(“\nHost Name:” + ticket.getHost());

System.out.println(“sessionId=” + ticket.getSessionId());

System.out.println(“sslThumpprint=”

+ ticket.getSslThumbprint());

System.out.println(“serviceVersion=”

+ ticket.getServiceVersion());

System.out.println(“service=” + ticket.getService());

System.out.println(“port=” + ticket.getPort());

retrieveCimInfo(urlStr, ticket.getSessionId());

si.getServerConnection().logout();

}

private static void retrieveCimInfo(

String urlStr, String sessionId)

{

String serverUrl = urlStr.substring(0,

urlStr.lastIndexOf(“/sdk”));

String cimAgentAddress = serverUrl + “:5989”;

String namespace = “root/cimv2”;

UserPrincipal userPr = new UserPrincipal(sessionId);

PasswordCredential pwCred = new PasswordCredential(

sessionId.toCharArray());

CIMNameSpace ns = new CIMNameSpace(

cimAgentAddress, namespace);

CIMClient cimClient = new CIMClient(ns, userPr, pwCred);

CIMObjectPath rpCOP = new CIMObjectPath(

Chapter 18—Advanced Topics

514

“CIM_RegisteredProfile”);

System.out.println(“Looking for children of “ +

“CIM_RegisteredProfile”);

long enumerationStart = System.currentTimeMillis();

Enumeration rpEnm = cimClient.enumerateInstances(rpCOP);

long enumerationStop = System.currentTimeMillis();

System.out.println(“Enumeration completed in: “ +

(enumerationStop - enumerationStart) / 1000 + “ sec.\n”);

while (rpEnm.hasMoreElements())

{

CIMObject rp = (CIMObject) rpEnm.nextElement();

System.out.println(“ Found: “ + rp);

}

}

}

The console printout is shown here. Given the size limit, only the first several
lines are listed:

test.acme.com

Host Name:test.acme.com

sessionId=5259c389-9891-c650-b108-e10a0ff5c781

sslThumpprint=null

serviceVersion=1.0

service=CimInterfaces

port=null

Looking for children of CIM_RegisteredProfile

Enumeration completed in: 0 sec.

Found: instance of OMC_RegisteredSensorProfile {

string AdvertiseTypeDescriptions[];

uint16 AdvertiseTypes[] = {3};

string Caption;

string Description;

Downloading and Uploading Files Using HTTP Access

515

This API is supported by default in ESXi 3.5, but not in classic ESX. Users can
manually enable it by tweaking a configuration file in classic ESX. In classic 3.5
U2, it’s enabled as default. You can also use this API with VC server as long as the
HostSystem it manages supports the feature.

The SBLIM Java client3 is used instead of the one4 used with the VI SDK CIM
sample. The latter has a bug whereby it truncates the password after 16 characters,
so it fails the CIM login.

Downloading and Uploading Files Using HTTP Access
In VI 3.5, VMware introduced a new feature to enable applications to download a
file from and upload a file to the datastores of ESX servers.

The syntax of the URLs is as follows:

http(s)://<hostname>/folder[/<path>]?dcPath=<datacenter_path>[&dsName=<datastore
_name>]

Following are some sample URLs:

https://18.17.218.228/folder?dcPath=Datacenter

which lists all the datastores in the datacenter whose path is Datacenter.

https://18.17.218.228/folder?dcPath=Datacenter&dsName=storage1%20(1)

which lists all the folders in the datastore named storage1 (1) whose path is
Datacenter.

https://18.17.218.228/folder/SuSe_server10/SuSe_server10-
flat.vmdk?dcPath=Datacenter&dsName=storage1%20(1)

which points to the vmdk file called SuSe_server10-flat.vmdk.

3 http://sblim.wiki.sourceforge.net/CimClient
4 http://sourceforge.net/projects/wbemservices

http://sblim.wiki.sourceforge.net/CimClient
http://sourceforge.net/projects/wbemservices

Chapter 18—Advanced Topics

516

VMware has shipped a sample code with VI SDK 2.5 showing how to upload a
virtual machine to an ESX server
(com.vmware.samples.httpfileaccess.ColdMigration). The sample code works by
uploading files whose sizes are 40MB or smaller. In most of the cases, virtual
machine disk files are much bigger than 40MB; therefore, an OutOfMemoryError is
almost always thrown for such an execution.

Given the average virtual disk size, the ColdMigration sample is almost useless
if it cannot work with files bigger than 40MB.

An easy solution seems to be increasing the Java heap size using a parameter
to the Java virtual machine. But that is not a good solution given the size of the vir-
tual machines, sometimes 100GB or bigger. It would be hard to find such a large
memory and assign it to a Java virtual machine. So let’s pin down the root cause
of the problem and find an alternative solution.

After debugging the sample, the following section of code is found to throw
exceptions.

OutputStream out = conn.getOutputStream();

FileInputStream in = new FileInputStream(

new File(localFilePath));

byte[] buf = new byte[1024];

int len = 0;

while ((len = in.read(buf)) > 0) {

out.write(buf, 0, len);

}

conn.getResponseMessage();

conn.disconnect();

out.close();

Simply reading the code, it seems okay. To figure out in which iteration the
problem happens, a conditional breakpoint is set to catch OutOfMemoryError.

The next run reveals the stack shown in Figure 18-4 when the exception
happened.

Arrays.copyOf(byte[], int) line: 2786
PosterOutputStream(ByteArrayOutputStream).write(byte[], int, int) line: 94
PosterOutputStream.write(byte[], int, int) line: 61

Figure 18-4 Partial calling stack when OutOfMemoryError happens

Downloading and Uploading Files Using HTTP Access

517

The error was thrown at the following highlighted line. The argument
newLength is 67,108,864. No wonder we have a problem with this huge array.

public static byte[] copyOf(byte[] original, int newLength)

{

byte[] copy = new byte[newLength];

System.arraycopy(original, 0, copy, 0,

Math.min(original.length, newLength));

return copy;

}

Further reading discloses that PostOutputStream(ByteArrayOutputStream).write()
tries to buffer all the data to be sent. It’s not going to work with big size uploading.

The question becomes whether it can use a different output class. The
PosterOutputStream is returned from the getOutputStream() method:

public synchronized OutputStream getOutputStream()

throws IOException

{

return delegate.getOutputStream();

}

Because the source code of Sun’s HttpURLConnection class is not available in the
src.zip, a search on the Web finds code samples like the following. It shows that
the getOutputStream() method can actually return subtypes of OutputStream other
than PosterOutputStream depending on the variable fixedContentLength and
chunkLength.

public synchronized OutputStream getOutputStream()

{

...

if(streaming())

{

if(fixedContentLength != -1)

strOutputStream = new StreamingOutputStream(

ps, fixedContentLength);

else if(chunkLength != -1)

strOutputStream = new StreamingOutputStream(

new ChunkedOutputStream(ps, chunkLength), -1);

return strOutputStream;

}

Chapter 18—Advanced Topics

518

...

if(poster == null)

poster = new PosterOutputStream();

return poster;

}

By exploring the HttpURLConnection class, you can find the methods to set the
two variables: setFixedLengthStreamingMode(int) and setChunkedStreamingMode(int),
respectively.

Because the file size is known beforehand, just use the first method and get
StreamingOutputStream. It works fine by inserting the following line before
conn.getOutputStream():

conn.setFixedLengthStreamingMode(fileSize);

The issue with the sample code is not a bug of VMware Infrastructure per se.
The root cause of the issue is the misuse of Java APIs.

You could argue that PosterOutputStream should not be the default OutputStream.
In practice, uploading a huge file is not a typical use case of the HttpConnection.
Most API users use it to download content of any size and upload a relatively
small file. After all, the HttpURLConnection class has provided an alternative to solve
the problem.

Note that the argument to setFixedLengthStreamingMode is an integer, meaning it
can only hold up to about 2.14GB, which is not enough for a disk file. Uploading
bigger files requires using setChunkedStreamingMode(int). As of SDK 2.5, the
chunked streaming is not supported on the ESX server side.

Multithreading with the VI SDK
Multithreading is the norm in application development, especially GUI-related
applications and server applications. In these applications, you might need several
threads, each of which is assigned a specific task. When you develop your applica-
tion that uses VI SDK, you need to consider using multithreading.

Overall, the AXIS generated VI SDK stubs are thread-safe, meaning you can
safely issue multiple calls in different threads. For each call, a new Call object is
created and not shared with other method invocations.

Versioning

519

While using multiple threads, be aware (and careful) of the following:

■ There normally shouldn’t be more than one operation currently running
with one entity. Most of the invocations are fast, so you don’t notice there is
such a limitation. But some operations are slow. When a second call comes
in before the first finishes, a TaskInProgress fault might be thrown. In that
fault type, you get the first running task’s MOR.

To avoid this, you can put a synchronized keyword on every operation in
your Java code. This prevents the same application from issuing the second
call on the same entity before the first finishes. The synchronized keyword
cannot prevent other applications, either running on the same machine or
not, from issuing a second call to the same managed entity on the server
side. When that happens, you can do nothing about it but catch the fault
and try again. The lock is essentially on the server side.

■ Pay extra attention to the PropertyCollector. The waitForUpdate() defined
there is a synchronized method that reports the result as specified by the
PropertyFilter objects from version to version. You get all the results for all
the PropertyFilter objects. If you have multiple threads calling the
waitForUpdate(), you get multiple duplicated updates. It then makes sense to
have one backend thread to call the waitForUpdate().

You can implement the Publisher-Subscriber design pattern, in which the
backend thread is the publisher and any other objects/threads are sub-
scribers who can receive notifications when interested updates come. This
implementation requires more effort, but it is worthwhile in big-server
applications.

Versioning
The VI SDK exposes the features of the VMware Infrastructure. With the rapid
changes of the VI, the VI SDK has evolved accordingly. As it stands today, there
are three major versions of the VI SDK: 2.0, 2.5, and 4.0 (a.k.a vSphere SDK). The
version 2.0 is not compatible with the other two.

Namespace
As discussed earlier, the most important component in the SDK is the WSDL file
from which the client stubs can be generated. The two versions’ WSDLs use two

Chapter 18—Advanced Topics

520

different namespaces: VI SDK 2.0 uses urn:vim, and VI SDK 2.5 uses urn:vim25.
Interestingly, the VI SDK 2.5 package also includes a previous version of WSDL.
Therefore, you can use the VI SDK 2.5 package to develop applications with 2.0
interfaces.

When client-side stubs are generated, the package names are up to the develop-
ers. The pregenerated stubs use com.vmware.vim in SDK 2.0 and com.vmware.vim25 in
SDK 2.5. If your application needs to work with two versions of platforms, you have
two package names even though the class definitions are similar, if not the same.

Tying the version with a namespace complicates the application development.
If you have to work with two versions of VI in your application, you must include
two JARs. These JARs actually include many duplicated classes that are essentially
the same, even though they end up in two package names. For example, there are
two ManagedObjectReference types. When you enter the type name, the compiler
cannot easily decide which one to use. To avoid the confusion, just include the full
package name in your code.

The following code detects the version of the target. The basic idea is to get the
vimService.wsdl file, as shown in Listing 18-2, with the following URL, and then
parse the XML file for the version number.

https://<server-name>/sdk/vimService?wsdl

When you want to discover the namespace of a target server, simply call the
utility like the following. If the target supports SDK 2.5, the version is
urn:vim25Service.

String version = VerUtil.getTargetNameSpace(“192.168.143.209”);

Listing 18-2
VerUtil.java

package vim25.samples.mo.util;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.net.HttpURLConnection;

import java.net.URL;

import java.security.KeyManagementException;

import java.security.NoSuchAlgorithmException;

Versioning

521

import java.security.cert.CertificateException;

import java.security.cert.X509Certificate;

import javax.net.ssl.HostnameVerifier;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLContext;

import javax.net.ssl.SSLSession;

import javax.net.ssl.TrustManager;

import javax.net.ssl.X509TrustManager;

public class VerUtil

{

/**

* Retrieve the target server’s namespace

* @param target, either IP or host name

* @return the namespace, e.g. urn:vim25Service

*/

public static String getTargetNameSpace(String target)

{

String version = ““;

try

{

trustAllHttpsCertificates();

HttpsURLConnection.setDefaultHostnameVerifier(

new HostnameVerifier()

{

public boolean verify(String urlHostName,

SSLSession session)

{

return true;

}

});

String urlStr = “https://”+ target

+ “/sdk/vimService?wsdl”;

HttpURLConnection conn = (HttpURLConnection) new URL(

urlStr).openConnection();

conn.connect();

BufferedReader in = new BufferedReader(

new InputStreamReader(conn.getInputStream()));

Chapter 18—Advanced Topics

522

StringBuffer xmlWSDL = new StringBuffer();

String line;

while ((line=in.readLine())!= null)

{

xmlWSDL.append(line);

}

int start = xmlWSDL.indexOf(“targetNamespace”)

+ “targetNamespace”.length();

start = xmlWSDL.indexOf(“\””, start);

int end = xmlWSDL.indexOf(“\””, start+1);

version = xmlWSDL.substring(start+1, end);

}

catch (Exception e)

{

e.printStackTrace();

}

return version;

}

private static void trustAllHttpsCertificates()

throws NoSuchAlgorithmException, KeyManagementException

{

TrustManager[] trustAllCerts = new TrustManager[1];

trustAllCerts[0] = new TrustAllManager();

SSLContext sc = SSLContext.getInstance(“SSL”);

sc.init(nnull, trustAllCerts, null);

HttpsURLConnection.setDefaultSSLSocketFactory(

sc.getSocketFactory());

}

private static class TrustAllManager

implements X509TrustManager

{

public X509Certificate[] getAcceptedIssuers()

{

return null;

}

public void checkServerTrusted(X509Certificate[] certs,

Versioning

523

String authType)

throws CertificateException

{

}

public void checkClientTrusted(X509Certificate[] certs,

String authType)

throws CertificateException

{

}

}

public static void main(String[] args)

{

String ver = getTargetNameSpace(“10.20.143.205”);

System.out.println(“ver:” + ver);

}

}

Compatibility
Can the applications developed with 2.0 still work with the newer VI product? Yes.
The newer version of VI supports both the current and older versions of WSDL
generated stubs.

Because the application still uses the old interfaces, they cannot, however,
retrieve the new properties and call the newly added methods. So how can you
access new properties and methods?

There could be two different solutions. First, rewrite the application to the
newer version of SDK. Then the application no longer works with lower versions
of VI platforms. For example, the application built on top of SDK 2.5 does not
work with ESX 3.0 or VirtualCenter 2.0.

The second solution is to keep the old code as it is and choose to access new
properties and new methods after detecting that the target is newer. Of course,
the logic could be more complicated and the code could be less straightforward.
But the gain would be application compatibility, which allows it to work with both
older and newer versions of VI.

In the second solution, to access the newly defined properties or methods, you
must convert the old ManagedObjectReference to the newer ManagedObjectReference.
Because the definitions are the same except for the package name and name

Chapter 18—Advanced Topics

524

space, the conversion is straightforward. With the new MOR object, you can retrieve
new properties and invoke new methods.

There is an easier way: Put all the ESX, old or new versions, under the newer VC2.5 and
then connect to it. VC 2.5 handles the versioning for you, and you don’t need to worry
about it. Only VC needs an upgrade. The newer version of VC can manage the old ver-
sion of ESXes.

API Deprecation
With the evolution of the VI SDK, some of the interfaces are deprecated in favor
of new ones. As a simple naming convention, the new interfaces normally have an
Ex suffix in their names. For example, the old interface to create a cluster was
createCluster(), and the new interface is createClusterEx().

These new interfaces normally come with new data objects with similar Ex suf-
fixes. The createClusterEx() method, for example, has a new parameter type
ClusterConfigSpecEx instead of ClusterConfigSpec for the old method.

Because of interface changes, some of the managed objects might have new
properties of new types. For instance, the ComputeResource has a configrationEx
property of ClusterConfigInfoEx.

Although for compatibility reasons the new interfaces are still supported, you
should use the new interfaces especially for new development for better compati-
bility and more features.

Note that not all the deprecated methods have replacements. The
destroyNetwork() method is such a case. When the network is no longer in use, the
system removes it automatically like the garbage collection in Java, thereby mak-
ing it unnecessary.

Following Best Practices for Performance and Scalability
This section is not intended to be a general guide for improving performance and
scalability; instead, it focuses on how to get better performance and scalability
from the VI SDK.

The general principles for performance and scalability still hold; for example,
don’t optimize your code unless you have to.

Following Best Practices for Performance and Scalability

525

When designing a VI SDK application, consider the following:

■ Use VirtualCenter instead of individual hypervisors as a target server for the
VI SDK. VirtualCenter has more functionalities than ESX. From a scalability
point of view, your application can scale with VirtualCenter.

If your application tries to manage 100 hosts, for instance, you must have
100 connections if you’re talking to individual hosts. When a virtual
machine is moved from one host to the other, you have to track it down
from host to host. If you use a VirtualCenter managing these ESXes, you can
shift the burden to the VirtualCenter. One connection to VirtualCenter
saves almost all the tedious work for you.

There is a limitation with VirtualCenter server in terms of the number of
hypervisors and virtual machines it can manage.5 Your application can
always connect to multiple VirtualCenter servers to scale beyond one
VirtualCenter coverage.

■ Use as few sessions as possible. The sessions take system resources and use
locks on the server side. The slowdown ultimately affects all the VI SDK
clients in that the calls to the server are slower to return. This is, of course,
out of the control of a single client. Even if your client behaves perfectly
well, it might still be affected by others.

If your application is deployed with many concurrent clients, the one-client,
one-session approach doesn’t scale, especially when your target is
VirtualCenter. Instead, consider having your own backend server that con-
nects to a server with a single session.

■ Avoid a big dataset in a single call. Most of the time, you should be fine. It
can be a problem when it comes to retrieving performance data, which
could be several megabytes of data returned. This puts the pressure on both
the server and the client, where the data has to be marshaled to and unmar-
shaled from SOAP XML. If the client side uses the DOM parser, it also uses
a lot of memory.

In general, specify as much criteria as possible to restrict your dataset as
small as possible. In the performance statistics case, you should use the CSV
format over the array for better performance.

5 Normally 200 ESX hosts and 2,000 virtual machines in VI3. When the clustering feature is on,
numbers will be fewer.

Chapter 18—Advanced Topics

526

■ Use batch processing methods when possible. Some operations can have
batch processing in which multiple entities can be manipulated. For exam-
ple, the ClusterComputeResource has two methods: moveHostInto_Task() and
moveInto_Task(). The former moves one host into a cluster at a time, and the
latter moves multiple hosts at a time. The latter works faster, in that it caus-
es fewer rounds of communication.

There is a problem with batch processing methods in the VI SDK: they are
not atomic. If something goes wrong, the VI SDK just stops there and
returns. Whatever is or is not yet processed stays as it is. The VI SDK does-
n’t roll back the already processed one. So when faults happen, you need to
take care of the half-baked cake by yourself. Or, just go with the one-call,
one-entity scheme. This is a trade-off between performance and atomicity.

You can always pass in one item in a method that expects an array of items; just avoid
the complexity to handle the atomicity. For example, you want performance data for a
list of managed entities, but you don’t know which of them might no longer be valid.
Instead of retrieving them all, you can simply retrieve one at a time. Just remember to
catch the exception so that it doesn’t exit the loop.

■ Design and implement your local cache. It’s not worthwhile if it is a sim-
ple utility application. But for a big application that requires extensive
interaction with VirtualCenter or ESX, it makes a lot of sense.

First, your application can have instant access of cached information.
Second, it saves the number of calls to the server as well as the workload on
the server. The same server can work faster and serve more clients.

Whenever you have a cache and care about freshness, you must consider
how to sync it with the server. The VI SDK has a waitForUpdate() method
that blocks the current thread and returns when updates come up on the
server. Clearly, you shouldn’t have multiple threads waiting for update, but
one to keep the cache synchronized with the server. Be careful with the syn-
chronization of multiple threads on the client application.

VI Java API 2.0 includes a caching framework that handles most of the bur-
den for you. All you need to do is specify what properties to cache and mon-
itor on what managed objects, and then retrieve the properties in the same

Considering Internationalization

527

way as from a hash table. It’s multithread safe and can be used in large
applications.

The caching framework is designed for caching, mainly speeding up the second time
retrieval. A big company reported three times performance gain by retrieving the
properties using the caching framework even the first time. Nice surprise.

Considering Internationalization
With today’s global market, a software vendor has to consider the internationaliza-
tion (I18N) issue to better serve users in different areas and maximize the return
on the product investment.

There are two basic meanings. First, you have to design your software so that it
is localizable. In other words, you have to use the right APIs that can handle dou-
ble byte characters. Sometimes people call this globalization (G11N).

Second, you should provide localized versions of your software so that users
can read and use their native languages. Sometimes people call this localization.

In most cases, you externalize all the text strings that are visible to end users
from the code to the resource files and translate them into different languages.
Then localizing the software is as easy as combining the code and localized
resource files. This is the way VirtualCenter server is localized. Depending on the
programming language and platform, the resource files can be organized different-
ly and might have another format. For example, Java uses properties files, yet C++
on Windows uses resource dlls.

That said, I18N is a broad topic that does much more than what is briefly cov-
ered here. Further discussion is beyond the scope of this book, but you can find
more detailed information online.

As discussed, the VI SDK is essentially a set of Web Services interfaces. The
WS-I18N6 summarizes four internationalization patterns7 that can be applied with
Web Services when deployed.

6 www.w3.org/TR/ws-i18n/
7 Copyright © 2008 World Wide Web Consortium, (Massachusetts Institute of Technology,
European Research Consortium for Informatics and Mathematics, Keio University). All Rights
Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

www.w3.org/TR/ws-i18n/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

Chapter 18—Advanced Topics

528

■ Locale neutral—Most aspects of most services are not particularly locale
affected. For example, a service that adds two integers is locale neutral.

■ Data driven—Aspects of the data determine how it is processed, rather than
the configuration of either the requester or the provider.

■ Service determined—The service has a particular setting built into it. For
example, this service always runs in the French for France locale. Or, com-
monly, the service will run in the host’s default locale. It may even be a
deployment decision that controls which locale or preferences are applied to
the service’s operation.

■ Client influenced—The service’s operation can use a locale preference pro-
vided by the end user to affect its processing. This is called “influenced”
because not every request may be honored by the service. (The service may
only implement behavior for certain locales or international preference
combinations.)

If the VI SDK has to be put into a category, it’s client influenced because the
service provider tracks the client locale and responds accordingly. The VI SDK is
indeed complicated, and most of the services and properties of managed objects
are locale neutral.

When you first log into the system using the SessionManager, you can provide
your locale so that the server knows your locale and responds in successive
requests/responses. Your locale is held in the currentSession.locale of
SessionManager.

The locale mainly affects the properties in some managed objects, such as the
description properties of TaskManager, AlarmManager, AuthorizationManager,
EventManager, PerformanceManager, and ScheduledTaskManager. Although they are all
named description, they are different data object types inherited from the
Description data object that includes two string properties: label and summary.
These two properties can be displayed as they are at the client side; therefore, they
should be localized.

Besides the subtypes, the Description data object can be included in other data
objects. For example, the DiagnosticManagerLogDescriptor data object, which is a
return type of the queryDescriptions() method defined in DiagnosticManager,
includes Description as a localized description.

If your applications need to display any description about the task, alarm, and
so on, you should always get it from the description properties. This not only
saves you the time to write the descriptions, but it saves you the time to translate

Symbols
(protected visibility), 581
+ (protected visibility), 581
- (private visibility), 581

A
acquireCimServicesTicket(), 181
acquireLocalTicket(), SessionManager, 452
actions

Alarm, 362
specifying with ScheduledTaskManager,

425-426
addAuthorizationRole() method, 438
addCustomFieldDef(), 169
AddDatastore.java, 330-331
addHost_Task(), 270
adding

Datacenter, inventory operations, 163-164
Folder, inventory operations, 163-164
hosts to clusters, 270-271
virtual NIC, 290-292
virtual switches, 290

addInternetScsiSendTargets(), 323
AddNIC.java, 290-292
addVirtualNic() method, 290-292
addVirtualSwitch() method, 290
Alarm, 360-361

creating tasks, 364
follow-up actions, 362
invoking methods, 365

reconfiguring alarms, 365-366
removing alarms, 366
running scripts, 363
sending email, 362-363
sending SNMP trap, 364-365
triggering conditions, 362

AlarmInfo, 361
AlarmManager, 366

alarms, creating, 374
CreateVmAlarm.java, 374-377
getAlarmState(), 378
PrintAlarmManager.java, 367-373
properties, 366

alarms
creating, 374

CreateVmAlarm.java, 374-377
finding existing, 377

AlarmSpec, 361
AlarmState data object, 378
AlarmTriggeringAction, 362
AndAlarmExpression, 362
answerVM() method, 223
API, 93
API deprecation, compatibility, 524
API reference, 46-47
APIs, 12, 15

CMI APIs, 14
GuestSDK, 14
new features, 595
switching between Web Services and (VI Java API),

103-104

603

Index

VI SDK. See VI SDK
VIX API, 14
VMCI, 15

application flow
VI Java API, 101-103
VI Perl Toolkit, 491

applications
creating, 52-55, 58
debugging, 58

common bugs, 62-65
logs, 58-62
monitoring SOAP messages with

HTTP, 62
existing migrating applications, 602

architecture
high-performance Web Services engine

(VI Java API), 150-151
VI Java API, 97

HelloVM.java, 99-101
layered structure, 97
object hierarchy, 98-99

assignUserToGroup(), 446
association, class diagrams (UML), 581
asynchronous methods versus synchronous

methods, 26-27
attachVmfsExtent(), 327
AuthorizationDescription, 435
AuthorizationManager, 435

ListAuthorization.java, 436-438
managing permissions, 439-440

querying permissions, 440-442
managing roles, 438

AuthorizationPrivilege, 435
AuthorizationRole, 435
auto start, configuring for virtual machines,

191-192
auto stop, configuring for virtual machines,

191-192
AXIS, 591

downloading, 50-51

B
backend Web applications

developing, 479
connecting back to VirtualCenter,

480-482
parsing information from the VI Client,

479-480
security, 483

backupFirmwareConfiguration(), 199
batch processing methods, 526
best practices for performance and scalability, 524-526
booting devices, configuring, 196
browseDiagnosticLog(), DiagnosticManager, 506
bugs, VI SDK applications, 62

connection timeout, 63
invalid arguments, 64
invalid state, 65
no permission, 63
null pointer, 62

C
canceling tasks, 410
cancelTask(), 410
cancelWaitForUpdates(), 78
capabilities, virtual machines, 209
Catalog, 600
catalogName, 600
catalogUri, 601
challenges with VI SDK, 94

extra long code, 95
lack of managed object types, 94
method signatures, 95

changes, monitoring with PropertyFilter, 78-85
check*_Task(), 600
checkCompliance_Task(), 596
checkCustomizationResources(), 241
checkLicenseFeature(), 455
checkMigrate_Task(), 600
checkRelocate_Task(), 600
child entities, 434
childEntity, Folder, 160
childType, Folder, 160
CIM (Common Information Model), 14

single sign-on from VI SDK, 511-515
CimTicket.java, 512-515
class diagrams, UML, 580

association, 581
inheritance, 581
visibility, 581

clearComplianceStatus(), 596
cloneVApp_Task(), 599
CloneVM.java, 233-234
cloneVM_Task(), 232
cloning virtual machines, 232-233

CloneVM.java, 233-234
closeInventoryViewFolder(), 172

604

INDEX

ClusterComputeResource, 268-270
properties, 268

ClusterProfile, 595
clusters

adding hosts to, 270-271
creating new, 270
DRS, 272-275

DrsApp.java, 275-277
EmailMessenger.java, 277-278

HA (High Availability), 262-263
reconfiguring, 271
removing, 272
removing hosts from, 272

cmdlet pipeline, VI Toolkit (for Windows), 499
cmdlets, VI Toolkit (for Windows), 496-498, 554

running in a script file, 499-500
Web Service Access cmdlets, 500-501

CMI APIs, 14
collecting logs with DiagnosticManager, 505-506
command, 469
Common Information Model. See CIM
compatibility, virtualization, 5
compatibility checkers, 599-600
components of virtual networks, 289

port groups, adding to virtual switches, 290
virtual NIC, adding, 290-292
virtual switches, adding, 290

computeDiskPartitionInfo(), 325
ComputeResource, 155, 264, 266-267

properties of, 264
CloneVM_Task() method, 433
conferences on VMware, 47-48
configurations

host systems, 183-184
virtual machines, 209

configureDatastorePrincipal(), 332
configureLicenseSource(), 456
ConfigureSnmpSystem.java, 298-299
configuring

booting devices, 196
CPUscheduler, 198-199
diagnostic partitions, 196-198
historical intervals, 405-406
host networking, 293

DNS configuration, changing, 293
host network policy, defining, 294-295
IP routing configuration, changing, 293
network configuration, changing, 293

hosts, 190-191
iSCSI, 323-324
VMotion with VMotionSystem, 308

Connect-VIServer (VMware), 498
connecting back to VirtualCenter, 480-482
connection timeout, 63
connections, 189-190
ContainerView, 171
CopyDataStoreFile_Task(), 342
CopyFile.java, 343-344
COS, 292
cost savings, virtualization, 6
counterId, 382
CPU scheduler, configuring, 198-199
createAlarm(), 374
createClusterEx(), 524
createCollectorForEvent(), 352
createCollectorForTasks(), 412
createCustomizationSpec(), 241
createDiagnosticPartition(), 197
CreateFolderDatacenter.java, 163-164
createGroup(), 446
createIpPool(), 599
createLocalDatastore(), 328
createNasDatastore(), 329
createPerfQuerySpec(), 405
createResourcePool(), 260
CreateRole.java, 441-442
createScheduledTask(), 422-424
CreateScheduledTasks.java, 426-430
createSnapshot_Task(), 244
createTask(), 412
CreateTaskAction, 364
CreateUser(), 446
CreateVM.java, 227-231
CreateVmAlarm.java, 374-377
createVmfsDatastore(), 329
createVM_Task(), 227
createVM_Task() method, 409
CSV format, 399
custom fields, managing, 168-169
CustomFieldsManager, 168-169
customization specifications, guest OS, 240-243
CustomizationSpec, 239
CustomizationSpec data object, 238
CustomizationSpecManager, 240
customizeVM_Task(), 237
customizing guest OS, 239-240

customization specification, 240-243

605

INDEX

D
data object, HostIpRouteConfig, 293
data object type, ManagedObjectReference, 27-30
data objects, 30-32

AlarmInfo, 361
AlarmSpec, 361
AlarmState, 378
CustomizationSpec, 238
enumeration types, 34-35
Event, 349-351
EventFilterSpec, 353
GuestInfo, 212
HostDatastoreBrowserSearchResult, 337
HostDatastoreBrowserSearchSpec, 336
HostDiskPartitionInfo, 325
HostDnsConfig, 293
HostFileSystemVolumeInfo, 315-316
HostFirewallInfo, 302
HostNicTeamingPolicy, 295
HostScsiDiskPartition, 327
HostSnmpDestination, 298
HostStorageDeviceInfo, 314-315
PerfCompositeMetric, 394
PerfCounterInfo, 380
PerfEntityMetricBase, 393
PerfInterval, 383
PerfProviderSummary, 390
PerfQuerySpec, 392
property path notation, 33-34
ResourceConfigSpec, 215
VI Perl Toolkit, 493-494
VirtualMachineConfigSpec, 215-216
VirtualMachineFileLayout, 214
VirtualMachineSnapshotInfo, 244
virtualMachineSummary, 214

Data Transfer Object, 30
data types, 591
Datacenter, 161-162

adding, 163-164
properties, 161

Datacenter managed object, 155
Datastore, 328, 333-335

configureDatastorePrincipal(), 332
FileManager, 341-342

CopyFile.java, 343-344
properties, 334

datastore
creating new, 328-330
removing, 332
searching with HostDatastoreBrowser, 335-340
swapping, 332
VMFS datastore, 331-332

datastoreBrowser, 279
debugging VI SDK applications, 58

common bugs, 62-65
logs, 58-62
monitoring SOAP messages with HTTP, 62

deleteCustomizationSpec(), 241
deleteDatastoreFile_Task(), 342
DeleteFolderDatacenter.java, 164-165
deleting

existing entities, inventory operations, 164-165
snapshots, 244

description, 469
deselectVnic(), 309
design objectives, VI Java API, 95-97
destroyChildren(), 260
destroyCollector(), 417

HistoryCollector, 358
destroyDatastore(), 332-335
destroying virtual machines, 234
destroyIpPool(), 599
destroy_Task(), ManagedEntity, 159
developing backend Web applications, 479

connecting back to VirtualCenter, 480-482
parsing information from the VI Client, 479-480

DHCP, COS, 292
diagnostic partitions, configuring, 196-198
DiagnosticManager, collecting logs, 505

browseDiagnosticLog(), 506
generateLogBundles_Task(), 506
queryDescriptions(), 505

disableFeature(), LicenseManager, 457
disableMultipathPath(), 327
disableRuleset(), 302
disconnectHost_Task(), 181
discovery lists, manipulating (iSCSI), 322
disk partitioning, 324-326
Distributed Management Task Force (DTMF), 597
Distributed Resource Scheduler (DRS), 349
distributed virtual switch (DVS), 596-597
DNS configuration, changing, 293
doesCustomizationSpecExist(), 241

606

INDEX

downloading
AXIS, 50-51
files, using HTTP Access, 515-518
VI Java API, 50-51
VI SDK, 50-51

DRS (Distributed Resource Scheduler), 188,
257, 263, 349

DRS cluster, 272-275
DrsApp.java, 275-277
EmailMessenger.java, 277-278

DrsApp.java, 275-277
DMTF (Distributed Management Task Force), 597
duplicatecustomizationSpec(), 242
DVS (distributed virtual switch), 596-597

E
Eclipse IDEs, setting up, 51-52
EmailMessenger.java, 277-278
enableFeature(), LicenseManager, 457
enableMultipathPath(), 327
enableRuleset(), 302
encapsulation, virtualization, 5
encryptionKey, CustomizationSpecManager, 241
energy, reducing consumption through

virtualization, 6
enterMaintenanceMode_Task(), 181
entities, inventory operations

deleting, 164-165
moving, 167-168
renaming, 165-166

enumeration types, data objects, 34-35
EnvironmentBrowser, 278-281
environments

Java JDK, installing, 50
querying for virtual machines, 278-281
VMware infrastructure, setting up, 49-50

estimateDatabaseSize(), 601
ESX

COS, 292
firewall rules, 300-301
fixing task timeouts, 410
PastDay interval, 384
physical NIC, 285
predefined roles, 435
virtual machines, files, 205-206

ESX servers, 10, 18
logs 60-61

ESX users, managing with
HostLocalAccountManager, 445-449

EsxAccountManager.java, 447
ESXi, Firmware, 199-200
esxtop, 379
Event data object, 349-351
EventAlarmExpression, 362
EventArgument, 351
EventFilterSpec, 353
EventHistoryCollector, 358-359

QueryHistoricalEvents.java, 359-360
retrieving historical events with, 356

EventManager, 351-353
createCollectorForEvent(), 352
logUserEvent(), 352
postEvent(), 352
properties, 351
queryEvents(), 352
QueryEvents.java, 354-358

events, historical events (retrieving with
EventHistoryCollector), 356

exitMaintenanceMode_Task(), 181
exportVApp(), 599
extendVmfsDataStore(), 332
extensibility, VMware infrastructure, 465-466
ExtensibleManagedObject, VI Java API, 136-137
ExtensibleManagedObject.java, 136-137
ExtensibleManagedObject, 168
extension configuration, 469-470
extension.properties, 477
ExtensionManager, 466

findExtension(), 466
getPublicKey(), 466
registerExtension, 467
setPublicKey(), 467
unregisterExtension(), 467
updateExtension(), 467

ExtMgrUtil.java, 471-477

F
fault types, 35-37

in VI SDK 2.5, 36-37
faults, 35-36
file layout, virtual machines, 214, 218
FileManager, 341-342

CopyFile.java, 343-344
files

downloading with HTTP Access, 515-518
uploading with HTTP Access, 515-518
of virtual machines, 205-206

findByDatastorePath(), SearchIndex, 89

607

INDEX

findByDnsName(), SearchIndex, 89
findByInventoryPath(), SearchIndex, 90
findByIp(), SearchIndex, 91
findByUuid(), SearchIndex, 91
findChild(), SearchIndex, 89
findExtension(), ExtensionManager, 466
finding alarms, 377
firewall rules, ESX, 300-301
firewalls, HostFirewallSystem, 301-302

TurnOnFirewallPolicy.java, 303-305
Firmware, 199-200
fixing task timeouts, 410-411
FlipNetworkService.java, 306-308
Folder, 160-161

adding, 163-164
Folder object, 154
ForEach-Object, 497
formatVmfs(), 326

G
G11N, 527
generalization, class diagrams (UML), 581
generated stubs, 592-593
generateLogBundles_Task(),

DiagnosticManager, 506
Get-Member, 497
Get-VM (VMware), 498
Get-VMHost (VMware), 498
getAlarmState(), 378
getCustomizationSpec(), 243
GetMultiPerf.java, 395-399
getOutputStream() method, 517
getPublicKey(), ExtensionManager, 466
global settings, managing with OptionManager,

503-504
queryOption(), 503
setting, 503
supportedOption, 503
updateOptions(), 504

GroupAlarmAction, 362
guest operating system information, virtual

machines, 212-213
guest operating systems, 236-237
guest OS, customizing, 239-240

customization specifications, 240-243
guestHeartbeatStatus property, 212
GuestInfo data object, 212

H
HA (High Availability), 262-263
hardware information, host systems, 184
HBAs, 312, 321-322
health status, 200
HelloVI.java, 55
HelloVM.java, 99-101
HelloVM.pl, VI Perl Toolkit, 490
HelloVM.py, 485-487
help, VI Java API, 104-105
hierarchical structure of inventory, 153-155
historical events, retrieving with

EventHistoryCollector, 356
historical intervals, configuring, 405-406
historical performance statistics versus real time,

384-385
HistoryCollector, 357-358
host capabilities, 182
host management, 597
host memory, 200-202
host networking

configuring, 293
DNS configuration, changing, 293
IP routing configuration, changing, 293
network configuration, changing, 293

policies, defining, 294-295
host systems

booting devices, configuring, 196
retrieving information, 182

configuration, 183-184
hardware information, 184
host capabilities, 182
runtime information, 183
summary, 186

time managing, 192-195
HostAutoStartManager, 191-192
HostConfigInfo, 183-184
HostCpuSchedulerSystem, 198
HostDatastoreBrowser, 335-337

SearchDatastore.java, 337-340
HostDatastoreBrowserSearchResult data object, 337
HostDatastoreBrowserSearchSpec data object, 336
HostDatastoreSystem, 328

AddDatastore.java, 330-331
configureDatastorePrincipal(), 332
datastore

creating new, 328-330
removing, 332
swapping, 332

VMFS datastore, 331

608

INDEX

HostDatastoreSystemCapabilities, 328
HostDateTimeConfig, 193
HostDiagnosticSystem, 196-198
HostDiskPartitionInfo data object, 325
HostDnsConfig data object, 293
“hosted” architecture, 3
HostFileSystemVolumeInfo data object, 315-316
HostFirewallInfo, 301
HostFirewallInfo data object, 302
HostFirewallRuleset, 302
HostFirewallSystem, 301-302

TurnOnFirewallPolicy.java, 303-305
HostFirmwareSystem, 199-200
HostHardwareInfo, 184
HostHealthStatusSystem, 200
HostHyperThreadScheduleInfo, 199
HostIpConfig, 309
HostIpRouteConfig data object, 293
HostKernelModuleSystem, 597
HostListSummary, 186
HostLocalAccountManager, 21

managing ESX users, 445-449
HostNetCapabilities, 286
HostNetOffloadCapabilities, 295
HostNetworkConfig, 287, 293
HostNetworkInfo, 287
HostNetworkSystem, 285-286

methods, 287-289
properties, 285-287

HostNicTeamingPolicy data object, 295
HostPatchmanager, 202
HostPciPassthruSystem, 597
HostProfile, 595
hosts

adding to clusters, 270-271
configuring, 190-191
removing from clusters, 272

HostScsiDiskPartition data object, 327
HostServiceInfo, 306
HostServiceSystem, 305-306

FlipNetworkService.java, 306-308
HostServiceTicket data object class, 511
HostSnmpDestination data object, 298
HostSnmpSystem, 296-298

ConfigureSnmpSystem.java, 298-299
HostStorageDeviceInfo data object, 314-315
HostStorageSystem, 313-314

HostFilesystemVolumeInfo data object,
315-316

HostStorageDeviceInfo data object, 314-315
PrintStorageSystem.java, 316-321
properties, 313

HostSystem, 179-182
properties, 180

HostSystem instances, 21
HostVirtualNichManager, 597
HostVMotionSystem, 308
HTTP, monitoring SOAP messages, 62
HTTP access, files

downloading, 515-518
uploading, 515-518

HTTP session ID, 507
HttpNfcLease, 598
hyperthreading, 198-199

I
I18N, 529
icon, extension configuration, 470
IDE (Integrated Development Environment), 311
IDEs (Integrated Development Environments), Eclipse

IDE (setting up), 51-52
impersonateUser(), SessionManager, 453
info, CustomizationSpecInfo, 241
information, parsing from VI Client, 479-480
inheritance, class diagrams (UML), 581
inheritance hierarchy, managed objects, 19-21
installHostPath_Task(), 202
installing

Java JDK, 50
VI Perl Toolkit, 489
VI Toolkit (for Windows), 496

instanceId, 382
Integrated Development Environments (IDEs),

51-52, 311
Internationalization, 527-529
Internet SCSI (iSCSI), 312
intervals, 382-384

historical intervals, configuring, 405-406
invalid arguments, 64
invalid state, 65
InvalidArgument fault, 467
InvalidCollectorVersion, 36
InvalidPowerState fault, 236
InvalidProperty, 36
inventory, hierarchical structure, 153-155
inventory hierarchy, managed objects, 21
inventory management, managed entities, 156

Datacenter, 161-162
Folder, 160-161
ManagedEntity, 156-160

609

INDEX

inventory operations, 162
adding folders or datacenter, 163-164
deleting existing entities, 164-165
moving existing entities, 167-168
renaming existing entities, 165-166

InventoryNavigator, VI Java API, 144-149
InventoryNavigator.java, 144-149
InventoryView, 172
invoking methods, Alarm, 365
IP routing configuration, changing, 293
IpPoolManager, 599
iSCSI, 322

configuring, 323-324
discovery lists, manipulating, 322

iSCSI (Internet SCSI), 312
isolation, virtualization, 5

J
Java, data types, 591
Java JDK, installing, 50
JEWSE (Just Enough Web Service Engine),

150-151
Jython, scripting, 484-485, 488

HelloVM.py, 485-487

K
Key, 469
key strings, plug-ins, 478

L
lastModified, 601
levels, performance counters, 381
LicenseAssignmentManager, 600
LicenseManager, 454, 457-458, 600

PrintLicense.java, 458-462
properties of, 454
SetLicenseSource.java, 462-463

licensing, changes to, 600
ListAllUsers.java, 443-444
ListAuthorization.java, 436-438
ListView, 172
locale, 480, 601
localization, new features, 600-601
LocalizationManager, 600
LocalizedMethodFault, 37
login(), SessionManager, 451
loginBySSPI(), SessionManager, 453
logout(), SessionManager, 451

logs
collecting with DiagnosticManager, 505

browseDiagnosticLog(), 506
generateLogBundles_Task(), 506
queryDescriptions(), 505

debugging VI SDK applications, 58
ESX server logs, 60-61
VirtualCenter logs, 59-60
VM logs, 61-62

ESX server, 60-61
VirtualCenter, 59-60
VM, 61-62

logUserEvent(), 352
looking up users with UserDirectory, 443-445

M
Maintenance, 187
makeDirectory(), 341
managed entities, 434

inventory management, 156
Datacenter, 161-162
Folder, 160-161
ManagedEntity, 156, 159-160

Privileges, 160
Managed Object Browser. See MOB
managed object types

VI Java API, 105-106
ExtensibleManagedObject, 136-137
ManagedEntity, 137-141
ManagedObject, 106-122
ServerConnection, 122-125
ServiceInstance, 125-136

VI SDK 2.5, 530-535
vSphere SDK 4, 535-537

managed objects, 19
Alarm. See Alarm
AlarmManager. See AlarmManager
AuthorizationManager. See AuthorizationManager
ClusterComputeResource, 268-270
ComputeResource, 264-267
ContainerView, 171
CustomizationSpecManager. See

CustomizationSpecManager
Datastore. See Datastore
EventHistoryCollector. See EventHistoryCollector
EventManager. See EventManager
ExtensionManager. See ExtensionManager
HistoryCollector. See HistoryCollector
HostDatastoreSystem. See HostDatastoreSystem

610

INDEX

HostFirewallSystem, 301-302
TurnOnFirewallPolicy.java, 303-305

HostLocalAccountManager. See
HostLocalAccountManager

HostNetworkSystem. See
HostNetworkSystem

HostStorageSystem. See HostStorageSystem
HostSystem. See HostSystem
inheritance hierarchy, 19-21
inventory hierarchy, 21
InventoryView, 172
LicenseManager. See LicenseManager
ListView, 172
ManagedObjectView, 171
methods, 24-26

synchronous versus asynchronous,
26-27

Network. See Network
PerformanceManager. See

PerformanceManager
Properties, 21, 23-24
PropertyCollector. See PropertyCollector
ResourcePool. See ResourcePool
ScheduledTask. See ScheduledTask
ScheduledTaskManager. See

ScheduledTaskManager
SessionManager. See SessionManager
Task. See Task
TaskManager. See TaskManager
UserDirectory. See UserDirectory
View, 171
ViewManager. See ViewManager
VirtualDiskManager. See

VirtualDiskManager
VirtualMachine, 206-208
VirtualMachineSnapshot, 245-246

VMSnapshot.java, 246-250
ManagedEntity, 21, 156, 159-160, 434

destroy_Task(), 159
properties, 157-159
VI Java API, 137-141

ManagedEntity.java, 138-141
ManagedObject, 105

VI Java API, 106-122
ManagedObject.java, 109-122
ManagedObjectReference, 22, 27-30
ManagedObjectView, 171

managing
custom fields, 168-169
ESX users with HostLocalAccountManager,

445-449
global settings with OptionManager, 503-504
permissions, AuthorizationManager, 439-442
plug-ins, 471, 478-479

extension.properties, 477
ExtMgrUtil.java, 471-477

roles, AuthorizationManager, 438
sessions with SessionManager, 449-453

mapping, from WSDL to .NET data types, 584
markAsVirtualMachine(), 235
md5sum, 601
Measure_Object, 497
memory requirements, querying for virtual

machines, 189
mergePermissions(), 440
merging permissions, 440
messages, SOAP, 585-587
method signatures, challenges with VI SDK, 95
MethodAction, 365, 426
MethodFault, 36
methods

HostNetworkSystem, 287-289
invoking (Alarm), 365
managed objects, 24-26

synchronous versus asynchronous, 26-27
MetricAlarmExpression, 362
Microsoft PowerShell, 495-496
MigrateVM.java, 253-254
migrating, existing applications, 602
migration, DRS cluster, 273
missingProperty, 71
MOB (Managed Object Browser), 42-44

registering VI client plug-ins, 478
resource URLs, 44

modeling XML, 583
modifyListView(), 173
moduleName, 601
monitoring

changes with propertyFilter, 78-85
performance in real time, 399-404
SOAP messages with HTTP, 62
tasks, 409

MonitorVM.java, 80-85
MOR objects, 28- 30
morof, 479
MorUtil, 141

VI Java API, 141-144

611

INDEX

MorUtil.java, 141-143
motivation, high-performance Web Services

engine (VI Java API), 150
mountToolInstaller(), 239
MoveDatacenter.java, 167-168
moveDatastoreFile_Task(), 342
moveHostInto_Task(), 271
moveIntoResourcePool(), 261
moveInto_Task(), 271
moving existing entities, inventory operations,

167-168
multipathing, 327
multithreading, with VI SDK, 518-519

N
namespaces

compatibility, 523-524
versioning, 519-523

naming conventions, 23
NAS (network attached storage), 310, 313
NAS-backed datastore, 328
.NET data types, mapping from WSDL, 584
.NET objects, Web Service Access cmdlets, 500
Network, 295-296

Properties, 295-296
network configuration, changing, 293
network interface card (NIC), 283-284
network services, HostServiceSystem 305-306

FlipNetworkService.java, 306-308
networking

host networking. See host networking
HostNetworkSystem. See

HostNetworkSystem
port groups, 284
service console networking, 292-293
virtual network components. See virtual

network components
virtual networking, 283
virtual NIC, 284
virtual switch (vSwitch), 284
VMotion, HostVMotionSystem, 308

new features
APIs, changes of existing APIs, 595
compatibility checkers, 599-600
distributed virtual switch (DVS), 596-597
host management, 597
licensing, 600
localization support, 600-601

migrating existing applications, 602
OVF support, 597-598
profile management, 595-596
resource planning, 601
VirtualApp support, 598-599

NIC (network interface cards), virtual NIC, 284
NIC teaming, 294
no permission, 63
nonentity view objects, VI Perl Toolkit, 494
null pointer, 62

O
obj, 71
object diagrams, UML, 582
object hierarchy, VI Java API, 98-99
Object Management Group (OMG), 580
object model, VI SDK, 17-18
objects, managed objects. See managed objects
offloading setting, host network policy, 295
OMG (Object Management Group), 580
online communities, 47-48
Open Virtualization Format (OVF), 597-598
openInventoryViewFolder(), 172
OptionDef, 503-504
OptionManager, managing global settings, 503-504

queryOption(), 503
setting, 503
supportedOption, 503
updateOptions(), 504

OrAlarmExpression, 362
OS

guest operating systems, 236-237
virtual machines, 212

overwriteCustomizationSpec(), 243
OVF (Open Virtualization Format), 597-598
OvfManager, 598

P
parsing information from VI Client, 479-480
partial vim.wsdl, 588
patches, 202
patterns, Publisher-Subscriber, 519
PerfCompositeMetric, 394
PerfCounterInfo data object, 380
PerfEntityMetricBase, 393
PerfEntityMetricCSV, 393
PerfInterval data object, 383
PerfInterval parameter, 405

612

INDEX

performance
best practices for, 524-526
historical statistics versus real time, 384-385
monitoring in real time, 399-404

performance counters, 380-382
levels, 381
VI SDK, 538

performance metadata, querying, 390-391
performance metrics, 382
performance statistics, querying, 391

queryPerf(), 391-394
queryPerfComposite(), 394-399

PerformanceManager, 385, 390
PrintPerfMgr.java, 386-389
properties, 385

PerfProviderSummary data object, 390
PerfQuerySpec, 391-392, 405

properties, 392
Perl view objects, VI Perl Toolkit, 492-493
permissions, 434-435

managing with AuthorizationManager,
439-442

merging, 440
querying, 440-442
removing, 439
setting, 439

plug-ins
key strings, 478
registering and managing, 471, 478-479

extension.properties, 477
ExtMgrUtil.java, 471-477

VI Client plug-ins, 468
policies, defining host network policies, 294-295
port groups, 284

adding to virtual switches, 290
PosterOutputStream, 517
postEvent(), 352
power consumption, reducing through

virtualization, 6
power management, 186-189

DRS cluster, 273
power operations, virtual machines, 222-223

VMPowerOps, 224-226
powerDownHostToStandBy_Task(), 181, 188
Powered off, virtual machines, 222
Powered on, virtual machines, 222
PoweredOff, 188
PoweredOn, 186
powerOffVApp, 599
powerOffVApp_Task(), 599

powerOffVM_Task(), 222
powerOnVApp_Task(), 599
powerOnVM_Task(), 222
PowerShell, cmdlets, 497
powerUpHostFromStandBy_Task(), 181
PrintAlarmManager.java, AlarmManager, 367-373
PrintLicense.java, 458-462
PrintPerfMgr.java, PerformanceManager, 386-389
PrintStorageSystem.java, 316-321
PrintTaskManager.java, 413-415
private (-), 581
privileges, 433

managed entities, 160
required for reconfiguring virtual machines, 217

profile management, new features, 595-596
properties

AlarmManager, 366
ClusterComputeResource, 268
ComputeResource, 264
Datacenter, 161
DataStore, 334
EventManager, 351
getting from multiple managed objects,

PropertyCollector, 73-78
getting from single managed objects,

PropertyCollector, 67-73
HostNetworkSystem, 285-287
HostStorageSystem, 313
HostSystem, 180
LicenseManager, 454
managed objects, 21-24
ManagedEntity, 157-159
Network, 295-296
PerformanceManager, 385
PerfQuerySpec, 392
resourceConfig, 215
ResourcePool, 260
retrieving, from a single managed object, 67
SessionManager, 450
Taskmanager, 411-412
VirtualMachine, 207-208

property path notation, data objects, 33-34
PropertyCollector, 67, 519

getting properties from a single managed object,
67-73

getting properties of multiple managed objects,
73-78

monitoring changes using PropertyFilter, 78-85
versus SearchIndex, 91

PropertyCollector2.java, 74-77

613

INDEX

PropertyCollectorUtil, VI Java API, 149
PropertyFilter, monitoring changes, 78-85
propSet, 71
protected (#), 581
PSOD (Purple Screen of Death), 196
public (+), 581
Publisher-Subscriber design pattern, 519
Purple Screen of Death (PSOD), 196

Q
queryAssignedLicenses(), 600
queryAvailableDisksForVmfs(), 331
queryAvailablePartition(), 197
queryAvailablePerfMetric(), 391
queryBootDevices(), 196
queryComplianceStatus(), 596
queryConfigOption(), 279
queryConfigOptionDescription, 281
queryConfigTarget(,) 281
queryDateTime(), 193
queryDescriptions(), DiagnosticManager, 505
queryEvents(), 352-353
QueryEvents.java, EventManager, 354-358
queryExpressionMetadata(), 596
queryFirmwareConfigUploadURL(), 199
QueryHistoricalEvents.java,

EventHistoryCollector, 359-360
queryHostConnectionInfo(), 181, 189
querying

environments for virtual machines, 278-281
memory requirements for virtual

machines, 189
performance metadata, 390-391
performance statistics, 391

queryPerf(), 391-394
queryPerfComposite(), 394-399

permissions, 440-442
queryIpPools(), 599
queryLicenseSourceAvailability(),

LicenseManager, 457
queryLicenseUsage(), LicenseManager, 457
queryMemoryOverhead(), 181, 189
queryMemoryOverheadEx(), 181, 189
queryMotionCompatibilityEx_Task(), 600
queryOption(), OptionManager, 503
queryPartitionCreateDesc(), 197
queryPartitionCreateOptions(), 198
queryPerf(), 390-394

queryPerfComposite(), 390, 394
GetMultiPerf.java, 395-399

queryPerfCounter(), 391
queryPerfCounterByLevel(), 391
queryPerfProviderSummary(), 390, 399-404
querySupportedFeatures(), LicenseManager, 457
QueryVirtualDisk.java, 346-348
queryVmfsDataStoreExtendOptions(), 332

R
raw performance data, 399
real time

versus historical performance statistics, 384-385
monitoring performance in, 399-404

RealtimePerfMonitor.java, 400-404
rebootGuest(), 237
rebootHost_Task(), 181
Recommendation object, 273
recommendations, DRS cluster, 273
reconfigureCluster_Task(), 267
reconfigureHostForDAS_Task(), 181, 191
reconfigureScheduledTask(), 424
reconfigureServiceConsoleReservation(), 201
reconfigureSmnpAgent(), 298
reconfigureVirtualMachineReservation(), 201
reconfiguring

alarms, 365-366
clusters, 271
virtual machines, 215, 219

RemoveVmDisk.java, 219-221
reconfigVM_Task(), 215
reconnectHost_Task(), 181, 190
refreshDatastore(), 335
refreshFirewall(), 302
refreshHealthStatusSystem(), 200
refreshRecommendation(), 274
refreshServices(), 305
registerExtension, ExtensionManager, 467
registering

plug-ins, 471, 478-479
extension.properties, 477
ExtMgrUtil.java, 471-477

virtual machines, 231-232
registerVM_Task(), 231
removeAllSnapshots_Task(), 245
removeAssignedLicense(), 600
removeAuthorizationRole(), 438
removeCustomFieldDef(), 169
removeDatastore(), 332

614

INDEX

removeGroup(), 446
removeInternetScsiSendTargets(), 323
removeScheduledTask(), 424
removeSnapshot_Task(), 245
removeUser(), 446
RemoveVmDisk.java, 219-221
removing

alarms, 366
clusters, 272
datastore, 332
hosts from clusters, 272
permissions, 439
roles, 438

renameCustomFieldDef(), 169
renameCustomizationSpec(), 243
renameDatastore(), 334
renameSnapshot(), 245
renaming existing entities, inventory operations,

165-166
rescanAllHba(), 322
rescanHba(), 322
rescanVmfs(), 326
resetCollector(), HistoryCollector, 358
resetFirmwareToFactoryDefaults(), 200
resetGuestInformation(), 237
resetListView(), 173
resetListViewFromView(), 173
resetSystemHealthInfo(), 200
resetVM_Task(), 223
resource allocation, virtual machines, 215
resource sharing, virtualization, 6
resource URLs, MOB, 44
resourceConfig property, 215
ResourceConfigSpec data object, 215
ResourcePlanningManager, 601
ResourcePool, 155, 257, 259-262, 598

properties of, 260
virtual resource management, 258-259

resources
managing

with ClusterComputeResource, 268-270
with ComputeResource, 264-267

managing with ResourcePool, 257
virtual resource management, 258-259

restartService(), 305
restoreFirmwareConfiguration(), 200
retrieveAllPermissions(), 440
RetrieveContent() method, SOAP, 586-587
retrieveDiskPartitionInfo(), 325
retrieveEntityPermissions, 440

retrieveEntityScheduledTask(), 425
retrieveProperties(), 71
retrieveRolePermissions(), 440
retrieveServiceContent(), 125
retrieveUserGroups(), 443
retrieving

historical events with EventHistoryCollector, 356
historical tasks with TaskHistoryCollector, 416-422
properties from a single managed object, 67
user groups, 443

retrieving information, host systems, 182
configuration, 183-184
hardware information, 184
host capabilities, 182
runtime information, 183
summary, 186

revertToCurrentSnapshot_Task(), 245
revertToSnapshot_Task(), 245
rewindCollector(), HistoryCollector, 358
roleList, 435
roles, 433

creating new, 438
managing with AuthorizationManager, 438
predefined roles in ESX and VirtualCenter, 435
removing, 438
updating, 438

rollup, 381
root resource pools, 261
running scripts, Alarm 363
runScheduledTask(), 424
RunScriptAction, 363
runtime information, 183

virtual machines, 210
RuntimeFault, 36

S
SAN (storage area network), 311-312
scalability, best practices, 524-526
scanHostPath_Task(), 202
ScheduledTask, 422-423

reconfigureScheduledTask(), 424
removeScheduledTask(), 424
runScheduledTask(), 424

ScheduledTaskManager, 424
createScheduledTask(), 424
CreateScheduledTasks.java, 426-430
retrieveEntityScheduledTask(), 425
specifying actions, 425-426
specifying task schedules, 425

615

INDEX

script files, running cmdlets, VI Toolkit (for
Windows), 499-500

scriptConfiguration, 469
scripting with Jython, 484-485, 488

HelloVM.py, 485-487
scripts, running (Alarm), 363
SCSI (Small Computer Systems), 311

iSCSI, 312
SearchDatastore.java, 337-340
searchDatastore_Task(), 336
SearchIndex, 86-89

findByDatastorePath(), 89
findByDnsName(), 89
findByInventoryPath(), 90
findByIp(), 91
findByUuid(), 91
findChild(), 89
versus PropertyCollector, 91

SearchIndexSample.java, 86-88
searching datastore with HostDatastoreBrowser,

335-340
security, backend Web applications, 483
security model, 432

permissions, 434-435
privileges, 433
roles, 433
security policy, 294
Select-Object, 497

selectActivePartition(), 198
selectVnic(), 309
sending

e-mail, Alarm, 362-363
SNMP trap, Alarm, 364-365

SendSNMPAction, 364-365
sendTestNotification(), 298
ServerConnection, VI Java API, 122-125
ServerConnection.java, 122-125
service console networking, 292-293
Service Level Agreements (SLAs), 258
ServiceInstance, VI Java API, 125-136
ServiceInstance.java, 126-136
serviceUrl, 480
session IDs

getting, 507-509
using, 509-511

sessionid, 479
sessionIsActive(), 451
SessionManager, 449-453

properties of, 450

sessions
managing with SessionManager, 449-453
sharing among different applications, 507

session IDs, getting, 507-509
session IDs, using, 509-511

setCollectorPageSize(), HistoryCollector, 358
setEntityPermissions(), 439
setField(), 169
SetHostTime.java, 194-195
setLicenseEdition(), LicenseManager, 457
SetLicenseSource.java, 462-463
setLocale(), Sessionmanager, 451
setMultipathLunPolicy, 327
setPublicKey(), ExtensionManager, 467
setScreenResolution(), 237
setting, OptionManager, 503
sharing sessions among different applications, 507

session IDs, getting, 507-511
shutdownGuest(), 236
shutdownHost_Task(), 181, 189
Simple Object Access Protocol. See SOAP
single sign-on, from VI SDK to CIM, 511-515
SLAs (Service Level Agreements), 258
Small Computer Systems Interface (SCSI), 311
snapshots, virtual machine snapshots, 243-244

hierarchy, 243-245
SNMP, HostSnmpSystem, 296-298

ConfigureSnmpSystem.java, 298-299
SOAP (Simple Object Access Protocol), 16, 585-587
SOAP messages, monitoring with HTTP, 62
solutions, virtualization, 7
Standby, 188
standbyGuest(), 237
startService(), network services, 305
StateAlarmExpression, 362
stopService(), network services, 305
storage

HBA, 312
iSCSI, 312
NAS, 313
SAN, 312
SCSI, 311
VMFS, 313

storage area network (SAN), 311-312
storage virtualization, 311
storage VMotion, 254-255
stub code generation, 590-592
stubs, generated stubs, 592-593
summaries, virtual machines, 213

616

INDEX

summary, host systems, 186
supportedOption, OptionManager, 503
Suspended, virtual machines, 222
suspendVM_Task(), 222
swapping datastore, 332
switching between API and Web Services, VI Java

API, 103-104
synchronous methods versus asynchronous

methods, 26-27

T
Task, 407-409

canceling tasks, 410
fixing task timeouts, 410-411
monitoring tasks, 409

task schedules, specifying with
ScheduledTaskManager, 425

task timeouts, fixing, 410-411
TaskHistoryCollector, 412

retrieving historical tasks, 416-422
TaskHistoryMonitor.java, 417-422
TaskInfo, 408
TaskManager, 411, 415-416

createCollectorForTasks(), 412
createTask(), 412
PrintTaskManager.java, 413-415
properties, 411-412

TaskReason, 408
tasks

canceling, 410
creating (Alarm), 364
monitoring, 409
retrieving with TaskHistoryCollector, 416-422

templates, converting to/from virtual
machines, 235

terminateSession(), 452
TestServlet.java, 481-482
_this, 592
time, managing time of host, 192-195
title, extension configuration, 470
traffic shaping, 294
triggering conditions, Alarm, 362
TurnOnFirewallPolicy.java, 303-305

U
UML (Unified Modeling Language), 580

class diagrams, 580-581
object diagrams, 582
XML, modeling, 583

UML diagrams, 105
unassignUserFromGroup(), 446
Unified Modeling Language (UML), 580
uninstallService(), 306
unmountToolsInstaller(), 239
unregisterExtension(), ExtensionManager, 467
unregistering virtual machines, 236
unregisterVApp_Task(), 599
updateAssignedLicense(), 600
updateBootDevice(), 196
updateChildResourceConfiguration(), 262
updateConfig(), 262
updateConsoleIpRouteConfig(), 293
updateDateTime(), 193
updateDefaultPolicy(), 302
updateDiskPartitions(), 325
updateDnsConfig(), 293
updateExtension(), ExtensionManager, 467
updateFlags(), 181, 191
updateInternetScsiAlias(), 323
updateInternetScsiAuthenticationProperties(), 323
updateInternetScsiDiscoveryProperties(), 324
updateInternetScsiIPProperties(), 324
updateInternetScsiName(), 324
updateIpConfig(), 309
updateIpPool(), 599
updateIpRouteConfig(), 293
updateNetworkConfig(), 293
updateOptions(), OptionManager, 504
updatePerfInterval(), 405
updateProgress() method, 26
updateServiceMessage(), SessionManager, 452
updateServicePolicy(), 306
updateSoftwareInternetScsiEnabled(), 324
updateSystemResources(), 182, 191
updateUser(), 446
updateVAppConfig(), 599
updating roles, 438
upgradeTools_Task(), 239
upgradeVmfs(), 327
upgradeVM_Task, 235
upgrading

virtual machines, 235-236
VMware Tools, 237-239

uploading files, using HTTP Access, 515-518
url, extension configuration, 470
user groups, retrieving, 443

UserDirectory, 443-445
users, looking up with UserDirectory, 443-445

617

INDEX

UserSession, 451
utility classes, VI Java, API

InventoryNavigator, 144-149
MorUtil, 141-144
PropertyCollectorUtil, 149

V
Value Object, 30
VC (VirtualCenter), 18
VC servers, intervals, 384
versioning, 519

APIdeprecation, 524
compatibility, 523-524
namespaces, 519-523

VerUtil.java, 520-523
VI (VMware Infrastructure), 257
VI Client, 12, 38, 40-41

parsing information from, 479-480
plug-in, 468

VI Java API
application flow (typical), 101-103
architecture overview, 97

HelloVM.java, 99-101
layered structure, 97
object hierarchy, 98-99

design objectives, 95-97
downloading, 50-51
help, 104-105
high-performance Web Services engine, 149

architecture, 150-151
motivation, 150

managed object types, 105-106
ExtensibleManagedObject, 136-137
ManagedEntity, 137-141
ManagedObject, 106-122
ServerConnection, 122-125
ServiceInstance, 125-136

switching between API and Web Services,
103-104

utility classes
InventoryNavigator, 144-149
MorUtil, 141-144
PropertyCollectorUtil, 149

VI Java API 2.0, 592
VI Perl Toolkit, 489-490, 495

application flow, 491
data objects, 493-494
HelloVM.pl, 490
installing, 489

nonentity view object, 494
Perl view objects, 492-493

VI SDK, 13
challenges with, 94

extra long code, 95
lack of managed object types, 94
method signatures, 95

COS, 292
downloading, 50-51
multithreading, 518-519
overview, 16

included features, 17
object model, 17-18
unified interfaces with different support,

18-19
performance counters. See Appendix B
single sign-on to CIM, 511-515

VI SDK 2.5, managed object types, 530-535
VI Toolkit (for Windows), 495-496

cmdlet pipeline, 499
cmdlets, 496-498

running in a script file, 499-500
Web Server access cmdlets, 500-501

installing, 496
Vi toolkit (for Windws), cmdlets, 538
VIClient plug-ins, 468
View, 171, 470
ViewManager, 170-171
Views, 170

ContainerView, 171
InventoryView, 172
ListView, 172
ManagedObjectView, 171
sample code, 173-177
View, 171
ViewManager, 170-171

ViewSample.java, 174-177
VIMA (Virtual Infrastructure Management

Assistant), 489
VimFault, 36
vimService.wsdl, 588
virtual components, methods for managing, 288
Virtual Infrastructure Management Assistant

(VIMA), 489
Virtual Machine Communication Interface (VMCI), 15
virtual machine snapshots, 243-244

hierarchy, 243-245

618

INDEX

virtual machines, 3, 204-205
capabilities, 209
cloning, 232-233

CloneVM.java, 233-234
configuration, 209
configuring auto start/stop, 191-192
creating new, 226-227

CreateVM.java, 227-231
destroying, 234
file layout, 214, 218
files of, 205-206
guest operating system information, 212-213
power operations, 222-223

VMPowerOps, 224-226
querying environments, 278-281
querying memory requirements for, 189
reconfiguring, 215, 219

RemoveVmDisk.java, 219-221
registering, 231-232
resource allocation, 215
runtime information, 210
summaries, 213
templates, converting to/from, 235
unregistering, 236
upgrading, 235-236

virtual network components, 289
port groups, adding to virtual switches, 290
virtual NIC, adding, 290-292
virtual switches, adding, 290

virtual networking, 283
virtual NIC (network interface card), 283-284

adding, 290-292
virtual resource management, 258-259
virtual switch (vSwitch), 284
virtual switches, 290
VirtualApp, 598-599
VirtualCenter, 20, 525

connecting back to, 480-482
DRS cluster, 272
features in, 456
logs, 59-60
predefined roles, 435
VMotion, 251

VirtualDiskManager, 346
methods defined, 344-345
QueryVirtualDisk.java, 346-348

virtualization, 1-3
benefits of, 5-6
compatibility, 5

cost saving, 6
encapsulation, 5
history of, 3-5
isolation, 5
resource sharing, 6
solutions, 7

VirtualMachine, 206-207
file layout, 214, 218
guest operating systems, 236-237
properties, 207-208

VirtualMachineCapability, 209
VirtualMachineCompatibilityChecker, 599
VirtualMachineConfigInfo, 209
VirtualMachineConfigSpec, 215
VirtualMachineConfigSpec data object, 215-216
VirtualMachineConfigSummary, 213
VirtualMachineFileLayout data object, 214
VirtualMachineProvisioningChecker, 599
VirtualMachineRuntimeInfo, 210
VirtualMachineSnapshot, 245-246

VMSnapshot.java, 246-250
VirtualMachineSnapshotInfo, 243-244
VirtualMachineSnapshotTree, 243
virtualMachineSummary data object, 214
visibility, class diagrams (UML), 581
VIX API, 14
VLAN policy, 294
VM, logs, 61-62
vm.getVimService(), 104
VMCI (Virtual Machine Communication Interface), 15
VMFS (VMware File System), 310, 313
VMFS datastore, 331-332
VMFS file systems, 326-327
VMFS-backed datastore, 328
VMKernel, 284

host memory, 200-202
VMotion, 12, 251-252

MigrateVM.java, 253-254
requirements, 252
storage VMotion, 254-255

VMPowerOps, 224-226
VmRename.java, 165-166
VMSnapshot.java, 246-250
vmSuspendedEvent, 350
VMware

APIs, 12, 15
CMI APIs, 14
GuestSDK, 14
VI SDK, 13

619

INDEX

VIX API, 14
VMCI, 15

DRS, 263
infrastructure, extensibility, 465-466
online communities and conferences, 47-48
VMware ACE, 9
VMware ESX, 10
VMware ESXi, 10
VMware File System (VMFS), 310
VMware Fusion, 9

VMware HA. See HA
VMware infrastructure (VI), 3, 8, 257

setting up 49-50
VMware Lab Manager, 8
VMware Lifecycle Manager, 8
VMware Player, 9
VMware Server, 9
VMware Site Recovery Manager, 8
VMware Stage Manager, 8
VMware Tools, upgrading 237-239
VMware VI, 9
VMware Virtual Desktop Infrastructure, 9
VMware VirtualCenter server, 12
VMware Workstation, 8
VMX files, virtual machines, 206
VNIC (virtual network interface card), adding,

290-292
vSphere 4 SDK, new features, 594
vSphere SDK 2.5, managed object types, 535-537
vSwitch (virtual switch), 284

W
waitForUpdate() method, 27-78
Web Access, 41
Web Service Access cmdlets, VI Toolkit (for

Windows), 500-501
Web Services

SOAP, 585-587
stub code generation, 590-592
switching between APIand (VIJava API),

103-104
WSDL files, 587-590

Web Services Definition Language. See WSDL
Web Services engine, VI Java API, 149

architecture, 150-151
motivation, 150

Web-based Datastore Browser, 45
Where-Object, 497

Windows, VI Toolkit, 495-496
cmdlet pipeline, 499
cmdlets, 496-498
installing, 496
running cmdlets in a script file, 499-500
Web Service access cmdlets, 500-501

WSDL (Web Services Definition Language), 17
data types, 591
mapping to .NET data types, 584

WSDL files, 587-590

X-Y-Z
x86 virtualization, 4
XML, modeling, 583
xmlToCustomizationSpecItem(), 243

620

INDEX

	PREFACE
	CHAPTER 18: ADVANCED TOPICS
	Managing Global Settings with OptionManager
	Collecting Logs Using DiagnosticManager
	Sharing Sessions Among Different Applications
	Getting the Session ID
	Using Session ID
	Further Discussion

	Using Single Sign-On from the VI SDK to CIM
	Downloading and Uploading Files Using HTTP Access
	Multithreading with the VI SDK
	Versioning
	Namespace
	Compatibility
	API Deprecation

	Following Best Practices for Performance and Scalability
	Considering Internationalization

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

