
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137142521
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137142521
https://plusone.google.com/share?url=http://www.informit.com/title/9780137142521
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137142521
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137142521/Free-Sample-Chapter

JavaTM Performance

Publications in The Java™ Series are supported, endorsed, and

written by the creators of Java at Sun Microsystems, Inc. This series

is the official source for expert instruction in Java and provides the

complete set of tools you’ll need to build effective, robust, and portable

applications and applets. The Java™ Series is an indispensable resource

for anyone looking for definitive information on Java technology.

Visit Sun Microsystems Press at sun.com/books to view additional titles

for developers, programmers, and system administrators working with

Java and other Sun technologies.

Visit informit.com/thejavaseries for a complete list of available publications.

The Java™ Series

JavaTM Performance

Charlie Hunt
Binu John

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

 Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

 AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC Inter-
national, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

 The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

 This document is provided for information purposes only and the contents hereof are subject to change with-
out notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions,
whether expressed orally or implied in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no
contractual obligations are formed either directly or indirectly by this document. This document may not be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our
prior written permission.

 The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

 For sales outside the United States, please contact:

 International Sales
 international@pearson.com

 Visit us on the Web: informit.com/aw

 Library of Congress Cataloging-in-Publication Data

 Hunt, Charlie, 1962-
 Java performance / Charlie Hunt, Binu John.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-13-714252-1
 ISBN-10: 0-13-714252-8 (pbk. : alk. paper)
 1. Java (Computer program language) 2. Computer programming. I. John, Binu, 1967- II. Title.
 QA76.73.J38H845 2012
 005.13’3—dc23 2011031889

 Copyright © 2012 Oracle America, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or like-
wise. To obtain permission to use material from this work, please submit a written request to Pearson Educa-
tion, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax
your request to (201) 236-3290.

 ISBN-13: 978-0-13-714252-1
ISBN-10: 0-13-714252-8

Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan.
 Third printing, January 2013

 v

To the three B’s, Barb, Boyd, and Beau – C.H.
To Rita, Rachael, and Kevin – B.J.

This page intentionally left blank

Contents

Foreword by James Gosling xi

Foreword by Steve Wilson xiii

Preface xv

Acknowledgments xix

About the Authors xxi

Chapter 1 Strategies, Approaches, and Methodologies 1
Forces at Play 2

Two Approaches, Top Down and Bottom Up 5

Choosing the Right Platform and Evaluating a System 8

Bibliography 11

Chapter 2 Operating System Performance Monitoring 13
Definitions 14

CPU Utilization 14

CPU Scheduler Run Queue 28

Memory Utilization 32

Network I/O Utilization 41

Disk I/O Utilization 46

 vii

Additional Command Line Tools 49

Monitoring CPU Utilization on SPARC T-Series Systems 50

Bibliography 53

Chapter 3 JVM Overview 55
HotSpot VM High Level Architecture 56

HotSpot VM Runtime 58

HotSpot VM Garbage Collectors 80

HotSpot VM JIT Compilers 92

HotSpot VM Adaptive Tuning 100

References 106

Chapter 4 JVM Performance Monitoring 107
Definitions 108

Garbage Collection 108

JIT Compiler 146

Class Loading 147

Java Application Monitoring 150

Bibliography 153

Chapter 5 Java Application Profiling 155
Terminology 157

Oracle Solaris Studio Performance Analyzer 159

NetBeans Profiler 189

References 209

Chapter 6 Java Application Profiling Tips and Tricks 211
Performance Opportunities 211

System or Kernel CPU Usage 212

Lock Contention 222

Volatile Usage 234

Data Structure Resizing 235

Increasing Parallelism 243

High CPU Utilization 246

Other Useful Analyzer Tips 247

Bibliography 249

viii Contents

 Contents ix

Chapter 7 Tuning the JVM, Step by Step 251
Methodology 252

Application Systemic Requirements 255

Rank Systemic Requirements 257

Choose JVM Deployment Model 258

Choose JVM Runtime 259

GC Tuning Fundamentals 262

Determine Memory Footprint 268

Tune Latency/Responsiveness 278

Tune Application Throughput 307

Edge Cases 316

Additional Performance Command Line Options 316

Bibliography 321

Chapter 8 Benchmarking Java Applications 323
Challenges with Benchmarks 324

Design of Experiments 347

Use of Statistical Methods 348

Reference 355

Bibliography 355

Chapter 9 Benchmarking Multitiered Applications 357
Benchmarking Challenges 357

Enterprise Benchmark Considerations 360

Application Server Monitoring 382

Profiling Enterprise Applications 399

Bibliography 401

Chapter 10 Web Application Performance 403
Benchmarking Web Applications 404

Web Container Components 405

Web Container Monitoring and Performance Tunings 408

Best Practices 427

Bibliography 450

Chapter 11 Web Services Performance 453
XML Performance 454

x Contents

Validation 460

Resolving External Entities 462

Partial Processing of XML Documents 465

Selecting the Right API 468

JAX-WS Reference Implementation Stack 471

Web Services Benchmarking 473

Factors That Affect Web Service Performance 477

Performance Best Practices 486

Bibliography 503

Chapter 12 Java Persistence and Enterprise Java Beans Performance 505
EJB Programming Model 506

The Java Persistence API and Its Reference Implementation 507

Monitoring and Tuning the EJB Container 511

Transaction Isolation Level 521

Best Practices in Enterprise Java Beans 522

Best Practices in Java Persistence 540

Bibliography 551

Appendix A HotSpot VM Command Line Options of Interest 553
Appendix B Profiling Tips and Tricks Example Source Code 573

Lock Contention First Implementation 573

Lock Contention Second Implementation 583

Lock Contention Third Implementation 593

Lock Contention Fourth Implementation 603

Lock Contention Fifth Implementation 613

First Resizing Variant 624

Second Resizing Variant 636

Increasing Parallelism Single-Threaded Implementation 647

Increasing Parallelism Multithreaded Implementation 657

Index 669

Foreword

Tuning a Java application can be challenging in today’s large-scale mission-critical
world. There are issues to be aware of in everything from the structure of your algo-
rithms, to their memory allocation patterns, to the way they do disk and file I/O.
Almost always, the hardest part is figuring out where the issues are. Even (perhaps
especially) seasoned practitioners find that their intuitions are wrong. Performance-
killing gremlins hide in the most unlikely places.

As Wikipedia says, “Science (from Latin: scientia meaning ‘knowledge’) is a sys-
tematic enterprise that builds and organizes knowledge in the form of testable expla-
nations and predictions about the world.” Performance tuning must be approached
as an experimental science: To do it properly, you have to construct experiments,
perform them, and from the result construct hypotheses.

Fortunately, the Java universe is awash in performance monitoring tools. From
standalone applications to profilers built into development environments to tools
provided by the operating system. They all need to be applied in a cohesive way to
tease out the truth from a sea of noise.

This book is the definitive masterclass in performance tuning Java applications.
It readably covers a wide variety of tools to monitor and measure performance on a
variety of hardware architectures and operating systems. And it covers how to con-
struct experiments, interpret their results, and act on them. If you love all the gory
details, this is the book for you.

—James Gosling

 xi

This page intentionally left blank

Foreword

 xiii

Today, Java is used at the heart of the world’s largest and most critical computing
systems. However, when I joined the Java team in 1997 the platform was young and
just gaining popularity. People loved the simplicity of the language, the portabil-
ity of bytecodes, and the safety of garbage collection (versus traditional malloc/free
memory management of other systems). However, there was a trade-off for these
great features. Java was slow, and this limited the kinds of environments where you
could use it.

Over the next few years, we set about trying to fix this. We believed that just
because Java applications were portable and safe they didn’t have to be slow. There
were two major areas where we focused our attention. The first was to simply make
the Java platform faster. Great strides were made in the core VM with advanced
Just In Time compilation techniques, parallel garbage collection, and advanced lock
management. At the same time the class libraries were tweaked and tuned to make
them more efficient. All this led to substantial improvements in the ability to use
Java for larger, more critical systems.

The second area of focus for us was to teach people how to write fast software in
Java. It turned out that although the syntax of the language looked similar to C, the
techniques you needed to write efficient programs were quite different. To that end,
Jeff Kessleman and I wrote one of the first books on Java performance, which was
published back in 2000. Since then, many books have covered this topic, and experi-
enced developers have learned to avoid some of the most common pitfalls that used
to befall Java developers.

xiv Foreword

After the platform began to get faster, and developers learned some of the tricks
of writing faster applications, Java transformed into the enterprise-grade software
powerhouse it is today. It began to be used for the largest, most important systems
anywhere. However, as this started to happen, people began to realize one part was
still missing. This missing piece was observability. When these systems get larger
and larger, how do you know if you’re getting all the performance you can get?

In the early days of Java we had primitive profiling tools. While these were useful,
they had a huge impact on the runtime performance of the code. Now, modern JVMs
come with built-in observability tools that allow you to understand key elements of
your system’s performance with almost no performance penalty. This means these
tools can be left enabled all the time, and you can check on aspects of your application
while it’s running. This again changes the way people can approach performance.

The authors of JavaTM Performance bring all these concepts together and update
them to account for all the work that’s happened in the last decade since Jeff and I
published our book. This book you are now reading is the most ambitious book on
the topic of Java performance that has ever been written. Inside are a great many
techniques for improving the performance of your Java applications. You’ll also come
to understand the state of the art in JVM technology from the inside out. Curious
about how the latest GC algorithms work? It’s in here! You’ll also learn how to use
the latest and greatest observability tools, including those built into the JDK and
other important tools bundled into popular operating systems.

It’s exciting to see how all these recent advancements continue to push the plat-
form forward, and I can’t wait to see what comes next.

—Steve Wilson
VP Engineering, Oracle Corporation
Founding member of the Java Performance team
Coauthor of JavaTM Platform Performance: Strategies and Tactics

Preface

 xv

Welcome to the definitive reference on Java performance tuning!
This book offers Java performance tuning advice for both Java SE and Java EE

applications. More specifically, it offers advice in each of the following areas: perfor-
mance monitoring, profiling, tuning the Java HotSpot VM (referred to as HotSpot
VM hereafter), writing effective benchmarks, and Java EE application performance
tuning. Although several Java performance books have been written over the years,
few have packed the breadth of information found in this book. For example, the
topics covered in this book include items such as an introduction into the inner work-
ings of a modern Java Virtual Machine, garbage collection tuning, tuning Java EE
applications, and writing effective benchmarks.

This book can be read from cover to cover to gain an in-depth understanding of
many Java performance topics. It can also be used as a task reference where you can
pick up the text, go to a specific chapter on a given topic of interest, and find answers.

Readers who are fairly new, or consider themselves a novice in the area of Java
performance tuning, will likely benefit the most by reading the first four chapters
and then proceeding to the topics or chapters that best address the particular Java
performance tuning task they are undertaking. More experienced readers, those who
have a fundamental understanding of performance tuning approaches and a basic
understanding of the internals of the HotSpot VM along with an understanding of
the tools to use for monitoring operating system performance and monitoring JVM
performance, will find jumping to the chapters that focus on the performance tuning
task at hand to be most useful. However, even those with advanced Java performance
skills may find the information in the first four chapters useful.

Reading this book cover to cover is not intended to provide an exact formula to
follow, or to provide the full and complete knowledge to turn you into an experienced
Java performance tuning expert. Some Java performance issues will require special-
ized expertise to resolve. Much of performance tuning is an art. The more you work
on Java performance issues, the better versed you become. Java performance tuning
also continues to evolve. For example, the most common Java performance issues
observed five years ago were different from the ones observed today. Modern JVMs
continue to evolve by integrating more sophisticated optimizations, runtimes, and
garbage collectors. So too do underlying hardware platforms and operating systems
evolve. This book provides up-to-date information as of the time of its writing. Read-
ing and understanding the material presented in this book should greatly enhance
your Java performance skills. It may also allow you to build a foundation of funda-
mentals needed to become fluent in the art of Java performance tuning. And once
you have a solid foundation of the fundamentals you will be able to evolve your per-
formance tuning skills as hardware platforms, operating systems, and JVMs evolve.

Here’s what you can expect to find in each chapter.
Chapter 1, “Strategies, Approaches, and Methodologies,” presents various different

approaches, strategies, and methodologies often used in Java performance tuning
efforts. It also proposes a proactive approach to meeting performance and scalability
goals for a software application under development through an enhancement to the
traditional software development process.

Chapter 2, “Operating System Performance Monitoring,” discusses performance
monitoring at the operating system level. It presents which operating system statistics
are of interest to monitor along with the tools to use to monitor those statistics. The
operating systems of Windows, Linux, and Oracle Solaris are covered in this chapter.
The performance statistics to monitor on other Unix-based systems, such as Mac OS
X, use similar commands, if not the same commands as Linux or Oracle Solaris.

Chapter 3, “JVM Overview,” provides a high level overview of the HotSpot VM.
It provides some of the fundamental concepts of the architecture and workings of a
modern Java Virtual Machine. It establishes a foundation for many of the chapters
that follow in the book. Not all the information presented in this chapter is required
to resolve every Java performance tuning task. Nor is it exhaustive in providing all
the necessary background to solve any Java performance issue. However, it does
provide sufficient background to address a large majority of Java performance issues
that may require some of the concepts of the internal workings and capabilities of
a modern Java Virtual Machine. The information in this chapter is applicable to
understanding how to tune the HotSpot VM along with understanding the subject
matter of Chapter 7 and how to write effective benchmarks, the topics covered in
Chapters 8 and 9.

Chapter 4, “JVM Performance Monitoring,” as the title suggests, covers JVM per-
formance monitoring. It presents which JVM statistics are of interest to monitor

xvi Preface

 Preface xvii

along with showing tools that can be used to monitor those statistics. It concludes
with suggesting tools that can be extended to integrate both JVM level monitoring
statistics along with Java application statistics of interest within the same monitor-
ing tool.

Chapter 5, “Java Application Profiling,” and Chapter 6, “Java Application Profiling
Tips and Tricks,” cover profiling. These two chapters can be seen as complementary
material to Chapter 2 and Chapter 4, which cover performance monitoring. Perfor-
mance monitoring is typically used to identify whether a performance issue exists,
or provides clues as to where the performance issue exists, that is, in the operating
system, JVM, Java application, and so on. Once a performance issue is identified and
further isolated with performance monitoring, a profiling activity usually follows.
Chapter 5 presents the basics of Java method profiling and Java heap (memory) pro-
filing. This profiling chapter presents free tools for illustrating the concepts behind
these types of profiling. The tools shown in this chapter are not intended to suggest
they are the only tools that can be used for profiling. Many profiling tools are avail-
able both commercially and for free that offer similar capabilities, and some tools
offer capabilities beyond what’s covered in Chapter 5. Chapter 6 offers several tips
and tricks to resolving some of the more commonly observed patterns in profiles
that tend to be indicative of particular types of performance problems. The tips and
tricks identified in this chapter are not necessarily an exhaustive list but are ones
that have been observed frequently by the authors over the course of years of Java
performance tuning activities. The source code in many of the examples illustrated
in this chapter can be found in Appendix B.

Chapter 7, “Tuning the JVM, Step by Step,” covers tuning the HotSpot VM. The
topics of tuning the HotSpot VM for startup, memory footprint, response time/
latency, and throughput are covered in the chapter. Chapter 7 presents a step-by-
step approach to tuning the HotSpot VM covering choices such as which JIT compiler
to use, which garbage collector to use, and how to size Java heaps, and also provides
an indication when the Java application itself may require some rework to meet the
performance goals set forth by application stakeholders. Most readers will likely find
Chapter 7 to be the most useful and most referenced chapter in this book.

Chapter 8, “Benchmarking Java Applications,” and Chapter 9, “Benchmarking
Multi-tiered Applications,” present information on how to write effective benchmarks.
Often benchmarks are used to help qualify the performance of a Java application by
implementing a smaller subset of a larger application’s functionality. These two chap-
ters also discuss the art of creating effective Java benchmarks. Chapter 8 covers the
more general topics associated with writing effective benchmarks such as exploring
some of the optimizations performed by a modern JVM. Chapter 8 also includes infor-
mation on how to incorporate the use of statistical methods to gain confidence in your
benchmarking experiments. Chapter 9 focuses more specifically on writing effective
Java EE benchmarks.

For readers who have a specific interest in tuning Java EE applications, Chapter 10,
“Web Application Performance,” Chapter 11, “Web Services Performance,” and Chap-
ter 12, “Java Persistence and Enterprise Java Beans Performance,” focus specifically
on the areas of Web applications, Web services, persistence, and Enterprise Java Bean
performance, respectively. These three chapters present in-depth coverage of the
performance issues often observed in Java EE applications and provide suggested
advice and/or solutions to common Java EE performance issues.

This book also includes two appendixes. Appendix A, “HotSpot VM Command Line
Options of Interest,” lists HotSpot VM command line options that are referenced in
the book and additional ones that may be of interest when tuning the HotSpot VM.
For each command line option, a description of what the command line option does
is given along with suggestions on when it is applicable to use them. Appendix B,
“Profiling Tips and Tricks Example Source Code,” contains the source code used in
Chapter 6’s examples for reducing lock contention, resizing Java collections, and
increasing parallelism.

xviii Preface

Acknowledgments

Charlie Hunt

Without the help of so many people this book would not have been possible. First I
have to thank my coauthor, Binu John, for his many contributions to this book. Binu
wrote all the Java EE material in this book. He is a talented Java performance engi-
neer and a great friend. I also want to thank Greg Doech, our editor, for his patience.
It took almost three years to go from a first draft of the book’s chapter outline until
we handed over a manuscript. Thank you to Paul Hohensee and Dave Keenan for
their insight, encouragement, support, and thorough reviews. To Tony Printezis and
Tom Rodriguez, thanks for your contributions on the details of the inner workings
of the Java HotSpot VM garbage collectors and JIT compilers. And thanks to all the
engineers on the Java HotSpot VM runtime team for having detailed documentation
on how various pieces of the HotSpot VM fit together. To both James Gosling and
Steve Wilson, thanks for making time to write a foreword. Thanks to Peter Kessler for
his thorough review of Chapter 7, “Tuning the JVM, Step by Step.” Thanks to others
who contributed to the quality of this book through their insight and reviews: Dar-
ryl Gove, Marty Itzkowitz, Geertjan Wielenga, Monica Beckwith, Alejandro Murillo,
Jon Masamitsu, Y. Srinivas Ramkakrishna (aka Ramki), Chuck Rasbold, Kirk Pep-
perdine, Peter Gratzer, Jeanfrancois Arcand, Joe Bologna, Anders Åstrand, Henrik
Löf, and Staffan Friberg. Thanks to Paul Ciciora for stating the obvious, “losing the
race” (when the CMS garbage collector can’t free enough space to keep up with the
young generation promotion rate). Also, thanks to Kirill Soshalskiy, Jerry Driscoll,

 xix

xx Acknowledgments

both of whom I have worked under during the time of writing this book, and to John
Pampuch (Director of VM Technologies at Oracle) for their support. A very special
thanks to my wife, Barb, and sons, Beau and Boyd, for putting up with a grumpy
writer, especially during those times of “writer’s cramp.”

Binu John

This book has been possible only because of the vision, determination, and persever-
ance of my coauthor, Charlie Hunt. Not only did he write the sections relating to Java
SE but also completed all the additional work necessary to get it ready for publication.
I really enjoyed working with him and learned a great deal along the way. Thank you,
Charlie. A special thanks goes to Rahul Biswas for providing content relating to EJB
and Java persistence and also for his willingness to review multiple drafts and provide
valuable feedback. I would like to thank several people who helped improve the qual-
ity of the content. Thank you to Scott Oaks and Kim Lichong for their encouragement
and valuable insights into various aspects of Java EE performance; Bharath Mundla-
pudi, Jitendra Kotamraju, and Rama Pulavarthi for their in-depth knowledge of XML
and Web services; Mitesh Meswani, Marina Vatkina, and Mahesh Kannan for their
help with EJB and Java persistence; and Jeanfrancois Arcand for his explanations,
blogs, and comments relating to Web container. I was fortunate to work for managers
who were supportive of this work. Thanks to Madhu Konda, Senior Manager during
my days at Sun Microsystems; Sef Kloninger, VP of Engineering, Infrastructure, and
Operations; and Sridatta Viswanath, Senior VP of Engineering and Operations at
Ning, Inc. A special thank you to my children, Rachael and Kevin, and my wonderful
wife, Rita, for their support and encouragement during this process.

About the Authors

 xxi

Charlie Hunt is the JVM Performance Lead Engineer at Oracle. He is responsible for
improving the performance of the HotSpot Java Virtual Machine and Java SE class librar-
ies. He has also been involved in improving the performance of both GlassFish Server
Open Source Edition and Oracle WebLogic application servers. He wrote his first Java
program in 1998 and joined Sun Microsystems, Inc., in 1999 as a Senior Java Architect.
He has been working on improving the performance of Java and Java applications ever
since. He is a regular speaker on the subject of Java performance at many worldwide
conferences including the JavaOne Conference. Charlie holds a Master of Science in
Computer Science from the Illinois Institute of Technology and a Bachelor of Science in
Computer Science from Iowa State University.

Binu John is a Senior Performance Engineer at Ning, Inc., the world’s largest plat-
form for creating social web sites. In his current role, he is focused on improving the
performance and scalability of the Ning platform to support millions of page views per
month. Before joining Ning, Binu spent more than a decade working on Java perfor-
mance at Sun Microsystems, Inc. As a member of the Enterprise Java Performance team,
he worked on several open source projects including the GlassFish Server Open Source
Edition application server, the Open Source Enterprise Service Bus (Open ESB), and
Open MQ JMS product. He has been an active contributor in the development of the vari-
ous industry standard benchmarks such as SPECjms2007 and SPECjEnterprise2010,
has published several performance white papers and has previously contributed to the
XMLTest and WSTest benchmark projects at java.net. Binu holds Master of Science
degrees in Biomedical Engineering and Computer Science from The University of Iowa.

This page intentionally left blank

211

6
Java Application
Profiling Tips and
Tricks

Chapter 5, “Java Application Profiling,” presented the basic concepts of using a mod-
ern Java profiler such as the Oracle Solaris Studio Performance Analyzer and Net-
Beans Profiler. It did not, however, show any specific tips and tricks in using the
tools to identify performance issues and approaches of how to resolve them. This is
the purpose of this chapter. Its intention is to show how to use the tools to identify
performance issues and take corrective actions to resolve them. This chapter looks at
several of the more common types of performance issues the authors have observed
through many years of working as Java performance engineers.

Performance Opportunities

Most Java performance opportunities fall into one or more of the following categories:

� Using a more efficient algorithm. The largest gains in the performance
of an application come from the use of a more efficient algorithm. The use of
a more efficient algorithm allows an application to execute with fewer CPU
instructions, also known as a shorter path length. An application that executes
with a shorter path length generally executes faster. Many different changes
can lead to a shorter path length. At the highest level of the application, using
a different data structure or modifying its implementation can lead to a shorter
path length. Many applications that suffer application performance issues
often use inappropriate data structures. There is no substitute for choosing the

212 Chapter 6 � Java Application Profiling Tips and Tricks

proper data structure and algorithm. As profiles are analyzed, take notice of
the data structures and the algorithms used. Optimal performance can be real-
ized when the best data structures and algorithms are utilized.

� Reduce lock contention. Contending for access to a shared resource inhibits
an application’s capability to scale to a large number of software threads and across
a large number of CPUs. Changes to an application that allow for less frequent lock
contention and less duration of locking allow an application to scale better.

� Generate more efficient code for a given algorithm. Clocks per CPU
instruction, usually referred to as CPI, for an application is a ratio of the
number of CPU clock ticks used per CPU instruction. CPI is a measure of the
efficiency of generated code that is produced by a compiler. A change in the
application, JVM, or operating system that reduces the CPI for an application
will realize an improvement in its performance since it takes advantage of
better and more optimized generated code.

There is a subtle difference between path length, which is closely tied to the algo-
rithm choice, and cycles per instruction, CPI, which is the notion of generating more
efficient code. In the former, the objective is to produce the shortest sequence of CPU
instructions based on the algorithm choice. The latter’s objective is to reduce the num-
ber of CPU clocks consumed per CPU instruction, that is, produce the most efficient
code from a compiler. To illustrate with an example, suppose a CPU instruction results
in a CPU cache miss, such as a load instruction. It may take several hundred CPU clock
cycles for that load instruction to complete as a result of the CPU cache miss having to
fetch data from memory rather than finding it in a CPU cache. However, if a prefetch
instruction was inserted upstream in the sequence of instructions generated by a com-
piler to prefetch from memory the data being loaded by the load instruction, it is likely
the number of clock cycles required to load the data will be less with the additional
prefetch instruction since the prefetch can be done in parallel with other CPU instruc-
tions ahead of the load instruction. When the load instruction occurs, it can then find
the data to be loaded in a CPU cache. However, the path length, the number of CPU
instructions executed is longer as a result of the additional prefetch instruction. There-
fore, it is possible to increase path length, yet make better use of available CPU cycles.

The following sections present several strategies to consider when analyzing a pro-
file and looking for optimization opportunities. Generally, optimization opportunities
for most applications fall into one of the general categories just described.

System or Kernel CPU Usage

Chapter 2, “Operating System Performance Monitoring,” suggests one of the statis-
tics to monitor is system or kernel CPU utilization. If CPU clock cycles are spent
executing operating system or kernel code, those are CPU clock cycles that cannot

System or Kernel CPU Usage 213

be used to execute your application. Hence, a strategy to improve the performance of
an application is to reduce the amount of time it spends consuming system or kernel
CPU clock cycles. However, this strategy is not applicable in applications that spend
little time executing system or kernel code. Monitoring the operating system for
system or kernel CPU utilization provides the data as to whether it makes sense to
employ this strategy.

The Oracle Solaris Performance Analyzer collects system or kernel CPU statis-
tics as part of an application profile. This is done by selecting the View > Set Data
Presentation menu in Performance Analyzer, choosing the Metrics tab, and setting
the options to present system CPU utilization statistics, both inclusive or exclusive.
Recall that inclusive metrics include not only the time spent in a given method, but
also the time spent in methods it calls. In contrast, exclusive metrics report only the
amount of time spent in a given method.

Figure 6-1 Set system CPU data presentation

Tip

It can be useful to include both inclusive and exclusive metrics when first analyzing a profile.
Looking at the inclusive metrics provides a sense of the path the application executes. Looking
at the general path an application takes you may identify an opportunity for an alternative
algorithm or approach that may offer better performance.

Figure 6-1 shows the Performance Analyzer’s Set Data Presentation form with
options selected to present both inclusive and exclusive System CPU metrics. Also
notice the options selected report both the raw time value and the percentage of
System CPU time.

214 Chapter 6 � Java Application Profiling Tips and Tricks

After clicking on the OK button, the Performance Analyzer displays the profile’s
System CPU inclusive and exclusive metrics in descending order. The arrow in the
metric column header indicates how the data is presented and sorted. In Figure 6-2,
the System CPU data is ordered by the exclusive metric (notice the arrow in the exclu-
sive metric header and the icon indicating an exclusive metric).

Figure 6-2 shows a profile from an application that exhibits high system or ker-
nel CPU utilization. You can see this application consumed about 33.5 seconds of
System CPU in the java.io.FileOutputStream.write(int) method and about
11.6 seconds in a method called __write(), or about 65% and 22.5%, respectively.
You can also get a sense of how significant the improvement can be realized by
reducing the System CPU utilization of this application. The ideal situation for an
application is to have 0% System CPU utilization. But for some applications that
goal is difficult to achieve, especially if there is I/O involved, since I/O operations
require a system call. In applications that require I/O, the goal is to reduce the
frequency of making a system call. One approach to reduce the call frequency of an
I/O system call is buffer the data so that larger chunks of data are read or written
during I/O operations.

In the example shown in Figure 6-2, you can see the file write (output) oper-
ations are consuming a large amount of time as illustrated by the java.
io.FileOutputStream.write(int) and __write() entries. To identify whether
the write operations are buffered, you can use the Callers-Callees tab to walk up the
call stack to see what methods are calling the FileOutputStream.write(int)
method and the __write method. You walk up the call stack by selecting one of the
callees from the upper panel and clicking the Set Center button. Figure 6-3 shows
the Callers-Callees of the FileOutputStream.write(int) method.

The callers of FileOutputStream.write(int) are ExtOutputStream.
write(int) and OutImpl.outc(int). 85.18% of the System CPU attributed
to FileOutputStream.write(int) comes from its use in ExtOutputStream.
write(int) and 14.82% of it from OutImpl.outc(int). A look at the implementa-
tion of ExtOutputStream.write(int) shows:

Figure 6-2 Exclusive system CPU

System or Kernel CPU Usage 215

A look at the implementation of super.write(b) shows it is not a call to FileOut-
putStream.write(int):

Figure 6-3 FileOutputStream.write(int) callers and callees

 public void write(int b) throws IOException {
 super.write(b);
 writer.write((byte)b);
 }

 public void write(int b) throws IOException {
 crc = crc * 33 + b;
 }

But the writer field in ExtOutputStream is declared as a FileOutputStream:

 private FileOutputStream writer;

And it is initialized without any type of buffering:

 writer = new FileOutputStream(currentFileName);

currentFileName is a field declared as a String:

 private String currentFileName;

Hence, an optimization to be applied here is to buffer the data being written to
FileOutputStream in ExtOutputStream using a BufferedOutputStream. This
is done rather quickly and easily by chaining or wrapping the FileOutputStream
in a BufferedOutputStream in an ExtOutputStream. Here is a quick listing of
the changes required:

216 Chapter 6 � Java Application Profiling Tips and Tricks

Then chain a BufferedOutputStream and FileOutputStream at initialization
time:

 // Change FileOutputStream writer to a BufferedOutputStream
 // private FileOutputStream writer;
 private BufferedOutputStream writer;

 // Initialize BufferedOutputStream
 // writer = new FileOutputStream(currentFileName);
 writer = new BufferedOutputStream(
 new FileOutputStream(currentFileName));

Writing to the BufferedOutputStream, instead of the FileOutputStream, in
ExtOutputStream.write(int b) does not require any update since BufferOut-
putStream has a write() method that buffers bytes written to it. This ExtOutput-
Stream.write(int b) method is shown here:

 public void write(int b) throws IOException {
 super.write(b);
 // No update required here,
 // automatically uses BufferedOutputStream.write()
 writer.write((byte)b);
 }

The other uses of the writer field must be inspected to ensure the use of
BufferedOutputStream operates as expected. In ExtStreamOutput, there are two
additional uses of the writer field, one in a method called reset() and another in
checkResult(). These two methods are as follows:

 public void reset() {
 super.reset();
 try {
 if (diffOutputStream != null) {
 diffOutputStream.flush();
 diffOutputStream.close();
 diffOutputStream = null;
 }
 if (writer != null) {
 writer.close();
 }
 } catch (IOException e) {
 e.printStackTrace();

System or Kernel CPU Usage 217

The uses of writer as a BufferedOutputStream works as expected. It should be
noted that the API specification for BufferedOutputStream.close() indicates it
calls the BufferedOutputStream.flush() method and then calls the close()
method of its underlying output stream, in this case the FileOutputStream.close()
method. As a result, the FileOutputStream is not required to be explicitly closed,
nor is the flush() method in ExtOutputStream.checkResult(int) required. A
couple of additional enhancements worth consideration are

 1. A BufferedOutputStream can also be allocated with an optional buffered size.
The default buffer size, as of Java 6, is 8192. If the application you are profiling
is writing a large number of bytes, you might consider specifying an explicit size
larger than 8192. If you specify an explicit size, consider a size that is a multiple
of the operating systems page size since operating systems efficiently fetch
memory that are multiples of the operating system page size. On Oracle Solaris,
the pagesize command with no arguments reports the default page size. On
Linux, the default page size can be obtained using the getconf PAGESIZE
command. Windows on x86 and x64 platforms default to a 4K (4096) page size.

 2. Change the ExtOutputStream.writer field from an explicit
BufferedOutputStream type to an OutputStream type, that is,
OutputStream writer = new BufferedOutputStream(), instead of
BufferedOutputStream writer = new BufferedOutputStream().
This allows for additional flexibility in type of OutputStream, for example,
ByteArrayOutputStream, DataOutputStream, FilterOutputStream,
FileOutputStream, or BufferedOutputStream.

Looking back at Figure 6-3, a second method calls FileOutputStream.
write(int) called org.w3c.tidy.OutImpl.outc(int), which is a method from
a third-party library used in the profiled application. To reduce the amount of system
CPU utilization used in a third-party supplied method, the best approach is to file

 }
 }
 public void checkResult(int loopNumber) {
 try {
 writer.flush();
 writer.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 check(validiationProperties.getProperty(propertyName));
 outProperties.put(propertyName, ”” + getCRC());
 reset();
 }

218 Chapter 6 � Java Application Profiling Tips and Tricks

a bug or enhancement request with the third-party library provider and include the
information from the profile. If the source is accessible via an open source license and
has acceptable license terms, you may consider further investigating and including
additional information in the bug or enhancement request report.

After applying the changes identified in ExtOutputStream, using the
BufferedOutputStream and its default constructor (not including the two addi-
tional enhancements just mentioned), and collecting a profile, the amount of system
CPU utilization drops substantially. Comparing the profiles in Figure 6-4 to those
in Figure 6-2, you can see the amount of inclusive system CPU time spent in
java.io.FileOutputStream has dropped from 45.182 seconds to 6.655 seconds
(exclusive system CPU time is the second column).

Executing this application workload outside the profiler in a performance testing
environment prior to making the modifications reports it took this application
427 seconds to run to completion. In constrast, the modified version of the applica-
tion workload that uses the BufferOutputStream in the same performance test-
ing environment reports it runs to completion in 383 seconds. In other words, this
application realized about a 10% improvement in its run to completion execution.

In addition, looking at the Callers-Callees tab for java.io.FileOutputStream.
write(int), only the call to org.w3c.tidy.OutImpl.outc(int) remains as a
significant consumer of the FileOutputStream.write(int) method. The Callers-
Callees of FileOutputStream.write(int) are shown in Figure 6-5.

Figure 6-5 Callers-Callees after changes

Figure 6-4 Reduced system CPU utilization

System or Kernel CPU Usage 219

Comparing the Callers-Callees in Figure 6-5, after the changes to ExtStream
Output, with the Callers-Callees in Figure 6-3, prior to the changes, you can see
the amount of attributable time spent in org.w3c.tidy.OutImpl.outc(int)
stays close to the same. This should not be a surprise since the changes made
to ExtStreamOutput now use BufferedOutputStream. But recall that the
BufferedOutputStream invokes a FileOutputStream method when any
of the underlying buffer in the BufferedOutputStream becomes full, the
BufferedOutputStream.flush() method is called, or when the Buffered-
OutputSteam.close() method is called. If you look back at Figure 6-4 you
see a FileOutputStream.writeBytes(byte[], int, int) method. This is the
method that the BufferedOutputStream calls from ExtStreamOut-
put. Figure 6-6 shows the Callers-Callees tab for the FileOutputStream.
writeBytes(byte[], int, int).

Selecting java.io.FileOutputStream.write(byte[], int, int) method from
the upper Callee panel and clicking the Set Center button illustrates that Buff-
eredOutputStream.flushBuffer() is its callee; see Figure 6-7.

Figure 6-6 Callers-Callees of FileOutputStream.writeBytes(byte[],int,int)

Figure 6-7 Callers-Callees of FileOutputStream.writeBytes(byte[], int, int)

220 Chapter 6 � Java Application Profiling Tips and Tricks

Selecting the BufferedOutputStream.flushBuffer() method in the
upper Callee panel and clicking the Set Center button shows the callee of java.
io.BufferedOutputStream.flushBuffer() is BufferedOutputStream.
write(int). The Callers-Callees of BufferedOutputStream.flushBuffer()
are shown in Figure 6-8.

Selecting the BufferedOutputStream.write(int) method in the upper
Callee panel and clicking the Set Center button shows the callee of java.
io.BufferedOutputStream.write(int) is ExtOutputStream.write(int),
the method that has been modified. The Callers-Callees of BufferedOutput-
Stream.write(int) are shown in Figure 6-9.

As mentioned earlier, the next step in reducing System CPU utilization for this
application requires a modification to a third-party library, a library that holds the
implementation of org.w3c.tidy.OutImpl.outc(int). It may be possible for
the maintainers of the third-party library to implement a similar modification to
OutImpl.outc(int) as just described and implemented for ExtOutputStream.
write(int). However, the performance improvement realized will likely not be as
significant since the profile suggests there is more System CPU utilization attributed

Figure 6-8 Callers-Callees of BufferedOutputStream.flushBuffer()

Figure 6-9 Callers-Callees of BufferedOutputStream.write(int)

System or Kernel CPU Usage 221

to the call path of ExtOutputStream.write(int) than to OutImpl.outc(int);
refer to Figure 6-3 for attributable System CPU utilization on callers of FileInput-
Stream.write(int). In addition, looking at the amount of System CPU utilization
consumed in OutImpl.outc(int), about 6.6 seconds, compared to the total appli-
cation runtime of 383 seconds is rather small, about 1.5%. Hence, a modification to
reduce the amount of System CPU utilization spent in OutImpl.outc(int) would
likely not yield more than 1% to 2% improvement.

Tip

Applications that perform network I/O can employ a similar, general approach to reduce
system CPU utilization as that just described in this section. That is, buffer both the data in
the input and output stream used to write and read the data.

An additional strategy to reduce system CPU utilization for applications performing
large amounts of network I/O is utilizing Java NIO nonblocking data structures. Java
NIO was introduced in Java 1.4.2 with many runtime performance improvements
added in Java 5 and Java 6. Java NIO nonblocking data structures allow for the abil-
ity to read or write as much data as possible in a single call to a network I/O (read
or write) operation. Remember that every network I/O call eventually results in the
invocation of an operating system’s system call, which consumes system CPU utili-
zation. The challenge with using Java NIO nonblocking data structures is it is more
difficult to program than using blocking Java NIO or the older, more traditional Java
SE blocking data structures such as java.net.Socket. In a Java NIO nonblocking
output operation, you can write as many bytes as the operating system allows to be
written. But you have to check the return value of the output operation to determine
whether all the bytes you asked to be written have indeed been written. In a Java
NIO nonblocking input operation, where you read as many bytes as are available,
you have to check how many bytes have been read. You also have to implement
some complex programming logic to deal with partially read protocol data units, or
multiple protocol data units. That is, you may not be able to read enough bytes in a
single read operation to construct a meaningful protocol data unit or message. In the
case of blocking I/O, you simply wait until you generally read the specified number
of bytes that constitute a full protocol data unit or message. Whether to migrate an
application to utilize nonblocking network I/O operations should be decided upon by
the application’s performance needs. If you want to take advantage of the additional
performance promised by using nonblocking Java NIO, you should consider using
a general Java NIO framework to make the migration easier. Several popular Java
NIO frameworks are available such as Project Grizzly (https://grizzly.dev.java.net)
and Apache MINA (http://mina.apache.org).

https://grizzly.dev.java.net
http://mina.apache.org

222 Chapter 6 � Java Application Profiling Tips and Tricks

Another area where high System CPU utilization may show up is in applica-
tions experiencing heavy lock contention. Identifying lock contention in a profile and
approaches to reduce lock contention are discussed in the next section.

Lock Contention

In early JVM releases, it was common to delegate Java monitor operations directly
to operating system monitors, or mutex primitives. As a result, a Java application
experiencing lock contention would exhibit high values of system CPU utilization
since operating system mutex primitives involve system calls. In modern JVMs
Java monitors are mostly implemented within the JVM in user code rather than
immediately delegating them to operating system locking primitives. This means
Java applications can exhibit lock contention yet not consume system CPU. Rather,
these applications first consume user CPU utilization when attempting to acquire
a lock. Only applications that experience severe lock contention may show high
system CPU utilization since modern JVMs tend to delegate to operating sys-
tem locking primitives as a last resort. A Java application running in a modern
JVM that experiences lock contention tends to show symptoms of not scaling to a
large number of application threads, CPU cores, or a large number of concurrent
users. The challenge is finding the source of the lock contention, that is, where are
those Java monitors in the source code and what can be done to reduce the lock
contention.

Finding and isolating the location of highly contented Java monitors is one of
the strengths of the Oracle Solaris Performance Analyzer. Once a profile has been
collected with the Performance Analyzer, finding the highly contented locks is easy.

The Performance Analyzer collects Java monitor and lock statistics as part of an
application profile. Hence, you can ask the Performance Analyzer to present the Java
methods in your application using Java monitors or locks.

Tip

You can also view locks used within the JVM with the Performance Analyzer, but that requires
setting the presentation view mode to Machine Mode.

By selecting the View > Set Data Presentation menu in Performance Analyzer and
choosing the Metrics tab, you can ask the Performance Analyzer to present lock sta-
tistics, both inclusive or exclusive. Remember that inclusive lock metrics include not
only the lock time spent in a given method but also the lock time spent in methods

Lock Contention 223

it calls. In contrast, exclusive metrics report only the amount of lock time spent in
a given method.

Figure 6-10 shows the Performance Analyzer’s Set Data Presentation form
with options selected to present both inclusive and exclusive lock information.
Also notice the options selected report both the time value and the percentage
spent locking.

After clicking OK, the Performance Analyzer displays the profile’s lock inclusive
and exclusive metrics in descending order. The arrow in the metric column header
indicates how the data is presented. In Figure 6-11, the lock data is ordered by the
exclusive metric (notice the arrow in the exclusive metric header and note the icon
indicating an exclusive metric).

Figure 6-10 Set user lock data presentation

Figure 6-11 Java monitors/locks ordered by exclusive metric

224 Chapter 6 � Java Application Profiling Tips and Tricks

The screenshot taken in Figure 6-11 is from a simple example program (com-
plete source code for the remaining examples used in this chapter can be found in
Appendix B, “Profiling Tips and Tricks Example Source Code”) that uses a java.
util.HashMap as a data structure to hold 2 million fictitious tax payer records
and performs updates to those records stored in the HashMap. Since this example is
multithreaded and the operations performed against the HashMap include adding
a new record, removing a new record, updating an existing record, and retrieving a
record, the HashMap requires synchronized access, that is, the HashMap is allocated
as a synchronized Map using the Collections.synchronizedMap() API. The fol-
lowing list provides more details as to what this example program does:

� Creates 2 million fictitious tax payer records and places them in an in-memory
data store, a java.util.HashMap using a tax payer id as the HashMap key
and the tax payer’s record as the value.

� Queries the underlying system for the number of available processors using
the Java API Runtime.availableProcessors() to determine the number
of simultaneous Java threads to execute concurrently.

� Uses the number returned from Runtime.availableProcessors() and
creates that many java.util.concurrent.Callable objects to execute
concurrently in an allocated java.util.concurrent.ExecutorService
pool of Executors.

� All Executors are launched and tax payer records are retrieved, updated,
removed, and added concurrently by the Executor threads in the HashMap.
Since there is concurrent access to the HashMap through the actions of add-
ing, removing, and updating records, HashMap access must be synchronized.
The HashMap is synchronized using the Collections.synchronizedMap()
wrapper API at HashMap creation time.

From the preceding description, it should be of little surprise this example program
experiences lock contention when a large number of threads are trying to concurrently

Tip

Before blindly looking only at lock metrics in Performance Analyzer, an application should
be exhibiting scalability symptoms. The classic scaling symptoms occur when executing an
application on a system with a large number of CPUs, CPU cores, or hardware threads does
not show an expected scaling in performance throughput relative to a system with a smaller
number of CPUs, CPU cores, or hardware threads, or leaves CPU utilization unused. In other
words, if an application is not showing scaling issues, then there is no need to investigate an
application’s locking activity.

Lock Contention 225

access the same synchronized HashMap. For example, when this program is run on
a Sun SPARC Enterprise T5120 Server configured with an UltraSPARC T2 proces-
sor, which has 64 virtual processors (the same value as that returned by the Java
API Runtime.availableProcessors()), the performance throughput reported by
the program is about 615,000 operations per second. But only 8% CPU utilization
is reported due to heavy lock contention. Oracle Solaris mpstat also reports a large
number of voluntary thread context switches. In Chapter 2, the “Memory Utilization”
section talks about high values of voluntary thread context switches being a potential
indicator of high lock contention. In that section, it is said that the act of parking a
thread and awaking a thread after being notified both result in an operating system
voluntary context switch. Hence, an application experiencing heavy lock contention
also exhibits a high number of voluntary context switches. In short, this application is
exhibiting symptoms of lock contention.

Capturing a profile of this example program with the Performance Analyzer and
viewing its lock statistics, as Figure 6-11 shows, confirms this program is experiencing
heavy lock contention. The application is spending about 59% of the total lock time, about
14,000 seconds, performing a synchronized HashMap.get() operation. You can also see
about 38% of the total lock time is spent in an entry labeled <JVM-System>. You can
read more about this in the “Understanding JVM-System Locking” sidebar. You can also
see the calls to the put() and remove() records in the synchronized HashMap as well.

Figure 6-12 shows the Callers-Callees of the SynchronizedMap.get() entry.
It is indeed called by the TaxPayerBailoutDBImpl.get() method, and the
SynchronizedMap.get() method calls a HashMap.get() method.

Understanding JVM-System Locking

A JVM-System entry in Performance Analyzer indicates time spent within the JVM internals.
In the context of looking at lock contention statistics in Performance Analyzer, this is the
amount or percentage of time spent in locks within the internals of the JVM. This may sound
alarming when looking at the amount of time spent in the JVM-System in Figure 6-11.

Figure 6-12 Callers-Callees of synchronized HashMap.get()

226 Chapter 6 � Java Application Profiling Tips and Tricks

Hence, this requires a little further explanation and clarification. Recall from Chapter 5 that
switching from a Data Presentation Format of User mode to either Expert mode or Machine
mode shows the internal operations of the JVM and puts them in the JVM-System entry
seen in User mode. Also remember that switching to Expert mode or Machine mode also
shows highly contended Java monitors as a form of a _lwp_mutex, __lwp_cond_wait,
or __lwp_park type of entry and isolates the locking within Java APIs with those found
within the JVM. Figure 6-13 shows the same profile but is switched from User mode to Expert
mode in the Performance Analyzer.

Comparing Figure 6-11 to Figure 6-13 suggests the JVM-System entry has resolved
into __lwp_condition_wait and __lwp_park operations. The sum of the __lwp_
condition_wait and __lwp_park are close to what is reported for JVM-System in
Figure 6-11. Your initial reaction may be the JVM is also experiencing lock contention.
However, selecting the __lwp_cond_wait entry and selecting the Callers-Callees tab
and walking up the call stack, the source of the locking activity associated with __lwp_
cond_wait, in other words the locking activity associated with the JVM-System entry, is
shown in Figure 6-14.

All five of the methods shown in Figure 6-14 are internal JVM methods. Notice that over
95% of the attributable lock time is spent in GCTaskManager::get_task(unsigned).

Figure 6-13 Switching from User mode to Expert mode

Figure 6-14 Traversing up the call stack of callers of __lwp_cond_wait

Lock Contention 227

This method is part of the garbage collection subsystem of the Java HotSpot VM. This
garbage collection method blocks and waits on a queue for work to do on behalf of the
garbage collector subsystem. Each of the method names listed in Figure 6-14 represent
areas of the Java HotSpot VM that may block and wait for some work to be placed on
their respective work queue. For example, the VMThread::loop() method blocks on a
queue for work to do on behalf of the Java HotSpot VM. You can think of the VMThread as
the “kernel thread” of the Java HotSpot VM. The CompilerBroker::compile_thread_
loop() method blocks and waits for work to do on behalf of the JIT compilation subsystem
and so on. As a result, the entries reported as the JVM-System entry in User Mode can be
ignored as being hot locks in this profile.

Continuing with the example program, the reaction from many Java developers
when he or she observes the use of a synchronized HashMap or the use of a java.
util.Hashtable, the predecessor to the synchronized HashMap, is to migrate to
using a java.util.concurrent.ConcurrentHashMap.1 Following this practice
and executing this program using a ConcurrentHashMap instead of a synchronized
HashMap showed an increase of CPU utilization of 92%. In other words, the previ-
ous implementation that used a synchronized HashMap had a total CPU utilization
of 8% while the ConcurrentHashMap implementation had 100% CPU utilization.
In addition, the number of voluntary context switches dropped substantially from
several thousand to less than 100. The reported number of operations per second
performed with the ConcurrentHashMap implementation increased by a little over
2x to 1,315,000, up from 615,000 with the synchronized HashMap. However, seeing
only a 2x performance improvement while utilizing 100% CPU utilization compared
to just 8% CPU utilization is not quite what was expected.

1. java.util.concurrent.ConcurrentHashMap was introduced in the Java 5 SE class
libraries and is available in Java 5 and later Java JDKs/JREs.

Tip

When performance testing, observing an unexpected result or observing a result that
looks suspicious is a strong indication to investigate performance results and revisit testing
methodology.

Capturing a profile and viewing the results with the Performance Analyzer is in
order to investigate what happened. Figure 6-15 shows the hot methods as java.
util.Random.next(int) and java.util.concurrent.atomic.AtomicLong.
compareAndSet(long, long).

Using the Callers-Callees tab to observe the callers of the java.util.concurrent.
atomic.AtomicLong.compareAndSet(long, log) method shows java.util.
Random.next(int) as the most frequent callee. Hence, the two hottest methods in
the profile are in the same call stack; see Figure 6-16.

228 Chapter 6 � Java Application Profiling Tips and Tricks

Figure 6-17 shows the result of traversing further up the call stack of the call-
ers of Random.next(int). Traversing upwards shows Random.next(int)
is called by Random.nextInt(int), which is called by a TaxCallable.
updateTaxPayer(long, TaxPayerRecord) method and six methods from

Figure 6-16 Callers of AtomicLong.compareAndSet

Figure 6-17 Callers and callees of Random.nextInt(int)

Figure 6-15 Hot methods in the ConcurrentHashMap implementation of the program

Lock Contention 229

the BailoutMain class with the bulk of the attributable time spent in the
TaxCallable.updateTaxPayer(long, TaxPayerRecord) method.

The implementation of TaxCallable.updateTaxPayer(long, TaxPayerRecord)
is shown here:

 final private static Random generator = BailoutMain.random;
 // these class fields initialized in TaxCallable constructor
 final private TaxPayerBailoutDB db;
 private String taxPayerId;
 private long nullCounter;
 private TaxPayerRecord updateTaxPayer(long iterations,
 TaxPayerRecord tpr) {
 if (iterations % 1001 == 0) {
 tpr = db.get(taxPayerId);
 } else {
 // update a TaxPayer’s DB record
 tpr = db.get(taxPayerId);
 if (tpr != null) {
 long tax = generator.nextInt(10) + 15;
 tpr.taxPaid(tax);
 }
 }
 if (tpr == null) {
 nullCounter++;
 }
 return tpr;
 }

The purpose of TaxCallable.updateTaxPayer(long, TaxPayerRecord)
is to update a tax payer’s record in a tax payer’s database with a tax paid. The
amount of tax paid is randomly generated between 15 and 25. This randomly
generated tax is implemented with the line of code, long tax = generator.
nextInt(10) + 15. generator is a class instance static Random that
is assigned the value of BailoutMain.random which is declared in the
BailoutMain class as final public static Random random = new Random(Thread.
currentThread().getId()). In other words, the BailoutMain.random class
instance field is shared across all instances and uses of BailoutMain and TaxCallable.
The BailoutMain.random serves several purposes in this application. It generates
random fictitious tax payer ids, names, addresses, social security numbers, city names
and states which are populated in a tax payer database, a TaxPayerBailoutDB
which uses a ConcurrentHashMap in this implementation variant as its storage
container. BailoutMain.random is also used, as described earlier, to generate a
random tax for a given tax payer.

230 Chapter 6 � Java Application Profiling Tips and Tricks

Since there are multiple instances of TaxCallable executing simultaneously
in this application, the static TaxCallable.generator field is shared across all
TaxCallable instances. Each of the TaxCallable instances execute in different
threads, each sharing the same TaxCallable.generator field and updating the
same tax payer database.

This means all threads executing TaxCallable.updateTaxPayer(long,
TaxPayerRecord)trying to update the tax payer database must access the same
Random object instance concurrently. Since the Java HotSpot JDK distributes the
Java SE class library source code in a file called src.zip, it is possible to view
the implementation of java.util.Random. A src.zip file is found in the JDK
root installation directory. Within the src.zip file, you can find the java.util.
Random.java source code. The implementation of the Random.next(int) method
follows (remember from the Figure 6-17 that Random.next(int) is the method
that calls the hot method java.util.concurrent.atomic.AtomicLong.
compareAndSet(int,int)).

 private final AtomicLong seed;
 private final static long multiplier = 0x5DEECE66DL;
 private final static long addend = 0xBL;
 private final static long mask = (1L << 48) – 1;
 protected int next(int bits) {
 long oldseed, nextseed;
 AtomicLong seed = this.seed;
 do {
 oldseed = seed.get();
 nextseed = (oldseed * multiplier + addend) & mask;
 } while (!seed.compareAndSet(oldseed, nextseed));
 return (int)(nextseed >>> (48 - bits));
 }

In Random.next(int), there is a do/while loop that performs an AtomicLong.
compareAndSet(int,int) on the old seed and the new seed (this statement is
highlighted in the preceding code example in bold). AtomicLong is an atomic concur-
rent data structure. Atomic and concurrent data structures were two of the features
added to Java 5. Atomic and concurrent data structures typically rely on some form of
a “compare and set” or “compare and swap” type of operation, also commonly referred
to as a CAS, pronounced “kazz”.

CAS operations are typically supported through one or more specialized CPU
instructions. A CAS operation uses three operands: a memory location, an old value,
and a new value. Here is a brief description of how a typical CAS operation works. A
CPU atomically updates a memory location (an atomic variable) if the value at that
location matches an expected old value. If that property fails to hold, no changes
are made. To be more explicit, if the value at that memory location prior to the

Lock Contention 231

CAS operation matches a supplied expected old value, then the memory location is
updated with the new value. Some CAS operations return a boolean value indicat-
ing whether the memory location was updated with the new value, which means the
old value matched the contents of what was found in the memory location. If the old
value does not match the contents of the memory location, the memory location is
not updated and false is returned.

It is this latter boolean form the AtomicLong.compareAndSet(int, int)
method uses. Looking at the preceding implementation of the Random.next(int)
method, the condition in the do/while loop does not exit until the AtomicLong CAS
operation atomically and successfully sets the AtomicLong value to the nextseed
value. This only occurs if the current value at the AtomicLong’s memory location has
a value of the oldseed. If a large number of threads happen to be executing on the
same Random object instance and calling Random.next(int), there is a high prob-
ability the AtomicLong.compareAndSet(int, int) CAS operation will return
false since many threads will observe a different oldseed value at the AtomicLong’s
value memory location. As a result, many CPU cycles may be spent spinning in the
do/while loop found in Random.next(int). This is what the Performance Analyzer
profile suggests is the case.

A solution to this problem is to have each thread have its own Random object
instance so that each thread is no longer trying to update the same AtomicLong’s
memory location at the same time. For this program, its functionality does not
change with each thread having its own thread local Random object instance. This
change can be accomplished rather easily by using a java.lang.ThreadLocal.
For example, in BailoutMain, instead of using a static Random object, a static
ThreadLocal<Random> could be used as follows:

 // Old implementation using a static Random
 //final public static Random random =
 // new Random(Thread.currentThread.getid());

 // Replaced with a new ThreadLocal<Random>
 final public static ThreadLocal<Random> threadLocalRandom =
 new ThreadLocal<Random>() {
 @Override
 protected Random initialValue() {
 return new Random(Thread.currentThread().getId());
 }
 };

Then any reference to or use of BailoutMain.random should be replaced
with threadLocalRandom.get(). A threadLocalRandom.get() retrieves
a unique Random object instance for each thread executing code that used to use
BailoutMain.random. Making this change allows the AtomicLong’s CAS operation

232 Chapter 6 � Java Application Profiling Tips and Tricks

in Random.next(int) to succeed quickly since no other thread is sharing the same
Random object instance. In short, the do/while in Random.next(int) completes on
its first loop iteration execution.

After replacing the java.util.Random in BailoutMain with a
ThreadLocal<Random> and re-running the program, there is a remark-
able improvement performance. When using the static Random, the program
reported about 1,315,000 operations per second being executed. With the static
ThreadLocal<Random> the program reports a little over 32,000,000 operations per
second being executed. 32,000,000 operations per second is almost 25x more opera-
tions per second higher than the version using the static Random object instance. And
it is more than 50x faster than the synchronized HashMap implementation, which
reported 615,000 operations per second.

A question that may be worthy of asking is whether the program that used the
synchronized HashMap, the initial implementation, could realize a performance
improvement by applying the ThreadLocal<Random> change. After applying this
change, the version of the program that used a synchronized HashMap showed little
performance improvement, nor did its CPU utilization improve. Its performance
improved slightly from 615,000 operations per second to about 620,000 operations
per second. This should not be too much of a surprise. Looking back at the profile, the
method having the hot lock in the initial version, the one that used a synchronized
HashMap, and shown in Figure 6-11 and Figure 6-12, reveals the hot lock is on the
synchronized HashMap.get() method. In other words, the synchronized HashMap.
get() lock is masking the Random.next(int) CAS issue uncovered in the first
implementation that used ConcurrentHashMap.

One of the lessons to be learned here is that atomic and concurrent data struc-
tures may not be the holy grail. Atomic and concurrent data structures rely on a CAS
operation, which in general employs a form of synchronization. Situations of high
contention around an atomic variable can lead to poor performance or scalability
even though a concurrent or lock-free data structure is being used.

Many atomic and concurrent data structures are available in Java SE. They are
good choices to use when the need for them exists. But when such a data structure
is not available, an alternative is to identify a way to design the application such
that the frequency at which multiple threads access the same data and the scope of
the data that is accessed is minimized. In other words, try to design the application
to minimize the span, size, or amount of data to be synchronized. To illustrate with
an example, suppose there was no known implementation of a ConcurrentHash-
Map available in Java, that is, only the synchronized HashMap data structure was
available. The alternative approach just described suggests the idea to divide the
tax payer database into multiple HashMaps to lessen the amount or scope of data
that needs to be locked. One approach might be to consider a HashMap for tax pay-
ers in each state. In such an approach, there would be two levels of Maps. The first

Lock Contention 233

level Map would find one of the 50 state Maps. Since the first level Map will always
contain a mapping of the 50 states, no elements need to be added to it or removed
from it. Hence, the first level Map requires no synchronization. However, the second
level state maps require synchronized access per state Map since tax payer records
can be added, removed, and updated. In other words, the tax payer database would
look something like the following:

public class TaxPayerBailoutDbImpl implements TaxPayerBailoutDB {
 private final Map<String, Map<String,TaxPayerRecord>> db;
 public TaxPayerBailoutDbImpl(int dbSize, int states) {
 db = new HashMap<String,Map<String,TaxPayerRecord>>(states);
 for (int i = 0; i < states; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(dbSize/states));
 db.put(BailoutMain.states[i], map);
 }
 }
...

 for (int i = 0; i < states; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(dbSize/states));
 db.put(BailoutMain.states[i], map);
 }

In the preceding source code listing you can see the first level Map is allo-
cated as a HashMap in the line db = new HashMap<String, Map<String,
TaxPayerRecord>>(dbSize) and the second level Map, one for each of the 50 states
is allocated as a synchronized HashMap in the for loop:

Modifying this example program with the partitioning approach described here
shows about 12,000,000 operations per second being performed and a CPU utiliza-
tion of about 50%. The number of operations per second is not nearly as good as the
32,000,000 observed with a ConcurrentHashMap. But it is a rather large improve-
ment over the single large synchronized HashMap, which yielded about 620,000
operations per second. Given there is unused CPU utilization, it is likely further
partitioning could improve the operations per second in this partitioning approach.
In general, with the partitioning approach, you trade-off additional CPU cycles for
additional path length, that is, more CPU instructions, to reduce the scope of the data
that is being locked where CPU cycles are lost blocking and waiting to acquire a lock.

234 Chapter 6 � Java Application Profiling Tips and Tricks

Volatile Usage

JSR-133, which was introduced in Java 5, addressed many issues in the Java Memory
Model. This is well documented at http://jcp.org/jsr/detail?id=133 by the JSR-133 Expert
Group with further material at http://www.cs.umd.edu/~pugh/java/memoryModel/ main-
tained by Dr. Bill Pugh. One of the issues addressed with JSR-133 is the use of the Java
keyword volatile. Fields in Java objects that are declared as volatile are usually used
to communicate state information among threads. The inclusion of JSR-133 into Java 5
and later Java revisions, ensures that a thread that reads a volatile field in an object is
guaranteed to have the value that was last written to that volatile field, regardless of the
thread that is doing read or write, or the location of where those two threads are execut-
ing, that is, different CPU sockets, or CPU cores. The use of a volatile field does limit
optimizations a modern JVM’s JIT compiler can perform on such a field. For example, a
volatile field must adhere to certain instruction ordering. In short, a volatile field’s value
must be kept in sync across all application threads and CPU caches. For instance, when
a volatile field’s value is changed by one thread, whose field might be sitting in a CPU
cache, any other thread that might have a copy of that volatile field in its CPU cache, a
different CPU cache than the other thread that performed the change, must have its CPU
cache updated before its thread reads that volatile field found in its local CPU cache, or it
must be instructed to retrieve the updated volatile field’s value from memory. To ensure
CPU caches are updated, that is, kept in sync, in the presence of volatile fields, a CPU
instruction, a memory barrier, often called a membar or fence, is emitted to update CPU
caches with a change in a volatile field’s value.

In a highly performance sensitive application having multiple CPU caches, fre-
quent updates to volatile fields can be a performance issue. However, in practice, few
Java applications rely on frequent updates to volatile fields. But there are always
exceptions to the rule. If you keep in mind that frequent updates, changes, or writes
to a volatile field have the potential to be a performance issue (i.e., reads of a volatile
field are okay, not a cause for performance concern), you will likely not experience
performance issues when using volatile fields.

A profiler, such as the Performance Analyzer, that has the capability to gather
CPU cache misses and associate them to Java object field access can help isolate
whether the use of a volatile field is a performance issue. If you observe a high num-
ber of CPU cache misses on a volatile field and the source code suggests frequent
writes to that volatile field, you have an application that is experiencing performance
issues as a result of its usage of volatile. The solution to such a situation is to identify
ways in which less frequent writes are performed to the volatile field, or refactor the
application in a way to avoid the use of the volatile field. Never remove the use of a
volatile field if it breaks program correctness or introduces a potential race condi-
tion. It is much better to have an underperforming application than it is to have an
incorrect implementation, or one that has the potential for a race condition.

http://www.cs.umd.edu/~pugh/java/memoryModel/
http://jcp.org/jsr/detail?id=133

Data Structure Resizing 235

Data Structure Resizing

Java applications tend to make high use of Java SE’s StringBuilder or String-
Buffer for assembling Strings and also make high use of Java objects that act as
containers of data such as the Java SE Collections classes. Both StringBuilder and
StringBuffer use an underlying char[] for their data storage. As elements are added
to a StringBuilder or StringBuffer, the underlying char[] data storage, may be
subject to resizing. As a result of resizing, a new larger char[] array is allocated, the
char elements in the old char[] are copied into the new larger char[] array, and the
old char[] discarded, that is, available for garbage collection. Similar resizing can also
occur in Java SE Collections classes that use an array for their underlying data store.

This section explores ways to identify data structure resizing, in particular
StringBuilder, StringBuffer, and Java SE Collections classes resizing.

StringBuilder/StringBuffer Resizing

When a StringBuilder or StringBuffer becomes large enough to exceed the
underlying data storage capacity, a new char array of a larger size, 2x larger in the
OpenJDK StringBuilder and StringBuffer implementation (used by Java Hot-
Spot Java 6 JDK/JRE), is allocated, the old char array elements are copied into the
new char array, and the old char array is discarded. A version of the implementation
used by StringBuilder and StringBuffer follows:

 char[] value;
 int count;

 public AbstractStringBuilder append(String str) {
 if (str == null) str = ”null”;
 int len = str.length();
 if (len == 0) return this;
 int newCount = count + len;
 if (newCount > value.length)
 expandCapacity(newCount);
 str.getChars(0, len, value, count);
 count = newCount;
 return this;
 }

 void expandCapacity(int minimumCapacity) {
 int newCapacity = (value.length + 1) * 2;
 if (newCapacity < 0) {
 newCapacity = Integer.MAX_VALUE;
 } else if (minimumCapacity > newCapacity) {
 newCapacity = minimumCapacity;
 }
 value = Arrays.copyOf(value, newCapacity);
 }

236 Chapter 6 � Java Application Profiling Tips and Tricks

Continuing with the fictitious tax payer program example from the previous section
(full listing of the source code used in this section can be found in Appendix B in the
section “First Resizing Variant”), StringBuilder objects are used to assemble random
Strings representing tax payer names, addresses, cities, states, social security num-
bers, and a tax payer id. It also uses the no argument StringBuilder constructor.
Hence, the program is likely to be subject to StringBuilder’s underlying char[] being
resized. A capture of a memory or heap profile with a profiler such as NetBeans Profiler
confirms that is the case. Figure 6-18 shows a heap profile from NetBeans Profiler.

In Figure 6-18, you can see that char[], StringBuilder, and String are the
most highly allocated objects and also have the largest amount of live objects. In the
NetBeans Profiler, selecting and right-clicking on the char[] class name in the far left
column as shown in Figure 6-19 shows the allocation stack traces for all char[] objects.

In the char[] stack allocation traces, shown in Figure 6-20, you can see an entry
for java.lang.AbstractStringBuilder.expandCapacity(int), which is

Figure 6-18 Heap profile

Figure 6-19 Showing allocation stack traces

Figure 6-20 char[] allocations from expanding StringBuilders

Data Structure Resizing 237

called from AbstractStringBuilder.append(char) and AbstractString-
Builder.append(String) methods. The expandCapacity(int) method calls
java.util.Arrays.copyOf(char[], int). Looking back at the previous source
code listing, you can see where AbstractStringBuilder.append(String str)
calls expandCapacity(int) and calls Arrays.copyOf(char[] int).

You can also see from Figure 6-20, over 11% of the current live char[] objects
are from resized StringBuilder char[]. In addition, there are a total of 2,926,048
char[] objects that have been allocated, and of those, 390,988 char[] allocations
occurred as a result of StringBuilder char[] resizing. In other words, about 13%
(390,988/2,926,048) of all char[] allocations are coming from resized StringBuilder
char[]s. Eliminating these char[] allocations from resizing improves the perfor-
mance of this program by saving the CPU instructions needed to perform the new
char[] allocation, copying the characters from the old char[] into the new char[],
and the CPU instructions required to garbage collect the old discarded char[].

In the Java HotSpot JDK/JRE distributions, both the StringBuilder and
StringBuffer offer no argument constructors that use a default size of 16 for their
underlying char array data storage. These no argument constructors are being used
in this program. This can be seen in the profile by expanding the java.lang.Ab-
stractStringBuilder.<init>(int) entry seen in Figure 6-20. The expansion of
the java.lang.AbstractStringBuilder.<init>(int) entry, shown in Figure
6-21, shows it is called by a no argument StringBuilder constructor.

In practice, few StringBuilder or StringBuffer object instances result
in having consumed 16 or fewer char array elements; 16 is the default size
used with the no argument StringBuilder or StringBuffer constructor.
To avoid StringBuilder and StringBuffer resizing, use the explicit size
StringBuilder or StringBuffer constructor.

A modification to the example program follows, which now uses explicit sizes for
constructing StringBuilder objects. A full listing of the modified version can be
found in Appendix B in the section “Second Resizing Variant.”

Recent optimizations in Java 6 update releases of the Java HotSpot VM analyze
the usage of StringBuilder and StringBuffer and attempt to determine the

Figure 6-21 Uses of StringBuilder default constructor

238 Chapter 6 � Java Application Profiling Tips and Tricks

optimal char array size to use for a given StringBuilder or StringBuffer object
allocation as means to reduce unnecessary char[] object allocations resulting from
StringBuilder or StringBuffer expansion.

Measuring the performance impact after addressing StringBuilder and
StringBuffer resizing will be done in combination with addressing any Java Col-
lection classes resizing, the topic of the next section.

Java Collections Resizing

The addition of the Java Collections to Java SE offered an enormous boost to devel-
oper productivity by providing containers with interfaces allowing the ability to eas-
ily switch between alternative concrete implementations. For example, the List
interface offers an ArrayList and LinkedList concrete implementation.

Java Collections Definition

As of Java 6, there were 14 interfaces in the Java SE Collections:

Collection, Set, List, SortedSet, NavigableSet, Queue, Deque, BlockingQueue, BlockingDeque, Map,
SortedMap, NavigableMap, ConcurrentMap, and ConcurrentNavigableMap

 public static String getRandomTaxPayerId() {
 StringBuilder sb = new StringBuilder(20);
 for (int i = 0; i < 20; i++) {
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 sb.append(alphabet[index]);
 }
 return sb.toString();
 }

 public static String getRandomAddress() {
 StringBuilder sb = new StringBuilder(24);
 int size = threadLocalRandom.get().nextInt(14) + 10;
 for (int i = 0; i < size; i++) {
 if (i < 5) {
 int x = threadLocalRandom.get().nextInt(8);
 sb.append(x + 1);
 }
 int index =
 threadLocalRandom.get().nextInt(alphabet.length);
 char c = alphabet[index];
 if (i == 5) {
 c = Character.toUpperCase(c);
 }
 sb.append(c);
 }
 return sb.toString();
 }

Data Structure Resizing 239

The following is a listing of the most common concrete implementations of the Java SE
Collections:

HashMap, HashSet, TreeSet, LinkedHashSet, ArrayList, ArrayDeque, LinkedList, PriorityQueue,
TreeMap, LinkedHashMap, Vector, Hashtable, ConcurrentLinkedQueue, LinkedBlockingQueue,
ArrayBlockingQueue, PriorityBlockingQueue, DelayQueue, SynchronousQueue, LinkedBlocking-
Deque, ConcurrentHashMap, ConcurrentSkipListSet, ConcurrentSkipListMap, WeakHashMap,
IdentityHashMap, CopyOnWriteArrayList, CopyOnWriteArraySet, EnumSet, and EnumMap

Some of the Collections’ concrete implementations are subject to potential
expensive resizing as the number of elements added to the Collection grows such
as ArrayList, Vector, HashMap, and ConcurrentHashMap since their under-
lying data store is an array. Other Collections such as LinkedList or TreeMap
often use one or more object references between the elements stored to chain
together the elements managed by the Collection. The former of these, those that
use an array for the Collection’s underlying data store, can be subject to perfor-
mance issues when the underlying data store is resized due to the Collection
growing in the number of elements it holds. Although these Collections classes
have constructors that take an optional size argument, these constructors are
often not used, or the size provided in an application program is not optimal for
the Collection’s use.

Tip

It is possible that there exists concrete implementations of Java Collections classes, such
as LinkedList and TreeMap, that use arrays as underlying data storage. Those concrete
implementations may also be subject to resizing. Collecting a heap profile and looking at
collection resizing will show which Java Collections classes are resizing.

As is the case with StringBuilder or StringBuffer, resizing of a Java Col-
lections class that uses an array as its data storage requires additional CPU cycles
to allocate a new array, copy the old elements from the old array, and at some point
in the future garbage collect the old array. In addition, the resizing can also impact
Collection’s field access time, the time it takes to dereference a field, because a new
underlying data store, again typically an array, for the Collection’s underlying data
store may be allocated in a location in the JVM heap away from the object references
stored within the data store and the other fields of the Collection. After a Collection
resize occurs, it is possible an access to its resized field can result in CPU cache
misses due to the way a modern JVM allocates objects in memory, in particular
how those objects are laid out in memory. The way objects and their fields are laid
out in memory can vary between JVM implementations. Generally, however, since

240 Chapter 6 � Java Application Profiling Tips and Tricks

an object and its fields tend to be referenced frequently together, an object and its
fields laid out in memory within close proximity generally reduce CPU cache misses.
Hence, the impact of Collections resizing (this also applies to StringBuffer and
StringBuilder resizing) may extend beyond the additional CPU instructions spent
to do the resizing and the additional overhead put on the JVM’s memory manager
to having a lingering higher field access time due to a change in the layout of the
Collection’s fields in memory relative the Collection object instance.

The approach to identifying Java Collections resizing is similar to what was described
earlier for identifying StringBuilder and StringBuffer resizing, collecting heap or
memory profile with a profiler such as NetBeans Profiler. Looking at the source code for
the Java Collection classes helps identify the method names that perform the resizing.

Continuing with the fictitious tax payer program, the program variant in which
tax payer records were populated into multiple HashMaps using a tax payer’s state of
residence as a key into a second HashMap where a tax payer’s id is used as an index is a
good example of where Collections resizing can occur. A full source code listing from this
variant can be found in Appendix B in the section “First Resizing Variant.” The source
code, found in TaxPayerBailoutDbImpl.java, that allocates the HashMaps follows:

 private final Map<String, Map<String,TaxPayerRecord>> db;

 public TaxPayerBailoutDbImpl(int numberOfStates) {
 db = new HashMap<String,Map<String,TaxPayerRecord>>();
 for (int i = 0; i < numberOfStates; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>());
 db.put(BailoutMain.states[i], map);
 }
 }

Here you can see the HashMaps are using a HashMap constructor that takes no
arguments. As a result, the HashMap relies on a default size for its underlying map-
ping array. The following is a portion of OpenJDK’s HashMap.java source code that
shows the default size chosen for a HashMap’s underlying data storage.

static final int DEFAULT_INITIAL_CAPACITY = 16;
static final float DEFAULT_LOAD_FACTOR = 0.75f;

 public HashMap() {
 this.loadFactor = DEFAULT_LOAD_FACTOR;
 threshold =
 (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
 table = new Entry[DEFAULT_INITIAL_CAPACITY];
 init();
 }
 void init() {
 }

Data Structure Resizing 241

Two factors decide when the data storage for a HashMap is resized: the capacity of the
data storage and the load factor. The capacity is the size of the underlying data storage.
That’s the HashMap.Entry[]’s size. And the load factor is a measure of how full the
HashMap is allowed to reach before the HashMap’s data storage, the Entry[], is resized.
A HashMap resize results in a new Entry[] being allocated, twice as large as the previ-
ous Entry[], the entries in the Entry[] are rehashed and put in the Entry[]. The CPU
instructions required to resize a HashMap are greater than what is required by String-
Builder or StringBuffer resizing due to the rehashing of the Entry[] elements.

In Figure 6-18, you can see a row for java.util.HashMap$Entry[]. For this
entry you can see there are 67 allocated objects, and 37 of them are live at the time
of the profile snapshot. This suggests that 37/67, about 55%, are still live. That also
suggests 45% of those Entry[] objects that had been allocated have been garbage
collected. In other words, the HashMaps are experiencing resizing. Notice that the
total bytes consumed by HashMap.Entry[] objects is much less than those con-
sumed by char[] objects. This suggests the impact of eliding the HashMap resizing is
likely to be less than the impact realized from eliding the StringBuilder resizing.

Figure 6-22 shows the allocation stack traces for HashMap.Entry[]. Here you
can see some of those HashMap.Entry[] allocations result from a HashMap.
resize(int) method call. In addition, you can see the no argument HashMap con-
structor is being used, which also allocates a HashMap.Entry[].

Since this example program populates 50 different HashMaps with a total of
2,000,000 fictitious records, each of those 50 HashMaps hold about 2,000,000 / 50 =
40,000 records. Obviously, 40,000 is much greater than the default size of 16 used by
the no argument HashMap constructor. Using the default load factor of .75, and the
fact that each of the 50 HashMap holds 40,000 records, you can determine a size for
the HashMaps so they will not resize (40,000 / .75 = ~ 53,334). Or simply passing
the total number of records to store divided by the number of states, divided by the
default load factor, i.e., (2,000,000 / 50) / .75, to the HashMap constructor that holds
the records. Following is the modified source code for TaxPayerBailoutDbImpl.
java that elides HashMap resizing:

Figure 6-22 HashMap.Entry[] allocation stack traces

242 Chapter 6 � Java Application Profiling Tips and Tricks

In this example program, both StringBuilder and HashMap resizing occur dur-
ing the initialization phase of the program, the phase of the program that populates
a Map of Maps with fictitious, randomly generated tax payer records. Hence, to mea-
sure the performance impact of eliding the StringBuilder and HashMap resizing,
the initialization phase of this program has been instrumented with a time stamp
at the beginning of the program and after the Map of Maps has been populated. A
modified version of this example program, one that uses the no argument HashMap
constructor, calculates and reports the time it takes to populate the HashMaps with
2,000,000 records, can be found in Appendix B in the section “First Resizing Variant.”

When this variant of the program is run on a Sun SPARC Enterprise T5120 Server
configured with 64 virtual processors (the same value as that returned by the Java
API Runtime.availableProcessors()), the amount of time it takes to complete
the initialization phase is 48.286 seconds.

 private final Map<String, Map<String,TaxPayerRecord>> db;
 private final int dbSize = 2000000;

 public TaxPayerBailoutDbImpl(int dbSize, int numberOfStates) {
 final int outerMapSize = (int) Math.ceil(numberOfStates / .75);
 final int innerMapSize =
 (int) (Math.ceil((dbSize / numberOfStates) / .75));
 db =
 new HashMap<String,Map<String,TaxPayerRecord>>(outerMapSize);
 for (int i = 0; i < numberOfStates; i++) {
 Map<String,TaxPayerRecord> map =
 Collections.synchronizedMap(
 new HashMap<String,TaxPayerRecord>(innerMapSize));
 db.put(BailoutMain.states[i], map);
 }
 }

Tip

Since the populating of records is single threaded and the Sun SPARC Enterprise T5120 Server
has a 1.2GHz clock rate, a processor with a smaller number of cores with a higher clock rate
will likely report a shorter duration time needed to populate the 2,000,000 records in the
HashMaps.

Updating this program variant with the changes described in this section to
address both StringBuilder and HashMap resizing and running on the same Ultra-
SPARC T5120 system with the same JVM command line options reports it takes
46.019 seconds to complete its initialization phase. That’s about a 5% improvement
in elapsed time. The source code for this variant can be found in Appendix B in the
section “Second Resizing Variant.”

Increasing Parallelism 243

Applying the data resizing strategy reduces the application’s path length, the total
number of CPU instructions required to execute the program, and potentially more
efficient use of CPU cycles due to fewer possibilities of CPU cache misses as a result of
frequently accessed data structure fields being laid out in memory next to each other.

You may have noticed that the initialization phase in this program is single
threaded. But the system it is being executed on has a CPU that is multicore and
multithreaded per core. The Sun SPARC Enterprise T5120 Server this program
is executing on has 8 cores, and 8 hardware threads per core. It is a chip multi-
threading type of CPU chip, CMT for short. In other words, 8 cores and 8 hardware
threads per core means it has 64 virtual processors. That also means the Java API,
System.availableProcessors(), returns a value of 64. A next step to improve
the performance of the initialization phase of this program is to refactor it to utilize
all of those 64 virtual processors. This is the topic of the next section.

Increasing Parallelism

Modern CPU architectures have brought multiple cores and multiple hardware
execution threads to developer desktops. This means there are more CPU resources
available to do additional work. However, to take advantage of those additional CPU
resources, programs executed on them must be able to do work in parallel. In other
words, those programs need to be constructed or designed in a multithreaded manner
to take advantage of the additional hardware threads.

Java applications that are single threaded cannot take advantage of additional
hardware threads on modern CPU architectures. Those applications must be refac-
tored to be multithreaded to do their work in parallel. In addition, many Java appli-
cations have single-threaded phases, or operations, especially initialization or startup
phases. Therefore, many Java applications can improve initialization or startup per-
formance by doing tasks in parallel, that is, making use of multiple threads at the
same time.

The example program used in the previous sections “Lock Contention” and “Data
Structure Resizing” has a single-threaded initialization phase where random ficti-
tious tax payer records are created and added to a Java Map. This single-threaded
initialization phase could be refactored to being multithreaded. The single-threaded
form, as it was run in the “Lock Contention” and “Data Structure Resizing” sections,
when run on the same Sun SPARC Enterprise T5120 Server, reports it takes about 45
to 48 seconds for the initialization phase to complete. Since there are 64 virtual pro-
cessors on an a Sun SPARC Enterprise T5120 Server, 63 of those 64 virtual processors
are idle doing little or no work during the initialization phase. Therefore, if the initial-
ization phase could be refactored to utilize those additional 63 virtual processors, the
elapsed time it takes to execute the initialization phase should be significantly less.

244 Chapter 6 � Java Application Profiling Tips and Tricks

The key to being able to refactor single-threaded phases of a program to be multi-
threaded is constrained by the program’s logic. If there is a loop of execution involved,
and much of the work performed within that loop is independent of what happens within
each loop iteration, it may be a good candidate to be refactored into a multithreaded
version. In the case of the fictitious tax payer program, Map records are added to a Con-
currentMap. Since a ConcurrentMap can handle multiple threads adding records to it
and the records can be created independently of each other, the work performed in the
single-threaded loop can be broken up and spread among multiple threads. With a Sun
SPARC Enterprise T5120 Server that has 64 virtual processors, the work that is being
done in the single-threaded loop could be spread across those 64 virtual processors.

Here is the core part of the single-threaded loop logic (full implementation can
be found in Appendix B in the section “Increasing Parallelism Single-Threaded
Implementation”):

 // allocate the database
 TaxPayerBailoutDB db = new TaxPayerBailoutDbImpl(dbSize);
 // allocate list to hold tax payer names
 List<String>[] taxPayerList = new ArrayList[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] = new ArrayList<String>(taxPayerListSize);
 }
 // populate the database and tax payer list with random records
 populateDatabase(db, taxPayerList, dbSize);

 ...

 private static void populateDatabase(TaxPayerBailoutDB db,
 List<String>[] taxPayerIdList,
 int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 // make random tax payer id and record
 String key = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 // add tax payer id & record to database
 db.add(key, tpr);
 // add tax payer id to to tax payer list
 int index = i % taxPayerIdList.length;
 taxPayerIdList[index].add(key);
 }
 }

The core part of refactoring the for/loop to be multithreaded results in creating
a Runnable, or Callable, along with an ExecutorService to execute the Run-
nables or Callables in addition to ensuring the implementation of a TaxPayer-
BailoutDB and taxPayerIdList are thread safe. That is, the data they hold will
not be corrupted as a result of having multiple threads writing data to them simulta-
neously. Following are segments of source code that contain the most relevant parts
to the multithreaded refactoring (full implementation can be found in Appendix B in
the section “Increasing Parallelism Multithreaded Implementation”):

Increasing Parallelism 245

 // allocate the database
 TaxPayerBailoutDB db = new TaxPayerBailoutDbImpl(dbSize);
 List<String>[] taxPayerList = new List[numberOfThreads];
 for (int i = 0; i < numberOfThreads; i++) {
 taxPayerList[i] =
 Collections.synchronizedList(
 new ArrayList<String>(taxPayerListSize));
 }

 // create a pool of executors to execute some Callables
 int numberOfThreads = System.availableProcessors();
 ExecutorService pool =
 Executors.newFixedThreadPool(numberOfThreads);
 Callable<DbInitializerFuture>[] dbCallables =
 new DbInitializer[numberOfThreads];
 for (int i = 0; i < dbCallables.length; i++) {
 dbCallables[i] =
 new DbInitializer(db, taxPayerList, dbSize/numberOfThreads);
 }

 // start all db initializer threads running
 Set<Future<DbInitializerFuture>> dbSet =
 new HashSet<Future<DbInitializerFuture>>();
 for (int i = 0; i < dbCallables.length; i++) {
 Callable<DbInitializerFuture> callable = dbCallables[i];
 Future<DbInitializerFuture> future = pool.submit(callable);
 dbSet.add(future);
 }

 // A Callable that will execute multi-threaded db initialization
 public class DbInitializer implements Callable<DbInitializerFuture> {
 private TaxPayerBailoutDB db;
 private List<String>[] taxPayerList;
 private int recordsToCreate;

 public DbInitializer(TaxPayerBailoutDB db,
 List<String>[] taxPayerList,
 int recordsToCreate) {
 this.db = db;
 this.taxPayerList = taxPayerList;
 this.recordsToCreate = recordsToCreate;
 }

 @Override
 public DbInitializerFuture call() throws Exception {
 return BailoutMain.populateDatabase(db, taxPayerList,
 recordsToCreate);
 }
 }

 static DbInitializerFuture populateDatabase(TaxPayerBailoutDB db,
 List<String>[] taxPayerIdList,
 int dbSize) {
 for (int i = 0; i < dbSize; i++) {
 String key = getRandomTaxPayerId();
 TaxPayerRecord tpr = makeTaxPayerRecord();
 db.add(key, tpr);

246 Chapter 6 � Java Application Profiling Tips and Tricks

After applying the refactoring to make the initialization phase multithreaded
by dividing up the number of records to be added to the Map to run in 64 threads
rather than 1 thread, the time it takes to perform the initialization phase drops from
about 45 seconds to about 3 seconds on the Sun SPARC Enterprise T5120 Server. A
higher clock rate dual or quad core desktop system may not observe as much of an
improvement. For example, the author’s dual core desktop system realized about a 4
second improvement, 16 seconds down to about 12. The larger the number of virtual
processors that additional parallel work can be spread among, the greater the potential
performance improvement.

This simple example illustrates the potential benefit of being able to take advan-
tage of additional virtual processors on a system that may be idle for some phase of
an application by making that phase multithreaded.

High CPU Utilization

Sometimes an application simply cannot meet service level performance or scalabil-
ity agreements even though performance efforts have reduced system CPU utiliza-
tion, have addressed lock contention, and other optimization opportunities have been
addressed. In such cases, doing an analysis of the program logic and the algorithms
used is the direction to take. Method profilers such as the Performance Analyzer or
NetBeans Profilers do a good job at collecting information about where in general an
application spends most of its time.

The Performance Analyzer’s Call Tree tab is good at providing an application’s hottest
use case by showing the call stack trees. This information can be leveraged to answer
questions in a more abstract way, such as how long does it take the application to per-
form a unit of work, or perform a transaction, use case, and so on so long as the person
looking at the profile has sufficient understanding of the implementation to be able to
map a method entry point as the beginning of a unit of work, beginning of a transaction,
use case, and so on. Being able to analyze the profile in this way provides the opportunity
to step back, look at a higher level, and ask questions such as whether the algorithms
and data structures being used are the most optimal or are there any alternative algo-
rithms or data structures that might yield better performance or scalability. Often the
tendency when analyzing profiles is to focus primarily on the methods that consume
the most time in an exclusive metric kind of way, that is, focusing only on the contents
of a method rather than at a higher level unit of work, transaction, use case, and so on.

 int index = i % taxPayerIdList.length;
 taxPayerIdList[index].add(key);
 }
 DbInitializerFuture future = new DbInitializerFuture();
 future.addToRecordsCreated(dbSize);
 return future;
 }

Other Useful Analyzer Tips 247

Other Useful Analyzer Tips

Another useful strategy to employ when using the Performance Analyzer is to look
at the Timeline view in the Performance Analyzer GUI (see Figure 6-23).

The Timeline view provides a listing of all threads, one in each row of the list-
ing, that executed during the time when the profile was collected. At the top of the
Timeline view is a timeline of seconds that have passed since the initiation of the
collection of the profile. If the recording of the profiling data is enabled at Java
application launch time, then the timeline contains data since the launching of the
Java application. For each horizontal row, a thread within the application, a unique
color is used to distinguish the method the application was executing in at the time
of the sample. Selecting a thread, one of the rows within a colored area shows the
call stack, their method names in the Call Stack for Selected Event panel, executing
at the time the sample was taken. Figure 6-24 is a screenshot of the Call Stack for
Selected Event panel for the selected thread, thread 1.2 in Figure 6-23.

Hence, by looking at the timeline, you can determine which threads are execut-
ing in the program at any particular point in time. This can be useful when look-
ing for opportunities to multithread single-threaded phases or operations in an
application. Figure 6-23, shows the single-threaded program variant presented in
the “Increasing Parallelism” section earlier in the chapter. In Figure 6-23, you can
see from the timeline, from about 16 seconds to a little past 64 seconds, the thread
labeled as Thread 1.2, is the only thread that appears to be executing. The timeline

Figure 6-23 Performance analyzer timeline view

Figure 6-24 Performance analyzer’s call stack for selected event panel

248 Chapter 6 � Java Application Profiling Tips and Tricks

in Figure 6-23, suggests the program may be executing its initialization or beginning
phase as a single threaded. Figure 6-24 shows a Call Stack for the Selected Event
after clicking in the region of Thread 1.2 between the timeline of 16 seconds and 64
seconds. Figure 6-24 shows the call stack that’s being executed during the selected
thread and selected timeline sample. As you can see in Figure 6-24, a method by
the name BailoutMain.populateDatabase() is being called. This is the method
identified in the “Increasing Parallelism” section earlier in the chapter as one that
could be multithreaded. Hence, this illustrates how you can use the Performance Ana-
lyzer to identify areas or phases of an application that could benefit from parallelism.

Another useful tip when using the Timeline view is make note of the range of sec-
onds for some time period of interest that has caught your attention in the timeline.
Then use the filtering capability to narrow the profile data loaded by the Analyzer
GUI. After applying the filter, the Functions and Callers-Callees views show data
only for the filtered range. In other words, filtering allows you to focus exclusively on
the profile data collected within the period of interest. To illustrate with an example,
in Figure 6-23, Thread 1.2 between 16 and 64 seconds is the only thread executing.
To narrow the focus of the collected profile data to that particular time range, the
Analyzer can be configured to load only the profile data between 16 and 64 seconds
using the View > Filter Data menu and specifying 16-64 samples in the Filter Data
form’s Samples field as shown in Figure 6-25.

Filtering allows for the ability to eliminate data collected outside an area of inter-
est, which leads to more accurate analysis since only the data of interest is being
presented.

Figure 6-25 Filtering the range of samples to view in performance analyzer

Bibliography 249

There are many additional features of the Performance Analyzer, but this chapter
presents those likely to be the most useful when profiling and analyzing Java appli-
cations. Additional details on using Performance Analyzer for profiling Java applica-
tions, including the Java EE application, can be found at the Performance Analyzer
product Web site: http://www.oracle.com/technetwork/server-storage/solarisstudio/
overview/index.html.

Bibliography

Keegan, Patrick, et al., NetBeans IDE field guide: developing desktop, web, enterprise,
and mobile applications, 2nd Edition. Sun Microsystems, Inc., Santa Clara, CA, 2006.

Oracle Solaris Studio 12.2: Performance Analyzer. Oracle Corporation. http://dlc.sun.
com/pdf/821-1379/821-1379.pdf.

JSR-133: Java Memory Model and Thread Specification. JSR-133 Expert Group.
http://jcp.org/en/jsr/summary?id=133.

The Java Memory Model. Dr. Bill Pugh. http://www.cs.umd.edu/~pugh/java/
memoryModel/.

http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.cs.umd.edu/~pugh/java/memoryModel/
http://www.cs.umd.edu/~pugh/java/memoryModel/
http://dlc.sun.com/pdf/821-1379/821-1379.pdf
http://dlc.sun.com/pdf/821-1379/821-1379.pdf
http://jcp.org/en/jsr/summary?id=133

This page intentionally left blank

 669

Algorithms, increasing efficiency, 211–212
Allocated objects, profiling, 205
Allocation, HotSpot VM garbage collectors, 91
Allocations tracked, specifying, 204
Alpha (α), 351–353
Analyzer, definition, 158
APIs. See also JPA (Java Persistence API).

DOM, 459–460
JAXB (Java API for XML Binding), 454,

469–470
JAXP (Java API for XML Processing), 454, 457
showing/hiding, 168
System.currentTimeMillis API, 328–329
System.nanoTime API, 328–329
for XML documents, selecting, 468–471

Application performance
ideal CPU utilization, 15
improving with network I/O utilization, 45

Application server monitoring
disk I/O, 395–398
external systems, 392–395
with GlassFish

administration console, 383–384
asadmin CLI, 386–388
JConsole, 384–386
overview, 382
VisualVM, 384–386

monitoring resource pools, 398–399
overview, 382
subsystems

JVM, 388–389
network I/O, 390–392

Index

: (colon), keyword delimiter, 182
* (asterisk), wildcard character, 44
\ (backslash), line termination character, 181
- (dash) option, 181
! (exclamation point) keyword, 182
% (percent sign) keyword, 182
+ (plus sign) keyword, 182
. (period) keyword, 182
32-bit runtime environment vs. 64-bit, 260–261

A
α (alpha), 351–353
A keyword, 182
-A option, collect tool, 163
Acceptor threads, monitoring and tuning, 414–417
acceptor-thread property, 415
Access logging, best practices, 446–450
Accessing XML documents, 455, 458–459
Adaptive heap sizing

description, 104–105
disabling, 105, 309–311
enabling/disabling, 558
HotSpot VM, 104–105, 558
policy, printing, 563
throughput, tuning, 309–311

Adaptive tuning. See HotSpot VM adaptive
tuning.

Administration console, monitoring server
applications, 383–384

Aggressive optimization, 568–569
Aging statistics, 145–146

670 Index

Application server monitoring (continued)
thread dumps, 389–390

tuning resource pools, 398–399
Application threads, isolating, 25, 27
Applications. See also Benchmarking multitiered

applications; Benchmarking Web
applications; Java applications.

concurrent run time, printing, 564
developing. See Software development.
JMX, configuring, 135–137
startup time, decreasing, 68
stop time, printing, 563

Archiving artifacts, 163
asadmin CLI, monitoring server applications,

386–388
Asterisk (*), wildcard character, 44
Asynchronous benchmarks, 381
Asynchronous requests, benchmarking, 360
Attach Mode, specifying, 193–194
Attributed time, definition, 158
Availability

performance metrics, calculating, 365–366
service, benchmarking, 359
tuning the JVM, 255–256

Average age, profiling, 206
Averages, calculating, 349

B
Backedge counters, 95–96
Backslash (\), line termination character, 181
Bandwidth, monitoring, 44
Barriers, memory, 234
Bean caches, monitoring and tuning, 514–520
Bean pools, monitoring and tuning, 514–520
Benchmarking. See also Experiments; Statistics.

compilation activity, eliminating, 333–334
deoptimization, 340–345
EJB best practices, 522
elapsed time, calculating, 328–329
garbage collection pauses, 327–328
inlining methods, 335–339
micro-benchmarks, creating, 345–346
optimizing away dead code, 329–335
warm-ups, 324–327, 333–334
Web services, 473–476

Benchmarking multitiered applications. See also
Applications.

challenges
asynchronous requests, 360
external dependencies, 360
firewalls, 360
nature of enterprise applications, 358
payload sizes, 359
secure interactions, 359
service availability, 359
session maintenance, 359
user scaling, 358

variety of client types, 359
vertical and horizontal scaling, 358, 377

enterprise considerations
availability metrics, calculating, 365–366
cycle time, 365
injection rate, 365
Markov chains, 362–366
micro-benchmarks, developing, 361–362
system boundaries, defining, 360–361
think time, 364
user interaction modeling, 362–366

Little’s Law verification, 372–374
maximum number of concurrent clients,

372–374
performance metrics, calculating

availability, 365–366
page view, 366–367
requests, 366
response time, 368–369
round-trip time, 366
think time, 366
throughput, 369–370
user transactions, 366, 367–368

running the benchmark
asynchronously, 381
isolating the SUT, 378–379
ramp down time, 380
ramp up time, 380
repeatability, 380–381
resource monitoring, 379–380
statistical methods, 381–382
steady state time, 380

scalability
analysis, 377–378
hybrid, 377
user scaling, 358
vertical and horizontal scaling, 358, 377

scalability analysis, 377–378
scaling the benchmark, 370–372
SUT (System Under Test), isolating, 360–361,

378–379
think time

benchmarking, 374–377
calculating, 366
definition, 366
enterprise considerations, 364

Benchmarking Web applications
See also Applications, 446–450
best practices

access logging, 446–450
accessing JavaBean components, 434–436
bean, locating or instantiating, 432–434
compression, 440–443
content caching, 439–443
context listeners, 427–429
distributed caches, 439–443
EL (expression language), 434–436
HTTP compression, 436–438

Index 671

HTTP Server File Cache, 445–450
JSP, 427–438
JSP include mechanism, 429–430
log file aggregation, 450
object size vs. cost, 444
overview, 427
serialization, 440–443
servlets, 427–438
session persistence, 443–445
trimming whitespaces, 430–431
tuning the file cache, 446

overview, 404–405
Web container components, GlassFish

Coyote connector, 407
GlassFish, 406–407
Grizzly connector, 406–407
HTTP connector, 406–407
overview, 405–406
servlet engines, 407–408

Web container monitoring and tuning
configuration settings, 408–409
development mode, 408–409
garbage collection, 411
HTTP service, 412
JIT compiler tuning, 410
JVM tuning, 410–412
overview, 408
page freshness, checking, 409
production mode, 408–409
security manager, 409–410

Web container monitoring and tuning, HTTP
listener

acceptor threads, 414–417
connection queues, 414–417
elements to be monitored, 412
individual applications, 420–427
keep alive, 414–417
request processing, 418–420
request response codes, 419
thread pools, 412–414

Best practices
benchmarking Web applications

access logging, 446–450
accessing JavaBean components, 434–436
bean, locating or instantiating, 432–434
compression, 440–443
content caching, 439–443
context listeners, 427–429
distributed caches, 439–443
EL (expression language), 434–436
HTTP compression, 436–438
HTTP Server File Cache, 445–450
JSP, 427–438
JSP include mechanism, 429–430
log file aggregation, 450
object size vs. cost, 444
overview, 427
serialization, 440–443

servlets, 427–438
session persistence, 443–445
trimming whitespaces, 430–431
tuning the file cache, 446

JPA (Java Persistence API)
bulk updates, 548–549
connection pooling, 546–548
database locking strategies, 549
data-fetching strategy, 544–546
dynamic queries, 541
inheritance, 550
JPA Query Language queries, 540–543
named native queries, 541
named queries, 541
native queries, 542
query results cache, 543–544
reads without transactions, 550

Web service performance
binary payload, 486–495
catalog file locations, 502–503
client performance, 502–503
Fast Infoset, 499–501
HTTP compression, 501–502
MTOM (Message Transmission

Optimization Mechanism), 487–495
overview, 486
Provider interface, 495–498
SOAP messages, 499–501
XML documents, 492
XML documents as attachments, 492–495

Best practices, EJB (Enterprise JavaBeans)
beans, locating or instantiating, 432–434
benchmarking, 522
EJB 2.1

cache static resource references, 524–526
coarse-grained access, 529–530
control serialization, 523–524
database locking strategies, 532–533
EJB Query Language, 533–535
lazy loading, 530–532
local vs. remote interfaces, 526–528
optimistic locking, 532–533
pessimistic locking, 532–533
prefetching, 530–532
read-only entity beans, 535–536
Session Façade pattern, 529–530
transaction attributes, choosing, 523
transactions, container managed vs. bean

managed, 522–523
EJB 3.0

business method interceptors, 537–540
compatibility with EJB 2.1, 536–537

Biased locking, enabling, 569
Binary heap dumps, 140
Binary XML payload, Web service performance

best practices, 486–495
Blocked thread state, 74
Blocking vs. nonblocking sockets, 45

672 Index

Bootstrap class loader, 65
Bottom up software development, 7–8
buffer-size-bytes property, 415
Bulk updates, JPA best practices, 548–549
Bump-the-pointer technique, 85
Business interface, 506–507
Business method interceptors, 537–540
Bytecode analysis, JIT compilers, 96–97
Bytecode verification, 66–67

C
C++ heap management, 76–77
Cache static resource references, 524–526
calibrate.sh script, 196–197
Call stack trees, displaying, 246
Call stacks, attributed time, 174–175
Call Tree tab, 169–171, 246
Call trees, 157–158, 170–171
Caller-callee relationships, 158, 172–174
Callers-callees, monitoring System CPU usage,

218–221
callers-callees command, 184
Callers-Callees tab, 169–170, 172–174
Callers-Callees tables, printing, 184–185
Card tables, 82–83
Catalog file locations, Web service performance

best practices, 502–503
Catalog resolvers, 463–464
Catching exceptions, 70–71
checkInterval property, 409
Chrome, Developer Tools for, 363
Class data sharing, 65, 67–68
Class Hierarchy Analysis, 94–95
Class level interceptor methods, 538–539
Class loader. See also HotSpot VM Runtime, class

loading.
delegation, 65
time, monitoring, 144

Class metadata, 66
Classes. See also specific classes.

uninitialized, 98
unloaded, 98

Client JIT, 97
Client performance, Web service performance best

practices, 502–503
Client runtime environment vs. server, 260
Client types, benchmarking, 359
Clock cycles. See CPU, cycles.
Clock cycles per CPU instruction (CPI), 15,

211–212
cmetrics command, 186
CMS (Concurrent Mark-Sweep GC)

collection cycle, initiating, 298–303
concurrent collection, enabling, 561
incremental mode, 561
incremental pacing, 562
overview, 88–90
pause time tuning, 305–306

remarks, scavenging before, 560
sample output, 113–114
throughput, tuning, 307–308
tuning latency/responsiveness, 287–289,

298–303
Coarse-grained access, EJB best practices,

529–530
collect tool, 158, 162–164
Colon (:), keyword delimiter, 182
Command line flags, printing, 571
Command line names, printing, 572
-command option, 181
Common subexpression elimination, 93
Compilation

activity, eliminating, 333–334
JIT compilers, 93
policy, JIT compilers, 95–96

Compile time, monitoring, 144
Compiler structure, JIT compilers, 93
compressableMimeType property, 438
Compressed oops, 57, 554
Compression

best practices, 440–443
GlassFish server, 436–438
HTTP, 436–438

Compression property, 438
compressionMinSize property, 438
Concurrent collection, enabling, 560
Concurrent garbage collection, sample output,

115–117
Concurrent marking phase, 88
Concurrent Mark-Sweep GC (CMS). See CMS

(Concurrent Mark-Sweep GC).
Concurrent mode failure, 117
Concurrent permanent generation garbage

collection, 304–305
Concurrent sweeping phase, 89
CONDVAR_WAIT statement, 74
Confidence intervals, calculating, 350–351
Configuring remote systems for profiling, 196–197
Connection pooling, JPA best practices, 546–548
Connection queues, monitoring and tuning,

414–417
Constant folding, 93
Contended operations, 71–72
Content caching, best practices, 439–443
Context listeners, best practices, 427–429
Context switching, monitoring, 37
Control flow representation, JIT compilers,

98–100
Control serialization, EJB best practices, 523–524
Copying collectors, 85
corestat tool

aggregating instruction counts, 52
downloading, 52
monitoring CPU utilization, SPARC T-series,

52
count5xx-count attribute, 419
count200-count attribute, 419

Index 673

count302-count attribute, 419
count304-count attribute, 419
count404-count attribute, 419
countconnections-count attribute, 417
counthits-count attribute, 417
countoverflows-count attribute, 416
countqueued-count attribute, 416
countqueued*minuteaverage-count attribute,

416
countrefusals-count attribute, 417
countrequests-count attribute, 419
counttimeouts-count attribute, 417
Coyote connector, 407
CPI (clock cycles per CPU instruction), 15, 211–212
CPU

architecture, choosing, 9–10. See also specific
architectures.

cache efficiency, 57
counters, collecting, 163–164
cycles

CPI (clock cycles per CPU instruction), 15
IPC (CPU instructions per clock cycle), 15
monitoring, 14–16. See also Monitoring

CPU utilization.
monitoring context switching, 39
stalls, 15
waiting for data, 15

performance counters
listing, 50
monitoring, 49–50

scheduler’s run queue, monitoring
Linux, 31–32
overview, 28–29
Solaris, 31
Windows, 29–31

utilization. See also Monitoring CPU
utilization.

application performance, ideal situation
for, 15

definition, 15
high, identifying, 246
scalability, ideal situation for, 15
system CPU, 15
user CPU, 15

CPU instructions per clock cycle (IPC), 15
cpubar tool. See also iobar tool.

monitoring CPU utilization, 21–24
monitoring memory utilization, 34–35
monitoring run queue depth, 31

cpustat tool
listing CPU performance counters, 50
monitoring CPU performance counters, 49–50
monitoring CPU utilization, SPARC T-series,

52
monitoring instructions per hardware thread,

52
cputrack tool

listing CPU performance counters, 50
monitoring CPU performance counters, 49–50

Criteria for performance, 2–3. See also Metrics.
csingle command, 185–186
currentthreadsbusy-count attribute, 414

D
-d option, collect tool, 163
-d64 option, 554
Dash (-) option, 181
Data structure resizing

identifying, 235
Java collections, 238
overview, 235
StringBuffer, 235–238
StringBuilder, 235–238

Database locking strategies
EJB best practices, 532–533
JPA best practices, 549

Data-fetching strategy, JPA best practices,
544–546

Date and time stamps
monitoring garbage collection, 117–119
printing, 266, 562

dateTime schema, effects on Web service
performance, 481–482

Dead code, optimizing away, 329–335
Deadlocks, 80
Debug VM, 69
Debugging

alternative interface, enabling, 568
log files, dumping, 79
threads, 74–75
VMError class, 79
-XX:OnError, 79

Default interceptor methods, 538
DefaultServlet servlet engine, 408
DefNew garbage collector, 111, 264
Degrees of freedom, 351–353
Deoptimization, 95, 96–97, 340–345
Deployment model, choosing

multiple JVM deployment, 258–259
overview, 259
single JVM deployment, 258

Destroying threads, 73–74
DestroyJavaVM method, 62–63
DetachCurrentThread method, 60
Development mode, Web containers, 408–409
Disassembly tab, 169–170
Disk I/O utilization. See Monitoring disk I/O.
Disks, formatting, 49
Distributed caches, best practices, 439–443
DocumentBuilder class, creating, 455–456
DocumentBuilderFactory class, 456
DOM APIs

modifying XML documents, 459–460
XML document performance, 469–470

DTD (document type definition), external subsets,
462–464

Dynamic queries, JPA best practices, 541

674 Index

E
e keyword, 182
EclipseLink session cache, monitoring and tuning,

519–520
Eden space

description, 83–85
size, compared to survivor space, 290–291, 556
utilization, monitoring, 143, 144

Edge cases, tuning, 316
EJB (Enterprise JavaBeans). See also NetBeans.

Business interface, 506–507
components, 505–506
Home interface, 506–507
message driven beans, 505–506
optimistic locking, 521
persistent entities, 505–506
programming model, 506–507
session beans, 505–506
stateful session beans, 506
stateless session beans, 506
transaction isolation levels, 521–522

EJB (Enterprise JavaBeans), best practices
beans, locating or instantiating, 432–434
benchmarking, 522
EJB 2.1

cache static resource references, 524–526
coarse-grained access, 529–530
control serialization, 523–524
database locking strategies, 532–533
EJB Query Language, 533–535
lazy loading, 530–532
local vs. remote interfaces, 526–528
optimistic locking, 532–533
pessimistic locking, 532–533
prefetching, 530–532
read-only entity beans, 535–536
Session Façade pattern, 529–530
transaction attributes, choosing, 523
transactions, container managed vs. bean

managed, 522–523
EJB 3.0

business method interceptors, 537–540
compatibility with EJB 2.1, 536–537

EJB container, monitoring and tuning
bean caches, 514–520
bean pools, 514–520
EclipseLink session cache, 519–520
entity bean caches, 516
invocation patterns, 512
overview, 511
Ready Cache, 516–517
stateful session bean caches, 516
thread pool, 512–514
Transactional Cache, 516–517

EJB Query Language, best practices, 533–535
EL (expression language), best practices, 434–436
Elapsed time

calculating, 328–329

monitoring garbage collection, 114
Endpoint implementation, effects on Web service

performance, 483–484
Entering a Java monitor, 71–72
Enterprise applications, profiling, 399–400
Entity bean caches, monitoring and tuning, 516
Entity resolvers, 462–464
Ergonomics

defaults, printing, 102–103
definition, 100
Java 1.4.2 defaults, 101
Java 5 defaults, 101–103
Java 6 Update 18 defaults, 103–104
server-class machines, 101–103

er_print tool. See also Printing, experiment
profiles.

: (colon), keyword delimiter, 182
\ (backslash), line termination character, 181
- (dash) option, 181
! (exclamation point) keyword, 182
% (percent sign) keyword, 182
+ (plus sign) keyword, 182
. (period) keyword, 182
A keyword, 182
abbreviations, 181
callers-callees command, 184
cmetrics command, 186
-command option, 181
csingle command, 185–186
definition, 158
e keyword, 182
er_print_metric_list command, 183
filters command, 186–187
i keyword, 182
limit command, 183–184
lock keyword, 182
metric keywords, 182–184
outfile command, 187
-script option, 181
scripting, 180, 187–189
sort command, 183
splitting commands, 181
syntax, 180–181
system keyword, 182
user keyword, 182
-V option, 181
viewmode command, 187

er_print_metric_list command, 183
Error checking, XML documents, 460
Error handling, 568
Escape analysis, enabling, 569
Even Faster Web Sites, 404
Event tab, 168–169
Exception handling, 70–71
Exclamation point (!) keyword, 182
Exclusive time

definition, 158, 160
displaying, 176

Exiting a Java monitor, 71–72

Index 675

Experiment files
creating, 163
opening, 168
specifying a directory for, 163

Experiments. See also Benchmarking; Monitoring;
Performance Analyzer, experiments;
Profiles; Profiling; Tuning.

definition, 158
designing, 347–348

Experiments tab, 170
Expert mode, 178
Explicit garbage collection

monitoring, 121
tuning latency/responsiveness, 303–304

Expression language (EL), best practices, 434–436
External dependencies, benchmarking, 360

F
Factory lookup, 456–457
Factory objects, reusing, 457
Fast allocation, HotSpot VM garbage collectors, 85
Fast Infoset Web service performance best

practices, 499–501
Fast-path code, synchronization, 72
Fatal error handling, 78–80

FetchType, 544–546
File cache tuning, best practices, 446
Filtering data

data presentation, 168, 179–180, 248–249
printing experiment profiles, 186–187

Filters, definition, 158
filters command, 186–187
Firebug plug-in, 363
Firewalls, benchmarking, 360
Footprint. See Memory footprint.
format command, 49
Fragmentation issues, garbage collection, 90
Full garbage collection. See also Major garbage

collection.
definition, 85
monitoring, 109–110, 112–113
sample output, 112
scavenging young generation space, 110, 561
tuning latency/responsiveness, 286

Full Identity Map option, 509
Functions tab, 169–170, 171–174

G
G1 GC, 90–91
Garbage collection. See also HotSpot VM garbage

collectors.
definition, 159
GlassFish server, 411–412
logging results, 562
monitoring. See Monitoring garbage collection.

old generation, enabling, 558
pauses, benchmarking, 327–328
pausing for swapping, 32
stop-the-world, 76, 558
tuning latency/responsiveness, activities

affecting, 278–279
Web containers, 411

Garbage collection reports
adaptive size policy, 563
application concurrent run time, 564
application stop time, 563
date and time stamps, printing, 562
detailed, enabling, 562
enabling, 562
safepoint statistics, 564
tenuring statistics, 563

Garbage collection threads, 75
Garbage collectors. See also HotSpot VM garbage

collectors.
tuning

choosing, 261–262
command line options, 263–267
date stamp, printing, 266
directing output to a file, 264
latency, 262
logging, 263–267
memory footprint, 262
OutOfMemoryError, 273–274
performance attributes, 262–263
principles of, 263
safepoint pauses, 267
statistics, printing, 264
throughput, 262, 308–311
time stamp, printing, 264, 266

Garbage-First GC, 90–91
GC time, monitoring, 144
GCHisto tool, 121–125
Generational garbage collection. See HotSpot VM

garbage collectors, generational.
Generations, NetBeans Profiler, 206–207
getElementsByTagName method, 459
getElementsByTagNameNS method, 459
GlassFish server

access logging, 447
application server monitoring

administration console, 383–384
asadmin CLI, 386–388
JConsole, 384–386
overview, 382
VisualVM, 384–386

benchmarking Web container components
Coyote connector, 407
GlassFish, 406–407
Grizzly connector, 406–407
HTTP connector, 406–407
servlet engines, 407–408

compression, 436–438
dynamic JSP modification, 408
garbage collection, 411–412

676 Index

GlassFish server (continued)
maximum connections, 407
monitoring Java applications, 150–151
monitoring server applications

administration console, 383–384
asadmin CLI, 386–388
JConsole, 384–386
overview, 382
VisualVM, 384–386

RMI server, 411–412
security manager, 410
Web container components

Coyote connector, 407
GlassFish, 406–407
Grizzly connector, 406–407
HTTP connector, 406–407
overview, 405–406
servlet engines, 407–408

Web containers
Coyote connector, 407
development mode, 408–409
GlassFish, 406–407
Grizzly connector, 406–407
HTTP connector, 406–407
production mode, 408–409
servlet engines, 407–408

GlassFish Server Open Source Edition. See
GlassFish server.

GlassFish Web container
development mode, 408–409
production mode, 408–409

GMT, adjusting to local time, 118–119
GNOME System Monitor, monitoring CPU

utilization, 20–21
gnome-system-monitor command, 20–21
Graph coloring, 94
Graphs panel, 144–145
Grizzly connector, 406–407

H
-h option, collect tool, 163–164
Handler performance, effects on Web service

performance, 484–486
Hard Cache Weak Identity Map option, 510
Hardware threads, SPARC T-series processor, 9–10
hasAttributes method, 459
Heap

aggressive options, 569
definition, 159
initial size, configuring, 275–277
in JConsole. See Memory pools.
layout, 268–272
live data size, calculating, 274–275
management, C++, 76–77
memory, JConsole, 129
profiling. See Memory profiles.
size, specifying, 554–555
size, starting point, 272–274

space, on NUMA systems, 571
space limitation, 57
splitting for garbage collection, 81
utilization, monitoring, 111–113, 114

Heap dumps
analyzing with NetBeans Profiler, 209
directory path, specifying, 567–568
enabling on OutOfMemoryError, 567
on OutOfMemoryError, 567
specifying a location for, 80

Heap sizing, adaptive
description, 104–105
disabling, 105, 309–311
enabling/disabling, 558
HotSpot VM, 104–105, 558
policy, printing, 563
throughput, tuning, 309–311

High Performance Web Sites, 404
Histogram panel, 145–146
Home interface, 506–507
Horizontal scaling, 358, 377. See also Scaling.
Hot locks, isolating, 39–40
HotSpot VM. See also JVM (Java Virtual

Machine), tuning.
64-bit version, loading, 554
architectural overview

32-bit vs. 64-bit versions, 57
compressed oops, 57
CPU cache efficiency, 57
garbage collectors, 57
high level architecture, 56–58
Java heap space limitation, 57
memory address limitation, 57
platforms supporting, 58
register spilling, 58

debug VM, 69, 337
launching, 60–62
lock optimization, 37
shutting down, 62–63

HotSpot VM, optimization
aggressive, 568–569
for client applications, 553
for server applications, 553

HotSpot VM adaptive tuning
adaptive heap sizing

enabling/disabling, 558
overview, 104–105

ergonomics
defaults, printing, 102–103
definition, 100
Java 1.4.2 defaults, 101
Java 5 defaults, 101–103
Java 6 Update 18 defaults, 103–104
server-class machines, 101–103

heap sizing, disabling, 105
overview, 100

HotSpot VM garbage collectors
allocation, 91
bump-the-pointer technique, 85

Index 677

creating work for, 91
fast allocation, 85
history of, 92
live data size, 91
monitoring. See Monitoring garbage collection.
overhead, reducing, 91–92
overview, 80–81
reference updates in old generation, 91
TLABs (Thread-Local Allocation Buffers), 85

HotSpot VM garbage collectors, generational
card tables, 82–83
copying collectors, 85
full garbage collection, 85. See also Major

garbage collection.
generational, 81–83
major garbage collection, 81. See also Full

garbage collection; Old generation
garbage collection.

minor collection. See also Young generation
garbage collection.

definition, 81
process flow, 84–85
reducing runtime, 82–83

old generation space, 81
permanent generation, 81
premature promotion, 85
promotion, 81
promotion failure, 85
splitting the heap, 81
tenure, 81
weak generational hypothesis, 81
write barriers, 83
young generation collection

definition, 81
eden space, 83–85
layout, 83–85
survivor spaces, 84–85

HotSpot VM garbage collectors, types of. See also
specific types.

CMS (Concurrent Mark-Sweep GC), 88–90
comparison chart, 91
G1 GC, 90–91
Garbage-First GC, 90–91
mark-compact, 86–87
Mostly-Concurrent GC

concurrent marking phase, 88
concurrent sweeping phase, 89
definition, 88
disadvantages of, 89–90
enabling, 559
fragmentation issues, 90
initial mark, 88
phases of, 88–89
pre-cleaning phase, 89
remark pause, 88–89

Parallel GC, 87–88
Parallel Old GC, 87–88
Serial GC, 86–87, 92
sliding compacting mark-sweep, 86–87

Throughput GC. See Parallel GC.
Train GC, 92

HotSpot VM JIT compilers. See JIT compilers.
HotSpot VM Runtime

application startup time, decreasing, 68
bytecode verification, 66–67
C++ heap management, 76–77
class data sharing, 67–68
class loading

bootstrap class loader, 65
class data sharing, 65
class loader delegation, 65
class metadata, 66
definition, 63
initialization phase, 64
internal data, 66
link phase, 64
load class phase, 64
monitoring, 147–150
phases, 64–65
reasons for, 64
safepoints, 66
type safety, 65–66

command line options, 58–59
developer command line options, 59
exception handling, 70–71
fatal error handling, 78–80
interpreter, 69–70
JNI (Java Native Interface), 77–78
memory footprint cost, reducing, 68
nonstandard command line options, 59
overview, 58
standard command line options, 59
synchronization

biased state, 72
concurrency, 71
contended operations, 71–72
entering a Java monitor, 71–72
exiting a Java monitor, 71–72
fast-path code, 72
inflated state, 72
Java monitors, 71–72
mark word, 72
mutual exclusion, 71
neutral state, 72
owning Java monitors, 71–72
races, avoiding, 71–72
slow-path code, 72
stack-loaded state, 72
states, 72
synchronized blocks, 71
uncontended operations, 71

thread management
blocked thread state, 74
CONDVAR_WAIT statement, 74
creating threads, 73–74
deadlocks, 80
debugging, 74–75
destroying threads, 73–74

HotSpot VM Runtime (continued)
garbage collection threads, 75
internal VM threads, 75
JIT compiler threads, 75
MONITOR_WAIT statement, 74
new thread state, 74
OBJECT_WAIT statement, 75
overview, 72
periodic task threads, 75
safepoints, 75–76
signal dispatcher thread, 75
thread in Java state, 74
thread in Java vm state, 74
thread states, 74–75
threading model, 72–73
VM operations, 75–76
VM threads, 75

type inference, 67
type verification, 67
VM life cycle, 59–61

HTTP compression
best practices, 436–438
Web service performance, best practices, 501–502

HTTP connector, 406–407
HTTP listener, monitoring and tuning

acceptor threads, 414–417
connection queues, 414–417
elements to be monitored, 412
individual applications, 420–427
keep alive, 414–417
request processing, 418–420
request response codes, 419
thread pools, 412–414

HTTP Server File Cache, best practices, 445–450
HTTP service, Web containers, 412
Hybrid scalability, 377
Hypothesis tests, 351–354

I
i keyword, 182
Identity transformation, 93
include file directive, 429
Inclusive time

definition, 158, 160
displaying, 160

Inflated state, synchronization, 72
Inheritance, JPA best practices, 550
init method, 427–429
Initial mark, 88
Initialization phase, 64
Injection rate, benchmarking, 365
Inlined methods

benchmarking, 335–339
maximum bytecode size, 567
printing, 566–567

Inlined of functions, 93
Instrumentation, definition, 159

Intermediate representation (IR), 93
Internal class loader data, 66
Internal VM threads, 75
Interpreter

adaptive optimization, 70
overview, 69
vs. switch statements, 69

Invocation counters, 95
Involuntary context switching, monitoring, 40–41
I/O, monitoring System CPU usage, 214–218,

221–222
iobar tool, Solaris, 46–47. See also cpubar tool.
iosnoop.d script, 47–48
iostat tool, 46–47
iotop tool, 46–47. See also prstat tool; top tool.
IPC (CPU instructions per clock cycle), 15
IR (intermediate representation), 93
Iteration splitting, 99–100

J
Java API for XML Binding (JAXB), 454, 469–470
Java API for XML Processing (JAXP), 454, 457
Java applications. See also Applications.

listing, 134
monitoring

GlassFish server, 150–151
jstack output, example, 151–153
overview, 150–151
quick lock contention, 151–153

Java collections
overview, 238–243
resizing, 238

Java heap. See Heap.
Java HotSpot VM. See HotSpot VM.
Java monitors, synchronization, 71–72
Java Native Interface (JNI), 77–78
Java Persistence API (JPA). See JPA (Java

Persistence API).
Java Virtual Machine (JVM). See JVM (Java

Virtual Machine), tuning.
JavaBean components, accessing with best

practices, 434–436
java.util.Random, lock contention

hottest methods, displaying, 228–229
replacing with ThreadLocal<Random>, 232
sample code, 593–603, 603–613, 613–624,

624–635
source code, 230

javaw command, 60
javaws command, 60
JAXB (Java API for XML Binding), 454, 469–470
JAXP (Java API for XML Processing), 454, 457
JAX-WS RI (JAX-WS Reference Implementation)

stack, 471–473
JConsole. See also VisualGC; VisualVM.

heap memory, 129
local monitoring, 127

678 Index

Index 679

memory, monitoring, 128–130
memory metrics, 129–130
memory pools, mapping to HotSpot VM spaces,

129
monitoring server applications, 384–386
overview, 125–127
remote monitoring, 127–128
tabs, 128–130

JIT compiler reports
inlined methods, 566–567
optimization decisions, 567
optimized methods, 565–566

JIT compilers
backedge counters, 95–96
batch, 564–565
bytecode analysis, 96–97
class files, 93
Class Hierarchy Analysis, 94–95
Client JIT, 97
common subexpression elimination, 93
compilation, 93
compilation policy, 95–96
compiler structure, 93
constant folding, 93
control flow representation, 98–100
defaults for server-class machines, 101–102
deoptimization, 95, 96–97
future enhancements, 100
graph coloring, 94
in HotSpot VM, 70
identity transformation, 93
inline methods, maximum bytecode size, 567
inlining of functions, 93
invocation counters, 95
IR (intermediate representation), 93
linear scan register allocation, 94
loop optimization, 99–100
machine representation, 93–94
metadata for compiled code, 96–97
method counters, 95
Method Liveness, 96–97
methodDataOop object, 98
monitoring, 146–147
OopMaps tables, 97
optimizations, 93–94
OSRs (On Stack Replacements), 95
overridden methods, detecting, 94–95
overview, 92–94
program dependence graphs, 98–100
register allocation, 94
register tables, 97
running in background, 564–565
Server JIT, 97–98
SSA (single static assignment), 93, 98–100
stack location tables, 97
superword, 99–100
threads, 75
tiered compilation, 565
tuning Web containers, 410

uncommon traps, 96–97, 98–100
uninitialized classes, 98
unloaded classes, 98

JMeter tool, 363
JMX applications, configuring, 135–137
JNI (Java Native Interface), 77–78
JNI_CreateJavaVM method, 61–62
JOINED inheritance, 550
JPA (Java Persistence API)

best practices
bulk updates, 548–549
connection pooling, 546–548
database locking strategies, 549
data-fetching strategy, 544–546
dynamic queries, 541
inheritance, 550
JPA Query Language queries, 540–543
named native queries, 541
named queries, 541
native queries, 542
query results cache, 543–544
reads without transactions, 550

L2 (level two) cache
configuring, 509–511
default type, 511
Full Identity Map option, 509
Hard Cache Weak Identity Map option, 510
No Identity Map option, 510
options, 509–511
overview, 508
size, vs. performance, 508
Soft Cache Weak Identity Map option, 510
Soft Identity Map option, 509
Weak Identity Map option, 509

overview, 507
JPA Query Language queries, best practices,

540–543
JSP best practices, 427–438
jsp:include page action, 429
jspInit method, 428–429
JspServlet servlet engine, 408
jsp:useBean action, 432–434
JSR-133, 234
jstack command

monitoring CPU utilization, 27–28
monitoring thread dumps, 390
output, example, 151–153

jstat command, 389
jstatd daemon, 133–134
jvisualvm program, 191
JVM (Java Virtual Machine), tuning. See also

HotSpot VM.
application systemic requirements

availability, 255–256
latency, 256
manageability, 256
memory footprint, 256–257
overview, 255
responsiveness, 256

680 Index

testing infrastructure requirements, 255
Web containers, 410–412

K
Keep alive, monitoring and tuning, 414–417
Kernel CPU. See System CPU.
Kernel statistics, 49
Kernel thread queue depths, monitoring, 21–24
Kesselman, Jeff, 2–5
kstat tool, 49

L
L2 (level two) cache

configuring, 509–511
default type, 511
Full Identity Map option, 509
Hard Cache Weak Identity Map option, 510
No Identity Map option, 510
options, 509–511
overview, 508
size, vs. performance, 508
Soft Cache Weak Identity Map option, 510
Soft Identity Map option, 509
Weak Identity Map option, 509

Latency/responsiveness
tuning garbage collectors, 262
tuning the JVM

CMS (Concurrent Mark-Sweep GC),
287–289

CMS collection cycle, initiating, 298–303
CMS pause time tuning, 305–306
concurrent permanent generation garbage

collection, 304–305
description, 256
explicit garbage collection, 303–304
full garbage collections, 286
garbage collection activities affecting,

278–279
inputs, 279–280
old generation size, refining, 283–287
overview, 278–279
promotion, 291–293
survivor spaces, 289–291
survivor spaces, occupancy, 298
survivor spaces, sizing, 294–303
tenuring threshold, 291–294
young generation size, refining, 280–283

Lazy loading, EJB best practices, 530–532
limit command, 183–184
Linear scan register allocation, 94
Link phase, 64
Little’s Law verification, 372–374
Live bytes, profiling, 205
Live data size, HotSpot VM garbage collectors, 91
Live HTTP Headers, 363
Live objects, profiling, 205

JVM (Java Virtual Machine), tuning. See also
HotSpot VM. (continued)
startup time, 256–257
throughput, 256

application throughput
adaptive sizing, disabling, 309–311
CMS, 307–308
deploying on NUMA systems, 315
garbage collectors, 308–311
overview, 307
parallel GC threads, 314–315
survivor spaces, 311–314

assumptions, 254
command line options, latest optimizations, 317
deployment model, choosing

multiple JVM deployment, 258–259
overview, 259
single JVM deployment, 258

edge cases, 316
garbage collectors

choosing, 261–262
command line options, 263–267
date stamp, printing, 266
directing output to a file, 264
latency, 262
logging, 263–267
memory footprint, 262
OutOfMemoryError, 273–274
performance attributes, 262–263
principles of, 263
safepoint pauses, 267
statistics, printing, 264
throughput, 262
time stamp, printing, 264, 266

latency/responsiveness
CMS (Concurrent Mark-Sweep GC),

287–289
CMS collection cycle, initiating, 298–303
CMS pause time tuning, 305–306
concurrent permanent generation garbage

collection, 304–305
explicit garbage collection, 303–304
full garbage collections, 286
garbage collection activities affecting, 278–279
inputs, 279–280
old generation size, refining, 283–287
overview, 278–279
promotion, 291–293
survivor spaces, 289–291
survivor spaces, occupancy, 298
survivor spaces, sizing, 294–303
tenuring threshold, 291–294
young generation size, refining, 280–283

overview, 252–255
ranking systemic requirements, 257–258
runtime environment, choosing

32-bit vs. 64-bit, 260–261
client vs. server, 260
tiered, 260

Index 681

Manageability, tuning the JVM, 256
Mark word, 72
Mark-compact garbage collectors, 86–87
Markov chains, benchmarking, 362–366
Marshal XML documents. See Parse/unmarshall;

Serialize/marshall.
max-connections-count property, 415–416
Maximum number of concurrent clients,

benchmarking, 372–374
maxthreads-count attribute, 414
Members, memory, 234
Memory

address limitations, 57
barriers, 234
fences, 234
footprint cost, reducing, 68
members, 234
metrics, 129–130
OutOfMemoryError, 78–80
scan rate, monitoring, 21–24
volatile usage, 234

Memory footprint
garbage collectors, 262
tuning the JVM, 256–257

Memory footprint, determining
application total memory, determining, 277
constraints, 268
heap

initial size, configuring, 275–277
layout, 268–272
live data size, calculating, 274–275
size, starting point, 272–274

old generation space, 269–272
overview, 268
permanent generation space, 269–272
young generation space, 269–272

Memory leaks
definition, 159
NetBeans Profiler, 206–207, 208

Memory pages
large, enabling, 570
touching, enabling, 570–571

Memory paging, monitoring, 21–24
Memory pools, mapping to HotSpot VM spaces,

129
Memory profiles, NetBeans Profiler, 202–205
Memory utilization. See also Monitoring memory

utilization.
freeing memory. See Garbage collection.
monitoring, 23–24
swap space, 32. See also Swapping memory.

Message driven beans, 505–506
Message size, effects on Web service performance,

477–479
Message Transmission Optimization Mechanism

(MTOM), best practices, 487–495
Metadata for compiled code, 96–97
Method counters, 95
Method level interceptor methods, 539

Live Results control, 199
Load class phase, 64
Local vs. remote interfaces, EJB best practices,

526–528
Lock contention

finding, 222–225
isolating, 222–225
overview, 222–225
reducing, 212
scaling symptoms, 224
User Lock metric, 176–177

Lock contention, monitoring
hot locks, isolating, 39–40
HotSpot VM, 37
Linux, 38–39
Solaris, 36–38
Windows, 39

Lock contention, sample code
ConcurrentHashMap, 583–593
java.util.Random, 593–603, 603–613,

613–624, 624–635
parallelism

multithreaded, 657–668
single-threaded, 647–657

partitioned database, 624–635
resizing variant, 624–635, 636–647
synchronized HashMap, 573–583, 603–613

lock keyword, 182
Locking, JVM-System

ConcurrentHashMap, 227–233
overview, 225–233
synchronized HashMap, 225–233

Log files
aggregation, best practices, 450
dumping, 79
garbage collection, specifying, 119
loading multiple, 124–125

Logging
best practices, 396
garbage collection results, 562
garbage collectors, 263–267
GlassFish server, 447

Long latency CPU events, SPARC T-series
processor, 11

Loops
iteration splitting, 99–100
optimizing, 99–100
range check elimination, 99–100
superword, 99–100
unrolling, 99–100
unswitching, 99–100

M
Machine mode, 178
Machine representation of code, 93–94
Major garbage collection, 81, 109–110. See also

Full garbage collection; Old generation
garbage collection.

682 Index

reporting intervals, setting, 24–26
Linux tools

command line tools, 24–28
GNOME System Monitor, 20–21
mpstat tool, 25–26
top tool, 26
vmstat tool, 24–25
xosview tool, 21

overview, 14–16
Solaris

application threads, isolating, 25, 27
kernel thread queue depths, 21–24
memory paging, 21–24
memory scan rate, 21–24
memory utilization, 23–24
printing statistics, 26–27
process thread stack dumps, 27
reporting intervals, setting, 24–26
thread ids, converting to hexadecimal,

27–28
Solaris tools

command line tools, 24–28
cpubar, 21–24
GNOME System Monitor, 21
jstack, 27–28
mpstat, 25–26
prstat, 26–27
pstack, 27
vmstat, 24–25

SPARC T-series systems
overview, 50
stalls, 50–51

Windows
Performance Manager, 16–19
Task Manager, 16–19
typeperf tool, 19–20

Monitoring disk I/O
benchmarking, 395–398
disk cache, enabling, 48–49
Linux, 46
patterns, 48
process ids, 47–48
seek times, 48
service times, 48
servicing I/O events, 48
Solaris, 46
user ids, 47–48
Windows, 46

Monitoring EJB containers
bean caches, 514–520
bean pools, 514–520
EclipseLink session cache, 519–520
entity bean caches, 516
invocation patterns, 512
overview, 511
Ready Cache, 516–517
stateful session bean caches, 516
thread pool, 512–514
Transactional Cache, 516–517

Method Liveness, 96–97
Method profiles. See NetBeans Profiler, method

profiles.
methodDataOop object, 98
Methods

overridden, detecting, 94–95
showing/hiding, 168

Metric keywords, 182–184
Metrics, profiling, 175–176. See also Criteria

for performance; Performance Analyzer,
metrics.

Micro-benchmarks. See also Benchmarking.
creating, 345–346
developing, 361–362

Minor garbage collection. See also Young
generation garbage collection.

definition, 81
monitoring, 109–110
process flow, 84–85
reducing runtime, 82–83
sample output, 113–114

Modes, experiment data
Expert, 178
Machine, 178
User, 177–178

Modify Profiling control, 199
Modifying XML documents

attributes, checking for and retrieving, 459
definition, 455
description, 459–460
DOM APIs, 459–460
error checking, 460
node expansion, deferring, 460
nodes, creating, renaming and moving, 459

Monitor contention, 177
Monitoring. See also Experiments; Profiling;

Tuning.
application servers. See Application server

monitoring.
definition, 14, 108
JIT compilers, 146–147
JVM, 388–389
local applications, 127
memory, 128–130
network I/O, 390–392
remote applications, 127–128, 133–137
resource pools, 398–399
thread dumps, 389–390

Monitoring CPU scheduler’s run queue
Linux, 31–32
overview, 28–29
Solaris, 31
Windows, 29–31

Monitoring CPU utilization. See also CPU,
utilization.

Linux
application threads, isolating, 25, 27
memory utilization, 26–27
printing statistics, 26–27

Index 683

request processing, 418–420
request response codes, 419
thread pools, 412–414

Monitoring Java applications
GlassFish server, 150–151
jstack output, example, 151–153
overview, 150–151
quick lock contention, 151–153

Monitoring memory utilization. See also Memory
utilization.

involuntary context switching, 40–41
Linux, 35–36
lock contention

hot locks, isolating, 39–40
HotSpot VM, 37
Linux, 38–39
Solaris, 36–38
Windows, 39

Solaris, 34–35
Windows, 33–34

Monitoring network I/O. See also Network I/O
utilization.

Linux, 43
Solaris, 42–43
Windows, 44–45

Monitoring Web containers
configuration settings, 408–409
development mode, 408–409
garbage collection, 411
HTTP service, 412
JIT compiler tuning, 410
JVM tuning, 410–412
overview, 408
page freshness, checking, 409
production mode, 408–409
security manager, 409–410

MONITOR_WAIT statement, 74
Mostly-Concurrent GC

concurrent marking phase, 88
concurrent sweeping phase, 89
definition, 88
disadvantages of, 89–90
fragmentation issues, 90
initial mark, 88
phases of, 88–89
pre-cleaning phase, 89
remark pause, 88–89

mpstat tool, Linux
lock contention, 37–38
monitoring CPU utilization, 25–26

mpstat tool, Solaris
monitoring context switching, 37–38
monitoring CPU utilization, 25–26
monitoring involuntary context switching,

40–41
monitoring lock contention, 37–38
monitoring thread migrations, 41
reporting CPU utilization for SPARC T-series,

51–52

Monitoring garbage collection
CPU usage, 114–115
data of interest, 109
enabling/disabling, 110
full collections, 109–110
GCHisto tool, 121–125
graphical tools, 125. See also specific tools.
major collections, 109–110
minor collections, 109–110
offline analysis, 121–125
overhead, 122–123
overview, 108–109
pause times, 122–124
stop-the-world pauses, 122
types of collections, 109–110
young generation collections, 109–110

Monitoring garbage collection, reporting
concurrent mode failure, 117
CPU usage, 114–115
date and time stamps, 117–119
elapsed time, 114
explicit collection, 121
full garbage collection, 112–113
Java heap utilization, 111–113, 114
log files, specifying, 119
offline analysis, 119
old generation space

calculating, 112–113, 114
reducing, 116–117

permanent generation space, 113
premature promotion, 117
recommended command line options, 121
runtime between safepoint operations,

119–120
sample output

call to System.gc, 121
CMS (Concurrent Mark-Sweep GC),

113–114
concurrent garbage collection, 115–117
full garbage collection, 112
minor garbage collection, 113–114
runtime between safepoint operations,

119–120
from -XX:+PrintGCApplicationConcur

rentTime option, 120
from -XX:+PrintGCApplicationStoppe

dTime option, 120
from -XX:+PrintGCDetails option,

110–111
from -XX:+PrintGCTimeStamps option,

118–119
tenuring distribution, 117
-verbose option, 110

Monitoring HTTP listener
acceptor threads, 414–417
connection queues, 414–417
elements to be monitored, 412
individual applications, 420–427
keep alive, 414–417

684 Index

Neutral state, synchronization, 72
nicstat tool, 42–43
NIO nonblocking data structures, 221–222
No Identity Map option, 510
Nodes, XML documents

creating, 459
expansion, deferring, 460
moving, 459
renaming, 459

Nonstandard command line options, 59
Null hypothesis, 351–353
NUMA (Non-Uniform Memory Architecture)

systems
deploying applications on, 315
heap space, 571

numberofavailablethreads-count attribute,
513–514

numberofworkitemsinqueue-current
attribute, 513–514

O
-o option, collect tool, 163
Object size vs. cost, best practices, 444
OBJECT_WAIT statement, 75
Offline analysis, garbage collection, 119,

121–125
Old generation garbage collection, enabling, 558
Old generation space

calculating, 112–113, 114
definition, 81
memory footprint, 269–272
size, refining, 283–287
triggering CMS garbage collection, 559–560
utilization, monitoring, 144–145

On Stack Replacements (OSRs), 95
oops (ordinary object pointers), 57, 554
Optimistic locking, 521, 532–533
Optimization decisions, printing, 567
Optimizations, JIT compilers, 93–94
Optimized methods, printing, 565–566
Optimizing away dead code, 329–335
Optimizing loops, 99–100
Oracle Solaris. See Solaris.
Oracle Solaris Studio Performance Analyzer. See

Performance Analyzer.
Ordinary object pointers (oops), 57, 554
OSRs (On Stack Replacements), 95
outfile command, 187
OutOfMemoryError

error handling, 78–80
heap dumps, enabling, 567
running commands on error, 568
tuning garbage collectors, 273–274

Overhead
definition, 157
reducing, 91–92

Owning Java monitors, 71–72

MTOM (Message Transmission Optimization
Mechanism), best practices, 487–495

Multithreaded reference processing, enabling,
561

Multithreaded young generation garbage
collection, 111, 559

N
Named native queries, JPA best practices, 541
Named queries, JPA best practices, 541
Native queries, JPA best practices, 542
NetBeans Profiler

allocations tracked, specifying, 204
downloading, 190–191
features, 190
generations, 206–207
heap dumps, analyzing, 209
installing, 190–191
memory leaks, 206–207, 208
memory profiles, 202–205
overview, 189–190
results

allocated objects, 205
average age, 206
discarding, 199
displaying, 199
generations, 206
live bytes, 205
live objects, 205
taking snapshots, 199, 207–208

supported platforms, 190
terminology, 159
vs. VisualVM, 189

NetBeans Profiler, method profiles. See also
Profilers.

Attach Mode, specifying, 193–194
calibrating the target JVM, 196–197
configuring the remote system, 196–197
controls, 198–199
local vs. remote, specifying, 193–195
remote profiling pack, generating, 194, 196
results

displaying, 201
taking a snapshot, 201–202

sample rate, reducing, 193
starting a session, 191–198
status, 198–199
telemetry, 200–201
views, 200

Network I/O
monitoring, 390–392
System CPU usage, monitoring, 221–222

Network I/O utilization. See also Monitoring
network I/O.

bandwidth, 44
blocking vs. nonblocking sockets, 45
improving application performance, 45
overview, 41–42

Index 685

er_print tool, 158, 180–189
exiting, 168
experiment files

creating, 163
opening, 168
specifying a directory for, 163

filters, definition, 158
installing, 161–162
modes

Expert, 178
Machine, 178
User, 177–178

new windows, creating, 168
overview, 156–157
printing data, 168
product Web page, 159
supported platforms, 160–161
System CPU time, printing, 182
tabs

Call Tree, 169–171, 246
Callers-Callee, 172–174
Callers-Callees, 169–170
Disassembly, 169–170
Event, 168–169
Experiments, 170
Functions, 169–170, 171–174
Source, 169–170
Summary, 168–169
Timeline, 170, 246–248

terminology, 158
toolbar, 168
User CPU time, printing, 182
viewing mode, switching, 168

Performance Analyzer, experiments. See also
Experiments.

archiving artifacts, 163
call stacks, attributed time, 174–175
collecting data, 162–166, 168
combining, 168
CPU counters, collecting, 163–164
data presentation

APIs, showing/hiding, 168
filtering data, 168, 179–180, 248–249
by function name, 178
lock contention, 176–177
by method name, 177–178
methods, showing/hiding, 168
metrics, 175–176
monitor contention, 177

definition, 158
dropping results from, 168
metrics of interest, 176
printing, 180–189
printing experiment profiles. See also er_

print tool.
Callers-Callees tables, 184–185
directory output to a file, 187
filtering, 186–187
limiting methods printed, 183–184

P
-p option, collect tool, 163
Page view, performance metrics, 366–367
Parallel GC

defaults for server-class machines, 101–102
overview, 87–88
threads, throughput tuning, 314–315

Parallel Old GC, 87–88
Parallelism, increasing

multithreaded applications, 243–246
overview, 243–246
sample code

multithreaded, 657–668
single-threaded, 647–657

single-threaded applications, 243–246
ParNew garbage collector

description, 111
enabling, 292, 559

Parse/unmarshall XML documents
definition, 455
description, 455–458
DocumentBuilder, creating, 455–456
factory lookup, 456–457
Factory objects, reusing, 457
parser, creating, 455–456
SAXParser, creating, 455–456
thread safety, 457
XMLStreamReader, creating, 455–456

Parsing XML documents, performance
comparisons, 469–470

Path length
vs. CPI, 211–212
definition, 7

Patterns, garbage collection time line, 124
Pause times, garbage collection, 122–124
Payload sizes, benchmarking, 359
Percent sign (%) keyword, 182
perfmon. See Performance Manager.
Performance

attributes of, 262–263
monitoring. See Monitoring.
principles of, 263
profiling. See Profiling.
statistics, plotting, 144–145
tuning. See Tuning.

Performance Analyzer. See also Profilers.
analyzers, definition, 158
attributed time, 158
caller-callee relationships

attributed metrics, 172–174
definition, 158
displaying, 158

Callers-Callees tables, printing, 184–185
closing, 168
collect tool

definition, 158
options, 162–164

downloading, 161–162

686 Index

limiting methods printed, 183–184
metrics, specifying, 182–184
scripting, 180, 187–189
sorting, 183
splitting commands, 181
System CPU time, 182
User CPU time, 182
view mode, specifying, 187

optimized methods, 325, 565–566
Process thread stack dumps, monitoring, 27
Product Web page, 159
Production mode, Web containers, 408–409
Profilers, 157. See also NetBeans Profiler;

Performance Analyzer.
Profiles, 157. See also Experiments.
Profiling. See also Experiments; Monitoring;

Tuning.
definition, 14, 108
enterprise applications, 399–400
memory, 156
method, 156
with VisualVM

capabilities, 131, 138
pausing, 138–139
remote, 138–139

Program dependence graphs, 98–100
Programs, developing. See Software development.
Promotion

garbage collection
definition, 81
failure, 85

premature, 117
tuning latency/responsiveness, 291–293

Provider interface, 495–498
prstat tool, Solaris. See also iotop tool.

involuntary context switching, 40–41
monitoring CPU utilization, 26–27

pstack tool, 27
p-value, 353

Q
Query results cache, JPA best practices, 543–544
Quick lock contention, monitoring, 151–153

R
Races, avoiding, 71–72. See also Synchronization.
Ramp down time, 380
Ramp up time, 380
Range check elimination, 99–100
READ_COMMITTED isolation level, 521
Read-only entity beans, EJB best practices,

535–536
Reads without transactions, 550
READ_UNCOMMITTED isolation level, 521
Ready Cache, 516–517
Reference updates in old generation, 91

Performance Analyzer, experiments. See also
Experiments. (continued)
metrics, specifying, 182–184
scripting, 180, 187–189
sorting, 183
splitting commands, 181
System CPU time, 182
User CPU time, 182
view mode, specifying, 187

profiling interval, specifying, 163
toggling data collection on/off, 163
viewing, 166–175

Performance Analyzer, metrics
adding/removing, 175
exclusive time

definition, 158, 160
displaying, 176

inclusive time
definition, 158, 160
displaying, 160

System CPU, 158, 176
User CPU, 158, 176
User Lock, 176

Performance counters, CPU, 49–50
Performance Manager, monitoring

CPU utilization, 16–19
lock contention, 39
memory utilization, 33–34
run queue depth, 29–31

Period (.) keyword, 182
Periodic task threads, 75
Permanent generation garbage collection, 560
Permanent generation space

definition, 81
memory footprint, 269–272
monitoring, 113
size

specifying, 556
triggering CMS garbage collection, 560

utilization, monitoring, 145
Persistent entities, 505–506
Pessimistic locking, EJB best practices, 532–533
pidstat tool, Linux

monitoring involuntary context switching, 41
monitoring lock contention, 38–39

ping utility, 390–391
Platforms, choosing, 9–10
Plus sign (+) keyword, 182
Pre-cleaning phase, 89
Prefetching, EJB best practices, 530–532
Premature promotion, garbage collection, 85
Printing

Callers-Callees tables, 184–185
CPU utilization statistics, 26–27
data, 168
experiment profiles. See also er_print tool.

Callers-Callees tables, 184–185
directory output to a file, 187
filtering, 186–187

Index 687

SAXParser, creating, 455–456
SAXParserFactory class, 456
Scalability

analysism, 377–378
ideal CPU utilization, 15

Scaling
benchmarks, 370–372
user, 358
vertical and horizontal, 358, 377

Scavenging young generation space, 110, 306, 561
Schema caching, 461–462
Schema types, effects on Web service performance,

479–483
-script option, 181
Scripting, er_print tools, 180, 187–189
Secure interactions, benchmarking, 359
Security manager, 409–410
Security policies, VisualVM, 133
Self time, 159
Serial GC, 86–87, 92
SERIALIZABLE isolation level, 521
Serialization, best practices, 440–443
Serialize/marshall XML documents. See also

Parse/unmarshall XML documents.
definition, 455
description, 460

Server JIT, 97–98
-server option, 553
Server runtime environment vs. client, 260
Server-class machines, JIT defaults for, 101–102
Servers, monitoring. See Application server

monitoring.
Service availability, benchmarking, 359
Service Oriented Architecture (SOA). See Web

services; XML documents.
Servlet engines, 407–408
Servlets, best practices, 427–438
Session beans, 505–506
Session Façade pattern, 529–530
Session maintenance, benchmarking, 359
Session persistence, best practices, 443–445
setStrictErrorChecking attribute, 460
Single static assignment (SSA), 93, 98–100
SINGLE_TABLE inheritance, 550
Single-threaded young generation garbage

collection, 111
SJSXP performance, 469–470
Sliding compacting mark-sweep garbage

collection, 86–87
Slow-path code, synchronization, 72
Snapshots. See also Thread dumps.

NetBeans Profiler, 199, 201–202, 207–208
NetBeans Profiler results, 199, 207–208
Take Snapshot control, 199
VisualVM applications, 132, 139–140

Snapshots of applications
saving, 139–140
taking, 132
viewing, 139–140

Register allocation, 94
Register tables, 97
Rejecting a true null hypothesis, 353
Remark pause, 88–89
Remote profiling pack, generating, 194, 196
Repeatability, benchmarking, 380–381
REPEATABLE_READ isolation level, 521
Reporting intervals, setting, 24–26
Request processing, monitoring and tuning,

418–420
Request response codes, monitoring and tuning,

419
Requests, calculating performance metrics, 366
ReRun Last Profiling control, 199
Reset Collected Results control, 199
Resource monitoring, benchmarking, 379–380
Resource pools, monitoring and tuning, 398–399
Response time

calculating performance metrics, 368–369
Web services metric, 476

Responsiveness, tuning the JVM, 256. See also
Latency/responsiveness.

Results of profiling
displaying, 201
method profiles, 201–202
NetBeans Profiler

allocated objects, 205
average age, 206
discarding, 199
displaying, 199
generations, 206
live bytes, 205
live objects, 205
taking snapshots, 199, 201–202, 207–208

RMI server, 411–412
Root method, definition, 159
Round-trip time, calculating performance metrics,

366
Run GC control, 199
Run queue. See CPU, scheduler’s run queue.
Runtime. See HotSpot VM Runtime.
Runtime environment, choosing, 260–261

S
Safepoints

class loaders, 66
HotSpot VM Runtime

class loading, 66
initiating, 76
thread management, 75–76

operations, monitoring runtime between,
119–120

pauses, tuning garbage collectors, 267
statistics, printing, 564
VM operations, 75–76

Sample rate, reducing, 193
sar tool, 49
SAX performance, XML documents, 469–470

688 Index

tuning garbage collectors, 264
p-value, 353
rejecting a true null hypothesis, 353
safepoint, garbage collection reports, 564
sar tool, 49
standard deviations, calculating, 349
tenuring, garbage collection reports, 563
t-statistics, 351–353
Type I Errors, 353

Steady state time, benchmarking, 380
Stop control, 199
Stop-the-world garbage collection, 76, 558
Stop-the-world pauses, monitoring, 122
StringBuffer, resizing, 235–238
StringBuilder, resizing, 235–238
Studio Performance Analyzer. See Performance

Analyzer.
Summary tab, 168–169
Sun Microsystems. See Solaris; SPARC T-series

processor.
Superword, 99–100
Supported platforms, 160–161
Survivor spaces

description, 84–85
occupancy, 298
overflows, 145
size

after garbage collection, 557–558
changing, 294–303
compared to eden space, 290–291, 556
initial ratio, specifying, 557

sizing, 294–303
throughput, tuning, 311–314
tuning latency/responsiveness, 289–291
utilization, monitoring, 143, 144

SUT (System Under Test), isolating, 360–361,
378–379

Swapping memory, 32–36
Sweeping, enabling, 560
Synchronization

biased state, 72
concurrency, 71
contended operations, 71–72
entering a Java monitor, 71–72
exiting a Java monitor, 71–72
fast-path code, 72
inflated state, 72
Java monitors, 71–72
mark word, 72
mutual exclusion, 71
neutral state, 72
owning Java monitors, 71–72
races, avoiding, 71–72
slow-path code, 72
stack-loaded state, 72
states, 72
synchronized blocks, 71
uncontended operations, 71

Synchronized blocks, 71

SOA (Service Oriented Architecture). See Web
services; XML documents.

SOAP messages, Web service performance best
practices, 499–501

Soft Cache Weak Identity Map option, 510
Soft Identity Map option, 509
Software development

bottom up approach, 7–8
phases of, 2–5. See also specific phases.
process overview, 3
top down approach, 6–7

Solaris Performance Analyzer. See Performance
Analyzer.

Solaris Performance Tools CD 3.0, 47
Solaris Studio Performance Analyzer. See

Performance Analyzer.
sort command, 183
Source tab, 169–170
Space utilization, monitoring, 142–143
Spaces panel, 142–143
SPARC T-series processor

evaluating performance, 10–11
hardware threads, 9–10
long latency CPU events, 11
monitoring CPU utilization, 52
multiprocessing, 9–10
multithreading, 9–10
Solaris Internals wiki, 51
thread context switches, 9–10

SSA (single static assignment), 93, 98–100
Stack-loaded state. synchronization, 72
Stalls

CPU cycles, 15
SPARC T-series systems, 50–51

Standard command line options, 59
Standard deviations, calculating, 349
Startup time, tuning the JVM, 256–257
Stateful session bean caches, monitoring and

tuning, 516
Stateful session beans, 506
Stateless session beans, 506
States, synchronization, 72
Statistics. See also Benchmarking; Experiments.

α (alpha), 351–353
aging, 145–146
averages, calculating, 349
benchmarking, 381–382
confidence intervals, calculating, 350–351
degrees of freedom, 351–353
guidelines for using, 354–355
hypothesis tests, 351–354
kstat tool, 49
null hypothesis, 351–353
performance, collecting, 49
plotting performance, 144–145
printing

CPU utilization, 26–27
monitoring CPU utilization, 26–27
safepoint, 564

Index 689

Thread in vm state, 74
Thread management

blocked thread state, 74
CONDVAR_WAIT statement, 74
creating threads, 73–74
deadlocks, 80
debugging, 74–75
destroying threads, 73–74
garbage collection threads, 75
internal VM threads, 75
JIT compiler threads, 75
MONITOR_WAIT statement, 74
new thread state, 74
OBJECT_WAIT statement, 75
overview, 72
periodic task threads, 75
safepoints, 75–76
signal dispatcher thread, 75
thread in Java state, 74
thread in Java vm state, 74
thread states, 74–75
threading model, 72–73
VM operations, 75–76
VM threads, 75

Thread pools, monitoring and tuning, 412–414,
512–514

Thread safety, parsing/unmarshalling XML
documents, 457

Thread states, 74–75
Threading model, 72–73
Threads control, 200
Throughput

metric, Web services, 476
performance metrics, calculating, 369–370
tuning

adaptive sizing, disabling, 309–311
CMS, 307–308
deploying on NUMA systems, 315
garbage collectors, 262, 308–311
JVM, 256
overview, 307
parallel GC threads, 314–315
survivor spaces, 311–314

Throughput GC. See Parallel GC.
Throwing exceptions, 70–71
Tiered runtime environment, 260
Time and date stamp, printing, 264, 266
Time stamps. See Date and time stamps.
Timeline tab, 170, 246–248
TLABs (Thread-Local Allocation Buffers), 85
Toolbar, 168
Top down software development, 6–7
top tool, 26. See also iotop tool.
Train GC, 92
Transactional Cache, 516–517
Transactions

attributes, choosing, 523
container managed vs. bean managed, 522–523
isolation levels, 521–522

Synchronized HashMap
lock contention, sample code, 573–583,

603–613
locking, JVM-System, 225–233

System boundaries, defining for benchmarking,
360–361

System CPU. See also CPU, utilization.
definition, 15
profiling, 158, 176
time, printing, 182
usage, monitoring

callers-callees, 218–221
I/O, 214–218
network I/O, 221–222
NIO nonblocking data structures, 221–222
overview, 212–222

system keyword, 182
System Under Test (SUT), isolating, 360–361,

378–379
System.currentTimeMillis API, 328–329
System.gc

full garbage collection, disabling, 110, 561
invoking CMS cycle vs. stop-the-world, 561
sample output, 121
unloading classes, 561

System.nanoTime API, 328–329

T
Take Snapshot control, 199
Task Manager

monitoring CPU utilization, 16–19
monitoring involuntary context switching, 41

Telemetry, 200–201
TemplateTable data structure, 69
Tenure, 81
Tenuring

distribution, monitoring, 117
maximum threshold, setting, 559
monitoring, 145–146
statistics, printing, 563
threshold, 291–294

Terminology, 158
Thick clients, Web services, 474–476
Thin clients, Web services, 475–476
Think time

benchmarking, 364, 374–377
calculating, 366
definition, 366
enterprise considerations, 364
performance metrics, calculating, 366

32-bit runtime environment vs. 64-bit, 260–261
Thread dump analysis, unanticipated file

interactions, 397
Thread dumps. See also Snapshots.

monitoring, 389–390
VisualVM, 138

Thread ids, converting to hexadecimal, 27–28
Thread in Java state, 74

690 Index

OutOfMemoryError, 273–274
performance attributes, 262–263
principles of, 263
safepoint pauses, 267
statistics, printing, 264
throughput, 262
time stamp, printing, 264, 266

latency/responsiveness
CMS (Concurrent Mark-Sweep GC),

287–289
CMS collection cycle, initiating, 298–303
CMS pause time tuning, 305–306
concurrent permanent generation garbage

collection, 304–305
explicit garbage collection, 303–304
full garbage collections, 286
garbage collection activities affecting,

278–279
inputs, 279–280
old generation size, refining, 283–287
overview, 278–279
promotion, 291–293
survivor spaces, 289–291
survivor spaces, occupancy, 298
survivor spaces, sizing, 294–303
tenuring threshold, 291–294
young generation size, refining, 280–283

overview, 252–255
ranking systemic requirements, 257–258
runtime environment, choosing

32-bit vs. 64-bit, 260–261
client vs. server, 260
tiered, 260

testing infrastructure requirements, 255
work flow, 253

Tuning the JVM, command line options
biased locking, 318–319
escape analysis, 317–318
garbage collection read/write barriers,

eliminating, 318
large pages

Linux, 320–321
Solaris, 319–320
window, 321

object explosion, 317
scalar replacement, 318
synchronization, eliminating, 318
thread stack allocation, 318

Tuning the JVM, determining memory footprint
application total memory, determining, 277
constraints, 268
heap

initial size, configuring, 275–277
layout, 268–272
live data size, calculating, 274–275
size, starting point, 272–274

old generation space, 269–272
overview, 268
permanent generation space, 269–272

Trimming whitespaces, best practices, 430–431
t-statistics, 351–353
Tuning. See also Experiments.

definition, 14, 108. See also Monitoring;
Profiling.

the file cache, best practices, 446
resource pools, 398–399

Tuning EJB container
bean caches, 514–520
bean pools, 514–520
EclipseLink session cache, 519–520
entity bean caches, 516
invocation patterns, 512
overview, 511
Ready Cache, 516–517
stateful session bean caches, 516
thread pool, 512–514
Transactional Cache, 516–517

Tuning HTTP listener
acceptor threads, 414–417
connection queues, 414–417
elements to be monitored, 412
individual applications, 420–427
keep alive, 414–417
request processing, 418–420
request response codes, 419
thread pools, 412–414

Tuning the JVM
application systemic requirements

availability, 255–256
latency, 256
manageability, 256
memory footprint, 256–257
overview, 255
responsiveness, 256
startup time, 256–257
throughput, 256

application throughput
adaptive sizing, disabling, 309–311
CMS, 307–308
deploying on NUMA systems, 315
garbage collectors, 308–311
overview, 307
parallel GC threads, 314–315
survivor spaces, 311–314

assumptions, 254
deployment model, choosing

multiple JVM deployment, 258–259
overview, 259
single JVM deployment, 258

edge cases, 316
garbage collectors

choosing, 261–262
command line options, 263–267
date stamp, printing, 266
directing output to a file, 264
latency, 262
logging, 263–267
memory footprint, 262

Index 691

GC time, 144
Graphs panel, 144–145
Histogram panel, 145–146
old generation space utilization, 144–145
overview, 141
performance statistics, plotting, 144–145
permanent generation space utilization, 145
space utilization, 142–143
Spaces panel, 142–143
survivor space overflows, 145
survivor space utilization, 143, 144
tenuring, 145–146

VisualVM. See also JConsole; VisualGC.
application snapshots

saving, 139–140
taking, 132
viewing, 139–140

binary heap dumps, 140
JMX applications, configuring, 135–137
jstatd daemon, 133–134
jvisualvm program, 191
launching, 131
listing Java applications, 134
monitoring remote applications, 133–137
monitoring server applications, 384–386
vs. NetBeans Profiler, 189
obtaining, 191
overview, 130–131
profiling

capabilities, 131, 138
pausing, 138–139
remote, 138–139

security policy, 133
table of features, 131
thread dumps, 138

VM life cycle, 59–61
VM operations, threads, 75–76
VM Telemetry control, 199, 200
VM threads, 75
vmstat tool

Linux
monitoring CPU utilization, 24–25
monitoring memory utilization, 35–36
monitoring run queue depth, 31–32

monitoring CPU utilization, 24–25
Solaris

monitoring CPU utilization, 24–25
monitoring memory utilization, 34–35
monitoring run queue depth, 31
reporting CPU utilization for SPARC

T-series, 51–52
volatile keyword, 234
Volatile memory usage, 234

W
Waiting for data. See Stalls.
Warm-ups, benchmarking, 324–327, 333–334
Weak generational hypothesis, 81

young generation space, 269–272
Tuning Web containers

configuration settings, 408–409
development mode, 408–409
garbage collection, 411
HTTP service, 412
JIT compiler tuning, 410
JVM tuning, 410–412
overview, 408
page freshness, checking, 409
production mode, 408–409
security manager, 409–410

Type I Errors, 353
Type safety, class loaders, 65–66
typeperf tool, monitoring

CPU utilization, 19–20
lock contention, 39
memory utilization, 33–34
run queue depth, 29–31

U
Uncommon traps, 96–97, 98–100
Uncontended operations, 71
Uninitialized classes, 98
Unloaded classes, 98
Unloading classes, System.gc, 561
Unrolling loops, 99–100
Unswitching loops, 99–100
User CPU. See also CPU, utilization.

description, 15
profiling, 158, 176
time, printing, 182

User interaction modeling, benchmarking,
362–366

user keyword, 182
User Lock, 176
User mode, 177–178
User scaling, 358. See also Scaling.
User transactions, calculating performance

metrics, 366, 367–368

V
-V option, 181
Validating XML documents, 460–462
-verbose option, 110, 389
-verbose:gc, 562
Vertical scaling, 358, 377. See also Scaling.
Viewing mode, switching, 168
viewmode command, 187
Virtual processors, monitoring CPU utilization, 51
VisualGC. See also JConsole; VisualVM.

aging statistics, 145–146
class loader time, 144
compile time, 144
downloading, 141
eden space utilization, 143, 144

692 Index

X
-Xbatch, 564–565
-Xcheck:jni, 568
-Xcheck:jni method, 78
-Xloggc, 264, 267, 562
-Xloggc option, 119
XML documents. See also Web services.

APIs, selecting, 468–471
catalog resolvers, 463–464
DOM performance, 469–470
encoding in binary format, 499–501
entity resolvers, 462–464
external DTD subsets, 462–464
JAXB (Java API for XML Binding), 454,

469–470
JAXP (Java API for XML Processing), 454, 457
JAX-WS RI (JAX-WS Reference

Implementation) stack, 471–473
parsing performance, comparisons, 469–470
partial processing, 465–468
resolving external entities, 462–464
SAX performance, 469–470
schema caching, 461–462
sending as attachments, 492–495
SJSXP performance, 469–470
validation, 460–462
Web service performance, best practices,

492–495
Woodstox performance, 469–470

XML documents, processing life cycle
access

definition, 455
description, 458–459

modify
attributes, checking for and retrieving, 459
definition, 455
description, 459–460
DOM APIs, 459–460
error checking, 460
node expansion, deferring, 460
nodes, creating, renaming and moving, 459

overview, 454–455
parse/unmarshall

definition, 455
description, 455–458
DocumentBuilder, creating, 455–456
factory lookup, 456–457
Factory objects, reusing, 457
parser, creating, 455–456
SAXParser, creating, 455–456
thread safety, 457
XMLStreamReader, creating, 455–456

serialize/marshall
definition, 455
description, 460

XMLInputFactory class, 456
XMLStreamReader, creating, 455–456
-Xmn, 270, 555

Weak Identity Map option, 509
Web containers

components, GlassFish
Coyote connector, 407
GlassFish, 406–407
Grizzly connector, 406–407
HTTP connector, 406–407
servlet engines, 407–408

monitoring and tuning
configuration settings, 408–409
development mode, 408–409
garbage collection, 411
HTTP service, 412
JIT compiler tuning, 410
JVM tuning, 410–412
overview, 408
page freshness, checking, 409
production mode, 408–409
security manager, 409–410

monitoring and tuning HTTP listener
acceptor threads, 414–417
connection queues, 414–417
elements to be monitored, 412
individual applications, 420–427
keep alive, 414–417
request processing, 418–420
request response codes, 419
thread pools, 412–414

Web pages, checking freshness, 409
Web service performance

best practices
binary payload, 486–495
catalog file locations, 502–503
client performance, 502–503
Fast Infoset, 499–501
HTTP compression, 501–502
MTOM (Message Transmission

Optimization Mechanism), 487–495
overview, 486
Provider interface, 495–498
SOAP messages, 499–501
XML documents, 492
XML documents as attachments, 492–495

factors affecting
dateTime schema, 481–482
endpoint implementation, 483–484
handler performance, 484–486
message size, 477–479
schema types, 479–483

Web services. See also XML documents.
benchmark metrics, 476
benchmarking, 473–476
response time metric, 476
thick clients, 474–476
thin clients, 475–476
throughput metric, 476

Whitespaces, trimming, 430–431
Woodstox performance, 469–470
Write barriers, 83

Index 693

-XX:+PrintGCApplicationStoppedTime, 120,
563

-XX:PrintGCDateStamps, 267
-XX:+PrintGCDateStamps, 562
-XX:+PrintGCDetails, 110–111, 267, 389, 562
-XX:+PrintGCTimeStamps

date and time stamps, 118–119
description, 562
garbage collection logging, 267
garbage collection reporting, 117–119
monitoring the JVM, 389

-XX:+PrintInlining, 566–567
-XX:+PrintOptoAssembly, 567
-XX:+PrintSafepointStatistics, 267, 564
-XX:+PrintTenuringDistribution, 293–294,

563
-XX:+ScavengeBeforeFullGC, 561
-XX:+ShowMessageBoxOnError, 568
-XX:SurvivorRatio, 290–291, 556
-XX:TargetSurvivorRatio, 298, 557–558
-XX:+TieredCompilation, 565
-XX:+UseBiasedLocking, 318–319, 569
-XX:+UseCMSInitiatingOccupancyOnly, 300,

560
-XX:+UseCompressedOops, 554
-XX:+UseConcMarkSweepGC, 559
-XX:+UseLargePages, 319–321, 570
-XX:+UseNUMA, 571
-XX:+UseParallelGC, 272, 558
-XX:+UseParallelOldGC, 272, 558
-XX:+UseParNewGC, 292, 559
-XX:+UseSerialGC, 558

Y
-y option, collect tool, 163
Young generation garbage collection. See also

Minor garbage collection.
definition, 81
DefNew collector, 111
eden space, 83–85
layout, 83–85
monitoring, 109–110
multithreaded, 111
ParNew collector, 111, 559
single-threaded, 111
survivor spaces, 84–85

Young generation space
memory footprint, 269–272
size

compared to old generation space, 555
refining, 280–283
specifying, 555

-Xms, 269, 276, 554
-Xmx, 269, 276, 554
xosview tool, 21
-XX:+PrintCommandLineFlags, 102–103
-XX:+PrintGCDateStamps, 264
-XX:+PrintGCDetails, 264
-XX:+PrintGCTimeStamps, 264
-XX:-ScavengeBeforeFullGC, 110
-XX:-UseAdaptiveSizePolicy, 309–311, 558
-XX:+AggressiveHeap, 569
-XX:+AggressiveOpts, 317, 568
-XX:+AlwaysPreTouch, 570–571
-XX:+BackgroundCompilation, 564
-XX:+CMSClassUnloadingEnabled, 560
-XX:+CMSIncrementalMode, 561
-XX:+CMSIncrementalPacing, 562
-XX:CMSInitiatingOccupancyFraction,

299–300, 559–560
-XX:CMSInitiatingPermOccupancyFraction,

305, 560
-XX:+CMSPermGenSweepingEnabled, 560
-XX:+CMSScavengeBeforeRemark, 306, 560
-XX:+DisableExplicitGC, 412, 561
-XX:+DoEscapeAnalysis, 317–318, 569
-XX:ErrorFile, 79
-XX:+ExplicitGCInvokesConcurrent, 561
-XX:+ExplicitGCInvokesConcurrentAndUnl

oadsClasses, 561
-XX:+HeapDumpOnOutOfMemoryError, 567
-XX:HeapDumpPath, 567
-XX:InitialHeapSize, 272
-XX:InitialSurvivorRatio, 557
-XX:LargePageSizeInBytes, 570
-XX:MaxHeapSize, 272
-XX:MaxInlineSize, 567
-XX:MaxNewSize, 270, 555
-XX:MaxPermSize, 270–271, 276, 556
-XX:MaxTenuringThreshold, 292–293, 559
-XX:NewRatio, 555
-XX:NewSize, 269–270, 555
-XX:OnError, 79, 568
-XX:OnOutOfMemoryError, 568
-XX:ParallelGCThreads, 305–306, 559
-XX:+ParallelRefProcEnabled, 561
-XX:PermSize, 270, 276, 556
-XX:+PrintAdaptiveSizePolicy, 310, 563
-XX:+PrintCommandLineFlags, 272, 571
-XX:+PrintCompilation, 325, 565–566
-XX:+PrintFlagsFinal, 572
-XX:+PrintGC, 562
-XX:+PrintGCApplicationConcurrentTime,

120, 267, 564
-XX+PrintGCApplicationStoppedTime, 267

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 6 Java Application Profiling Tips and Tricks
	Performance Opportunities
	System or Kernel CPU Usage
	Lock Contention
	Volatile Usage
	Data Structure Resizing
	Increasing Parallelism
	High CPU Utilization
	Other Useful Analyzer Tips
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

