

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

Java, JDBC, J2EE, JNI, Javadoc, MySQL and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. UNIX is a registered
trademark of The Open Group in the United States, other countries, or both. Microsoft, Windows, Microsoft .NET
Remoting, and Microsoft .NET connection software are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

IBM, iSeries, and zSeries are trademarks of International Business Machines Corporation in the United States, other
countries, or both.

CORBA is a registered trademark of Object Management Group, Inc. in the United States and/or other countries.

Apache, log4j, JMeter, Ant, and Tomcat are trademarks of The Apache Software Foundation.

dbShards is a trademarks of CodeFutures Corporation, in the United States.

The Software Pipelines Reference Framework includes software developed by the Spring Framework Project
(springframework.org). Spring Framework components copyright 2002–2007 by the original author or authors. The Spring
Framework is licensed under the Apache License, Version 2.0 (the “License”). You may obtain a copy of the License at:
apache.org/licenses/LICENSE-2.0.

Other company, product, or service names mentioned may be trademarks or service marks of others.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus,
and branding interests. For more information, please contact: U.S. Corporate and Government Sales, (800) 382-3419,
corpsales@pearsontechgroup.com

For sales outside the United States please contact: International Sales, international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Isaacson, Cory.
 Software pipelines and SOA : releasing the power of multi-core processing
/ Cory Isaacson.—1st ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-713797-4 (pbk. : alk. paper)
 1. Parallel processing (Electronic computers) 2. Computer software—Development.
 3. Web services. I. Title.

 QA76.58.I82 2008
 004’.35--dc22 2008040489

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-713797-8
ISBN-10: 0-13-713797-4
Text printed in the United States on recycled paper by RR Donnelley in Crawfordsville, Indiana.
First printing, December 2008

xv

Foreword

Multi-core hardware is the new normal. Major computer chip vendors have

essentially halted the regular increase in CPU clock speeds that reigned for almost

a half century in response to issues like power consumption, heat output, and

unpredictability of quantum physics (to paraphrase Einstein, CPUs shouldn’t

play dice …).

Instead, they are using multi-core architectures to deliver increased process-

ing power in place of faster clock speeds. Although this is a logical move, a large

percentage of existing software applications cannot take advantage of the pro-

cessing power on the additional cores, and they often run even slower due to

reduced clock speeds in multi-core CPUs, setting up what could be called the

Multi-core Dilemma.

In general, the Multi-core Dilemma applies across the spectrum of program-

ming languages—Java, C#, C++, etc. This is why major technology vendors are

investing heavily in research intended to lead to the next generation of program-

ming environments. But what about the software that has already been written?

The reality for any software application is that to benefi t from multi-core, the

application must either be written to be multi-threaded, or it must be in a con-

tainer that effectively makes it multi-threaded.

There is no “plug-and-play” solution, but there are development tools and

containers available that can help with the Multi-core Dilemma for many use

cases. There are not, however, many good methodologies for solving this prob-

lem. In Software Pipelines and SOA, Cory Isaacson outlines a systematic, logical

approach for planning and executing the move to multi-core.

This hardware trend will create a tectonic shift in the software industry as

billions of lines of code are migrated, optimized, or rewritten to take advantage

of multi-core hardware. Practical, logical approaches will be essential to making

this transition smoothly.

Now that parallel computing has moved from being an edge case to being a

common requirement for enterprise software, enabling applications to run in

parallel can’t be limited to only the most experienced programmers. Software

Pipelines and SOA describes several techniques for bringing parallel computing to

mainstream software development.

xvi Foreword

For example, one technique for making parallel computing happen through-

out your development group is to separate your concurrency model from the

application logic, much as you have your data and UI layer separate from the

main business logic. Doing so allows feature developers to focus on the applica-

tion functionality without having to worry about explicitly threading at design

time. In addition, it can be an effective technique for migrating existing single-

threaded applications into multi-core environments.

In addition, Software Pipelines and SOA discusses the connection between ser-

vice-oriented architectures and multi-core. The basic approach is to treat your

application as a collection of services and deploy a container that can run multi-

ple instances of those services.

Using this link between SOA and multi-core, services can be a key part of

your concurrency model. By separating concurrency from application logic, you

can make the migration of existing applications to multi-core much simpler and

enable more effective building of new parallel applications. It also makes it much

easier to reconfi gure (rather than recode) your applications, then continue to

optimize them and move to new generations of hardware—from 2 and 4 cores to

8, 16, 32 … 128, and beyond. Designing enterprise applications in a service-

oriented architecture makes it easier to separate concurrency from application

logic, so that they work together.

There is work involved if you have a monolithic application, but it is still sig-

nifi cantly less than rewriting. If you plan to use a container, make sure that it can

handle your business application requirements, which might include message

ordering, forks and joins in the business process, human interaction, and long-

running processes.

Most parallel computing approaches use traditional multi-threaded pro-

gramming, a “thread-level” approach. Software Pipelines and SOA describes a “ser-

vice-level” approach that can provide a way to move to multi-core that requires

less effort and is more confi gurable. It complements, rather than replaces, the

traditional thread-level approaches.

Moving your existing applications to multi-core takes some planning, but it

might not be as much work as you think. Design a solid concurrency model, and

your existing applications can continue to serve you for years to come. Software

Pipelines and SOA provides a great road map for getting there.

Patrick Leonard

VP, Engineering & Product Strategy

Rogue Wave Software

pleonard@roguewave.com

xvii

Preface

We’re now in the multi-core era. As consumers of computing power, we’ve all

come to expect a never-ending increase in power, and CPU manufacturers are

now using multi-core processors to continue that long-standing trend. If we want

to take full advantage of this enormous capacity, our business applications must

“do more than one thing at a time.” However, traditional parallel computing

methods (such as multi-threading, SMP, and clustering) are either limiting or

extremely diffi cult to implement—especially when used on top of application

components that weren’t originally designed for a parallel world.

Software Pipelines architecture is a new architecture that specifi cally

addresses the problem of using parallel processing in the multi-core era. It is a

new approach to the problem. Pipeline technology abstracts the complexities of

parallel computing and makes it possible to use the power of the new CPUs for

business applications.

We wrote this book primarily for software architects, application developers,

and application development managers who need high-performance, scalable

business applications. Project managers, software quality assurance specialists,

and IT operations managers will also fi nd it useful; however, the main focus is

software development. Our intention was to make the book as applicable as pos-

sible, and to provide tools that you can quickly learn and apply to your own

development challenges.

The book is divided into four sections, which we’ll describe in this preface.

Pipelines Theory

The Pipelines Theory section, Chapters 1 through 5, covers the following topics:

• How pipelines work, including the fundamental concepts and underlying

theory of Software Pipelines

• What pipelines can accomplish

• Methods for applying Software Pipelines

• Pipelines Patterns, including various ways to apply Software Pipelines in busi-

ness application scenarios, setting the stage for the examples in later chapters

xviii Preface

As the foundation for the remainder of the book, this section is appropriate for

all readers. If you’re a software architect or an application developer, you should

defi nitely study this section fi rst. If you’re reading the book from a managerial

perspective, or if your interest is more general and less technical, you can focus

on just this section.

Pipelines Methodology

The Pipelines Methodology section, Chapters 6 through 13, shows how to imple-

ment Software Pipelines by using the step-by-step Software Pipelines

Optimization Cycle (SPOC). To illustrate how the methodology works, we use it

to solve a business problem for a fi ctitious example company, the Pipelines Bank

Corporation (PBCOR). In each chapter we present a new step, then show you

how we used the step in our PBCOR example.

This section will be of interest to all primary audiences of the book, includ-

ing project managers. The PBCOR examples get into a fair amount of technical

detail; therefore, application development managers might want to skip over the

more complex examples.

Pipelines Examples

The Pipelines Examples section, Chapters 14 through 22, contains code examples

based on the reference Pipelines Framework we developed for the book. We’ve

included examples for each main Pipelines Pattern from the Pipelines Theory

section. You can use these as guides for applying Software Pipelines directly to

your own real-world applications.

This section is for software architects and application developers, the roles

directly involved in pipelines implementation. In addition, IT operations manag-

ers will fi nd it helpful to read the confi guration sections, which show how to

modify the scalability of an application without modifying the actual application

components.

We recommend that you read the fi rst three chapters of this section in detail.

These basic chapters include Chapter 14, “Hello Software Pipelines”; Chapter 15,

“Scaling Hello Software Pipelines”; and Chapter 16, “Additional Pipelines Router

Confi gurations.” After that, you might prefer to scan the more advanced exam-

ples in Chapters 17 through 22, then concentrate on the ones that most apply to

your specifi c application scenarios.

Preface xix

The Future of Software Pipelines

In the fi nal section we tell you about the future we envision for Software Pipelines

architecture. There are plenty of greenfi eld areas that can be developed, and it is

our hope that this section will inspire readers to help move the technology for-

ward into the mainstream.

Conventions

In our examples, when we present a section of code or XML, refer to a command,

or refer to a code element, we’ll use a monospaced font, for example, <pipe-

lines-distributor>. For names of components, such as services, clients,

and distributors, we’ll use an italic monospaced font, for example,

Distributor1.

The Web Site

We’ve established a Web site for Software Pipelines technology at softwarepipe-

lines.org. The site is for readers of the book and for anyone else who is interested

in using or advancing the Software Pipelines architecture. You can download the

following items from the site:

• Tools and sample report templates for the Software Pipelines Optimization

Cycle (SPOC) methodology

• Source code for the reference Pipelines Framework

• Complete source code for all examples in the book

• Articles and discussions on pipelines technology and its applications

We hope you fi nd Software Pipelines as exciting as we’ve found it, and that

you take this opportunity to capitalize on its capabilities and use it to help over-

come your own performance and scalability challenges.

xxv

Introduction

Throughout IT history, professional developers have searched for ways to enhance

the performance of critical business applications. The computer industry has

tried to provide the answer time and time again, and we’ve seen plenty of solu-

tions, architectures, and approaches. Obviously, the problem is not a minor one.

In today’s information-based economy, companies often succeed or fail because

of their software performance. There are abundant examples: banking systems,

trading systems, call center operations, reporting services, and many others—

they all depend on applications with high-performance requirements. In these

industries, viability is directly tied to the speed at which a company conducts

business. A slow, inadequate, or unresponsive application is damaging to opera-

tions and the bottom line; ultimately, it can literally kill or impair the organiza-

tion that relies on it. And there is no end in sight; as we depend more and more

on the exchange of information to do business, performance will lag behind

demand even further.

There’s an additional problem. Simply achieving faster performance of indi-

vidual components isn’t always enough. If your company installs a new applica-

tion, if your business expands, or if your data volume rises, you may suddenly

need an order-of-magnitude increase in performance—fi ve, ten, twenty times or

more.

Another vector is also critical: How fast can you adapt your software to meet

new needs and competitive threats? The popularity and rapid adoption of ser-

vice-oriented architecture (SOA) is hard evidence of the demand for more fl exi-

ble software systems.

SOA is a superior technology. Compared to earlier trends in IT architecture,

SOA delivers better on its promises. But it presents its own challenges. If you’re

using SOA for development, it’s even more important to address performance

and scalability, because of the following factors:

• In general observation, SOA demands signifi cantly more computing power

from a system than earlier monolithic or tightly coupled designs.

xxvi Introduction

• The very notion of loosely coupled services implies message-centric applica-

tion development. Developers not only have to write traditional processing

logic; they also have to handle message transmission, validation, interpreta-

tion, and generation—all of which are CPU- and process-intensive.

• As more organizations use SOA, we can expect messaging volume to explode

and put a tremendous load on existing IT systems. The potential for adverse

effects will escalate.

Predictions show that over the next year or two, organizations using SOA

will run into performance issues. This is nothing new; historically, each time the

business world adopts a new software architecture, it suffers through growing

pains. In the past twenty years, the shakeout period for each new major paradigm

shift in software development has lasted about one to three years for a given evo-

lutionary phase (any early J2EE user can attest to that). During that time, busi-

nesses gradually adopt the new design, and while doing so, they face signifi cant

performance- and scalability-related problems. In many cases software develop-

ers cannot overcome the steep learning curve; many projects end in outright fail-

ure when the deployed application doesn’t perform as expected.

Until recently, hardware was the saving grace for such immature architec-

tures. Whenever the computer industry made a signifi cant advance, mostly in

CPU performance, performance bottlenecks could be fi xed by plugging in a faster

chip or by using some other mechanical solution. That advantage is now gone.

We’ve hit a plateau in microprocessor technology, which comes from physical

factors such as power consumption, heat generation, and quantum mechanics.

The industry can no longer easily increase the clock speed of single CPUs.

Therefore, for now and the foreseeable future, CPU vendors are relying on multi-

core designs to increase horsepower. The catch is that if you want to take advan-

tage of these new multi-core chips, your software must implement parallel

processing—not a common capability in the majority of today’s applications.

Let’s sum up what today’s businesses really need from their software archi-

tecture:

• A practical approach to parallel processing, for performance and scalability

• Flexibility, to enable the business to adapt to market and other environmen-

tal changes

Introduction xxvii

Creating an application with these characteristics is not easy, especially when

using traditional means. Further, making such a paradigm shift work in the real

world requires the talent, business knowledge, and technical expertise of the pro-

fessional developer. In short, the professional developer needs a set of tools

designed to meet these objectives, enabling a new level of parallel processing for

business applications.

Therefore, what is needed is a fl exible, sensible, and practical approach to

parallel processing. The Software Pipelines technology was developed to be that

approach, offering the professional developer a usable set of tools and capabili-

ties to enable scalable processing for today’s competitive business application

environment.

What Do People Think about Parallel Processing?

As part of our research for this book, we wanted to fi nd out what the software

community thinks about parallel processing, so we conducted a statistical analy-

sis of associated Web documents. Our analysis tool compares the usage of terms

in Web documents, along with their frequency, in order to indicate the overall

trend for a given subject. The results are intriguing; they confi rm the importance

of parallel processing as a solution for modern computing challenges.

To run the analysis, we based our search on the subject “software” and looked

for references to related terms in the context of that subject. We started with the

following terms:

• Multi-core

• Multi-threaded

• Parallel processing

• Parallel programming

xxviii Introduction

We’ve included several charts in this section to show you the results. The fi rst

chart, Figure I.1, shows how often people use each term. As you can see, parallel

programming is the most popular term, followed by multi-core, and then parallel

processing. This gives us a good idea of how the software community talks about

the subject.

To get a more detailed query, we cross-linked each term with the following

attributes:

• Complex

• Hard

• Important

• Knowledge

• Useful

Figure I.1 Software query

Introduction xxix

In Figure I.2 you can see the relationship of each attribute to parallel process-

ing. Parallel processing is perceived as “useful” and “important,” its two strongest

attributes.

Figure I.2 Attributes for parallel processing

xxx Introduction

Figure I.3 shows parallel programming and its attributes. Parallel program-

ming is defi nitely “important,” but a high percentage of documents also mention

that it is “hard.” It’s interesting that “knowledge” has a high rank, which is not

surprising, given the diffi culty of parallel programming and the general lack of

experience with its techniques.

Figure I.3 Attributes for parallel programming

Introduction xxxi

Figures I.4 and I.5 show the attributes for multi-core and then multi-threaded.

Both charts show responses similar to what we found for parallel programming.

Figure I.5 Attributes for multi-threaded

Figure I.4 Attributes for multi-core

xxxii Introduction

In Figure I.6 we’ve included a chart with all terms and attributes to show the

relative strength of each combination. You can see that parallel processing is con-

sidered “useful,” and that parallel programming is both “important” and “hard.”

What conclusion could you draw from all of this? It appears that people who

talk about software are saying that parallel processing is important, but it’s not

easy. We’re hoping we can help make it easier. The goal of Software Pipelines, and

our goal in writing this book, is to provide a practical and useful set of techniques

to address the challenge, and our intention is that you will fi nd it helpful in your

own application development and business management.

Figure I.6 Attributes for all terms

3

C H A P T E R O N E

Parallel Computing and
Business Applications

If you own, manage, or work with a critical business appli-

cation, you’re most likely dealing with performance prob-

lems. The application can’t handle the ever-increasing

data volume, it can’t scale to meet new demand, or its per-

formance is never good enough or fast enough. You need

a higher level of performance; or even more daunting,

you may need an order-of-magnitude increase so you can

multiply the number of transactions your application can

handle. In today’s computing environment, there’s really

only one way to get there: Utilize a parallel architecture to

run multiple tasks at the same time.

The fundamental concept of parallel architecture is

this: Given a series of tasks to perform, divide those tasks

into discrete elements, some or all of which can be pro-

cessed at the same time on a set of computing resources.

Figure 1.1 illustrates this process.

To do this, you have to break the application into a

series of steps, some of which can run in parallel. However,

that’s really hard to do if you’re working with existing

business applications that do not lend themselves to such

decomposition. Whether monolithic or object-oriented,

most modern applications are tightly coupled, and that

makes it hard to decompose a given process into steps.

Over the years, computer scientists have performed

extensive research into parallel architecture and they’ve

developed many techniques, but until now they focused

on techniques that don’t easily lend themselves to busi-

4 1. Parallel Computing and Business Applications

ness systems. At the same time, demand for greater performance started over-

reaching the limit of most business applications, and the recent trend toward a

service-oriented approach has made the challenge even greater. Parallel process-

ing can fi x the problem, but common existing techniques are either too complex

to adapt to typical business transactions, or they don’t even apply to the business

arena.

Before we show you the solution, let’s look at the existing techniques for par-

allel computing. The three main approaches are

• Mechanical solutions used at the operating system level, such as symmetric

multiprocessing (SMP) and clustering

• Automated network routing, such as round-robin distribution of requests

• Software-controlled grid computing

Figure 1.1 The fundamental concept of parallel architecture

Mechanical Solutions: Parallel Computing at the Operating System Level 5

Mechanical Solutions: Parallel Computing at the Operating
System Level

Symmetric Multiprocessing

SMP automatically distributes application tasks onto multiple processors inside

a single physical computer; the tasks share memory and other hardware resources.

This approach is highly effi cient and easy to implement, because you don’t need

specifi c, detailed knowledge of how SMP divides the workload.

Mechanical solutions such as SMP are very useful as generic one-size-fi ts-all

techniques. To get the most out of SMP, however, you have to write applications

with multi-threaded logic. This is a tricky job at best and is not, in general, the

forte of most corporate IT developers. Plus, SMP is a black-box approach, which

can make it very diffi cult to debug resource contention. For example, if you have

shared software components and run into a problem, fi nding the cause of the

bug may be very hard and time-consuming.

There’s another drawback: Resource sharing between processors is tightly

coupled and is not optimized for any particular application. This puts a lid on

potential performance gain, and when you start scaling an application, shared

resources will bottleneck at some point. So you might scale an application to

eight processors with great results, but when you go to 16, you don’t see any real

gain in performance.

Clustering

In clustering, another widely used mechanical solution, separate physical com-

puters share the workload of an application over a network. This technique pro-

vides some capabilities for automatic parallel processing and is often used for

fail-over and redundancy.

Clustering techniques are automated and contain some ineffi cient function-

ality. If you’re not using centralized resources, the system has to copy critical

information (or in some cases, all information) from one node to another when-

ever a change in state occurs, which can become a serious bottleneck. As is the

case with SMP, clustering is often effective up to a point—then adding hardware

results in severely diminished returns.

6 1. Parallel Computing and Business Applications

Automated Network Routing: Parallel Computing
by Predetermined Logic

In this technique you use some type of predetermined logic to divide application

requests. One common approach is round-robin routing, where the system dis-

tributes requests evenly, one after the next, among a set of physical computers.

Each computer provides exactly the same application functionality. A good

example and use case for round-robin is a Web application, in which the system

shunts each Web page request to one of several available processors.

Although this approach is useful for certain applications and can be useful as

part of a Software Pipelines design, it is also very limited; the router has no logic

for determining the best route for a given request, and all downstream processors

perform identical tasks. Further, business applications often demand strict “order

of processing” requirements, something that simple round-robin logic cannot

accommodate.

Grid Computing: Parallel Computing by Distribution

All of the techniques covered so far have their uses, but you can’t use them for

massive scalability, and they don’t work for transaction-based, message-oriented

applications. You can scale them mechanically and automatically to a certain

level, at which point the overhead of maintaining shared or redundant resources

limits performance gains. If you need greater scalability, grid computing is a bet-

ter choice.

In grid computing the system distributes discrete tasks across many machines

in a network. Typical grid architecture includes a centralized task scheduler,

which distributes and coordinates tasks with other computing facilities across

the network.

Grid computing can deliver far higher throughput than the automated

approaches described earlier, but it puts a signifi cant burden on the developer.

You must explicitly write the code for dividing tasks, for distributing tasks, and

for reassembling the processed results.

Most importantly, grid computing is primarily designed to solve the “embar-

rassingly parallel” problem—long-running, computation-intensive processes as

found in scientifi c or engineering applications. Grids are very benefi cial for the

typical use cases, such as modeling fl uid dynamics, tracing the human genome,

and complex fi nancial analytics simulations. In each of these applications you

divide a massive, long-running computation among multiple nodes. This divides

Parallel Computing for Business Applications 7

the problem into smaller, similar tasks, which interact predictably with computa-

tional resources. However, this is not as useful for business applications, given

their transactional nature, mixed workload requirements, and ever-changing vol-

ume demands.

Parallel Computing for Business Applications

Business applications are very different from engineering or scientifi c applica-

tions. They have the following traits:

• They process transactions.

• They process tasks with mixed workloads. Quite often you can’t predict the

size of each task, or what the processing requirements might be.

• The workload varies widely throughout a given time period. It might even

change from day to day, or from one hour to the next.

• They often have requirements that defy the very concept of performing mul-

tiple tasks in parallel. For example, fi rst in/fi rst out (FIFO) transactions

(which are very commonly used) must be done in an exact, ordered

sequence.

• They almost always use a database or other centralized resource that bottle-

necks and caps off transaction throughput.

Up to now, research on parallel computing concentrated mostly on mechan-

ical solutions with limited scalability, or on grid-based scientifi c and engineering

applications that lie outside the business domain. What we need is a new, simpler

way to implement parallel computing for businesses. This new approach must

support the following requirements:

• It must handle a wide variety of business application needs.

• It must provide ultimate scalability.

• It must maintain critical business requirements.

• It must be easy to implement by corporate IT developers.

In reality, there’s no automagic answer for scaling business applications,

because each organization has very different needs and requirements. The ulti-

mate solution requires the right tools, architecture, and approach, and it must

focus on business applications. But more importantly, the solution requires the

expertise of the professional developer—the invaluable corporate resource who

possesses both a full understanding of the technology and an intimate knowledge

of the business domain.

8 1. Parallel Computing and Business Applications

The challenge of fi nding a business-oriented approach to parallel processing

is answered by Software Pipelines. The architecture is highly scalable and fl exible.

It executes business services independent of location, and in such a way as to

maximize throughput on available computing resources, while easily meeting a

vast array of complex business application requirements.

The Solution: Software Pipelines

Imagine the ideal implementation for a business environment:

You can divide any application process or portion of a process into dis-

crete tasks or services and perform them anywhere in a given network

(local or remote), in parallel with other tasks whenever possible. You can

defi ne the granularity of tasks to fi t the specifi c needs of each applica-

tion; the size can range from coarse-grained (such as Web services) down

to fi ne-grained (such as class/method calls). In addition, the system

optimizes resource utilization of all available facilities, because it dynam-

ically shifts available resources to handle current demand.

The idea is simple, but the details are often complex, with a multitude of

potential variations and design patterns. The solution is Software Pipelines archi-

tecture, which supports the following features and capabilities:

• You can decompose business processes into specifi c tasks, then execute them

in parallel.

• It has virtually unlimited peer-to-peer scalability.

• It’s easier on the developer because it provides an easy method for distribut-

ing and executing tasks in parallel—on one server, or across many servers.

• It’s specifi cally designed for business applications, particularly those that use,

or can use, SOA.

• It handles a high volume of transactions, both large and small, and is there-

fore ideal for mixed-workload processing.

• The design gives you control of throughput and task distribution, which

means that you can maximize your computing resources.

• You can scale upward by using parallel architecture, while still guaranteeing

the order of processing—a key business requirement in many mission-

critical applications. This is a huge benefi t over previous approaches.

• Because the architecture supports so many confi gurations and patterns, you

can create a wide variety of application designs.

The Solution: Software Pipelines 9

These features also allow you to take full advantage of today’s multi-core proces-

sors, distributing transactions within and across servers at will.

The fundamental component in Software Pipelines is the pipeline itself,

defi ned as follows:

An execution facility for invoking the discrete tasks of a business process

in an order-controlled manner. You can control the order by using pri-

ority, order of message input (for example, FIFO), or both.

Essentially, a pipeline is a control mechanism that receives and performs del-

egated tasks, with the option of then delegating tasks in turn to other pipelines in

the system as required. This means you can use pipelines as building blocks to

create an unlimited variety of confi gurations for accomplishing your specifi c

application objectives.

You can group multiple pipelines into fully distributed, peer-to-peer pools;

each pipeline processes a portion of an application or process. And because you

can confi gure each pool to run on a specifi c local or remote server, the system can

execute tasks anywhere on a network.

A pipeline can route tasks to other pipelines through a Pipeline Distributor,

its companion component. The Pipeline Distributor is defi ned as follows:

A virtual routing facility for distributing a given service request to the

appropriate pipeline (which in turn executes the request) within a pipeline

pool. The distributor is colocated with its pool of pipelines and effectively

front-ends incoming service requests.

The distributor routes service requests by evaluating message content.

Routing is based on confi guration rules, which you can easily modify with-

out changing individual business services. You can route requests by using

priority, order of message input (such as FIFO), or both.

In Figure 1.2 you can see how pipelines work with distributors. Requests go

to the fi rst distributor, which splits them off onto three pipelines. The second

pipeline delegates a request to the third pipeline, and the third pipeline sends a

request to another distributor, which in turn splits requests onto fi ve pipelines.

By using pipeline and distributor components, you can build a fully distrib-

uted, multilevel series of interlinked pipelines—and achieve massive scalability

through parallel processing.

10 1. Parallel Computing and Business Applications

Fluid Dynamics

It’s easy to visualize Software Pipelines by comparing them to a network of

hydraulic pipelines, which transport and direct the delivery of water or oil. Such

a system has physical limitations:

• The input source delivers a particular maximum volume to downstream

resources.

• Each downstream pipeline or receptacle (including subsidiary downstream

pipelines and downstream destinations that process the delivered stream)

must accommodate the input volume, or the entire system backs up.

In other words, all channels in the system must accommodate the maximum

volume of fl ow. If they can’t, the fl ow stops or slows down, or even breaks the

system.

Figure 1.2 The Pipeline Distributor and its relationship to pipelines

Software Pipelines Example 11

The same principles apply to Software Pipelines, but it’s far easier to avoid

bottlenecks. All you have to do is move some of the processing load to other pipe-

lines. The example in the next section shows how to do this.

Software Pipelines Example

To show you how Software Pipelines work, we’ll use a banking example. A large

bank has a distributed network of ATMs, which access a centralized resource to

process account transactions. Transaction volume is highly variable, response

times are critical, and key business rules must be enforced—all of which make

the bank’s back-end application an ideal use case for parallel pipelines. We must

apply the following business requirements:

• Make sure each transaction is performed by an authorized user.

• Make sure each transaction is valid. For example, if the transaction is a with-

drawal, make sure the account has suffi cient funds to handle the transaction.

• Guarantee that multiple transactions on each account are performed sequen-

tially. The bank wants to prevent any customer from overdrawing his or her

account by using near-simultaneous transactions. Therefore, FIFO order is

mandatory for withdrawal transactions.

Before we cover pipeline design, let’s take a look at the traditional design for

a monolithic, tightly coupled, centralized software component. You can see the

main fl ow for this design in Figure 1.3.

The simplicity of this design has several benefi ts:

• It’s very easy to implement.

• All business rules are in a single set of code.

• Sequence of transactions is guaranteed.

However, this design forces every user transaction to wait for any previous

transactions to complete. If the volume of transactions shoots up (as it does in

peak periods) and the input fl ow outstrips the load capacity of this single com-

ponent, a lot of customers end up waiting for their transactions to process. All

too often, waiting customers mean lost customers—an intolerable condition for

a successful bank.

To use Software Pipelines to solve this problem, we’ll do a pipeline analysis.

The fi rst step is to divide the process into logical units of parallel work. We’ll start

by decomposing the steps required for processing. Figure 1.4 shows the steps of

the ATM process.

12 1. Parallel Computing and Business Applications

The steps are

• Authenticate the user (customer).

• Ensure the transaction is valid. For example, if the transaction is a with-

drawal, make sure the account has suffi cient funds to handle the transaction.

• Process the transaction and update the ATM daily record for the account.

Now that we understand the steps of the business process, we can identify

the pipelines we’ll use for parallel processing. To do this, we determine which

portions of the business process can execute in parallel.

For the initial ATM design (Figure 1.5), it seems safe to authenticate users in

a separate pipeline. This task performs its work in a separate system, and after it

Figure 1.3 Traditional design for an ATM application

Figure 1.4 Steps in the ATM process

Software Pipelines Example 13

returns the authentication, the process can perform the next two steps. In fact,

because we’re not concerned with ordering at this stage, it’s safe to use multiple

pipelines for this single task. Our goal is simply to process as many authentica-

tions as we can per unit of time, regardless of order.

This design speeds up the process, but most of the work—updating the ATM

accounts—is still a serial process. You’ll still get bottlenecks, because the updating

step is downstream from the authentication step. To improve performance by an

order of magnitude, we’ll analyze the process further. We want to fi nd other

places where the process can be optimized, while still enforcing the key business

rules.

After authenticating a user, the next step is to validate the requested transac-

tion. The application does this by evaluating the user’s current account informa-

tion. Business requirements allow us to perform multiple validations at the same

Figure 1.5 Initial pipeline design: Distribute the authentication step.

14 1. Parallel Computing and Business Applications

time, as long as we don’t process any two transactions for the same account at the

same time or do them out of sequence. This is a FIFO requirement, a key bottle-

neck in parallel business applications. Our fi rst confi guration with the single

pipeline guarantees compliance with this requirement; but we want to distribute

the process, so we need a parallel solution that also supports the FIFO require-

ment.

The key to the solution is the use of multiple pipelines, as shown in Figure

1.6. We assign a segment of the incoming transactions to each of several pipe-

Figure 1.6 Distribute the validation step.

Software Pipelines Example 15

lines. Each pipeline maintains FIFO order, but we use content-based distribution

to limit the pipeline’s load to a small subset of the entire number of transactions.

To implement the new design, we create a pipeline for each branch of the

bank (named branch_1 through branch_5), so that each pipeline controls a sub-

set of accounts. We want the pipelines to handle delegated transactions sequen-

tially, so we specify FIFO order for the new pipelines.

The Pipeline Distributor checks the branch ID in each transaction (which is

an example of content-based distribution), then sends the transaction to the

matching pipeline.

Figure 1.7 Scale the application further by adding downstream pipelines.

16 1. Parallel Computing and Business Applications

Now, by processing many branches in parallel, the system completes many

more transactions per unit of time.

You can use this approach to scale the application up even further, as shown

in Figure 1.7. Let’s assume the bank has a very large branch with more than

100,000 accounts. The branch’s peak transaction volume overloads the previous

pipeline confi guration, so we create additional downstream pipelines. The dis-

tributor divides the transactions by using a range of account numbers

(A1000_1999, A2000_2999, etc.).

At this point, whenever the bank’s business increases, it’s a simple matter to

build additional pipeline structures to accommodate the increased volume.

To sum up, the ATM example illustrates how you can use Software Pipelines

to increase process performance by an order of magnitude. It’s a simple example,

but the basic principles can be used in many other applications.

Summary

Many of today’s organizations are facing a hard reality: In order to meet current

demand, their business applications must increase performance by an order of

magnitude. And over time the problem only gets more severe—the business sec-

tor depends more and more on data, so demand is going to accelerate, not slow

down.

In order to meet such daunting requirements, the capability of performing

multiple tasks in parallel becomes vital. We have many solutions for improving

application performance, but we’ve never had the technology to create a parallel

software environment specifi cally for business applications.

Software Pipelines architecture answers this challenge at every point. It was

designed specifi cally for business, you can easily scale your application to any

size, you can maximize your resources, and best of all, you can do all this and still

maintain critical business transaction and integrity requirements.

375

Index

A

Amdahl’s Law, 18

ATMs. See Automated teller

machines

Automated network

routing, 6

Automated teller machines

(ATMs), 90, 93, 98,

103, 117–118, 120,

123, 128, 136, 137,

143–144

AvailableInputRate, 22–23

B

Bank ATM system (multitier

distribution), 34–43

ATM application, 34, 44

dynamic named pipelines,

38

multitier distribution, 37

servers with quad-core

CPUs, 39

transaction groups and

pipeline names, 43t

Bank ATM system (single-

tier distribution),

31–35, 32

pipeline distributor,

33–35, 34

pipelines, 32–33

Bank teller system (BTS),

89–90, 93

Batch posting system (BPS),

90

BPEL. See Business process

execution language

BPS. See Batch posting

system

BTS. See Bank teller system

Business process execution

language (BPEL),

179

C

Certifi ed Pipeline Service(s),

87

Connector patterns, 275–

282

376 Index

Connector patterns (continued)

defi nition and confi guration, 275–

278

socket connector, 278–280

web service connector, 280–282

Content-based routing pattern, 167

D

Database sharding distributor, 295–

309

client creation, 305–307

creation of, 299

distributor confi guration, 303–304

example of, 297–298, 298t

methods for, 302–303

schema for shards, 296

service, running of, 307–309

service building, 299–303

sharding driver confi guration, 304–

305

DatabaseTPS, 165

DBS. See Debit card services

Debit card services (DCS), 90, 93, 104,

117–118, 121, 124, 127–128, 136,

137, 143, 144, 148–150

Distributor patterns, 46, 46, 46–47,

55–60

client distributor pattern, 58, 59

database sharding distributor pattern,

58–59, 60

local method invocation pattern, 61,

61–62

multitier distributor pattern, 56–58,

57

other patterns, 62

single distributor pattern, 56, 56

socket invocation pattern, 62, 63

web service invocation pattern, 62,

63

DistributorRate, 27, 34, 41, 42

DistributorTPS, 29

Document object model (DOM), 34,

39, 41

DOM. See Document object model

E

EAI. See Enterprise application

integration

Enterprise application integration

(EAI), 106

F

FlowTPS, 125

Fluid dynamics, 10–11

G

Grid computing, 6–7

H

Hello software pipelines, 205–215, 257–

273

Index 377

client, creation of, 212–214

cleanup, 214

confi guration loading, 213

distributor reference, 214

invoke service, 214

pipelines connector, 214

service message, 214

distributor confi gurations, 206, 209–

211

message defi nition, 206

request-response messaging, 257–261,

258, 259, 260, 261

asynchronous, 259, 260

fully synchronous, 259

use of, 261–273

runs service, 215

scaling for, 217–228

distributor confi gurations, 218t

new service fl ow, 217

running of service, 223–228

test client, 219–223

service, building of, 207–209

service fl ow for, 205

I

InputRate, 22–23, 24, 32, 35, 40, 41

Interbank processing system (IPS), 93

IPS. See Interbank processing system

J

JPerf, 219, 224, 225

M

Message exchange patterns, 46

one-way pattern, 49, 49

request-response pattern, 49–50, 50,

51

Multitier distributor, 283–293

client creation, 289–291

confi gurations for, 283–289, 285t,

286t

service running, 292–293

N

NumberOfPipelines, 29, 34, 41, 42

O

OBS. See Online banking system

Online banking system (OBS), 93

OutputRate, 22–23

P

Parallel computing

approaches for, 4

automated network routing, 6

business applications, 7–8

approach for, 7–8

traits, 7

clustering, 5

grid computing, 6–7

symmetric multiprocessing

(SMP), 5

378 Index

Parallel structure, 4

PBCOR. See Pipelines Bank

Corporation

Pipeline analysis, 115–129

current process fl ow, 116–119

ATM process fl ow, 117–118

DCS process fl ow, 117–118

entire fl ow processing rate, 124–

127

ATM withdraw cash transaction,

126

DCS account transaction, 127

time per transaction, 126

existing component, 119–121

ATM, 120

DCS, 121

processing rate, 121–124

ATM components, 123

DCS, 124

restriction points, 127–129

ATM withdraw cash transaction,

128

DCS account transaction, 127–

128

Pipeline deployment, 195–200

planning of, 196–197

disaster recovery, 197

facilities requirement, 197

hardware requirements, 197

human capital, 197

monitoring, 197

software deployment, 197

user training, 197

production environment, deploy,

197–198

hardware procurement, 198

smoke testing, 198

software deployment, 198

standby support, 198

production environment, monitor,

198–199, 199

results evaluation, 199–201

Pipeline design, 131–168

defi ne/optimize design, 155–168,

156

ATM stand-alone service, 163–

164

authorize transaction, 167

database tier,

165–166

downstream service, 156–157, 157

entire service, 161, 161–163, 162

independent services, 159–161, 160,

161

integrated ATM/DCS service, 164–

165

performance improvements, 158,

159, 160t, 162t, 164, 165, 166

service fl ow, 167–168

validate transaction, 166–167

diagram for, 132

distributor rate, 151–153, 153t

messaging, 135

new components, 138–140

physical deployment environment,

154–155

Index 379

pipeline opportunities, 141–145

capacity of component, 141

input equals output, 141

performance gap, 143

schedule, 145

targets, 144

pipeline scheme, 145–150, 146

ATM stand-alone service, 147–

148

integrated ATM/DCS service, 148–

150

service fl ow design, 133–138, 134,

135

Pipeline Distributor, 9, 10, 25, 26,

33–35, 46

Pipeline framework overview, 311–

322

interface overview, 311–314, 312

abstract message, 312

pipeline, 314

pipelines connector, 313

pipelines distributor, 313

pipeline service, 314

pipelines routers, 313

pipelines instrumentor, 314–322

Pipeline implementation, 169–193

develop/modify pipeline sets, 182–

190, 183

existing components, 173–177

component table, 175

component to service map, 176–177

develop components, 175–177

evaluation, 174

incorporation, 174–175

map components to service fl ow,

174

framework, 171–173

performance testing, 173

service-oriented, 173

software pipelines, 173

testing framework, 173

instrument service fl ow, 181–182

new components, 178–179

quality assurance certifi cate, 192

service fl ow orchestration, 179–181

ATM stand-alone service, 180–181

integrated ATM/DCS service, 181

specifi c tasks, 170

testing and optimization, 190–192

Pipeline patterns

content-based routing pattern, 53,

53

custom routing pattern, 54, 54

distributor connector patterns, 46–

47, 60–62

distributor patterns, 46, 46, 55–60

join pattern, 55, 55

message exchange patterns, 46, 49–

51

pipeline routing patterns, 51–55

round-robin routing pattern, 52, 53

routing patterns, 46

service invocation patterns, 46, 47–

49

Pipelines Bank Corporation (PBCOR),

79, 89–94, 97–100

380 Index

Pipelines Bank Corporation (PBCOR)

(continued)

account transaction example, 323–

327, 324

automated teller machines (ATMs),

90, 93

bank teller system (BTS), 89–90, 93

batch posting system (BPS), 90

connect services example, 342–348

cost of, 92

current and planned metrics, 94

database access example, 333–342

debit card services (DCS), 90, 93

high-level view of, 91

pipelines confi guration example,

328–331

SPOC template, 93–94

spring framework example, 332–

333

test running example, 348–349, 349

Pipelines examples,

31–44

Pipelines law

basic rule for

infl ow, 19, 19

outfl ow, 19, 19

fl ow limitation, 21

fraction and restriction, 20, 20

fl uid dynamics, 18

output fl ow restrictions, 21, 21

questions for, 17

wasted CPU power, 17–18

Pipelines patterns, 45–63

Pipelines reference framework Javadoc,

357–374

PotentialOutputRate, 23

ProcessRate, 24, 27, 32, 33, 34, 40, 42

R

Return on investment (ROI), 74

ROI. See Return on investment

Round-robin routing pattern, 167

Router confi gurations, 229–256

content-based router, 229–241, 230,

237

custom router, 241–255, 242, 243t

Routing patterns, 46

S

SCA. See Service component

architecture

Service component architecture (SCA),

179

ServiceFlowTPS, 167–168

Service invocation patterns, 46, 47–49

pull pattern, 47–48, 48

push pattern, 47, 48

Sharding, 59–60, 60

SMP. See Symmetric multiprocessing

Software pipelines

architecture of, 65–78

ATM process, 12, 13

automated fail-over, 355

bottlenecks, 27, 28

Index 381

branch, creating of, 15

for business environment, 8–9

centralized software component, 12

debugging tools, 356

downstream pipelines, 16

dynamic pipelines, 355

example, 11–15

future of, 353–356

ideas for the future, 354–356

management tools, 356

message reliability, 355

new routing patterns,

355

other frameworks integration, 356

pipelines design tools, 356

pipelines frameworks, 355

pipelines simulator, 356

reliable pipelines, 355

rule 1, 22–23

rule 2, 23–26, 24, 25, 26

rule 3, 26–29, 27, 28

rules for, 22

steps for, 12

use of Pipeline Distributor, 26

Software pipelines, for business

environment, 8–9

Software pipelines architecture, 66

budget impact, 68–70

business fl exibility, 67

core transaction/batch processing, 67

cost, reduction of, 67

optimization for, 69

roles and responsibilities, 71

application developer, 74–75

application project manager, 75–76

business unit support, 72–73

IT management, 73–74

IT operations, 77–78

pipelines architect, 71–72

quality assurance manager, 76–77

scalable performance, 67

strategic evaluation, 66–67

Software Pipelines Optimization cycle

(SPOC), 65, 79, 81–84

advantage of, 82–83

ATM and, 103

budget impact, 101–102

business objectives/requirements,

96–102

current input rates, 107

current number of users, 107

DCS, 104

future potential rate

acquisitions, 105–106

business projections, 105

customer online access, 105

historical growth, 104–105

new business requirement, 105

new products plans, 105

input processing rate, 102–104

list of applications, 100t

measure current capacity, 107–109

objectives for, 95–96

organizational impact, 102

overview of, 82–84, 85–86, 86

performance gap, 109–111

382 Index

Software Pipelines Optimization cycle

(SPOC) (continued)

pipeline analysis, 86, 115–129

pipeline deployment, 87–88, 195–200

pipeline design, 87, 131–168

pipeline implementation, 87, 169–193

pipeline targets, 111–113, 112

planned input rates,

107

planned number of users, 107

purpose of, 82

steps for, 85–88

strategic impact,

97–100

technology objectives, 100–101

SPOC. See Software Pipelines

Optimization cycle

Symmetric multiprocessing (SMP), 4

T

TPS. See Transactions per second

Transactions per second (TPS), 23

W

Web services description language

(WSDL), 183

WSDL. See Web services description

language

	Foreword
	Preface
	Introduction
	CHAPTER 1 Parallel Computing and Business Applications
	Mechanical Solutions: Parallel Computing at the Operating System Level
	Automated Network Routing: Parallel Computing by Predetermined Logic
	Grid Computing: Parallel Computing by Distribution
	Parallel Computing for Business Applications
	The Solution: Software Pipelines
	Fluid Dynamics
	Software Pipelines Example
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	O
	P
	R
	S
	T
	W

