RF MICROELECTRONICS
Second Edition
To the memory of my parents
This page intentionally left blank
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE TO THE SECOND EDITION</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>PREFACE TO THE FIRST EDITION</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xxi</td>
<td></td>
</tr>
<tr>
<td>ABOUT THE AUTHOR</td>
<td>xxiii</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION TO RF AND WIRELESS TECHNOLOGY</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>A Wireless World</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>RF Design Is Challenging</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>The Big Picture</td>
<td>4</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>BASIC CONCEPTS IN RF DESIGN</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>General Considerations</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Units in RF Design</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Time Variance</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Nonlinearity</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Effects of Nonlinearity</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Harmonic Distortion</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Gain Compression</td>
<td>16</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Cross Modulation</td>
<td>20</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Intermodulation</td>
<td>21</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Cascaded Nonlinear Stages</td>
<td>29</td>
</tr>
<tr>
<td>2.2.6</td>
<td>AM/PM Conversion</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Noise</td>
<td>35</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Noise as a Random Process</td>
<td>36</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Noise Spectrum</td>
<td>37</td>
</tr>
</tbody>
</table>
CHAPTER 3 COMMUNICATION CONCEPTS 91

3.1 General Considerations 91

3.2 Analog Modulation
 3.2.1 Amplitude Modulation 93
 3.2.2 Phase and Frequency Modulation 95

3.3 Digital Modulation
 3.3.1 Intersymbol Interference 101
 3.3.2 Signal Constellations 105
 3.3.3 Quadrature Modulation 107
 3.3.4 GMSK and GFSK Modulation 112
 3.3.5 Quadrature Amplitude Modulation 114
 3.3.6 Orthogonal Frequency Division Multiplexing 115

3.4 Spectral Regrowth 118

3.5 Mobile RF Communications 119

3.6 Multiple Access Techniques
 3.6.1 Time and Frequency Division Duplexing 123
 3.6.2 Frequency-Division Multiple Access 125
 3.6.3 Time-Division Multiple Access 125
 3.6.4 Code-Division Multiple Access 126

3.7 Wireless Standards
 3.7.1 GSM 132
 3.7.2 IS-95 CDMA 137
 3.7.3 Wideband CDMA 139
 3.7.4 Bluetooth 143
 3.7.5 IEEE802.11a/b/g 147
Contents

3.8 Appendix I: Differential Phase Shift Keying 151
References 152
Problems 152

CHAPTER 4 TRANSCEIVER ARCHITECTURES 155
4.1 General Considerations 155
4.2 Receiver Architectures 160
 4.2.1 Basic Heterodyne Receivers 160
 4.2.2 Modern Heterodyne Receivers 171
 4.2.3 Direct-Conversion Receivers 179
 4.2.4 Image-Reject Receivers 200
 4.2.5 Low-IF Receivers 214
4.3 Transmitter Architectures 226
 4.3.1 General Considerations 226
 4.3.2 Direct-Conversion Transmitters 227
 4.3.3 Modern Direct-Conversion Transmitters 238
 4.3.4 Heterodyne Transmitters 244
 4.3.5 Other TX Architectures 248
4.4 OOK Transceivers 248
References 249
Problems 250

CHAPTER 5 LOW-NOISE AMPLIFIERS 255
5.1 General Considerations 255
5.2 Problem of Input Matching 263
5.3 LNA Topologies 266
 5.3.1 Common-Source Stage with Inductive Load 266
 5.3.2 Common-Source Stage with Resistive Feedback 269
 5.3.3 Common-Gate Stage 272
 5.3.4 Cascode CS Stage with Inductive Degeneration 284
 5.3.5 Variants of Common-Gate LNA 296
 5.3.6 Noise-Cancelling LNAs 300
 5.3.7 Reactance-Cancelling LNAs 303
5.4 Gain Switching 305
5.5 Band Switching 312
5.6 High-IP₂ LNAs 313
 5.6.1 Differential LNAs 314
 5.6.2 Other Methods of IP₂ Improvement 323
5.7 Nonlinearity Calculations 325
 5.7.1 Degenerated CS Stage 325
 5.7.2 Undegenerated CS Stage 329
 5.7.3 Differential and Quasi-Differential Pairs 331
 5.7.4 Degenerated Differential Pair 332
References 333
Problems 333
CHAPTER 6 MIXERS

6.1 General Considerations 337
 6.1.1 Performance Parameters 338
 6.1.2 Mixer Noise Figures 343
 6.1.3 Single-Balanced and Double-Balanced Mixers 348

6.2 Passive Downconversion Mixers 350
 6.2.1 Gain 350
 6.2.2 LO Self-Mixing 357
 6.2.3 Noise 357
 6.2.4 Input Impedance 364
 6.2.5 Current-Driven Passive Mixers 366

6.3 Active Downconversion Mixers 368
 6.3.1 Conversion Gain 370
 6.3.2 Noise in Active Mixers 377
 6.3.3 Linearity 387

6.4 Improved Mixer Topologies 393
 6.4.1 Active Mixers with Current-Source Helpers 393
 6.4.2 Active Mixers with Enhanced Transconductance 394
 6.4.3 Active Mixers with High IP₂ 397
 6.4.4 Active Mixers with Low Flicker Noise 405

6.5 Upconversion Mixers 408
 6.5.1 Performance Requirements 408
 6.5.2 Upconversion Mixer Topologies 409

References 424
Problems 425

CHAPTER 7 PASSIVE DEVICES

7.1 General Considerations 429
7.2 Inductors 431
 7.2.1 Basic Structure 431
 7.2.2 Inductor Geometries 435
 7.2.3 Inductance Equations 436
 7.2.4 Parasitic Capacitances 439
 7.2.5 Loss Mechanisms 444
 7.2.6 Inductor Modeling 455
 7.2.7 Alternative Inductor Structures 460

7.3 Transformers 470
 7.3.1 Transformer Structures 470
 7.3.2 Effect of Coupling Capacitance 475
 7.3.3 Transformer Modeling 475

7.4 Transmission Lines 476
 7.4.1 T-Line Structures 478

7.5 Varactors 483
7.6 Constant Capacitors 490
 7.6.1 MOS Capacitors 491
 7.6.2 Metal-Plate Capacitors 493
CHAPTER 8 OSCILLATORS

8.1 Performance Parameters
8.2 Basic Principles
 8.2.1 Feedback View of Oscillators
 8.2.2 One-Port View of Oscillators
8.3 Cross-Coupled Oscillator
8.4 Three-Point Oscillators
8.5 Voltage-Controlled Oscillators
 8.5.1 Tuning Range Limitations
 8.5.2 Effect of Varactor \(Q \)
8.6 LC VCOs with Wide Tuning Range
 8.6.1 VCOs with Continuous Tuning
 8.6.2 Amplitude Variation with Frequency Tuning
 8.6.3 Discrete Tuning
8.7 Phase Noise
 8.7.1 Basic Concepts
 8.7.2 Effect of Phase Noise
 8.7.3 Analysis of Phase Noise: Approach I
 8.7.4 Analysis of Phase Noise: Approach II
 8.7.5 Noise of Bias Current Source
 8.7.6 Figures of Merit of VCOs
8.8 Design Procedure
 8.8.1 Low-Noise VCOs
8.9 LO Interface
8.10 Mathematical Model of VCOs
8.11 Quadrature Oscillators
 8.11.1 Basic Concepts
 8.11.2 Properties of Coupled Oscillators
 8.11.3 Improved Quadrature Oscillators
8.12 Appendix I: Simulation of Quadrature Oscillators

References
Problems
Contents

9.3 Type-II PLLs
 9.3.1 Phase/Frequency Detectors 612
 9.3.2 Charge Pumps 614
 9.3.3 Charge-Pump PLLs 615
 9.3.4 Transient Response 620
 9.3.5 Limitations of Continuous-Time Approximation 622
 9.3.6 Frequency-Multiplying CPPLL 623
 9.3.7 Higher-Order Loops 625

9.4 PFD/CP Nonidealities
 9.4.1 Up and Down Skew and Width Mismatch 627
 9.4.2 Voltage Compliance 630
 9.4.3 Charge Injection and Clock Feedthrough 630
 9.4.4 Random Mismatch between Up and Down Currents 632
 9.4.5 Channel-Length Modulation 633
 9.4.6 Circuit Techniques 634

9.5 Phase Noise in PLLs
 9.5.1 VCO Phase Noise 638
 9.5.2 Reference Phase Noise 643

9.6 Loop Bandwidth 645

9.7 Design Procedure 646

9.8 Appendix I: Phase Margin of Type-II PLLs 647

References 651

Problems 652

CHAPTER 10 INTEGER-N FREQUENCY SYNTHESIZERS 655

10.1 General Considerations 655

10.2 Basic Integer-N Synthesizer 659

10.3 Settling Behavior 661

10.4 Spur Reduction Techniques 664

10.5 PLL-Based Modulation 667
 10.5.1 In-Loop Modulation 667
 10.5.2 Modulation by Offset PLLs 670

10.6 Divider Design 673
 10.6.1 Pulse Swallow Divider 674
 10.6.2 Dual-Modulus Dividers 677
 10.6.3 Choice of Prescaler Modulus 682
 10.6.4 Divider Logic Styles 683
 10.6.5 Miller Divider 699
 10.6.6 Injection-Locked Dividers 707
 10.6.7 Divider Delay and Phase Noise 709

References 712

Problems 713
CHAPTER 11 FRACTIONAL-N SYNTHESIZERS

11.1 Basic Concepts 715
11.2 Randomization and Noise Shaping 718
11.2.1 Modulus Randomization 718
11.2.2 Basic Noise Shaping 722
11.2.3 Higher-Order Noise Shaping 728
11.2.4 Problem of Out-of-Band Noise 732
11.2.5 Effect of Charge Pump Mismatch 733
11.3 Quantization Noise Reduction Techniques 738
11.3.1 DAC Feedforward 738
11.3.2 Fractional Divider 742
11.3.3 Reference Doubling 743
11.3.4 Multiphase Frequency Division 745
11.4 Appendix I: Spectrum of Quantization Noise 748

References 749
Problems 749

CHAPTER 12 POWER AMPLIFIERS

12.1 General Considerations 751
12.1.1 Effect of High Currents 754
12.1.2 Efficiency 755
12.1.3 Linearity 756
12.1.4 Single-Ended and Differential PAs 758
12.2 Classification of Power Amplifiers 760
12.2.1 Class A Power Amplifiers 760
12.2.2 Class B Power Amplifiers 764
12.2.3 Class C Power Amplifiers 768
12.3 High-Efficiency Power Amplifiers 770
12.3.1 Class A Stage with Harmonic Enhancement 771
12.3.2 Class E Stage 772
12.3.3 Class F Power Amplifiers 775
12.4 Cascode Output Stages 776
12.5 Large-Signal Impedance Matching 780
12.6 Basic Linearization Techniques 782
12.6.1 Feedforward 783
12.6.2 Cartesian Feedback 786
12.6.3 Predistortion 787
12.6.4 Envelope Feedback 788
12.7 Polar Modulation 790
12.7.1 Basic Idea 790
12.7.2 Polar Modulation Issues 793
12.7.3 Improved Polar Modulation 796
12.8 Outphasing 802
 12.8.1 Basic Idea 802
 12.8.2 Outphasing Issues 805
12.9 Doherty Power Amplifier 811
12.10 Design Examples 814
 12.10.1 Cascode PA Examples 815
 12.10.2 Positive-Feedback PAs 819
 12.10.3 PAs with Power Combining 821
 12.10.4 Polar Modulation PAs 824
 12.10.5 Outphasing PA Example 826

References 830
Problems 831

CHAPTER 13 TRANSCEIVER DESIGN EXAMPLE 833
13.1 System-Level Considerations 833
 13.1.1 Receiver 834
 13.1.2 Transmitter 838
 13.1.3 Frequency Synthesizer 840
 13.1.4 Frequency Planning 844
13.2 Receiver Design 848
 13.2.1 LNA Design 849
 13.2.2 Mixer Design 851
 13.2.3 AGC 856
13.3 TX Design 861
 13.3.1 PA Design 861
 13.3.2 Upconverter 867
13.4 Synthesizer Design 869
 13.4.1 VCO Design 869
 13.4.2 Divider Design 878
 13.4.3 Loop Design 882

References 886
Problems 886

INDEX 889
PREFACE TO THE SECOND EDITION

In the 14 years since the first edition of this book, RF IC design has experienced a dramatic metamorphosis. Innovations in transceiver architectures, circuit topologies, and device structures have led to highly-integrated “radios” that span a broad spectrum of applications. Moreover, new analytical and modeling techniques have considerably improved our understanding of RF circuits and their underlying principles. A new edition was therefore due.

The second edition differs from the first in several respects:

1. I realized at the outset—three-and-a-half years ago—that simply adding “patches” to the first edition would not reflect today’s RF microelectronics. I thus closed the first edition and began with a clean slate. The two editions have about 10% overlap.

2. I wanted the second edition to contain greater pedagogy, helping the reader understand both the fundamentals and the subtleties. I have thus incorporated hundreds of examples and problems.

3. I also wanted to teach design in addition to analysis. I have thus included step-by-step design procedures and examples. Furthermore, I have dedicated Chapter 13 to the step-by-step transistor-level design of a dual-band WiFi transceiver.

4. With the tremendous advances in RF design, some of the chapters have inevitably become longer and some have been split into two or more chapters. As a result, the second edition is nearly three times as long as the first.

Suggestions for Instructors and Students

The material in this book is much more than can be covered in one quarter or semester. The following is a possible sequence of the chapters that can be taught in one term with reasonable depth. Depending on the students’ background and the instructor’s preference, other combinations of topics can also be covered in one quarter or semester.
Chapter 1: Introduction to RF and Wireless Technology
This chapter provides the big picture and should be covered in about half an hour.

Chapter 2: Basic Concepts in RF Design
The following sections should be covered: General Considerations, Effects of Nonlinearity (the section on AM/PM Conversion can be skipped), Noise, and Sensitivity and Dynamic Range. (The sections on Passive Impedance Transformation, Scattering Parameters, and Analysis of Nonlinear Dynamic Systems can be skipped.) This chapter takes about six hours of lecture.

Chapter 3: Communication Concepts
This chapter can be covered minimally in a quarter system—for example, Analog Modulation, Quadrature Modulation, GMSK Modulation, Multiple Access Techniques, and the IEEE802.11a/b/g Standard. In a semester system, the concept of signal constellations can be introduced and a few more modulation schemes and wireless standards can be taught. This chapter takes about two hours in a quarter system and three hours in a semester system.

Chapter 4: Transceiver Architectures
This chapter is relatively long and should be taught selectively. The following sections should be covered: General Considerations, Basic and Modern Heterodyne Receivers, Direct-Conversion Receivers, Image-Reject Receivers, and Direct-Conversion Transmitters. In a semester system, Low-IF Receivers and Heterodyne Transmitters can be covered as well. This chapter takes about eight hours in a quarter system and ten hours in a semester system.

Chapter 5: Low-Noise Amplifiers
The following sections should be covered: General Considerations, Problem of Input Matching, and LNA Topologies. A semester system can also include Gain Switching and Band Switching or High-IP₂ LNAs. This chapter takes about six hours in a quarter system and eight hours in a semester system.

Chapter 6: Mixers
The following sections should be covered: General Considerations, Passive Downconversion Mixers (the computation of noise and input impedance of voltage-driven sampling mixers can be skipped), Active Downconversion Mixers, and Active Mixers with High IP₂. In a semester system, Active Mixers with Enhanced Transconductance, Active Mixers with Low Flicker Noise, and Upconversion Mixers can also be covered. This chapter takes about eight hours in a quarter system and ten hours in a semester system.

Chapter 7: Passive Devices
This chapter may not fit in a quarter system. In a semester system, about three hours can be spent on basic inductor structures and loss mechanisms and MOS varactors.

Chapter 8: Oscillators
This is a long chapter and should be taught selectively. The following sections should be covered: Basic Principles, Cross-Coupled Oscillator, Voltage-Controlled
Oscillators, Low-Noise VCOs. In a quarter system, there is little time to cover phase noise. In a semester system, both approaches to phase noise analysis can be taught. This chapter takes about six hours in a quarter system and eight hours in a semester system.

Chapter 9: Phase-Locked Loops

This chapter forms the foundation for synthesizers. In fact, if taught carefully, this chapter naturally teaches integer-N synthesizers, allowing a quarter system to skip the next chapter. The following sections should be covered: Basic Concepts, Type-I PLLs, Type-II PLLs, and PFD/CP Nonidealities. A semester system can also include Phase Noise in PLLs and Design Procedure. This chapter takes about four hours in a quarter system and six hours in a semester system.

Chapter 10: Integer-N Synthesizers

This chapter is likely sacrificed in a quarter system. A semester system can spend about four hours on Spur Reduction Techniques and Divider Design.

Chapter 11: Fractional-N Synthesizers

This chapter is likely sacrificed in a quarter system. A semester system can spend about four hours on Randomization and Noise Shaping. The remaining sections may be skipped.

Chapter 12: Power Amplifiers

This is a long chapter and, unfortunately, is often sacrificed for other chapters. If coverage is desired, the following sections may be taught: General Considerations, Classification of Power Amplifiers, High-Efficiency Power Amplifiers, Cascode Output Stages, and Basic Linearization Techniques. These topics take about four hours of lecture. Another four hours can be spent on Doherty Power Amplifier, Polar Modulation, and Outphasing.

Chapter 13: Transceiver Design Example

This chapter provides a step-by-step design of a dual-band transceiver. It is possible to skip the state-of-the-art examples in Chapters 5, 6, and 8 to allow some time for this chapter. The system-level derivations may still need to be skipped. The RX, TX, and synthesizer transistor-level designs can be covered in about four hours.

A solutions manual is available for instructors via the Pearson Higher Education Instructor Resource Center web site: pearsonhighered.com/irc; and a set of Powerpoint slides is available for instructors at informit.com/razavi. Additional problems will be posted on the book’s website (informit.com/razavi).

—Behzad Razavi
July 2011
This page intentionally left blank
PREFACE TO THE FIRST EDITION

The annual worldwide sales of cellular phones has exceeded $2.5B. With 4.5 million customers, home satellite networks comprise a $2.5B industry. The global positioning system is expected to become a $5B market by the year 2000. In Europe, the sales of equipment and services for mobile communications will reach $30B by 1998. The statistics are overwhelming.

The radio frequency (RF) and wireless market has suddenly expanded to unimaginable dimensions. Devices such as pagers, cellular and cordless phones, cable modems, and RF identification tags are rapidly penetrating all aspects of our lives, evolving from luxury items to indispensable tools. Semiconductor and system companies, small and large, analog and digital, have seen the statistics and are striving to capture their own market share by introducing various RF products.

RF design is unique in that it draws upon many disciplines unrelated to integrated circuits (ICs). The RF knowledge base has grown for almost a century, creating a seemingly endless body of literature for the novice.

This book deals with the analysis and design of RF integrated circuits and systems. Providing a systematic treatment of RF electronics in a tutorial language, the book begins with the necessary background knowledge from microwave and communication theory and leads the reader to the design of RF transceivers and circuits. The text emphasizes both architecture and circuit level issues with respect to monolithic implementation in VLSI technologies. The primary focus is on bipolar and CMOS design, but most of the concepts can be applied to other technologies as well. The reader is assumed to have a basic understanding of analog IC design and the theory of signals and systems.

The book consists of nine chapters. Chapter 1 gives a general introduction, posing questions and providing motivation for subsequent chapters. Chapter 2 describes basic concepts in RF and microwave design, emphasizing the effects of nonlinearity and noise.

Chapters 3 and 4 take the reader to the communication system level, giving an overview of modulation, detection, multiple access techniques, and wireless standards. While initially appearing to be unnecessary, this material is in fact essential to the concurrent design of RF circuits and systems.
Chapter 5 deals with transceiver architectures, presenting various receiver and transmitter topologies along with their merits and drawbacks. This chapter also includes a number of case studies that exemplify the approaches taken in actual RF products.

Chapters 6 through 9 address the design of RF building blocks: low-noise amplifiers and mixers, oscillators, frequency synthesizers, and power amplifiers, with particular attention to minimizing the number of off-chip components. An important goal of these chapters is to demonstrate how the system requirements define the parameters of the circuits and how the performance of each circuit impacts that of the overall transceiver.

I have taught approximately 80% of the material in this book in a 4-unit graduate course at UCLA. Chapters 3, 4, 8, and 9 had to be shortened in a ten-week quarter, but in a semester system they can be covered more thoroughly.

Much of my RF design knowledge comes from interactions with colleagues. Helen Kim, Ting-Ping Liu, and Dan Avidor of Bell Laboratories, and David Su and Andrew Gzegorek of Hewlett-Packard Laboratories have contributed to the material in this book in many ways. The text was also reviewed by a number of experts: Stefan Heinen (Siemens), Bart Jansen (Hewlett-Packard), Ting-Ping Liu (Bell Labs), John Long (University of Toronto), Tadao Nakagawa (NTT), Gitty Nasserbakht (Texas Instruments), Ted Rappaport (Virginia Tech), Tirdad Sowlati (Gnenn), Trudy Stetzler (Bell Labs), David Su (Hewlett-Packard), and Rick Wesel (UCLA). In addition, a number of UCLA students, including Farbod Behbahani, Hooman Darabi, John Leete, and Jacob Rael, “test drove” various chapters and provided useful feedback. I am indebted to all of the above for their kind assistance.

I would also like to thank the staff at Prentice Hall, particularly Russ Hall, Maureen Diana, and Kerry Riordan for their support.

—Behzad Razavi
July 1997
ACKNOWLEDGMENTS

I have been fortunate to benefit from the support of numerous people during the writing, review, and production phases of this book. I would like to express my thanks here. Even after several rounds of self-editing, it is possible that typos or subtle mistakes have eluded the author. Sometimes, an explanation that is clear to the author may not be so to the reader. And, occasionally, the author may have missed a point or a recent development. A detailed review of the book by others thus becomes necessary. The following individuals meticulously reviewed various chapters, discovered my mistakes, and made valuable suggestions:

Ali Afsahi (Broadcom)
Pietro Andreani (Lund University)
Ashkan Borna (UC Berkeley)
Jonathan Borremans (IMEC)
Debopriyo Chowdhury (UC Berkeley)
Matteo Conta (Consultant)
Ali Homayoun (UCLA)
Veltina del Lattorre (Consultant)
Jane Gu (University of Florida)
Peng Han (Beken)
Pavan Hanumolu (Oregon State University)
Daquan Huang (Texas Instruments)
Sy-Chyuan Hwu (UCLA)
Amin Jahanian (UCI)
Jithin Janardhan (UCLA)
Shinwon Kang (UC Berkeley)
Iman Khajenasiri
(Sharif University of Technology)
Yanghyo Kim (UCLA)
Abbas Komijani (Atheros)
Tai-Cheng Lee (National Taiwan University)
Antonio Liscidini (University of Pavia)
Shen-Iuan Liu (National Taiwan University)
Xiaodong Liu (Lund University)
Jian Hua Lu (UCLA)
Howard Luong (Hong Kong University of Science and Technology)
Elvis Mak (University of Macau)
Rabih Makarem (Atheros)
Rui Martins (University of Macau)
Andrea Mazzanti (University of Pavia)
Karthik Natarajan
(University of Washington)
Nitin Nidhi (UCLA)
Joung Park (UCLA)
Paul Park (Atheros)
Stefano Pellerano (Intel)
Jafar Savoj (Xilinx)
Acknowledgments

Parmoon Seddighrad (University of Washington) Vidojkovic Vojkan (IMEC)
Alireza Shirvani (Ralink) Ning Wang (UCLA)
Tirdad Sowlati (Qualcomm) Weifeng Wang (Beken)
Francesco Svelto (University of Pavia) Zhi Gong Wang (Southeast University)
Enrico Temporiti (ST Microelectronics) Marco Zanuso (UCLA)
Federico Vecchi (University of Pavia) Yunfeng Zhao (Beken)
Vijay Viswam (Lund University) Alireza Zolfaghari (Broadcom)

I am thankful for their enthusiastic, organized, and to-the-point reviews.

The book’s production was proficiently managed by the staff at Prentice Hall, including Bernard Goodwin and Julie Nahil. I would like to thank both.

As with my other books, my wife, Angelina, typed the entire second edition in Latex and selflessly helped me in this three-and-a-half-year endeavor. I am grateful to her.

—Behzad Razavi
ABOUT THE AUTHOR

Behzad Razavi received the BSEE degree from Sharif University of Technology in 1985 and MSEE and PhDEE degrees from Stanford University in 1988 and 1992, respectively. He was with AT&T Bell Laboratories and Hewlett-Packard Laboratories until 1996. Since 1996, he has been associate professor and, subsequently, professor of electrical engineering at University of California, Los Angeles. His current research includes wireless transceivers, frequency synthesizers, phase-locking and clock recovery for high-speed data communications, and data converters.

Professor Razavi received the Beatrice Winner Award for Editorial Excellence at the 1994 ISSCC; the best paper award at the 1994 European Solid-State Circuits Conference; the best panel award at the 1995 and 1997 ISSCC; the TRW Innovative Teaching Award in 1997; the best paper award at the IEEE Custom Integrated Circuits Conference (CICC) in 1998; and McGraw-Hill First Edition of the Year Award in 2001. He was the co-recipient of both the Jack Kilby Outstanding Student Paper Award and the Beatrice Winner Award for Editorial Excellence at the 2001 ISSCC. He received the Lockheed Martin Excellence in Teaching Award in 2006; the UCLA Faculty Senate Teaching Award in 2007; and the CICC Best Invited Paper Award in 2009. He was also recognized as one of the top ten authors in the fifty-year history of ISSCC. He received the IEEE Donald Pederson Award in Solid-State Circuits in 2012.

About the Author

Optical Communications, and Fundamentals of Microelectronics (translated to Korean and Portuguese), and the editor of Monolithic Phase-Locked Loops and Clock Recovery Circuits and Phase-Locking in High-Performance Systems.
INTRODUCTION TO RF AND WIRELESS TECHNOLOGY

Compare two RF transceivers designed for cell phones:

“A 2.7-V GSM RF Transceiver IC” [1] (published in 1997)

Why is the latter much more complex than the former? Does the latter have a higher performance or only greater functionality? Which one costs more? Which one consumes a higher power? What do all the acronyms GSM, WCDMA, HSDPA, EDGE, SAW, and IIP2 mean? Why do we care?

The field of RF communication has grown rapidly over the past two decades, reaching far into our lives and livelihood. Our cell phones serve as an encyclopedia, a shopping terminus, a GPS guide, a weather monitor, and a telephone—all thanks to their wireless communication devices. We can now measure a patient’s brain or heart activity and transmit the results wirelessly, allowing the patient to move around untethered. We use RF devices to track merchandise, pets, cattle, children, and convicts.

1.1 A WIRELESS WORLD

Wireless communication has become almost as ubiquitous as electricity; our refrigerators and ovens may not have a wireless device at this time, but it is envisioned that our homes will eventually incorporate a wireless network that controls every device and appliance. High-speed wireless links will allow seamless connections among our laptops, digital cameras, camcorders, cell phones, printers, TVs, microwave ovens, etc. Today’s WiFi and Bluetooth connections are simple examples of such links.

How did wireless communication take over the world? A confluence of factors has contributed to this explosive growth. The principal reason for the popularity of wireless
communication is the ever-decreasing cost of electronics. Today’s cell phones cost about the same as those a decade ago but they offer many more functions and features: many frequency bands and communication modes, WiFi, Bluetooth, GPS, computing, storage, a digital camera, and a user-friendly interface. This affordability finds its roots in integration, i.e., how much functionality can be placed on a single chip—or, rather, how few components are left off-chip. The integration, in turn, owes its steady rise to (1) the scaling of VLSI processes, particularly, CMOS technology, and (2) innovations in RF architectures, circuits, and devices.

Along with higher integration levels, the performance of RF circuits has also improved. For example, the power consumption necessary for a given function has decreased and the speed of RF circuits has increased. Figure 1.1 illustrates some of the trends in RF integrated circuits (ICs) and technology for the past two decades. The minimum feature size of CMOS
Sec. 1.2. RF Design Is Challenging

Despite many decades of work on RF and microwave theory and two decades of research on RF ICs, the design and implementation of RF circuits and transceivers remain challenging. This is for three reasons. First, as shown in Fig. 1.2, RF design draws upon a multitude of disciplines, requiring a good understanding of fields that are seemingly irrelevant to integrated circuits. Most of these fields have been under study for more than half a century, presenting a massive body of knowledge to a person entering RF IC design. One objective of this book is to provide the necessary background from these disciplines without overwhelming the reader.

Second, RF circuits and transceivers must deal with numerous trade-offs, summarized in the “RF design hexagon” of Fig. 1.3. For example, to lower the noise of a front-end amplifier, we must consume a greater power or sacrifice linearity. We will encounter these trade-offs throughout this book.

Third, the demand for higher performance, lower cost, and greater functionality continues to present new challenges. The early RF IC design work in the 1990s strove to integrate one transceiver—perhaps along with the digital baseband processor—on a single chip. Today’s efforts, on the other hand, aim to accommodate multiple transceivers operating in different frequency bands for different wireless standards (e.g., Bluetooth, WiFi, GPS, etc.). The two papers mentioned at the beginning of this chapter exemplify this trend. It is interesting to note that the silicon chip area of early single-transceiver systems was

Figure 1.2 Various disciplines necessary in RF design.

1. The transit frequency is defined as the frequency at which the small-signal current gain of a device falls to unity.
dominated by the digital baseband processor, allowing RF and analog designers some latitude in the choice of their circuit and device topologies. In today’s designs, however, the multiple transceivers tend to occupy a larger area than the baseband processor, requiring that RF and analog sections be designed with much care about their area consumption. For example, while on-chip spiral inductors (which have a large footprint) were utilized in abundance in older systems, they are now used only sparingly.

1.3 THE BIG PICTURE

The objective of an RF transceiver is to transmit and receive information. We envision that the transmitter (TX) somehow processes the voice or data signal and applies the result to the antenna [Fig. 1.4(a)]. Similarly, the receiver (RX) senses the signal picked up by the antenna and processes it so as to reconstruct the original voice or data information. Each black box in Fig. 1.4(a) contains a great many functions, but we can readily make two observations: (1) the TX must drive the antenna with a high power level so that the transmitted signal is strong enough to reach far distances, and (2) the RX may sense a small signal (e.g., when a cell phone is used in the basement of a building) and must first amplify the signal with low noise. We now architect our transceiver as shown in Fig. 1.4(b), where the signal to be transmitted is first applied to a “modulator” or “upconverter” so that its center frequency goes from zero to, say, $f_c = 2.4$ GHz. The result drives the antenna through a “power amplifier” (PA). On the receiver side, the signal is sensed by a “low-noise amplifier” (LNA) and subsequently by a “downconverter” or “demodulator” (also known as a “detector”).

The upconversion and downconversion paths in Fig. 1.4(b) are driven by an oscillator, which itself is controlled by a “frequency synthesizer.” Figure 1.4(c) shows the overall transceiver. The system looks deceptively simple, but we will need the next 900 pages to cover its RF sections. And perhaps another 900 pages to cover the analog-to-digital and digital-to-analog converters.

2. In some cases, the modulator and the upconverter are one and the same. In some other cases, the modulation is performed in the digital domain before upconversion. Most receivers demodulate and detect the signal digitally, requiring only a downconverter in the analog domain.
Figure 1.4 (a) Simple view of RF communication, (b) more complete view, (c) generic RF transceiver.

REFERENCES

INDEX

A
AC coupling
constant capacitors, 490
direct-conversion receivers, 183–184, 187
mixers, 412–413, 867
predrivers, 865, 867
transformers, 470
VCOs, 526, 573
Acceptable quality, 59
Accumulation-mode MOS varactors, 486
Accuracy
DAC, 739
I/Q calibration, 232
inductor equations, 438–439
input matching, 72
integer-N frequency synthesizers, 656
output matching, 73
ACPR in power amplifiers, 756–758
Acquisition range of PLLs, 611, 614
Active mixers
with current-source helpers, 393–394
downconversion, 368–369
conversion gain, 370–377
double-balanced, 369–370
linearity, 387–392
noise, 377–387
with enhanced transconductance, 394–397
with high IP2, 397–405
with low flicker noise, 405–408
upconversion, 416–420
design procedure, 421–424
mixer carrier feedthrough, 420–421
ADCs (analog-to-digital converters) in receivers
AGC range, 836
baseband, 858–859
direct-conversion, 186
resolution, 837
Additive noise
AM, 94
conversion to phase noise, 550–552, 554
I/Q mismatches, 198
Adjacent-channel interference
GSM, 135
IEEE802.11, 149
low-IF receivers, 214
wideband CDMA, 140, 142–143
ADS simulator, 439
AGC in receivers
design, 856–861
range, 836–837
Aliasing
passive downconversion mixers, 360–361
power amplifiers, 798
Aligned resultants in AM signals, 97
Alignment of VCO phase, 600–601
AM (amplitude modulation), 93–94
direct-conversion receivers, 189–190
heterodyne receivers, 172–173
tail noise, 567, 569–570
AM/AM conversion, 757–758
AM/PM conversion (APC)
concepts, 33–35
polar modulation, 794–795, 799–801
power amplifiers, 757–758
Ampere’s law, 452
Amplitude
direct-conversion receivers, 196
in modulation, 92
Amplitude (Contd.)
oscillators, 505–507
power amplifiers, 757–758
VCO variation, 532
Amplitude modulation (AM), 93–94
direct-conversion receivers, 189–190
heterodyne receivers, 172–173
tail noise, 567, 569–570
Amplitude shift keying (ASK), 100, 105
Analog modulation, 93
amplitude, 93–94
phase and frequency, 95–99
Analog-to-digital converters (ADCs) in receivers
AGC range, 836
baseband, 858–859
direct-conversion, 186
resolution, 837
Analysis and Simulation of Spiral Inductors and
Transformers (ASITIC) simulator, 437–439
Analytic signals, 202
AND gates
current-steering circuits, 683
dual-modulus dividers, 677, 880
phase/frequency detectors, 613–614
Antennas
cellular systems, 122
duplexing method, 130
LNA interface, 258–259
thermal noise, 42, 49–50
Anti-phase coupling, 582, 584–586, 592
APC (AM/PM conversion)
concepts, 33–35
polar modulation, 794–795, 799–801
power amplifiers, 757–758
ASITIC (Analysis and Simulation of Spiral Inductors
and Transformers) simulator, 437–439
ASK (amplitude shift keying), 100, 105
Asymmetries
cascode power amplifiers, 817
direct-conversion receivers, 179, 181, 187–189
heterodyne receivers, 172–174
I/Q mismatches, 194
LO self-mixing, 357
sequence-asymmetric polyphase filters, 221
single-balanced mixers, 398–399
transformers, 471, 473–474
Attenuation
channel, 92
image, 224–225
Auxiliary amplifiers in PLLs, 634–635
Available noise power, 42
Available power gain, 54
Average power in noise, 36
Axis of symmetry, inductors along, 465

B
Balance systems, 12
Baluns
differential LNAs, 315–324
outphasing, 810
power amplifiers, 758–760, 764, 767
Band-pass filters
differential LNAs, 315
FDD, 123–124
heterodyne transmitters, 244–245
noise spectrum, 37–39, 58
Q, 157
transceivers, 158–159
transmitter overview, 156
Band selection in transceivers, 157–159
Band switching LNAs, 262, 312–314
Bandwidth
divide-by-2 circuits, 693–696
efficiency, 93
fractional, 176
frequency synthesizers, 663, 842–843, 883
LNAs, 261–263, 304
offset PLLs, 672
outphasing, 805
passive upconversion mixers, 410–411
PLL-based modulation, 667–668
polar modulation, 794, 801–802
power amplifiers, 757, 865
QPSK, 107
VCO phase noise, 645–646
Barkhausen’s criteria, 503–505, 512, 544, 583
Baseband
ADC resolution, 858–859
AGC gain, 859
DACs, 409
description, 91–92
mixers, 337, 409, 414
offset, 414
outphasing, 804
polar modulation, 796–797
pulses, 103, 227
QPSK signals, 108–109
Basic design concepts, 7
dynamic range, 60–62
noise. See Noise and noise figure (NF)
nonlinear dynamic systems, 75–77
nonlinearity. See Nonlinearity
passive impedance transformation, 62–63
matching networks, 65–71
quality factor, 63
series-to-parallel conversions, 63–65
scattering parameters, 71–75
sensitivity, 59–60, 131
Index

891

time variance, 9–12
units, 7–9
Volterra series, 77–85
Basis functions, 105
BER. See Bit error rate (BER)
Bias
LNA common-gate stage, 280–281
LNA nonlinearity calculations, 325–326
phase noise current source, 565–570
Bipolar transistor noise, 46
Bit error rate (BER)
GSM, 132
I/Q mismatch, 198
power amplifiers, 756
receiver noise, 834
in sensitivity, 59, 346
transmitters, 838
wireless standards, 131
Blind zones with VCOs, 535–536, 846, 869
Blocking
Bluetooth tests, 145–146
GSM requirements, 133–134
with interferers, 19
wideband CDMA, 140–142
Bluetooth standard
frequency channels, 655
GFSK for, 113
ISM band, 130
LOs, 660
overview, 143–147
receivers, 22–24
Bode plots
charge pumps, 619–620
PLLs, 608–609
Bond wires
cascode CS stage, 284–285
coupling between, 430–431
differential LNAs, 320, 322
MOS capacitors, 491
outphasing, 810
power amplifiers, 755, 758–759, 815
Bootstrapping, cascode power amplifiers with, 816–817
Bottom-biased PMOS oscillators, 573
Bottom-plate capacitance
inductors, 440
parallel-plate capacitors, 494
VCOs, 534, 879
Brickwall spectrum, 103
Broadband model of inductors, 457
Broadband noise, 670–671
Buffers
LOs, 380–381, 413, 499, 576–577
PLLs, 602, 607, 668
polar modulation, 794, 824
Bypass, LNA, 312
C
Calibration of image-reject receivers, 213
Capacitance and capacitors
AM/PM conversion, 795, 799
constant, 490–495
divide-by-2 circuits, 690, 692, 694–696
inductors, 437, 439–444, 461–463, 466–469
input impedance, 9
integer-N synthesizer loop design, 883–885
large-signal impedance matching, 780–781
LNAs
band switching, 312–313
common-gate stage, 280–282
common-source stage, 269–271, 286–287, 291–293
differential, 321
gain switching, 308–309
input, 851
noise-cancelling, 301, 303
matching networks, 65–69
metal-plate, 493–495
Miller dividers, 703
mixers
downconversion, 352, 376–377, 382–383, 500
with enhanced transconductance, 395–397
with high IP2, 398, 403–404
port-to-port feedthrough, 339–340
upconversion, 410, 415–416, 422
MOS, 491–493
oscillators, 571
cross-coupled, 514–515
drive capability, 498–499
outphasing, 808–810
parallel-plate, 493–495
phase noise, 555–557
PLL higher-order loops, 625–626
power amplifiers, 754
cascode, 815–817
class B, 765
class E, 772–774
polar modulation, 792, 795–796
positive-feedback, 819–820
predrivers, 864
quality factor, 63
T-lines, 477
transformers, 470–475
varactors, 483–490
VCOs. See Voltage-controlled oscillators (VCOs)
Capacitive coupling
active mixers, 397, 403–404
divide-by-2 circuits, 692
integer-N synthesizers, 692, 700, 704
LNA feedback paths, 304
LO interface, 576–577
power amplifiers, 865
substrate loss, 450–452, 457–458, 466
transformers, 470–471, 474–475
VCOs, 527, 574, 871–872
Capacitively-degenerated differential pairs, 591
Carrier amplifiers, 811
Carrier feedthrough
active mixers, 420–421
passive mixers, 413–416
Carrier frequency, 91
Carrier leakage
direct-conversion transmitters, 232–234
heterodyne transmitters, 244
Carrier power in phase noise, 539
Cartesian feedback, 786–787
Cascade image rejection, 225
Cascaded loops and modulators, 730–732
Cascaded stages
low-IF receivers, 222
noise figure, 52–56
nonlinear, 29–33
transceiver filters, 158
Cascade stages
LNAs, 284–286
common-gate, 277–279
design procedure, 291–296
differential, 318–321
gain switching, 310–311
noise factor, 287–291
pad capacitance, 286–287
power amplifiers, 776–779, 815–819
CCI (co-channel interference), 120
CCK (complementary code keying), 150
CDMA (code-division multiple access), 126
direct-conversion transmitters, 232–233
direct sequence, 126–129
IS-95, 137–139
wideband, 139–143
Cellular systems, 119–120
antenna diversity, 122
coop-channel interference, 120
delay spread, 122–123
hand-offs, 120–121
interleaving, 123
path loss and multipath fading, 121–122
transmitters, 91
Center frequency in LC VCOs, 571
CG (common-gate) stage in LNAs, 272–277
cascode stage, 277–279
design procedure, 279–284
gain switching LNAs, 306
variants, 296–300
CG differential LNAs, 315–318
Chang-Park-Kim dividers, 878, 880
Channel charge injection, 631
Channel-length modulation
charge pumps, 633–634
LNA common-gate stage, 275
Channel selection
vs. image rejection, 166–168
transceiver architectures, 157–159
Channelization standards, 130
Channels
attenuation, 92
integer-N synthesizers, 656, 661, 664
mixer bandwidth, 500
mobile RF communications, 119
overlapping frequencies, 150
Characteristic impedance
coplanar lines, 482
microstrips, 479–482
striplines, 483
Charge-and-hold output in charge pumps, 616
Charge equations for varactors, 487
Charge injection, 630–632
Charge pumps, 614–615
channel-length modulation, 633–634
charge injection and clock feedthrough, 630–632
CPPLLs, 615–620, 622–625
fractional-N synthesizers, 733–738
integer-N synthesizers, 883–884
regulated cascodes, 634–635
VCOs, 522, 525
Chips, CDMA, 127–128
Chireix’s cancellation technique, 808–809
Circuit simulators
integer-N synthesizers, 884–886
power amplifiers, 757
varactors, 487
Circular inductors, 435
Clapp oscillators, 517
Class A power amplifiers
with harmonic enhancement, 771–772
overview, 760–764
Class-AB latches, 691
Class AB power amplifiers, 767
Class B power amplifiers, 764–767
Class C power amplifiers, 768–770
Index

Class E power amplifiers, 772–775
Class F power amplifiers, 775–776
Clock feedthrough, 630–632
Close-in phase noise, 539–540
Closed-loop control
 IS-95 CDMA, 138
 polar modulation, 793
Closed-loop transfer functions
 integer-N synthesizers, 666
 PLLs, 607, 619
CML (current-mode logic), 683–687
CMOS technology, 2–3
 LNA common-gate stage, 275
 oscillator frequency range, 498
 ring oscillators, 507
Co-channel interference (CCI), 120
Code-division multiple access (CDMA), 126
 direct-conversion transmitters, 232–233
 direct sequence, 126–129
 IS-95, 137–139
 wideband, 139–143
Cognitive radios, 199
Coherent detection
 IS-95 CDMA, 137
 QPSK, 110
Collector efficiency in power amplifiers, 755, 761, 766
Colpitts oscillators, 517
Common-gate (CG) stage in LNAs, 272–277
 cascode stage, 277–279
 design procedure, 279–284
 gain switching LNAs, 306
 variants, 296–300
Common-mode current in mixers, 373–374
Common-mode input in LOs, 349
Common-mode noise
 active downconversion mixers, 383
 active mixers with low flicker noise, 405
Common-mode stability in power amplifiers, 866–867
Common-source stages
 LNAs
 with inductive degeneration, 284–296
 with inductive load, 266–269
 with resistive feedback, 269–272
 memoryless systems, 12
Communication concepts, 91
 analog modulation, 93–99
 considerations, 91–93
 digital modulation. See Digital modulation
 DQPSK, 151–152
 mobile RF, 119–123
 multiple access techniques, 123–130
 spectral regrowth, 118–119
 wireless standards. See Wireless standards
Compact inductor model, 458
Comparators in power amplifiers, 824
Compensation in fractional-N synthesizers, 718
Complementary code keying (CCK), 150
Compression
 gain, 16–20
 LNAs, 851–852
 in mixer linearity, 388–392
 power amplifiers, 757–758, 863–864
 receivers, 856
 upconverters, 868–869
 wideband CDMA, 140
Concentric cylinders model, 457
Conduction angles, 764, 768–769
Constant capacitors, 490–495
Constant-envelope modulation, 112
Constant-envelope waveforms, 802
Constellations
 dense, 114–115
 signal, 105–112
Continuous-time (CT) approximation
 charge pumps, 616
 type-II PLLs, 622–623
Continuous tuning, VCOs with, 524–532
Conversion gain
 Hartley receivers, 253
 LO, 349, 501
 Miller dividers, 701–703
 mismatches, 226
 mixers
 current-source helpers, 393
 downconversion, 339, 348, 350–356, 368–382
 linearity, 388–391
 noise, 357–362, 408, 567
 power amplifiers, 790
 upconversion, 409–410, 414, 416, 868
Conversions
 additive noise to phase noise, 550–552, 554
 AM/AM, 757–758
 AM/PM
 concepts, 33–35
 polar modulation, 794–795, 799–801
 power amplifiers, 757–758
 current and voltage, 368–369
 series-to-parallel, 63–65
 Convolution in phase noise, 560–561
 Coplanar lines, 482–483
 Cosine signals in image-reject receivers, 200
 Cost trends, 2
 Counters in pulse swallow dividers, 674–676
 Coupled oscillators, 583–589
Coupling
 between bond wires, 430
capacitance. See Capacitive coupling
 magnetic. See Magnetic coupling
 quadrature oscillators, 581, 590
CPPLLs (charge-pump PLLs), 615–620
 continuous-time approximation, 622–623
 frequency-multiplying, 623–625
Cross-coupled oscillators, 511–517
 open-loop model, 545, 547–548
 phase noise computation, 555
 power amplifiers, 820
tail noise, 565–566
time-varying resistance, 553
Cross-coupled pairs
 active mixers with low flicker noise, 406
 Norton noise equivalent, 548–549
 VCOs, 530–531
Cross modulation
description, 20–21
 wideband CDMA, 140–141
Cross-talk, 229
Crystal oscillators
 integer-N synthesizer design, 881
 phase noise, 644
CT (continuous-time) approximation
 charge pumps, 616
 type-II PLLs, 622–623
Current crowding effect, 448–450
Current domain in single-balanced mixers, 356
Current-driven passive mixers, 366–368
Current impulse
 oscillators, 509
 in phase noise, 557–559
Current mirroring
 active mixers, 395–396
 DACs, 741
 divide-by-2 circuits, 692
 VCOs, 874–876
Current-mode DAC implementation, 741
Current-mode logic (CML), 683–687
Current sources
 helpers, 393–394
 offset cancellation by, 186
 power amplifiers, 752
Current-steering
 cross-coupled oscillators, 517
 divider design, 683–689
 LO interface, 499, 577
 mixer linearity, 388
 prescalers, 682
Current-to-voltage (I/V) characteristic of charge
 pumps, 883–884
Current-to-voltage (I/V) conversion, 368–369
Currents, nonlinear, 81–85
Cyclostationary noise, 552–553, 565
D
D flipflops in phase/frequency detectors, 613
DACs (digital-to-analog converters)
 direct-conversion receivers, 185–187
 direct-conversion transmitters, 233–234
 feedforward, 738–742
 upconversion mixer interfaces, 409
Damping factor
 class E power amplifiers, 773–774
 divide-by-2 circuits, 693
 integer-N synthesizers, 665–666, 883
 PLL transfer functions, 608
Dangling bonds, 44
Data rates, 130, 136–137
dBm, 8–9
DC offsets
 active mixers with high IP2, 398–400
 AGC, 859
 direct-conversion receivers, 181–187
 port-to-port feedthrough, 340–341
DCOs (digitally-controlled oscillators), 536
DCRs. See Direct-conversion receivers
DCS1800 standard, 132
Decibels (dB), 7–9
Degenerated differential pairs, 332–333
Degenerated LNA common-source stages
 inductive degeneration, 284–296
 nonlinearity calculations, 325–329
Degeneration capacitors, 403–404, 591
Delay spread in cellular systems, 122–123
Delayed replicas in IS-95 CDMA, 138
Delays
 divider design, 681, 709–712
 fractional-N synthesizers, 723–724
 integer-N synthesizers, 665–667
 OFDM, 115–117
 PFD/CP, 629
 polar modulation, 793–794, 801
Delta modulators (DMs), 824–825
Demodulation, 92
 IS-95 CDMA, 137
 QPSK, 110
Demultiplexers in QPSK, 107
Dense constellations, 114–115
Desensitization, 19
Design
 active upconversion mixers, 421–424
 basic concepts. See Basic design concepts
 dividers. See Dividers
LNA cascode CS stage with inductive
degeneration, 291–296
LNA common-gate stage, 279–284
oscillators, 571–575
power amplifier. See Power amplifiers (PAs)
transceiver example. See Transceivers
type-II PLLs, 646–647
Despreading in CDMA, 128
DET (double-edge-triggered) flipflops, 742–743
Detectability, 92
Detection, 92
IS-95 CDMA, 137
PFDs. See Phase/frequency detectors (PFDs)
phase detectors, 597–600
polar modulation, 794, 799–800, 826
power amplifier linearization, 789–790
QPSK, 110
Deterministic mismatches
fractional-N synthesizers, 737
up and down current, 637
Device noise
bipolar transistors, 46
MOS transistors, 43–46
resistors, 40–43
Differential circuits, symmetric inductors in,
460–461, 463–464
Differential LNAs, 314–315
baluns, 317, 321–324
common-gate, 315–318
common-source, 318–321
Differential LO phases
mixers, 348, 372, 374, 386
oscillators, 501
Differential mixers, 402
Differential noise, 406, 853
Differential oscillators, 518, 585, 589
Differential pairs
charge pumps, 632
current-steering circuits, 683
downconversion mixers, 300
input/output characteristics, 12–13
LNAs, 331–332
oscillators, 507–508, 591
Differential power amplifiers, 758–760
Differential PSK (DPSK), 151–152
Digital modulation
GMSK and GFSK, 112–113
intersymbol interference, 101–104
OFDM, 115–118
overview, 99–100
QAM, 114–115
quadrature, 107–112
signal constellations, 105–107
Digital-to-analog converters (DACs)
direct-conversion receivers, 185–187
direct-conversion transmitters, 233–234
feedforward, 738–742
upconversion mixer interfaces, 409
Digitally-controlled oscillators (DCOs), 536
Dimensions of inductors, 433–434
Diode-connected devices
active mixers with low flicker noise, 405–406
power amplifiers, 816–817
VCOs, 525–526
Direct-conversion mixers, 344
Direct-conversion receivers, 179
DC offsets, 181–187
even-order distortion, 187–191
flicker noise, 191–194
I/Q mismatch, 194–199
LO leakage, 179–184
mixing spurs, 199
noise figure, 346–348
Direct-conversion transmitters, 227–229
carrier leakage, 232–234
I/Q mismatch, 229–232
mixer linearity, 234–235
mixers, 339–342
modern, 238–243
noise, 238
oscillator pulling, 237–238
TX linearity, 235–236
Direct sequence CDMA, 126–129
Direct sequence SS (DS-SS) communication, 127
Discrete-time (DT) systems, 622–623
Discrete tuning in VCOs, 532–536
Distortion
direct-conversion receivers, 187–191
duty-cycle, 398
harmonic. See Harmonics and harmonic distortion
intersymbol interference, 101–104
outphasing, 808
power amplifier linearization, 787–788
 Distributed capacitance
dividers, 694
inductors, 440
LNA common-source stage, 293
varactors, 488–489
Distributed inductor model, 458
Distributed resistance in varactors, 487–489
Dithering in fractional-N synthesizers, 728
Diversity
antenna, 122
IS-95 CDMA, 138
Divide-by-1.25 circuits, 746
Divide-by-1.5 circuits, 743
Divide-by-2 circuits, 878–880
designing, 689–697
direct-conversion transmitters, 239–240
dual-modulus dividers, 677
Divide-by-2 circuits (Contd.)
 heterodyne receivers, 175
 Miller dividers, 706–707
 pulse swallow dividers, 675–676
 true single-phase clocking, 697–698
Divide-by-2/3 circuits
 dual-modulus dividers, 679
 pulse swallow dividers, 676–677
Divide-by-3 circuits
 dual-modulus dividers, 677–678
 Miller dividers, 706–707
Divide-by-4 circuits, 177–178
Divide-by-8/9 circuit, 680
Divide-by-15/16 circuit, 681–682
Dividers, 673–674
 divide-by-2 circuit, 878–880
 divider delay and phase noise, 709–712
 dual-modulus, 677–682, 880–881
 frequency multiplication, 609–611
 injection-locked, 707–709
 LO path, 499
 logic styles, 683
 current-steering circuits, 683–689
 divide-by-2 circuits, 689–697
 true single-phase clocking, 697–699
 Miller, 699–707
 PLLs, 611, 672
 prescaler modulus, 682–683
 pulse swallow, 673–677
DMs (delta modulators), 824–825
Doherty power amplifiers, 811–813, 818–819
Double-balanced mixers, 348–350
 active downconverters, 369–370
 active upconverters, 416
 capacitive degeneration, 403–404
 input offset, 399–400
 Miller dividers, 700
 noise, 362–363, 381
 passive downconverters, 351–352
 passive upconverters, 411, 414
 polar modulation power amplifiers, 826
 sampling, 356
 voltage conversion gain, 377
Double-edge-triggered (DET) flipflops, 742–743
Double-quadrature downconversion
 low-IF receivers, 224–226
 Weaver architecture, 213
Double-sideband (DSB) mixers, 867
Double-sideband (DSB) noise figure, 344, 853
Double-transformer topology, 822
Down currents and pulses
 charge pumps, 614–615, 630–633, 635–637
 fractional-N synthesizers, 733–734
 integer-N synthesizers, 883
 PLL higher-order loops, 625, 627
 quantization noise, 739
 Down skew in PFD/CP, 627–630
 Downbonds, 285
 Downconversion and downconversion mixers, 339
 active, 368–369
 conversion gain, 370–377
 double-balanced, 369–370
 linearity, 387–392
 noise, 377–387
 design, 851–856
 heterodyne receivers, 160–164, 168–170
 image-reject receivers, 206, 210
 LO ports, 500
 low-IF receivers, 219–221, 224–226
 noise figures, 343
 passive, 350
 current-driven, 366–368
 gain, 350–357
 input impedance, 364–367
 LO self-mixing, 357
 noise, 357–364
 phase noise, 540–541
 and self-corruption of asymmetric signals, 173–175
 Weaver architecture, 213
 Downlinks, 119
 DPSK (differential PSK), 151–152
 DR (dynamic range), 60–62
 Drain capacitance in large-signal impedance matching, 780
 Drain current
 LNA common-gate stage, 280
 power amplifiers, 768, 771, 773, 776
 Drain efficiency in power amplifiers, 755
 Drive capability of oscillators, 498–499
 DS-CDMA power control, 128–129
 DSB (double-sideband) mixers, 867
 DSB (double-sideband) noise figure, 344, 853
 DT (discrete-time) systems, 622–623
 Dual downconversion, 168–170
 Dual-gate mixers, 374
 Dual-modulus dividers, 677–682, 880
 Dual-modulus prescalers, 674–675
 Dummy switches for charge pumps, 631
 Duplexer filters
 FDD systems, 124
 offset PLLs, 671
 Duplexers and duplexing methods
 antennas, 130
 time and frequency division duplexing, 123–124
 transceivers, 158–159
 Duty cycle distortion, 398
Dynamic dividers, 699–702
 with inductive load, 702–705
 moduli with, 705–707
Dynamic logic in divide-by-2 circuit, 878
Dynamic nonlinearities, 28
Dynamic range (DR), 60–62
Dynamic systems, 14

E
Eddy currents in inductors, 448–449, 452–455, 466
EDGE (Enhanced Data Rates for GSM Evolution) systems
 description, 136–137
 polar modulation, 801–802
Edge-triggered devices
 DET flipflops, 742–743
 phase/frequency detectors, 612–613
EER (envelope elimination and restoration), 790–793
Efficiency
 modulation, 93
 power amplifiers, 755–756
 class A, 760–764, 771–772
 class AB, 767
 class B, 764–767
 class C, 768–771
 class E, 772–775
 class F, 775–776
8-PSK waveforms, 136–137
Electrostatic discharge (ESD) protection devices, 280
Embedded spirals
 high-IP2 LNAs, 323–324
 transformers, 471
Encoding operations in DS-CDMA, 127
End points in fractional-N synthesizers, 736
Enhanced Data Rates for GSM Evolution (EDGE)
 description, 136–137
 polar modulation, 801–802
Enhanced transconductance, active mixers with, 394–397
Envelope-controlled loads, 793
Envelope detection
 polar modulation, 794, 799–800, 826
 power amplifier linearization, 789–790
Envelope elimination and restoration (EER), 790–793
Envelopes
 polar modulation, 793, 795, 825–826
 power amplifier linearization, 788–790
QPSK, 110
Error cancellation loops, 783
Error vector magnitude (EVM)
 description, 106–107
 receivers, 838
ESD (electrostatic discharge) protection devices, 280
Even-order harmonics, 15, 187–191
EVM (error vector magnitude)
 description, 106–107
 receivers, 838
Excess frequency, 95
Excess phase in VCOs, 581
Excessive noise coefficient, 43
Exclusive-NOR (XNOR) gates, 152
Exclusive-OR (XOR) gates
 current-steering circuits, 685–686
 phase detectors, 598–599
 PLLs, 603
 reference doubling, 743
Expansive characteristic, 17
Extrapolation, intermodulation, 27

F
Fading, multipath, 121–123
Far-out phase noise
 description, 539–540
 offset PLLs, 672
Faraday’s law
 inductors, 448
 magnetic coupling to substrate, 452
Fast Fourier Transform (FFT), 391
FDD (frequency-division duplexing), 123–124
FDMA (frequency-division multiple access), 125
Feedback
 direct-conversion transmitters, 232–233
 dividers. See Dividers
 fractional-N synthesizers, 716, 718–720, 722–723, 725
 integer-N synthesizers, 661
 LNAs
 common-gate, 296–297
 gain switching, 311
 noise-cancelling, 300–301
 resistance, 851
 offset cancellation by, 185
 oscillators, 502–508, 513, 582–584
 polar modulation, 793, 798–800
 power amplifiers, 759, 783, 786–787
 VCO phases, 601
Feedforward
 common-gate LNAs, 298–300
 gain switching LNAs, 311
 power amplifier linearization, 783–786
 quantization noise, 738–742
Feedthrough, mixer
 active upconversion, 420–421
 passive upconversion, 413–416
 port-to-port, 339–343
FFT (Fast Fourier Transform), 391
FH (frequency hopping) in CDMA, 129–130
Field simulations for inductors, 439
Figure of merit (FOM) of VCOs, 570–571
Filters, 101
 active mixers with high IP2, 402
 Bluetooth, 143–144
differential LNAs, 315
direct-conversion receivers, 179, 184
duplexer, 124
FDD, 123–124
fractional-N synthesizers, 716, 738
front-end band-pass, 124
Gaussian, 112, 143–144
heterodyne transmitters, 244–245
image-reject, 166, 206
integer-N synthesizers, 665
LNAs with high IP2, 323–324
low-IF receivers, 217–224
low-pass, 101
Miller dividers, 699–701, 705
noise, 37–40, 58
PLLs, 603, 606, 625–627, 671
polar modulation, 824–826
power amplifier linearization, 790
Q, 157
transceivers, 157–159
transmitter overview, 156
VCOs, 601, 875–876
First-order dependence in AM/PM conversion, 34
First-order ΣΔ modulators, 726
Flat fading, 123
Flat phase noise profiles, 644
Flicker noise, 44–45
 active mixers
 with current-source helpers, 394
downconversion, 385–387
 low, 405–408
direct-conversion receivers, 191–194
 low-IF receivers, 215
 passive downconversion mixers, 366
 phase, 563–564, 566
 quadrature oscillators, 591–592
 receiver design, 853–854
VCOs, 642
Floating resonators in VCOs, 531
Floating switches in VCOs, 535, 870
FM (frequency modulation), 95–96
 frequency synthesizer spurs, 843–844
 heterodyne receivers, 173
 narrowband approximation, 96–98
FNSs. See Fractional-N synthesizers (FNSs)
FOM (figure of merit) in VCOs, 570–571
Forward channels, 119
Four-level modulation schemes, 92
Fourier coefficients
 cascode output stages, 776
 power amplifiers, 770
Fourier series
 AM/PM conversion, 34, 569
 flicker noise, 563–564
 LO waveforms, 368
 reference doubling, 743–744
 VCOs, 580
Fourier transforms
 fractional-N synthesizers, 716–717
 mixer gain, 352–353
 mixer impedance, 364
 power spectral density, 37
 quantization noise, 748–749
 VCO sidebands, 628
 Volterra series, 77–81
Fractional bandwidth
 IF, 176
 LNA systems, 262
Fractional dividers, 742–743
Fractional-N synthesizers (FNSs), 715
 basic concepts, 715–718
 basic noise shaping, 722–728
 charge pump mismatch, 733–738
 higher-order noise shaping, 728–732
 modulus randomization, 718–721
 out-of-band noise, 732–733
 quantization noise, 738–749
Fractional spurs, 716
Free-running VCOs, 655
Frequencies. See also Bandwidth
 cellular system reuse, 119–120
divide-by-2 circuits, 693–694
 injection-locked dividers, 709
 integer-N synthesizers, 664, 881
 LNAs, 259
 bandwidth, 261–263
 cascode stage, 294–296
 common-gate stage, 278–279
 Miller dividers, 704
 mixers. See Mixers
 oscillators, 497–498, 503–507, 514, 517
 phase detectors, 597–598, 612
 phase noise, 537–538, 566
 PLLs, 605–606
 polar modulation, 794
 system-level considerations, 844–848
 VCOs, 519–520, 526, 532, 571, 600
 wireless standards, 130
Frequency-dependent phase shift, 504, 507
Frequency-dependent values, 73
Frequency detectors (FDs) in PLLs, 602
Index

Frequency deviation, 95
Frequency diversity
 cellular systems, 122
 IS-95 CDMA, 138
Frequency division, multiphase, 745–748
Frequency-division duplexing (FDD), 123–124
Frequency-division multiple access (FDMA), 125
Frequency hopping (FH), 129–130
Frequency-locked loops (FLLs), 602
Frequency modulation (FM), 95–96
 frequency synthesizer spurs, 843–844
 heterodyne receivers, 173
 narrowband approximation, 96–98
Frequency multiplication, 609–611, 623–625
Frequency noise, 732
Frequency responses
 LNA systems, 262
 oscillators, 512
 VCO phase noise, 645
Frequency-selective fading, 123
Frequency shift keying (FSK), 100
 direct-conversion receivers, 184, 197–198
 noise, 105–106
 PLLs, 605–606
Frequency synthesizers, 498
 fractional-N. See Fractional-N synthesizers
 (FNSs)
 integer-N. See Integer-N synthesizers
 system-level considerations, 840–844
Friis’ equation
 LNAs, 264
 noise, 54–55, 57–58
Fringe capacitance in inductors, 439–440, 461, 463
Fringe capacitors
 parallel-plate capacitors, 495
 VCOs, 529–530
Front-end band-pass filters, 124
Front-end band-select filters, 158
FSK (frequency shift keying), 100
 direct-conversion receivers, 184, 197–198
 noise, 105–106
 PLLs, 605–606
Full-duplex LNA systems, 260–261
Full scale in dynamic range, 60
Fully-integrated power amplifiers, 770
Fundamentals in harmonic distortion, 15, 34

G
Gain
 AGC
 design, 856–861
 range, 836–837
 conversion. See Conversion gain
 current-steering circuits, 686
 LNAs, 257–258, 304, 850–852
 Miller dividers, 703
 oscillators, 504–507
 PLLs, 597, 601–602, 604
 power amplifiers, 790, 863
 transmitter, 838–839
 VCOs, 518, 601–602, 604
Gain compression, 16–20, 388–392
Gain error in DACs, 741
Gain mismatch
 direct-conversion receivers, 196
 direct-conversion transmitters, 231–232, 241
 image-reject receivers, 209
Gain switching
 LNAs, 305–312
 receivers, 837
Gap capacitance, 466–467
Gate capacitance
 divide-by-2 circuits, 692
 power amplifiers, 815
Gate-induced noise current, 43–44
Gate-referred noise voltage, 256
Gate switching in PLLs, 636
Gaussian distribution, 122
Gaussian filters
 Bluetooth, 143–144
 impulse response, 112
Gaussian frequency shift keying (GFSK)
 Bluetooth, 143
 description, 112–113
 direct-conversion transmitters, 234–235
Gaussian minimum shift keying (GMSK)
 Bluetooth, 143
 description, 112–113
 direct-conversion transmitters, 234–235
Generic transmitter upconversion requirements, 408
Gilbert cell in upconversion mixers, 418
Global System for Mobile Communication (GSM)
 adjacent-channel interference, 135
 blocking requirements, 133–134
 description, 132–133
 EDGE, 136–137
 intermodulation requirements, 134–135
 transmitters, 135–136, 670
Gm oscillators, 516–517
GMSK (Gaussian minimum shift keying)
 Bluetooth, 143
 description, 112–113
 direct-conversion transmitters, 234–235
Ground inductances in LNAs, 260, 281
Grounded shield inductors, 435, 466–467
GSM. See Global System for Mobile Communication (GSM)
GSM/EDGE mask margins, 801
Hand-offs
- cellular systems, 120–121
- IS-95 CDMA, 139

Handheld units, 119

Hard transistors, 776

Harmonics and harmonic distortion, 14–16
- AM/PM conversion, 34
 - class A power amplifiers, 771–772
 - class E power amplifiers, 775
 - class F power amplifiers, 775–776
- direct-conversion transmitters, 241
- heterodyne transmitters, 244–246
- narrowband systems, 25
- phase noise, 564–565

Hartley architecture
- calibration, 213
- image-reject receivers, 205–210
- low-IF receivers, 215–216

Heterodyne receivers, 160–161
- dual downconversion, 168–170
- high-side and low-side injection, 164–166
- image problem, 161–164
- image rejection, 166–168
- mixers, 342
- sliding-IF, 174–178
- zero second IFs, 171–174

Heterodyne transmitters, 244
- carrier leakage, 244
- mixing spurs, 245–248

HFSS simulator for inductors, 439

High currents in power amplifiers, 754–755

High-efficiency power amplifiers, 770
- class A, 771–772
- class E, 772–775
- class F, 775–776

High-IP2, mixers with, 397–405

High-IP2 LNAs, 313–314
- differential, 314–315
- baluns, 317, 321–324
- common-gate, 315–318
- common-source, 318–321
- improvement methods, 323–324

High-pass filters (HPFs)
- direct-conversion receivers, 184
- image-reject receivers, 203, 206
- LNAs with high-IP2, 323–324
- mixers with high IP2, 402

High-side injection, 164–166

Higher harmonics in phase noise, 564–565

Higher-order noise shaping, 728–732

Higher-order PLL loops, 625–627

Hilbert transform
- image-reject receivers, 201, 203–206
- low-IF receivers, 215–217

Hold-mode noise, 359–362

Homodyne architecture, 179

HPFs. See High-pass filters (HPFs)

HSPICE simulator for varactors, 487

I/Q mismatches
- frequency planning, 848
- receivers, 194–199, 837–838
- transmitters, 229–232, 241, 244, 839–840

I/V (current-to-voltage) characteristic of charge pumps, 883–884

I/V (current-to-voltage) conversion, 368–369

IEEE802.11a/b/g standard, 147–151

IF (intermediate frequency)
- heterodyne receivers, 160–162, 168–169
- low-IF receivers, 214–217
- zero second, 171–178

IF ports, 337

IIP3 (input third intercept points), 26

ILDs (injection-locked dividers), 707–709

IM. See Intermodulation (IM)

Image issues
- heterodyne receivers, 161–164, 166–168
- low-IF receivers, 224–225

Image-reject receivers (IRRs), 200, 838
- 90° phase shift, 200–205
- calibration, 213
- Hartley architecture, 205–210
- low-IF, 215–217
- Weaver receivers, 210–213

Image-to-signal ratio, 208

Impedance, 9
- charge pumps, 634–635
- coplanar lines, 482
- current sources, 634–635
- divide-by-2 circuits, 692–693
- downconversion mixers, 500
- large signals, 780–781
- LNAs, 258–260, 263
 - common-gate, 276, 296–298
 - common-source, 267, 284–285
- gain switching, 307, 309
- matching networks, 69
- microstrips, 479–482
- mixers, 357, 364–367, 856
- and noise, 48, 52, 54–56
- oscillators, 503, 510
- PLLs, 634, 668
- power amplifiers, 780–782, 809, 812–813, 821
- T-lines, 478

Impedance transformation
- passive, 62–63
matching networks, 65–71
quality factor, 63
series-to-parallel conversions, 63–65
power amplifiers, 753
Impulse sensitivity function in phase noise, 559, 563
IMT-2000 air interface, 139–143
In-band blockers in GSM, 133
In-band interferers, 158
In-band loss, 158
In-band noise in fractional-N synthesizers, 728
In-channel IP3, 835
In-channel PLL modulation, 667–669
In-phase coupling, 582, 585, 588, 592
Incident waves, 71–73
Inductance and inductors
basic structure, 431–434
capacitive coupling to substrate, 450–452, 457–458
cross-coupled oscillators, 514
divide-by-2 circuits, 692–696
equations, 436–439
geometries, 435
with ground shields, 466–467
LNAs
common-gate, 281
common-source, 266–269, 291, 294
differential, 320–322
noise-cancelling, 301, 305
parasitic, 260
loss mechanisms, 444–455
magnetic coupling to substrate, 452–455, 457–458
metal resistance, 444–448
Miller dividers, 702–705
mixers
active upconversion, 416, 422
enhanced transconductance, 396–397
passive upconversion, 412–413
modeling, 455–460
off-chip, 430–431
one-port oscillators, 511
outphasing, 808–810
parasitic capacitances, 439
power amplifiers, 752–755, 765–767, 815, 817
skin effect, 448–450
stacked, 467–470
symmetric, 460–466
T-lines, 477
VCOs, 520–521, 523, 571
Inductive degeneration in LNAs, 284–296, 310
Industrial-scientific-medical (ISM) band, 130
Infradyne system, 164
Injected noise, 562–563
Injection-locking dividers (ILDs), 707–709
Injection-locked power amplifiers, 820–821
Injection locking in quadrature oscillators, 592–593
Injection pulling between oscillators, 237, 589
Input capacitance
cross-coupled oscillators, 514
LNAs, 301, 303, 851
power amplifiers, 754, 819, 864
Input impedance, 9
LNAs, 258–260, 263
common-gate, 276, 296–298
common-source, 267, 284–285
gain switching, 307, 309
mixers, 364–367, 856
one-port oscillators, 510
PLL-based modulation, 668
Input level range in wireless standards, 131
Input matching
LNAs, 263–266
common-gate, 299
common-source, 287, 292–294
gain switching, 307, 310
noise-cancelling, 304
power amplifiers, 814
Input/output characteristics of Doherty power amplifiers, 811
Input-referred noise
active downconversion mixers, 381–384, 390
LNAs, 256–257
modeling, 46–48, 50
sampling mixers, 359, 362–363
Input reflection coefficient, 74
Input resistance in LNAs, 308, 851
Input return loss in LNAs, 258–259
Input third intercept points (IP3), 26
Instantaneous frequency, 95
Integer-N synthesizers, 655, 869
basic, 659–661
considerations, 655–659
dividers. See Dividers
loop design, 882–886
PLL-based modulation, 667–673
settling behavior, 661–664
spur reduction techniques, 664–667
VCO design, 869–877
Integration trends, 2
Integrators
DAC, 739–740
fractional-N synthesizers, 723–724, 728
VCOs, 581
Inter-spiral capacitance in inductors, 468–469
Interference
adjacent-channel, 135
co-channel, 120
intersymbol, 101–104, 115–116
Interferers
with compression, 18–19
with cross modulation, 20–21
direct-conversion receivers, 187
high-IP2 LNAs, 324
integer-N frequency synthesizers, 657
with intermodulation, 21–23
mixers, 341
transceivers, 156–158
Interleaving in cellular systems, 123
Intermediate frequency (IF)
heterodyne receivers, 160–162, 168–169
low-IF receivers, 214–217
zero second, 171–178
Intermodulation (IM)
in cascades, 30–33
GSM requirements, 134–135
integer-N frequency synthesizers, 658
overview, 21–25
power amplifiers, 757
between receiver blockers, 835
Intermodulation tests
Bluetooh, 146
wideband CDMA, 142
wireless standards, 131–132
Intersymbol interference (ISI), 101–104, 115–116
Interwinding capacitance in inductors, 440–442, 461–463
Inverse Laplace transform, 621
Inverter delay, 614, 629
IP2 (second intercept points), 188
IP3 (third intercept points), 25–27
IRR (image rejection ratio), 208–209, 212
IRRs. See Image-reject receivers (IRRs)
IS-95 CDMA, 137–139
ISI (intersymbol interference), 101–104, 115–116
ISM (industrial-scientific-medical) band, 130
Isolation
LNAs, 260
outphasing, 809
reverse, 72
J
Jitter in divider design, 711
L
L-section topologies, 67–68
Laplace transform
charge pumps, 615–617
PLL transient response, 621
Large-signal impedance matching, 780–782
Latches
current-steering circuits, 686–689
divide-by-2 circuits, 878–879
Latchup in mixers, 406–407
Lateral-field capacitors, 529
Lateral substrate currents, 452
Layout parasitics in divide-by-2 circuit, 879
LC oscillators
cross-coupled, 511–517
LO swings, 366
open-loop Q, 545–546
phase noise, 501
tuning ranges, 438, 498
VCOs, 519, 571–575
Leakage
direct-conversion receivers, 179–184
direct-conversion transmitters, 232–234
heterodyne transmitters, 244
LNA systems, 261
mixers, 341–342, 357
polar modulation, 802
Least mean square (LMS) algorithm, 234
Leeson’s Equation, 547
Lenz’s law, 452
L’Hôpital’s rule, 769
Limit cycles in fractional-N synthesizers, 728
Limiting stage in polar modulation, 794–795
Line-to-line inductor spacing, 463
Linear amplification with nonlinear components (LINC), 802–803
Linear drain capacitance, 780
Linear model of oscillators, 548–549
Linear power amplifiers, 110
Linear systems, 9
Linearity and linearization
LNAs, 260–261
mixers, 338–339, 387–392
nonlinearity. See Nonlinearity
power amplifiers, 756–758, 782–783
Cartesian feedback, 786–787
Class A, 761–762
envelope detector, 794
envelope feedback, 788–790
feedforward, 783–786
predistortion, 787–788
LMS (least mean square) algorithm, 234
LNAs. See Low-noise amplifiers (LNAs)
LO. See Local oscillator (LO)
Load capacitance
divide-by-2 circuits, 696
oscillators, 498, 571
Load design for class E power amplifiers, 772
Load inductors in divide-by-2 circuits, 696
Load-pull tests, 781–782
Load switching in LNAs, 311
Local envelope feedback, 793
Local oscillator (LO)
Cartesian feedback, 787
coupling in power amplifiers, 760
direct-conversion receivers, 179–184
direct-conversion transmitters, 237–240
drive capability, 499
frequency synthesizers, 656–657, 660, 840
heterodyne receivers, 160–164, 170–172, 176–177
heterodyne transmitters, 244–246
ideal waveforms, 349–350
interface, 575–577
leakage, 179–184, 341–342, 357
LO-IF feedthrough, 340
mixers
buffers, 413
downconversion, 368, 374–387
with high IP2, 398
with low flicker noise, 407–408
single-balanced and double-balanced, 348–350
upconversion, 413–416
off-chip inductors, 430–431
offset PLLs, 673
on-off keying transceivers, 248–249
outphasing mismatches, 805
output waveforms, 501
phase noise, 540–542
polar modulation, 798
ports
Miller dividers, 700, 703
mixers, 337–338, 500
pulling, 846
self-mixing, 181, 357
swings, 366
VCO phases, 746
Lock range in injection-locked dividers, 707–709
Lock time in integer-N synthesizers, 658–659, 885–886
Logic styles in divider design
current-steering circuits, 683–689
divide-by-2 circuits, 689–697
ture single-phase clocking, 697–699
Loops
integer-N synthesizers, 663, 881–886
oscillator gain, 504–507
phase-locked. See Phase-locked loops (PLLs)
VCO phase gain, 601–602, 604
VCO phase noise, 645–646
Losses
inductors, 444–455
matching networks, 69–71
microstrips, 480–482
Lossy circuits, noise in, 42, 56–58
Lossy oscillatory systems, Q in, 459
Lossy tanks in one-port oscillators, 509–510
Low-frequency beat in active mixers, 402–403
Low-frequency components in phase noise, 569
Low-IF receivers, 214–217
double-quadrature downconversion, 224–226
polyphase filters, 217–224
Low-noise amplifiers (LNAs), 255
band switching, 262, 312–314
bandwidth, 261–263, 304
common-gate stage. See Common-gate (CG) stage in LNAs
common-source stage
with inductive degeneration, 284–296
with inductive load, 266–269
with resistive feedback, 269–272
design, 849–852
gain, 257–258, 850–852
gain switching, 305–312
heterodyne receivers, 166, 169, 174–175
high-IP2. See High-IP2 LNAs
input matching, 263–266
input return loss, 258–259
linearity, 260–261
mixer design, 853, 856
noise-cancelling, 300–303
noise computations, 49–51
noise figure, 255–257
nonlinearity calculations, 325
degenerated common-source stage, 325–329
degenerated differential pairs, 332–333
differential and quasi-differential pairs, 331–332
undegenerated common-source stage, 329–330
power dissipation, 263
reactance-cancelling, 303–305
stability, 259–260
Low-noise VCOs, 573–575
Low-pass filters, 101
direct-conversion receivers, 179
fractional-N synthesizers, 716
image-reject receivers, 203, 206
Miller dividers, 699–701, 705
noise, 40
PLLs, 603, 606
polar modulation, 824–826
power amplifier linearization, 790
VCOs phase, 601, 875–876
Low-pass signals in direct-conversion receivers, 189–190
Low-side injection
heterodyne receivers, 164–166
image-reject receivers, 211–212
Lumped capacitance
inductors, 441, 462, 468–469
interwinding, 462
substrate, 453
transformers, 472
Low-side injection
heterodyne receivers, 164–166
image-reject receivers, 211–212
Lumped capacitance
inductors, 441, 462, 468–469
interwinding, 462
substrate, 453
transformers, 472
Lumped model
 inductors, 439, 455, 458
 MOS capacitors, 491
 MOS varactors, 487–489
 MOSFETs, 44
Lumped resistance of varactors, 487–488

M
Magnetic coupling
 along axis of symmetry, 465
 and coupling capacitance, 475
eddy currents, 466
plots, 433–434
to substrate, 452–455, 457–459
transformers, 470–472, 474
Make-before-break operations, 139
MASH architecture, 732
Matching networks, 62–63. See also Mismatches
 losses, 69–71
 passive impedance transformation, 65–69,
 752–753
 power amplifiers, 752–753, 814
 high currents, 755
 large-signal, 780–782
 power combining, 821
Mathematical model for VCOs, 577–581
MATLAB for power amplifiers, 757
Memoryless systems, 12
Metal losses in inductor modeling, 455
Metal-plate capacitors, 493–495
Metal resistance in inductor Q, 444–448
Metastability in divider design, 711
Microstrips, 479–482
Microwave theory, 71
Miller dividers, 699–702
 with inductive load, 702–705
 moduli with, 705–707
Miller multiplication, 291–292
Mirror symmetry in inductors, 464
Mismatches
 active mixers with high IP2, 400
 antenna/LNA interface, 258–259
 fractional-N synthesizers, 733–738
I/Q
 frequency planning, 848
 receivers, 194–199, 837–838
 transmitters, 229–232, 241, 244, 839–840
image-reject receivers, 209
integer-N synthesizers, 883
LNAs, 263–266
multiphase frequency division, 746–747
outphasing, 805
passive upconversion mixers, 414
PFD/CP, 627–630
PLL higher-order loops, 625
 polar modulation, 793–794
 quadrature oscillators, 588–590
 receivers, 837–838
 up and down current, 632–633, 637, 733–734
Mixers, 11, 337
 active. See Active mixers
 considerations, 337–338
 design, 851–856
 direct-conversion receivers, 187–189
 direct-conversion transmitters, 234–235,
 240–243
double-balanced. See Double-balanced mixers
downconversion. See Downconversion and
downconversion mixers
 as envelope detector, 789–790
 gain. See Conversion gain
 harmonic distortion, 15–16
 heterodyne receivers, 160–164, 168–170
 high-IP2 LNAs, 324
 injection-locked dividers, 708
 and LNA noise, 257
 Miller dividers, 699–704, 706
 noise and linearity, 338–339
 noise figures, 343–348
 oscillators. See Local oscillator (LO)
 passive. See Passive mixers
 performance parameters, 338–343
 phase noise, 566
 PLLs, 672–673
 polar modulation, 826
 port-to-port feedthrough, 339–343
 single-balanced. See Single-balanced mixers
 upconversion. See Upconversion and upconversion
 mixers
Mixing spurs, 338
 direct-conversion receivers, 179, 199
 heterodyne receivers, 170–171
 heterodyne transmitters, 245–248
Mobile RF communications, 119
 antenna diversity, 122
 cellular systems, 119–120
 co-channel interference, 120
 delay spread, 122–123
 hand-offs, 120–121
 interleaving, 123
 path loss and multipath fading, 121–122
Mobile stations, 131
Mobile telephone switching offices (MTSOs),
 120–121
Modeling
 inductors, 455–460
 transformers, 475–476
Modems, 92
Modulation, 92–93
AM. See Amplitude modulation (AM)
analog, 93–99
channel-length, 275, 633–634
cross, 20–21, 140–141
digital. See Digital modulation
direct-conversion receivers, 184
FM, 95–96
frequency synthesizer spurs, 843–844
heterodyne receivers, 173
narrowband approximation, 96–98
image-reject receivers, 200
intermodulation, 21–29
phase, 95–99
PLL-based, 667–673
polar. See Polar modulation power amplifiers
wireless standards, 130
Modulation index, 93
Modulus
dividers, 673–676, 705–707
dual-modulus, 677–682, 880–881
multi-modulus, 732
prescaler, 682–683
fractional-N synthesizers, 718–721
frequency multiplication, 610–611
MOS capacitors, 491–493
MOS switches, 600
MOS transistors, 43–46
MOS varactors, 485–490, 519–520
MTSOs (mobile telephone switching offices), 120–121
Multi-carrier spectrum in OFDM, 117
Multi-modulus dividers, 732
Multipath fading, 121–123
Multipath propagation, 115–116
Multiphase frequency division, 745–748
Multiple access techniques
CDMA, 126–130
FDMA, 125
TDMA, 125–126
time and frequency division duplexing, 123–124
Multiplexers (MUX)
fractional dividers, 742
frequency planning, 854–847
multiphase frequency division, 745–746
VCOs, 877
Mutual injection pulling between oscillators, 589
NAND gates
current-steering circuits, 683–684
divide-by-2 circuits, 676
divide-by-2/3 circuits, 680
phase/frequency detectors, 614
single-phase clocking, 698
Narrowband FM approximation, 96–98
Narrowband noise, 551
Natural frequency
divide-by-2 circuits, 693
oscillator mismatches, 588
PLLs, 608
Near/far effect in CDMA, 129
Negative feedback systems
noise-cancelling LNAs, 303
oscillators, 502–503
power amplifier linearization, 783
VCO phase in PLLs, 601
Negative-Gm oscillators, 516
Negative resistance
cross-coupled oscillators, 516
LNA systems, 268
one-port oscillators, 509–510
Nested feedforward architecture, 785
90° phase shift
image-reject receivers, 200–205
low-IF receivers, 215–216
NMOS devices
transconductance, 282
transit frequency, 3
VCO cross-coupled pairs, 530
Noise and noise figure (NF), 35–36
AGC, 859
bipolar transistors, 46
cascaded stages, 52–56
CDMA, 127
direct-conversion receivers, 190–191, 346
direct-conversion transmitters, 238
flicker. See Flicker noise
fractional-N synthesizers. See Fractional-N synthesizers (FNSs)
frequency planning, 846
frequency synthesizers, 840–843
FSK signals, 105–106
IEEE802.11, 149
input-referred, 46–48
LNAs. See Low-noise amplifiers (LNAs)
lossy circuits, 56–58
mixers
with current-source helpers, 393–394
in design, 853–854
with high IP2, 399, 402
linearity, 387–392
noise figures, 343–348
overview, 338–339
qualitative analysis, 377–381
quantitative analysis, 381–387
RZ, 357–359
Noise and noise figure (NF) (Contd.)
 sampling, 359–364
 upconversion vs. downconversion, 409
modulus randomization, 718–721
MOS transistors, 43–46
offset PLLs, 670–671
oscillators, 501, 503, 546–548
overview, 48–52
phase. See Phase noise
polar modulation, 802
PSK signals, 105
quadrature oscillators, 591–592
quantization. See Quantization noise
as random process, 36–37
receivers, 92, 834
direct-conversion, 191–194
heterodyne, 169
low-IF, 215
representation in circuits, 46–58
resistors, 40–43
and sensitivity, 59–60
spectrum, 37–39
transfer function, 39–40
VCOs, 532, 871–875
Noise-cancelling LNAs, 300–303
Noise floor, 59
Non-delaying integrators, 728
Non-return-to-zero (NRZ) mixers, 352
Nonlinear power amplifiers, 93
Nonlinear systems, 10, 75–77
Nonlinearity
 AM/PM conversion, 33–35
cascaded stages, 29–33
cross modulation, 20–21
drain capacitance in impedance matching, 780
gain compression, 16–20
harmonic distortion, 14–16
intermodulation, 21–29
LNAs, 312, 325
degenerated common-source stage, 325–329
degenerated differential pairs, 332–333
differential and quasi-differential pairs, 331–332
undegenerated common-source stage, 329–330
noise relationship to, 387–388
overview, 12–14
PFD/CP, 735–736
receivers, 834–835
Volterra series currents, 81–85
Nonmonotonic error, 736
NOR gates
 current-steering circuits, 683–684, 689
dual-modulus dividers, 677–679
 synthesizer design, 883
Norton noise equivalent, 40, 548–549
NRZ (non-return-to-zero) mixers, 352
Number of turns factor
 metal resistance inductors, 445–446
 spiral inductors, 432–434, 436–437, 441–442
 transformers, 471, 473
0
Octagonal inductors, 435
Odd symmetry, 12, 15
OFDM. See Orthogonal frequency division multiplexing (OFDM)
OFDM channelization in IEEE802.11, 147–148
Off-chip devices
 baluns, 323, 767, 810
 image-reject filters, 166
 inductors, 429–431
Offset frequency
 mixers, 853–855
 VCOs, 871, 874–876
Offset PLLs, 670–673
Offset QPSK (OQPSK), 110
Offsets
 active mixers with high IP2, 398–400
 AGC, 859
 direct-conversion receivers, 181–187
 passive upconversion mixers, 414–415
 port-to-port feedthrough, 340–341
On-chip devices
 ac coupling, 183
 baluns, 323, 767
 high-pass filters, 214
 inductors, 179, 320–322, 694, 770
 low-pass filters, 179
 passive. See Passive devices
 transformers, 299–300, 821, 826
 transmission lines, 829
On-off keying (OOK), 100, 248–249
1–1 cascades, 731
1-dB compression point, 17–18
1/f noise, 44–46
One-port view of oscillators, 508–511, 584
One-sided spectra, 38
OOK (on-off keying), 100, 248–249
Open-loop control
 IS-95 CDMA, 138
 polar modulation, 793
Open-loop model of cross-coupled oscillators, 545, 547–548
Open-loop modulation, 667
Open-loop Q, 459, 544–545
Opposite signs in sidebands, 97–98
OQPSK (offset QPSK), 110
OR gates
 current-steering circuits, 684, 689
divide-by-2/3 circuits, 679
divide-by-15/16 circuits, 681
dual-modulus divider, 880

Orthogonal frequency division multiplexing (OFDM)
average power, 235
for delay spread, 147–148
flicker noise, 854
I/Q mismatch, 198
overview, 115–118
in transceiver design, 835, 837–838, 854

Orthogonal messages, 126
Orthogonal phasors, 585

Oscillators, 497
cross-coupled. See Cross-coupled oscillators
design procedure, 571–575
drive capability, 498–499
feedback view, 502–508
frequency range, 497–498
integer-N synthesizer design, 881
linear model, 548–549
LO. See Local oscillator (LO)
one-port view, 508–511, 584
output voltage swing, 498
performance parameters, 497–501
phase/frequency detectors, 613
phase noise. See Phase noise
pulling in direct-conversion transmitters, 237–238
Q in, 459, 545–570
quadrature. See Quadrature oscillators
three-point, 517–518
tuning ranges, 438, 498
VCOs. See Voltage-controlled oscillators (VCOs)

Out-of-band blocking
Bluetooth, 146
GSM, 133
transceivers, 157–158
wideband CDMA, 140
Out-of-band noise, 732–733
Out-of-channel IP3, 835
Outphasing power amplifiers
basics, 802–804
design, 826–829
issues, 805–810

Output capacitance
AM/PM conversion, 795, 799
divide-by-2 circuits, 696
mixers, 376
power amplifiers, 819

Output impedance
common-gate LNAs, 298
current sources, 634–635
large signals, 780–781
matching networks, 69
mixers, 357, 366

and noise, 48, 52, 54–56
PLLs, 634
power amplifiers, 809

Output matching networks, 69, 814
Output power control, 820
Output voltage swing, 9
flicker noise, 566
mixers, 391, 423–424
oscillators, 498
power amplifiers, 756, 762, 778, 792, 816,
861–863
VCOs, 531, 571–572

Overdrive voltage, 413
Overlap for blind zones, 536
Overlapping spectra
CDMA, 127–128
IEEE802.11, 150

P
Packages
coupling between pins, 430
power amplifier parasitics, 755
Pad capacitance, 281, 286–287, 291–293
PAE (power-added efficiency), 756
Parallel inductors, 435
Parallel-plate capacitors, 493–495, 529
Parallel resistance
ideal capacitors, 63
inductor modeling, 455–456
Parameters, scattering, 71–75
Parasitics
active mixers, 396–397
class E power amplifiers, 772
cross-coupled oscillators, 514
divide-by-2 circuits, 694, 879
inductors, 439–444, 694
LNAs, 260, 313
parallel-plate capacitors, 494
power amplifiers, 755, 765
VCOs, 528–529, 535, 870
PARs (peak-to-average ratio) in OFDM, 117–118
Partial channel selection, 168
PAs. See Power amplifiers (PAs)
Passband signals, 91–92
Passive devices, 429
considerations, 429–431
constant capacitors, 490–495
inductors. See Inductance and inductors
modeling issues, 431
transformers. See Transformers
transmission lines, See Transmission lines (T-lines)
varactors, 483–490
Passive filters, 158
Index

Passive impedance transformation, 62–63
 matching networks, 65–71
 quality factor, 63
 series-to-parallel conversions, 63–65
Passive mixers, 350, 867
 carrier feedthrough, 413–416
 current-driven, 366–368
 gain, 350–357
 input impedance, 364–367
 LO self-mixing, 357
 Miller dividers, 704–705
 noise, 357–364
 upconversion, 409–413
Path loss, 121–122
Patterned ground shields, 466
PCS1900, 132
PDs (phase detectors) in phase-locked loops, 597–600
Peak detection, 790
Peak-to-average ratio (PARs) in OFDM, 117–118
Peak-to-peak voltage swing, 8–9
Peak value, 18
Peaking amplifiers, 811
Performance
 high-speed dividers, 690
 mixers, 338–343, 408–409
 oscillators, 497–501
 power amplifier linearization, 787
 trends, 2
Periodic impulse response, 559
Periodic waveforms, low-pass filters with, 101
Periods in phase noise, 536
Perpendicular resultants in FM signals, 97
PFDs. See Phase/frequency detectors (PFDs)
Phase detectors (PDs) in PLLs, 597–600
Phase-domain models for PLLs, 607
Phase errors
 GSM, 135
 PLLs, 600–601, 603–606, 608, 611, 615
 QPSK, 108
Phase feedback in polar modulation, 798–799
Phase/frequency detectors (PFDs)
 charge pump capacitive cascades, 615–618
 fractional-N synthesizers, 718, 734–737
 nonidealities, 627
 channel-length modulation, 633–634
 charge injection and clock feedthrough, 630–632
 circuit techniques, 634–638
 up and down current mismatches, 632–633
 up and down skew and width mismatch, 627–630
 voltage compliance, 630
 reset pulses, 737
Phase-locked loops (PLLs), 597
 charge-pump, 615–620
 continuous-time approximation, 622–623
 design, 646–647
 frequency multiplying CPPLLs, 623–625
 higher-order loops, 625–627
 in-loop modulation, 667–669
 loop bandwidth, 645–646
 offset, 670–673
 PFD/CP nonidealities. See Phase/frequency detectors (PFDs)
 phase detectors, 597–600
 phase noise, 638–644
 polar modulation, 798, 800, 802, 825
 transient response, 620–622
 type-I. See Type-I PLLs
 type-II. See Type-II PLLs
Phase-locked phase noise profiles, 841
Phase margin of PLLs, 625, 647–651
Phase mismatches
 direct-conversion receivers, 196
 direct-conversion transmitters, 241
 multiphase frequency division, 746–747
Phase modulation (PM)
 AM/PM conversion, 33–35
 overview, 95–99
 power amplifiers, 757
 tail noise, 567, 569–570
Phase modulation index, 95
Phase noise
 divider design, 709–712
 frequency planning, 846
 frequency synthesizers, 720–723, 732–733, 840–843
 offset PLLs, 672
 oscillators, 501, 536
 additive noise conversions to, 550–552, 554
 basic concepts, 536–539
 bias current source, 565–570
 computation, 554–555
 current impulse, 557–558
 cyclostationary, 552–553, 565
 effects, 539–543
 flicker, 563–564
 higher harmonics, 564–565
 injected, 562–563
 linear model, 548–549
 noise shaping, 546–548
 Q, 544–546
 tail capacitance, 555–557
 time-variant systems, 559–561
 time-varying resistance, 553–554
Index

reference, 643–644

type-II PLLs, 638–644

VCOs, 570–572, 638–643, 871–875

Phase shift

Miller dividers, 702
	offset PLLs, 673

oscillators, 504–505, 507, 512, 591

polar modulation, 794

power amplifier linearization, 787

Phase shift keying (PSK)

quadrature PSK, 107–112

signal constellation, 105–106

spectrum, 103

waveforms, 100

Phases

charge pumps, 616

dividers, 702

oscillators, 504–505, 507, 512, 591

polar modulation, 794

power amplifier linearization, 787

Phasor diagrams, 550

anti-phase coupling, 585–586

in-phase coupling, 585

quadrature oscillators, 587

Piecewise-linear waveforms, 383

Planar transformers, 470, 473–474

PLL-based modulation

in-loop modulation, 667–669

offset PLLs, 670–673

PLLs. See Phase-locked loops (PLLs)

PM (phase modulation)

AM/PM conversion, 33–35

overview, 95–99

tail noise, 567, 569–570

Power consumption trends, 2

Power control

direct-conversion transmitters, 232–233

DS-CDMA, 128–129

IS-95 CDMA, 138

polar modulation, 801

power amplifiers, 820

Power conversion gain in mixers, 339

Power dissipation

LNAs, 263

oscillators, 501

VCOs, 571

Power efficiency, 93

Power gain, 7–9

Power spectral density (PSD) noise, 37, 44–45

Predistortion, 787–788

Predrivers, 864–865, 867

Prescaler modulus, 674–675, 682–683

Primary inductances in power amplifiers, 765–767
Primary turns in transformers, 473–474
Program counters in pulse-swallower dividers, 674–675
Programmable AGC gain, 859
Propagation
 mismatches, 625
 multipath, 115–116
PSD (power spectral density) noise, 37, 44–45
Pseudo-random noise, 127
PSK (phase shift keying)
 quadrature PSK, 107–112
 signal constellation, 105–106
 spectrum, 103
 waveforms, 100
Pulse shaping, 103–104, 227
Pulse-swallower counters, 880, 881
Pulse-swallower dividers, 673–677
Pulsewidth modulation, 386
Q
 Q. See Quality factor (Q)
QPSK (quadrature PSK) modulation, 107–112
 EDGE, 136
 phase noise, 542–543
Quadrature amplitude modulation (QAM), 114–115
Quadrature downconversion
 heterodyne receivers, 174–175
 low-IF receivers, 219–221
 Weaver architecture, 213
Quadrature LO phases, 746
Quadrature mismatches, 195
Quadrature oscillators, 581
 basic concepts, 581–584
 coupled oscillators, 584–589
 feedback model, 582–584
 improved, 589–592
 one-port model, 584
 simulation, 592–593
Quadrature phase separation, 216
Quadrature PSK (QPSK) modulation, 107–112
 EDGE, 136
 phase noise, 542–543
Quadrature upconverters, 227
 GMSK, 113
 heterodyne transmitters, 247–248
 I/Q mismatch, 230–231
 outputs, 422–424, 844
 passive mixers in, 411
 polar modulation, 797–798
Qualitative analysis of mixer noise, 377–381
Quality factor (Q)
 definitions, 459–460
 and frequency, 454
 inductors
 differential, 463
 ground shields, 466–467
 metal resistance, 444–447
 T-line, 478, 480
 passive impedance transformation, 63
 phase noise, 544–546
 polar modulation, 796
 quadrature oscillators, 588
 varactors, 484, 487, 489, 522–524
 VCOs, 534–535
Quantitative analysis of mixer noise, 381–387
Quantization noise, 719–721
 basic noise shaping, 722–728
 charge pump mismatch, 736–737
 DAC feedforward for, 738–742
 fractional dividers, 742–743
 higher-order noise shaping, 728–732
 multiphase frequency division, 745–748
 out-of-band, 732–733
 reference doubling, 743–745
 spectrum, 748–749
Quasi-differential pairs
 active mixers with high IP2, 401–402
 active upconversion mixers, 416–417
 LNAs, 331–332
Quasi-static approximation, 757
R
Radiation resistance, 42, 49–50
Rail-to-rail operation
 LO, 366, 577, 852–853, 867–868
 PLLs, 636
 TSCP, 697, 699
 VCOs, 877–878
Raised-cosine spectrum, 104
Rake receivers, 138
Random bit streams in low-pass filters, 101
Random mismatches
 fractional-N synthesizers, 737
 up and down current, 637
Random process, noise as, 36–37
Randomization, modulus, 718–721
Rapp model, 758, 838
Ratioed logic, 878
Rayleigh distribution, 122
RC-CR networks
 image-reject receivers, 203, 209–210
 low-IF receivers, 215–217
Reactance-canceling LNAs, 303–305
Receive bands, 157
Receiver/demodulators, 92
Receivers (RX), 848
 AGC design, 856–861
 AGC range, 836–837
Index

Bluetoth characteristics, 145–147
direct-conversion. See Direct-conversion receivers
front ends, 156
heterodyne. See Heterodyne receivers
image-reject. See Image-reject receivers (IRRs)
input level range, 131
LNA design, 849–852
LNA leakage, 261
low-IF, 214–217
double-quadrature downconversion, 224–226
polyphase filters, 217–224
mixer design, 851–856
noise, 92, 238, 834
nonlinearity, 834–835
sensitivity, 131
simple view, 4–5
system-level considerations, 834–838
tolerance to blockers, 131
wideband CDMA requirements, 140–143
Receiving antenna thermal noise, 42
Reciprocal mixing
frequency synthesizers, 657–658, 840
phase noise, 540
Reconstructed error in quantization noise, 738–739
Reference cycles in fractional-N synthesizers,
716–718
Reference doubling in quantization noise, 743–745
Reference frequency in integer-N synthesizers, 656,
660, 664
Reference phase noise in PLLs, 643–644
Reference sidebands in integer-N synthesizers, 663
Reflected waves, 71–73
Regeneration mode current-steering circuits,
686–688
Regulated cascodes, 634–635
Regulator noise in oscillators, 501
Replicas, IS-95 CDMA, 138
Representation of noise, 46–58
Reset pulses in phase/frequency detectors, 613
Resettable D flipflops, 613
Resistance and resistors
cross-coupled oscillators, 516
ideal capacitors, 63
inductor modeling, 455–456
inductor Q, 444–448
microstrips, 482
noise in, 36, 40–43, 873–874
one-port oscillators, 509–511
power amplifier loads, 752–753
radiation, 42, 49–50
skin effect, 448–450
T-lines, 477
time-varying, 553–554
varactors, 487–489
Resistance-free coupling with inductors, 470
Resistive-feedback LNAs, 269–272, 849–851
Resistive termination for LNAs, 264
Resolution of ADCs, 837, 858–859
Resonance frequency
inductor equations, 438
VCOs, 519
Response decays in PLLs, 621
Restoration force in phase noise, 544
Retiming flipflops in integer-N synthesizers, 667
Return paths in T-lines, 478
Return-to-zero (RZ) mixers
noise, 357–359
passive downconversion, 350
passive upconversion, 410
Reverse channels, 119
Reverse isolation, 72, 260
RF chokes (RFC), 752
RF design hexagon, 3
RF-IF feedthrough, 341, 343
RF-LO feedthrough, 341–343
Ring oscillators
divide-by-2 circuits as, 690–691
injection-locked, 709
waveforms, 507
Ripple
charge pumps, 619, 632
fractional-N synthesizers, 738
integer-N synthesizers, 665, 883, 885–886
PLLs, 603, 611, 625–627, 638
power amplifiers, 759
Roaming in cellular systems, 120–121
Roll-off factor, 104
RZ (return-to-zero) mixers
noise, 357–359
passive downconversion, 350
passive upconversion, 410
S
S (scattering) parameters, 71–75
S/P (serial-to-parallel) converters, 107
Sampling filters in fractional-N synthesizers, 665,
738
Sampling mixers, 352–354
noise, 359–364
passive upconversion, 409–410
Scattering (S) parameters, 71–75
Second intercept points (IP2), 188
Second-order 1-bit ΣΔ modulators, 729
Second-order nonlinearity, 29
Second-order parallel tanks, Q in, 460
Secondary images in image-reject receivers, 212
Secondary inductances in power amplifiers, 765–767
Secondary turns in transformers, 473–474
Self-corruption
 asymmetric signals, 173–175
 direct-conversion receivers, 179, 190
Self-mixing LO, 181, 357
Self-oscillation in divide-by-2 circuits, 691
Self-resonance frequency of inductor capacitance, 442
Sense mode for current-steering circuits, 686–687
Sensitivity
 overview, 59–60
 VCOs, 518
 wireless standards, 131
Sequence-asymmetric polyphase filters, 221
Serial-to-parallel (S/P) converters, 107
Series inductance in LNA common-source stage, 291
Series inductors, 435
Series peaking in divide-by-2 circuits, 694–696
Series resistance
 ideal capacitors, 63
 inductor modeling, 455–456
Series-to-parallel conversions, 63–65
Servo amplifiers in PLLs, 636
Settling behavior in integer-N synthesizers, 661–664
 7-cell reuse pattern, 120
SFDR (spurious-free dynamic range), 60–62
Shannon’s theorem, 155
Shift-by-90° operation in image-reject receivers, 200–205
Shot noise, 46
Shunt peaking in divide-by-2 circuits, 694–695
Shunt tail noise in low-noise VCOs, 573
Sidebands
 direct-conversion transmitters, 240–243
 fractional-N synthesizers, 716
 frequency-multiplying PLLs, 624
 heterodyne transmitters, 245
 integer-N synthesizers, 657, 663
 opposite signs in, 97–98
 VCO, 628
ΣΔ modulators
 fractional-N synthesizers, 726–730, 733, 736–738
 VCO phases, 748
Signal cancellation loops, 783
Signal constellations, 105–112
Signal-to-noise ratio (SNR). See Noise and noise figure (NF)
Signs in sidebands, 97–98
Simulators
 integer-N synthesizers, 884–886
 power amplifiers, 757
 varactors, 487
Sinc pulses, 103–104
Single-balanced mixers, 348–350
 active, 369–370, 373
 input impedance, 365
 noise, 362, 384
 passive, 351
 sampling, 355–356
 voltage conversion gain, 377
Single-ended power amplifiers, 758–760
Single-ended stage in differential LNAs, 315–317
Single-ended to differential LNA conversion, 320
Single-sideband (SSB) mixing
 direct-conversion transmitters, 240–243
 heterodyne transmitters, 247–248
 Miller dividers, 706
 noise figure, 344
Single-sideband (SSB) transmitters in image-reject receivers, 206
16QAM constellation
 description, 114
 phase noise, 543
 spectral regrowth, 118
64QAM constellation, 115
Skin effect in inductors, 448–450, 457
Sliding-IF receivers, 174–178
Slope of I/O characteristic, 17
SNR (signal-to-noise ratio). See Noise and noise figure (NF)
Soft hand-offs in IS-95 CDMA, 139
Software-defined radios, 199
Sonnet simulator, 439
Source-bulk capacitance in LNA common-source stage, 293
Source impedance in noise figure, 50
Source switching in charge pumps, 631
Space diversity in cellular systems, 122
Spectra
 amplitude modulation, 94
 noise, 37–39
 overlapping, 127–128, 150
Spectral masks, 130–131
Spectral regrowth, 118–119
Spiral inductors
 equations, 436–439
 geometries, 435
 high-IP2 LNAs, 323–324
 number of turns factor, 432–434, 436–437, 441–442
 overview, 431–434
 stacking, 467
 transformers, 471
 VCOs, 520–521
Split reset pulses, 737
Spread spectrum (SS) communications, 127
Spreading sequence code, 127
Spurious-free dynamic range (SFDR), 60–62
Spurs, 338
direct-conversion receivers, 179, 199
fractional, 716
frequency synthesizers, 843–844
heterodyne receivers, 170–171
heterodyne transmitters, 245–248
integer-N synthesizers, 664–667
Square-wave LOs, 170
SS (spread spectrum) communications, 127
SSB (single-sideband) mixing
direct-conversion transmitters, 240–243
heterodyne transmitters, 247–248
Miller dividers, 706
noise figure, 344
SSB (Single-sideband) transmitters in image-reject receivers, 206
Stability
LNAs, 259–260
power amplifiers, 866–867
Stacked inductors, 467–470
Stacked metal layers in microstrips, 482
Stacked spirals
high-IP2 LNAs, 323–324
transformers, 473–474
Stacked transformers
description, 474–475
power amplifiers, 821
Standards, wireless, 130–132
Bluetooth, 143–147
GSM, 132–137
IEEE802.11a/b/g, 147–151
IS-95 CDMA, 137–139
wideband CDMA, 139–143
State diagrams for phase/frequency detectors, 612
Static phase errors in PLLs, 603, 605
Static systems, 12
Step symmetry of inductors, 464
Stern stability factor, 259
Striplines, 483
Subcarriers in OFDM, 117
Substrate
capacitive coupling to, 439–440, 450–452, 457–458
magnetic coupling to, 452–455, 457–459
Superdyne system, 164
Supply sensitivity of oscillators, 501
Surface states, 44
Swallow counters, 674–676, 682, 880, 881
Switch on-resistance of VCOs, 535
Switch parasitics in band switching LNAs, 313
Switch transistors
class E power amplifiers, 772–773
phase noise, 538
VCOs, 534
Switchable stages in polar modulation, 824
Switched capacitors for VCOs, 533, 872
Switching pair current in active mixers, 405, 407
Switching power amplifiers, 772–773
Symbols in QPSK, 107
Symmetric inductors, 435, 460–466, 520–521
Symmetrically-modulated signals, 172
Synchronous AM detectors, 790
Synchronous operation of dual-modulus dividers, 680
Synthesizers
fractional-N. See Fractional-N synthesizers (FNSs)
integer-N. See Integer-N synthesizers PLLs, 611
System-level design considerations, 833
frequency planning, 844–848
frequency synthesizers, 840–844
receivers, 834–838
transmitters, 838–840
System specifications for oscillators, 497
T
T-lines (transmission lines), 476–478
coplanar, 482–483
microstrips, 479–482
striplines, 483
Tail capacitance
flicker noise, 387, 405
phase noise, 555–557
Tail current
cross-coupled oscillators, 513–515
passive upconversion mixers, 412
phase noise, 556
time-varying resistance, 554
VCOs, 525–526, 531–532, 874–875
Tail noise
cross-coupled oscillators, 513, 565–566
low-noise VCOs, 573, 575
phase noise, 565–570, 708
Tails coupling in quadrature oscillators, 589
Tapered stages in power amplifiers, 754
TDD (time division duplexing), 123–124
TDMA (time-division multiple access), 125–126
Temperature. See Thermal noise
Terminals in mobile RF communications, 119
Terminating resistors in LNAs, 264
Thermal noise, 36
direct-conversion receivers, 191
MOS transistors, 43–46
phase, 566, 568
resistors, 40–43
Thevenin equivalent of divide-by-2 circuits, 695
Thevenin model of resistor thermal noise, 40, 57
Index

Third intercept points (IP3), 25–27
Third-order characteristic, 13
Third-order intermodulation, 22, 31
Three-point oscillators, 517–518
Time constants in PLL transient response, 621
Time-contracted simulation of integer-N synthesizer loops, 884

Time diversity
 cellular systems, 122
 IS-95 CDMA, 138
Time division duplexing (TDD), 123–124
Time-division multiple access (TDMA), 125–126
Time-variant systems
 overview, 9–12
 passive downconversion mixers, 366
 phase noise, 559–561
Time-varying resistance in phase noise, 553–554
Time-varying voltage division in outphasing, 808

Timing errors in class E power amplifiers, 773

Tones
 fractional-N synthesizers, 727–728
 power amplifiers, 756–757
Top-biased VCOs, 525–526
Top current in phase noise, 568–569
Total frequency, 95
Total noise power in phase noise, 541

Total phase modulation, 95
VCOs, 579
Total stored energy in inductor capacitance, 441
Track-mode noise, 359–361
Tradeoffs in design, 3

Transceivers, 92, 119, 155
 channel selection and band selection, 157–159
 considerations, 155–157
 design example, 833
 integer-N synthesizers, 869–886
 receivers, 848–861
 system-level design. See System-level design considerations
 transmitters, 861–869
 on-off keying, 248–249
receivers. See Receivers (RX)
transmitters. See Transmitters (TX)
TX-RX feedthrough, 159–160

Transconductance

LNA
 common-gate stage, 279–280, 282
 common-source stage, 288–291
differential, 319
gain switching, 306
mixers, 368, 394–397, 407
oscillators, 511
quadrature oscillators, 591
time-varying resistance, 554
VCOs, 875

Transfer functions
 fractional-N synthesizers, 722, 724, 728, 732–733
 integer-N synthesizers, 661–662, 665–666, 669, 693–696, 709
 integrators, 506
 LNAs, 277–278, 303
 noise, 39–41, 544, 569, 638–641, 643
 oscillators, 544, 547–548, 562
 PLLs, 606–608, 615, 617–620, 622–623, 649
 RC-CR networks, 203
 transformers, 472, 475

Transformation, passive impedance, 62–63
 matching networks, 65–71
 quality factor, 63
 series-to-parallel conversions, 63–65

Transformers, 470
 coupling capacitance, 474–475
 impedance transforms, 69
 modeling, 475–476
 outphasing, 806–807
 power amplifiers, 753, 767, 821–824
 structures, 470–475

Transient response in type-II PLLs, 620–622

Transistors
 class E power amplifiers, 772–773
 cross-coupled oscillators, 514
 phase noise, 538
 thermal noise, 43–46
 VCOs, 534

Transmission lines (T-lines), 476–478
 coplanar, 482–483
 microstrips, 479–482
 striplines, 483

Transmission masks in IEEE802.11, 147–148
Transmit bands, 158–159
Transmit spectrum masks, 144–145

Transmitted noise in offset PLLs, 670–671

Transmitter antenna thermal noise, 42

Transmitters (TX), 861
 Bluetooth characteristics, 143–145
 cell phones, 91
 considerations, 226–227
direct-conversion. See Direct-conversion transmitters
 GSM specifications, 135–136
 harmonic distortion, 16
 heterodyne, 244–248
 LNA leakage, 261
 outphasing, 804
 power amplifiers, 861–867
 in simple view, 4–5
 system-level considerations, 838–840
Index

upconverters, 867–869
wideband CDMA, 139–140
wireless standards, 130–131
wireless systems, 156
Trends, 2–3
True single-phase clocking (TSPC), 697–699
Tuned amplifiers, 444, 512
Tuning VCOs, 521–522
amplitude variation with frequency tuning, 532
continuous, 524–532
discrete, 532–536
range limitations, 521–522
Turn-to-turn capacitances in inductors, 441–442
Two-level modulation schemes, 92
Two-pole oscillators, 504–505
Two-sided spectra, 38
Two-tone tests
active downconversion mixers, 392
intermodulation, 22, 24–25, 28
power amplifiers, 756–757
sensitivity, 61–62
TX-RX feedthrough, 159–160
Type-I PLLs
drawbacks, 611
frequency multiplication, 609–611
loop dynamics, 606–609
simple circuit, 601–606
VCO phase alignment, 600–601
Type-II PLLs, 611–612
charge pumps, 614–620
continuous-time approximation limitations, 622–623
design procedure, 646–647
frequency-multiplying CPPLLs, 623–625
higher-order loops, 625–627
loop bandwidth, 645–646
PFD/CP nonidealities. See Phase/frequency detectors (PFDs)
phase/frequency detectors, 612–614
phase margin, 647–651
phase noise, 638–644
transient response, 620–622

U
Undegenerated common-source stages, LNA
nonlinearity calculations for, 329–330
Uniformly-distributed model of inductor capacitance, 441–442
Unilateral coupling in quadrature oscillators, 581
Units, 7–9
Unity-gain voltage buffers, 602, 607
Up currents and pulses
charge pumps, 614–615, 630–633, 645–647
fractional-N synthesizers, 733–734
integer-N synthesizers, 883
PLL higher-order loops, 625, 627
quantization noise, 739
Up skew in PFD/CP, 627–630
Upconversion and upconversion mixers, 339, 408
active, 416–424
design, 867–869
heterodyne transmitters, 244–248
I/Q mismatch, 229–232
linearity, 234–235
offset PLLs, 671
output spectrum, 844
passive, 409–416
performance requirements, 408–409
polar modulation, 797–798
power amplifiers, 758
quadrature, 113, 227, 230–231
scaling up, 230–231
Uplinks, 119

V
V/I (voltage-to-current) conversion
downconversion, 368–369
upconversion, 867–868
Varactors
overview, 483–490
Q, 522–524
VCOs, 519–520, 571, 870
Variable coding rates in IS-95 CDMA, 139
Variable-delay stages in integer-N synthesizers, 665–667
Variable-envelope signals in QPSK, 110
Variable-gain amplifiers (VGAs), 860
Variance, time. See Time-variant systems
VCOs. See Voltage-controlled oscillators (VCOs)
Vector modulators, 227
VGAs (variable-gain amplifiers), 860
\(V_{n1} \) and \(V_{n2} \) spectrum in mixers, 360–364
Voice signals, 91
Voltage compliance issues in PFD/CP, 630
Voltage-controlled oscillators (VCOs), 485
Bluetooth, 144
divider design, 673–674, 692
figure of merit, 570–571
fractional-N synthesizers, 716, 723
free-running, 655
frequency multiplication, 610
FSK, 112
integer-N synthesizers, 656, 666, 869–877
low-noise, 573–575
mathematical model, 577–581
multiphase frequency division, 745–748
overview, 518–521
phase noise, 638–643, 711–712
Voltage-controlled oscillators (VCOs) (Contd.)
 PLLs, 603–606
 offset, 672–673
 phase alignment, 600–601
 PLL-based modulation, 667–668
 polar modulation, 797–798
 transceiver design, 842, 845–847
 tuning, 521–522
 amplitude variation with frequency tuning, 532
 continuous, 524–532
 discrete, 532–536
 range limitations, 521–522
 varactor Q, 522–524
Voltage-dependent capacitors, 483–490
Voltage gain, 7–9
 conversion. See Conversion gain
 LNA common-gate stage, 276
Voltage swings, 9
 flicker noise, 566
 mixers, 391, 423–424
 oscillators, 498, 515
 power amplifiers, 756, 762, 778, 792, 816, 886–883
 VCOs, 531, 571–572
Voltage-to-current (V/I) conversion
 downconversion, 368–369
 upconversion, 867–868
Voltage-voltage feedback in common-gate LNAs, 296
Volterra series
 nonlinear currents, 81–85
 overview, 77–81

W
 Walsh code, 127
 Weaver receivers, 210–213

White noise, 563–564, 642
Wideband CDMA, 139–143
Width mismatches in PFD/CP, 627–630
Wilkinson combiners, 827–829
Wilkinson dividers, 828
Wire capacitance and inductors, 441
Wire resistance and inductors, 444–448
Wireless communication overview, 1–3
 big picture, 4–5
 RF challenges, 3–4
Wireless standards, 130–132
 Bluetooth, 143–147
 GSM, 132–137
 IEEE802.11a/b/g, 147–151
 IS-95 CDMA, 137–139
 wideband CDMA, 139–143
Wires
 bond. See Bond wires
 transmission lines. See Transmission lines (T-lines)

X
 XNOR (exclusive-NOR) gates, 152
 XOR (exclusive-OR) gates
 current-steering circuits, 685–686
 phase detectors, 598–599
 PLLs, 603
 reference doubling, 743

Z
 Zero crossings
 Miller dividers, 701–702
 mixer flicker noise, 385–386, 407–408
 phase-modulated signals, 95
 phase noise, 536–538, 557–558
 Zero-IF architecture, 179
 Zero second IFs in heterodyne receivers, 171–174