

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

© Copyright 2009 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Managers: Tara Woodman, Ellice Uffer
Cover Design: IBM Corporation

Associate Publisher: Greg Wiegand
Marketing Manager: Kourtnaye Sturgeon
Publicist: Heather Fox
Acquisitions Editor: Katherine Bull
Development Editor: Kevin Howard
Managing Editor: Kristy Hart
Designer: Alan Clements
Senior Project Editor: Lori Lyons
Copy Editor: Deadline Driven Publishing
Indexer: WordWise Publishing Services
Compositor: Nonie Ratcliff
Proofreader: Water Crest Publishing
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc

Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both: IBM, the IBM logo, IBM Press, DB2, Domino,
Domino Designer, Lotus, Lotus Notes, Rational, and WebSphere. Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft, Windows,
Windows NT, and the Windows logo are trademarks of the Microsoft Corporation in the United States,
other countries, or both. Linux is a registered trademark of Linus Torvalds. Intel, Intel Inside (logo), MMX,
and Pentium are trademarks of Intel Corporation in the United States, other countries, or both. Other
company, product, or service names may be trademarks or service marks of others.

Library of Congress Cataloging-in-Publication Data

Bowley, David.
Rapid portlet development with WebSphere portlet factory : step-by-step guide for building your own

portlets / David Bowley.
p. cm.

Includes index.
ISBN 0-13-713446-0 (hardback : alk. paper) 1. Web portals—Computer programs. 2. User interfaces

(Computer systems) Computer programs. 3. Web site development. 4. WebSphere. I. Title.
TK5105.8885.W43B69 2008

006.7’6—dc22
2008029014

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-13-713446-5
ISBN-10: 0-13-713446-0

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing September 2008

xxvii

Foreword

Building good software applications is hard. Improvements in languages, frameworks, and tools
do make things easier, and there are more of these improvements each year.

But at the same time, the technology landscape that developers live in keeps changing and
getting more complex. Just when you get productive with one set of tools and technology, there’s
something new that you have to adapt to or integrate with. And there’s a perpetual demand for
“more software quicker”—organizations can never get all the software they want as soon as they
want it.

WebSphere® Portlet Factory was created to apply concepts of software automation to help
address this ongoing problem of software development complexity. This software automation
moves the developer up a level, above the level of individual code artifacts. Instead of directly
manipulating elements such as JSP, Java™, JavaScript, and XML files, the developer interacts
with builders in a model, and the builders then generate all the necessary code artifacts in
response to the developer’s high-level instructions.

You can think of builders as encapsulations of software features or design patterns. Each
builder implements one feature of an application, controlled by instructions provided by the
developer in a wizard-like user interface. An application is built by successively adding and mod-
ifying features (builders) until the application works as intended. The net effect for developers is
that they can rapidly develop complex applications without having to learn (and remember) all
the underlying technology.

In the past several years working with this technology, we’ve found that developers can
consistently get big productivity gains from this software automation. We’ve seen the technology
adopted by an ever-increasing customer base, first at Bowstreet (where the software was initially
developed), and now at IBM, which acquired Bowstreet in late 2005. At IBM, the technology has

also been adopted by a number of other product groups that build products on top of Portlet Fac-
tory technology and take advantage of its software automation. For example, the Lotus®

ActiveInsight Dashboard Framework is built on Portlet Factory and provides a set of builders that
implement high-level design patterns tailored for dashboard-style applications.

We’ve also found that automation makes it possible to quickly add support for new technol-
ogy, such as integrating new back-end services or generating new user interface technologies.
One example is support for Ajax (Asynchronous Java and XML) user interfaces. Implementing
an Ajax user interface through hand-coding is quite complex and involves coordinated client-side
code (JavaScript) and server-side code. Using builder technology, a small team with Ajax exper-
tise was able to capture their expertise in a set of builders that automate common Ajax patterns
and generate the necessary client and server code. Once the builders were created, those Ajax pat-
terns became easily accessible to any developer using Portlet Factory.

In this book, David Bowley gives a clear “soup-to-nuts” guide to building applications with
Portlet Factory, from creating your first project, to back-end integration, to user interface and
Ajax techniques. Each chapter tackles one aspect of application development, and for each task
David shows you which builders you need and how to use them. In his examples, I think you’ll
see that David has found just the right level of complexity—the examples are simple enough to
easily understand, but not unrealistically simple or trivial.

Portlet Factory development—using builders and models instead of working directly with
code—represents a different development paradigm than with other tools. I hope you find as
much value in this automation paradigm as we have. You can use this book as your guide as you
learn your way around Portlet Factory and get comfortable with this way of working.

Jonathan Booth
Senior Architect
WebSphere Portlet Factory
IBM

xxviii Foreword

xxix

Preface

Portlet development can often be arduous and complicated; indeed, the word “rapid” is not nor-
mally associated with building portlets. IBM’s award-winning1 WebSphere Portlet Factory
(WPF), however, provides developers with a wizard-based development environment that greatly
expedites the process of building, testing, and deploying portlets. WPF shields developers from
much of the complexity of traditional portlet development, and portlets built using WPF often
require little or no coding—enlarging the potential pool of people who are able to build portlet
applications. Having said this, WPF developers also have the full power of Java 2 Enterprise Edi-
tion (J2EE) available to them should they choose to use it, making WPF a flexible (and powerful)
development tool.

This book is about how to use WPF to rapidly build portlets. No previous development
experience is required to understand this book, and anyone with a remote interest in portlet devel-
opment should find something of interest here. The book is structured to facilitate rapid portlet
development: It is a collection of independent chapters, each walking through the process of cre-
ating a portlet while focusing on a particular aspect of WPF. Due to the independent nature of the
chapters (and the nature of portlet development using WPF), you can skip to the chapters that
interest you without needing to read chapter after chapter of abstract theory and/or background
information beforehand. For example, if you want to learn how to build a portlet that displays a
graphical chart, skip to Chapter 10, “Using Charts in Portlets;” if you want to find out how to
work Ajax into your portlets, skip to Chapter 13, “Using Ajax and Dojo.” If you are completely
new to WPF (or portals and portlets) and are looking for some basic information to get you
started in WPF, Chapter 1, “Introduction to WebSphere Portlet Factory,” provides an overview of

1 WebSphere Portlet Factory won the 2006 JavaPro readers’ choice award for “Best Java Enterprise Portal Technology”
(www.fawcette.com/javapro/).

www.fawcette.com/javapro/

portal terminology, WPF architecture, and the WPF Designer interface. Chapter 1 also walks you
through the process of creating, testing, and deploying a simple Hello World! portlet. Other intro-
ductory information is available in Appendix A, which contains some useful information for set-
ting up your WPF development environment, and there is a glossary at the back of the book that
defines common WPF terms.

This book also contains useful tidbits that I have picked up during my time with WPF—the
sort of things developers need to know but normally wouldn’t without a great deal of experimen-
tation and frustration. These snippets of information are highlighted as follows:

TIP

Tips contain useful information that can be employed in WPF, usually with the purpose of
expediting portlet development. Tips are useful, but they are not critically important and can
be skipped if desired.

WARNING

Warnings are important points that usually obviate a common sticking point, and heeding
them may spare you future frustration.

Due to the width of the book’s printed page, some lines of code might be too long to fit on
only one line. If a line of code wraps to another line(s), and it’s not obvious it’s part of the preced-
ing line, we have inserted a code continuation character ([ccc]) at the beginning of the runover
line to indicate that the code is part of the line preceding it. (You should type lines of code that
have this character as one long line without breaking it.) For example,

WebAppAccess remoteWebAppAccess =

�webAppAccess.getModelInstance(“modelPath/ModelName”, “”,

�false);

All the examples discussed in this book are available for download from ibmpressbooks.
com/title/9780137134465. More advanced readers can import what they want from these
examples directly into their projects, without necessarily consulting the book itself—although
you are encouraged to follow along with the examples to increase your understanding of WPF.
By walking through each example, you will learn how to build portlets in WPF by actually build-
ing them, and not just reading about it; so, by the end of each chapter, you should have a practical
understanding of how to work the discussed features into your own portlets.

Although this book does discuss the theory of WPF portlet development, this information is
discussed in the context of the practical examples in the book, which gives you a more concrete

xxx Preface

understanding of how the abstract side of portlet development is applied. Readers unconcerned
with what is going on under the covers can skip the theory sections without adversely affecting
their portlets. Indeed, one of the advantages of using WPF is that you don’t need to learn vast
amounts of theory to begin development—you can start building portlets right away. The focus of
this book, then, is on the practical side of portlet development, with an emphasis on rapidly build-
ing portlets with certain functionality—this is not intended as a book of theory. Similarly, given
its short length, this book is not intended to cover every aspect of portlet development—only
those areas that are deemed most useful to portlet developers (and WPF developers, in particular).

I hope you find this book useful and enjoyable to read; I certainly enjoyed writing it. At the
least, I would like this book to go some way toward expediting your portlet development process
and increasing your understanding of WPF. If you have any comments about the content or struc-
ture of the book, feel free to drop me a line at dave.bowley@gmail.com

Preface xxxi

165

C H A P T E R 7

Communicating
Between Portlets

The ability to send information from one portlet to another adds considerable flexibility to your
portlet applications, in both the way they are designed and in the way they are used. This chapter
outlines the numerous ways that you can implement inter-portlet communication using Web-
Sphere Portlet Factory (WPF). By the end of this chapter, you will understand the strengths and
weaknesses of each approach and will have built a library loans portlet application to demonstrate
them.

Each of the models in this chapter is available for download from ibmpressbooks.com/title/
9780137134465 under the Chapter 7 folder (instructions for copying these files into your project
are included in a readme.txt file in the same folder); however, to increase your understanding of
the topics discussed, it is recommended that you create the models yourself by following through
the example in this chapter.

Note that the example in this chapter does not go into detail about the service/provider con-
sumer pattern; for more information on this pattern and on services in general, refer to Chapter 2,
“Providing and Consuming Services.”

The following topics are covered in this chapter:

• The benefits of inter-portlet communication

• The WebSphere Property Broker

• Creating a project

• Creating a service provider

• Creating a list portlet

• Creating a detail portlet

• Configuring the WebSphere Property Broker

• Alternative communication methods

• When to use inter-portlet communication

The Benefits of Inter-Portlet Communication

Working inter-portlet communication into your applications has several benefits from both a
design perspective and a usability perspective. Some of the key benefits are listed below.

Extensibility
Inter-portlet communication makes your applications easier to extend and plug into other appli-
cations. For example, a portlet that displays a list of loans for a library database might allow users
to click on a particular loan, and then send a loan ID off to other portlets to perform an appropri-
ate action. One portlet might be used to display details for the loan, and another portlet might dis-
play a chart of overdue loans for the borrower. In this example, you could develop additional
portlets that interact with either portlet, without having access to the source code for the loans
portlets.

Maintainability
Inter-communicating portlets are easier to maintain because you can develop or modify a portlet
without making changes to others, assuming that you do not change the nature of the content that
is communicated. For example, you can change the user interface and services in the loans list
portlet without worrying about affecting the loan detail portlet.

Usability
Because the interface for applications that use inter-portlet communication can be spread across
several portlets, inter-portlet communication can be beneficial for users. Depending on their
access rights, users can drag and drop these portlets around the portal page to suit their personal
preferences, and they can add and remove portlets to further customize the interface to their
application.

The example application discussed in this chapter demonstrates inter-portlet communica-
tion for a simple library system between a portlet listing library loans, and another portlet dis-
playing details on an item in the list. The application utilizes three models: a list model, a detail
model, and a service provider model. The list model is surfaced to a portal server as a portlet and
displays the list of loans. The detail model is also surfaced as a portlet and displays details for a
loan selected in the list model. Finally, the service provider provides the list and detail data for the
list and detail models, which is stored in an XML document.

TheWebSphere Property Broker

JSR-168 portlets do not natively support inter-portlet communication, but portlets can still com-
municate with each other in WebSphere Portal Server using a mechanism called the WebSphere

166 Chapter 7 Communicating Between Portlets

Property Broker. The Property Broker is the preferred method of inter-portlet communication in
WebSphere Portal, and it is the first communication method demonstrated in this chapter.

TIP

JSR-168 is a standard set of Java APIs for developing portlets.You can and should specify
your WPF portlets as JSR-168 by selecting Java Standard for the Portlet API setting in your
portal server deployment configuration. The Property Broker receives properties from
portlets, such as a loan ID or success flag, and then publishes these properties for the rest
of the portal to use. Target portlets can then access these properties and define actions to
respond to property changes. After you have deployed your portlets in WPF, you then use
the portal administration interface to set up a link between a property in a source portlet
and a property in a target portlet. This process is known as wiring two portlets together.

The WebSphere Property Broker can facilitate communication between portlets in different
applications, and also between portlets that were built using different development tools. For
example, a WPF portlet can send information to a standard Java JSR-168 portlet, and vice-versa.
This makes it easy to maintain and extend your applications, and other developers can write
portlets that communicate with your portlets without needing access to the source code.

The first few sections in this chapter focus on using the WebSphere Property Broker to set
up inter-portlet communication between a library list portlet and a library detail portlet. The
“Alternative Communication Methods” section then outlines some potential alternatives for com-
municating between portlets.

Creating a Service Provider

To provide data to your list and detail portlets, you should create a service provider model. This
model will contain operations to retrieve a list of loans and retrieve details on a particular loan,
which is consumed by the list and detail models. The service provider is the singular access point
for loans information in your application, and it makes your application easier to maintain.

Before you can begin the steps in this section, you need a WPF project, which houses the
service provider model and the other models in this chapter. If you have a project from a previous
chapter, you can use that. If you don’t, you should create a new WPF project. For more informa-
tion on creating projects, see Chapter 1, “Introduction to WebSphere Portlet Factory.” The project
is published as a WAR file and deployed to a portal server, and you should also deploy the appli-
cation to a local application server for testing. You can use the portal server if it is running on your
local machine. If not, it is recommended that you use the IBM WebSphere Application Server
Community Edition server (WAS CE) that comes with WPF.

After you have a project set up, you need to add the service provider model. The service
provider uses the following builders to provide its functionality:

Creating a Service Provider 167

• Service Definition

• Variable

• Simple Schema Generator

• Action List

• Method

• Service Operation (x2)

Note that although the order of builder calls is usually not important, some of the builder
calls in this chapter need to be in a specific order. This is because some of the builder calls require
certain things to be built by the time their build methods run when the WebApp is regenerated. In
this example, the Variable builder call must precede the Simple Schema Generator builder call to
create a schema based on the variable built by the Variable builder call, and the Simple Schema
Generator must precede the Service Operations because the Service Operations require the
schema to use for their results. Also, the Action List must precede the first Service Operation, and
the Method must precede the second Service Operation, or you will get errors indicating that
these resources are unavailable.

Creating a Model

Create a new model called loansService in your project under the folder WEB-INF/models/
chapter09. Because you will store your data in an XML variable, rather than get it from a data-
base, you need to create the service provider manually. To do this, the model should be based on
the Empty template, which creates a model with no builder calls in it. For more information on
creating models, see the example in Chapter 1.

Defining the Service

Add a Service Definition builder call to the model by selecting Service Definition from the
Builder Palette. You can open the Builder Palette by clicking the icon in the Outline view.
Then, press OK. Name the builder call loansService and expand the Testing Support section at
the bottom of the builder call, and then enable the box for Add Testing Support. WPF now auto-
matically generates test pages for the operations in your service every time the model is
regenerated. Save the builder call when you are finished.

Adding Loan Data

The next step is to add your sample data for the service provider. Add a Variable builder call to the
model and name it loans. Change the Type input to XML and enter in the following XML into
the Initial Value input:

<Loans xmlns=”http://com.ibm.CooperativeExample”>

<Loan>

<LoanID>00001</LoanID>

168 Chapter 7 Communicating Between Portlets

<Item>The Gullible Traveler</Item>

<LoanedTo>Malcolm Johnson</LoanedTo>

<DueDate>11/05/2007</DueDate>

</Loan>

<Loan>

<LoanID>00002</LoanID>

<Item>A Traveling Aunt</Item>

<LoanedTo>Samuel Russell</LoanedTo>

<DueDate>11/11/2007</DueDate>

</Loan>

<Loan>

<LoanID>00003</LoanID>

<Item>An Interminable Journey</Item>

<LoanedTo>Joseph Jones</LoanedTo>

<DueDate>12/22/2007</DueDate>

</Loan>

</Loans>

Save the builder call when you are finished. Next, add a Simple Schema Generator builder
call to the model. This builder call is used to automatically generate a schema based on the Vari-
able builder call, which is then used to define the structure of the result sets for the Service Oper-
ation builder calls. Name the builder call loansSchema, and for the Sample Data input, select
‘loans’ from the drop-down list. This is the variable you created earlier. Save the builder call
when you are finished.

Adding an Action to Retrieve a List of Loans

Now, add an Action List builder call to the model. The Action List defines the action to be called
when the retrieveLoansList service operation is consumed, which you create in a later step. Name
the Action List getLoans and change the return type to IXml. IXml is a WPF interface used to
access and manipulate XML. For more information on IXml, see Chapter 9, “Using Web Ser-
vices and Manipulating XML.”

Open the Select Action dialog for the first row in the Actions input, which you do by click-
ing on the ellipsis button on the first row of the Actions input. Select Special, Return, then select
the loans Variable from under the Variables section and press OK. The action should appear in the
Action List as follows:

Return!${Variables/loans/Loans}

When the Action List is called, this action returns the entire Loans variable created by the
Variable builder. Save the builder call when you are finished.

Creating a Service Provider 169

Specifying the getLoansList Operation

Next, you create the first operation for the loansService service. This operation returns a list of
loans (by calling the getLoansList Action List). Add a Service Operation builder call to the model
and make sure the Service Operation Properties section is expanded. Select loansService for the
Data Service input, which links the operation to the loansService service created by the Service
Definition builder call.

The Operation Name input defines how the operation is referred to by consumers. Change
this input to getLoansList—there is no problem with this being the same name as your Action
List. The Action To Call input defines what happens when the operation is consumed. This input
should be changed to point to your Action List (getLoansList). Note that the Operation Descrip-
tion input is left blank, because it appears only to service consumers when the service provider is
defined as a Web service.

Make sure ‘No inputs’ is selected for the Input Structure Handling input in the Operation
Inputs section of the builder call. This specifies that the operation has no inputs—consumers have
only to specify that they want to consume the operation to retrieve the loans list.

Expand the Operation Results section of the builder call and select Specify Result Schema
for the Result Structure Handling input. This enables you to manually specify the structure of the
results to be returned from the operation. For the Result Field Mapping input, select the topmost
element in the Loans schema (Loans). The Loans element contains a list of Loan elements and is
returned from the getLoansList Action List. The input should read loansSchema/Loans when you
are finished. Make sure the Result Field Mapping input is set to Automatic, which automatically
maps results from the called action to the result returned from the service operation.

Save the builder call when you are finished.

Adding a Method to Retrieve a Specific Loan

Add a Method builder call to the model and name it getLoanFromID. This method returns a par-
ticular loan based on a loan ID argument and is called whenever the getLoanDetail operation is
consumed. A Method builder call is used, rather than an Action List, because some IXml manipu-
lation is required to link loanIDs to loans.

Expand the Arguments section of the builder call and add a single argument called loanID
of type String. This argument corresponds to a particular loan, and you access it from the method
defined in the Method Body Input.

Change the Return Type of the builder call to IXml, and then enter in the following code
into the Method Body input:

{

//cycle through loans variable to get each loan

IXml loans = webAppAccess.getVariables().getXml(“loans”);

for (IXml loan = loans.getFirstChildElement(); loan !=null;

loan = loan.getNextSiblingElement())

{

170 Chapter 7 Communicating Between Portlets

//look for match on loanID element

if (loan.getText(“Loan/LoanID”).equals(loanID))

//match found, return the current loan

return loan;

}

//no match found, return empty loan

return XmlUtil.create(“Loan”);

}

This code cycles through each of the loan elements in the loans list, and checks to see
whether the loan ID of the element matches the loan ID passed in to the method. For more infor-
mation on the use of IXml, see Chapter 9. Save the builder call when you are finished.

Specifying the getLoanDetail Operation

The final builder call for the service provider is another Service Operation builder call. This
builder call defines a second operation for the loansService service, which displays details for a
particular loan (by calling the getLoanFromID Method). Add a Service Operation builder call to
the model and point the Data Service input to loansService. Change the Operation Name to
getLoanDetail, and the Action To Call to getLoanFromID. This creates a new operation on
the loansService service called getLoanDetail, which runs the getLoanFromID method when
consumed.

In the Operation Inputs section of the builder call, select ‘Use structure from called action’
for the Input Structure Handling input and make sure the Input Field Mapping input is set to
Automatic. This specifies that the inputs to the operation are defined by the getLoanFromID
Method, and should be automatically mapped to the inputs in getLoanFromID.

Fill out the Operation Results section of the builder call the same as the Operation Results
section in the previous Service Operation builder call, which specifies that the structure of the
results to be returned from the operation is defined by the Loan element in the Loans schema.
Save the builder call when you are finished.

You have now finished building your service provider. The next section discusses how you
can test your service provider before moving on to create the list portlet and detail portlet.

Testing the Service Provider

Because you enabled test support for your service, WPF automatically generates test pages for your
service provider, which you can disable from the Testing Support section of the Service Definition
builder call. This enables you to test the service provider directly from the IDE. To test the service,
run the loansService model from the WPF Designer by clicking the icon on the toolbar. This

Testing the Service Provider 171

runs the currently active model (for instance, loansService) with the last run configuration you
used. If you have not set up a run configuration before, you are prompted to do so—create a new
configuration under the WebSphere Portlet Factory Model category. If you want more information
on setting up a run configuration, see the “Testing the Application” section in Chapter 1.

After you run loansService, you should see the index test page in your default Web
browser, as shown in Figure 7.1. This screen lists all the operations available on the loansService
service.

172 Chapter 7 Communicating Between Portlets

Figure 7.1 Index test page from the loansService model.

To test the getLoansList operation, click the getLoansList link. You should see a list of
loans, as shown in Figure 7.2. If not, check that you don’t have any errors showing in the Prob-
lems view in the IDE and that you have completed all the steps in the previous section correctly.
Press Back to return to the index page.

Figure 7.2 Testing the getLoansList operation.

To test the getLoanDetail operation, click the getLoanDetail link. The screen that follows
asks you to enter in an ID of a loan you would like to retrieve details for. Enter in 00001 as the ID
and press the Submit Query button. You should see some details for the loan that has an ID of
00001 (that is, The Gullible Traveler), as shown in Figure 7.3. Press Back when you are finished.

Close the loansService model when you’ve finished testing it.
You now have a service provider called loansService, which provides a list of loans and

details on individual loans. The next few sections walk through the process of creating consumers
for the loansService service in the form of a list portlet and detail portlet.

Creating a List Portlet 173

Figure 7.3 Testing the getLoanDetail operation.

Creating a List Portlet

This section describes how to add another model to your project, which is surfaced to a portal
server as a portlet. The portlet consumes the service created in the previous section, and displays
a list of loans to the user. When a loan in the list is clicked, the ID of the loan is sent to the Web-
Sphere Property Broker, which can then be read by other portlets. A screenshot of both the list
and detail portlets is shown later in Figure 7.15.

The model uses the following builders to provide its functionality:

• Portlet Adapter

• Service Consumer

• View & Form

• Cooperative Portlet Source

Creating a Model

To build the list portlet, select File, New, WebSphere Portlet Factory Model from the File menu to
bring up the WebSphere Portlet Factory Model dialog. On the next screen, select your WPF project
and press Next. The next screen lists different types of models WPF can create for you automati-
cally. You can create service consumers in WPF in two ways: the first is to let WPF create one for
you, and the second is to create the service consumer manually. The builders you use to create the
list portlet in this section are fairly standard, so you can opt for WPF to create them for you. Select
List and Detail Service Consumer from the Service Consumers category and press Next.

Specifying the Service

The next screen asks you define a portlet name and service provider model for the consumer. The
portlet name is also used as a prefix when the wizard names some of the builder calls in your
model. Name the portlet loans and select chapter07/loansService as the service provider model.
Click Next to continue.

Specifying List and Detail Operations

You now need to specify an operation to retrieve view data—the list portion of your portlet.
Select getLoansList from the drop down and press the Next button to edit the detail portion of the
portlet. Although the list portlet in this chapter is intended to be used as a list portlet only, defin-
ing the detail portion gives the loansList model the flexibility to be run as a list and detail portlet
together if a separate detail portlet is unavailable. Fill out the settings on this screen, as shown in
Figure 7.4. This converts the loanID column values into clickable links that run the getLoanDe-
tail operation when clicked. Press Next when you are finished.

174 Chapter 7 Communicating Between Portlets

Figure 7.4 Configuring the detail portion of the loansList model.

Now, you need to define a uniquely identifying parameter that is used to open a loan when
a loan ID is clicked. Enter in the loan ID from the loan on the currently selected row, as shown in
Figure 7.5, and click the Next button.

Name the model loansList and make sure it is created in the directory models/chapter07,
and then press Finish. This creates a new model called loansList in your WPF project, and opens
the model in the Model Editor and Outline view. The loansList model contains three builder calls:
a Portlet Adapter, a Service Consumer, and a View & Form.

Creating a List Portlet 175

Figure 7.5 Configuring input overrides for the loansList model.

Configuring the Portlet Adapter

The Portlet Adapter builder converts the model into a portlet, which can be viewed inside a portal.
Note that if you make any changes to this builder call, including the changes you are about to
make, you need to rebuild the deployed application before you can see the results of the changes.
For more information on this process, see the example in Chapter 1. The Service Consumer
builder makes the operations in the loansService service available in the current model, and the
View & Form builder displays the list and detail data in the model to the screen.

You need to make two small changes to the Portlet Adapter builder call. Double-click the
Portlet Adapter builder call to open it in the Model Editor, and then change the Portlet Title to
Loans List and the Portlet Description to List of loans. Save the builder call when you are
finished. The Portlet Title identifies the portlet inside the portal—it is actually displayed in the
title bar of the portlet—and the Portlet Description appears on various administration screens
inside the portal.

Defining the Portlet as a Cooperative Source

The final step in building the list portlet is to add a Cooperative Portlet Source builder call. This
builder call defines the structure and content of the information to send to the Property Broker
(for instance, the loan ID). A Cooperative Portlet Target builder call is then used in the detail port-
let to receive the loan ID from the Property Broker.

Add a Cooperative Portlet Source builder call to the loansList model and then name it
openLoanDetail. Change the Type input to Property Broker Link, which replaces the links cre-
ated by the View & Form builder with links that send the loan ID to the Property Broker. Note that
the links are replaced only when the model is viewed as a portlet and the Property Broker is cor-
rectly configured; otherwise, the links created by the View & Form builder call are retained.

TIP

The Type input gives you four options for specifying a communication method. The first two,
C2A Single Action and C2A Multiple Action, define click-to-action tags that can be placed
on the page. Click-to-action is a feature of the WebSphere Portlet API, which has been
deprecated in favor of the JSR-168 standard and is provided for backward compatibility
only. The remaining two options define methods for publishing properties to the Property
Broker. Whereas the Property Broker Link option automatically creates links on the page to
communicate with the Property Broker, the Property Broker Action option creates an action
that can be called from any control, such as a link, button, and so on. For more information,
read the “Property Broker Action” section in this chapter.

In the Page location section of the Cooperative Portlet Source builder call, specify loans-
View_ViewPage as the Page and LoanID as the tag. This replaces the ID links created by the
View & Form builder call with new links that publish information to the Property Broker.

For portlets to communicate via the Property Broker, they need to use the same namespace.
In the example in this chapter, the Cooperative Portlet Source and Cooperative Portlet Target both
need to have the same namespace defined. Leave the default value for the Namespace input.

The Output Definitions section defines the information that you send to the Property
Broker. Fill out this section, as shown in Figure 7.6. Note that the Value input should read
${Variables/LoanLoopVar/Loan/LoanID}. This declares that whenever a loan ID link is
clicked, the loan ID of the selected loan should be sent as a String called loanID to the Property
Broker. Save the builder call when you are finished.

176 Chapter 7 Communicating Between Portlets

Figure 7.6 Configuring output definitions for the Cooperative Portlet Source builder call.

Your project now contains a list portlet. The next section describes how to test this portlet
from your IDE.

Creating a Detail Portlet 177

Testing the List Portlet

Although you cannot test the communicative capabilities of the list portlet at this stage, because
there is no detail portlet to communicate with, you should run the loansList model from the IDE
to see if you are getting any errors. To do this, run the loansList model from the WPF Designer.
You should see a list of loans in your default Web browser, as shown in Figure 7.7.

Figure 7.7 List of loans from the loansList model.

Notice that the ID of each loan is a clickable link. If you click on the ID link for a particular
loan, you should see some details for that loan. For example, clicking on the ID for A Traveling
Aunt should return the details shown in Figure 7.8.

Figure 7.8 Testing the getLoanDetail operation.

Note that currently the list portlet functions as both a list and detail portlet, because the
View & Form builder call provides links that make it possible to open details on a loan from the
loans list. However, when you deploy the loansList model as a portlet and configure the Property
Broker, these links are replaced with links from the Cooperative Portlet Source builder call.
When the links from the Cooperative Portlet Source builder call are used, the detail page in the
list portlet cannot open when a loan ID is clicked. Close the loansList model when you’ve fin-
ished testing it.

You now have a list portlet that provides a list of loans by consuming the loansService ser-
vice. The next section describes how to create a detail portlet that displays details for a loan
clicked in the list portlet.

Creating a Detail Portlet

This section describes how to build a detail portlet, which communicates with the list portlet cre-
ated earlier. As with the previous portlet, this portlet consumes the loansService service to obtain
its loan information. Details for loans selected in the list portlet are brought up in the detail port-
let via the Property Broker—a screen shot of the portlet is shown later in Figure 7.15.

The model uses the following builders to provide its functionality:

• Portlet Adapter

• Service Consumer

• Page (x2)

• Action List

• Data Page

• Cooperative Portlet Target

• Event Handler

Creating a Model

The list model is a good starting point for building the detail portlet, so make a new copy of the
list model by selecting the loansList model in the Project Explorer view, and then pressing
Ctrl+C, then Ctl+V. Name the new model loanDetail when prompted.

Double-click the loanDetail model to open it for editing. Before you add builder calls to
communicate with the loansList portlet, you should first modify the loanDetail model so it does
not conflict with the loansList model when it is deployed as a portlet.

To do this, open the Portlet Adapter builder call in the loanDetail model, change the Name
input to loanDetail, and then change the Portlet Title input to Loan Detail. This ensures that
there are no conflicts between the list and detail portlets when you deploy them. Also, change the
Portlet Description to Loan details. Now delete the Cooperative Portlet Source builder call
from the loanDetail model, because in the current example the loanDetail model is a target of
communication, not a source. Also, delete the View & Form builder because you are using a Data
Page instead. You can reconfigure the View & Form so that it displays only detail information,
but, in this case, it is easier to use a Data Page.

TIP

A single portlet can be both a target and a source of communication. For example, you might
want a modification in the detail portlet (say, to the date of a particular loan) to be reflected in
the list portlet. In this case, both portlets are sources and are both are targets; an ID is sent
from the list portlet to the detail portlet, and then a refresh request is sent back to the list
portlet after the detail portlet is updated.

Note also that a single portlet can define multiple sources and multiple targets.You might
want to define multiple sources for a portlet if the portlet publishes more than one piece of
information, and multiple targets are useful when you want to receive multiple properties
from the Property Broker.

178 Chapter 7 Communicating Between Portlets

Adding a Default Message Page

Note that when the loanDetail portlet loads, it should not display any loan information, but rather
a message indicating that no loan is currently selected. To bring this about, you need to add
another Page builder call to the model. Add a new Page builder call, and name the builder call
defaultPage. Enter in the following HTML into the Page Contents (HTML) input:

<html>

<body>

<div>

No loan selected.

</div>

</body>

</html>

This displays the text No loan selected. in the Loan Detail portlet. Save the builder call
when you are finished.

TIP

You should use only the Page builder for small snippets of HTML specific to your applica-
tion. Any HTML that you might want to share between projects should be included in an
HTML file and then imported into your model using the Imported Page builder.

Adding a main Action

Now, add an Action List builder call to the model. Call the action list main, which causes the
action list to execute whenever the model is run. Enter defaultPage for the first action in the
Actions input and save the builder call. The loanDetail model now displays the defaultPage
whenever it runs.

Adding an Interface for Loan Details

Add another Page builder call to the model; this creates an HTML page that displays whenever
loan details are to be displayed for a loan. Change the Name of the builder call to detailsPage,
and then enter in the following HTML into the Page Contents (HTML) input:

<html>

<body>

</body>

</html>

Creating a Detail Portlet 179

This page has a single span tag on it (loanDetails) that is overwritten with loan details using
a Data Page. Save the builder call when you are finished, and add a Data Page builder call to the
model to add the loan details. Type the name detailsPage for the Data Page, and then open the
Select Action dialog for the Variable input. Select the Loan element from the results of the get-
LoanDetail operation, as shown in Figure 7.9, and press OK. This causes the Data Page to display
the results of the getLoanDetail operation.

180 Chapter 7 Communicating Between Portlets

Figure 7.9 Selecting the Loan element.

Next, point the Page in Model input to detailsPage and change the Page Type to View Only
so that there are no data entry controls inserted onto the page. Finally, specify detailsPage for the
Location for New Tags input and save the builder call.

Defining the Portlet as a Cooperative Target

The next step is to define the loanDetail model as a target for inter-portlet communication. To do
this, add a Cooperative Portlet Target builder call to the model. Change the Event Name input to
openLoanDetail, and then fill out the Input Definition section, as shown in Figure 7.10. These
settings define the communication inputs and should be the same as the outputs defined in the
Cooperative Portlet Source builder call in the loansList model. Keeping these settings identical
makes it easier to understand what is being sent where, and prevents possible type mismatches.

Leave the Output Definition section blank. There are no outputs for this builder call,
because nothing is sent back after the loanDetail portlet receives the loan ID.

Notice the namespace at the bottom of the builder call. This builder must be the same as the
namespace defined in the Cooperative Portlet Source builder call, or else the two portlets cannot
communicate (you can leave the default value). Enter in Displays loan detail for the Cap-
tion and save the builder call. Note that this caption describes what happens when the property
changes, whereas the caption in the Input Definition section describes the property itself.

Creating a Detail Portlet 181

Figure 7.10 Configuring the Cooperative Portlet Target builder call.

Handling an Inter-Portlet Communication Event

You now have an event called openLoanDetail, which you later link to a loan ID being clicked in
the loansList model. However, you haven’t defined anything to happen when the openLoanDetail
event is triggered. To do this, you need an event handler. Add an Event Handler builder call to the
model and call it handleOpenLoanDetail. Select the openLoanDetail event from the Event
Name drop-down box and notice that a String argument called loanID has been added in the
Arguments section. This loanID is the same loanID as that specified in the Cooperative Portlet
Target builder call, which means that you can now access the loan ID from the openLoanDetail
event.

Change the Return Type input to void, because there is no need to return any information to
the caller of this event. You simply want to perform some actions, which you specify in the
Actions input. Open the Select Action dialog for the first action and find the getLoanDetail oper-
ation under the Methods section. Notice that there are two versions of the operation. Select the
one that enables you to specify arguments, as shown in Figure 7.11, and press OK. A Define
Method Call Arguments dialog appears; select the loan ID from under the Variables section in the
Select Action dialog, which should then populate the value ${Arguments/loanID} to the underly-
ing dialog. Press OK when you are finished to accept the new action.

Figure 7.11 Adding the loansGetLoanDetailWithArgs method.

182 Chapter 7 Communicating Between Portlets

For the second action, select the details page from under the Page section of the Select
Action dialog. It appears as ‘detailsPage’. The actions are now complete: The first action con-
sumes the getLoanDetail operation on the loansService service, passing in the loan ID as a
parameter. This loads only the information into a results variable, so the second action is neces-
sary to display the results. Save the builder call when you are finished.

Your project now contains a detail portlet. You will run a preliminary test on the detail port-
let in the next section, and then test it in full after it has been deployed to a portal server and the
Property Broker has been configured.

Testing the Detail Portlet

At this point, you should test that there are no obvious problems in the loanDetail model by pre-
viewing it from your IDE. You should see the message shown in Figure 7.12 displayed on the
screen.

Figure 7.12 Testing the loanDetail model.

After you have configured the Property Broker later in this chapter, you can do a full test of
the communication between the list and detail portlets. Before you do this, however, you should
rebuild your application on the portal server. For instructions on how to do this, see the example
in Chapter 1. Then, you can view the list and detail models as portlets. After you have added the
portlets to a page in the portal, they should appear, as shown in Figure 7.13.

Figure 7.13 The loans application portlets.

Your application has now been successfully deployed to the portal server, although the
portlets contained in the application cannot communicate with each other yet. The next section
discusses how to set up this communication using the WebSphere Property Broker.

Configuring the WebSphere Property Broker 183

Configuring the WebSphere Property Broker

When setting up inter-portlet communication via the WebSphere Property Broker, some configu-
ration is required to link or wire portlets together after they have been deployed. This section
walks through the process of configuring the list portlet to send a loan ID to the detail portlet,
which then displays details for the selected loan. At this point, note that the portlets are not wired
together, so if you click on a loan in the list portlet, the details are opened within the same portlet,
and the detail portlet still displays the No loan selected. message.

To configure the Property Broker, first log in to the portal as a user who has access to wire
portlets together. You need a user with Privileged User access or higher to the portal page that is
to contain the loan portlets. Navigate to where you added the Loan Detail and Loans List portlets
and open the Page Menu for the page. You can do this in WebSphere Portal 6, for example, by
moving the cursor to the right of the page title until a small arrow icon is revealed, as shown in
Figure 7.14. Click the arrow to open the Page Menu, and then select Edit Page Layout.

Figure 7.14 Opening the Page menu.

Click on the Wires tab, which should be the last tab on the Page Layout page. If you can’t
see the Wires tab, check that you are logged in as a user with at least privileged user access to the
current page. This page lets you define inter-portlet communication for the portal. You can even
define communication from one page to another. Note that you only define communication for
portlets that have been added to a page in the portal. In this step, you add a row to the Wires page
to define the communication between the list and detail portlet.

Select Loans List from the Source portlet dropdown, and then select loanID in the Sending
dropdown. These values are taken from the Cooperative Portlet Source builder call, although they
can be defined using IDEs other than WPF (WPF applications can communicate with non-WPF
applications, and vice-versa). The current page is automatically selected as the target page. Select
Loan Detail for the Target portlet, and set the Receiving dropdown to ‘Displays loan detail,
loanID’. This is the action caption and input name defined in the Cooperative Portlet Target
builder call.

The final drop-down box gives you a choice of creating the wire as personal or public. A
personal wire is accessible only by the current user, whereas a public wire is accessible to all
users. Leave the default setting and press the icon to add the wire to the portal. Wait for the
page to reload and press the Done button to return to the portal.

You have now configured communication between the list and detail portlet.

Testing Inter-Portlet Communication

When you press the Done button on the Wires page, you are returned to where the list and detail
portlets are displayed on the portal. To test that the communication is working correctly, click on
a loan in the Loans List portlet. When the page reloads, a loan should be opened in the Loan
Detail portlet, and the Loans List portlet should still display the loans list, rather than the loan
detail, as it did previously. For example, clicking on 00003 should bring up loan details for The
Interminable Journey, as shown in Figure 7.15.

184 Chapter 7 Communicating Between Portlets

Figure 7.15 Testing inter-portlet communication in the portal.

You have now successfully created, deployed, and tested an application consisting of inter-
communicating portlets. However, the method employed in this section is only one of several
ways to set up inter-portlet communication. Some alternatives to this approach are discussed in
the next section.

Alternative Communication Methods

Although the WebSphere Property Broker is a highly flexible and versatile method of inter-
portlet communication, there are some situations where other approaches might provide more
value. For example, the Property Broker is available only in WebSphere Portal, so if you transfer
your portlets to another type of portal server, you need to modify the communication technique
used. Second, communicating via the Property Broker requires that a wire must be set up
between two portlets before they can communicate; this creates extra configuration steps and
leaves more of the configuration process open to human error—although, it can also be regarded
as a good thing, because it gives end users more control over the communication process.

There are several alternative options available for setting up inter-portlet communication in
WPF, and each has its own strengths and weaknesses. These methods are described next.

Property Broker Action

Property Broker Actions, as opposed to Property Broker Links, let you define your communica-
tion as actions rather than as clickable links. The advantage of this approach is that you have more
control over how the action is run—whether it be programmatically or from a UI control; how-
ever, the disadvantage is that more WPF configuration is required than when using Property
Broker Links. The communication on the Property Broker is no different—that is, you still pub-
lish properties in the same way.

Property Broker Actions are not really an alternative method of communication to Property
Broker Links, because they are really just Property Broker Links that don’t produce a link in the
UI. However, Property Broker Actions can be quite useful, and because the configuration process
is sufficiently different, an example is included.

The following builder is added to the loansList model in this section:
• Link

Modifying the Cooperative Source

To alter the communication in the loans application to use Property Broker Actions, first open the
Cooperative Portlet Source builder call in the loansList model. Change the Type input from Prop-
erty Broker Link to Property Broker Action. This creates an action to publish the loan ID to the
Property Broker, but it does not create the corresponding trigger for the action, such as a link.
Save the builder call when you are finished.

Adding a Link and Configuring Communication

To trigger the Property Broker Action, add a Link builder call to the loansList model. Name the
Link loanIDLink. In the Page Location section of the builder call, fill out the Page input as
loansView_ViewPage and the Tag input as LoanID. This replaces the loan ID links created by
the View & Form builder call with the new links defined by the Link builder.

Select pbAction_openLoanDetail for the Action input, which triggers the Property Broker
Action when a loan ID is clicked. Notice that two arguments with the pbAction_openLoan
Detail_Arg prefix are automatically added to the Input Mappings input in the Arguments section
of the builder call. You need to replace the values of these arguments. The first argument to any
Property Broker Action must be the name of the action (that is, pbAction_openLoanDetail). This
argument is used by the portal to associate the Property Broker call with a particular Property
Broker action. The argument is added automatically when using Property Broker Links, but
needs to be added manually when using Property Broker Actions. Rename the argument to
ACTION_NAME, and then type the name of the action (pbAction_openLoanDetail) as the
value. Note that the name and value of the argument must be written as specified, or the inter-
portlet communication cannot work. Note that the Evaluate Arguments input must be set to ‘As
the page is rendered’; if it is not, the links cannot be generated correctly.

Because the Cooperative Portlet Source builder call is expecting an argument, you must
also change the second argument for each link created by the Link builder call. To do this, change

Alternative Communication Methods 185

the second argument to point to the currently selected loan, and change the name of the argument
to loanID so that it is easier to identify, as shown in Figure 7.16. Note that the value of the argu-
ment is the same as the value of the argument specified in the Cooperative Portlet Source builder
call. In the next step, you remove the value from the Cooperative Portlet Source builder call so
that the value from the Link builder call is used instead. Save the builder call when you are
finished.

186 Chapter 7 Communicating Between Portlets

Figure 7.16 Adding an argument to the Link builder call.

Open the Cooperative Portlet Source builder call and delete the Value input for the loanID
output. The value for the loanID output is now taken from the Link builder call.

You have now finished configuring the loansList model. No changes are required to the
loanDetail model, because the parameter published to the Property Broker is the same as it was
before. Note that the ACTION_NAME parameter does not need to be specified in the Coopera-
tive Portlet Source builder call. Rebuild your portlet application by right-clicking on your project
and selecting Portal Server WAR, Build Portlet War. You don’t need to reset or modify the wire,
because the structure of the communication hasn’t changed. The only thing that has changed is
how you actually trigger the event to send to the Property Broker. To test the new communication
method, navigate to the loans portlets in the portal and click on a loan in the Loans List portlet.
The corresponding loan should open in the Loan Detail portlet.

You have now successfully configured the loans application to use Property Broker Actions
rather than Property Broker Links. Again, note that this change doesn’t change the type of com-
munication, but merely how you use it in WPF.

WPF Event Model

When using the WPF event model, communication between portlets occurs by triggering and
handling an event. This approach is easy to use and configure: First, you declare an event in a
source and target portlet, and then you trigger, or fire, the event in the source portlet. Finally, you
handle the event in the target portlet. Events can be fired and targeted to a particular portlet,

Alternative Communication Methods 187

or they can be fired in such a way that they can be accessed by any other portlet in the same
WAR file.

You can trigger events using the WPF event model in two ways: on the server and on the
client. Both methods enable you to access and manipulate resources on the server, such as read-
ing and updating data from a service provider, but triggering events on the client also enables you
to perform partial page refreshes. Partial page refreshes improve the speed of your application,
and users appreciate that they can interact with your portlet without having to constantly reload
the entire portal page. Partial page refreshes are covered in more detail in Chapter 13, “Using
Ajax and Dojo.” Note that you can only pass parameters to events when using server-side events,
which is why both types of events are sometimes used together; for example, you might use a
server-side event to update data in a Lotus Notes database, and then use a client-side event to par-
tially refresh the page with this data. The example at the end of this section uses only a server-side
event.

Be aware that when using the WPF event model approach, all inter-communicating portlets
need to be contained in the same WAR file, which also means that they all need to be built with
WPF. As a result, the WPF event model is most useful for setting up inter-portlet communication
when interoperability with other applications is not a concern.

The following builders are added in this section:
• Event Declaration (x2)

Defining an Event

To alter the communication in the loans application to use the WPF event model, the first step is
to define an event, which is triggered every time a user clicks on a loan ID. Add an Event Decla-
ration builder call and change the Event Name input to openLoanDetail. Add an argument
called loanId of type String to the Arguments section so that any triggers for the event need to
pass in a String value when they trigger the event. This String corresponds to the loan ID of the
loan that the user clicks on. The event is triggered any time details for a loan are opened. Save the
builder call when you are finished.

Triggering the Event

Now that you have finished configuring the event declaration, you should modify the loansList
model to trigger the event. Open the Link builder call in the loansList model and change the
Action input to fireopenLoanDetail. You can select this from the Select Action dialog. If the fire-
openLoanDetail action does not appear, make sure you have saved your Event Declaration. The
fireopenLoanDetail action fires the openLoanDetail event instead of publishing the loan ID to the
Property Broker.

TIP

If you want to fire an event to a specific target, you can use the fireTargeted trigger. For
example, to fire an event to the loanDetail model so that it can’t be accessed by other mod-
els, select fireTargetedopenLoanDetail instead of fireopenLoanDetail.You are prompted for
the target of the event, and you can specify four possible targets:

${Java/WebAppAccess.EVENT_TARGET_ALL})

This fires the event to all models in the current application.

${Java/WebAppAccess.EVENT_TARGET_PARENT})

This fires the event to the parent model of the current model, which is any model that is
used to load the current model (for example, if you’re using a Linked Model builder call).

${Java/WebAppAccess.EVENT_TARGET_SELF})

This targets the event to the current model.

${Java/WebAppAccess.getModelInstance(targetModel)})

This targets the event to the targetModel model. You should substitute the text target-
Model with the actual name of the target model—for example, loanDetail.

Notice that an argument called fireopenLoanDetail_Arg1 has been added underneath the
Arguments section of the builder call. This argument has been created by WPF to cater for the
loan ID that is supposed to be passed to the event, but you still have two arguments left over from
when you configured the Property Broker Action. The loanID argument left over from the Prop-
erty Broker Action is the argument you want to pass to the event when it is fired, so remove the
other two arguments from the Input Mappings input. The Arguments section should now appear,
as shown in Figure 7.17.

188 Chapter 7 Communicating Between Portlets

Figure 7.17 Setting arguments for the Link builder call.

You have now finished configuring the Link builder call. Disable the Cooperative Portlet
Source builder call as it is not being used, but you might want to use it again later. You can disable
builder calls by right-clicking on them and selecting Disable. Save the model when you are
finished.

Alternative Communication Methods 189

Handling the Event

Now, you need to configure the loanDetail model to handle the openLoanDetail event. To do this,
first open the loanDetail model and disable the Cooperative Portlet Target builder call, because
you are no longer using the Property Broker (don’t save the model yet). Copy the Event Declara-
tion builder call from the loansList and paste it into the loanDetail model. This is done so that
both models are using the same event. Because the event name in your Event Declaration is the
same as the event name in your Cooperative Portlet Target builder call, no changes are required to
the Event Handler builder call; it processes the openLoanDetail event as it is defined by the Event
Declaration now that the Cooperative Portlet Target is disabled.

Save the model to complete the configuration of your application to use inter-portlet com-
munication via events. To test the new communication method, rebuild your application and
navigate to the loans portlets in the portal. Click on a loan in the Loans List portlet, and the corre-
sponding loan should open in the Loan Detail portlet.

Shared Variables

Shared variables are perhaps the quickest and easiest way to implement inter-portlet communica-
tion. Shared variables can be stored in one of four ways: in the HTTP session, in the HTTP
request, in the JVM where the current WebApp is running, or using a custom Java class. Variables
stored in the JVM are accessed as static variables (the same copy is used across all instances of
the portlet). To create or read a shared variable from a model, add a Shared Variable builder and
designate a variable to share.

Note that variables stored in the HTTP session increase the amount of memory consumed
by the session, and variables stored in the HTTP request have limited scope. Also, variables in the
JVM cannot be accessed outside the JVM (for instance, across a cluster), and custom variable
storage methods require additional Java development. Provided you keep these concerns in mind,
however, shared variables are a powerful and easy-to-configure method of inter-portlet communi-
cation.

In the previous section, it was necessary to pass the loanID from the event trigger to the
event handler via an argument to the event. In this section, you use a shared variable in place of
the loanID argument so that when you change the loanID variable in the loansList portlet, it is
read in the loanDetail portlet and used to update the loan information. Note that in this example,
an event is still used to access loan details for the loan ID stored in the shared variable. This is
because even though the loan ID is shared between both models, the details portlet won’t know
that it is supposed to refresh the other loan details unless an event is fired that causes this to hap-
pen. Because changes to a shared variable do not in themselves trigger any events, shared vari-
ables are often used in conjunction with the WPF event model.

The following builders are added in this section:

• Variable (x2)

• Shared Variable (x2)

• Action List

Removing the Event Argument

To alter the communication in the loans application to use the shared variable approach, first
remove the argument from the Event Declaration builder call in both the loansList and loanDetail
models, because you are now storing the loan ID in a shared variable. The argument is listed in
the Arguments input of the Event Declaration. Save both instances of the builder call when you
have removed the arguments.

Adding a loanID Variable

Next, add a Variable builder call to the loansList model and call it loanID. Change the Type input
to String and save the builder call. This builder call holds the value of the currently selected loan
ID and is used in both models, so copy and paste the builder call into the loanDetail model. Save
the model when you are finished.

By default, each model uses its own instance of the variable created by the Variable builder
call. To share the variable, you need to add a Shared Variable builder call to each model. Add a
Shared Variable builder call to the loansList model first, and then name the builder call loanID-
Shared. Change the Variable input to loanID.

The Scope input enables you to specify where the shared variable will be stored. As dis-
cussed earlier, you have four options when setting a shared variables scope: Session, Request,
Application, and Custom. Make sure this input is set to Session, which means that the variable
value persists even when other links on the page are clicked. Then, change the Unique ID input to
loanID and save the builder call. Make a copy of the Shared Variable builder call and paste it into
the loanDetail model. Save the model when you are finished.

Creating these Shared Builders shares the loanID variable in the HTTP session using the
text loanID as an identifier. The identifier can then be used from other processes and portlets to
access the shared variable from the HTTP session. When referring to the variable from WPF,
however, you need only to reference the name in the Variable builder call.

TIP

When referring to a shared variable in other builders, refer to the Variable builder call rather
than the Shared Variable builder call.

Configuring Actions for loansList

The next step is to set up two actions in the loansList model. The first action changes the value of
the loanID variable when a loan ID is clicked, and the second action fires the new openLoanDe-
tail event without any arguments.

To add these actions, add an Action List builder call to the loansList model and call it
selectLoan. Enter in an argument called loanID of type String in the Arguments input, and
then change the Return Type input to void to prevent the Action List from returning a value.

190 Chapter 7 Communicating Between Portlets

For the first action, select Assignment from under the Special heading in the Select Action
dialog. For the Target variable, select the loan ID variable (Variables/loanID), and for the Source
variable, select the loanID argument from the Action List (${Arguments/loanID}). The Make
Assignment dialog should appear, as shown in Figure 7.18. Press OK when you are finished to
accept the action.

Alternative Communication Methods 191

Figure 7.18 Configuring the Make Assignment dialog.

For the second action, fire the openLoanDetail event by selecting fireopenLoanDetail from
the Select Action dialog. Save the builder call when you’ve finished adding both actions.

Running selectLoan

Open the Link builder call and change the Action input to selectLoan. This runs the selectLoan
action list whenever a loan ID is clicked. WPF assumes that you want to set a new argument for
the selectLoan action list, so it automatically adds an extra argument to the Input Mappings input.
You can delete the extra argument, because the previous loanID argument will suffice. Save the
model when you are finished.

Using the Shared Variable in the loanDetail Model

You need to configure the loanDetail model to use the shared variable instead of the argument in
the old openLoanDetail event. To do this, open the handleOpenLoanDetail Event Handler builder
call and change the first action in the Actions input to use the loanID variable instead of the
loanID argument, which no longer exists. The new action should read loansGetLoanDetailWith-
Args(${Variables/loanID}).

Save the builder call when you are finished. To test the new communication method,
rebuild the application and navigate to the loans portlets in the portal, and then click on a loan in
the Loans List portlet. The corresponding loan should open in the Loan Detail portlet.

You have now successfully configured the loans application to use shared variables for its
inter-portlet communication.

Click-to-Action (C2A)

Click-to-action (C2A) facilitates inter-portlet communication through the use of portlet menus
that the user can configure. The C2A builders have been deprecated as of WPF 6.0, because they

rely on the now deprecated WebSphere Portlet API, rather than the JSR-168 standard, so you
should avoid using C2A as your inter-portlet communication mechanism.

When to Use Inter-Portlet Communication

When developing portlets, in WPF or otherwise, spreading an application’s functionality across
several inter-communicating portlets can help to provide a more customizable interface and ulti-
mately produce more extensible applications. However, some scenarios are more conducive to
inter-portlet communication than others. For example, you might not want to separate the list and
detail portions of a data access function if they are going to be used on a page that already con-
tains a list and detail portlet, because multiple list and detail portlets on the same page can clutter
and complicate the interface. Similarly, if a list portlet depends on another portlet on the page for
its information, you might want to include the list as a second page in that portlet, rather than as a
separate portlet. The decision as to whether to combine functions into a single portlet is also
influenced by how many other portlets you expect will be used on the same page and how much
space they will take up. If you expect screen real estate to be scarce, perhaps you need to cater to
800x600 resolutions, and if you expect multiple portlets to be used at once, it might be best to
economize and combine several functions into a single portlet wherever possible, rather than
implement the same functions using inter-portlet communication.

Having said this, inter-portlet communication is a powerful tool for portlet developers to
improve the usability of their applications and should be used wherever possible. As a general
rule, potentially reusable, high-level functions, such as the list and detail components of a data
portlet, are the best candidates for inter-communicating portlets, because they can be easily
incorporated into other applications. The information sent between each portlet is fairly simple—
usually just a uniquely identifying key for a particular record or document—which reduces the
information sent between the server and the client, and therefore also speeds up your application.
It is also the sort of information that could be meaningful to other functions or processes. Click-
ing on an item in a list portlet, for example, could trigger other portlets on the page to open charts,
reports, or edit forms for that item.

Summary

In this chapter, you learned about the different approaches to implementing inter-portlet commu-
nication in WPF, in addition to the strengths and weaknesses of each approach. You also created a
library loan system that consisted of a service provider and two portlets, which demonstrated
each approach. When you clicked on a loan in the list portlet, it caused details on that loan to be
opened in the detail portlet. Both portlets retrieved their data from the service provider.

The next chapter, “Using Java in Portlets,” discusses how to utilize Java code in your WPF
applications.

192 Chapter 7 Communicating Between Portlets

Important Points

• WPF portlets can communicate with each other using the WebSphere Property Broker,
shared variables, or the WPF event model. Each approach has its own strengths and
weaknesses.

• Communication via the WebSphere Property Broker is facilitated by publishing proper-
ties to a WebSphere Portal Server mechanism known as the Property Broker, which then
routes these properties off to other portlets. Implementing communication using the
Property Broker offers considerable flexibility, because it means that your portlets can
communicate with portlets in other WARs, or even portlets built using environments
other than WPF. Also, because WPF provides builders to automate the communication
configuration, you don’t need to write any code to implement the communication. How-
ever, configuration in the portal is required before this mode of communication will
work.

• Shared variables can be configured to use a number of different stores and are perhaps
the quickest and easiest way to implement inter-portlet communication in WPF. How-
ever, unless your portlets are all in the same WAR file, you need to write code to retrieve
the variable values. This approach is best suited to storing one or two small pieces of
information used across an entire WPF application.

• The WPF event model also offers a quick and easy approach to inter-portlet communi-
cation, and gives you the added benefit of a prepackaged WPF builder to handle commu-
nication events without regenerating the entire portal page. This approach has limited
extensibility because all communicating portlets need to be contained in the same WAR
file to be used effectively, and they need to be developed in WPF; however, it is well
suited to WPF applications where events in one portlet trigger events in another.

Important Points 193

493

Index

SYMBOLS

{ } (curly braces), 199

A

accessing
Domino Data Access builder,

434-436
information and services, 3
portals, 441-443
target pages, 443
Web services, 467

Action List builder, 6
calls, adding, 43
charts, 271
conditional statements,

inserting, 197
Java, 200
project portlets, 299
sales chart portlets, 274

actions
adding, 169, 179
assets, adding lists to

retrieve, 112
Click Actions,

configuring, 285
comments, saving, 363-365

configuring, 190
defining, 157
errors, adding, 379
post-save, 318-321
Property Broker Action,

185-192
salesAreaPage, adding, 285

Add Counter Column
checkbox, 123

Add Item buttons, testing, 232
adding

Action List builder calls, 43
actions, 169

to retrieve lists of
assets, 112

salesAreaPage, 285
agents, 420, 424
Ajax Type-Ahead

capabilities, 360
Area Select fields, 359-360
arguments, 186
asset data, 110-111
buttons, 158
Calendar Picker builders, 154
charts, 275
Checkbox builders, 156
Checkbox Group

builders, 155

comments to project
portlets, 297

confirmation pages, 158, 300
create functionality, 69-72
CSSs, 144-146
Data Column Modifier

builders, 127-128
Data Field Modifier builders,

129-130, 316
Data Hierarchy Modifier

builders, 128
data sources, 453
date expressions, 307
default message pages, 179
delete functionality, 66-68,

85-87
division variables, 374
drill-down capabilities,

279-287
drop-down lists, 308
drop-down select boxes, 154
dynamic validation, 309
English announcements, 335
errors

actions, 379
flags, 378
handlers, 379
pages, 377

494 Index

feedback bars, Dojo, 367-369
fields, 432
Form Layout builders,

131-132
formatter class, 312-315
forms, 299
functionality, 348-350,

413-423
hidden inputs, 156
HTML, 139
images

builders, 159
buttons, 160

interfaces, 179
JAR files, 235-236
links, 160, 185, 301
LJOs, 217, 315
loan data, 168
lookups, 428
main actions, 179
methods, 170
multiple models, 45-48
order data, 246
pages, 284-285, 443
pagination, 122
performance data, 347-348
Portlet Adapters

custom builders, 401
project portlets, 297
survey portlets, 153-160

project portlets, 299, 303-309
Radio Button Group

builder, 154
regular expressions, 308
resource bundles, 316-318
Rich Data Definition

builders, 304
roster data, 42
sales data, 270-271
schemas, 109-110, 271, 298
Service Definition

builders, 109
Service Operation builders,

251-252
service operations,

43-44, 257

shopping carts, 222-228
Spanish announcements,

335-336
submit buttons, 299

functionality, 261, 359
temporary variables, 280
text

areas, 155
inputs, 153

tooltips, Dojo, 366
UI controls, 149-151
update functionality, 65-66
variables, 157

loandID, 190
order stock portlets, 260
project portlets, 299

XML Converters, 217-218
addShoppingCartItem operation

implementing, 229
testing, 225

ADDSPACES, 315
addSupplierToMMDataSource

operation, 420, 424
agents, Notes, 419
aggregation of information, 3
Ajax (Asynchronous Java and

XML), xxviii
applying, 345-346
performance, 398
performance portlets,

354-362
service providers, 346-353

functionality, 348-350
performance data,

347-348
testing, 353

announcement portlets
creating, 325

default resource
bundles, 327

ES Spanish resource
bundles, 328

modifying pages, 326-327
Portlet Adapters, 327
US English resource

bundles, 327
English, 335

headings, 334
importing, 336
models, 326
profiling inputs, 331-332
restricting, 339-340
selection handlers, 332-333
Spanish, 335-336
testing, 337-342
viewing, 336

APIs (Application Programming
Interfaces), Java, 202-203

HttpServletRequest, 209
HttpServletResponse, 209
IXml, 208
RequestInputs, 207
Variables, 206-207
WebAppAccess, 203

appearance, customizing,
108-119

Application Programming
Interfaces. See APIs

applications
debugging, 380

Eclipse, 382-384
statements, 381-382

error handling, 371
HelloWorld, 28
Java. See Java
logging, 385

customizing, 388
debug tracing, 385-387
server statistics, 389-390

performance, 393
Ajax, 398
builder calls, 395
caching, 394
custom builders, 399-408
data set size, 395
Dojo, 398
profiling, 398
session size, 395-398

server deployment
configuration, 22

service consumers
creating, 45-47
testing, 47-48

Index 495

service provider/
consumer patterns

applying, 49-50
implementing, 37-39

service providers, 39-45
stub services, 48
testing, 31-34
WPF

architecture, 5
builders, 5
deployment

configurations, 12-13
generating WebApps, 7, 9
models, 6-7
overview of, 4
profiles, 7
WAR files, 11-12

applying
agents, Notes, 419
Ajax, 345-346

performance portlets,
354-362

service providers, 346-353
data services, 53-54
Dojo, 362

enabling, 363
feedback bars, 367-369
saving comments,

363-365
tooltips, 366

HTML templates, 141-142
inter-portlet

communication, 192
IXml interfaces, 250
properties, 464-465

accessing Web
services, 467

configuring Domino
servers, 465

debugging, 470
dynamic class loading,

466-467
event logging, 471
logging, 469
page automation, 472
server statistic

logging, 471

specifying alternate
compilers, 466

troubleshooting, 468
uploading files, 466
WPF caches, 468

service provider/consumer
patterns, 49-50

stub services, 102-104
Web pages, 132

HTML builders, 133-134
HTML templates,

136-142
JavaScript builders,

135-136
JSP builders, 135

architecture
SOA, 37
WPF, 5

builders, 5
deployment

configurations, 12-13
generating WebApps, 7, 9
models, 6-7
profiles, 7
WAR files, 11-12

Area Select fields, adding,
359-360

areas, adding text, 155
arguments

adding, 186
configuring, 188
deleting, 190

artifacts, generating custom
builder, 404

assets
data, adding, 110-111
lists, adding actions to

retrieve, 112
pagination, adding, 122
portlets

creating, 114-116
testing, 117-119

schemas, adding, 109-110
viewing, 114-116

assigning source fields, 230
Asynchronous Java and XML.

See Ajax

attachments, Domino, 434
Attribute Setter, configuring, 368
authentication, configuring, 456
automation, 5

deployment, 26
pages, 472
software, xxvii
UI controls, 149-151

B

bandwidth limitations, 3
Bean Manager, 210-216
beans (Java), 210-216
benefits

of portals, 3
of WPF, 4-5

best practices, 5
Booth, Jonathan, xvii-xviii
Bowstreet, xxvii
bowstreet.properties file, 462
breadcrumbs.html template, 138
builders, 5

Action List
charts, 271
inserting conditional

statements, 197
Java, 200
sale chart portlets, 274

Cache Control, 394
Calendar Picker, 154
calls, 395
Checkbox, 156
Checkbox Group, 155
Cooperative Portlet Source,

175-176, 185
Cooperative Portlet

Target, 180
customization, 399-408
Data Field Modifier, 316
Data Page, 118
Data View, 118
Debug Tracing, 385, 387
Domino Data Access, 85-86,

434-436
Domino View & Form, 119
Form Layout, 131-132

496 Index

HTML, 133-134
images, 159
input profiles, 323-325
JavaScript, 135-136
JSP, 135
managing, 153
Method, 200-201
modifiers, 122

adding Form Layout
builders, 131-132

Data Column Modifier,
122-124

Data Field Modifier,
124-126

Data Hierarchy
Modifier, 124

Form Layout, 127-130
testing, 130

New Model Wizard, 410
Paging Buttons, 120
Portlet Adapters

configuring, 65
order stock portlets, 260
sales chart portlets, 274
shopping cart portlets,

creating, 228
Radio Button Group, 154
Rich Data Definition,

294-295, 304
Schema, 244
Service Consumer, 260, 275
Service Definition, 109
Service Operation, 251-252
SQL Call, 60
Style Sheet, 144-146
Terms & Conditions, 401
Terms & Conditions

Builder, 408
Transform, 281
types of, 401
View & Form, 66, 115-116
Web Charts, 268-272
XML transformations,

263-264

building
portlets, 21-26

creating models, 30-31
manual deployment,

26-29
testing applications, 31-34

projects portlets, 296
Action Lists, 299
comments, 297
confirmation pages, 300
formatting, 303-309
forms, 299
inputs, 301
links, 301
models, 296
modifying pages, 297
Portlet Adapters, 297
schemas, 298
submit buttons, 299-300
testing, 302-311
variables, 299

business functions, integration
of, 3

buttons
adding, 158
images, 160
paging, modifying, 120-122

C

C2A (click-to-action), 191
Cache Control builder, 394
caches, WPF, 468
Calendar Picker builder,

adding, 154
calls

builders, 395
Web services, 256

capabilities of WPF, 5
Cascading Style Sheets.

See CSSs
categorized views, 428-432
Chart Properties section, 277

charts, 268
adding, 275
customizing, 288-291
drill-down capabilities,

279-287
pages, 284-285
sales chart portlets, 273-278
service providers, 269-272
Web Charts 3D Designer, 290

Checkbox builders, adding, 156
Checkbox Group builders,

adding, 155
checkboxes, modifying values,

358-359
Choose Reference dialog box,

43, 200
classes

dynamic class loading,
466-467

formatters, 295
adding, 312-315
CustomFormatter

class, 315
Data Field Modifier

builder, 316
LJOs, 315
writing, 312

Java
beans, 210
creating beans, 210-216

Java interfaces, 198
MyException, 376
ShoppingCartItemManager,

213-216
StandardFormatter, 295

Clear Cart button, testing, 233
clearing shopping carts, 218
clearShoppingCartItem operation

implementing, 229
testing, 226

Click Actions, configuring, 285
click-to-action (C2A), 191
client-side validation, 295
clients, enabling HTTP, 444-445

Index 497

cluster.properties file, 462
code

Java, 195. See also Java
post-save action, modifying,

319-320
collaboration between users, 3
columns

configuring, 123
viewing, 357-358

commands, Java, 200
comments

project portlets, 297
saving, 363-365

common Notes functionality,
adding, 413-423

communication
Ajax, 345-346

performance portlets,
354-362

service providers, 346-353
configuring, 185
inter-portlet, 166

applying, 192
Property Broker, 166-180,

182-184
Property Broker Action,

185-192
compiles, specifying

alternate, 466
conditional statements, 197
configuration

actions, 190
announcements

default resource
bundles, 327

English, 335
ES Spanish resource

bundles, 328
headings, 334
importing, 336
localizing headings, 328
models, 326
modifying pages, 326-327
Portlet Adapters, 327

profiling Country
inputs, 332

profiling language inputs,
329-331

restricting, 339-340
selection handlers,

332-333
Spanish, 335-336
testing, 337-342
US English resource

bundles, 327
viewing, 336

arguments, 188
Attribute Setter, 368
authentication, 456
automatic deployment, 26
Click Actions, 285
columns, 123
communication, 185
CSSs, 142-146
data page validation, 303
data sets, sizing, 395
Data Transformation,

276-277
debugging

Eclipse, 382-384
tracing, 470

deployment, 12-13
detail portlets, 177-182
Domino, 465

adding delete operations,
85-87

creating service providers,
82-85

environments, 79-80
properties files, 80-81
testing connections, 81-82
testing service providers,

88-90
drivers, 453
environments, 439

accessing portals, 441-443
DB2, 446-447
installing WPFs, 439-440

JDBC resources, 451-459
Lotus Domino, 443-445
SQL Server, 448-450

events, logging, 471
fields, 293-294

client-side/server-side
validation, 295

formatter classes, 295
modifying, 305
schemas, 294-295

files, uploading, 466
Java beans, 210-216
list portlets, 173-177
loanDetail models, 191
log4j logging, 469
logging, 385

customizing, 388
debug tracing, 385-387
server statistics, 389-390

models
Java, 217
Order Stock Web

services, 243
New Model wizard, 409-410
new target pages, 441-443
page automation, 472
performance portlets,

354-362
portals, 2
Portlet Adapters, 47, 175
portlets, 21-26

adding functionality,
65-72

assets, 114-116
contacts, 63-65
creating models, 30-31
manual deployment,

26-29
Portlet Adapter builder, 65
suppliers, 91-100
survey, 151-163
testing, 31-34, 72-74

post-save actions, 318-321

498 Index

project portlets, 296
Action Lists, 299
comments, 297
confirmation pages, 300
formatting, 303-309
forms, 299
inputs, 301
links, 301
models, 296
modifying pages, 297
Portlet Adapters, 297
schemas, 298
submit buttons, 299-300
testing, 302-311
variables, 299

Property Broker, 183-184
readSupplierRating, 417
rich text, 433
servers, logging, 471
service consumers

creating, 45-47
testing, 47-48

Service Definition
builders, 41

Service Operation
builders, 44

service providers, 39-44, 54
Ajax, 346-353
creating models, 54-55
customizing portlet

appearances, 108-113
defining services, 55
inter-portlet communica-

tion, 167-172
specifying operations,

55-59
testing, 44-45, 60-63

sessions, sizing, 395-398
shopping cart portlets,

226-232
models, 226-228
Portlet Adapters, 228
testing, 232-235

stockView builder calls, 426
stubs, 48, 103-104
switchToReturns builder

call, 430

troubleshooting, 25
UI controls, 149-151
Web services

Order Stock, 242-253, 255
order stock portlets,

258-263
service providers, 255-258

WPF caches, 468
confirmation pages

adding, 158
project portlets, 300

connections
Domino, testing, 81-82
JDBC resources, configuring,

451-459
testing, 23

consuming, 114
addSupplierToMMData-

Source operations, 422
performance portlets, 356
readReturnsView

operations, 429
readStockView operations,

427-428
readSupplierRating

operations, 417
contacts

editing, 73
portlets

adding functionality,
65-72

creating, 63
models, 64-65
Portlet Adapter builder, 65
testing, 72-74

controllers, 50
controls

pagination, adding, 122
User Interface in WPF,

149-151
Cooperative Portlet Source

builders, 175-176, 185
Cooperative Portlet Target

builders, defining, 180
coordinators, modifying,

407-408

country inputs, profiling, 332
create functionality

adding, 69-72
suppliers models, adding, 97

Create Portlet Factory Project
wizard, 24, 30

createContact operation,
testing, 63

createSupplierDocument
operation, testing, 90

CSSs (Cascading Style Sheets),
142-146

curly braces ({ }), 199
CustomFormatter class, 315
customization

builders, 399-408
charts, 288-291
exceptions, 376-377
HTML templates, 141-142
logging, 388
portlet appearance, 108-119
validation, 316

modifying regular expres-
sion messages, 318

post-save actions, 318-321
resource bundles, 316-318

WPF, 107

D

Data Column Modifier builders,
122-128

Data Field Modifier builders,
100, 124-130, 316, 432

Data Hierarchy Modifier
builders, 124, 128

data modifiers, 122
Data Column Modifier

builders, 122-124
Data Field Modifier builders,

124-126
Data Hierarchy Modifier

builders, 124
Form Layout builders,

127-132
testing, 130

Data Page builders, 118

Index 499

data page validation,
configuring, 303

data services, applying, 53-54
data sets, sizing, 395
Data Transformation calls,

276-277
Data View builder, 118
databases

data sources, adding, 453
navigating, 444-445
pagination, 119

modifying paging buttons,
120-122

starting, 120
testing, 446-450

dataEntryPageTable style, 145
dates, adding expressions, 307
DB2 databases, creating,

446-447, 454
Debug Configuration dialog

box, 384
debugging, 380

Eclipse, 382-384
statements, 381-382
tracing, 385-387, 470

default message pages,
adding, 179

default resource bundles, 327
default selection handlers, 324
defining

actions, 157
division processes, 374-375
events, 187
inputs, 403
request objects, 243
response objects, 245
services, 41, 55, 83, 168

Ajax, 347
charts, 270
Java, 217
Order Stock Web

services, 243
XML transformations, 280

delete functionality
adding, 66-68
suppliers models, 94-95

Delete Item button, testing, 233

delete operations, adding, 85-87
deleteContact operation,

testing, 63
deleteShoppingCartItem

operation
implementing, 230-232
testing, 226

deleteSupplierDocument
operation, testing, 90

deleting
events, 190
fields, 99-100, 432
shopping carts, 223-224

deployment
automatic, 26
configuration, 12-13
licenses, upgrading, 291-292
portals, 441-443
portlets, manual, 26-29
troubleshooting, 25
WAR files, 12

Deployment Configuration
dialog box, 25

design, patterns, xxvii. See also
configuration

detail portlets, inter-portlet
communication, 177-182

development
automation, 5
faster development times, 4
Java, 196-198
WAR files, 11

dialog boxes
Choose Reference, 43, 200
Debug Configuration, 384
Deployment Configuration, 25
Edit Profile, 333
Make Assignment, 191
Profile Input, 329
Run, 31
Select a Wizard, 327
Select Action, 43, 97

DIIOP tasks, starting, 444
directories, 19-20
displayPageTable style, 145
displayResult model, 375

division process, error handling,
374-375

documents
CSSs, 142-146
pagination, 119

modifying paging buttons,
120-122

starting, 120
sorting, 264
XML, modifying with

Java, 198
Dojo, 362

comments, saving, 363-365
enabling, 363
feedback bars, adding,

367-369
performance, 398
tooltips, adding, 366

Domino
attachments, 434
connections, testing, 81-82
Notes functionality, 78-79
properties files, configuring,

80-81
servers, configuring

environments, 79-80, 465
service consumers, testing,

100-101
service providers

adding delete operations,
85-87

creating, 82-85
testing, 88-90

stub service, 102-104
Domino Data Access builders, 5,

85-86, 434-436
Domino View & Form

builders, 119
drill-down capabilities, adding,

279-287
drivers, configuring, 453
drop-down lists, adding, 308
drop-down select boxes,

adding, 154
dynamic class loading, 466-467
dynamic validation, adding, 309

500 Index

E

Eclipse
debugging, 382-384
IDEs, 17

Edit Profile dialog box, 333
editing, 17, 73
editors, 17
elements

filtering, 263
loans, selecting, 180
renaming, 264
WPF architecture, 5

builders, 5
deployment configura-

tions, 12-13
generating WebApps, 7-9
models, 6-7
profiles, 7
WAR files, 11-12

XML, searching, 208
enabling

Dojo, 363
HTTP clients, 444-445

End Item button, testing, 233
English announcements,

adding, 335
entries, profiles, 330
environments

configuring, 439
accessing portals, 441-443
creating test databases in

DB2, 446-447
creating test databases in

SQL Server, 448-450
installing WPFs, 439-440
JDBC resources, 451-459
Lotus Domino, 443-445

Domino, configuring, 79-80
error handling, 371-373

displayResult model, 375
division process, 374-375
division variables, 374
exceptions

customizing, 376
errors, 376-379
throwing, 377

models, 373-374
results pages, 374
testing, 375-376, 380

errorMessage style, 145
errors, deployment

configuration, 25
ES Spanish resource bundles,

creating, 328
events

defining, 187
deleting, 190
handling, 189
inter-portlet communication,

181-182
logging, 471
models, 186
triggering, 187

exceptions
customizing, 376
throwing, 377

excluding JARs from WAR files,
235-236

execution of WebApps, 7, 9
expressions

dates, adding, 307
regular

adding, 308
messages, 318

Extensible Markup Language.
See XML

extensibility, inter-portlet
communication, 166

F

Factory generation engine, 5
feature sets, specifying, 22
features, xxvii
feedback bars, adding, 367-369
fields, 293-294

Area Select, adding, 359-360
client-side/server-side

validation, 295
deleting, 99-100, 432
formatter classes, 295
hide-when, 433

modifying, 305
ProjectBudget,

modifying, 308
ProjectManager, adding

drop-down lists, 308
schemas, 294-295
source, assigning, 230
stockSupplied, 424
testing, 309-311

fifth operations, specifying,
58-59

files
JAR, importing, 234-236
length limitations, 468
properties, 80-81, 461-464
uploading, 466
WAR, 4, 11-12, 235-236
web.xml, modifying, 19

filtering elements, 263
first operations, specifying, 55
flags, adding error, 378
folders

WebContent, 19
WebSphere Portlet Factory

Designer, 17-21
Form Layout builders, 127-132
formatter classes, 295

adding, 312-315
CustomFormatter class, 315
Data Field Modifier

builder, 316
LJOs, 315
writing, 312

formatting. See also
configuration

data sets, sizing, 395
fields, 293-294

client-side/server-side
validation, 295

formatter classes, 295
schemas, 294-295

headers, 334
project portlets, 303-309
rich text, 433
sessions, sizing, 395-398

forms, project portlets, 299

Index 501

formulas, Notes, 414-417
fourth operations, specifying,

57-58
functionality

Ajax, 348-350
create

adding, 69-72
suppliers models, 97

custom builder, modifying,
405-406

delete
adding, 66-68
suppliers models, 94-95

formatter classes
adding, 312-315
CustomFormatter

class, 315
Data Field Modifier

builder, 316
LJOs, 315
writing, 312

Notes, 78-79, 413-423
overwriting, 200
performance, adding,

351-352
submit, adding, 261, 359
update

adding, 65-66
suppliers models, 94

functions, 38

G

general logging, configuring, 469
generation of WebApps, 7-9
getAssetsList operation, 112
getContactDetail operation, 62
getDocumentData()

method, 436
getDominoDatabase()

method, 435
getDominoSession()

method, 435
getLoanDetail operation,

specifying, 171
getLoansList operation,

specifying, 170

getPerformanceData operation,
350-353

getSales operation, 271
getSalesArea operation

specifying, 283
testing, 284

getUserName() method, 435
GreenPoint Web Chart Builder

feature set, 269
gridTable style, 145
gridtable.html HTML templates,

modifying, 140

H

hand coding, reducing need for, 4
handlers

errors, 379
selection, 324, 332-339

handling
errors, 371, 373

adding, 376-379
customizing

exceptions, 376
displayResult model, 375
division process, 374-375
division variables, 374
models, 373-374
results pages, 374
testing, 375-376, 380
throwing exceptions, 377

events, 189
inter-portlet communication,

181-182
headers, formatting, 334
headings, localizing announce-

ment, 328
Hello World!

building, 21-26
starting, 28
testing, 31-34

hidden inputs, adding, 156
hide-when fields, 433
hiding columns, 357-358

HTML (Hypertext Markup
Language)

builders, 133-134
order stock portlets, 259
templates, 136-142
UI controls in WPF, 150

HTTP (Hypertext Transfer
Protocol)

Clients, enabling, 444-445
tasks, starting, 444

HttpServletRequest interfaces,
200, 209

HttpServletResponse interfaces,
200, 209

I

IDEs (Integrated Development
Environments), 4, 17

Eclipse, 17
IInputFieldFormatter

interface, 312
images

builders, adding, 159
buttons, adding, 160

implementation
addShoppingCartItem

operation, 229
clearShoppingCartItem

operation, 229
deleteShoppingCartItem

operation, 230-232
service provider/consumer

patterns, 37-39
updateShoppingCartItem

operation, 228-229
importing

announcements, 336
JAR files, 234-236

information
accessibility of, 3
aggregation of, 3
testing, 408

inline Java, 198-200

502 Index

input
hidden, adding, 156
text, adding, 153
viewing, 160

inputs
builders, profiles, 323-325
Country, profiles, 332
defining, 403
languages, profiles, 329-331
overriding, 227
project portlets, 301

installing WPFs, 439-440
Integrated Development

Environments (IDEs), 4, 17
integration

of business functions, 3
capabilities, 5

inter-communication, Property
Broker Action, 185-192

inter-portlet communication, 166
applying, 192
events, handing, 181-182
Property Broker, 166-167

configuring, 183-184
detail portlets, 177-182
list portlets, 173-177
service providers, 167-172

interfaces
adding, 179
controls in WPF, 149-151
IInputFieldFormatter, 312
IXml, applying, 250
Java, 198-203

HttpServletRequest, 209
HttpServletResponse, 209
IXml, 208
RequestInputs, 207
Variables, 206-207
WebAppAccess, 203

order stock portlets, 260
performance portlets, 357
personalization, 4
portals, 2
WebSphere Portlet Factory

Designer, 13-17

items
sales, retrieving, 282-283
shopping carts

adding, 222
creating, 211-213
deleting, 223-224
updating, 223
viewing, 221

IXml interface, 208, 250

J

J2EE (Java 2 Enterprise
Edition), xxix

JAR files, importing, 234-236
Java

APIs, 202-203
HttpServletRequest, 209
HttpServletResponse, 209
IXml, 208
RequestInputs, 207
Variables, 206-207
WebAppAccess, 203

beans, 210-216
interfaces, 198
portlets

Action Lists, 200
development, 196-198
inline Java, 198-200
LJO, 201-202
Method builder, 200-201
methods, 198

service providers, 216
LJOs, 217
models, 217
services, 217
shopping carts, 218-224
testing, 224-226
XML Converters. adding,

217-218
shopping cart portlets

creating, 226-232
testing, 232-235

Java 2 Enterprise Edition
(J2EE), xxix

JavaScript
builders, 135-136
validation, 295

JDBC resources, configuring,
451-459

jdbcDrivers.properties file, 462
JRE system library, Project

Explorer view, 19
JSPs (Java Server Pages), 135

K–L

keyword lookups, 424-428

label style, 145
labelCell style, 145
language inputs, profiling,

329-331
LDAP (Lightweight Directory

Access Protocol), 4
length limitations, files, 468
licenses, upgrading deployment,

291-292
Lightweight Directory Access

Protocol. See LDAP
limitations

bandwidth, 3
file length, 468

Linked Java Object (LJO),
200-202

links
adding, 160, 185
project portlets, 301

lists, 54
categorized views, 428-432
drop-down, adding, 308
inter-portlet communication,

173-177
LJOs (Linked Java Objects),

200-202
adding, 315
Java, 217

loading dynamic classes,
466-467

loan data, adding, 168

Index 503

loanDetail model,
configuring, 191

loanID variables, adding, 190
loans

actions, adding, 169
elements, selecting, 180

localizing announcement
headings, 328

log4j
logging, 469
properties file, 462

logging, 385
customizing, 388
debug tracing, 385-387
events, 471
server statistics, 389-390, 471

logging.properties file, 462
lookups, keywords, 424-428
Lotus Collaboration Extension

feature set, 80
Lotus Domino, configuring,

443-445
Lotus Notes, 4

M

main actions, adding, 179
maintainability, inter-portlet

communication, 166
Make Assignment dialog

box, 191
Manage Pages link, 442
management

Bean Manager, 210-216
builders, 153

manual deployment, portlets,
26-29

mapping to remote servers, 13
messages, 23

debug, logging, 388
regular expressions,

modifying, 318
Method builder, 200-201
methods

adding, 170
Domino Data Access builder,

434-436

Java, 198
Action List builder,

enabling through, 200
inline, 198-200
viewing, 196

migrate-profilesets.properties
file, 462-463

minimum scale values,
specifying, 277

Model Editor, 15, 47
Model View Controller. See MVC
Model XML tab, 15
models, 6-7, 49

Ajax, 347
announcements portlets, 326
assets, testing, 117
charts, 269
contact portlets, creating,

63-65
creating, 30-31, 40, 46,

109, 114
custom builders, 400
debugging, 384
detail portlets, 178
displayResult, 375
error handling, 373-374
events, 186
information, 408
inter-portlet

communication, 168
Java, 196, 217
list portlets, creating, 173
multiple

adding, 45-47
testing, 47-48

New Model wizard, creating,
409-410

order stock portlets, 259
Order Stock Web

services, 243
performance portlets, 354
Project Explorer view, 18
project portlets, 296
sales chart portlets, 273
service providers, creating,

54-55, 82-85

shopping cart portlets,
creating, 226-228

stubs, creating, 48, 103-104
suppliers

adding functionality,
94-97

creating, 91-92
deleting fields, 99-100
Portlet Adapter, 93-94

survey portlets, creating, 151
modification

Action List project
portlets, 299

checkbox values, responding
to, 358-359

coordinators, 407-408
custom builder functionality,

405-406
fields, 305, 308
pages

announcements portlets,
326-327

custom builders, 400
order stock portlets, 259
performance portlets, 355
projects portlets, 297
sales chart portlets, 273
survey portlets, 152

paging buttons, 120-122
post-save action code,

319-320
property files, 461
regular expression

messages, 318
results pages, 374
submit buttons, 300, 304
UI controls, 149-151
web.xml files, 19

modifiers, 122
Data Column Modifier

builders, 122-124
Data Field Modifier builders,

124-126
Data Hierarchy Modifier

builders, 124
Form Layout builders,

127-132
testing, 130

504 Index

multiple models
adding, 45-47
testing, 47-48

MVC (Model View Controller), 49
MyException class, 376

N

namespaces, XML, 241
navigation

databases, 444-445
Eclipse IDEs, 17
JDBC Providers link, 451
WebSphere Portlet Factory

Designer, 13-21
New Deployment Configuration

window, 24
New Model Wizard, 46, 409-410
new target pages,

configuring, 441
non-schema typed fields,

294-295
Notes

environments, configuring,
79-80

functionality, 78-79, 413-423
properties files, configuring,

80-81

O

objects
LJOs, 200
requests, defining, 243
responses, defining, 245

opening
JAR files, 235-236
Page menus, 183
Web Modules pages, 29

Operation Results section, 416
operations, 38

adding, 43-44
addShoppingCartItem

implementing, 229
testing, 225

addSupplierToMMDataSource,
420, 424

clearShoppingCartItem
implementing, 229
testing, 226

createContact, testing, 63
createSupplierDocument,

testing, 90
definition of, 39
delete, adding, 85-87
deleteContact, testing, 63
deleteShoppingCartItem

implementing, 230-232
testing, 226

deleteSupplierDocument,
testing, 90

detail portlets, 177-182
fifth, specifying, 58-59
first, specifying, 55
fourth, specifying, 57-58
getAssetsList,

specifying, 112
getContactDetail, testing, 62
getLoanDetail,

specifying, 171
getLoansList, specifying, 170
getPerformanceData,

specifying, 350, 353
getSales, specifying, 271
getSalesArea

specifying, 283
testing, 284

list portlets, 174-177
readReturnsView, 428-430
readStockView, 425-428
readSupplierDocument,

testing, 89
readSupplierRating, 415-417
readSupplierView, testing, 88
retrieveContactsView,

testing, 61
second, specifying, 55-56
service, adding, 257
setContact, testing, 63
specifying, 83
third, specifying, 56-57
updatePerformanceData,

specifying, 352

updateShoppingCartItem
implementing, 228-229
testing, 226

updateSupplierDocument,
testing, 90

viewShoppingCart,
testing, 225

viewShoppingCartItem,
testing, 225

optimization of performance, 393
Ajax, 398
builder calls, 395
caching, 394
custom builders, 399-408
data set size, 395
Dojo, 398
profiling, 398
session size, 395-398

order data, adding, 246
order stock portlets, creating,

258-263
orderStockWebService Web

service, testing, 252-255
outputData style, 145
outputDataCell style, 145
overriding inputs, 227
overwriting functionality, 200

P

Page menu, opening, 183
pageprocessors.properties

file, 462
pages

adding, 443
announcements portlets,

modifying, 326-327
automation, 472
charts, adding, 284-285
confirmation, adding,

158, 300
CSSs, 142-146
custom builders,

modifying, 400
default message, adding, 179
errors, adding, 377
headers, formatting, 334

Index 505

new target, configuring,
441-443

order stock portlets, 259
performance portlets,

modifying, 355
portals, configuring, 2
projects portlets,

modifying, 297
results, error handling, 374
sale chart portlets,

modifying, 273
salesAreaPage,

populating, 285
survey portlets,

modifying, 152
target, accessing, 443
Web Modules, opening, 29

pagination, 119
modifying, 120-122
starting, 120

paging
assistants, 119
buttons, 139-140

Paging Buttons builder, 120
patterns

design, xxvii
MVC, 49
service provider/consumer,

37-39, 49-50
performance, 393

Ajax, 347-348, 398
builder calls, 395
caching, 394
custom builders, 399-408
data set size, 395
Dojo, 398
portlets, creating, 354-362
profiling, 398
session size, 395-398
updating, 351-352

permissions, 443
persistentstore.properties

file, 462
personalization of user

interfaces, 4

perspective, 17
WebSphere Portlet Factory

Designer, 13
population, salesAreaPage

pages, 285
portals

benefits of, 3
configuring, 441-443
Notes functionality, 78-79
overview of, 2
servers, 23

Portlet Adapters
adding, 114
announcements portlets, 327
configuring, 47, 65
custom builders, 401
list portlets, creating, 175
order stock portlets, 260
performance portlets, 355
project portlets, 297
sales chart portlets, 274
shopping cart portlets, 228
suppliers model, creating,

93-94
survey portlets, adding,

153-160
portlets

appearance, customizing,
108-119

assets
creating, 114-116
testing, 117-119

building, 21-26
creating models, 30-31
manual deployment,

26-29
testing applications, 31-34

charts, 268
adding drill-down

capabilities, 279-287
customizing, 288-291
sales chart portlets,

273-278
service providers, 269-272

contacts
adding functionality,

65-72
creating, 63
models, 64-65
Portlet Adapter builder, 65
testing, 72-74

CSSs, 142-146
detail, Property Broker,

177-182
inter-portlet

communication, 166
applying, 192
Property Broker, 166-180,

182-184
Java

Action Lists, 200
APIs, 202-203
beans, 210
creating Java beans,

210-216
development, 196-198
HttpServletRequest

APIs, 209
HttpServletResponse

APIs, 209
inline Java, 198-200
IXml APIs, 208
LJO, 201-202
Method builder, 200-201
methods, 198
RequestInputs APIs, 207
shopping carts, 226-232
service providers, 216-224
testing service providers,

224-226
testing shopping carts,

232-235
Variables APIs, 206-207
WebAppAccess APIs, 203

lists, Property Broker,
173-177

order stock, creating, 258-263
overview of, 2
performance, creating,

354-362

506 Index

profiles, 323
announcements portlets,

325-342
builder inputs, 323-325

projects
building, 296-309
testing, 309-311

sales chart, 273-278
suppliers

adding functionality,
94-97

creating, 91
deleting fields, 99-100
models, 91-92
Portlet Adapter, 93-94

survey
adding Portlet Adapters,

153-160
creating, 151
models, 151
modifying pages, 152
testing, 160-163

WAR files, 11
post-save actions, 318-321
preliminary testing

profiled portlets, 337
project portlets, 302-303

presentation tiers, 50
Problems view, 17, 25
productivity gains, xxvii
Profile Input dialog box, 329
Profile Set Editor, 332-333
profiles, 7

entries, 330
performance, 398
portlets, 323

announcements portlets,
325-342

builder inputs, 323-325
Project Explorer view, 18

Project Explorer view, 17
Project Properties dialog box, 26
ProjectBudget field,

modifying, 308
ProjectManager field, adding

drop-down lists, 308

projects, 17
Hello World!, creating, 21,

23-26
portlets

building, 296-309
testing, 309-311

properties
applying, 464-465

accessing Web
services, 467

configuring Domino
servers, 465

debugging, 470
dynamic class loading,

466-467
event logging, 471
logging, 469
page automation, 472
server statistic

logging, 471
specifying alternate

compilers, 466
troubleshooting, 468
uploading files, 466
WPF caches, 468

charts, specifying, 277
files, 80-81, 461-464

Property Broker, 166-167
configuring, 183-184
detail portlets, 177-182
list portlets, 173-177
service providers, 167-171

testing, 171-172
Property Broker Actions,

185-192
protocols

HTTP, 444-445
LDAP, 4
SOAP, 241, 467

providers
drivers, configuring, 453
service

Ajax, 346-353
charts, 269-272
customizing portlet

appearance, 108-113

inter-portlet communica-
tion, 167-172

Java, 216-218
shopping carts, 218-224
testing, 224-226
Web services, 255-258

services
creating, 54
defining services, 55
models, 54-55
specifying operations,

55-59
testing, 60-63

proxy access for Web
services, 467

Q–R

RAD (Rational Application
Developer), 4

Radio Button Group builder,
adding, 154

Rational Application Developer
(RAD), 4

Rational Software Architect
(RSA), 4

readReturnsView operation,
428-430

readStockView operation,
425-428

readSupplierDocument
operation, testing, 89

readSupplierRating operation,
415-417

readSupplierView operation,
testing, 88

record pagination, 119
modifying paging buttons,

120-122
starting, 120

regular expressions
adding, 308
messages, 318

remote servers, mapping to, 13
removing. See deleting
renaming elements, 264
request objects, defining, 243

Index 507

RequestInputs interface, 207
requiredPrompt style, 145
resource bundles

adding, 316-318
announcements portlets, 327

ES Spanish, 328
US English, 327

Resources, configuring JDBC,
451-459

response objects, defining, 245
restrictions

accessibility, 4
announcements, 339-340

results pages, error handling, 374
retrieveContactsView operation,

testing, 61
Rich Data Definition builder,

294-295, 304
rich text, 433
roster data, adding, 42
RSA (Rational Software

Architect), 4
Run dialog box, 31
running, post-save action

code, 321

S

sales
chart portlets, 273-278
data, adding, 270-271
items, retrieving, 282-283
schemas, adding, 271

salesAreaPage, populating, 285
salesAreaPage, adding, 285
saving

builder calls, 41
comments, 363-365
post-save actions, 318-321

scale values, specifying
minimum, 277

Schema builder, 244
schemas, 241

adding, 109-110, 271
fields, 294-295
project portlets, 298

searching XML elements, 208

second operations, specifying,
55-56

sectionLabel style, 145
sectionLabelCell style, 145
segments, 333
Select a Wizard dialog box, 327
Select Action dialog box, 43, 97
selecting loan elements, 180
selection handlers, 324, 332-339
selectLoan, running, 191
sendDocument() method, 435
server-side validation, 295
server.properties file, 462
servers

Ajax, 345-346
performance portlets,

354-362
service providers, 346-353

debugging, 383
Domino

configuring, 79-80, 465
properties files, 80-81
testing, 81-82

Lotus Domino, 443-445
remote, mapping to, 13
statistics, 389-390, 471

Service Consumer builder,
260, 275

service consumers
creating, 45-47
definition of, 39
testing, 47-48, 100-101

Service Definition builders,
41, 109

Service Operation builders,
adding, 251-252

Service Oriented Architecture.
See SOA

service providers, 37-39, 49-50
Ajax, 346-347, 350-353

functionality, 348-350
performance data,

347-348
testing, 353

charts, 269-272
creating, 39-44
definition of, 39

Domino
adding delete operations,

85-87
creating, 82-85
testing, 88-90

inter-portlet communication,
167-172

Java, 216
LJOs, 217
models, 217
services, 217
shopping carts, 218-224
testing, 224-226
XML Converters, adding,

217-218
portlets, 108-113
testing, 44-45
Web services, 255-258

services
accessibility of, 3
Ajax, defining, 347
charts, defining, 270
consuming, 114
data, applying, 53-54
defining, 39-41, 83, 168
Java, 217
list portlets, specifying, 173
operations, adding,

43-44, 257
performance portlets,

consuming, 356
providers. See service

providers
stub

applying, 102-104
creating, 48

Web, 240-241
accessing, 467
Order Stock, 242-255
order stock portlets,

258-263
service providers, 255-258

sessions, sizing, 395-398
setComputeWithFormEnabled()

method, 435
setContact operation, testing, 63
sharing variables, 189

508 Index

shopping carts
adding, 222
clearing, 218
deleting, 223-224
Java, creating, 211-213
portlets

creating, 226-232
testing, 232-235

updating, 223
viewing, 219-221

ShoppingCartItemManager
class, 213-216

Simple Object Access Protocol
(SOAP), 241, 467

sizing
data sets, 395
sessions, 395, 397-398

SOA (Service Oriented
Architecture), 37

definition of, 39
service provider/consumer

patterns
applying, 49-50
implementing, 37-39

SOAP (Simple Object Access
Protocol), 241, 467

software automation, xxvii
sorting documents, 264
source fields, assigning, 230
Spanish announcements, adding,

335-336
Specify Deployment Credentials

checkbox, 23
specifying

alternate compilers, 466
Chart Properties, 277
fifth operations, 58-59
first operations, 55
fourth operations, 57-58
getAssetsList operations, 112
getLoanDetail operation, 171
getLoansList operation, 170
getPerformanceData

operations, 350, 353
getSales operation, 271

getSalesArea operations, 283
minimum scale values, 277
operations, 83
second operations, 55-56
service list portlets, 173
third operations, 56-57
updatePerformanceData

operations, 352
SQL Call builders, 60
SQL Server

data sources, configuring, 455
databases, creating test,

448-450
StandardFormatter class, 295
starting

HelloWorld applications, 28
pagination, 120

statements
conditional, 197
debugging, 381-382
inline Java, 198-200

statistics
servers, 389-390
servers, logging, 471

stockSupplied field, 424
stub services

applying, 102-104
creating, 48

Style Sheet builder, 144-146
styles

charts, customizing, 288-291
CSSs, 142-146

submit buttons
modifying, 304
project portlets, 299-300

submit functionality, adding,
261, 359

Submit Order button, 261
suppliers portlet

create functionality,
adding, 97

creating, 91
delete functionality, adding,

94-95
fields, deleting, 99-100

models, creating, 91-92
Portlet Adapters, configuring,

93-94
update functionality,

adding, 94
Suppliers view, 83
survey portlets

adding Portlet Adapters,
153-160

creating, 151
models, 151
modifying pages, 152
testing, 160-163

T

tableHead style, 145
tableHeadRow style, 145
tableHeadText style, 145
tableRowEven style, 145
target pages

accessing, 443
configuring, 443

TargetSales, viewing, 289-290
templates

breadcrumbs.html, 138
HTML, 136-142

temporary variables, adding, 280
Terms & Conditions builder,

401, 407-408
TESTDB database, 54, 446
testing

Add Item buttons, 232
addShoppingCartItem

operations, 225
announcements, 337
applications, 31-34
categorized views, 433
Clear Cart button, 233
clearShoppingCartItem

operations, 226
connections, 23, 81-82
contacts portlets, 72-74
createContact operation, 63
createSupplierDocument

operation, 90

Index 509

data modifiers, 130
data sources, 458
databases, 446-450
Delete Item buttons, 233
deleteContact operation, 63
deleteShoppingCartItem

operations, 226
deleteSupplierDocument

operation, 90
detail portlets, 182
division models, 375-380
drill-down capabilities, 287
End Item buttons, 233
fields, 309-311
getContactDetail

operation, 62
getPerformanceData

operations, 353
getSalesArea operations, 284
information models, 408
inter-portlet

communication, 184
list portlets, 177
New Model Wizard

Builder, 410
order stock portlets, 262-263
orderStockWebService Web

service, 252-255
pagination, 120
performance portlets,

360-362
portlet assets, 117-119
post-save actions, 321
profiles, 341-342
project portlets, 302-303,

309-311
readSupplierDocument

operation, 89
readSupplierView

operation, 88
retrieveContactsView

operation, 61
sales chart portlets, 278
selection handlers, 338-339
service consumers, 47-48,

100-101

service providers, 44-45,
60-63

Ajax, 353
charts, 272
customizing portlet

appearances, 113
Domino, 88-90
inter-portlet communica-

tion, 171-172
Java, 224-226
Web services, 258

setContact operation, 63
shopping cart portlets,

232-235
survey portlets, 160-163
updateShoppingCartItem

operations, 226
updateSupplierDocument

operation, 90
viewShoppingCart

operations, 225
viewShoppingCartItem

operations, 225
text

areas, adding, 155
inputs, adding, 153
rich, 433

third operations, specifying,
56-57

throwing exceptions, 377
tooltips, adding, 366
tracing

debug, 385-387
debugging, 470
sessions, 396-398

Transform builder, 281
transformations

defining, 280
XML, 263-264

translation
fields, 293-294

client-side/server-side
validation, 295

formatter classes, 295
schemas, 294-295

formatter classes
adding, 312-315
CustomFormatter

class, 315
Data Field Modifier

builder, 316
LJOs, 315
writing, 312

Notes, 414-417
project portlets, 303-309

triggering events, 187
troubleshooting

configuration, 25
debugging, 380

Eclipse, 382-384
statements, 381-382

error handling, 371-373
adding error actions, 379
adding error flags, 378
adding error handlers, 379
adding error pages, 377
customizing

exception, 376
displayResult model, 375
division process, 374-375
division variables, 374
models, 373-374
results pages, 374
testing, 375-376, 380
throwing exception, 377

file length limitations, 468
Type-Ahead capabilities (Ajax),

adding, 360
types

of builders, 401
of errors, 371

U

UIs (User Interfaces)
controls in WPF, 149-151
personalization, 4
WebSphere Portlet Factory

Designer, 13-14, 17
UNIDs (universal identifiers), 416
unwanted fields, deleting, 99-100

510 Index

update functionality
adding, 65-66
suppliers models, adding, 94

updatePerformanceData
operation, specifying, 352

updateShoppingCartItem
operation

implementing, 228-229
testing, 226

updateSupplierDocument
operation, testing, 90

updating
performance, 351-352
shopping carts, 223

upgrading deployment licenses,
291-292

uploading files, 466
US English resource bundles,

creating, 327
Usability, inter-portlet

communication, 166
User Interfaces. See UIs
users, collaboration between, 3

V

validation
customization, 316

modifying regular expres-
sion messages, 318

post-save actions, 318-321
resource bundles, 316-318

dynamic, adding, 309
fields, 293-294

client-side/server-side, 295
formatter classes, 295
schemas, 294-295

formatter classes
adding, 312-315
CustomFormatter

class, 315
Data Field Modifier

builder, 316
LJOs, 315
writing, 312

JavaScript, 295
Notes, 414-417
project portlets, 303-309

values
checkboxes, modifying,

358-359
minimum scale,

specifying, 277
Variable builder calls, adding,

110-111
variables

adding, 157
division, error handling, 374
loanID, adding, 190
order stock portlets, 260
project portlets, 299
sharing, 189
temporary, adding, 280

Variables interface, 206-207
View & Form builders, 66,

115-116, 138
viewing

announcements, 336
assets, 114-116
columns, 357-358
data in WPF, 118
input, 160, 301
interfaces

order stock portlets, 260
performance portlets, 357

Java, 196
shopping carts, 219-221
TargetSales, 289-290

views, 17, 50
categorized, 428-432
Project Explorer, 17
Suppliers, 83

viewShoppingCart operation,
testing, 225

viewShoppingCartItem
operation, testing, 225

W

WAR (Web ARrchive) files, 4,
11-12

JARs, excluding from,
235-236

WAS CE (WebSphere
Application Server Community
Edition), 40

Web Charts 3D Designer, 290
Web Charts builders, 268-272
Web Modules pages, opening, 29
Web pages

applying, 132
CSSs, 142-146
HTML

builders, 134
templates, 138-141

JavaScript builders, 136
Web services, 240-241

accessing, 467
definition of, 39
Order Stock, 242-255
order stock portlets, 258-263
service providers, 255-258

Web Services Description
Language (WSDL), 241

WEB-INF directory, 20
web.xml files, modifying, 19
WebApp Diagram tab, 15
WebApp Tree tab, 15
WebAppAccess interface, 203
WebApps, generating, 7, 9
WebContent directory, 19
WebContent/WEB-INF/work/

classes directory, 19
WebSphere Application

Server Community Edition.
See WAS CE

WebSphere Portlet Factory
Designer

folder structure, 17-21
overview of, xxix-xxxi, 13
user interfaces, 13-17

WebSphere Portlet Factory.
See WPF

Index 511

windows, New Deployment
Configuration, 24

wizards, 5
Create Portlet Factory

Project, 24, 30
New Model Wizard, 46,

409-410
workspace, 17
WPF (WebSphere Portlet

Factory)
Ajax. See Ajax,
architecture, 5

builders, 5
deployment

configurations, 12-13
generating WebApps, 7, 9
models, 6-7
profiles, 7
WAR files, 11-12

benefits of, 4-5
caches, 468
charts, 268

adding drill-down
capabilities, 279-287

customizing, 288-291
sales chart portlets,

273-278
service providers, 269-272

customizing, 107
data modifiers, 122

adding Form Layout
builders, 131-132

Data Column Modifier
builders, 122, 124

Data Field Modifier
builders, 124-126

Data Hierarchy Modifier
builders, 124

Form Layout builders,
127-130

testing, 130
data, viewing, 118
debugging, 380

Eclipse, 382-384
statement, 381-382

error handling, 371
event models, 186
installing, 439-440
logging, 385

customizing, 388
debug tracing, 385-387
server statistics, 389-390

overview of, 4
pagination, 119

modifying paging buttons,
120-122

starting, 120
performance, 393

Ajax, 398
builder calls, 395
caching, 394
custom builders, 399-408
data set size, 395
Dojo, 398
profiling, 398
session size, 395-398

User Interface controls in,
149-151

Web services, 240-241
Order Stock, 242-255
order stock portlets,

258-263
service providers, 255-258

WSDL (Web Services
Description Language), 241

X–Z

XML (Extensible Markup
Language)

converters, adding, 217-218
documents

modifying with Java, 198
sorting, 264

elements, searching, 208
namespaces, 241
transformations,

263-264, 280

	Foreword
	Preface
	Chapter 7 Communicating Between Portlets
	The Benefits of Inter-Portlet Communication
	The WebSphere Property Broker
	Creating a Service Provider
	Creating a Model
	Defining the Service
	Adding Loan Data
	Adding an Action to Retrieve a List of Loans
	Specifying the getLoanList Operation
	Adding a Method to Retrieve a Specific Loan
	Specifying the getLoanDetail Operation

	Testing the Service Provider
	Creating a List Portlet
	Creating a Model
	Specifying the Service
	Specifying List and Detail Operations
	Configuring the Portlet Adapter
	Defining the Portlet as a Cooperative Source
	Testing the List Portlet

	Creating a Detail Portlet
	Creating a Model
	Adding a Default Message Page
	Adding a main Action
	Adding an Interface for Loan Details
	Defining the Portlet as a Cooperative Target
	Handling an Inter-Portlet Communication Event
	Testing the Detail Portlet

	Configuring the WebSphere Property Broker
	Testing Inter-Portlet Communication

	Alternative Communication Methods
	Property Broker Action
	WPF Event Model
	Shared Variables
	Configuring Actions for loansList
	Running selectLoan
	Using the Shared Variable in the loanDetail Model
	Click-to-Action (C2A)

	When to Use Inter-Portlet Communication
	Summary
	Important Points

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K–L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z

