

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

© Copyright 2008 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication,
or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM
Corporation.

IBM Press Program Managers: Tara Woodman, Ellice Uffer

Cover design: IBM Corporation

Associate Publisher: Greg Wiegand
Marketing Manager: Kourtnaye Sturgeon
Publicist: Heather Fox
Acquisitions Editor: Katherine Bull
Development Editors: Kevin Ferguson, Ginny Bess
Managing Editor: Gina Kanouse
Designer: Alan Clements
Senior Project Editor: Lori Lyons
Copy Editor: Krista Hansing
Indexer: Lisa Stumpf
Compositor: Nonie Ratcliff
Proofreader: Anne Goebel
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc

Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and con-
tent particular to your business, training goals, marketing focus, and branding interests. For
more information, please contact:

U. S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com.

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com.

The following terms are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both: IBM, the IBM logo,
IBM Press, AD/Cycle, DB2, developerWorks, Rational, System 360, Tivoli and WebSphere.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both. Microsoft, Windows, Windows NT, and the Windows logo
are trademarks of Microsoft Corporation in the United States, other countries, or both. Other
company, product, or service names may be trademarks or service marks of others.

This Book Is Safari Enabled
The Safari‚ Enabled icon on the cover of your favorite technology book means the
book is available through Safari Bookshelf. When you buy this book, you get free

access to the online edition for 45 days. Safari Bookshelf is an electronic reference library that
lets you easily search thousands of technical books, find code samples, download chapters, and
access technical information whenever and wherever you need it.
To gain 45-day Safari Enabled access to this book:

• Go to http://www.awprofessional.com/safarienabled
• Complete the brief registration form
• Enter the coupon code L3LW-38PM-8WA6-9FMJ-ZQUE

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please
e-mail customer-service@safaribooksonline.com.

Library of Congress Cataloging-in-Publication Data

Hopkins, Richard.
Eating the IT elephant : moving from greenfield development to brownfield / Richard

Hopkins and Kevin Jenkins.
p. cm.

Includes index.
ISBN 0-13-713012-0 (pbk. : alk. paper) 1. Information technology. 2. Business

enterprises—Planning. I. Jenkins, Kevin. II. Title.
T58.5.H69 2008
004.068—dc22

2008004231

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval sys-
tem, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-013713012

ISBN-10: 0137130120

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.

First printing May 2008

http://www.awprofessional.com/safarienabled

A simple back-of-the-envelope calculation suggests that, worldwide, we
produce about 33 billion lines of new or modified code every year.
Cumulatively, this means that since the 1940s and ‘50s (when higher order
programming languages began to gain some traction), we’ve produced some-
where around one trillion source lines of code.

On the one hand, this volume of output suggests that ours is an incredibly
vibrant and innovative industry. On the other hand, it’s a humbling thought,
for through those trillion lines of code, all handcrafted by individual human
labor, we’ve changed the world.

Truth be told, some nontrivial percentage of the 33 billion lines yearly is
dead on arrival or so transitory that it’s thrown away quickly. Much of that
code, however, has a longer half-life, and even some of that code lives after
10, 20, or even 30 or more years. For many developers, the code they write
today becomes tomorrow’s legacy that their children or their children’s chil-
dren may stare at some day, trying to use it, adapt it, evolve it, asking the
question, “What the heck was this developer thinking?”

Greenfield development, quite honestly, is great fun, simply because you
get to start with a clean slate and, thus, are not burdened by anything from
the past. For the most part, we teach Greenfield development in our schools;
furthermore, start-up companies look so much more nimble than their older
counterparts because they don’t have the millstone of legacy around their
necks. Woe be unto the student who enters the real world (it’s not like being
at the university, unless you move from the college womb to the start-up
womb immediately), and woe be unto the start-up company that begins to
mature into sustainable development and soon realizes that you can’t just
start over.

xv

Foreword by Grady Booch

Richard and Kevin introduce us to a reality that’s often neglected in our
industry: the problem of evolving legacy systems, a domain they call
Brownfield development. The typical economically interesting system these
days is continuously evolving (you can’t shut it off) and ever-growing. The
authors identify the root of the problem as that of complexity, and offer an
approach that focuses on the fundamentals of abstraction and efficient com-
munication to nibble at this problem of transformation bit by bit. Their
model of Views, Inventory, Transforms, and Artifacts offers an approach to
reasoning about and executing on the transformation of Brownfield systems.
They propose a Brownfield lifecycle involving surveying, engineering, accept-
ance, and deployment that offers a means of governing this transformation.

As the old saying goes, the way you eat the elephant is one bite at a time.
Richard and Kevin bring us to the table with knife and fork and other tools,
and show us a way to devour this elephant in the room.

Grady Booch
IBM Fellow
January 2008

Eating the IT Elephant

Moving from Greenfield Development to Brownfieldxvi

I joined the computer industry as a computer programmer, straight from
school, in 1969. During a career that has spanned nearly 40 years, I have
worked primarily in the area of applications development and systems inte-
gration. I wrote my first application in 1969; it was a Computer Aided
Design (CAD) graphics application for hardware engineers to design Printed
Circuit Boards. This application gave the board designer a tool with the nec-
essary physical rules of the electronic components and how they could be
used. In the early 1970s, I developed CAD and other applications to assist
building architects in designing large public buildings, such as schools and
hospitals. These systems assisted the architects and civil engineers in the
design process of the building; by capturing the design, it was possible to
produce all the necessary drawings together with the bills of materials for the
building.

In the intervening 40 years, I have performed a variety of different roles,
including programmer, analyst, designer, architect, project manager, and
troubleshooter. The systems I developed were in a broad spectrum of indus-
tries, including manufacturing, banking, insurance, retail, utilities, and both
local and federal government. Today, I am an IBM Fellow1 in the IBM Global
Business Services division and an active member of the IBM Academy of
Technology.2 My primary responsibility is to technically shape and ensure the
technical health of large and complex systems integration and strategic out-
sourcing programs and bids. I am a Chartered IT Professional (CITP), a
Chartered Engineer (CEng), a Fellow of the British Computer Society
(FBCS),3 and a Fellow of the Institution of Engineering and Technology
(FIET).4

xvii

Foreword by Chris Winter

Looking back now on what we tried to achieve with the design and build
of electronic circuits and buildings in the early 1970s, I am disappointed and
somewhat disillusioned by the IT industry’s lack of success in its own adop-
tion of engineering-based methods supported by computer-based tools to
architect, design, build, integrate, and test IT systems. In today’s world, it
would be inconceivable to develop a complex system such as the Airbus 380
without the engineering disciplines and without the engineering tools pro-
vided by the IT industry. The IT industry is significantly less mature at
adopting engineering techniques to develop its complex systems. It can no
longer rely on relatively immature practices often supported by office pro-
ductivity tools such as word processors, presentation tools, and spreadsheets.
The IT industry needs a broader adoption of true engineering-based tech-
niques supported by tools designed for engineers.

It has been my personal experience in recent years that the overall cost and
complexity of building bespoke (custom) applications or customizing
Commercial Off The Shelf (COTS) packages has increased—as has the risk.
On further investigation, it is apparent that it is not the build cost that has
increased, but the increase in the size and complexity of the integration of
such projects into the systems landscape. From my own recent experience,
the ratio of effort of new build to integration is 3:1. For every dollar spent on
new functionality, the total cost is four dollars to cutover this function into
production. This cost excludes end-user training. In an environment where
both size and complexity of the systems landscape are continually increasing,
there is a resulting increase in the costs of maintenance. In addition, organi-
zations are burdened with a need to meet increasing levels of legislation and
regulation. All of this results in reduced budgets for new development
together with decreasing windows of opportunity to deploy new function in
the global 24 x 7 service culture. IT innovation is being stifled. The methods
and tools that are in use today, albeit limited, are in the main, primarily tar-
geted at Greenfield system’s landscapes. The reality is that most organiza-
tions in the twenty-first century have an existing, complex systems
landscape. When I refer to the systems landscape, I mean both the business
and its enabling IT systems. These IT systems, in turn, are comprised of
applications and their data deployed on often complex network and com-
puter infrastructure. The documentation of such systems is typically poor
and its ongoing maintenance is highly dependent on a small number of
knowledgeable “system experts.”5 The IT industry needs a more structured
approach to understanding these system landscapes.

This is the reality of the world in which the authors of this book, Richard
Hopkins and Kevin Jenkins, and I, architect, design, and implement new

Eating the IT Elephant

Moving from Greenfield Development to Brownfieldxviii

systems for our clients in existing complex systems landscapes. It is time that
the IT industry face up to the reality of the situation and the need for new
development methods and tools that address these issues and take our indus-
try into the twenty-first century.

An important first step in resolving this is to provide a name that
describes both the problem and its solution. In the search for a name, the
authors have turned to the building industry where new buildings are
increasingly being developed on Brownfield6 sites. This is analogous to the
majority of today’s new systems that are being developed on Brownfield sys-
tems landscapes; it is my experience that more than 90 percent of new devel-
opment is deployed into a Brownfield environment. The challenges are not
restricted to just the transformation of legacy systems, but with the integra-
tion into the Brownfield systems landscape itself.

This book describes a new approach to the development of future systems.
It is a structured approach that recognizes these challenges, it is based on
engineering principles, and it is supported by appropriate tooling. It is
specifically designed to solve the challenges of Brownfield development.

Chris Winter
CEng CITP FBCS FIET, IBM Fellow
Member of the IBM Academy of Technology

Foreword Endnotes
1 “IBM Appoints Six New Fellows Who Explore the Boundaries of

Technology.” http://www-03.ibm.com/press/us/en/pressrelease/21554.
wss, May 2007.

2 IBM Academy. http://www-03.ibm.com/ibm/academy/index.html.
3 British Computer Society. http://www.bcs.org/.
4 The Institution of Engineering and Technology. http://www.theiet.org/.
5 Lindeque, P. “Why do large IT programmes fail?” http://www.ingenia.

org.uk/ingenia/articles.aspx?Index=390, September 2006.
6 Brownfield is described by the National Association of Realtors® as

“The redevelopment of existing urban, suburban, and rural properties
already served by infrastructure including ‘brownfields’ sites, that are or
may be contaminated, stimulates growth and improves a community’s
economic vitality. Development in existing neighborhoods is an
approach to growth that can be cost-effective while providing residents
with a closer proximity to jobs, public services, and amenities.”

Foreword by Chris Winter xix

http://www-03.ibm.com/press/us/en/pressrelease/21554.wss
http://www-03.ibm.com/ibm/academy/index.html
http://www.bcs.org/
http://www.theiet.org/
http://www.ingenia.org.uk/ingenia/articles.aspx?Index=390
http://www.ingenia.org.uk/ingenia/articles.aspx?Index=390
http://www-03.ibm.com/press/us/en/pressrelease/21554.wss

Within every business, there is a desire for rapid change to meet cus-
tomer demands. Such changes usually involve changing supporting IT sys-
tems. When large business changes are required, the accompanying IT
changes tend to be significant, too. However, all too often, these big projects
hit problems, run over budget, are delayed, or simply get cancelled. Even in
2006, 65% of IT projects failed on one of these counts.1 Large projects have
an even poorer success rate. Such odds are very worrying when the stakes are
very high. This book identifies the fundamental issues at the heart of the IT
industry’s current approaches and provides a new way forward. All people
involved in large-scale business and IT change should read this book.

The Day the Elephant Was Born

The IT industry has many key dates, but the introduction in 1964 of
IBM’s new-generation mainframe, called the System/360, marked the start of
a new era. Until that point, buying a new business computer meant rewrit-
ing your existing software. The System/360 changed all that with the intro-
duction of a family of compatible computers and associated devices: A
program that ran on one would run on any. The industry followed suit with
equivalent products, and the nature of IT changed in one fell swoop.

IT investments could now be easily preserved. The programs that ran on
the System/360 still run on IBM’s mainframe platforms today.

This was an imperceptible change at first, but it was a hugely significant
milestone. At this point, IT complexity started accumulating within the
enterprise. Systems grew with the business. Thousands of person-years of

Preface

xxi

time, effort, and money flowed into these IT systems. They got complex.
They became elephants.

In the meantime, IT fashions came and went. Over the years, the original
structured programs have been augmented by object-oriented programming,
wrapped by component-based development, and advertised by Service
Oriented Architecture (SOA). Each of these movements has had its own
strategy for dealing with the complexity, but none ever really took it to heart.

Today’s IT systems are so complex that they simply defy everyday compre-
hension, spilling out of our minds as we try to get our heads around them.
Responsibility for maintaining them is split among a variety of skilled
groups and myriad products and programs that coexist to support the func-
tions of the enterprise. To deal with this Hydra, we draw high-level architec-
ture diagrams that comfort us by making things look simple. These diagrams
are an illusion, a trick, a facade. They are, at best, approximations for easy
consumption and high-level communication. At worst, they instill false opti-
mism about our ability to make changes to that complexity.

Such “fluffy cloud” diagrams cannot hide genuine complexity forever. To
achieve your business goals and change those systems, you must understand,
communicate, and harness the real complexity. No one can understand the
whole beast, so vast amounts of well-coordinated teamwork and unambigu-
ous communication are required to complete such tasks. This combination of
high levels of complexity and the need for clear communication of that com-
plexity among hundreds of individuals destroys big projects.

Do I Need to Move from Greenfield to Brownfield?

IT systems are generally not implemented on Greenfields any more. The
accumulated complexity since 1964 means that the environment for most
big IT projects is one of immense challenge, entangled in an almost uncount-
able number of environmental constraints.

This is the underlying reason for the demise of most large-scale IT proj-
ects. Only 30% of large IT projects succeed.

Big projects are usually executed on “contaminated” sites, where you need
to be careful of where and how you build; a change in one place can ripple
through to other systems in unexpected ways. Such sites are more brown than
green, and the IT industry needs to adopt a Brownfield-oriented approach to
address them successfully.

This book introduces such a Brownfield approach and explains why
current methods are still essentially Greenfield. It is specifically written for

Eating the IT Elephant

Moving from Greenfield Development to Brownfieldxxii

people who want to change their business and know that they can do it only
by building on what has gone before. If any of the following is true, this book
is for you:

■ You are a CIO, CTO, IT director, project executive, project director, chief
architect, or lead analyst who is contemplating a significant change in
your IT landscape.

■ You cannot afford to replace your whole IT landscape.

■ Your systems talk to a fair number of systems outside your direct control.

■ You would like to reengineer your existing IT environment so that it will
remain flexible for the future.

■ You are deeply unhappy with the current failure rates of large IT projects.

■ You are contemplating sending a significant part of your IT development
and testing work off-shore.

Eating the IT Elephant was written by two full-time Executive IT
Architects from IBM who can and have ticked every single one of those
boxes on a number of occasions. We have been accountable for the technical
direction and day-to-day implementation of some of the largest systems
integration and reengineering projects that IBM has undertaken. We believe
strongly that existing Greenfield development approaches are an increas-
ingly poor means of addressing today’s business problems through IT solu-
tioning. To be blunt, we have a number of years of hard-won experience, and
we have grown tired of the recurring problems of IT delivery. In recent
years, we have deliberately sought a different approach; the following pages
detail the fruits of our labors and that of our colleagues. Heretics we might
be, but pragmatists we are also, and, hand on heart, we can say that the
insight we share here has significantly accelerated and simplified a number
of recent IBM engagements.

We don’t think the high failure rate of major IT projects is doing our
industry any favors and would like to popularize the approach that has served
us well. If we can help mitigate the impact of the unavoidably complex IT
environment and knock down some big project communication barriers, we
believe that success rate will improve.

Preface xxiii

A Reader’s Digest

This book is not a technical manual nor a cookbook; it does not contain a
single line of code, and we have tried to minimize the use of technical dia-
grams and jargon. This is a book about changing the way we approach large
and complex business and IT reengineering projects.

To make the book as accessible to as many people as possible, we have split
it into two parts.

Part I is for all readers. Initially, it defines what is wrong with large-scale
IT projects and determines the root cause of failure (see Chapters 1, “Eating
Elephants Is Difficult,” and 2, “The Confusion of Tongues”). The heart of the
book (Chapters 3, “Big-Mouthed Superhero Required,” and 4, “The Trunk
Road to the Brain”) concentrate on defining an alternative solution—an
Elephant Eater—and the Brownfield approach that goes with it. In Chapter
5, “The Mythical Metaman,” we look at the new species of businesses that
emerge as a result.

Part II explains the technical and practical aspects of Brownfield for some-
one who might want to implement such an approach. It starts by analyzing
existing Elephant Eating techniques (see Chapter 6, “Abstraction Works
Only in a Perfect World”) and explains why Brownfield is different (see
Chapter 7, “Evolution of the Elephant Eater”). In Chapters 8, “Brownfield
Development,” and 9, “Inside the Elephant Eater,” we look inside the
Elephant Eater and at some of the new technologies that have been used to
implement it. The book concludes by explaining how the Brownfield
approach can be implemented on a project and the benefits it can bring (see
Chapter 10, “Elephant Eater at Work”).

For those who take the key messages on board, a wealth of technical infor-
mation has already been published that will enable any organization to adopt
the core technologies that we have used (or equivalent ones) to implement
Brownfield in their own way (see the “Endnotes” sections of Chapters 8 and
9). We hope that enabling business and IT change via a new project
approach, not technology, is at the heart of this book.

Part I: Introducing Brownfield

Chapter 1, “Eating Elephants Is Difficult,” introduces the metaphor that
performing a large IT project can be compared to eating an elephant. It looks
at why big projects fail and provides best practices on how to overcome some
of the common reasons for failure.

Eating the IT Elephant

Moving from Greenfield Development to Brownfieldxxiv

Chapter 2, “The Confusion of Tongues,” explains why this accumulated IT
complexity is the root cause of failure, focusing on the human communica-
tion problems it creates. It goes on to specifically examine the “great divide”
between business and IT that compounds the problem.

Chapter 3, “Big-Mouthed Superhero Required,” introduces the core con-
cepts of Brownfield. It looks at how Brownfield can be implemented to create
an efficient Elephant Eater.

Chapter 4, “The Trunk Road to the Brain”: We despair at IT professionals’
inability to communicate as effectively and efficiently as those in other simi-
lar professions (such as real architects). Chapter 4 describes how the
Brownfield approach combined with the VITA architecture opens up new
forms of communication, remote collaboration, and visualization of complex
IT problems.

Chapter 5, “The Mythical Metaman”: The first part of the book concludes
with an examination of the likely impact of Brownfield. It forecasts a new
breed of businesses that are infinitely more customer focused and agile than
today’s and explains how such businesses might come into being.

Part II: The Elephant Eater

Chapter 6, “Abstraction Works Only in a Perfect World”: This more tech-
nical half of the book opens by defining the characteristics of an Elephant
Eater. It considers existing “Elephant Eating” approaches and notes that they
tend to compound project difficulties via their extensive use of decomposi-
tion and abstraction.

Chapter 7, “Evolution of the Elephant Eater,” looks at Brownfield’s tech-
nical and project roots, and explains its key differences from previous ideas. It
ends with some likely scenarios and real-life project examples for which
Brownfield has been or could be especially beneficial.

Chapter 8, “Brownfield Development,” introduces how the Brownfield
development approach can be deployed on a project. It shows how to strike a
new balance between Agile- and Waterfall-based development techniques
and provides some of the best elements of each. It also describes the core
phases of Survey, Engineer, Accept, and Deploy, and states the benefits of the
approach.

Chapter 9, “Inside the Elephant Eater”: If Chapter 8 described what hap-
pens on a Brownfield project, Chapter 9 explains how it happens. This chap-
ter looks inside the workings of an Elephant Eater and explains how it eats
the elephant. The chapter also serves as an easy-to-read introduction to the
new semantic technologies that underpin Web 2.0 and the semantic web.

Preface xxv

Chapter 10, “Elephant Eater at Work”: The book concludes with a look at
the practical applications of the Elephant Eater and how it can help solve
some of today’s most difficult IT problems. This chapter includes a summary
of the key benefits of the Brownfield approach.

Walking the Brownfields

We hope that you will enjoy reading this book as much as we enjoyed
writing it. If you’d like to see more, go to the website www.elephanteaters.
org. Additionally, if you would like to see more of the dynamic nature of
Brownfield, there are two exhibitions in Second Life. One Second Life site is
dedicated to the book [Cypa 30,180,302]. The other Second Life site is dedi-
cated to the use of Brownfield within IBM at [IBM 1 140, 150, 60]. We look
forward to meeting you there.

Endnotes
1 The initial CHAOS report from Standish Group in 1994 reported a 16%

success rate for IT projects. This success rate has generally increased over
the intervening years. In 2006, Standish Group reported 35% of IT
projects being on time and within budget, and meeting user require-
ments. The only blip in that record appeared in 2004, when failure rates
increased. Standish Group explained that in 2004 there were more big
projects—they fail more often because they are often forced to abandon
iterative development techniques.
In 2007, a rival report to CHAOS by Sauer, Gemino, and Horner Reich
looked at 412 projects. It found that more than 65% of IT projects suc-
ceeded, but it found no successful projects greater than 200 person-
years. This book looks specifically at those large projects.

Hayes, F. Chaos Is Back. www.computerworld.com/managementtopics/
management/project/story/0,10801,97283,00.html.

Krigsman, M. Rearranging the Deck Chairs: IT Project Failures. http://
blogs.zdnet.com/projectfailures/?p=513.

Rubinstein, D. Standish Group Report. www.sdtimes.com/article/
story-20070301-01.html.

Sauer, C., A. Gemino, and B. Horner Reigh. “The Impact and Size and
Volatility on IT Project Performance.” Communications of the ACM 50 no.
11 (November 2007): 79–84.

Eating the IT Elephant

Moving from Greenfield Development to Brownfieldxxvi

http://blogs.zdnet.com/projectfailures/?p=513
http://blogs.zdnet.com/projectfailures/?p=513
www.sdtimes.com/article/story-20070301-01.html
www.sdtimes.com/article/story-20070301-01.html
www.elephanteaters.org
www.elephanteaters.org
www.computerworld.com/managementtopics/management/project/story/0,10801,97283,00.html
www.computerworld.com/managementtopics/management/project/story/0,10801,97283,00.html

Chapter Contents

■ Considerations for an Elephant Eater 110

■ Systems Integration and Engineering Techniques 112

■ Abstraction Is the Heart of Architecture 118

■ Do We Need a Grand Unified Tool? 128

■ The Connoisseur’s Guide to Eating Elephants 129

■ Endnotes 131

109

Abstraction Works Only
in a Perfect World

“There is no abstract art. You must always start with some-
thing. Afterward you can remove all traces of reality.”
—Pablo Picasso

6

In the first part of the book, we saw how IT systems have grown increas-
ingly larger and more complex over time. This growing complexity is chal-
lenging the capability of businesses to innovate as more of the IT budget is
channeled into regulatory compliance, replatforming, and maintenance of
the status quo. As this book has shown, changing these systems is not prima-
rily a technical difficulty, but one of coordinating and disambiguating
human communication. In overcoming such difficulties, we have introduced
the concept of an Elephant Eater and the Brownfield development approach.

This second part of the book explains the technical and practical aspects
of Brownfield for someone who might want to implement such an
approach. This chapter examines the necessary technical context, require-
ments, and characteristics of the Elephant Eater. The chapter then goes on
to analyze existing IT elephant-eating approaches and highlights the prob-
lems these approaches present with their extensive use of decomposition
and abstraction.

Considerations for an Elephant Eater

The following sections outline considerations for the Elephant Eater. The
problems with large scale developments are many, and the first half of the
book illustrated some of the problems that such developments pose. The
high failure rate for such projects is the reason why the creation of an
Elephant Eater was necessary. Like any problem, the starting point for a solu-
tion is the understanding of the requirements, so if an Elephant Eater is
going to be created, it needs to cater to the considerations in this section.

Lack of Transparency

On very large-scale developments, the problem being solved usually is
unclear. At a high level, the design and development task might seem to be
understood—for example, “build a family home,” “design a hospital,” or
“implement a customer relationship management system.” However, such
terms are insufficient to describe what is actually required.

For any complex problem, some degree of analysis and investigation is
essential to properly frame the detailed requirements of the solution and
understand its context. In conventional building architectures, the site sur-
vey is a fundamental part of the requirements-gathering process.

A thorough analysis of a complex site takes a great deal of time and effort.
Even using traditional Greenfield methods, the analysis effort is often as

Eating the IT Elephant

Moving from Greenfield Development to Brownfield110

large as the build effort. Despite this effort, however, IT architects and busi-
ness analysts rarely do as thorough a job of surveying a site as building archi-
tects do. As discussed in previous chapters, a thorough analysis that
encompasses functional and nonfunctional requirements and multiple
constraints requires vast documentation. As such, the real requirements in
any situation are always less than transparent.

Unfortunately, in IT, relatively little time is spent on the equivalent of a
site survey.

Multiple Conflicting Goals

Another problem is conflicting requirements. In any complex situation, a
single optimal solution is rarely a given for such a problem. The problem
itself might even be poorly described.

In the example of the house building discussion in Chapter 1, “Eating
Elephants Is Difficult,” the mother-in-law and the landowner could have very
different perspectives on what is desirable. Will their combined requirements
be entirely coherent and compatible? Whose job will it be to resolve these
conflicts?

We have seen the same problem on multiple $100 million programs. Any
big program owned by more than one powerful stakeholder is likely to fail
because of confusing and conflicted directions. As we saw in Chapter 1, life is
much easier when one powerful person is consistently in charge. Of course,
assigning a single stakeholder is not easy, but failing to identify this stake-
holder at the start of the project only ignores the problem.

Spotting requirements that are clearly expressed but in conflict is reason-
ably easy, and it is usually possible to resolve these through careful negotia-
tion. No one would seriously demand two mutually incompatible set of
requirements, right?

Let’s return to the analogy of home building as an example. When design-
ing a house, increasing the size of the windows will increase the feeling of
light and space within the building and improve the view. But bigger win-
dows will contribute to energy loss. Improved insulation in the walls or ceil-
ings might compensate for this, but this could result in increased building
costs or a reduced living area. Alternatively, the architect could request spe-
cial triple glazing. That would make the windows more thermally efficient
but could make the glass less translucent. As more concerns arise, the inter-
plays between them become more complex. As a result, the final solution

6: Abstraction Works Only in a Perfect World 111

becomes a trade-off between different aspects or characteristics of the solu-
tion. Possibly, the requirements are actually mutually incompatible—but
this can be known only in the context of a solution.

These conflicting requirements also come up repeatedly when designing
large computer systems. We hear comments similar to these: “We need the
system to be hugely scaleable to cope with any unexpected demand. It must
be available 24 hours a day, 7 days a week—even during upgrades or mainte-
nance—but must be cheaper to build, run, and maintain than the last sys-
tem.” Obviously, such requirements are always in conflict.

Dynamic Aspects

The difficulty in coping with these requirements is compounded by the
fact that they don’t stand still. As you begin to interfere and interact with the
problem, you change it. For example, talking to a user about what the system
currently does could change that user’s perception about what it needs to do.
Interacting with the system during acceptance testing might overturn those
initial perceptions again. Introducing the supposed solution into the envi-
ronment could cause additional difficulties.

In IT systems, these side effects often result from a lack of understanding
that installing a new IT system changes its surroundings. Subsequent
changes also might need to be made to existing business procedures and best
practices that are not directly part of the solution. These changes might alter
people’s jobs, their interaction with customers, or the skills they require.

In addition to these impacts, the time involved in such projects usually
means that the business environment in which the solution is to be placed
has evolved. Some of the original requirements might need to change or
might no longer be applicable

Therefore, one of the key requirements for any Elephant Eater is tight and
dynamic linkage between the business and IT.

Systems Integration and Engineering Techniques

But the problem we’re talking about isn’t new, is it? People have been try-
ing to deliver complex systems for more than 40 years. There must already be
some pretty reasonable Elephant Eaters out there.

Now that we have a good understanding of the problem, it’s a good idea to
take a closer look at some of the solutions that are already out there and see

Eating the IT Elephant

Moving from Greenfield Development to Brownfield112

why, given the meager 30 percent success rate noted in the Preface, we need a
new Elephant Eater.

Generally, these big problems need to be approached via formal tech-
niques. These techniques work from two different directions. They either
work their way down from the top, gaining increasing levels of detail, or they
start from the bottom, examining needs in detail and working their way
upward, building toward a complete solution.

Walk the Easy Path or…
If you’re infinitely lucky, the bottom-up approach might work.

Considering a very simple example, you could select a package that seems
close to what you need. You could then walk through the business processes
you want to execute. As you go, you can write down all the changes you need
to make to the package, and, presto! After you’ve made the changes, you’ve
got a solution! You’ve designed the whole system from the ground up
because the package dictates your choices for how you do pretty much every-
thing else.

If you don’t allow the package to dictate your choices, chances are, you
will find yourself in a very sticky mess: Each major change you make will
require extra development, testing, and long-term maintenance costs. If
you’ve chosen the bottom-up approach, you must stick to it religiously and
accept the changes it will impose on the process and the business.

Ultimately, a package with a good fit, whether imposed or a lucky choice,
is the very best in bottom-up solutions. Start halfway up the hill—the pack-
age already approximates what you want. Then modify the solution itera-
tively with the end user and find a happy endpoint near the top of the hill.

However, chances are, for a really complex project, using the bottom-up
approach with a single package will not work. You must break down the
problem into smaller pieces and then integrate them to create a single solu-
tion. You can divide up the problem in two fundamental ways.

…Break the Boulders and Make Them Smooth
You can decompose the problem into smaller, more easily managed Views

through two methods: splitting and abstraction. Splitting simply divides
complex big chunks into smaller, more manageable pieces. Abstraction
removes detail from each larger chunk to form more manageable and under-
standable pieces. These two techniques, splitting and abstraction, allow
almost any gargantuan problem to be subdivided into smaller, better con-
tained problems. Think of it as slicing the problem into little squares.

6: Abstraction Works Only in a Perfect World 113

Abstraction gives you horizontal cuts, while View splitting gives you verti-
cal ones. Everything becomes a manageable “chunk.” This is the basis for most
systems integration and engineering methods. Many of these methods are pro-
prietary, but some, such as The Open Group Architecture Framework
(TOGAF) from the Open Foundation, are freely available. Each approach tries
to create a continuum of knowledge, from high-level representations to more
detailed. These paths vary but can be characterized as moving in some way
from logical to physical, general to specific, or taxonomy to specification.

When good methods or tools are used, there is traceability from the high
level to the low level. This helps a reader understand why something has
been designed the way it has.

Such movement is unsurprisingly characterized as a progression, starting
from the high-level principles and overall vision of what needs to be
achieved, and moving down through the perspectives of business, process,
roles, and models of information. Figure 6.1 highlights the basic stages of the
TOGAF method.

Eating the IT Elephant

Moving from Greenfield Development to Brownfield114

Requirements

A
Initiation

and
Framework

B
Baseline

Description

C
Target

Architecture

D
Solutions

E
Migration
Options

F
Implementation

G
Architecture
Maintenance

Figure 6.1 Even with its cyclic diagram, TOGAF is part of the progressive school of architecture.

Some approaches go even further. They segment each level of abstraction
into a number of separate perspectives. Of these “frameworks,” the enterprise
architecture framework produced by John Zachman of IBM in the 1980s is
probably the most famous. Called the Zachman Framework, it considers the
additional dimension of Data, Function, Network, People, Time, and
Motivation. Figure 6.2 illustrates how the Zachman Framework segments
the architecture into these perspectives.

6: Abstraction Works Only in a Perfect World 115

What?
Data

How?
Function

Where?
Network

Who?
People

When?
Time

Why?
Motivation

Planner

Owner

Designer

Builder

Sub-
contractor

Enterprise

Scope

Enterprise
Models

System
Models

Technology
Models

Detailed
Represent-

ations

Actual
Systems

Figure 6.2 The Zachman Framework of Enterprise Architecture segments the architecture into a
variety of perspectives.

These approaches enable you to decompose the full width and breadth of
the problem (including the existing constraints) into separate Views so that a
suitably skilled guru can independently govern and maintain them.

At the very top of this top-down approach is a simple sheet of paper that
purports to show or describe the scope of the whole problem for that particu-
lar perspective. A single sheet of paper might even purport to summarize the
10,000-foot view for all the perspectives.

Below that top sheet are many more sheets that describe each element on
the sheet above. This technique is so well recognized that it’s applied to
almost everything in complex problems, whether we’re talking about the
shape of the system, the business processes that it executes, or the description
of the plan that will build it.

In this hierarchy of paper, the top tier is labeled Level 0; the next tier
down, Level 1; and so on. At each layer, the number of sheets of paper
increases, but each of these sheets is a manageable View. The problem has
been successfully decomposed. In the example in Figure 6.3, our single-page
business context that describes the boundaries of the problem we’re solving is
gradually decomposed into 60,000 pages of code, deployment information,
and operational instructions that describe the whole solution. At each step of
the way, the intermediate representations all correspond to a View.

After the problem has been decomposed into single sheets, or Views, rules
must be written and applied to specify how they work together.

Surely that solves our problem. The elephant has been eaten. Complexity
is reduced, so each area becomes manageable. Each person is dealing with
only a bit of the problem.

This is, of course, precisely what the world’s largest systems integrators
do. They define their Views in terms of work products or deliverables. They
come from different perspectives and at different levels of abstraction. The
systems integrators have design and development methods that describe who
should do what to which View (or work product) and in what order.

So if the problem is essentially solved, why does it go wrong so often?

Eating the IT Elephant

Moving from Greenfield Development to Brownfield116

Figure 6.3 Decomposition of a complex problem space

6: Abstraction Works Only in a Perfect World 117

e
e

e

1,500,000 Lines of Code

250 x Components
500 x Interfaces
3,000 x Operations

35 x Subsystems

200 x Use Cases
1,500 x Main Steps
9,000 x Alternative Steps

1 x Systems Context

50 x Business Events

1 x Business Context

50 Business
Processes
1,000 States

B
u

sin
ess

(1 p
ag

e)
S

ystem
(60,000 p

ag
es)

1,800 Classes
20,000 Operations

Abstraction Is the Heart of Architecture
In all these cases, we move from the general to the specific, with the next

layer of detail expanding upon the previous level of abstraction. This move-
ment from general to specific gives architecture its power to simplify, com-
municate, and make ghastly complexity more aesthetically pleasing.

Abstraction is the heart of architecture. This powerful and persuasive
concept has been at the center of most of the advances in complex systems
architecting for the last 15 years. It underpins the history of software
engineering—objects, components, and even IT services have their roots in
abstraction. Because abstraction is one of our most powerful tools, we should
consider its capabilities and limitations.

As systems have become more complex, additional layers of abstraction
have been inserted into the software to keep everything understandable and
maintainable. Year by year, programmers have gotten further away from the
bits, registers, and native machine code, through the introduction of lan-
guages, layered software architectures, object-oriented languages, visual pro-
gramming, modeling, packages, and even models of models (metamodeling).

Today, programs can be routinely written, tested, and deployed without
manually writing a single line of code or even understanding the basics of
how a computer works. A cornucopia of techniques and technologies can
insulate today’s programmers from the specifics and complexities of their
surrounding environments. Writing a program is so simple that we can even
get a computer to do it. We get used to the idea of being insulated from the
complexity of the real world.

Mirror, Mirror on the Wall, Which Is the Fairest Software of All?

Software engineering approaches the complexity and unpredictability of
the real world by abstracting the detail to something more convenient and
incrementally improving the abstraction over time.

Working out the levels of abstraction that solve the problem (and will
continue to solve the problem) is the key concern of the software architect.
IBM’s chief scientist Grady Booch and other leaders of the software industry
are convinced that the best software should be capable of dealing with great
complexity but also should be inherently simple and aesthetically pleasing.1

Thus, over time, we should expect that increasing levels of abstraction will
enable our software to deal with more aspects of the real world. This is most
obviously noticeable in games and virtual worlds, where the sophistication of
the representation of the virtual reality has increased as individual elements
of the problem are abstracted. Figure 6.4 shows how games architectures
have matured over the last 20 years.

Eating the IT Elephant

Moving from Greenfield Development to Brownfield118

6:
A

bstraction W
orks O

nly in a Perfect W
orld

119

Login Server

User Server

Region

Data Server

Simulator

Space
Server

Physics
Engine

Collision
Detection

Sound
System

Texture
System

Avatar
Appearance

Message
System Movie

Image
System

3D Graphics

Sound

Game

Graphics

Simulation 1990s Game

2000s Multiuser
Online Game (simplified)

Figure 6.4 Games architectures have matured immensely over the last 20 years.

The current sophisticated, shared online games of the early twenty-first
century exhibit greater descriptive power compared to the basic 2D games of
the 1970s. Hiding the complexity of the physics engine from the graphical
rendering system, and hiding both of these from the user server and the sys-
tem that stores the in-world objects, enables increasing levels of sophisticated
behavior.

Abstraction has its drawbacks, however. Each level of abstraction deliber-
ately hides a certain amount of complexity. That’s fine if you start with a
complete description of the problem and work your way upward, but you
must remember that this isn’t the way today’s systems integration and archi-
tecting methods work.

These methods start from the general and the abstract, and gradually
refine the level of detail from there. Eventually, they drill down to reality.
This sounds good. Superficially, it sounds almost like a scientific technique.
For example, physicists conduct experiments in the real world, which has a
lot of complexity, imperfection, and “noise” complicating their experiments.
However, those experiments are designed to define or confirm useful and
accurate abstractions of reality in the form of mathematical theories that will
enable them to make successful predictions. Of course, the key difference
between software engineering and physics is that the physicists are iteratively
creating abstractions for something that already exists and refining the
abstraction as more facts emerge. The architects, on the other hand, are
abstracting first and then creating the detail to slot in behind the abstraction.
Figure 6.5 should make the comparison clearer.

The IT approach should strike you as fundamentally wrong. If you need
some convincing, instead of focusing on the rather abstract worlds of physics
or IT, let’s first take a look at something more down to earth: plumbing.

Plumbing the Depths

The IT and plumbing industries have much in common. Participants in
both spend a great deal of time sucking their teeth, saying, “Well, I wouldn’t
have done it like that,” or, “That’ll cost a few dollars to put right.” As in
many other professions, they make sure that they shroud themselves in inde-
cipherable private languages, acronyms, and anecdotes.

Eating the IT Elephant

Moving from Greenfield Development to Brownfield120

Figure 6.5 Who’s right? Physicists or IT architects?

Imagine for a moment a heating engineer who has been asked to install a
radiator in a new extension. He has looked at the plans and knows how he’s
going to get access to the pipes. From the specifications he’s read, he knows
what fixtures he needs. After doing some pretty easy calculations based on
room size, window area, and wall type, he even got hold of the right size radi-
ator to fit on the wall that will deliver the right amount of heat for the room.
It’s an hour’s work, at most.

The job is done and he leaves a happy man. A few days later, the home-
owner is complaining that the room is still cold. Only when the plumber
arrives back on-site and investigates the boiler does he find out that the
output of the boiler is now insufficient for the needs of the house. He rec-
ommends that the homeowner order a new 33-kilowatt boiler and
arranges to come back in a week.

6: Abstraction Works Only in a Perfect World 121

I can see a
pattern
emerging …

Hey, let’s
make reality
fit this pattern!

Physicist

IT Architect

A week later, he’s back to begin fitting the new boiler. Right at the start
of the task, it becomes obvious that the old boiler was oil-fired and the new
one is gas. This is slightly inconvenient because the property is not connected
to the gas main, even though it runs past the property.

Another few weeks pass while the homeowner arranges for the house to be
connected to the gas supply. On the plumber’s third visit, everything is
going swimmingly. Then he notices that there are no free breaker slots on the
electricity circuit board to attach the new boiler. A week later, he replaces the
circuit board. The boiler is installed, but another problem arises: Although
the heat output of the boiler is sufficient, a more powerful pump is required
to distribute the heat throughout the house.

And that’s when the problems really start.

Don’t Abstract Until You See the Whole Elephant
Judging from the architect’s top-level view, the solution seemed pretty

obvious. Only when the job was almost done was it obvious that it hadn’t
worked. Those other aspects of the problem—the supply, the pump, and the
circuit board—were invisible from the Level 0 perspective the plumber
received, so he ignored them in doing his analysis.

After all, nothing was fundamentally wrong with the plumber’s solution;
he just didn’t have a good specification of the problem. The process of
abstracting the problem to the single architectural drawing of the new room
meant that he had no visibility of the real problem, which was somewhat big-
ger and more complex. He simply couldn’t see the hidden requirements—the
environmental constraints—from his top-level, incorrectly abstracted view of
the problem.

Unfortunately, abstractions, per se, always lack details of the underlying
complexity. The radiator was a good theoretical solution to the problem, but
it was being treated as a simple abstract component that, when connected to
the central heating system, would issue the right amount of heat. Behind
that simple abstraction lays the real hidden complexity of the boiler, gas
main, and circuit board that leaked through and derailed this abstracted
solution.2 Will such complexity always leak up through the pipe and derail
simple abstract solutions?

Well, imagine for a moment that the abstraction was absolute and that it
was impossible to trace backward from the radiator to the source of the heat.
Consider, for example, that the heat to each radiator was supplied from one of
a huge number of central utilities via shared pipes. If the complexity of that
arrangement was completely hidden, you would not know who to complain to

Eating the IT Elephant

Moving from Greenfield Development to Brownfield122

if the radiator didn’t work. Of course, on the positive side, the utility company
supplying your heat wouldn’t be able to bill you for adding a new radiator!

Is this such an absurd example? Consider today’s IT infrastructures, with
layers of software, each supposedly easier to maintain by hiding the complex-
ities below. Who do you call when there is a problem? Is it in the applica-
tion? The middleware? Maybe it is a problem with the database?

If you become completely insulated from the underlying complexity—or
if you simply don’t understand it, then it becomes very difficult to know
what is happening when something goes wrong. Such an approach also
encourages naïve rather than robust implementations. Abstractions that fully
hide complexity ultimately cause problems because it is impossible to know
what is going wrong.

Poorly formed abstractions can also create a lack of flexibility in any com-
plex software architecture. If the wrong elements are chosen to be exposed to
the layers above, people will have to find ways around the architecture, com-
promising its integrity. Establishing the right abstractions is more of an art
than a science, but starting from a point of generalization is not a good place
to start—it is possibly the worst.

Successful Abstraction Does Not Come from a Lack
of Knowledge
In summary, abstraction is probably the single most powerful tool for the

architect. It works well when used with care and when there is a deep under-
standing of the problem.

However, today’s methods work from the general to the specific, so they
essentially encourage and impose a lack of knowledge. Not surprisingly, there-
fore, the initial abstractions and decompositions that are made at the start of a
big systems integration or development project often turn out to be wrong.
Today’s methods tend to ignore complexity while purporting to hide it.

The Ripple Effect

Poor abstractions lead to underestimations and misunderstandings galore.
Everything looks so simple from 10,000 feet. On large projects, a saying goes
that “All expensive mistakes are made on the first day.” From our experience,
it’s an observation that is very, very true.

Working with a lack of information makes abstraction easy but inaccurate.
All projects are most optimistic right at the start. These early stages lack

detailed information; as a result, assumptions are made and the big abstrac-
tions are decided.

6: Abstraction Works Only in a Perfect World 123

Assumptions are not dangerous in themselves—as long as they are
tracked. Unfortunately, all too often they are made but not tracked, and their
impact is not understood. In some ways, they are treated as “risks that will
never happen.” Assumptions must always be tracked and reviewed, and their
potential impact, if they’re untrue, must be understood. Chances are, some of
them will turn out to be false assumptions—and, chances are, those will be
the ones with expensive consequences.

We need to move away from this optimistic, pretty-diagram school of
architecture, in which making the right decisions is an art form of second
guessing based on years of accumulated instinct and heuristics.3 We need a
more scientific approach with fewer assumptions and oversimplifications. A
colleague, Bob Lojek, memorably said, “Once you understand the full prob-
lem, there is no problem.”

Fundamentally, we need to put more effort into understanding the prob-
lem than prematurely defining the solution. As senior architects for IBM, we
are often asked to intervene in client projects when things have gone awry.
For example:

An Agile development method was being used to deliver a leading-
edge, web-based, customer self-service solution for a world-leading
credit card processor. The team had all the relevant skills, and the
lead architect was a software engineering guru who knew the mod-
ern technology platform they were using and had delivered many
projects in the past.

Given the new nature of the technology, the team had conformed
strictly to the best-practice patterns for development and had
created a technical prototype to ensure that the technology did
what they wanted it to do. The design they had created was hugely
elegant and was exactly in line with the customer requirement.

A problem arose, though. The project had run like a dream for
6 months, but it stalled in the final 3 months of the development.
The reporting system for the project recorded correctly that
80 percent of the code had been written and was working, but the
progress meter had stopped there and was not moving forward.
IBM was asked to take a look and see what the problem was.

Eating the IT Elephant

Moving from Greenfield Development to Brownfield124

As usual, the answer was relatively straightforward. The levels of
abstraction, or layering, of the system had been done according to
theoretical best practice, but it was overly sophisticated for the job
that needed to be done. The architecture failed the Occam’s Razor
test: The lead architect had induced unnecessary complexity, and his
key architectural decisions around abstraction (and, to some extent,
decomposition) of the problem had been made in isolation of the
actual customer problem.

Second, and more important, the architect had ignored the inherent
complexity of the solution. Although the user requirements were
relatively straightforward and the Level 0 architecture perspectives
were easy to understand, he had largely ignored the constraints
imposed by the other systems that surrounded the self-service
solution.

Yes, the design successfully performed a beautiful and elegant
abstraction of the core concepts it needed to deal with—it’s just
that it didn’t look anything like the systems to which it needed to
be linked. As a result, the core activity for the previous 3 months
had been a frantic attempt to map the new solution onto the limita-
tions of the transactions and data models of the old. The mind-
bending complexity of trying to pull together two mutually
incompatible views of these new and old systems had paralyzed the
delivery team. They didn’t want to think the unthinkable. They had
defined an elegant and best-practice solution to the wrong problem.
In doing so, they had ignored hundreds of constraints that needed
to be imposed on the new system.

When the project restarted with a core understanding of these con-
straints, it became straightforward to define the right levels of
abstraction and separation of concerns. This provided an elegant and
simple solution with flexibility in all the right places—without
complicating the solution’s relationship with its neighbors.

—R.H.

6: Abstraction Works Only in a Perfect World 125

As a final horror story, consider a major customer case system for an
important government agency:

We were asked to intervene after the project (in the hands of
another systems integrator) had made little progress after 2 years of
investment.

At this point, the customer had chosen a package to provide its
overarching customer care solution. After significant analysis, this
package had been accepted as a superb fit to the business and user
requirements. Pretty much everything that was needed to replace
the hugely complex legacy systems would come out of a box.

However, it was thought that replacing a complete legacy system
would be too risky. As a result, the decision was made to use half of
the package for the end-user element of the strategic solution; the
legacy systems the package was meant to replace would serve as its
temporary back end (providing some of the complex logic and many
of the interfaces that were necessary for an end-to-end solution).

The decision was to eat half the elephant. On paper, from 10,000
feet, it looked straightforward. The high-level analysis had not
pointed out any glitches, and the layering of the architecture and
the separation of concerns appeared clean and simple.

As the project progressed, however, it became apparent that the
legacy system imposed a very different set of constraints on the
package. Although they were highly similar from an end user and
data perspective, the internal models of the new and old systems
turned out to be hugely different—and these differences numbered
in the thousands instead of the hundreds.

Ultimately, the three-way conflict between the user requirements
(which were based on the promise of a full new system), the new
package, and the legacy system meant that something had to give.
The requirements were deemed to be strategic and the legacy sys-
tem was immovable, so the package had to change. This decision
broke the first rule of bottom-up implementations mentioned
earlier.

Eating the IT Elephant

Moving from Greenfield Development to Brownfield126

Although the system was delivered on time and budget, and
although it works to this day for thousands of users and millions
of customers, the implementation was hugely complicated by the
backflow of constraints from the legacy systems. As a result, it
then proved uneconomic to move the system to subsequent major
versions of the package. The desired strategic solution became a
dead end.

—K.J. and R.H.

In each of these cases, a better and more detailed understanding of the
overall problem was needed than standard top-down approaches could pro-
vide. Such an understanding would have prevented the problems these proj-
ects encountered.

Each of these three problems stems from a basic and incorrect assumption
by stakeholders that they could build a Greenfield implementation. At the
credit card processor, this assumption held firm until they tried to integrate
it with the existing infrastructure. The government department failed to
realize that its original requirements were based on a survey of a completely
different site (the one in which the legacy system was cleared away), resulting
in large-scale customization of the original package that was supposedly a
perfect fit.

Fundamentally, today’s large-scale IT projects need to work around the
constraints of their existing environment. Today’s IT architects should regard
themselves as Brownfield redevelopers first, and exciting and visionary archi-
tects second.

Companies that try to upgrade their hardware or software to the latest
levels experience the same ripple effect of contamination from the existing
environment. Despite the abstraction and layering of modern software and
the imposed rigor of enterprise architectures, making changes to the low lev-
els of systems still has a major impact on today’s enterprises.

As we mentioned before, no abstraction is perfect and, to some extent, it
will leak around the edges. This means there is no such thing as a nondisrup-
tive change to any nontrivial environment. As a supposedly independent
layer in the environment changes—perhaps a database, middleware, or oper-
ating system version—a ripple of change permeates around the environment.

6: Abstraction Works Only in a Perfect World 127

As only certain combinations of products are supported, the change can cas-
cade like a chain of dominoes. Ultimately, these ripples can hit applications,
resulting in retesting, application changes, or even reintegration.

Thus, to provide good and true architectures, we need to accept that we
need a better understanding of the problem to engineer the right abstrac-
tions. Additionally, we need all the aspects of the problem definition (busi-
ness, application, and infrastructure) to be interlinked so that we can
understand when and where the ripple effect of discovered constraints or
changes will impact the solution we are defining.

Do We Need a Grand Unified Tool?

The problem definition is too big for one tool or person to maintain, so
there appears to be a dilemma. The full complexity of the problem needs to
be embraced, and an understanding is required of everything that’s around,
including the existing IT and business environments. But all that informa-
tion needs to be pulled together so that the Views aren’t discrete or discon-
nected.

Many people have argued for tool unification as a means to achieve this, to
maintain all these connected Views in a single tool and, thus, enable a single
documented version of the truth to be established and maintained. But that
is missing a vital point about Views.

As explained in Chapter 2, “The Confusion of Tongues,” Views need to be
maintained by people in their own way, in their own language. Imposing a
single tool will never work. Simply too many preferred perspectives, roles,
and prejudices exist within our industry to believe that everyone is going to
sit down one day and record and maintain their Views in one specific tool.4 If
such combinations of Views into single multipurpose tools were possible,
desirable, and usable, then it is arguable that Microsoft® Office user inter-
faces Word®, PowerPoint®, and Excel® would have merged long ago.

Moreover, these integrated approaches that have been at the heart of tradi-
tional tooling are usually pretty poor at dealing with ambiguity or differ-
ences of opinion. On large projects with many people working on the same
information, it is not unusual to have formal repositories that enable people
to check out information, make changes to it, and then check it back in. Such
systems prevent two people from updating the same information at the same
time, which would result in confusion and conflicts. The upshot of this

Eating the IT Elephant

Moving from Greenfield Development to Brownfield128

approach, however, is that the information that is checked into the repository
is the information that everyone else is then forced to use. The implications
of your changes are not always apparent to you—or perhaps immediately to
your colleagues, either. Maintaining a single source of truth when hundreds
of people are changing individual overlapping elements is less than straight-
forward. A change made by one individual can have serious consequences for
many other areas of the project, and no mechanism exists for highlighting or
resolving ambiguity—whoever checks the information into the repository
last wins!

In summary, grand unified tools are to software engineering what grand
unified theories are to modern physics—tricky to understand, multidimen-
sional, and elusive, often involving bits of string. No one has created a single
tool to maintain the full complexity of a complex IT project. Likewise, no
one will do so unless the tool enables people to maintain Views in their own
way, in their own language, and to identify and deal with ambiguity cooper-
atively.

The Connoisseur’s Guide to Eating Elephants

This chapter set out to define the kinds of things the Elephant Eater must
do, the kinds of problems it needs to deal with, and the kinds of environ-
ments with which it must cope. We’ve covered a lot of ground, so it’s worth
recapping the key requirements that we have established—a connoisseur’s
guide to eating elephants.

The Elephant Eater machine must recognize that the environment
imposes many more constraints beyond functional and nonfunctional
requirements. We rarely work on Greenfield sites anymore; the elephant-
eating machine must be at home on the most complex Brownfield sites—the
kind of Brownfield sites that have had a lot of IT complexity built up layer
on layer over many years.

The Elephant Eater must also address the lack of transparency that is
inherent within our most complex projects. This will enable us to x-ray our
elephant to see the heart of the problem. To achieve this transparent under-
standing, the Elephant Eater must acknowledge the fundamental human
limitation of the View and enable us to break down the problem into smaller
chunks.

6: Abstraction Works Only in a Perfect World 129

However, we suspect that a one-size-fits-all approach to maintaining
Views is doomed to failure. A high-level business process View will always
look very different than a detailed data definition. Therefore, an elephant-
eating machine that relies on a single tool for all users is pretty impractical.

In addition, we now know that, despite the best efforts of architects to
keep them insulated and isolated via abstractions and enterprise architec-
tures, many of these Views are interlinked. Therefore, the only way to under-
stand the problem properly is to make the interconnections between Views
explicit and try to make them unambiguous. We should also note, however,
that establishing a consolidated picture of all these Views needs to be a
process of cooperation and communication—one View cannot overwrite
another one, and ambiguity must be dealt with within its processing. We
also know that the View should cover the entire solution (business, applica-
tion, and infrastructure).

By using the formal View and VITA approach introduced in Part I,
“Introducing Brownfield,” it should be possible to see how the Elephant
Eater proposed can address these requirements. The following facets are an
intrinsic part of Brownfield development.

Our Brownfield abstractions—and, therefore, architectures—will be a
good fit for the problem: Those decisions will be made based on detailed
information fed in via a site survey instead of vague generalization. This
adopts an engineer’s approach to the solution instead of the artisan’s heuris-
tics and intuition.

We will be able to preempt the ripple effect, often understanding which
requirements are in conflict or at least knowing the horrors hiding behind
the constraints. Therefore, the requirements can be cost-effectively refined
instead of the abstractions of the solution or its code. Resolving these prob-
lems early will have significant economic benefit.

The solution will become easier to create due to a deeper understanding of
the problem. A precise and unambiguous specification will enable the use of
delivery accelerators such as these:

■ Global delivery and centers of excellence

■ Code generation via Model Driven Development and Pattern Driven
Engineering because the precise specification can be used to parameterize
the generation processes

■ Iterative delivery as possible strategies for appropriate business and IT
segmentation of the problem become clearer

Eating the IT Elephant

Moving from Greenfield Development to Brownfield130

Therefore, the Brownfield approach conceptually solves many of the prob-
lems presented in this chapter and previous chapters, avoiding the early,
unreliable, and imprecise abstractions and decompositions of existing
approaches. In the remaining chapters, we examine how Brownfield evolved
and how it can be deployed on large-scale IT projects.

Endnotes

1 Booch, Grady. “The BCS/IET Manchester Turing Lecture.” Manchester,
2007. http://intranet.cs.man.ac.uk/Events_subweb/special/turing07/.

2 Splolsky, Joel. “Joel on Software.” www.joelonsoftware.com/articles/
LeakyAbstractions.html.

3 Maier, Mark W. and Eberhardt Rechtin. The Art of Systems Architecting.
CRC Press, Boca Raton, Florida, 2000.

4 For example, IBM’s Rational Tool Set.

6: Abstraction Works Only in a Perfect World 131

http://intranet.cs.man.ac.uk/Events_subweb/special/turing07/
www.joelonsoftware.com/articles/LeakyAbstractions.html
www.joelonsoftware.com/articles/LeakyAbstractions.html

A
Abstract Syntax Trees (ASTs), 171
abstraction, 113, 118, 131

complexity, 122-124
complexity example, 121-122
drawbacks of, 120
ripple effect, 124-128
software engineering, 120-121
systems integration, 113-118

accelerated delivery on Brownfield
sites, 156-159

Acceptance Phase, Brownfield
development approach, 163

adding information, 199
agile development methods, 135
agile methods, 144-151

approach to waterfall problems, 151
versus waterfall methods, 145

Albrecht, Allan, 16
ambiguity

Elephant Eaters, consuming the
environment, 41-43

Views, 29-30
Anderson, Chris, 102
Architects’ Workbench, 187
architecture, 75-76

abstraction, 118, 122-124
complexity example, 121-122
ripple effect, 124-128
software engineering, 120-121

Elephant Eaters, 48-49
Artifacts, 52-55
Inventory, 50-51
Transforms, 51-52
Views, 49-50

precision architectures, merging Views,
190-194

Artifacts, 198
Elephant Eater architecture, 52

consistent configuration artifacts, 53
documentation, 53
efficient execution, 53-54
testing transforms, 54-55

generating, 198
paying your own way, 198

testing, 199-200
assumptions, 124
ASTs (Abstract Syntax Trees), 171

B
Babel Fish, 91-93
Backus, John, 170
Backus-Naur form (BNF), 170
bad news diodes, 8
BAs (business analysts), 140-141
Berners-Lee, Sir Tim, 91, 99, 135
big-mouthed superhero, 40
BNF (Backus-Naur form), 170
Boehm, Barry, 15, 144
Booch, Grady, 90, 104
bottom-up approach to systems

integration, 113
BPEL (Business Process Execution

Language), 189
bridging business/IT gap, 79-83

touring the model, 84-87
use cases, 79

Brook, Jr., Frederick P., 7, 25
Brooks’ Law, 25

Index

215

Eating the IT Elephant

Moving from Greenfield Development to Brownfield216

business options, software
archaeology, 93-96

business process definitions, 67
Business Process Execution

Language (BPEL), 189
business/IT gap

bridging, 79-81, 83
touring the model, 84-87
use cases, 79

Brownfield Beliefs, 64
language speciation, 32-34

C
CAD (Computer Aided

Design), 75
CAD/CAM (Computer Aided

Design/Computer Aided
Manufacturing), 135

CASE (Computer Aided Software
Engineering), 76, 135, 138

Brownfield, 138-139
change management, risk areas of

project failure, 9
CHAOS report, xxvi
chaos theory, 105
checkpoints, quality assurance

checkpoints, 144
choreography, 211
CIM (Computation Independent

Model), 152
circular references, 178
class diagrams, 169
communication, 25

context, 42-47
formal versus informal, 68
gaps in, 67-72
PowerPoint, 70-72
problems

language speciation, 31-34
Views, 26-27

semantics, 42-47
syntax, 42-43

Brownfield, 14, 25, 60, 91
CASE, 138-139
death of, 105
deciding to switch from Greenfield,

xxii-xxiii
evolution, 141-142
legacy code, 170-172
MDA (Model Driven

Architecture), 139
business analysts (BAs), 140-141
evolution, 141-142

moving to, 204
creating Elephant Eaters, 204-205
empowering business change, 205-206
interfaces, 207

site surveys, 20-21
sources of, 134-135, 138
testing, early testing, 156
versus other techniques, 136
VITA, 166

Brownfield Beliefs, 47, 60-61
bridging business/IT gap, 64
embracing complexity, 62
establishing truth, 64
iteratively generating and refining, 63
language, 63
making business and IT indivisible, 61
reuse, 62

Brownfield development
approach, 158

phases and outputs of, 159-160
subphases and outputs of, 161-162

Brownfield lifecycle, 57-59, 162
Brownfield movement, 168
Brownfield sites, accelerated

delivery, 156-159
business analysts (BAs),

140-141, 206
business attractors, 104-105
business change, empowering when

moving to Brownfield, 205-206

Index 217

complexity
abstraction, 121-124
Brownfield Beliefs, 62
environmental complexity, 13-16, 18

effects of, 18-20
induced complexity, 9-10

Component Model, 68
Computation Independent Model

(CIM), 152
Computer Aided Design

(CAD), 75
Computer Aided Design/Computer

Aided Manufacturing
(CAD/CAM), 135

Computer Aided Software
Engineering (CASE), 76,
135, 138

Configuration Artifacts, 198
considerations for Elephant Eaters

conflicting goals, 111-112
interactions, 112
transparency, 110-111

consistent configuration
artifacts, 53

constraints, 14-15, 49-50
consuming the environment,

Elephant Eaters, 41
overcoming inconsistency and

ambiguity, 41-47
context, 42

Elephant Eaters, consuming the
environment, 43-47

overcoming inconsistency and
ambiguity, 43-47

customers, 103-104

D
Data Definition Language

(DDL), 166
data sources for forming

Inventories, 168

DDL (Data Definition
Language), 166

decomposition of complex problem
space, 118

DeMarco, Tom, 30
developing tools, 207
diagrammatic views, 169
diagrams, 67-68, 71
documentation, 53
Documentation Artifacts, 198
Domain Object Model (DOM), 149
dynamic aspects, considerations for

Elephant Eaters, 112
dynamic services, 100-103

E
Eclipse, 171
Eclipse Modeling Framework

(EMF), 187
Elephant Eaters

in action, 55-57
generating and refining, 59-60

architecture, 48-49
Artifacts, 52-55
Inventory, 50-51
Transforms, 51-52
Views, 49-50

Brownfield Beliefs, 60-61
bridging business/IT gap, 64
embracing complexity, 62
establishing truth, 64
iteratively generating and refining, 63
language, 63
making business and IT indivisible, 61
reuse, 62

considerations for
conflicting goals, 111-112
interactions, 112
transparency, 110-111

consuming the environment, 41
overcoming inconsistency and ambiguity,

41-47
creating, 204-205

Eating the IT Elephant

Moving from Greenfield Development to Brownfield218

H
Haasjes, Geert-Willem, 100
Hilbert space, 72-73

Inventory, exploring manually, 73-75

I
IBM

Inventory structures, 179
patents for implementation of

Brownfield, 205
System/360, xxi

IBM islands, 84
IBM Rational Software Architect

(RSA), 189
identifying

generation faults, 200
missing or incorrect information,

186-187
patterns, 169-170

IFPUG method, 16
inconsistency

Elephant Eaters, consuming the
environment, 41-47

Views, 27-28
induced complexity, risk areas of

project failure, 9-10
inference, 190
innovation capacity, IT

spending, 18
interactions, considerations of

Elephant Eaters, 112
interfaces

building, 207-209
moving to Brownfield, 207

Inventory
data sources, 168
Elephant Eater architecture, 50-51
exploring manually, 73-75
importers, 57
OWL, 180, 183

environment, 130
portrait of, 200-201

elephant-eating strategies, 39-41
EMF (Eclipse Modeling

Framework), 187
Engineer Phase, Brownfield

development approach, 162
enterprise architectures, evolving,

212-213
Enterprise Service Buses (ESBs),

209-211
environment, 129
environmental complexity, 13-18

effects of, 18-19
ripple effect, 18-20

ESBs (Enterprise Service Buses), 211
building, 209-211

evolution, Brownfield, 141-142
Executable Artifacts, 198
execution, artifacts, 53-54
exploring Inventory manually,

73-75
extracting information, merging

Views, 189-190
extracts, 198

F
function point analysis, 16
functional requirements, 11

G
gaps in communication, 67-72
generating Artifacts, 198

paying your own way, 199
generation faults, identifying, 200
Gerstner, Lou, 30
globalization, 6
goals, conflicting goals, 111-112
Greenfield, deciding to move to

Brownfield, xxii-xxiii

Index 219

structure of, 173
triples, 173-180

Inventory optimizers, 105
IT, 79
IT spending, 18
iterative development, 93

J-K
JAD (Joint Application

Design/Development), 135

L
language, Brownfield Beliefs, 63
language speciation, 31-32

business/IT gap, 32-33
making business and IT indivisible, 34

languages
choosing, 205
ontologies, 98-99
OWL. See OWL

legacy code, 170-172
lifecycles, Brownfield lifecycle,

57-59
lifetimes, 73
Lister, Timothy, 30
Logical Data Model, 68
Lojek, Bob, 124
long tail, 102

M
mashups, 134
MDA (Model Driven Architecture),

152-153
Brownfield, 139

BAs (business analysts), 140-141
evolution, 141-142

Pattern Driven Engineering, 153-154
reversing, 155-156

MDA/MDD (Model Driven
Architecture/Model Driven
Development), 135

MDD (Model Driven
Development), 64

memory techniques, 67
merging Views, 183, 185

extracting information, 189-190
identifying missing or incorrect

information, 186-187
precision architectures, 190-194
time dimensions, 187-189
transforms, 195-197

metadata, 87
metaphors, 84
Microsoft PowerPoint, 70-72
middleware, 212
Model Driven Architecture (MDA),

151-153
Brownfield, 139

business analysts (BAs), 140-141
evolution, 141-142

Model Driven Architecture/Model
Driven Development
(MDA/MDD), 135

Model Driven Development, 57, 62
models, bridging business/IT gap,

84-87
mosaic language zones, 32
moving to Brownfield, 204

creating Elephant Eaters, 204-205
empowering business change, 205-206
interfaces, 207

Mythical Man Month, The, 25

N
Naur, Peter, 170
nonfunctional requirements, 11

O
Occam’s Razor, 10
OMG (Open Management

Group), 152
On Demand, 95
ontologies, 98-99

Eating the IT Elephant

Moving from Greenfield Development to Brownfield220

Q
quality assurance checkpoints, 144

R
RAD (Rapid Application

Development), 135
RDF (Resource Description

Framework), 138, 180
RDF graphs, 183
RDF/XML extract, 180
regulatory compliance, IT

spending, 18
reporting on projects, risk areas of

project failure, 7-8
representing triples, 72
requirements

conflicting requirements, 111
functional requirements, 11
nonfunctional requirements, 11
risk areas of project failure, 11-13

Resource Description Framework
(RDF), 180

reuse, Brownfield Beliefs, 62
reversing MDA (Model Driven

Architecture), 155-156
ripple effect, 18, 131

abstraction, 124-128
effects of environmental complexity,

19-20
risk areas of project failure

change management, 9
globalization, 7
induced complexity, 9-10
organization and planning, 7
project reporting, 7-8
requirements, 11-13

RSA (Rational Software
Architect), 189

rules, 93

Open Management Group
(OMG), 152

organization, risk areas of project
failure, 7

outputs of Brownfield development
approach, 159-162

OWL (Web Ontology Language),
138, 180

Inventory, 180, 183

P
Palmisano, Sam, 95
parable of the blind men and the

elephant, 24
parochialism, 47

Views, 30-31
parsing Views, 169-170
Pattern Driven Engineering, MDA

(Model Driven Architecture),
153-154

patterns, 125
identifying, 169-170

Peopleware, 30
phases of Brownfield development

approach, 159-160
physically separated teams, 30
PIM (Platform Independent

Model), 152
planning, risk areas of project

failure, 7
Platform Independent Model

(PIM), 152
Platform Specific Model (PSM), 152
plumbing, comparison, 121
PowerPoint, 70-72
precision architectures, merging

views, 190-194
presentations, 71-72
private languages, 32
process flows, 67-68
project reporting, risk areas of

project failure, 7-8
PSM (Platform Specific Model), 152

Index 221

S
Sarbanes-Oxley, 18
Second Life, 77
semantic technologies, 90
semantic web, 99-100, 135, 183
semantics, 42

Elephant Eaters, consuming the
environment, 43-47

overcoming inconsistency and
ambiguity, 43-47

Service Oriented Architecture
(SOA), 33

services
customers, 103-104
dynamic services, 100-103

singing pigs, 70
site surveys, 14, 110, 141, 168

Brownfield sites, 20-21
skills, developing for Elephant

Eaters, 204
SOA (Service Oriented

Architecture), 33
software archaeology, 91-93

business options, 93-96
structures, 96-97

software engineering, abstraction,
120-121

sources of Brownfield, 134-135, 138
splitting, 113

systems integration, 113-118
Standish Group, xxvi
static testing, 163
steady state, IT spending, 18
Stock, Gregory, 105
stove-pipe systems, 16
strange attractors, 104
strategies for elephant-eating, 39-41
structure of Inventory, 173
structures, software archaeology,

96-97
subphases of Brownfield

development approach, 161-162

Survey Phase, Brownfield
development approach, 162

syntax, 42
overcoming inconsistency and

ambiguity, 42-43
System/360 (IBM), xxi, 16
systems integration

bottom-up approach, 113
splitting or abstraction, 113-118
top-down approach, 116

T
TADDM (Tivoli Application

Dependency Discovery
Manager), 97, 168

taxonomy, 114
teams, physically separating, 30
Test Artifacts, 198
testing

Artifacts, 199-200
Brownfield, early testing, 156
static testing, 163
transforms, artifacts, 54-55

text messages, 32
The Open Group Architecture

Framework (TOGAF), 114-115
three-dimensional displays, 76-78
time dimensions, merging Views,

187-189
time slices, 73
Tivoli Application Dependency

Discovery Manager (TADDM),
97, 168

TOGAF (The Open Group
Architecture Framework),
114-115

tool unification, 128-129
tools, developing, 207
top-down approach, systems

integration, 116
transformations, 195

Eating the IT Elephant

Moving from Greenfield Development to Brownfield222

visualizations, 87
VITA (Views, Inventory,

Transforms, and Artifacts), 48,
166-167

W
W3C (World Wide Web

Consortium), 179-183
waterfall development, 144
waterfall methods, 146-151

agile approach to problems, 151
versus agile methods, 145

Web 2.0, 91
Web Ontology Language. See OWL
WebSphere Business Modeler, 187,

204
World Wide Web Consortium

(W3C), 180, 183

X-Y
XML, 91

Z
Zachman Framework, 115

Transforms
creating, 197-198

Artifacts, 198
Elephant Eater architecture, 51-52
merging Views, 195-197
testing, 54-55

transparency, lack of, 110-111
triples, 51

Inventory, 173-180
representing, 72

truth, Brownfield Beliefs, 64
Turner, Richard, 144

U
UML (Unified Modeling Language),

43, 139
UML diagrams, 169
unified tools, 128-129
updating information, 200
use cases, 66, 79

V
Venn diagrams, 99
Views, 26, 166

communication, 26-27
ambiguity, 29-30
inconsistency, 27-28
parochialism, 30-31

Elephant Eater architecture, 49-50
merging, 183, 185

extracting information, 189-190
identifying missing or incorrect

information, 186-187
precision architectures, 190-194
time dimensions, 187, 189
transforms, 195-197

one-size-fits-all approach, 130
parsing, 169-170
software archaeology, 91
splitting, 114

virtual worlds (v-worlds), 77, 135
Second Life, 77

	Foreword
	Foreword
	Preface
	Chapter 6 Abstraction Works Only in a Perfect World
	Considerations for an Elephant Eater
	Systems Integration and Engineering Techniques
	Abstraction Is the Heart of Architecture
	Do We Need a Grand Unified Tool?
	The Connoisseur’s Guide to Eating Elephants

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y
	Z

