
r'pt
by Example

SA 1c d tio1.

EXAMPLE

-0
0

.J::. I

Q) l

E,
,.., .
�
t
Q)

0

i
0)
C

3

"'""'
......

<UO•>OtlAf .1•"•kOpt •l♦rl boa<IUtl•),
(.. Opt lyp♦"'•t♦•t/jn•Krlpt '"),

,,
.,,

.-., -•....,.l•'"xnce y,...ir Ol,ot•• a1111 •,
••r,.z.•t.v•r• t Uttl• �• •,
&lN'tC....i- '-- ,1,,,....._., �,-.l .. l\a'" •

-...-,.-....-2,,

-·-

J ,......,

_ ...
tttft).I•,-.

--

. ,......,
,_,...

--·--

........

_ ..

__,...,.,_.
--� ... -"_ ...

CEJ

Ellie Quigley

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or custom
covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data

Quigley, Ellie.

 JavaScript by example / Ellie Quigley.—2nd ed.p. cm.
 Includes index.
 ISBN 978-0-13-705489-3 (pbk. : alk. paper)
1. JavaScript (Computer program language) I. Title.
QA76.73.J39Q54 2010
005.13’3—dc22

2010020402

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-705489-3
ISBN-10: 0-13-705489-0
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor,
Michigan.
First printing, October 2010

Editor-in-Chief
Mark L. Taub

Managing Editor
John Fuller

Full-Service
Production Manager
Julie B. Nahil

Production Editor
Dmitri Korzh
Techne Group

Copy Editor
Teresa Horton

Indexer
Potomac Indexing, LLC

Proofreader
Beth Roberts

Editorial Assistant
Kim Boedigheimer

Cover Designer
Anne Jones

Composition
Techne Group

v

Contents

Preface xv

1 Introduction to JavaScript 1
1.1 What JavaScript Is 1

1.2 What JavaScript Is Not 2

1.3 What JavaScript Is Used For 3

1.4 JavaScript and Its Place in a Web Page 4

1.4.1 Analysis of the Diagram 4

1.5 What Is Ajax? 5

1.6 What JavaScript Looks Like 7

1.7 JavaScript and Its Role in Web Development 8

1.7.1 The Three Layers 8

1.8 JavaScript and Events 10

1.9 Standardizing JavaScript and the W3C 12

1.9.1 JavaScript Objects 13
1.9.2 The Document Object Model 13

1.10 What Browser? 15

1.10.1 Versions of JavaScript 16
1.10.2 Does Your Browser Follow the Standard? 18
1.10.3 Is JavaScript Enabled on Your Browser? 18

1.11 Where to Put JavaScript 20

1.11.1 JavaScript from External Files 22

1.12 Validating Your Markup 24

1.12.1 The W3C Validation Tool 24
1.12.2 The Validome Validation Tool 25

1.13 What You Should Know 26

vi Contents

2 Script Setup 29
2.1 The HTML Document and JavaScript 29

2.1.1 Script Execution 30

2.2 Syntactical Details 33

2.2.1 Case Sensitivity 33
2.2.2 Free Form and Reserved Words 33
2.2.3 Statements and Semicolons 34
2.2.4 Comments 35
2.2.5 The <script> Tag 35

2.3 Generating HTML and Printing Output 37

2.3.1 Strings and String Concatenation 37
2.3.2 The write() and writeln() Methods 38

2.4 About Debugging 40

2.4.1 Types of Errors 40

2.5 Debugging Tools 41

2.5.1 Firefox 41
2.5.2 Debugging in Internet Explorer 8 44
2.5.3 The JavaScript: URL Protocol 46

2.6 JavaScript and Old or Disabled Browsers 47

2.6.1 Hiding JavaScript from Old Browsers 47

2.7 What You Should Know 50

3 The Building Blocks: Data Types, Literals, and Variables 53
3.1 Data Types 53

3.1.1 Primitive Data Types 53
3.1.2 Composite Data Types 59

3.2 Variables 59

3.2.1 Valid Names 60
3.2.2 Declaring and Initializing Variables 60
3.2.3 Dynamically or Loosely Typed Language 62
3.2.4 Scope of Variables 66
3.2.5 Concatenation and Variables 66

3.3 Constants 67

3.4 Bugs to Watch For 69

3.5 What You Should Know 70

4 Dialog Boxes 73
4.1 Interacting with the User 73

4.1.1 The alert() Method 73
4.1.2 The prompt() Method 76
4.1.3 The confirm() Method 78

4.2 What You Should Know 80

Contents vii

5 Operators 83
5.1 About JavaScript Operators and Expressions 83

5.1.1 Assignment 84
5.1.2 Precedence and Associativity 84

5.2 Types of Operators 88

5.2.1 Arithmetic Operators 88
5.2.2 Shortcut Assignment Operators 90
5.2.3 Autoincrement and Autodecrement Operators 91
5.2.4 Concatenation Operator 94
5.2.5 Comparison Operators 95
5.2.6 Logical Operators 101
5.2.7 The Conditional Operator 108
5.2.8 Bitwise Operators 109

5.3 Number, String, or Boolean? Data Type Conversion 112

5.3.1 The parseInt() Function 114
5.3.2 The parseFloat() Function 116
5.3.3 The eval() Function 118

5.4 Special Operators 119

5.5 What You Should Know 120

6 Under Certain Conditions 123
6.1 Control Structures, Blocks, and Compound Statements 123

6.2 Conditionals 123

6.2.1 if/else 124
6.2.2 if/else if 127
6.2.3 switch 128

6.3 Loops 131

6.3.1 The while Loop 131
6.3.2 The do/while Loop 133
6.3.3 The for Loop 134
6.3.4 The for/in Loop 135
6.3.5 Loop Control with break and continue 136
6.3.6 Nested Loops and Labels 137

6.4 What You Should Know 140

7 Functions 143
7.1 What Is a Function? 143

7.1.1 Function Declaration and Invocation 144
7.1.2 Return Values 153
7.1.3 Anonymous Functions as Variables 156
7.1.4 Closures 158
7.1.5 Recursion 161
7.1.6 Functions Are Objects 166

viii Contents

7.2 Debugging Techniques 166

7.2.1 Function Syntax 166
7.2.2 Exception Handling with try/catch and throw 168

7.3 What You Should Know 172

8 Objects 175
8.1 What Are Objects? 175

8.1.1 Objects and the Dot Syntax 176
8.1.2 Creating an Object with a Constructor 177
8.1.3 Properties of the Object 178
8.1.4 Methods of the Object 180

8.2 Classes and User-Defined Functions 182

8.2.1 What Is a Class? 182
8.2.2 What Is this? 182
8.2.3 Inline Functions as Methods 185

8.3 Object Literals 187

8.4 Manipulating Objects 191

8.4.1 The with Keyword 191
8.4.2 The for/in Loop 194

8.5 Extending Objects with Prototypes 196

8.5.1 Adding Properties with the Prototype Property 198
8.5.2 The Prototype Lookup Chain 199
8.5.3 Adding Methods with Prototype 202
8.5.4 Properties and Methods of All Objects 204
8.5.5 Creating Subclasses and Inheritance 207

8.6 What You Should Know 210

9 JavaScript Core Objects 213
9.1 What Are Core Objects? 213

9.2 Array Objects 213

9.2.1 Declaring and Populating Arrays 214
9.2.2 Array Object Properties 219
9.2.3 Associative Arrays 221
9.2.4 Nested Arrays 223

9.3 Array Methods 227

9.4 The Date Object 234

9.4.1 Using the Date Object Methods 235
9.4.2 Manipulating the Date and Time 238
9.4.3 Customizing the Date Object with the prototype Property 240

9.5 The Math Object 241

9.5.1 Rounding Up and Rounding Down 244
9.5.2 Generating Random Numbers 245

Contents ix

9.5.3 Wrapper Objects (String, Number, Function, Boolean) 246
9.5.4 The String Object 247
9.5.5 The Number Object 259
9.5.6 The Boolean Object 263
9.5.7 The Function Object 264
9.5.8 The with Keyword Revisited 266

9.6 What You Should Know 267

10 It’s the BOM! Browser Objects 271
10.1 JavaScript and the Browser Object Model 271

10.1.1 Working with the navigator Object 273
10.1.2 Working with the window Object 285
10.1.3 Creating Timed Events 292
10.1.4 Working with Frames 303
10.1.5 The location Object 315
10.1.6 The history Object 319
10.1.7 The screen Object 322

10.2 What You Should Know 325

11 Working with Forms and Input Devices 327
11.1 The Document Object Model and the Legacy DOM 0 327

11.2 The JavaScript Hierarchy 328

11.2.1 The Document Itself 329

11.3 About HTML Forms 334

11.3.1 Attributes of the <form> Tag 334

11.4 JavaScript and the form Object 341

11.4.1 Naming Forms and Input Types (Controls) for Forms 342
11.4.2 The Legacy DOM with Forms 345
11.4.3 Naming Forms and Buttons 350
11.4.4 Submitting Fillout Forms 356
11.4.5 The this Keyword 365
11.4.6 The submit() and reset() Methods 368

11.5 Programming Input Devices (Controls) 372

11.5.1 Simple Form Validation 401

11.6 What You Should Know 409

12 Working with Images (and Links) 413
12.1 Introduction to Images 413

12.1.1 HTML Review of Images 414
12.1.2 The JavaScript image Object 416

12.2 Reviewing Links 417

12.2.1 The JavaScript links Object 418

x Contents

12.3 Working with Imagemaps 422

12.3.1 Replacing Images Dynamically with the src Property 428
12.3.2 Preloading Images and the Image() Constructor 432
12.3.3 Randomly Displaying Images and the onClick Event 434
12.3.4 Links with an Image Map and JavaScript 436

12.4 Resizing an Image to Fit the Window 438

12.5 Introduction to Slideshows 441

12.5.1 A Simple Slideshow with Controls 442
12.5.2 A Clickable Image Slideshow 445

12.6 Animation and Timers 449

12.6.1 Changing Image Position 450
12.6.2 Changing Image Height and Width Properties 451

12.7 What You Should Know 452

13 Handling Events 455
13.1 Introduction to Event Handlers 455

13.2 The Inline Model for Handling Events 455

13.2.1 HTML and the Event Handler 456
13.2.2 Setting Up an Event Handler 459
13.2.3 Return Values 461
13.2.4 JavaScript Object Methods and Events 462

13.3 Handling a Window or Frame Event 465

13.3.1 The onLoad and onUnLoad Events 465
13.3.2 The onFocus and onBlur Event Handlers 468
13.3.3 The onResize Event Handler 472

13.4 Handling Mouse Events 474

13.4.1 How to Use Mouse Events 475
13.4.2 Mouse Events and Images—Rollovers 477
13.4.3 Creating a Slideshow with Mouse Events 478

13.5 Handling Link Events 481

13.5.1 JavaScript URLs 481

13.6 Handling a Form Event 482

13.6.1 Buttons 483
13.6.2 this for Forms and this for Buttons 484
13.6.3 Forms and the onClick Event Handler 486
13.6.4 Forms and the onFocus and onBlur Event Handlers 487
13.6.5 Forms and the onChange Event Handler 489
13.6.6 Forms and the onSubmit Event Handler 491
13.6.7 HTML Event Handlers and JavaScript Event Methods 496
13.6.8 The onError Event 498

13.7 The event Object 499

13.7.1 Capturing and Bubbling (Trickle Down and Bubble Up) 500
13.7.2 Event Object Properties 501

Contents xi

13.7.3 Using Event Object Properties 503
13.7.4 Passing Events to a JavaScript Function 505
13.7.5 Mouse Positions 508
13.7.6 Key Events 513

13.8 The Scripting Model for Handling Events 517

13.8.1 Getting a Reference to the Object 517

13.9 What You Should Know 523

14 Introduction to CSS (Cascading Style Sheets) with
JavaScript 527
14.1 What Is CSS? 527

14.2 What Is a Style Sheet? 527

14.2.1 What Is a CSS-Enhanced Browser? 528
14.2.2 How Does a Style Sheet Work? 529

14.3 CSS Program Structure 530

14.3.1 Comments 530
14.3.2 Grouping 531

14.4 Common Style Sheet Properties 532

14.4.1 Units of Measurement 535
14.4.2 Working with Colors 536
14.4.3 Working with Fonts 539
14.4.4 Working with Text 542
14.4.5 Working with Backgrounds and Images 544
14.4.6 Working with Margins and Borders 547

14.5 Types of Style Sheets 550

14.5.1 The Embedded Style Sheet and the <style> Tag 550
14.5.2 The Inline Style and the <style> Attribute 553

14.6 The External Type with a Link 555

14.6.1 The <link> Tag 555
14.6.2 Importing with @import 557

14.7 Creating a Style Class 558

14.7.1 Styling a Simple Table with Class 560
14.7.2 Using a Specific Class Selector 562

14.8 The ID Selector and the ID Attribute 564

14.9 Overriding or Adding a Style with the Tag 566

14.9.1 The Tag and the style Attribute 567
14.9.2 The Tag and the class Attribute 568
14.9.3 Inheritance and Contextual Selectors 569

14.10 Positioning Elements and Layers 572

14.10.1 Absolute Positioning 573
14.10.2 The <div> Container 579
14.10.3 Absolute Positioning 580

xii Contents

14.10.4 Relative Positioning 581
14.10.5 The z-index and Three Dimensions 583

14.11 Where Does JavaScript Fit In? 585

14.11.1 What Is DHTML? 585
14.11.2 How JavaScript Views Style Sheets 585
14.11.3 The style Object 589
14.11.4 The className Property 598
14.11.5 Drop-Down Menus and Tooltips 601

14.12 What You Should Know 609

15 The W3C DOM and JavaScript 611
15.1 The W3C DOM 611

15.2 How the DOM Works with Nodes 612

15.3 Nodes 613

15.3.1 Parents and Children 615
15.3.2 Siblings 616
15.3.3 The nodeName and nodeType Properties 616
15.3.4 The Whitespace Bug 617

15.4 Walking with the DOM 618

15.5 DOM Inspectors 621

15.6 Methods to Shorten the DOM Walk 622

15.6.1 The document.getElementById() Method 622
15.6.2 The document.getElementsByTagName() Method 625
15.6.3 JavaScript Properties to Represent HTML Attributes 627

15.7 Modifying the DOM (Appending, Copying, and Removing Nodes) 629

15.7.1 The innerHTML Property and the Element’s Content 630
15.7.2 Modifying the Content of an Element 632
15.7.3 Creating New Elements with the DOM 634
15.7.4 Inserting Before a Node 636
15.7.5 Creating Attributes for Nodes 637
15.7.6 DOM Review: Creating a Blog 639
15.7.7 Creating a Table with the DOM 644
15.7.8 Cloning Nodes 648
15.7.9 Removing a Node 653
15.7.10 Scrolling with the Nodes 658

15.8 Event Handling and the DOM 661

15.8.1 The HTML Inline Way 661
15.8.2 The Scripting Way 661
15.8.3 The DOM Way 662
15.8.4 Bubbling and Capturing 662

15.9 Event Listeners with the W3C Model 668

15.9.1 Adding an Event 668
15.9.2 Registering More Than One Event 670

Contents xiii

15.9.3 Removing an EventListener 673
15.9.4 Event Listeners with Microsoft Internet Explorer 676
15.9.5 Event Properties Revisited 678

15.10 Unobtrusive JavaScript 682

15.10.1 JavaScript Libraries 689

15.11 What You Should Know 690

16 Cookies 695
16.1 What Are Cookies? 695

16.1.1 Cookie Ingredients 698
16.1.2 The Attributes of a Cookie 699

16.2 Creating a Cookie with JavaScript 701

16.2.1 The Cookie Object 701
16.2.2 Assigning Cookie Attributes 702
16.2.3 Let’s Make Cookies! 704
16.2.4 Retrieving Cookies from a Server 708
16.2.5 Deleting a Cookie 710
16.2.6 Using the Browser to Remove Cookies 713

16.3 What You Should Know 714

17 Regular Expressions and Pattern Matching 717
17.1 What Is a Regular Expression? 717

17.2 Creating a Regular Expression 719

17.2.1 The Literal Way 719
17.2.2 The Constructor Method 720
17.2.3 Testing the Expression 721
17.2.4 Properties of the RegExp Object 724

17.3 String Methods Using Regular Expressions 727

17.3.1 The match() Method 727
17.3.2 The search() Method 729
17.3.3 The replace() Method 730
17.3.4 The split() Method 731

17.4 Getting Control—The Metacharacters 733

17.4.1 The Dot Metacharacter 736
17.4.2 The Character Class 738
17.4.3 Metasymbols 741
17.4.4 Metacharacters to Repeat Pattern Matches 745
17.4.5 Anchoring Metacharacters 754
17.4.6 Alternation 759

17.5 Form Validation with Regular Expressions 765

17.5.1 Checking for Empty Fields 765
17.5.2 Checking for Numeric Zip Codes 767
17.5.3 Checking for Alphabetic Data 769

xiv Contents

17.5.4 Removing Extraneous Characters 771
17.5.5 Checking for Valid Social Security Numbers 775
17.5.6 Checking for Valid Phone Numbers 777
17.5.7 Checking for Valid E-Mail Addresses 781
17.5.8 Credit Card Validation 783
17.5.9 Putting It All Together 791

17.6 What You Should Know 795

18 An Introduction to Ajax (with JSON) 797
18.1 Why Ajax? 797

18.2 Why Is Ajax Covered Last? 798

18.3 The Steps for Creating Ajax Communication 799

18.3.1 Step 1: Create the XMLHttpRequest Object 800
18.3.2 Step 2: Initializing the Object 803
18.3.3 Sending the Request to the Server 805
18.3.4 Step 3: Monitoring the State of the Server Response 806
18.3.5 Handling the Response with a Callback Function 808
18.3.6 The Browser Cache Issue 810

18.4 Putting It All Together 812

18.4.1 Using Ajax to Retrieve Text from a File 819
18.4.2 Using Ajax to Retrieve XML from a File 822
18.4.3 Ajax and Forms 826

18.5 Ajax and JSON 834

18.5.1 JSON Data Structures 835
18.5.2 Steps to Use JSON 836
18.5.3 Putting It All Together with JSON 839
18.5.4 Solving the eval() Security Problem 843

18.6 Debugging Ajax with Firebug 848

18.6.1 Basic Instructions for Using Firefox 851
18.6.2 What You Should Know 852

Index 855

xv

Preface
This second edition of JavaScript by Example is really more than a new edition; it is a new
book! So much has changed since the first edition in 2002, and now with the newfound
popularity of Ajax, JavaScript is on a roll! Almost every personal computer has Java-
Script installed and running and it is the most popular Web scripting language around,
although it comes under different aliases, including Mocha, LiveScript, JScript, and
ECMAScript. There are a lot of books out there dedicated to some aspect of the Java-
Script language and if you are new to JavaScript, it would be difficult to know where to
start. This book is a “one size fits all” edition, dedicated to those of you who need a bal-
ance between the technical side of the language and the fun elements, a book that
addresses cross-platform issues, and a book that doesn’t expect that you are already a
guru before you start. This edition explains how the language works from the most basic
examples to the more complex, in a progression that seemlessly leads you from example
to example until you have mastered the basics all the way to the more advanced topics
such as CSS, the DOM, and Ajax.

Because I am a teacher first, I found that using my first edition worked well in the
classroom, but I needed more and better examples to get the results I was looking for.
Many of my students have been designers but not programmers, or programmers who
don’t understand design. I needed a text that would accommodate both without leaving
either group bored or overwhelmed. This huge effort to modernize the first edition went
way beyond where I had expected or imagined. I have learned much and hope that you
will enjoy sharing my efforts to make this a fun and thorough coverage of a universally
popular and important Web programming language.

123

chapter

6
Under Certain
Conditions

6.1 Control Structures, Blocks,
and Compound Statements

If you were confronted with the above signpost, you’d have to decide which direction to
take. People control their lives by making decisions, and so do programs. In fact, accord-
ing to computer science books, a good language allows you to control the flow of your
program in three ways. It lets you

• Execute a sequence of statements.
• Branch to an alternative sequence of statements, based on a test.
• Repeat a sequence of statements until some condition is met.

Well, then JavaScript must be a good language. We’ve already used programs that exe-
cute a sequence of statements, one after another.

Now we will examine the branching and looping control structures that allow the
flow of the program’s control to change depending on some conditional expression.

The decision-making constructs (if, if/else, if/else if, switch) contain a control expres-
sion that determines whether a block of statements will be executed. The looping con-
structs (while, for) allow the program to execute a statement block repetitively until
some condition is satisfied.

A compound statement or block consists of a group of statements surrounded by
curly braces. The block is syntactically equivalent to a single statement and usually fol-
lows an if, else, while, or for construct.

6.2 Conditionals

Conditional constructs control the flow of a program. If a condition is true, the program
will execute a block of statements and if the condition is false, flow will go to an alter-
nate block of statements. Decision-making constructs (if, else, switch) contain a control

124 Chapter 6 • Under Certain Conditions

expression that determines whether a block of expressions will be executed. If the con-
dition after the if is met, the result is true, and the following block of statements is exe-
cuted; otherwise the result is false and the block is not executed.

The block of statements (or single statement) is enclosed in curly braces. Normally,
statements are executed sequentially. If there is only one statement after the conditional
expression, the curly braces are optional.

6.2.1 if/else

“You better pay attention now, or else . . . ” Ever heard that kind of statement before?
JavaScript statements can be handled the same way with the if/else branching construct.
This construct allows for a two-way decision. The if evaluates the expression in paren-
theses, and if the expression evaluates to true, the block after the opening curly braces
is executed; otherwise the block after the else is executed.

FORMAT

if (condition){
statements;

}

EXAMPLE

if (age > 21){
alert("Let's Party!");

}

FORMAT

if (condition){
statements1;

}
else{

statements2;
}

EXAMPLE

if (x > y){
alert("x is larger");

}
else{

alert("y is larger");
}

6.2 Conditionals 125

EXAMPLE 6.1

<html>
<head>

<title>Conditional Flow Control</title>
</head>
<body>

<h3>
1 <script type="text/javascript">

<!-- Hiding JavaScript from old browsers
2 var age=prompt("How old are you? ","");
3 if(age >= 55){
4 document.write("You pay the senior fare! ");
5 }
6 else{
7 document.write("You pay the regular adult fare. ");

}
//-->

8 </script>
</h3>

</body>
</html>

EXPLANATION
1 JavaScript program starts here.

2 The prompt dialog box will display the message “How old are you?”. Whatever the
user types into the box will be stored in the variable age (see Figure 6.1).

3, 4 If the value of the variable age is greater than or equal to 55, line 4 is executed (see
Figure 6.2).

5 This closing curly brace closes the block of statements following the if expression.
When there is only one statement in the block, the curly braces are not required.

6, 7 The else statement, line number 7, is executed if the expression in line 3 is false.

8 This tag marks the end of the JavaScript program.

Figure 6.1 The user is prompted for input.

126 Chapter 6 • Under Certain Conditions

The Conditional Operator. The conditional operator, called a ternary operator, was
discussed in Chapter 5, “Operators.” Because it is often used as a shortcut for the if/else
conditional statement, it is reviewed again here.

Figure 6.2 If the age entered was greater than 55, this message is displayed.

FORMAT

conditional expression ? expression : expression

EXAMPLE

x ? y : z If x evaluates to true, the value of the expression
becomes y, else the value of the expression becomes z

big = (x > y) ? x : y If x is greater than y, x is assigned to
variable big, else y is assigned to
variable big

 An if/else statement instead of the conditional statement:

if (x > y) {
big = x;

}
else{

big = y;
}

EXAMPLE 6.2

<html>
<head>

<title>Conditional Operator</title>
</head>
<body bgcolor="lightblue">

<big>
<script type ="text/javascript">

1 var age = prompt("How old are you? ", "");
2 var price = (age > 55) ? 0 : 7.50;

6.2 Conditionals 127

6.2.2 if/else if

“If you’ve got $1, we can go to the Dollar Store; else if you’ve got $10, we could get a
couple of movies; else if you’ve got $20 we could buy a CD . . . else forget it!” JavaScript
provides yet another form of branching, the if/else if construct. This construct provides
a multiway decision structure.

If the first conditional expression following the if keyword is true, the statement or
block of statements following the expression is executed and control starts after the final
else block. Otherwise, if the conditional expression following the if keyword is false,
control branches to the first else if and the expression following it is evaluated. If that
expression is true, the statement or block of statements following it are executed, and if
false, the next else if is tested. All else ifs are tested and if none of their expressions are
true, control goes to the else statement. Although the else is not required, it normally
serves as a default action if all previous conditions were false.

3 alert("You pay $" + price + 0);
</script>
</big>

</body>
</html>

EXPLANATION
1 The user is prompted for input. The value he or she enters in the prompt box is

assigned to the variable age.

2 If the value of age is greater than 55, the value to the right of the ? is assigned to
the variable price; if not, the value after the : is assigned to the variable price.

3 The alert dialog box displays the value of the variable price.

FORMAT

if (condition) {
statement(s);

}
else if (condition) {

statement(s);
}
else if (condition) {

statement(s);
}
else{

statement(s);
}

EXAMPLE 6.2 (CONTINUED)

128 Chapter 6 • Under Certain Conditions

6.2.3 switch

The switch statement is an alternative to if/else if conditional construct (commonly
called a “case statement”) and may make the program more readable when handling
multiple options.

EXAMPLE 6.3

<html>
<head>

<title>Conditional Flow Control</title>
</head>
<body>

<h2>
1 <script type="text/javascript">

<!--
2 var age=eval(prompt("How old are you? ",""));
3 if(age > 0 && age <= 12){
4 alert("You pay the child's fare. ");

}
5 else if(age > 12 && age < 60){
6 alert("You pay the regular adult fare. ");

}
else {

7 alert("You pay the senior fare! ");
}
//-->

8 </script>
</h3>

</body>
</html>

EXPLANATION
1 JavaScript program starts here.

2 The prompt dialog box will display the message “How old are you? ”. Whatever the
user types into the box will be converted to a number by the eval() method and
then stored in the variable age.

3, 4 If the value of the variable age is greater than 0 and age is also less than or equal
to 12, then line 4 is executed and the program continues at line 8.

5, 6 If the expression on line 3 is false, the JavaScript interpreter will test this line, and if
the age is greater than 12 and also less than 60, the block of statements that follow
will be executed and control goes to line 8. You can have as many else ifs as you like.

7 The else statement, line number 7, is executed if all of the previous expressions
test false. This statement is called the default and is not required.

8 This tag marks the end of the JavaScript program.

6.2 Conditionals 129

The value of the switch expression is matched against the expressions, called labels,
following the case keyword. The case labels are constants, either string or numeric. Each
label is terminated with a colon. The default label is optional, but its action is taken if
none of the other cases match the switch expression. After a match is found, the state-
ments after the matched label are executed for that case. If none of the cases are
matched, the control drops to the default case. The default is optional. If a break state-
ment is omitted, all statements below the matched label are executed until either a break
is reached or the entire switch block exits.

FORMAT

switch (expression){
case label :

statement(s);
break;

case label :
statement(s);
break;
...

default : statement;
}

EXAMPLE

switch (color){
case "red":

alert("Hot!");
break;

case "blue":
alert("Cold.");
break;

default:
alert("Not a good choice.");
break;

}

EXAMPLE 6.4

<html>
<head>

<title>The Switch Statement</title>
</head>
<body>

Continues

130 Chapter 6 • Under Certain Conditions

<script type="text/javascript">
<!--

1 var day_of_week=Math.floor((Math.random()* 7)+1);
// Get a random number between 1 and 7
// Monday is 1, Tuesday is 2, etc.

2 switch(day_of_week){
3 case 1:

case 2:
case 3:
case 4:

4 alert("Business hours Monday through Thursday are from
9am to 10pm");

5 break;
case 5:

alert("Business hours on Friday are from 9am to 6pm");
break;

case 6:
alert("Business hours on Saturday are from

11am to 3pm");
break;

6 default:
alert("We are closed on Sundays and holidays");

7 break;
8 }

//-->
</script>

</body>
</html>

EXPLANATION
1 The random number function generates a random number between 1 and 7 inclu-

sive when the script is executed. The random number is stored in a variable called
day_of_week.

2 The day_of_week value of the switch expression is matched against the values of
each of the case labels below.

3 The first case that is tested is 1. If the random number is 1, the message “Business
hours Monday through Thursday are from 9am to 10pm” will be displayed in the
alert dialog box. The same is true for case 2, 3, and 4.

4 This statement is executed if case 1, 2, 3, or 4 are matched. Note there are no break
statements associated with any of these 4 case statements. Program control just
drops from one case to the next, and if cases 1, 2, 3, or 4 are not matched, execu-
tion control goes to the next case (case 5) for testing.

5 The break statement causes program control to continue after line 8. Without it,
the program would continue executing statements into the next case, “yellow”,
and continue doing so until a break is reached or the switch ends—and we don’t
want that. The break statement sends control of the program to line 8.

EXAMPLE 6.4 (CONTINUED)

6.3 Loops 131

6.3 Loops

Loops are used to execute a segment of code repeatedly until some condition is met.
JavaScript’s basic looping constructs are

• while
• for
• do/while

6.3.1 The while Loop

The while statement executes its statement block as long as the expression after the
while evaluates to true; that is, nonnull, nonzero, nonfalse. If the condition never
changes and is true, the loop will iterate forever (infinite loop). If the condition is
false, control goes to the statement right after the closing curly brace of the loop’s
statement block.

The break and continue functions are used for loop control.

6 The default statements are executed if none of the cases are matched.

7 This final break statement is not necessary, but is good practice in case you should
decide to replace the default with an additional case label.

8 The final curly brace ends the switch statement. Figure 6.3 displays examples of
the output.

Figure 6.3 A random number between 1 and 7 determines which case is matched and
executed.

EXPLANATION (CONTINUED)

132 Chapter 6 • Under Certain Conditions

FORMAT

while (condition) {
statements;
increment/decrement counter;

}

EXAMPLE 6.5

<html>
<head>

<title>Looping Constructs</title>
</head>
<body>

<h2>While Loop</h2>

1 <script type="text/javascript">
2 var i=0; // Initialize loop counter
3 while (i < 10){ // Test
4 document.writeln(i);
5 i++; // Increment the counter
6 } // End of loop block
7 </script>

</body>

</html>

EXPLANATION
1 The JavaScript program starts here.

2 The variable i is initialized to 0.

3 The expression after the while is tested. If i is less than 10, the block in curly brac-
es is entered and its statements are executed. If the expression evaluates to false,
(i.e., i is not less than 10), the loop block exits and control goes to line 6.

4 The value of i is displayed in the browser window (see Figure 6.4).

5 The value of i is incremented by 1. If this value never changes, the loop will never
end.

6 This curly brace marks the end of the while loop’s block of statements.

7 The JavaScript program ends here.

6.3 Loops 133

6.3.2 The do/while Loop

The do/while statement executes a block of statements repeatedly until a condition
becomes false. Owing to its structure, this loop necessarily executes the statements in
the body of the loop at least once before testing its expression, which is found at the bot-
tom of the block. The do/while loop is supported in Mozilla/Firefox and Internet
Explorer 4.0, JavaScript 1.2, and ECMAScript v3.

Figure 6.4 Output from Example 6.5.

FORMAT

do
{ statements;}

while (condition);

EXAMPLE 6.6

<html>
<head>

<title>Looping Constructs</title>
</head>
<body>

<h2>Do While Loop</h2>

<script type="text/javascript">

1 var i=0;
2 do{
3 document.writeln(i);
4 i++;
5 } while (i < 10)

</script>

</body>
</html>

134 Chapter 6 • Under Certain Conditions

6.3.3 The for Loop

The for loop consists of the for keyword followed by three expressions separated by semico-
lons and enclosed within parentheses. Any or all of the expressions can be omitted, but the
two semicolons cannot. The first expression is used to set the initial value of variables and
is executed just once, the second expression is used to test whether the loop should con-
tinue or stop, and the third expression updates the loop variables; that is, it increments or
decrements a counter, which will usually determine how many times the loop is repeated.

The preceding format is equivalent to the following while statement:

Expression1;
while(Expression2)

{ Block; Expression3};

EXPLANATION
1 The variable i is initialized to 0.

2 The do block is entered. This block of statements will be executed before the while
expression is tested. Even if the while expression proves to be false, this block will
be executed the first time around.

3 The value of i is displayed in the browser window (see Figure 6.5).

4 The value of i is incremented by 1.

5 Now, the while expression is tested to see if it evaluates to true (i.e., is i less than
10?). If so, control goes back to line 2 and the block is re-entered.

sa

Figure 6.5 Output from Example 6.6, the do/while loop.

FORMAT

for(Expression1;Expression2;Expression3)
{statement(s);}

for (initialize; test; increment/decrement)
{statement(s);}

6.3 Loops 135

6.3.4 The for/in Loop

The for/in loop is like the for loop, except it is used with JavaScript objects. Instead of
iterating the statements based on a looping condition, it operates on the properties of an
object. This loop is discussed in Chapter 9, “JavaScript Core Objects,” and is only men-
tioned here in passing, because it falls into the category of looping constructs.

EXAMPLE 6.7

<html>
<head>

<title>Looping Constructs</title>
</head>
<body>

<h2>For Loop</h2>

<script type="text/javascript">

1 for(var i = 0; i < 10; i++){
2 document.write(i);
3 }

</script>

</body>
</html>

EXPLANATION
1 The for loop is entered. The expression starts with step 1, the initialization of the

variable i to 0. This is the only time this step is executed. The second expression,
step 2, tests to see if i is less than 10, and if it is, the statements after the opening
curly brace are executed. When all statements in the block have been executed
and the closing curly brace is reached, control goes back into the for expression
to the last expression of the three. i is now incremented by one and the expression
in step 2 is retested. If true, the block of statements is entered and executed.

2 The value of i is displayed in the browser window (see Figure 6.6).

3 The closing curly brace marks the end of the for loop.

Figure 6.6 Output from Example 6.7.

136 Chapter 6 • Under Certain Conditions

6.3.5 Loop Control with break and continue

The control statements, break and continue, are used to either break out of a loop early
or return to the testing condition early; that is, before reaching the closing curly brace
of the block following the looping construct.

Table 6.1 Control Statements

Statement What It Does

break Exits the loop to the next statement after the closing curly brace of the
loop’s statement block.

continue Sends loop control directly to the top of the loop and re-evaluates the loop
condition. If the condition is true, enters the loop block.

EXAMPLE 6.8

<html>
<head>

<title>Looping Constructs</title>
</head>
<body>

1 <script type="text/javascript">
2 while(true) {
3 var grade=eval(prompt("What was your grade? ",""));
4 if (grade < 0 || grade > 100) {

alert("Illegal choice!");
5 continue; // Go back to the top of the loop

}
if(grade > 89 && grade < 101)

6 {alert("Wow! You got an A!");}
7 else if (grade > 79 && grade < 90)

{alert("You got a B");}
else if (grade > 69 && grade < 80)

{alert("You got a C");}
else if (grade > 59 && grade < 70)

{alert("You got a D");}
8 else {alert("Study harder. You Failed.");}
9 answer=prompt("Do you want to enter another grade?","");
10 if(answer != "yes"){
11 break; // Break out of the loop to line 12

}
12 }

</script>
</body>

</html>

6.3 Loops 137

6.3.6 Nested Loops and Labels

Nested Loops. A loop within a loop is a nested loop. A common use for nested
loops is to display data in rows and columns. One loop handles the rows and the other
handles the columns. The outside loop is initialized and tested, the inside loop then
iterates completely through all of its cycles, and the outside loop starts again where it
left off. The inside loop moves faster than the outside loop. Loops can be nested as
deeply as you wish, but there are times when it is necessary to terminate the loop
owing to some condition.

EXPLANATION
1 The JavaScript program starts here.

2 The while loop is entered. The loop expression will always evaluate to true, caus-
ing the body of the loop to be entered.

3 The user is prompted for a grade, which is assigned to the variable grade.

4 If the variable grade is less than 0 or more than 100, “Illegal choice” is printed.

5 The continue statement sends control back to line 2 and the loop is re-entered,
prompting the user again for a grade.

6 If a valid grade was entered, and it is greater than 89 and less than 101, the grade
“A” is displayed (see Figure 6.7).

7 Each else/if branch will be evaluated until one of them is true.

8 If none of the expressions are true, the else condition is reached and “You Failed”
is displayed.

9 The user is prompted to see if he or she wants to enter another grade.

10, 11 If the answer is not yes, the break statement takes the user out of the loop, to line
12.

Figure 6.7 The user enters a grade, clicks OK, and gets another alert box.

138 Chapter 6 • Under Certain Conditions

EXAMPLE 6.9

<html>
<head>

<title>Nested loops</title>
</head>
<body>

<script type="text/javascript">
<!-- Hiding JavaScript from old browsers

1 var str = "@";
2 for (var row = 0; row < 6; row++){
3 for (var col=0; col < row; col++){

document.write(str);
}

4 document.write("
");
}
//-->

</script>
</body>

</html>

EXPLANATION
1 The variable str is assigned a string “@”.

2 The outer for loop is entered. The variable row is initialized to 0. If the value of
row is less than 6, the loop block (in curly braces) is entered (i.e., go to line 3).

3 The inner for loop is entered. The variable col is initialized to 0. If the value of col
is less than the value of row, the loop block is entered and an @ is displayed in the
browser. Next, the value of col will be incremented by 1, tested, and if still less
than the value of row, the loop block is entered, and another @ displayed. When
this loop has completed, a row of @ symbols will be displayed, and the statements
in the outer loop will start up again.

4 When the inner loop has completed looping, this line is executed, producing a
break in the rows (see Figure 6.8).

Figure 6.8 Nested loops: rows and columns. Output from Example 6.9.

6.3 Loops 139

Labels. Labels allow you to name control statements (while, do/while, for, for/in, and
switch) so that you can refer to them by that name elsewhere in your program. They
can be named the same as any other legal identifier that is not a reserved word. By
themselves, labels do nothing. Labels are optional, but are often used to control the
flow of a loop. A label looks like this, for example:

topOfLoop:

Normally, if you use loop-control statements such as break and continue, the control
is directed to the innermost loop. There are times when it might be necessary to switch
control to some outer loop. This is where labels most often come into play. By prefixing
a loop with a label, you can control the flow of the program with break and continue
statements as shown in Example 6.10. Labeling a loop is like giving the loop its own
name.

EXAMPLE 6.10

<script type="text/javascript">
1 outerLoop: for (var row = 0; row < 10; row++){
2 for (var col=0; col <= row; col++){

document.write("row "+ row +"|column " + col, "
");
3 if(col==3){

document.write("Breaking out of outer loop at column
4 " + col +"
");
5 break outerLoop;

}
}

6 document.write("************
");
7 } // end outer loop block

</script>

EXPLANATION
1 The label outerLoop labels the for loop that follows it. It’s like giving the for loop

its own name so that it can be referenced by that name later.

2 This is a nested for loop. As the program executes the row and column numbers
are displayed.

3 If the expression is true, the break statement, with the label, causes control to go
to line 8; it breaks out of the outer: loop. A break statement without a label would
cause the program to exit just the loop to which it belongs.

4 The value of row and col are displayed as the inner loop iterates.

5 The break statement with the label causes control to go to line 8.

6 Each time the inner loop exits, this row of stars will be printed (see Figure 6.9).
Notice that the row of stars is not printed when the loop is exited on line 5.

7 The closing curly brace closes the outer for loop block on line 1.

140 Chapter 6 • Under Certain Conditions

6.4 What You Should Know

“Two roads diverged in a wood, and I—” wrote Robert Frost. This chapter was about
making decisions about the flow of your program, what road to take, how to repeat a
sequence of statements, and how to stop the repetition. At this point, you should under-
stand:

1. How to use conditional constructs to control the flow of your program; if/else,
switch, and so on.

2. What a block is and when to use curly braces.
3. How and why you would use a switch statement.
4. How the while and the do/while loops differ.
5. How to use a for loop.
6. How to use break and continue with loops.
7. The purpose of nested loops.
8. How to make an infinite loop and how to get out of it.
9. The purpose of labels in loops.

10. How else/ifs work.

Figure 6.9 Using a label with a loop.

6.4 What You Should Know 141

1. Create a while loop that displays numbers as: 10 9 8 7 6 5 4 3 2 1. Put the
numbers in HTML table cells.

2. Ask the user what the current hour is. If the hour is between 6 and 9 a.m., tell
the user, “Breakfast is served.” If the hour is between 11 a.m. and 1 p.m., tell
the user, “Time for lunch.” If the hour is between 5 and 8 p.m., tell the user,
“It’s dinner time.” For any other hours, tell the user, “Sorry, you’ll have to wait,
or go get a snack.”

3. Create a conversion table using the following formula:

C = (F – 32) / 1.8;

Start with a Fahrenheit temperature of 20 degrees and end with a temperature
of 120 degrees; use an increment value of 5. The table will have two columns,
one for Fahrenheit temperature values and one for those same temperatures
converted to Celsius.

4. Ask the user for the name of the company that developed the JavaScript lan-
guage. Alert the user when he or she is wrong, and then keep asking the user
until he or she gets the correct answer. When the user gets it right, confirm it.

5. Use a switch statement to rewrite the following JavaScript code. Prompt the user
for the number of a month rather than setting it to 8.

<script type=text/javascript>
month = 8;

if (month == 1) {
alert("January");

}
else if (month == 2) {

alert("February");
}
else if (month == 3) {

alert("March");
}
else if (month == 4) {

alert("April");
}
else if (month == 5) {

alert("May");
}

Exercises

Exercises

142 Chapter 6 • Under Certain Conditions

else if (month == 6) {
alert("June");

}
else if (month == 7) {

alert("July");
}
else if (month == 8) {

alert("August");
}
else if (month == 9) {

alert("September");
}
else if (month == 10) {

alert("October");
}
else if (month == 11) {

alert("November");
}
else if (month == 12) {

alert("December");
}
else{

alert("Invalid month");
}

</script>

6. Consider the following example:

var start_time = (day == weekend) ? 12 : 9;

Rewrite the conditional statement using an if/else construct.

855

Index
Symbols
& (ampersand)

bitwise AND (&) operator, 110, 111–12
logical AND (&&) operator, 101–3

<> (angle brackets)
in bitwise shift operators, 110–12
in comparison operators, 95–96, 98–100
greater-than (>) operator, 95, 98, 99
greater-than or equal-to (>=) operator, 96,

98, 99
left shift (<<) operator, 110–12
less-than (<) operator, 96, 98, 99
less-than or equal-to (<=) operator, 96, 98,

99
right shift (>>) operator, 110–12
zero-fill right shift (>>>) operator, 110–12

* (asterisk) as multiplication operator, 88
\ (backslash) and regular expressions, 733,

734, 735
^ (bitwise XOR operator), 110, 111–12
{} (curly braces) in function statements, 144,

145
= (equal sign)

as assignment operator, 84, 90–91
in comparison operators, 95–98
equal-to (==) operator, 41, 58, 96–97
identical-to (===) operator, 96, 97
not-equal-to (!=) operator, 95
not-identical-to (!==) operator, 96, 97
and operator precedence, 84, 85

/ (forward slash)
as division operator, 88
in regular expressions, 717, 720

! (logical NOT operator), 101, 105–6
- (minus sign)

auto-decrement (--) operator, 91–94
bitwise NOT (-) operator), 110, 111–12
as subtraction operator, 88

| (OR operator, bitwise), 110, 111–12
|| (OR operator, logical), 101, 103–5
() (parentheses)

following method names, 13, 38, 180, 333
in function statements, 144, 146, 156, 518
and operator precedence, 84, 85
and regular expressions, 736, 761, 762,

772–73, 777–80, 781, 790
+ (plus sign)

as addition operator, 88
auto-increment (++) operator, 91–94
as concatenation operator, 66, 94–95

" (quote marks, double), 54
' (quote marks, single), 54
[] (square brackets) for notation, 213, 216,

222–23, 353

A
abort() method, XMLHttpRequest object,

802
abs() method, Math object, 242
absolute positioning, CSS elements, 573–79

856 Index

accessKey property
checkbox object, 396
password object, 378
radio object, 393
text object, 373
textarea object, 382

acos() method, Math object, 242
action HTML <form> tag attribute, 335, 356,

826, 827
action property, forms object, 349
ActiveX, 280–82, 800
addEventListener() method, in W3C DOM

event model, 668–69
Ajax (Asynchronous JavaScript and XML)

defined, 5–6, 797
existing application examples, 6–7, 797–98
overview, 5–7, 797
PHP server-side script example, 813–18
reasons for using with forms, 826–34
retrieving text from file example, 819–22
retrieving XML from file example, 822–26
role in Web page cycle, 6
role of XMLHttpRequest object, 800–810
steps in creating communications, 799–811

alert() method, window object, 73–76, 286
alink HTML <body> tag attribute, 329
alinkColor property, document object, 330
alt property

checkbox object, 396
password object, 378
radio object, 393
text object, 373

altKey property, event object, 501, 502
anchor() method, String object, 251
AND operators

bitwise (&), 110, 111–12
logical (&&), 101–3

angle brackets (<>)
in comparison operators, 95–96, 98–100
greater-than (>) operator, 95, 98, 99
greater-than or equal-to (>=) operator,

96, 98, 99
less-than (<) operator, 96, 98, 99
less-than or equal-to (<=) operator, 96, 98,

99

animation, JavaScript, 449–52
appCodeName property, navigator object, 273
appendChild() DOM method, 615, 630, 644
apply() property, Function object, 265
appName property, navigator object, 273
appVersion property, navigator object, 273
<area> tag, 414, 424
arguments, passing to functions, 146–48
arithmetic operators, 88–89
Array() constructor, 177, 214–16, 218, 219,

220
array literals, 216–17
arrays

associative, 213, 214, 221–23
creating by using literal notation, 216–17
creating by using new keyword, 214–16
length property, 219, 220
methods, 227–33
nested, 223–27
numeric compared with associative, 213–

14
overview, 213–14
populating, 217–19
properties, 219–21
style sheets in, 585–88
two-dimensional, 223–25
types, 213

asin() method, Math object, 242
assignment operator (=), 84, 90–91
assignment statements, 84
associative arrays, 213, 214, 221–23
associativity, operator, 84–88
asterisk (*) as multiplication operator, 88
Asynchronous JavaScript and XML. See Ajax

(Asynchronous JavaScript and XML)
atan() method, Math object, 242
atan2() method, Math object, 242
Attribute DOM object, defined, 613
attribute nodes, DOM, defined, 614
attributes, HTML <script> tag, 36–37
auto-decrement operator, 91–94
auto-increment operator, 91–94
availDepth property, screen object, 323
availHeight property, screen object, 322
availLeft property, screen object, 322

Index 857

availTop property, screen object, 323
availWidth property, screen object, 323

B
back() method, history object, 319
background HTML <body> tag attribute, 329
background-attachment CSS property, 533,

544
background-color CSS property, 533, 536
background-image CSS property, 533, 544
background-position CSS property, 533, 544
background-repeat CSS property, 533, 544
backgrounds, in CSS, 533, 544–46
backslash (\) and regular expressions, 733,

734, 735
behavior, role in Web page design, 10
bgcolor HTML <body> tag attribute, 329
bgColor property, document object, 330
big() method, String object, 251
binary number system, 109
bit, defined, 109
bitwise AND (&), 110, 111–12
bitwise NOT (-), 110, 111–12
bitwise operators, 109–12
bitwise OR (|), 110, 111–12
bitwise XOR (^), 110, 111–12
blink() method, String object, 251
blog entries, adding, 639–45
blur() event method, 463, 470–71
blur() method

checkbox object, 397
frame object, 308
password object, 379
radio object, 393
select object, 386
text object, 374
textarea object, 382
window object, 286

<body> tag, HTML
attributes defining document object, 329
compared with <frameset> tag, 303
as container, 547
in DOM tree-structure, 613, 614
and event handlers, 459
and JavaScript code, 20

bold() method, String object, 252
Boolean data type, 56–57, 63, 112–19. See

also comparison operators
Boolean() function, 113–14
Boolean object, 246, 263–64
border property, image object, 417
border-bottom CSS property, 534, 547
border-bottom-width CSS property, 534, 547
border-color CSS property, 534, 547
border-left CSS property, 534, 547
border-left-width CSS property, 534, 548
border-right CSS property, 534, 548
border-right-width CSS property, 534, 548
border-style CSS property, 534, 548
border-top CSS property, 534, 548
border-top-width CSS property, 534, 548
border-width CSS property, 534, 548
borders, in Cascading Style Sheets, 534–35,

547–49
bottom property, in positioning CSS elements,

573
break statement, 136–37
Browser Object Model (BOM)

compared with Document Object Model
(DOM), 271–72

defined, 271
hierarchy, 271
window object, 73, 179, 285–87

browser sniffers, 15–16, 276–78
Browser Wars, 12
BrowserDetect object, 277
browsers. See also Firefox; Internet Explorer;

Netscape; Opera browser; Safari
cache issue, 810–11
CSS-enhanced, 528–29
dividing window into frames, 303–14
DOM inspectors, 621, 622
executing JavaScript programs, 30–33
interpreters, 15
invoking error consoles, 41
JavaScript in, 1–2, 15, 18–19
navigator object detection properties, 276–

78
older, and JavaScript, 47–50
overview, 15–19

858 Index

browsers (Continued)
passing events to JavaScript functions,

505–8
sniffers for, 15–16, 276–78
support for DOM specification, 13
support for JavaScript versions, 16–17

bubbles property, event object, 502, 510, 511,
679

bubbling, 500, 662–68
button, HTML <form> tag element. See also

radio, HTML <form> tag element
attributes, 337
description, 337, 353
properties, 353

button object. See also radio object
event handlers, 483
and this keyword, 484–85
as triggering device, 367–68

button property
event object, 501, 502
forms object, 348, 349

byte, defined, 109

C
call() property, Function object, 265
callback functions, 808–9
Camino browser, 13, 14
cancelable property, event object, 502, 679
cancelBubble property, event object,

501, 665–68
capturing, 500, 662–68
Cascading Style Sheets (CSS)

absolute positioning of elements, 573–79
and backgrounds, 533, 544–46
and borders, 534–35, 547–49
and colors, 533, 536–38
comments in, 530
common properties, 532–49
defining, 550–54
embedded, 550–53
example, 529–30
external, 550, 555–58
and fonts, 533, 539–41
how they work, 529–30
id attribute, 565–66

ID selectors, 564–65
and images, 544–46
inline, 550, 553–54
and margins, 534–35, 547–49
multiple, in arrays, 585–88
order of precedence, 558
overview, 527–28
positioning elements and layers, 572–84
program structure, 530–32
role of grouping, 531–32
role of JavaScript, 585–608
role of tag, 566–72
rules for, 529–30
style classes for, 558–62
text properties, 533–34, 542–44
types, 550–54
units of measurement, 535–36

case sensitivity, in JavaScript, 33, 177, 517
case statements. See if/else if statements
catch statement, 800. See also try/catch

statements
ccsRules array, W3C, 585
ceil() method, Math object, 242, 244
Champeon, Steve, 683
character class, in regular expressions, 738–41
characters. See metacharacters
charAt() method, String object, 253, 257, 258
charCode property, event object, 502, 513
charset property, links object, 419
checkbox, HTML <form> tag element

attributes, 337
description, 337, 353
properties, 353

checkbox object
event handlers, 483
JavaScript code example, 397–400
in JavaScript hierarchy, 396
methods, 397
overview, 395
properties, 396

checkbox property, forms object, 349
checked property

checkbox object, 396
radio object, 393

child nodes, DOM, defined, 614

Index 859

Chrome. See Google Chrome
circle shape, image map, 425
class attributes, 558–59, 562
class HTML tag attribute, 566, 568–69
class properties, RegExp object, 724, 725
class selectors, 558, 562, 563
classes

defined, 182
defining for styles, 558–60
functions as, 182
in object-oriented languages, 196
simulated, extending with prototypes, 196

className property, as HTML attribute, 598–
601, 627

clear CSS property, 534
clear() method, document object, 333
clearInterval() method

frame object, 308
window object, 286

clearTimeout() method
frame object, 308
window object, 286

click event. See onClick event handler
click() event method, 463
click() method

checkbox object, 397
radio object, 393

client-side JavaScript, defined, 2
clientX property, event object, 501, 502, 508
clientY property, event object, 501, 502, 508
clip property, in positioning CSS elements, 573
cloneNode() DOM method, 615, 630, 648–53
cloning nodes, 648–53
close() method

document object, 333
window object, 286

closed property, window object, 285
closing windows, 287, 290
closures, 158–61
color CSS property, 533, 536
colorDepth property, screen object, 323, 537
colors, CSS, 533, 536–38
cols property, textarea object, 382
comma operator (,), 85, 120
comments

in Cascading Style Sheets, 530
in JavaScript, 35, 47–49

comparison operators
equal-to (==) operator, 41, 58, 96–97
greater-than (>) operator, 95, 98, 99
greater-than or equal-to (>=) operator, 96,

98, 99
identical-to (===) operator, 96, 97
less-than (<) operator, 96, 98, 99
less-than or equal-to (<=) operator, 96, 98,

99
not-equal-to (!=) operator, 95
not-identical-to (!==) operator, 96, 97

compile-time errors, 40
complete property, image object, 417
composite data types, defined, 59
concat() method

arrays, 227, 228
String object, 253

concatenating
plus-sign (+) operator, 66, 94–95
strings, 37, 56
strings and variables together, 66–67

conditional constructs
if/else, 124–27
if/else if, 127–28
overview, 123–24
switch, 128–31

conditional operator, 108–9, 126–27
confirm() method, window object, 78–80, 286
const keyword, 67–69
constants, 67–69
constructor property

Array object, 219, 220
defined, 196, 204

constructors
built-in, 177
creating objects with, 177–78
defined, 177
Function() constructor, 264
Image() constructor, 432–34
role of new operator, 177–78, 182

containers, for CSS elements, 528, 547
content, role in Web page design, 9
continue statement, 136–37

860 Index

controls, form, programming, 372–401
converting data types, 62, 63, 64–65, 112–19
cookie property, document object, 330, 701–4
cookies

assigning attributes, 702–4
attribute overview, 699–701
creating with JavaScript, 704–8
defined, 695
deleting by setting expiration date, 710–13
deleting by using browser to remove from

hard drive, 713
expiration dates, 700
on Firefox, 697
on Internet Explorer, 697, 698
limiting to local browsers, 698–99
on Opera, 698
origin, 695
overview, 695–98
retrieving from server, 708–10
session compared with persistent, 695–96

core objects
arrays as, 213–33
Boolean object, 246, 263–64
Date object, 234–41
Function object, 246, 265–66
Math object, 241–46
Number object, 246, 247, 259–63
overview, 213
String object, 246, 247–59
wrapper objects, 246–64

cos() method, Math object, 242
Crawford, Douglas, 159
createElement() DOM method, 634–35, 644
credit card numbers, validating, 783–90
CSS. See Cascading Style Sheets (CSS)
ctrlKey property, event object, 501, 502
curly braces ({}) in function statements, 144,

145
current property, history object, 319
currentTarget property, event object, 502, 679

D
data property, event object, 503
data types

boolean, 56–57

composite, 59
converting, 62, 63, 64–65, 112–19
JavaScript compared with Java, 2–3
numeric, 53–54
overview, 53
primitive, 53–59
string, 54–56

Date() constructor, 177
Date object

customizing with prototype property,
240–41

manipulating dates and times, 238–40
methods, 235–38
overview, 234–35

debugging
function errors, 166–68
tools for, 41–46
types of errors, 40–41
using Firefox tools, 41–44
using Internet Explorer tools, 44–45
using JavaScript: URL protocol, 46
using try/catch and throw exception

handlers, 168–72
decimal number system, 109
declaration blocks, in style sheet rules,

529–30, 531, 532
declaring variables, 60–62
default shape, image map, 425
defaultChecked property

checkbox object, 396
radio object, 393

defaultStatus property, window object,
285

defaultValue property
password object, 378
text object, 373
textarea object, 382

delete operator, 120
derived classes. See subclasses
description property

mimeType object, 283
plugin object, 279

DHTML (Dynamic HTML), 585
dialog boxes, creating, 73–80
dir property, as HTML attribute, 627

Index 861

disabled property
elements object, 350
links object, 419
select object, 385
textarea object, 382

display property, in positioning CSS
elements, 573

<div> containers, 547, 579–80, 581, 596–98,
658

Document DOM object, defined, 613
document object

defined, 328
JavaScript hierarchy, 328–32
list of HTML <body> tag attributes, 329
methods, 333–34
overview, 329
properties, 330
properties in JavaScript examples, 331–33
as property of window object, 329
role in HTML documents, 329–34

Document Object Model (DOM). See also
Legacy DOM, defined; W3C DOM
(Document Object Model)

browser support for, 13
compared with Browser Object Model

(BOM), 271–72
defined, 13, 613
and JavaScript objects, 13
Level 1, 13, 14
Level 2, 13, 14
overview, 13–15
role of W3C, 13
tree structure, 13–14, 15

document property
frame object, 308
window object, 285

DOM. See Document Object Model (DOM);
Legacy DOM, defined; W3C DOM
(Document Object Model)

DOM inspectors, 621–22
domain property, document object, 330
dot metacharacter, 736–37
dot notation, 13, 38, 176, 178, 180, 222–23,

328–29, 333, 353, 837
double quote marks ("), 54

double words, defined, 109
do/while loop, 133–34
drop-down menus

dynamics, 601–6
programming, 385–92

dwords, defined, 109
Dynamic HTML (DHTML), 585

E
E property, Math object, 241
Eclipse IDE, 29
ECMAScript, 12–13, 17
Eich, Brendan, 1, 17, 18
Element DOM object, defined, 613
element nodes, DOM, defined, 614
elements, form, programming, 372–401
elements property, forms object, 349
e-mail addresses

preliminary HTML form validation, 405–7
using regular expressions in HTML form

validation, 781–83
embedded style sheets, 550–53
enabledPlugin property, mimeType object, 283
encoding property, forms object, 349
equal sign (=)

as assignment operator, 84, 90–91
in comparison operators, 95–98
equal-to (==) operator, 41, 58, 96–97
identical-to (===) operator, 96, 97
not-equal-to (!=) operator, 95
not-identical-to (!==) operator, 96, 97
and operator precedence, 84, 85

equality operators. See comparison operators
errors, types of, 40–41. See also debugging
escape() built-in function, 699–700, 702–4
escape sequences, for strings, 54–56
European Computer Manufacturers

Association (ECMA), 12–13
eval() function, 118–19, 843–48
event handlers

as attributes of HTML tags, 456–58, 459
compared with JavaScript event methods,

462–63, 496, 497–99
comparing inline model and scripting

model, 517, 661–62

862 Index

event handlers (Continued)
creating rollovers, 432, 476–78
for form events, 482–96
inline model, 455–65, 661
for link events, 481–82
list, with uses, 458–59
overview, 455
registering events, 456–57, 459, 460, 670–

73
return values, 461–62
role in using JavaScript to submit forms,

359–65
scripting model, 455, 517–23, 661–62
setting up, 459–61
syntax, 456–57
triggered by mouse, 474–81
W3C DOM model, 662–81

event handling, defined, 456
event listeners

adding, 668–70
Internet Explorer registration model,

676–78
multiple, adding, 670–73
removing, 673–76

event methods, compared with HTML event
handlers, 462–65, 496, 497–99

event object
browser differences, 500–503
overview, 499–500
properties, Firefox, 502–3
properties, Internet Explorer, 501–2

eventPhase property, event object, 502, 679
events

affecting windows and frames, 465–74
bubbling and capturing, 500, 662–68
calling functions from, 149–51
defined, 359–60
DOM event properties, 678–82
Firefox event object properties, 502–3
Internet Explorer event object properties,

501–2
multiple, registering, 670–73
passing to JavaScript functions, 505–8
registering, 456–57, 459, 460
relationship to HTML, 11

role of JavaScript, 10–12, 455
simulating by applying methods to

objects, 462–65
timed, creating, 292–303

exception handling, 168–72
exec() method, RegExp object, 723–24
exp() method, Math object, 242
expressions, defined, 83
external files

importing CSS files, 557–58
linking style sheets, 550, 555–58
storing scripts in, 22, 144, 151

F
fgcolor HTML <body> tag attribute, 329
fgColor property, document object, 330
file, HTML <form> tag element, 337
filename property, plugin object, 279
files, external

importing CSS files, 557–58
linking style sheets, 550, 555–58
storing scripts in, 22, 144, 151

FileUpLoad, HTML <form> tag element, 353
FileUpLoad object, event handlers, 483
FileUpload property, forms object, 349
finally clause, 170–72
Firebug (browser extension)

debugging Ajax with, 848–52
overview, 43–44

Firefox
cookies, 697
debugging tools, 41–44, 166
displaying properties of navigator object,

274
event handling, 499–500, 501, 502–3, 504,

505, 506, 508, 510, 511, 514, 516
Firebug extension, 43–44, 848–52
invoking error console, 41–42
JavaScript in, 1–2, 18
Live Headers add on, 804
managing plug-ins, 279–80
support for DOM specification, 13, 14,

621, 622
Web site for, 15

firstChild DOM property, 614, 618

Index 863

fixed() method, String object, 252
float CSS property, 534
floor() method, Math object, 242, 244
focus() event method, 463, 470–71, 496
focus() method

checkbox object, 397
document object, 334
frame object, 308
password object, 379
radio object, 393
select object, 386
text object, 374
textarea object, 382
window object, 286

font CSS property, 533, 539
fontcolor() method, String object, 252
font-family CSS property, 533, 539
fonts

list of common CSS properties, 533
specifying in Cascading Style Sheets,

539–41
units of measurement, 535–36

font-size CSS property, 533, 539
fontsize() method, String object, 252
font-size-adjust CSS property, 533
font-stretch CSS property, 533
font-style CSS property, 533, 539
font-variant CSS property, 533, 539
font-weight CSS property, 533, 539
for loop

as basic JavaScript looping construct,
134–35

populating arrays by using, 217–18
for/in loop, 135, 194–96
form events, 482–96
form object, in forms [] array, 345, 353,

482–83. See also forms object
form property

checkbox object, 396
elements object, 350
password object, 378
radio object, 393
select object, 385
text object, 373
textarea object, 382

<form> tag, HTML
associating events with, 456–57
attributes, 334–36
document example, 338–41
elements and properties, 353–56
input types, 337–38
and onSubmit event handler, 362–63
overview, 334
relationship of JavaScript forms object to,

341–42
forms. See also validating HTML forms

as HTML documents, 334–41
in JavaScript hierarchy, 328, 341–42
list of event handlers, 484
programming of controls, 372–401
relationship between JavaScript and

HTML, 341–42
this keyword for, 484–85

forms [] array, 345–46, 347, 348, 353, 482–83
forms object

in JavaScript hierarchy, 328, 342
methods, 348, 349–50
overview, 342
properties, 348–49
as property of document object, 345–46,

348
relationship to HTML <form> tag,

341–42
forms property, as element of document

object, 482–83
forward() method, history object, 319
forward slash (/)

as division operator, 88
in regular expressions, 717, 720

frame object, 307–8
frames

collapsing, 312–14
collapsing menus in, 312–14
creating in HTML, 304–7
creating menus in, 308–10, 314
creating navigation bars in, 308–10
dividing windows into, 303–14
handling events, 465–74
overview, 303
role of location object, 315–18

864 Index

frames property
frame object, 308
window object, 285, 307

<frameset> tag, HTML, 303, 304
fromCharCode() method, String object,

253
fromElement property, event object, 501, 503,

679
Function() constructor, 264
Function object, 246, 264–66
function operator, 120
functions

anonymous, as variables, 156–58
assigning to properties, 185–87
calling, 144–46
calling from events, 149–51
calling from JavaScript, 144–46, 151
calling from links, 148–49
as closures, 158–61
compared with methods, 143, 180
curly braces in, 144, 145
debugging techniques, 166–72
declaring, 144–46
defined, 143
inline, as methods, 185–87
inner compared with outer, 158–61
invoking, 144–46
as JavaScript classes, 182
as objects, 185–87
overview, 143
parentheses in, 144, 146, 156, 518
passing arguments, 146–48
returning values, 153–55
scope of variables, 151–53
storing definitions, 151
syntax rules, 166

G
Garrett, Jesse James, 5
Gecko-based browsers, 13, 14
GET method, 335, 336, 803–5, 827–32
getAllResponseHeaders() method,

XMLHttpRequest object, 802, 810
getAttribute() DOM method, 630
getDate method, Date object, 236

getDay method, Date object, 236
getElementById() method, document object,

334, 350–52, 622–25, 658
getElementByName() method, document

object, 334
getElementByTagName() method, document

object, 334, 625–27
getFullYear method, Date object, 236
getHours method, Date object, 236
getMilliseconds method, Date object, 236
getMinutes method, Date object, 236
getMonth method, Date object, 236
getResponseHeader() method,

XMLHttpRequest object, 802, 810
getSeconds method, Date object, 236
getTime method, Date object, 236
getTimeZoneOffset method, Date object,

236
getUTCDate() method, Date object, 236
getUTCDay() method, Date object, 236
getUTCFullYear() method, Date object, 236
getUTCHours() method, Date object, 236
getUTCMilliseconds() method, Date object,

236
global property, RegExp object, 725
global variable scope, 66
go() method, history object, 319
Google Chrome, 15, 17, 834
Google Maps, 6–7, 797
Google Suggest, 6, 797–98, 799
grouping, in CSS structure, 531–32
Gustafson, Aaron, 683

H
handleEvent() method

checkbox object, 397
password object, 379
radio object, 393
select object, 386
text object, 374
textarea object, 382

hasAttributes() DOM method, 630
hasChildNodes() DOM method, 615, 630
hash property, location object, 315
hasOwnProperty() object method, 205

Index 865

<head> tag, HTML
declaring functions in, 144, 145
in DOM tree-structure, 613, 614
and placement of JavaScript code, 35

height CSS property, 534, 573
height property

event object, 503
image object, 417
screen object, 323

hexadecimal color codes, 537
hexadecimal number system, 109
hidden, HTML <form> tag element

attributes, 337
description, 337, 353
properties, 353

hidden object, event handlers, 483
hidden property, forms object, 349
history object

JavaScript code example, 319–22
methods, 319
properties, 319

history property, window object, 285. See also
history object

host property
links object, 419
location object, 315

hostname property
links object, 419
location object, 315

href property
links object, 419
location object, 315, 316

hreflang property, links object, 419
hsh property, links object, 419
hspace property, image object, 417
HTML documents. See also <body> tag,

HTML; HTML forms
adding JavaScript to pages, 20, 21, 22–23,

29–30
creating, 29
forms in, 334–41
IDEs for, 29
relationship of JavaScript to, 1–2, 10
role of document object in, 329–34
as static, 10

validating markup, 24–25
HTML forms

checking alphabetic data input, 403–5,
769–71

checking credit card number input, 783–90
checking e-mail address input, 405–7,

781–83
checking for empty fields, 401–3, 765–67
checking for extraneous characters, 771–75
checking password entries, 407–9
checking phone number input, 777–80
checking Social Security number input,

775–77
checking zip code input, 767–69
fillout, submitting, 356–65
JavaScript form event implementation,

359–65
list of controls, 337–38
naming, 342–45, 350–56
overview, 334
regular expressions in validation, 765–94
relationship of form> tag to JavaScript

forms object, 341–42
simple example, 338–41
simple validation, 401–9

<html> tag, HTML
in DOM tree-structure, 613, 614

HTTP response headers, 810
HTTP status codes, 807–8
hyphen (-). See minus sign (-)

I
id attribute, CSS, 565–66
id attribute, HTML form controls, 337–38,

342, 517, 627
id property

checkbox object, 396
links object, 419
password object, 378
radio object, 393
select object, 385
text object, 373
textarea object, 382

IDEs (integrated development
environments), 29, 30

866 Index

if statements, 101
if/else if statements, 127–28
if/else statements, 108, 124–27
ignoreCase property, RegExp object, 725
image, HTML <form> tag element, 338, 358–59
Image() constructor, 432–34
image maps

caching images, 432–34
creating, 436–38
displaying images randomly, 434–38
example, 425–28
overview, 423–25
shape coordinates, 425
using src property to replace images

dynamically, 428–31
image object

JavaScript hierarchy, 417
properties, 417
as property of document object, 416–17
using src property to replace images

dynamically, 428–31
images

caching, 432–34
in Cascading Style Sheets, 533, 544–46
changing stick figure height and width

properties in animation, 451–52
creating rollovers, 432, 476–78
creating slideshows by using controls,

442–45
creating slideshows by using mouse

events, 478–81
displaying randomly, 434–38
HTML tags, 414
making clickable in slideshows, 445–48
overview, 413
preloading, 432–34
randomly displaying, 434–36
resizing to fit windows, 438–41
using in Web pages, 415–16

 tag, HTML, 414, 416, 417
importing CSS files, 557–58
in operator, 120
indexOf() method, String object, 253, 254
inheritance

creating subclasses, 207–9

implementing in JavaScript by using
prototypes, 196–97

initEvent() event method, 665
initializing variables, 60–62
inline functions, as methods, 185–87
inline model, event handling, 455
inline style sheets, 550, 553–54
innerHTML property, 630–34
input devices, form, programming, 372–401
input property, RegExp object, 725
insertBefore() DOM method, 615, 630, 636–

37
insertChild() DOM method, 644
instance properties, RegExp object, 724, 725
instanceof operator, 120, 205–6
integrated development environments

(IDEs), 29, 30
Internet Explorer

and Browser Wars, 12
cookies, 697, 698
debugging tools, 44–46, 167
displaying properties of navigator object,

275
event handling, 499–500, 501–2, 503, 504,

505, 508, 510, 511, 512, 513, 516
event listener registration model, 676–78
JavaScript in, 1–2, 18, 19
and JScript, 13
managing plug-ins, 279
support for DOM specification, 13, 14,

621
testing whether JavaScript enabled,

18, 19
using Developer Tools, 44–45
Web site for, 15

isPrototypeOf() object method, 205
italics() method, String object, 252

J
Java, compared with JavaScript, 2–3
JavaScript

available libraries, 689–90
basic program example, 7–8
calling functions from, 144–46, 151
client-side compared to serer-side, 2

Index 867

compared with Java, 2–3
current state, 17, 18
debugging tools, 41–46
defined, 1
as dynamic, 2, 10
embedding code in HTML documents,

29–30
enclosing in comment tags, 47–49
enclosing in <noscript> tags, 49–50
example of dynamic Web page, 2
executing scripts in browser windows,

30–33
history, 16–17
latest version, 3
as loosely typed language, 62–65
overview, 1–3
placement in HTML documents,

20–21
relationship to ECMAScript, 12–13
relationship to HTML, 1–2, 10, 29–33
relationship to JScript, 13
reserved keywords, 34
role in Web page, 4–5
role of <script> tag, 35–37
statements and comments in, 34–35
syntax and rules, 1, 33–37
testing version in use, 17–18
testing whether enabled, 18–19
types of errors, 40–41
as unobtrusive, 10, 682–89
versions, 3, 16–17
viewing output in browser, 37–40
when to keep separate from HTML

documents, 22–23
join() method, arrays, 227
.js files, 22, 144, 151
JScript

relationship to JavaScript, 13
versions, 16–17

JSON (JavaScript Object Notation)
browser support, 843–48
data structures, 835–36
examples, 839–43
overview, 834–35
steps to using, 836–39

K
key events, 513–16
keyCode property, event object, 501, 513
keys, in arrays, 221, 225–27
Komodo Edit, 29
Konqueror browser, 13, 14, 15

L
labels, for control statements in loops, 139–40
lang property, as HTML attribute, 627
language HTML <script> tag attribute, 36
lastChild DOM property, 614, 618
lastIndex property, RegExp object, 721, 725,

726–27
lastIndexOf() method, String object, 253, 254
lastMatch property, RegExp object, 725
lastModified property, document object, 330
lastParen property, RegExp object, 725
layers, Web page, 682–89
layerX property, event object, 502
layerY property, event object, 502
leaf nodes, DOM, defined, 614
left property, in positioning CSS elements,

573, 574
left shift (<<) operator, 110–12
leftContext property, RegExp object, 725
Legacy DOM, defined, 327, 342, 345. See also

document object
length property

arrays, 219, 220
forms object, 349
frame object, 308
Function object, 264
history object, 319
plugin object, 279
select object, 385
window object, 285

letter-spacing CSS property, 533, 542
life cycle, Web page, 4–5
line-height CSS property, 533, 542
link events, 481–82
link HTML <body> tag attribute, 329
link() method, String object, 252
link object, as property of document object,

418. See also links object

868 Index

<link> tag, HTML, 555–56
linkColor property, document object, 330
links

assigning slideshow images to, 446–48
associating with image maps, 436–38
creating rollovers, 476–78
overview, 417–18

links object
example, 419–23
in JavaScript hierarchy, 418
overview, 418
properties, 420

LiveScript, 1
LN2 property, Math object, 241
LN10 property, Math object, 241
load-time errors, 40
local variable scope, 66
location object

example, 316–18
methods, 316
overview, 315
properties, 315
syntax, 315

location property. See also location object
document object, 330
window object, 285

log() method, Math object, 242, 244
LOG2E property, Math object, 242
Log10E property, Math object, 242
logical AND operator (&&), 101–3
logical errors, 40–41
logical NOT operator (!), 101, 105–6
logical operators, 101–7
logical OR operator(||), 101, 103–5
loops

breaking out of, 136–37
controlling, 136–37
defined, 131
do/while loop, 133–34
for/in loop, 135
labeling control statements, 139–40
for loop, 134–35
nested, 137–38
while loop, 131–33

lowsrc property, image object, 417

M
<map> tag, 414
margin CSS property, 534, 548
margin-bottom CSS property, 534, 548
margin-left CSS property, 534, 548
margin-right CSS property, 535, 548
margin-top CSS property, 535, 548
margins, in Cascading Style Sheets, 534–35,

547–49
markup, for Web documents, 9, 24–25
match() method, String object, 258, 727–28
Math object

examples, 243, 245, 246
generating random numbers, 245–46
methods, 242–43
overview, 241
properties, 241–42
rounding numbers up or down, 244–45

max() method, Math object, 242
maxLength property, password object, 378
MAX_VALUE property, Number object, 260, 261
media property, links object, 419
menus

collapsing in frames, 312–14
creating in frames, 308–10, 314
drop-down, 385–92, 601–6

metacharacters. See also regular expressions
alternative patterns, 759–65
anchoring, 754–59
and character class, 738–41
compared with metasymbols, 741
defined, 717, 733
dot metacharacter, 736–37
"greed" factor, 745–54
overview, 733
quantifiers, 745–54
table of characters, 734–36

metaKey property, event object, 502
metasymbols

compared with metacharacters, 741
defined, 733, 741
examples, 742–45
table of symbols, 742

method attribute, <form> tag, 335–36, 356,
826, 827

Index 869

method property, forms object, 349
methods

adding by using prototypes, 202–4
applying to objects to simulate events,

462–65
for arrays, 227–33
checkboxes, 397
compared with functions, 143, 180
compared with properties, 333
Date object, 235–38
defined, 176
document object, 333–34
forms object, 348, 349–50
history object, 319
inline functions as, 185–87
location object, 316
Math object, 242–43
nodes, 615
Number object, 260
overview, 180–82
password object, 379
radio object, 393
RegExp object, 721–24
select object, 386
String object, 251–59, 727–33
text object, 374
textarea object, 382
window object, 286–87
XMLHttpRequest object, 801, 802

Microsoft Internet Explorer. See Internet
Explorer

MIME (Multipurpose Internet mail
extensions) types, 282–84

mimeType object, 282–84
mimeTypes property, navigator object, 273,

283
min() method, Math object, 242
minus sign (-)

auto-decrement (--) operator, 91–94
bitwise NOT (-) operator), 110, 111–12
as subtraction operator, 88

MIN_VALUE property, Number object, 260, 261
modifiers property, event object, 503
mouse events

creating rollovers, 476–78

creating slideshows, 478–81
how to use, 475–76
list of event handlers, 474

moveBy() method, window object, 291
moveTo() method, window object, 291
moving windows, 291–92
Mozilla Firefox. See Firefox
multiline property, RegExp object, 725
multiple property, select object, 385

N
name attribute, HTML form controls, 337–38,

342, 350, 358
name property

checkbox object, 396
elements object, 350
forms object, 349
frame object, 308
image object, 417
links object, 419
password object, 378
plugin object, 279
radio object, 393
select object, 385
text object, 373
textarea object, 382
window object, 285

naming variables, 60
NaN property, Number object, 260, 261–62
navigation bars, creating in frames, 308–10
navigator object

detecting browser, 276–78
detecting plug-ins, 278–82
JavaScript code example, 273–75
properties, 273

NEGATIVE_INFINITY property, Number
object, 260, 261

nested arrays, 223–27
nested loops, 137–38
NetBeans, 29
Netscape, 1, 2, 12, 573
new operator

defined, 120
role in constructors, 177–78, 182
role in creating Array objects, 214–16

870 Index

next property, history object, 319
nextSibling DOM property, 614, 618
Node DOM object

defined, 613
overview, 613–17

nodeName DOM property, 615, 616
nodes

cloning, 648–53
list of methods, 615
list of properties, 614–15
overview, 613–14
parents and children, 615–16
removing, 653–58
siblings, 616

nodeType DOM property, 615, 616
nodeValue DOM property, 615
<noscript> tag, HTML, 49–50
NOT operators

bitwise (-), 110, 111–12
logical (!), 101, 105–6

null keyword, 58–59
Number() function, 113, 261
Number object

JavaScript code examples, 261–63
methods, 260
overview, 259–60
properties, 260
as wrapper object, 246, 247

numeric arrays, 213
numeric data type, 53–54, 63, 112–19

O
Object() constructor, 177–78
object literals, 187–91
Object object, 176, 178, 200, 204
objects. See also Browser Object Model

(BOM); core objects; Document Object
Model (DOM)

creating with constructors, 177–78
extending with prototypes, 196–209
hierarchical tree-like structure, 176
manipulating by using for/in loop, 194–96
manipulating by using with keyword,

191–94
methods overview, 176, 180–82

overview, 175–76
properties overview, 175, 178–79
types, 176
user-defined compared with built-in, 204–

5
offscreenBuffering property, window object,

285
offsetX property, event object, 501
offsetY property, event object, 501
older browsers, and JavaScript, 47–50
onAbort event handler, 12, 458
onBlur event handler, 12, 458, 465, 468–70,

484, 487–89
onblur scripting model event handler

property, 519
onChange event handler, 12, 458, 484, 489–

90
onchange scripting model event handler

property, 519
onClick event handler

associating with image map links, 436–38
as attribute of HTML tag, 360–61, 459,

661
defined, 458, 474, 481
example, 460–61
and forms, 486–87
in inline model for handling events, 455,

456
overview, 11, 12, 484, 496
randomly displaying images, 434–36
registering, 459–60
syntax example, 456–57
uses for, 458
in wakeUpCall() function example, 457–58

onclick scripting model event handler
property, 517, 519

onDblClick event handler, 458, 474
ondblclick scripting model event handler

property, 519
onDragDrop event handler, 458
onError event handler, 12, 458, 498–99
onerror XMLHttpRequest event handler

property, 802
onFocus event handler, 12, 458, 465, 468–70,

484, 487–89

Index 871

onfocus scripting model event handler
property, 519

onKeyDown event handler, 458, 513
onkeydown scripting model event handler

property, 519
onKeyPress event handler, 458, 513, 516
onkeypress scripting model event handler

property, 519
onKeyUp event handler, 458, 513
onkeyup scripting model event handler

property, 519
onLoad event handler, 12, 438, 458, 465–67,

496
onload scripting model event handler

property, 518, 519, 661
onload XMLHttpRequest event handler

property, 802
onMouseDown event handler, 474
onmousedown scripting model event handler

property, 519
onMouseMove event handler, 474, 475
onmousemove scripting model event handler

property, 519
onMouseOut event handler, 12, 432–34, 458,

474, 475, 476, 481, 521
onMouseOver event handler, 12, 432–34, 459,

474, 475, 476, 481, 521
onmouseover scripting model event handler

property, 517, 519, 521
onMouseUp event handler, 474
onmouseup scripting model event handler

property, 519
onMove event handler, 459, 465
onprogress XMLHttpRequest event handler

property, 802
onreadystatechange XMLHttpRequest event

handler property, 802, 806, 808
onReset event handler, 363–65, 459, 484
onResize event handler, 459, 472–74
onSelect event handler, 459, 484
onSubmit event handler

as attribute of <form> tag, 362–63
defined, 12, 459, 484
and forms, 491–96
in inline model for handling events, 455, 456

onsubmit scripting model event handler
property, 519

onUnload event handler, 12, 459, 465–67
onunload scripting model event handler

property, 519
open() method

document object, 334
window object, 286, 287, 289
XMLHttpRequest object, 802, 803

opener property, window object, 286
opening windows, 287–90
Opera browser

cookies, 698
displaying properties of navigator object,

274
DOM inspector, 621
event handling, 501, 505, 507, 510, 513,

514
JavaScript error console, 168
JavaScript in, 18
support for DOM specification, 14
Web site for, 15

operands
comparing, 95–100
defined, 83

operators
arithmetic, 88–89
associativity, 84–88
auto-decrement, 91–94
auto-increment, 91–94
bitwise, 109–12
comparison, 95–100
conditional, 108–9
defined, 83
logical, 101–7
order of evaluation, 84–88
precedence, 84–88
shortcut assignment, 90–91

options[] property, select object, 385
OR operators

bitwise (|), 110, 111–12
logical (||), 101, 103–5

overflow property, in positioning CSS
elements, 573

ownerDocument DOM property, 615

872 Index

P
padding CSS property, 535, 548
padding-bottom CSS property, 535, 548
padding-left CSS property, 535, 548
padding-right CSS property, 535, 548
padding-top CSS property, 535, 548
pageX property, event object, 502, 508
pageY property, event object, 502, 508
parent property

frame object, 308
window object, 286

parentheses ()
following method names, 13, 38, 180, 333
in function statements, 144, 146, 156, 518
and operator precedence, 84, 85
and regular expressions, 736, 761, 762,

772–73, 777–80, 781, 790
parentNode DOM property, 615, 618
parse() method, Date object, 236
parseFloat() function, 116–18
parseInt() function, 114–16
password, HTML <form> tag element

attributes, 337
description, 337, 353
properties, 353

password object
event handlers, 483
JavaScript code example, 379–81
JavaScript hierarchy, 378
methods, 379
overview, 377
properties, 378

password property, forms object, 349
passwords, HTML form validation, 407–9
pathname property

links object, 419
location object, 315

Perl, similarity to JavaScript, 1
phone numbers, validating, 777–80
PI property, Math object, 242, 243–44
pixelDepth property, screen object, 323
platform property, navigator object, 273
plugin object, 279–80
plug-ins, detecting, 278–82
plus sign (+)

as addition operator, 88
auto-increment (++) operator, 91–94
as concatenation operator, 66, 94–95

poly shape, image map, 425
pop() method, arrays, 227, 229
popup windows, 287, 288, 370–72
port property

links object, 419
location object, 315

position property, in positioning CSS
elements, 573

POSITIVE_INFINITY property, Number
object, 260, 261

POST method, 335, 336, 803–5, 833–34
pow() method, Math object, 242, 243–44
precedence, operator, 84–88
preventDefault() event method, 665
previous property, history object, 319
previousSibling DOM property, 615, 618
primitive data types

boolean, 56–57
numeric, 53–54
overview, 53
string, 54–56

print() method, frame object, 308
progressive enhancement, 683
prompt() method, window object, 76–78, 286
properties

applying to regular expressions, 724–27,
724–27

arrays, 219–21
assigning functions to, 185–87
background, 178–79
buttons, 353
Cascading Style Sheets, 532–49
checkboxes, 353, 396
defined, 175
document object, 330
DOM events, 678–82
event object, 501–3
<form> tag elements, 353–56
forms object, 348–49
frame object, 308
history object, 319
image object, 417

Index 873

links object, 419
location object, 315
lookup chain, 199–202
Math object, 241–42
navigator object, 273–76
nodes, 614–15
Number object, 260
passwords, 353, 378
plugin object, 279
radio buttons, 353, 393
RegExp object, 724–27
screen object, 322–23
select object, 385
String object, 249–50
text object, 373–74
textarea object, 382
window object, 285–86
XMLHttpRequest object, 801, 802

protocol property
links object, 420
location object, 315

prototype lookup chain, 199–202
prototype object, 196–97
prototype property

Array object, 219, 220
Boolean object, 264
customizing Date objects, 240–41
defined, 196, 204, 240
Function object, 264
image object, 417
Number object, 260
purpose, 196, 197
in subclasses, 207–10
using to add properties to classes,

198–99
prototypes

assigning methods, 202–4
assigning properties, 198–99
for extending objects, 196–209
implementing inheritance, 196–97
lookup chain, 199–202
overview, 196

push() method, arrays, 227, 229–30

Q
quote marks, double ("), 54
quote marks, single ('), 54

R
radio, HTML <form> tag element

attributes, 337
description, 337, 353
properties, 353

radio object
event handlers, 483
JavaScript code example, 394–95
in JavaScript hierarchy, 392
methods, 393
overview, 392–93
properties, 393

radio property, forms object, 349
random() method, Math object, 242, 245–46,

434–36
random numbers, 245–46
readOnly property

password object, 378
text object, 374
textarea object, 382

readyState property, XMLHttpRequest object,
802, 806–7

reason property, event object, 502
rect shape, image map, 425
recursion, JavaScript support, 161–65
referrer property, document object, 330
RegExp() constructor, 177, 720. See also

regular expressions
RegExp object

methods, 721–24
overview, 720
properties, 724–27
syntax, 720

regular expressions
alternative patterns in, 759–65
applying properties, 724–27
backslash (\) and, 733, 734, 735
capturing subpatterns of characters, 762–65
comparing Perl and JavaScript, 717
creating by using constructor method,

177, 720

874 Index

regular expressions (Continued)
creating object with literal notation, 719–

20
defined, 717
forward slash (/) and, 717, 720
grouping characters, 761–62
metacharacters in, 733–65
metasymbols in, 733, 741–45
overview, 717–19
String object methods for, 727–33
testing, 721–24
in validating forms, 765–94

rel property, links object, 419
relatedTarget property, event object, 502
relative positioning, CSS elements, 581–83
reload() method, location object, 316
removeChild() DOM method, 615, 630,

653–58
removeEventListener() method, 673
replace() method

form validation examples, 771–75
location object, 316
String object, 253, 258–59, 730–31, 771–75

replaceChild() DOM method, 615, 630
reset, HTML <form> tag element

attributes, 338
description, 338, 353
properties, 353

reset() event method, 463
reset() method, forms object, 349, 368–70
reset object, event handlers, 483
reset property, forms object, 349
resizeBy() method, window object, 291
resizeTo() method, window object, 291
resizing windows, 291–92
responseText property, XMLHttpRequest

object, 802, 808–9
responseXML property, XMLHttpRequest

object, 802, 809
return statement, 153–55
returnValue property, event object, 501
rev property, links object, 419
reverse() method, arrays, 227
right property, in positioning CSS elements,

573

right shift (>>) operator, 110–12
rightContext property, RegExp object, 725
rollovers

creating with mouse events, 476–78
scripting model example, 521–23
simple imagemap example, 432–34

root node, DOM, 614
round() method, Math object, 242, 244
rounding numbers up and down, 244–45
rows property, textarea object, 382
rules array, Microsoft, 585
runtime errors, 40

S
Safari, 13, 14, 15, 18, 275
screen object

JavaScript code example, 323–25
properties, 322–23

screen property, window object, 286. See also
screen object

screenX property, event object, 502
screenY property, event object, 502
<script> tag, HTML

attributes, 36–37
calling functions from, 144–45, 151
and placement of JavaScript code, 35–37

scripting model for event handling, 455, 517–
23

scroll() method, window object, 287
scrolling messages

in body of Web documents, 658–61
in windows, 296–303

scrollTo() method, window object, 298–302
search() method, String object, 254, 258–59,

729–30
search patterns, in regular expressions, 717,

720, 733. See also metacharacters
search property

history object, 319
links object, 420
location object, 315

select, HTML <form> tag element
attributes, 337
description, 337, 353
properties, 353

Index 875

select() event method, 463
select() method

password object, 379
text object, 374
textarea object, 382

select object
event handlers, 483
JavaScript code examples, 386–90
JavaScript hierarchy, 386
methods, 386
multiple selects, 390–92
overview, 385
properties, 385

select property, forms object, 349
selectedIndex property, select object, 385, 390
selectors, in style sheet rules

contextual, 569–72
defined, 529
examples, 529–30, 570–72
grouping, 531–32
and inheritance, 569–72
nested, 569–72

self property
frame object, 308
window object, 286

semicolons, in JavaScript, 34–35
send() method, XMLHttpRequest object, 802,

805–6
server-side JavaScript, 2
setAttribute() DOM method, 637–39
setAttributeNode() DOM method, 630
setDate() method, Date object, 236
setFullYear() method, Date object, 236
setHours() method, Date object, 236
setInterval() method

frame object, 308
syntax, 449
window object, 287, 293–94

setMilliseconds() method, Date object, 236
setMinutes() method, Date object, 236
setMonth() method, Date object, 236
setRequestHeader() method, XMLHttpRequest

object, 802, 811
setSeconds() method, Date object, 236
setTime() method, Date object, 237

setTimeout() method
frame object, 308
syntax, 449
window object, 287, 293–94

setUTCdate() method, Date object, 237
setUTCFullYear() method, Date object, 237
setUTCHours() method, Date object, 237
setUTCMilliseconds() method, Date object,

237
setUTCMinutes() method, Date object, 237
setUTCMonth() method, Date object, 237
setUTCSeconds() method, Date object, 237
setYear() method, Date object, 237
shift() method, arrays, 227, 230–31
shift operators, bitwise, 110–12
shiftKey property, event object, 501, 502
shortcut assignment operators, 90–91
sin() method, Math object, 242
single quote marks ('), 54
size property

password object, 378
select object, 385
text object, 374

slash (/). See also backslash (\) and regular
expressions

as division operator, 88
in regular expressions, 717, 720

slice() method
arrays, 227, 231–32, 233
String object, 254

slideshows
creating with mouse events, 478–81
making images clickable, 445–48
overview, 441–42
simple, creating, 442–45

small() method, String object, 252
sniffers, browser, 15–16, 276–78
Social Security numbers, validating, 775–77
sort() method, arrays, 227
source property, RegExp object, 725
space, between words in JavaScript, 33–34
 tag, role in CSS, 566–72
splice() method

arrays, 227, 232–33
String object, 257

876 Index

split() method, String object, 254, 257, 258,
731–33

sqrt() method, Math object, 242, 243–44
SQRT1_2 property, Math object, 242
SQRT2 property, Math object, 242
square bracket [] notation, 213, 216, 222–23,

353
square root, 243
src HTML <script> tag attribute, 36
src property, image object, 417, 428–31
srcElement property, event object, 501, 503,

504, 679
srcFilter property, event object, 502
statements, in JavaScript, 34–35
status property

window object, 286
XMLHttpRequest object, 802

statusText property, XMLHttpRequest object,
802

stick figures, in animations, 449, 450–52
stopPropagation() event method, 665
strike() method, String object, 252
String() function, 113–14
String object

extending, 250–51
methods, 251–59, 727–33
overview, 247
properties, 249–50
and regular expressions, 727–33
as wrapper object, 246, 247

strings
as array index values, 221–27
concatenation, 37, 56, 66–67
converting data type, 63, 112–19
defined, 37
enclosing in quotes, 54–56, 69
escape sequences, 54–56

style, role in Web page design, 9–10
style classes

applying class selectors, 562–64
defining, 558–60
table styling example, 560–62

style HTML tag attribute, 566, 567–68
style object

JavaScript code example, 592–94

overview, 589
properties, 589–91

style property, as HTML attribute, 594–96,
627

style sheets. See also Cascading Style Sheets
(CSS)

defined, 527
how they work, 529–30
for HTML pages, 527–28

<style> tag, HTML, 550–53
styleSheets array (property of document

object), 585–87
sub() method, String object, 252
subclasses, and inheritance, 207–10
submit, HTML <form> tag element

attributes, 338
description, 338, 353
properties, 353

submit() event method, 463
submit() method, forms object, 341, 349,

368–70
submit object, event handlers, 483
submit property, forms object, 349
substr() method, String object, 254, 257,

258
substring() method, String object, 257
subtraction operator (-), 88
suffixes property, mimeType object, 283
Sun Microsystems, 2
sup() method, String object, 252
switch statement, 128–31
symbols. See metasymbols

T
tabIndex property

checkbox object, 396
password object, 378
radio object, 393
select object, 385
text object, 374
textarea object, 382

tables
cloning, 652–53
creating, 644–48

tan() method, Math object, 243

Index 877

target property
event object, 503, 504, 679
forms object, 349
links object, 420

telephone numbers, validating, 777–80
ternary operator, 108
test() method, RegExp object, 721–23
text, HTML <form> tag element

attributes, 337
description, 337, 353
properties, 353

Text DOM object, defined, 613
text nodes, DOM, defined, 614
text object

event handlers, 483
JavaScript code examples, 374–77
JavaScript hierarchy, 373
methods, 374
overview, 373
properties, 373–74

text property, forms object, 349
text-align CSS property, 534, 542
textarea, HTML <form> tag element

attributes, 337
description, 337, 353
properties, 353

textarea object
event handlers, 483
JavaScript code example, 383–84
JavaScript hierarchy, 383
methods, 382
overview, 381
properties, 382

textarea property, forms object, 349
text-decoration CSS property, 533, 542
text-indent CSS property, 534, 542
text-transform CSS property, 533, 542
this keyword

for buttons, 484–85
in class example, 182–85
defined, 120, 182
for forms, 365–68, 484–85
in W3C event handlers, 669–70

this operator. See this keyword
throw statement, 170

time, basic units, 239–40, 293
timed events, creating, 292–303
timer methods, 292–93
timeStamp property, event object, 503, 679
title HTML tag attribute, 566
title property

document object, 330
as HTML attribute, 627

<title> tag, in DOM tree-structure,
613, 614

toElement property, event object, 501, 503
toExponential() method, Number object, 260,

262
toFixed() method, Number object, 260, 262–

63
toGMTString() method, Date object, 237
toLocaleLowerCase() method, String object,

254
toLocaleString() method

arrays, 227
Date object, 237
Number object, 260

toLocaleUpperCase() method, String object,
254

toLowerCase() method, String object, 254
tooltips, 601, 606–8
top property

frame object, 308, 310–12
in positioning CSS elements, 573, 574
window object, 286

toPrecision() method, Number object, 260
toSource() method, Date object, 237
toString() method

arrays, 227
Boolean object, 263
Date object, 237
defined, 204
Math object, 243
Number object, 260, 261
String object, 254

toUpperCase() method, String object, 254
toUTCString() method, Date object, 237
try/catch statements, 168, 169–70, 800
type HTML <script> tag attribute, 36
type HTML <style> tag attribute, 550–52

878 Index

type property
checkbox object, 396
elements object, 350
event object, 502, 503, 504, 679
mimeType object, 283
password object, 378
radio object, 393
select object, 385
text object, 374
textarea object, 382

typeof operator, 57–58, 144

U
undefined keyword, 58–59
unescape() built-in function, 702–4
unobtrusive JavaScript, 10, 682–89
unshift() method, arrays, 227, 230–31
unwatch() method

checkbox object, 397
frame object, 308
location object, 316
password object, 379
radio object, 393
select object, 386
text object, 374
textarea object, 382

URL property, document object, 330
userAgent property, navigator object, 273
UTC() method, Date object, 237

V
validating HTML forms

alphabetic data input, 403–5, 769–71
checking for empty fields, 401–3, 765–67
credit card number input, 783–90
e-mail address input, 405–7, 781–83
password input, 407–9
phone number input, 777–80
removing extraneous characters, 771–75
Social Security number input, 775–77
zip code input, 767–69

validation tools, for Web page markup,
24–25

Validome validation tool for Web documents,
25

value, as HTML attribute, 358
value property

checkbox object, 396
elements object, 350
password object, 378
radio object, 393
text object, 374
textarea object, 382

valueOf() method
Date object, 237
defined, 204
String object, 254

values, in array index keys, 221, 225–27
var keyword, 60–62
variables

as anonymous functions, 156–58
concatenating with strings, 66–67
converting data type, 62, 63, 64–65
declaring, 60–62, 69
initializing, 60–62
naming, 60
overview, 59–60
scope, local vs. global, 66
scope in functions, 151–53

vertical-align CSS property, 534, 542
visibility property, in positioning CSS

elements, 573, 601, 602, 606
vlink HTML <body> tag attribute, 329
vlinkColor property, document object, 330
void operator, 120, 482
vspace property, image object, 417

W
W3C DOM (Document Object Model)

adding blog entries, 639–45
cloning nodes, 648–53
creating tables, 644–48
event handling, 662–68
HTML document node overview,

 612–13
modifying, 629–61
overview, 611
removing nodes, 653–58
scrolling marquee example, 658–61
upside-down tree structure, 613–16

Index 879

watch() method
checkbox object, 397
frame object, 308
location object, 316
password object, 379
radio object, 393
select object, 386
text object, 374
textarea object, 382

Web browsers. See browsers
Web pages. See also HTML documents;

validating HTML forms
basic JavaScript program example, 7–8
examples of Ajax applications, 6–7, 797–

98
how they work, 4–5
life cycle example, 4–5
role of JavaScript, 4–5, 8–10
validating markup, 24–25

which property, event object, 503, 510, 511
while loop, 131–33
whitespace

in DOM tree, 617
and metacharacters, 734, 742, 744
between words, 33–34

width property
CSS, 535, 560–61, 573
event object, 503
image object, 417
screen object, 323

window object. See also windows
methods, 286–87
overview, 285
properties, 285–86
as top-level browser object, 73, 179

window property
frame object, 308
window object, 286

windows
changing status bar, 295, 296
dividing into frames, 303–14
handling events, 465–74
moving and resizing, 291–92
opening and closing, 287–90
popup, 370–72

resizing images to fit, 438–41
role of history object, 319–22
role of location object, 315–18
scrolling messages, 296–303

with keyword
String object example, 266–67
and user-defined objects, 191–94

word-spacing CSS property, 534, 542
World Wide Web Consortium (W3C). See

also W3C DOM (Document Object
Model)

browser standards, 12–13
ccsRules array, 585
validation tool for Web documents, 24

wrapper objects
Boolean object, 246, 263–64
Number object, 246, 247, 259–63
String object, 246, 247–59

write() method, document object, 37, 38–39,
40, 331, 333, 334

writeIn() method, document object, 37, 38–
39, 40, 333, 334

X
x property, event object, 502
XMLHttpRequest object

checking HTTP response headers, 810
creating, 800–802
handling server response with callback

function, 808–10
initializing, 803–5
methods, 801, 802
monitoring server response, 806–8
properties, 801, 802
sending request to server, 805–6

XOR bitwise operator (^), 110, 111–12

Y
y property, event object, 502

Z
z-index property, in positioning CSS

elements, 573, 583–84, 596–98
zero-fill right shift (>>>) operator, 110–12
zip codes, validating, 767–69

	Contents
	Preface
	6 Under Certain Conditions
	6.1 Control Structures, Blocks, and Compound Statements
	6.2 Conditionals
	6.2.1 if/else
	6.2.2 if/else if
	6.2.3 switch

	6.3 Loops
	6.3.1 The while Loop
	6.3.2 The do/while Loop
	6.3.3 The for Loop
	6.3.4 The for/in Loop
	6.3.5 Loop Control with break and continue
	6.3.6 Nested Loops and Labels

	6.4 What You Should Know

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

