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Foreword

With the deployment of LTE, the wireless revolution will achieve an important milestone.
For the first time, a wide-area wireless network will be universally deployed that has
been primarily designed for IP-centric broadband data (rather than voice) from the
very beginning. LTE also is rapidly becoming the dominant global standard for fourth
generation cellular networks with nearly all the major cellular players behind it and
working toward its success.

Having been personally involved in designing, developing, and promoting one of the
first OFDM-based cellular systems since the late 1990s, back when such an approach was
considered slightly eccentric, LTE’s success is personally very satisfying for me to see.
As with any standard, which by political necessity is “designed by committee,” the LTE
specification is not without flaws and there is room for progress and future evolution. The
system architecture is not yet a fully flat IP platform, for example, and some interference
issues are not fully addressed. But there can be no doubt that LTE is a giant step in
the right direction and a necessary step to meet the anticipated growth in consumer and
business mobile broadband applications and services. LTE provides a credible platform
for wireless broadband access based on OFDMA, multiantenna technologies, and other
cutting-edge techniques that provide improvements in spectral efficiency and significantly
lower the cost of delivering mobile broadband. I expect the future evolution of LTE to
continually improve the standard.

Fundamentals of LTE is an excellent introduction to the LTE standard and the
various technologies that it incorporates, like OFDMA, SC-FDMA, and multiantenna
transmission and reception. It is exceptionally well written, easy to understand, and con-
cisely but completely covers the key aspects of the standard. Because of its diverse author
team—including both LTE systems engineers as well as leading academic researchers who
have worked extensively on the core underlying technologies—this book will be of use to
a wide set of potential readers. I recommend it to folks in the industry who are involved
with the development of LTE-based technology and products, as well as to students and
faculty in academia who wish to understand the standard and participate in incorporat-
ing more advanced techniques into the future versions of the specification. The book also
describes some of the “weak points” in the current specification of the standard. This
helps ensure that these issues will be fixed as the specification evolves.

I hope you will enjoy reading the book and benefit from it, and am confident you will.

Rajiv Laroia
Senior vice president, Qualcomm Flarion Technologies
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Preface

The Long-Term Evolution (LTE) is the next evolutionary step beyond 3G for mobile
wireless communication. LTE brings together many technological innovations from

different areas of research such as digital signal processing, Internet protocols, network
architecture, and security, and is poised to dramatically change the way we use the world-
wide mobile network in the future. Unlike 3G, LTE uses a clean-slate design approach
for all the components of the network including the radio access network, the transport
network, and the core network. This design approach, along with its built-in flexibility,
allows LTE to be the first truly global wireless standard that can be deployed in a variety
of spectrum and operating scenarios, and support a wide range of wireless applications.
A large number of service providers around the world have already announced LTE as
their preferred next generation technology.

Fundamentals of LTE is a comprehensive tutorial on the most innovative cellular
standard since CDMA emerged in the early 1990s. The impending worldwide deployment
of LTE (Long-Term Evolution, often called 4G cellular) will revolutionize the cellular
networks by going to much larger bandwidths, data rates, and an all-IP framework.
Fundamentals of LTE is the only book to provide an accessible but complete tutorial
on the key enabling technologies behind LTE, such as OFDM, OFDMA, SC-FDMA,
and MIMO, as well as provide a step-by-step breakdown of all the key aspects of the
standard from the physical layer through the network stack. The book begins with a
historical overview and the reasons for the radical departure from conventional voice-
centric cellular systems that LTE represents. Following this, four tutorial chapters explain
the essential underpinnings of LTE, which could also be used as the basis for an entry-
level university course. Finally, five chapters on the LTE standard specifically attempt to
illuminate its key aspects, explaining both how LTE works, and why certain choices were
made by the LTE standards body. This collaboration between UT Austin and AT&T
has resulted in a uniquely accessible and comprehensive book on LTE.

Chapter 1 provides an overview and history of the cellular wireless technologies, start-
ing from first-generation systems such as AMPS to fourth-generation technologies such as
LTE and WiMAX. This chapter provides a historical account of the mobile wireless net-
works and illustrates the key technological breakthroughs and market forces that drove
the evolution of the mobile wireless network over the past two decades. This chapter also
provides an executive summary of the LTE and some of its key technical enablers.

The balance of the book is organized into two parts, as noted. Part I consists of four tu-
torial chapters (Chapters 2–5) on the essential wireless networking and communications

xixxix
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xx Preface

technologies underpinning LTE. Chapter 2 provides a tutorial introduction to broad-
band wireless channels and systems, and demonstrates the challenges inherent to the
development of a broadband wireless system such as LTE. Chapter 3 provides a compre-
hensive tutorial on multicarrier modulation, detailing how it works in both theory and
practice. This chapter emphasizes a practical understanding of OFDM system design,
and discusses implementation issues, in particular the peak-to-average power ratio. An
overview of single-carrier frequency domain equalization (SC-FDE), which overcomes the
peak-to-average problem, is also provided. Chapter 4 extends Chapter 3 to provide an
overview on the frequency domain multiple access techniques adopted in LTE: OFDMA
in the downlink and SC-FDMA in the uplink. Resource allocation to the users, especially
relevant opportunistic scheduling approaches, is discussed, along with important imple-
mentation issues pertinent to LTE. Chapter 5 provides a rigorous tutorial on multiple
antenna techniques, covering techniques such as spatial diversity, interference cancella-
tion, spatial multiplexing, and multiuser and networked MIMO. The inherent tradeoffs
between different techniques and practical considerations for the deployment of MIMO
in LTE are distinguishing features of this chapter.

Part II of the book, consisting of Chapters 6–10, provides a detailed description of the
LTE standard with particular emphasis on the air-interface protocol. We begin this part
in Chapter 6 with an introduction to the basic structure of the air-interface protocol and
the channel structure utilized by LTE at different layers. This chapter also provides an
overview of the physical layer and various OFDMA-related aspects of LTE. Chapters 7
and 8 provide a thorough description of the physical and MAC layer processing (at the
transport channel level) for downlink (DL) and uplink (UL), respectively. Features such
as channel encoding, modulation mapping, Hybrid-ARQ (H-ARQ), and multiantenna
processing for the different DL and UL channels are discussed in detail. In Chapter 9
we discuss the various feedback mechanisms that are essential components of LTE and
are needed to enable various features such as channel aware scheduling, closed-loop and
open-loop multiantenna processing, adaptive modulation and coding, etc. These concepts
are critical to a complete understanding of LTE and its operation. In this chapter we
also discuss various MAC layer concepts related to scheduling, QoS, ARQ, etc. Finally, in
Chapter 10 we discuss the higher layers of the LTE protocol stack, such as RLC, PDCP,
and RRM, and the role of these in the overall operation of an LTE system. In this chapter
we also provide an in-depth discussion on the mobility and handoff procedures in LTE
from a radio access network point of view.
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Chapter 6

Overview and Channel Structure
of LTE

In Part I, we discussed the inherent challenges and associated technical solutions in
designing a broadband wireless network. From here onward, we describe the techni-

cal details of the LTE specifications. As a starting point, in this chapter we provide an
overview of the LTE radio interface. The 3rd Generation Partnership Project (3GPP)
defines a separable network structure, that is, it divides the whole network into a radio
access network (RAN) and a core network (CN), which makes it feasible to evolve each
part independently. The Long-Term Evolution (LTE) project in 3GPP focuses on enhanc-
ing the UMTS Terrestrial Radio Access (UTRA)—the 3G RAN developed within 3GPP,
and on optimizing 3GPP’s overall radio access architecture. Another parallel project in
3GPP is the Evolved Packet Core (EPC), which focuses on the CN evolution with a
flatter all-IP, packet-based architecture. The complete packet system consisting of LTE
and EPC is called the Evolved Packet System (EPS). This book focuses on LTE, while
EPC is discussed only when necessary. LTE is also referred to as Evolved UMTS Terres-
trial Radio Access (E-UTRA), and the RAN of LTE is also referred to as Evolved UMTS
Terrestrial Radio Access Network (E-UTRAN).

The radio interface of a wireless network is the interface between the mobile ter-
minal and the base station, and thus in the case of LTE it is located between the
RAN–E-UTRAN and the user equipment (UE, the name for the mobile terminal in
3GPP). Compared to the UMTS Terrestrial Radio Access Network (UTRAN) for 3G
systems, which has two logical entities—the Node-B (the radio base station) and the
radio network controller (RNC)—the E-UTRAN network architecture is simpler and
flatter. It is composed of only one logical node—the evolved Node-B (eNode-B). The
RAN architectures of UTRAN and E-UTRAN are shown in Figure 6.1. Compared to
the traditional Node-B, the eNode-B supports additional features, such as radio resource
control, admission control, and mobility management, which were originally contained in
the RNC. This simpler structure simplifies the network operation and allows for higher
throughput and lower latency over the radio interface.

227227
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Figure 6.1 Radio interface architectures of UTRAN and E-UTRAN.

The LTE radio interface aims for a long-term evolution, so it is designed with a clean
slate approach as opposed to High-Speed Packet Access (HSPA), which was designed as
an add-on to UMTS in order to increase throughput of packet switched services. HSPA
is a collection of High-Speed Downlink Packet Access (HSDPA) and High-Speed Uplink
Packet Access (HSUPA). The clean slate approach allows for a completely different air in-
terface, which means that advanced techniques, including Orthogonal Frequency Division
Multiplexing (OFDM) and multiantenna transmission and reception (MIMO), could be
included from the start of the standardization of LTE. For multiple access, it moves away
from Code Division Multiple Access (CDMA) and instead uses Orthogonal Frequency Di-
vision Multiple Access (OFDMA) in the downlink and Single-Carrier Frequency Division
Multiple Access (SC-FDMA) in the uplink. All these techniques were described in de-
tail in Part I, so in Part II we assume a basic knowledge of a wireless system, antenna
diversity, OFDMA, and other topics covered in Part I.

In this chapter, we provide an introduction to the LTE radio interface, and describe
its hierarchical channel structure. First, an overview of the LTE standard is provided,
including design principles, the network architecture, and radio interface protocols. We
then describe the purpose of each channel type defined in LTE and the mapping between
channels at various protocol layers. Next, the downlink OFDMA and uplink SC-FDMA
aspects of the air interface are described, including frame structures, physical resource
blocks, resource allocation, and the supported MIMO modes. This chapter serves as the
foundation for understanding the physical layer procedures and higher layer protocols of
LTE that are described in the chapters to follow.

6.1 Introduction to LTE

As mentioned previously, LTE is the next step in the evolution of mobile cellular sys-
tems and was standardized as part of the 3GPP Release 8 specifications. Unlike 2G and
3G cellular systems1 that were designed mainly with voice services in mind, LTE was

1 Evolution of different 3GPP standards, including GPRS, UMTS, and HSPA, was discussed in
Chapter 1.
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designed primarily for high-speed data services, which is why LTE is a packet-switched
network from end to end and has no support for circuit-switched services. However, the
low latency of LTE and its sophisticated quality of service (QoS) architecture allow a net-
work to emulate a circuit-switched connection on top of the packet-switched framework
of LTE.

6.1.1 Design Principles

The LTE standard was designed as a completely new standard, with new numbering
and new documentation, and it is not built on the previous versions of 3GPP standards.
Earlier elements were brought in only if there was a compelling reason for them to exist
in the new standard. The basic design principles that were agreed upon and followed in
3GPP while designing the LTE specifications include:2

• Network Architecture: Unlike 3G networks, LTE was designed to support
packet-switched traffic with support for various QoS classes of services. Previous
generations of networks such as UMTS/HSPA and 1xRTT/EvDO also support
packet-switched traffic but this was achieved by subsequent add-ons to the initial
version of the standards. For example, HSPA, which is a packet-switched protocol
(packet-switched over the air), was built on top of the Release 99 UMTS network
and as a result carried some of the unnecessary burdens of a circuit-switched net-
work. LTE is different in the sense that it is a clean slate design and supports
packet switching for high data rate services from the start. The LTE radio access
network, E-UTRAN, was designed to have the minimum number of interfaces (i.e.,
the minimum number of network elements) while still being able to provide effi-
cient packet-switched transport for traffic belonging to all the QoS classes such as
conversational, streaming, real-time, non-real-time, and background classes.

• Data Rate and Latency: The design target for downlink and uplink peak data
rates for LTE are 100 Mbps and 50 Mbps, respectively, when operating at the
20MHz frequency division duplex (FDD) channel size. The user-plane latency is
defined in terms of the time it takes to transmit a small IP packet from the UE to the
edge node of the radio access network or vice versa measured on the IP layer. The
target for one-way latency in the user plane is 5 ms in an unloaded network, that is,
if only a single UE is present in the cell. For the control-plane latency, the transition
time from a camped state to an active state is less than 100 ms, while the transition
time between a dormant state and an active state should be less than 50 ms.

• Performance Requirements: The target performance requirements for LTE are
specified in terms of spectrum efficiency, mobility, and coverage, and they are in
general expressed relative to the 3GPP Release 6 HSPA.

– Spectrum Efficiency The average downlink user data rate and spectrum
efficiency target is three to four times that of the baseline HSDPA network.
Similarly, in the uplink the average user data rate and spectrum efficiency

2 See Section 1.2.4 for a comparison of different beyond-3G systems, including HSPA+, WiMAX,
and LTE.
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target is two to three times that of the baseline HSUPA network. The cell
edge throughput, measured as the 5th percentile throughput, should be two
to three times that of the baseline HSDPA and HSUPA.

– Mobility The mobility requirement for LTE is to be able to support hand-
off/mobility at different terminal speeds. Maximum performance is expected
for the lower terminal speeds of 0 to 15 km/hr, with minor degradation in
performance at higher mobile speeds up to 120 km/hr. LTE is also expected
to be able to sustain a connection for terminal speeds up to 350 km/hr but
with significant degradation in the system performance.

– Coverage For the cell coverage, the above performance targets should be met
up to 5 km. For cell ranges up to 30 km, a slight degradation of the user
throughput is tolerated and a more significant degradation for spectrum effi-
ciency is acceptable, but the mobility requirements should be met. Cell ranges
up to 100 km should not be precluded by the specifications.

– MBMS Service LTE should also provide enhanced support for the Multi-
media Broadcast and Multicast Service (MBMS) compared to UTRA
operation.

• Radio Resource Management: The radio resource management requirements
cover various aspects such as enhanced support for end-to-end QoS, efficient sup-
port for transmission of higher layers, and support for load sharing/balancing and
policy management/enforcement across different radio access technologies.

• Deployment Scenario and Co-existence with 3G: At a high level, LTE shall
support the following two deployment scenarios:

– Standalone deployment scenario, where the operator deploys LTE either with
no previous network deployed in the area or with no requirement for interwork-
ing with the existing UTRAN/GERAN (GSM EDGE radio access network)
networks.

– Integrating with existing UTRAN and/or GERAN deployment scenario, where
the operator already has either a UTRAN and/or a GERAN network deployed
with full or partial coverage in the same geographical area.

• Flexibility of Spectrum and Deployment: In order to become a truly global
standard, LTE was designed to be operable under a wide variety of spectrum sce-
narios, including its ability to coexist and share spectrum with existing 3G tech-
nologies. Service providers in different geographical regions often have different
spectrums in terms of the carrier frequency and total available bandwidth, which
is why LTE was designed to have a scalable bandwidth from 1.4MHz to 20MHz.
In order to accommodate flexible duplexing options, LTE was designed to operate
in both frequency division duplex (FDD) and time division duplex (TDD) modes.

• Interoperability with 3G and 2G Networks: Multimode LTE terminals, which
support UTRAN and/or GERAN operation, should be able to support measure-
ment of, and handover from and to, both 3GPP UTRAN and 3GPP GERAN sys-
tems with acceptable terminal complexity and network performance.
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Figure 6.2 LTE end-to-end network architecture.

6.1.2 Network Architecture

Figure 6.2 shows the end-to-end network architecture of LTE and the various components
of the network. The entire network is composed of the radio access network (E-UTRAN)
and the core network (EPC), both of which have been defined as new components of the
end-to-end network in Release 8 of the 3GPP specifications. In this sense, LTE is different
from UMTS since UMTS defined a new radio access network but used the same core
network as the previous-generation Enhanced GPRS (EDGE) network. This obviously
has some implications for the service providers who are upgrading from a UMTS network
to LTE. The main components of the E-UTRAN and EPC are

• UE: The mobile terminal.

• eNode-B: The eNode-B (also called the base station) terminates the air inter-
face protocol and is the first point of contact for the UE. As already shown in
Figure 6.1, the eNode-B is the only logical node in the E-UTRAN, so it includes
some functions previously defined in the RNC of the UTRAN, such as radio bearer
management, uplink and downlink dynamic radio resource management and data
packet scheduling, and mobility management.

• Mobility Management Entity (MME): MME is similar in function to the
control plane of legacy Serving GPRS Support Node (SGSN). It manages mobility
aspects in 3GPP access such as gateway selection and tracking area list manage-
ment.
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• Serving Gateway (Serving GW): The Serving GW terminates the interface
toward E-UTRAN, and routes data packets between E-UTRAN and EPC. In ad-
dition, it is the local mobility anchor point for inter-eNode-B handovers and also
provides an anchor for inter-3GPP mobility. Other responsibilities include lawful
intercept, charging, and some policy enforcement. The Serving GW and the MME
may be implemented in one physical node or separate physical nodes.

• Packet Data Network Gateway (PDN GW): The PDN GW terminates the
SGi interface toward the Packet Data Network (PDN). It routes data packets be-
tween the EPC and the external PDN, and is the key node for policy enforcement
and charging data collection. It also provides the anchor point for mobility with
non-3GPP accesses. The external PDN can be any kind of IP network as well as
the IP Multimedia Subsystem (IMS) domain. The PDN GW and the Serving GW
may be implemented in one physical node or separated physical nodes.

• S1 Interface: The S1 interface is the interface that separates the E-UTRAN and
the EPC. It is split into two parts: the S1-U, which carries traffic data between the
eNode-B and the Serving GW, and the S1-MME, which is a signaling-only interface
between the eNode-B and the MME.

• X2 Interface: The X2 interface is the interface between eNode-Bs, consisting of
two parts: the X2-C is the control plane interface between eNode-Bs, while the
X2-U is the user plane interface between eNode-Bs. It is assumed that there always
exists an X2 interface between eNode-Bs that need to communicate with each other,
for example, for support of handover.

The specific functions supported by each component and the details about reference
points (S1-MME, S1-U, S3, etc.) can be found in [1]. For other nodes in Figure 6.2,
the Policy and Charging Rules Function (PCRF) is for policy and charging control,
the Home Subscriber Server (HSS) is responsible for the service authorization and user
authentication, and the Serving GPRS Support Node (SGSN) is for controlling packet
sessions and managing the mobility of the UE for GPRS networks. The topics in this
book mainly focus on the E-UTRAN and the LTE radio interface.

6.1.3 Radio Interface Protocols

As in other communication standards, the LTE radio interface is designed based on a
layered protocol stack, which can be divided into control plane and user plane protocol
stacks and is shown in Figure 6.3. The packet flow in the user plane is shown in Figure 6.4.
The LTE radio interface protocol is composed of the following layers:

• Radio Resource Control (RRC): The RRC layer performs the control plane
functions including paging, maintenance and release of an RRC connection-security
handling-mobility management, and QoS management.

• Packet Data Convergence Protocol (PDCP): The main functions of the
PDCP sublayer include IP packet header compression and decompression based
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on the RObust Header Compression (ROHC) protocol, ciphering of data and sig-
naling, and integrity protection for signaling. There is only one PDCP entity at the
eNode-B and the UE per bearer.3

3 A bearer is an IP packet flow with a defined QoS between the PDN GW and the UE. It will be
discussed in more detail in Chapter 10.



�

234 Chapter 6 � Overview and Channel Structure of LTE

• Radio Link Control (RLC): The main functions of the RLC sublayer are seg-
mentation and concatenation of data units, error correction through the Automatic
Repeat reQuest (ARQ) protocol, and in-sequence delivery of packets to the higher
layers. It operates in three modes:

– The Transparent Mode (TM): The TM mode is the simplest one, without
RLC header addition, data segmentation, or concatenation, and it is used for
specific purposes such as random access.

– The Unacknowledged Mode (UM): The UM mode allows the detection
of packet loss and provides packet reordering and reassembly, but does not
require retransmission of the missing protocol data units (PDUs).

– The Acknowledged Mode (AM): The AM mode is the most complex one,
and it is configured to request retransmission of the missing PDUs in addition
to the features supported by the UM mode.

There is only one RLC entity at the eNode-B and the UE per bearer.

• Medium Access Control (MAC): The main functions of the MAC sublayer
include error correction through the Hybrid-ARQ (H-ARQ) mechanism, mapping
between logical channels and transport channels, multiplexing/demultiplexing of
RLC PDUs on to transport blocks, priority handling between logical channels of
one UE, and priority handling between UEs by means of dynamic scheduling. The
MAC sublayer is also responsible for transport format selection of scheduled UEs,
which includes selection of modulation format, code rate, MIMO rank, and power
level. There is only one MAC entity at the eNode-B and one MAC entity at the
UE.

• Physical Layer (PHY): The main function of PHY is the actual transmission
and reception of data in forms of transport blocks. The PHY is also responsible
for various control mechanisms such as signaling of H-ARQ feedback, signaling of
scheduled allocations, and channel measurements.

In Chapter 7 to Chapter 9, we focus on the PHY layer, also referred to as layer 1
of the Open Systems Interconnection (OSI) reference model. Higher layer processing is
described in Chapter 10.

6.2 Hierarchical Channel Structure of LTE

To efficiently support various QoS classes of services, LTE adopts a hierarchical channel
structure. There are three different channel types defined in LTE — logical channels,
transport channels, and physical channels, each associated with a service access point
(SAP) between different layers. These channels are used by the lower layers of the protocol
stack to provide services to the higher layers. The radio interface protocol architecture
and the SAPs between different layers are shown in Figure 6.5. Logical channels provide
services at the SAP between MAC and RLC layers, while transport channels provide
services at the SAP between MAC and PHY layers. Physical channels are the actual
implementation of transport channels over the radio interface.
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The channels defined in LTE follow a similar hierarchical structure to UTRA/HSPA.
However, in the case of LTE, the transport and logical channel structures are much more
simplified and fewer in number compared to UTRA/HSPA. Unlike UTRA/HSPA, LTE
is based entirely on shared and broadcast channels and contains no dedicated channels
carrying data to specific UEs. This improves the efficiency of the radio interface and
can support dynamic resource allocation between different UEs depending on their traf-
fic/QoS requirements and their respective channel conditions. In this section, we describe
in detail the various logical, transport, and physical channels that are defined in LTE.
The description of different channel types and the channel mapping between different
protocol layers provides an intuitive manner to understand the data flow of different ser-
vices in LTE, which builds the foundation to understand the detail processing procedures
in later chapters.

6.2.1 Logical Channels: What to Transmit

Logical channels are used by the MAC to provide services to the RLC. Each logical chan-
nel is defined based on the type of information it carries. In LTE, there are two categories
of logical channels depending on the service they provide: logical control channels and
logical traffic channels.
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The logical control channels, which are used to transfer control plane information,
include the following types:

• Broadcast Control Channel (BCCH): A downlink common channel used to
broadcast system control information to the mobile terminals in the cell, including
downlink system bandwidth, antenna configuration, and reference signal power.
Due to the large amount of information carried on the BCCH, it is mapped to
two different transport channels: the Broadcast Channel (BCH) and the Downlink
Shared Channel (DL-SCH).

• Multicast Control Channel (MCCH): A point-to-multipoint downlink channel
used for transmitting control information to UEs in the cell. It is only used by UEs
that receive multicast/broadcast services.

• Paging Control Channel (PCCH): A downlink channel that transfers paging
information to registered UEs in the cell, for example, in case of a mobile-terminated
communication session. The paging process is discussed in Chapter 10.

• Common Control Channel (CCCH): A bi-directional channel for transmitting
control information between the network and UEs when no RRC connection is
available, implying the UE is not attached to the network such as in the idle state.
Most commonly the CCCH is used during the random access procedure.

• Dedicated Control Channel (DCCH): A point-to-point, bi-directional channel
that transmits dedicated control information between a UE and the network. This
channel is used when the RRC connection is available, that is, the UE is attached
to the network.

The logical traffic channels, which are to transfer user plane information, include:

• Dedicated Traffic Channel (DTCH): A point-to-point, bi-directional chan-
nel used between a given UE and the network. It can exist in both uplink and
downlink.

• Multicast Traffic Channel (MTCH): A unidirectional, point-to-multipoint
data channel that transmits traffic data from the network to UEs. It is associated
with the multicast/broadcast service.

6.2.2 Transport Channels: How to Transmit

The transport channels are used by the PHY to offer services to the MAC. A transport
channel is basically characterized by how and with what characteristics data is transferred
over the radio interface, that is, the channel coding scheme, the modulation scheme, and
antenna mapping. Compared to UTRA/HSPA, the number of transport channels in LTE
is reduced since no dedicated channels are present.
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LTE defines two MAC entities: one in the UE and one in the E-UTRAN, which handle
the following downlink/uplink transport channels.

Downlink Transport Channels

• Downlink Shared Channel (DL-SCH): Used for transmitting the downlink
data, including both control and traffic data, and thus it is associated with both
logical control and logical traffic channels. It supports H-ARQ, dynamic link adap-
tion, dynamic and semi-persistent resource allocation, UE discontinuous reception,
and multicast/broadcast transmission. The concept of shared channel transmis-
sion originates from HSDPA, which uses the High-Speed Downlink Shared Channel
(HS-DSCH) to multiplex traffic and control information among different UEs. By
sharing the radio resource among different UEs the DL-SCH is able to maximize
the throughput by allocating the resources to the optimum UEs. The processing of
the DL-SCH is described in Section 7.2.

• Broadcast Channel (BCH): A downlink channel associated with the BCCH
logical channel and is used to broadcast system information over the entire coverage
area of the cell. It has a fixed transport format defined by the specifications. The
processing of the BCH will be described in Section 7.4.

• Multicast Channel (MCH): Associated with MCCH and MTCH logical chan-
nels for the multicast/broadcast service. It supports Multicast/Broadcast Single
Frequency Network (MBSFN) transmission, which transmits the same information
on the same radio resource from multiple synchronized base stations to multiple
UEs. The processing of the MCH is described in Section 7.5.

• Paging Channel (PCH): Associated with the PCCH logical channel. It is mapped
to dynamically allocated physical resources, and is required for broadcast over the
entire cell coverage area. It is transmitted on the Physical Downlink Shared Channel
(PDSCH), and supports UE discontinuous reception.

Uplink Transport Channels

• Uplink Shared Channel (UL-SCH): The uplink counterpart of the DL-SCH.
It can be associated to CCCH, DCCH, and DTCH logical channels. It supports
H-ARQ, dynamic link adaption, and dynamic and semi-persistent resource alloca-
tion. The processing of the UL-SCH is described in Section 8.2.

• Random Access Channel (RACH): A specific transport channel that is not
mapped to any logical channel. It transmits relatively small amounts of data for
initial access or, in the case of RRC, state changes. The processing of the RACH
is described in Section 8.5, while the random access procedure is described in
Section 9.9.
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The data on each transport channel is organized into transport blocks, and the trans-
mission time of each transport block, also called Transmission Time Interval (TTI), is
1 ms in LTE. TTI is also the minimum interval for link adaptation and scheduling deci-
sion. Without spatial multiplexing, at most one transport block is transmitted to a UE
in each TTI; with spatial multiplexing, up to two transport blocks can be transmitted in
each TTI to a UE.

Besides transport channels, there are different types of control information defined in
the MAC layer, which are important for various physical layer procedures. The defined
control information includes

• Downlink Control Information (DCI): It carries information related to down-
link/uplink scheduling assignment, modulation and coding scheme, and Transmit
Power Control (TPC) command, and is sent over the Physical Downlink Control
Channel (PDCCH). The DCI supports 10 different formats, listed in Table 6.1.
Among them, Format 0 is for signaling uplink transmission allocation, Format 3
and 3A are for TPC, and the remaining formats are for signaling downlink trans-
mission allocation. The detail content of each format can be found in [7], some of
which is discussed in Section 7.3.

• Control Format Indicator (CFI): It indicates how many symbols the DCI spans
in that subframe. It takes values CFI = 1, 2, or 3, and is sent over the Physical
Control Format Indicator Channel (PCFICH).

• H-ARQ Indicator (HI): It carries H-ARQ acknowledgment in response to up-
link transmissions, and is sent over the Physical Hybrid ARQ Indicator Channel
(PHICH). HI = 1 for a positive acknowledgment (ACK) and HI = 0 for a negative
acknowledgment (NAK).

Table 6.1 DCI Formats

Format Carried Information
Format 0 Uplink scheduling assignment
Format 1 Downlink scheduling for one codeword
Format 1A Compact downlink scheduling for one codeword and random access pro-

cedure
Format 1B Compact downlink scheduling for one codeword with precoding infor-

mation
Format 1C Very compact downlink scheduling for one codeword
Format 1D Compact downlink scheduling for one codeword with precoding and

power offset information
Format 2 Downlink scheduling for UEs configured in closed-loop spatial multiplex-

ing mode
Format 2A Downlink scheduling for UEs configured in open-loop spatial multiplex-

ing mode
Format 3 TPC commands for PUCCH and PUSCH with 2-bit power adjustments
Format 3A TPC commands for PUCCH and PUSCH with 1-bit power adjustments
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• Uplink Control Information (UCI): It is for measurement indication on the
downlink transmission, scheduling request of uplink, and the H-ARQ acknowledg-
ment of downlink transmissions. The UCI can be transmitted either on the Phys-
ical Uplink Control Channel (PUCCH) or the Physical Uplink Shared Channel
(PUSCH). The detail transmission format is discussed in Section 8.3.

6.2.3 Physical Channels: Actual Transmission

Each physical channel corresponds to a set of resource elements in the time-frequency
grid that carry information from higher layers. The basic entities that make a physical
channel are resource elements and resource blocks. A resource element is a single sub-
carrier over one OFDM symbol, and typically this could carry one (or two with spatial
multiplexing) modulated symbol(s). A resource block is a collection of resource elements
and in the frequency domain this represents the smallest quanta of resources that can be
allocated. The details of the time-frequency resource structures for downlink and uplink
are described in Section 6.3 and Section 6.4, respectively.

Downlink Physical Channels

• Physical Downlink Control Channel (PDCCH): It carries information about
the transport format and resource allocation related to the DL-SCH and PCH trans-
port channels, and the H-ARQ information related to the DL-SCH. It also informs
the UE about the transport format, resource allocation, and H-ARQ information
related to UL-SCH. It is mapped from the DCI transport channel.

• Physical Downlink Shared Channel (PDSCH): This channel carries user data
and higher-layer signaling. It is associated to DL-SCH and PCH.

• Physical Broadcast Channel (PBCH): It corresponds to the BCH transport
channel and carries system information.

• Physical Multicast Channel (PMCH): It carriers multicast/broadcast infor-
mation for the MBMS service.

• Physical Hybrid-ARQ Indicator Channel (PHICH): This channel carries
H-ARQ ACK/NAKs associated with uplink data transmissions. It is mapped from
the HI transport channel.

• Physical Control Format Indicator Channel (PCFICH): It informs the UE
about the number of OFDM symbols used for the PDCCH. It is mapped from the
CFI transport channel.

Uplink Physical Channels

• Physical Uplink Control Channel (PUCCH): It carries uplink control infor-
mation including Channel Quality Indicators (CQI), ACK/NAKs for H-ARQ in
response to downlink transmission, and uplink scheduling requests.

• Physical Uplink Shared Channel (PUSCH): It carries user data and higher-
layer signaling. It corresponds to the UL-SCH transport channel.
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• Physical Random Access Channel (PRACH): This channel carries the ran-
dom access preamble sent by UEs.

Besides physical channels, there are signals embedded in the downlink and uplink
physical layer, which do not carry information from higher layers. The physical signals
defined in the LTE specifications are

• Reference signal: It is defined in both downlink and uplink for channel estimation
that enables coherent demodulation and for channel quality measurement to assist
user scheduling. There are three different reference signals in the downlink:

– Cell-specific reference signals, associated with non-MBSFN transmission

– MBSFN reference signals, associated with MBSFN transmission

– UE-specific reference signals

There are two types of uplink reference signals:

– Demodulation reference signal, associated with transmission of PUSCH or
PUCCH

– Sounding reference signal, to support uplink channel-dependent scheduling

The processing of reference signals in the downlink and uplink are treated in Section
7.6.1 and Section 8.4, respectively.

• Synchronization signal: It is split into a primary and a secondary synchroniza-
tion signal, and is only defined in the downlink to enable acquisition of symbol
timing and the precise frequency of the downlink signal. It is discussed further in
Section 7.6.2.

6.2.4 Channel Mapping

From the description of different channel types, we see that there exists a good correlation
based on the purpose and the content between channels in different layers. This requires
a mapping between the logical channels and transport channels at the MAC SAP and a
mapping between transport channels and physical channels at the PHY SAP. Such chan-
nel mapping is not arbitrary, and the allowed mapping between different channel types
is shown in Figure 6.6,4 while the mapping between control information and physical
channels is shown in Figure 6.7. It is possible for multiple channels mapped to a single
channel, for example, different logical control channels and logical traffic channels are
mapped to the DL-SCH transport channel. The channel mapping in Figures 6.6 and 6.7
will reappear in different sections in Chapters 7 and 8 when we discuss downlink and
uplink transport channel processing.

4 The mapping of multicast-related channels, that is, MCCH, MTCH, MCH, and PMCH, is not
specified in Release 8 but in Release 9.
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6.3 Downlink OFDMA Radio Resources

In LTE, the downlink and uplink use different transmission schemes due to different con-
siderations. In this and the next section, we describe downlink and uplink radio transmis-
sion schemes, respectively. In the downlink, a scalable OFDM transmission/multiaccess
technique is used that allows for high spectrum efficiency by utilizing multiuser diversity
in a frequency selective channel. On the other hand, a scalable SC-FDMA transmission/
multiaccess technique is used in the uplink since this reduces the peak-to-average power
ratio (PAPR) of the transmitted signal.

The downlink transmission is based on OFDM with a cyclic prefix (CP), which was
described in Chapter 3 along with the associated multiple access scheme described in
Chapter 4. We summarize some key advantages of OFDM that motivate using it in the
LTE downlink:

• As shown in Chapter 3, OFDM is efficient in combating the frequency-selective
fading channel with a simple frequency-domain equalizer, which makes it a suitable
technique for wireless broadband systems such as LTE.
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• As shown in Chapter 4, it is possible to exploit frequency-selective scheduling with
OFDM-based multiple access (OFDMA), while HSPA only schedules in the time
domain. This can make a big difference especially in slow time-varying channels.

• The transceiver structure of OFDM with FFT/IFFT enables scalable bandwidth
operation with a low complexity, which is one of the major objectives of LTE.

• As each subcarrier becomes a flat fading channel, compared to single-carrier trans-
mission OFDM makes it much easier to support multiantenna transmission, which
is a key technique to enhance the spectrum efficiency.

• OFDM enables multicast/broadcast services on a synchronized single frequency
network, that is, MBSFN, as it treats signals from different base stations as prop-
agating through a multipath channel and can efficiently combine them.

The multiple access in the downlink is based on OFDMA. In each TTI, a scheduling
decision is made where each scheduled UE is assigned a certain amount of radio re-
sources in the time and frequency domain. The radio resources allocated to different
UEs are orthogonal to each other, which means there is no intra-cell interference. In the
remaining part of this section, we describe the frame structure and the radio resource
block structure in the downlink, as well as the basic principles of resource allocation and
the supported MIMO modes.

6.3.1 Frame Structure

Before going into details about the resource block structure for the downlink, we first
describe the frame structure in the time domain, which is a common element shared by
both downlink and uplink.

In LTE specifications, the size of elements in the time domain is expressed as a number
of time units Ts = 1/(15000×2048) seconds. As the normal subcarrier spacing is defined
to be Δf = 15kHz, Ts can be regarded as the sampling time of an FFT-based OFDM
transmitter/receiver implementation with FFT size NFFT = 2048. Note that this is just
for notation purpose, as different FFT sizes are supported depending on the transmission
bandwidths. A set of parameters for typical transmission bandwidths for LTE in the
downlink is shown in Table 6.2, where the subcarrier spacing is Δf = 15kHz. The FFT
size increases with the transmission bandwidth, ranging from 128 to 2048. With Δf =
15kHz, the sampling frequency, which equals Δf × NFFT, is a multiple or sub-multiple
of the UTRA/HSPA chip rate of 3.84MHz. In this way, multimode UTRA/HSPA/LTE
terminals can be implemented with a single clock circuitry. In addition to the 15kHz
subcarrier spacing, a reduced subcarrier spacing of 7.5kHz is defined for MBSFN cells,
which provides a larger OFDM symbol duration that is able to combat the large delay
spread associated with the MBSFN transmission. Unless otherwise stated, we will assume
Δf = 15kHz in the following discussion.

In the time domain, the downlink and uplink multiple TTIs are organized into radio
frames with duration Tf = 307200 · Ts = 10 ms. For flexibility, LTE supports both FDD
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Table 6.2 Typical Parameters for Downlink Transmission

Transmission bandwidth
[MHz]

1.4 3 5 10 15 20

Occupied bandwidth [MHz] 1.08 2.7 4.5 9.0 13.5 18.0
Guardband [MHz] 0.32 0.3 0.5 1.0 1.5 2.0
Guardband, % of total 23 10 10 10 10 10
Sampling frequency
[MHz]

1.92 3.84 7.68 15.36 23.04 30.72
1/2 × 3.84 2 × 3.84 4 × 3.84 6 × 3.84 8 × 3.84

FFT size 128 256 512 1024 1536 2048
Number of occupied
subcarriers

72 180 300 600 900 1200

Number of resource blocks 6 15 25 50 75 100
Number of CP samples
(normal)

9 × 6 18 × 6 36 × 6 72 × 6 108 × 6 144 × 6
10 × 1 20 × 1 40 × 1 80 × 1 120 × 1 160 × 1

Number of CP samples 32 64 128 256 384 512
(extended)

and TDD modes.5 Most of the design parameters are common to FDD and TDD in order
to reduce the terminal complexity and maximize reuse between the designs of FDD and
TDD systems. Accordingly, LTE supports two kinds of frame structures: frame structure
type 1 for the FDD mode and frame structure type 2 for the TDD mode.

Frame Structure Type 1

Frame structure type 1 is applicable to both full duplex and half duplex FDD. There are
three different kinds of units specified for this frame structure, illustrated in Figure 6.8.
The smallest one is called a slot, which is of length Tslot = 15360 · Ts = 0.5 ms. Two
consecutive slots are defined as a subframe of length 1 ms, and 20 slots, numbered from
0 to 19, constitute a radio frame of 10 ms. Channel-dependent scheduling and link adap-
tation operate on a subframe level. Therefore, the subframe duration corresponds to the
minimum downlink TTI, which is of 1 ms duration, compared to a 2 ms TTI for the
HSPA and a minimum 10 ms TTI for the UMTS. A shorter TTI is for fast link adap-
tation and is able to reduce delay and better exploit the time-varying channel through
channel-dependent scheduling.

Each slot consists of a number of OFDM symbols including CPs. As shown in
Chapter 3, CP is a kind of guard interval to combat inter-OFDM-symbol interference,
which should be larger than the channel delay spread. Therefore, the length of CP de-
pends on the environment where the network operates, and it should not be too large as
it brings a bandwidth and power penalty. With a subcarrier spacing Δf = 15kHz, the
OFDM symbol time is 1/Δf ≈ 66.7μs. As shown in Figure 6.8, LTE defines two different

5 The LTE TDD mode, also referred to as TD-LTE, provides the long-term evolution path for TD-
SCDMA-based networks.
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Figure 6.8 Frame structure type 1. For the normal CP, TCP = 160 ·Ts ≈ 5.2μs for the first OFDM
symbol, and TCP = 144 ·Ts ≈ 4.7μs for the remaining OFDM symbols, which together fill the entire
slot of 0.5 ms. For the extended CP, TeCP = 512·Ts ≈ 16.7μs.

CP lengths: a normal CP and an extended CP, corresponding to seven and six OFDM
symbols per slot, respectively. The extended CP is for multicell multicast/broadcast and
very-large-cell scenarios with large delay spread at a price of bandwidth efficiency, with
length TeCP = 512 · Ts ≈ 16.7μs. The normal CP is suitable for urban environment and
high data rate applications. Note that the normal CP lengths are different for the first
(TCP = 160 · Ts ≈ 5.2μs) and subsequent OFDM symbols (TCP = 144 · Ts ≈ 4.7μs),
which is to fill the entire slot of 0.5 ms. The numbers of CP samples for different band-
widths are shown in Table 6.2. For example, with 10MHz bandwidth, the sampling time
is 1/(15000×1024) sec and the number of CP samples for the extended CP is 256, which
provides the required CP length of 256/(15000×1024) ≈ 1.67μs. In case of 7.5kHz subcar-
rier spacing, there is only a single CP length, corresponding to 3 OFDM symbols per slot.

For FDD, uplink and downlink transmissions are separated in the frequency domain,
each with 10 subframes. In half-duplex FDD operation, the UE cannot transmit and
receive at the same time while there are no such restrictions in full-duplex FDD. However,
full-duplex FDD terminals need high quality and expensive RF duplex-filters to separate
uplink and downlink channels, while half-duplex FDD allows hardware sharing between
the uplink and downlink, which offers a cost saving at the expense of reducing data
rates by half. Half-duplex FDD UEs are also considered a good solution if the duplex
separation between the uplink and downlink transmissions is relatively small. In such
cases, the half-duplex FDD is the preferable approach to mitigate the cross-interference
between the transmit and receive chains.

Frame Structure Type 2

Frame structure type 2 is applicable to the TDD mode. It is designed for coexistence with
legacy systems such as the 3GPP TD-SCDMA-based standard. As shown in Figure 6.9,
each radio frame of frame structure type 2 is of length Tf = 30720 · Ts = 10 ms, which
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Subframe 0-4 Subframe 5-9

Figure 6.9 Frame structure type 2.

consists of two half-frames of length 5 ms each. Each half-frame is divided into five
subframes with 1 ms duration. There are special subframes, which consist of three fields:
Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot
(UpPTS). These fields are already defined in TD-SCDMA and are maintained in the
LTE TDD mode to provide sufficiently large guard periods for the equipment to switch
between transmission and reception.

• The DwPTS field: This is the downlink part of the special subframe, and can be
regarded as an ordinary but shorter downlink subframe for downlink data trans-
mission. Its length can be varied from three up to twelve OFDM symbols.

• The UpPTS field: This is the uplink part of the special subframe, and has a
short duration with one or two OFDM symbols. It can be used for transmission of
uplink sounding reference signals and random access preambles.

• The GP field: The remaining symbols in the special subframe that have not been
allocated to DwPTS or UpPTS are allocated to the GP field, which is used to
provide the guard period for the downlink-to-uplink and the uplink-to-downlink
switch.

The total length of these three special fields has a constraint of 1 ms. With the DwPTS
and UpPTS durations mentioned above, LTE supports a guard period ranging from
two to ten OFDM symbols, sufficient for cell size up to and beyond 100 km. All other
subframes are defined as two slots, each with length Tslot = 0.5 ms.

Figure 6.9 only shows the detail structure of the first half-frame. The second half-frame
has the similar structure, which depends on the uplink-downlink configuration. Seven
uplink-downlink configurations with either 5 ms or 10 ms downlink-to-uplink switch-
point periodicity are supported, as illustrated in Table 6.3, where “D” and “U” denote
subframes reserved for downlink and uplink, respectively, and “S” denotes the special
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Table 6.3 Uplink-Downlink Configurations for the LTE TDD Mode

Uplink- Downlink-to-Uplink Subframe Number
Downlink Switch-Point

Configuration Periodicity 0 1 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D

subframe. In the case of 5 ms switch-point periodicity, the special subframe exists in
both half-frames, and the structure of the second half-frame is the same as the first
one depicted in Figure 6.9. In the case of 10 ms switch-point periodicity, the special
subframe exists in the first half-frame only. Subframes 0, 5, and the field DwPTS are
always reserved for downlink transmission, while UpPTS and the subframe immediately
following the special subframe are always reserved for uplink transmission.

6.3.2 Physical Resource Blocks for OFDMA

The physical resource in the downlink in each slot is described by a time-frequency
grid, called a resource grid, as illustrated in Figure 6.10. Such a time-frequency plane
representation is a common practice for OFDM systems, which makes it intuitive for
radio resource allocation. Each column and each row of the resource grid correspond to
one OFDM symbol and one OFDM subcarrier, respectively. The duration of the resource
grid in the time domain corresponds to one slot in a radio frame. The smallest time-
frequency unit in a resource grid is denoted as a resource element. Each resource grid
consists of a number of resource blocks, which describe the mapping of certain physical
channels to resource elements. The detail of these resource units is described as follows.

Resource Grid

The structure of each resource grid is characterized by the following three parameters:

• The number of downlink resource blocks (NDL
RB): It depends on the transmis-

sion bandwidth and shall fulfill Nmin,DL
RB ≤ NDL

RB ≤ Nmax,DL
RB , where Nmin,DL

RB = 6
and Nmax,DL

RB = 110 are for the smallest and largest downlink channel bandwidth,
respectively. The values of NDL

RB for several current specified bandwidths are listed
in Table 6.2.

• The number of subcarriers in each resource block (NRB
sc ): It depends on the

subcarrier spacing Δf , satisfying NRB
sc Δf = 180kHz, that is, each resource block is
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Figure 6.10 The structure of the downlink resource grid.

of 180kHz wide in the frequency domain. The values of NRB
sc for different subcarrier

spacings are shown in Table 6.4. There are a total of NDL
RB ×NRB

sc subcarriers in
each resource grid. For downlink transmission, the DC subcarrier is not used as it
may be subject to a too high level of interference.

• The number of OFDM symbols in each block (NDL
symb): It depends on both

the CP length and the subcarrier spacing, specified in Table 6.4.

Therefore, each downlink resource grid has NDL
RB ×Nsc

RB ×NDL
symb resource elements. For

example, with 10MHz bandwidth, Δf = 15kHz, and normal CP, we get NDL
RB = 50 from
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Table 6.4 Physical Resource Block Parameters for the Downlink

Configuration NRB
sc NDL

symb

Normal CP Δf = 15kHz 12 7
Extended CP Δf = 15kHz 12 6

Δf = 7.5kHz 24 3

Table 6.2, Nsc
RB = 12 and NDL

symb = 7 from Table 6.4, so there are 50 × 12 × 7 = 4200
resource elements in the downlink resource grid.

In case of multiantenna transmission, there is one resource grid defined per antenna
port. An antenna port is defined by its associated reference signal, which may not corre-
spond to a physical antenna. The set of antenna ports supported depends on the reference
signal configuration in the cell. As discussed in Section 6.2.3, there are three different
reference signals defined in the downlink, and the associated antenna ports are as follows:

• Cell-specific reference signals support a configuration of 1, 2, or 4 antenna ports
and the antenna port number p shall fulfill p = 0, p ∈ {0, 1}, and p ∈ {0, 1, 2, 3},
respectively.

• MBSFN reference signals are transmitted on antenna port p = 4.

• UE-specific reference signals are transmitted on antenna port p = 5.

We will talk more about antenna ports when discussing MIMO transmission in the down-
link in Section 7.2.2.

Resource Element

Each resource element in the resource grid is uniquely identified by the index pair (k, l)
in a slot, where k = 0, 1, . . . , NDL

RBNRB
sc − 1 and l = 0, 1, . . . , NDL

symb− 1 are indices in the
frequency and time domains, respectively. The size of each resource element depends on
the subcarrier spacing Δf and the CP length.

Resource Block

The resource block is the basic element for radio resource allocation. The minimum size
of radio resource that can be allocated is the minimum TTI in the time domain, that is,
one subframe of 1 ms, corresponding to two resource blocks. The size of each resource
block is the same for all bandwidths, which is 180kHz in the frequency domain. There are
two kinds of resource blocks defined for LTE: physical and virtual resource blocks, which
are defined for different resource allocation schemes and are specified in the following
section.

6.3.3 Resource Allocation

Resource allocation’s role is to dynamically assign available time-frequency resource
blocks to different UEs in an efficient way to provide good system performance. In LTE,
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channel-dependent scheduling is supported, and transmission is based on the shared
channel structure where the radio resource is shared among different UEs. Therefore,
with resource allocation techniques described in Chapter 4, multiuser diversity can be
exploited by assigning resource blocks to the UEs with favorable channel qualities. More-
over, resource allocation in LTE is able to exploit the channel variations in both the time
and frequency domain, which provides higher multiuser diversity gain than HSPA that
can only exploit the time-domain variation. Given a wide bandwidth in LTE, this prop-
erty is beneficial especially for slow-time varying channels, such as in the scenario with
low mobility, where taking advantage of channel selectivity in the time domain is difficult.

With OFDMA, the downlink resource allocation is characterized by the fact that each
scheduled UE occupies a number of resource blocks while each resource block is assigned
exclusively to one UE at any time. Physical resource blocks (PRBs) and virtual resource
blocks (VRBs) are defined to support different kinds of resource allocation types. The
VRB is introduced to support both block-wise transmission (localized) and transmission
on non-consecutive subcarriers (distributed) as a means to maximize frequency diversity.
The LTE downlink supports three resource allocation types: type 0, 1, and 2 [8]. The
downlink scheduling is performed at the eNode-B based on the channel quality informa-
tion fed back from UEs, and then the downlink resource assignment information is sent
to UEs on the PDCCH channel.

A PRB is defined as NDL
symb consecutive OFDM symbols in the time domain and

NRB
sc consecutive subcarriers in the frequency domain, as demonstrated in Figure 6.10.

Therefore, each PRB corresponds to one slot in the time domain (0.5 ms) and 180kHz in
the frequency domain. PRBs are numbered from 0 to NDL

RB − 1 in the frequency domain.
The PRB number nPRB of a resource element (k, l) in a slot is given by:

nPRB =
⌊ k

NRB
sc

⌋
.

The PRB is to support resource allocations of type 0 and type 1, which are defined for
the DCI format 1, 2, and 2A.

• In type 0 resource allocations, several consecutive PRBs constitute a resource
block group (RBG), and the resource allocation is done in units of RBGs. Therefore,
a bitmap indicating the RBG is sufficient to carry the resource assignment. The
allocated RBGs to a certain UE do not need to be adjacent to each other, which
provides frequency diversity. The RBG size P , that is, the number of PRBs in each
RBG, depends on the bandwidth and is specified in Table 6.5. An example of type 0

Table 6.5 Resource Allocation RBG Size vs. Downlink System Bandwidth

Downlink Resource Blocks
(
NDL

RB

)
RBG Size (P)

≤ 10 1
11 − 26 2
27 − 63 3
64 − 110 4
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RBG 5

RBG 4

RBG 3

RBG 2

RBG 1
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RBG 4

RBG 3

RBG 2

RBG 1

RBG 0

RBG subset 1

RBG subset 0

RBG subset 3

RBG subset 2

RBG subset 1

RBG subset 0

PRB

Resource allocation type 0 Resource allocation type 1

Figure 6.11 Examples of resource allocation type 0 and type 1, where the RBG size P = 4.

resource allocation is shown in Figure 6.11, where P = 4 and RBGs 0, 3, 4, . . . ,
are allocated to a particular UE.

• In type 1 resource allocations, all the RBGs are grouped into a number of RBG
subsets, and certain PRBs inside a selected RBG subset are allocated to the UE.
There are a total of P RBG subsets, where P is the RBG size. An RBG subset p,
where 0 ≤ p < P , consists of every P -th RBG starting from RBG p. Therefore,
the resource assignment information consists of three fields: the first field indicates
the selected RBG subset, the second field indicates whether an offset is applied,
and the third field contains the bitmap indicating PRBs inside the selected RBG
subset. This type of resource allocation is more flexible and is able to provide higher
frequency diversity, but it also requires a larger overhead. An example of type 1
resource allocation is shown in Figure 6.11, where P = 4 and the RBG subset 0 is
selected for the given UE.

In type 2 resource allocations that are defined for the DCI format 1A, 1B, 1C,
and 1D, PRBs are not directly allocated. Instead, VRBs are allocated, which are then
mapped onto PRBs. A VRB is of the same size as a PRB. There are two types of VRBs:
VRBs of the localized type and VRBs of the distributed type.
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For each type of VRB, a pair of VRBs over two slots in a subframe are assigned
together with a single VRB number, nVRB . VRBs of the localized type are mapped
directly to physical resource blocks such that the VRB number nVRB corresponds to the
PRB number nPRB = nVRB . For VRBs of the distributed type, the VRB numbers are
mapped to PRB numbers according to the rule specified in [6].

For resource allocations of type 2, the resource assignment information indicates a set
of contiguously allocated localized VRBs or distributed VRBs. A one-bit flag indicates
whether localized VRBs or distributed VRBs are assigned.

Details about the downlink resource allocation can be found in [8]. The feedback for
channel quality information and the related signaling is discussed in Chapter 9.

6.3.4 Supported MIMO Modes

Multiantenna transmission and reception (MIMO), as described in Chapter 5, is a phys-
ical layer technique that can improve both the reliability and throughput of the commu-
nications over wireless channels. It is considered a key component of the LTE physical
layer from the start. The baseline antenna configuration in LTE is two transmit antennas
at the cell site and two receive antennas at the UE. The higher-order downlink MIMO
is also supported with up to four transmit and four receive antennas.

The downlink transmission supports both single-user MIMO (SU-MIMO) and mul-
tiuser MIMO (MU-MIMO). For SU-MIMO, one or multiple data streams are transmitted
to a single UE through space-time processing; for MU-MIMO, modulation data streams
are transmitted to different UEs using the same time-frequency resource. The supported
SU-MIMO modes are listed as follows:

• Transmit diversity with space frequency block codes (SFBC)

• Open-loop spatial multiplexing supporting four data streams

• Closed-loop spatial multiplexing, with closed-loop precoding as a special case when
channel rank = 1

• Conventional direction of arrival (DOA)-based beamforming

The supported MIMO mode is restricted by the UE capability. The PDSCH physical
channel supports all the MIMO modes, while other physical channels support trans-
mit diversity except PMCH, which only supports single-antenna--port transmission. The
details about MIMO transmission on each downlink physical channel are provided in
Chapter 7, while the feedback to assist MIMO transmission is discussed in Chapter 9.

6.4 Uplink SC-FDMA Radio Resources

For the LTE uplink transmission, SC-FDMA with a CP is adopted. As discussed in
Chapter 4, SC-FDMA possesses most of the merits of OFDM while enjoying a lower
PAPR. A lower PAPR is highly desirable in the uplink as less expensive power ampli-
fiers are needed at UEs and the coverage is improved. In LTE, the SC-FDMA signal is
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generated by the DFT-spread-OFDM. Compared to conventional OFDM, the SC-FDMA
receiver has higher complexity, which, however, is not considered to be an issue in the
uplink given the powerful computational capability at the base station.

An SC-FDMA transceiver has a similar structure as OFDM, so the parametrization
of radio resource in the uplink enjoys similarities to that in the downlink described in
Section 6.3. Nevertheless, the uplink transmission has its own properties. Different from
the downlink, only localized resource allocation on consecutive subcarriers is allowed
in the uplink. In addition, only limited MIMO modes are supported in the uplink. In
this section, we focus on the differences in the uplink radio resource from that in the
downlink.

6.4.1 Frame Structure

The uplink frame structure is similar to that for the downlink. The difference is that now
we talk about SC-FDMA symbols and SC-FDMA subcarriers. In frame structure type
1, an uplink radio frame consists of 20 slots of 0.5 ms each, and one subframe consists
of two slots, as in Figure 6.8. Frame structure type 2 consists of ten subframes, with
one or two special subframes including DwPTS, GP, and UpPTS fields, as shown in
Figure 6.9. A CP is inserted prior to each SC-FDMA symbol. Each slot carries seven
SC-FDMA symbols in the case of normal CP, and six SC-FDMA symbols in the case of
extended CP.

6.4.2 Physical Resource Blocks for SC-FDMA

As SC-FDMA can be regarded as conventional OFDM with a DFT-based precoder,
the resource grid for the uplink is similar to the one for the downlink, illustrated in
Figure 6.12, that is, it comprises a number of resource blocks in the time-frequency
plane. The number of resource blocks in each resource grid, NUL

RB , depends on the uplink
transmission bandwidth configured in the cell and should satisfy

Nmin,UL
RB ≤ NUL

RB ≤ Nmax,UL
RB ,

where Nmin,UL
RB = 6 and Nmax,UL

RB = 110 correspond to the smallest and largest uplink
bandwidth, respectively. There are NRB

sc ×NRB
symb resource elements in each resource block.

The values of NRB
sc and NUL

symb for normal and extended CP are given in Table 6.6. There
is only one subcarrier spacing supported in the uplink, which is Δf = 15kHz. Different
from the downlink, the DC subcarrier is used in the uplink, as the DC interference is
spread over the modulation symbols due to the DFT-based precoding.

As for the downlink, each resource element in the resource grid is uniquely defined
by the index pair (k, l) in a slot, where k = 0, . . . , NUL

RBNRB
sc − 1 and l = 0, . . . , NUL

symb −
1 are the indices in the frequency and time domain, respectively. For the uplink, no
antenna port is defined, as only single antenna transmission is supported in the current
specifications.

A PRB in the uplink is defined as NUL
symb consecutive SC-FDMA symbols in the time

domain and NRB
sc consecutive subcarriers in the frequency domain, corresponding to one

slot in the time domain and 180kHz in the frequency domain. The relation between the
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Figure 6.12 The structure of the uplink resource grid.

Table 6.6 Physical Resource Block Parameters for Uplink

Configuration NRB
sc NUL

symb

Normal CP 12 7
Extended CP 12 6
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PRB number nPRB in the frequency domain and resource elements (k, l) in a slot is
given by:

nPRB =
⌊ k

NRB
sc

⌋
.

6.4.3 Resource Allocation

Similar to the downlink, shared-channel transmission and channel-dependent schedul-
ing are supported in the uplink. Resource allocation in the uplink is also performed at
the eNode-B. Based on the channel quality measured on the uplink sounding reference
signals and the scheduling requests sent from UEs, the eNode-B assigns a unique time-
frequency resource to a scheduled UE, which achieves orthogonal intra-cell transmission.
Such intra-cell orthogonality in the uplink is preserved between UEs by using timing
advance such that the transport blocks of different UEs are received synchronously at
the eNode-B. This provides significant coverage and capacity gain in the uplink over
UMTS, which employs non-orthogonal transmission in the uplink and the performance
is limited by inter-channel interference. In general, SC-FDMA is able to support both
localized and distributed resource allocation. In the current specification, only localized
resource allocation is supported in the uplink, which preserves the single-carrier property
and can better exploit the multiuser diversity gain in the frequency domain. Compared to
distributed resource allocation, localized resource allocation is less sensitive to frequency
offset and also requires fewer reference symbols.

The resource assignment information for the uplink transmission is carried on the
PDCCH with DCI format 0, indicating a set of contiguously allocated resource blocks.
However, not all integer multiples of one resource block are allowed to be assigned to a UE,
which is to simplify the DFT design for the SC-FDMA transceiver. Only factors 2, 3, and
5 are allowed. The frequency hopping is supported to provide frequency diversity, with
which the UEs can hop between frequencies within or between the allocated subframes.
The resource mapping for different uplink channels is discussed in Chapter 8, and the
uplink channel sounding and scheduling signaling is described in Chapter 9.

6.4.4 Supported MIMO Modes

For the MIMO modes supported in the uplink, the terminal complexity and cost are
among the major concerns. MU-MIMO is supported, which allocates the same time
and frequency resource to two UEs with each transmitting on a single antenna. This is
also called Spatial Division Multiple Access (SDMA). The advantage is that only one
transmit antenna per UE is required. To separate streams for different UEs, channel
state information is required at the eNode-B, which is obtained through uplink reference
signals that are orthogonal between UEs. Uplink MU-MIMO also requires power control,
as the near-far problem arises when multiple UEs are multiplexed on the same radio
resource.

For UEs with two or more transmit antennas, closed-loop adaptive antenna selection
transmit diversity shall be supported. For this scenario, each UE only needs one transmit
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chain and amplifier. The antenna that provides the best channel to the eNode-B is
selected based on the feedback from the eNode-B. The details of MIMO transmission
in the uplink are described in Chapter 8.

6.5 Summary and Conclusions

This chapter provided an overview of the LTE radio interface, emphasizing the hierar-
chical channel structure and the radio resource in both downlink and uplink. The material
covered should be adequate for the reader to get the unique characteristics of the LTE
physical layer and understand the detailed physical layer procedures in the following
chapters.

• LTE is the next step in the evolution of mobile cellular systems, and is a packet-
switched network from end to end that is designed with a clean slate approach.

• LTE adopts the hierarchical channel structure from UTRA/HSPA. It simplifies the
channel structure and is based totally on the shared channel transmission, which
improves the efficiency of the air interface.

• LTE applies OFDMA in the downlink and SC-FDMA in the uplink, both of which
have similar radio resource structures in the time-frequency plane. The capability of
scheduling in both time and frequency domain provides a higher spectral efficiency
in LTE than what is achieved in HSPA. Both localized and distributed resource
allocations are supported in the downlink, while only localized resource allocation
is supported in the uplink.

• MIMO transmission is a key component of LTE. In current specifications, downlink
transmission supports a variety of MIMO modes, while uplink transmission has a
limited MIMO support considering cost and complexity.
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