This page intentionally left blank
Understanding Digital Signal Processing

Third Edition

Richard G. Lyons
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data
Lyons, Richard G., 1948-
p. cm.
Includes bibliographical references and index.
1. Signal processing—Digital techniques. I. Title.
TK5102.9.L96 2011
621.3822—dc22 2010035407

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
Fourth printing, August 2012
I dedicate this book to my daughters, Julie and Meredith—I wish I could go with you; to my mother, Ruth, for making me finish my homework; to my father, Grady, who didn’t know what he started when he built that workbench in the basement; to my brother Ray for improving us all; to my brother Ken who succeeded where I failed; to my sister Nancy for running interference for us; and to the skilled folks on the USENET newsgroup comp.dsp. They ask the good questions and provide the best answers. Finally, to Sigi Pardula (Bat-girl): Without your keeping the place running, this book wouldn’t exist.
3.3 DFT Linearity 75
3.4 DFT Magnitudes 75
3.5 DFT Frequency Axis 77
3.6 DFT Shifting Theorem 77
3.7 Inverse DFT 80
3.8 DFT Leakage 81
3.9 Windows 89
3.10 DFT Scalloping Loss 96
3.11 DFT Resolution, Zero Padding, and Frequency-Domain Sampling 98
3.12 DFT Processing Gain 102
3.13 The DFT of Rectangular Functions 105
3.14 Interpreting the DFT Using the Discrete-Time Fourier Transform 120
References 124
Chapter 3 Problems 125

4 THE FAST FOURIER TRANSFORM 135

4.1 Relationship of the FFT to the DFT 136
4.2 Hints on Using FFTs in Practice 137
4.3 Derivation of the Radix-2 FFT Algorithm 141
4.4 FFT Input/Output Data Index Bit Reversal 149
4.5 Radix-2 FFT Butterfly Structures 151
4.6 Alternate Single-Butterfly Structures 154
References 158
Chapter 4 Problems 160

5 FINITE IMPULSE RESPONSE FILTERS 169

5.1 An Introduction to Finite Impulse Response (FIR) Filters 170
5.2 Convolution in FIR Filters 175
5.3 Lowpass FIR Filter Design 186
5.4 Bandpass FIR Filter Design 201
5.5 Highpass FIR Filter Design 203
5.6 Parks-McClellan Exchange FIR Filter Design Method 204
5.7 Half-band FIR Filters 207
5.8 Phase Response of FIR Filters 209
5.9 A Generic Description of Discrete Convolution 214
8.5 Quadrature Signals in the Frequency Domain 451
8.6 Bandpass Quadrature Signals in the Frequency Domain 454
8.7 Complex Down-Conversion 456
8.8 A Complex Down-Conversion Example 458
8.9 An Alternate Down-Conversion Method 462
References 464
Chapter 8 Problems 465

9 THE DISCRETE HILBERT TRANSFORM 479

9.1 Hilbert Transform Definition 480
9.2 Why Care about the Hilbert Transform? 482
9.3 Impulse Response of a Hilbert Transformer 487
9.4 Designing a Discrete Hilbert Transformer 489
9.5 Time-Domain Analytic Signal Generation 495
9.6 Comparing Analytical Signal Generation Methods 497
References 498
Chapter 9 Problems 499

10 SAMPLE RATE CONVERSION 507

10.1 Decimation 508
10.2 Two-Stage Decimation 510
10.3 Properties of Downsampling 514
10.4 Interpolation 516
10.5 Properties of Interpolation 518
10.6 Combining Decimation and Interpolation 521
10.7 Polyphase Filters 522
10.8 Two-Stage Interpolation 528
10.9 z-Transform Analysis of Multirate Systems 533
10.10 Polyphase Filter Implementations 535
10.11 Sample Rate Conversion by Rational Factors 540
10.12 Sample Rate Conversion with Half-band Filters 543
10.13 Sample Rate Conversion with IFIR Filters 548
10.14 Cascaded Integrator-Comb Filters 550
References 566
Chapter 10 Problems 568
11 SIGNAL AVERAGING 589
11.1 Coherent Averaging 590
11.2 Incoherent Averaging 597
11.3 Averaging Multiple Fast Fourier Transforms 600
11.4 Averaging Phase Angles 603
11.5 Filtering Aspects of Time-Domain Averaging 604
11.6 Exponential Averaging 608
References 615
Chapter 11 Problems 617

12 DIGITAL DATA FORMATS AND THEIR EFFECTS 623
12.1 Fixed-Point Binary Formats 623
12.2 Binary Number Precision and Dynamic Range 632
12.3 Effects of Finite Fixed-Point Binary Word Length 634
12.4 Floating-Point Binary Formats 652
12.5 Block Floating-Point Binary Format 658
References 658
Chapter 12 Problems 661

13 DIGITAL SIGNAL PROCESSING TRICKS 671
13.1 Frequency Translation without Multiplication 671
13.2 High-Speed Vector Magnitude Approximation 679
13.3 Frequency-Domain Windowing 683
13.4 Fast Multiplication of Complex Numbers 686
13.5 Efficiently Performing the FFT of Real Sequences 687
13.6 Computing the Inverse FFT Using the Forward FFT 699
13.7 Simplified FIR Filter Structure 702
13.8 Reducing A/D Converter Quantization Noise 704
13.9 A/D Converter Testing Techniques 709
13.10 Fast FIR Filtering Using the FFT 716
13.11 Generating Normally Distributed Random Data 722
13.12 Zero-Phase Filtering 725
13.13 Sharpened FIR Filters 726
13.14 Interpolating a Bandpass Signal 728
13.15 Spectral Peak Location Algorithm 730
13.16	Computing FFT Twiddle Factors	734
13.17	Single Tone Detection	737
13.18	The Sliding DFT	741
13.19	The Zoom FFT	749
13.20	A Practical Spectrum Analyzer	753
13.21	An Efficient Arctangent Approximation	756
13.22	Frequency Demodulation Algorithms	758
13.23	DC Removal	761
13.24	Improving Traditional CIC Filters	765
13.25	Smoothing Impulsive Noise	770
13.26	Efficient Polynomial Evaluation	772
13.27	Designing Very High-Order FIR Filters	775
13.28	Time-Domain Interpolation Using the FFT	778
13.29	Frequency Translation Using Decimation	781
13.30	Automatic Gain Control (AGC)	783
13.31	Approximate Envelope Detection	784
13.32	A Quadrature Oscillator	786
13.33	Specialized Exponential Averaging	789
13.34	Filtering Narrowband Noise Using Filter Nulls	792
13.35	Efficient Computation of Signal Variance	797
13.36	Real-time Computation of Signal Averages and Variances	799
13.37	Building Hilbert Transformers from Half-band Filters	802
13.38	Complex Vector Rotation with Arctangents	805
13.39	An Efficient Differentiating Network	810
13.40	Linear-Phase DC-Removal Filter	812
13.41	Avoiding Overflow in Magnitude Computations	815
13.42	Efficient Linear Interpolation	815
13.43	Alternate Complex Down-conversion Schemes	816
13.44	Signal Transition Detection	820
13.45	Spectral Flipping around Signal Center Frequency	821
13.46	Computing Missing Signal Samples	823
13.47	Computing Large DFTs Using Small FFTs	826
13.48	Computing Filter Group Delay without Arctangents	830
13.49	Computing a Forward and Inverse FFT Using a Single FFT	831
13.50	Improved Narrowband Lowpass IIR Filters	833
13.51	A Stable Goertzel Algorithm	838
13.52	References	840

References 840
Preface

This book is an expansion of previous editions of *Understanding Digital Signal Processing*. Like those earlier editions, its goals are (1) to help beginning students understand the theory of digital signal processing (DSP) and (2) to provide practical DSP information, not found in other books, to help working engineers/scientists design and test their signal processing systems. Each chapter of this book contains new information beyond that provided in earlier editions.

It’s traditional at this point in the preface of a DSP textbook for the author to tell readers why they should learn DSP. I don’t need to tell you how important DSP is in our modern engineering world. You already know that. I’ll just say that the future of electronics is DSP, and with this book you will not be left behind.

FOR INSTRUCTORS

This third edition is appropriate as the text for a one- or two-semester undergraduate course in DSP. It follows the DSP material I cover in my corporate training activities and a signal processing course I taught at the University of California Santa Cruz Extension. To aid students in their efforts to learn DSP, this third edition provides additional explanations and examples to increase its tutorial value. To test a student’s understanding of the material, homework problems have been included at the end of each chapter. (For qualified instructors, a Solutions Manual is available from Prentice Hall.)
FOR PRACTICING ENGINEERS

To help working DSP engineers, the changes in this third edition include, but are not limited to, the following:

- Practical guidance in building discrete differentiators, integrators, and matched filters
- Descriptions of statistical measures of signals, variance reduction by way of averaging, and techniques for computing real-world signal-to-noise ratios (SNRs)
- A significantly expanded chapter on sample rate conversion (multirate systems) and its associated filtering
- Implementing fast convolution (FIR filtering in the frequency domain)
- IIR filter scaling
- Enhanced material covering techniques for analyzing the behavior and performance of digital filters
- Expanded descriptions of industry-standard binary number formats used in modern processing systems
- Numerous additions to the popular “Digital Signal Processing Tricks” chapter

FOR STUDENTS

Learning the fundamentals, and how to speak the language, of digital signal processing does not require profound analytical skills or an extensive background in mathematics. All you need is a little experience with elementary algebra, knowledge of what a sinewave is, this book, and enthusiasm. This may sound hard to believe, particularly if you’ve just flipped through the pages of this book and seen figures and equations that look rather complicated. The content here, you say, looks suspiciously like material in technical journals and textbooks whose meaning has eluded you in the past. Well, this is not just another book on digital signal processing.

In this book I provide a gentle, but thorough, explanation of the theory and practice of DSP. The text is not written so that you may understand the material, but so that you must understand the material. I’ve attempted to avoid the traditional instructor–student relationship and have tried to make reading this book seem like talking to a friend while walking in the park. I’ve used just enough mathematics to help you develop a fundamental understanding of DSP theory and have illustrated that theory with practical examples.

I have designed the homework problems to be more than mere exercises that assign values to variables for the student to plug into some equation in order to compute a result. Instead, the homework problems are designed to
be as educational as possible in the sense of expanding on and enabling further investigation of specific aspects of DSP topics covered in the text. Stated differently, the homework problems are not designed to induce “death by algebra,” but rather to improve your understanding of DSP. Solving the problems helps you become proactive in your own DSP education instead of merely being an inactive recipient of DSP information.

THE JOURNEY

Learning digital signal processing is not something you accomplish; it’s a journey you take. When you gain an understanding of one topic, questions arise that cause you to investigate some other facet of digital signal processing. Armed with more knowledge, you’re likely to begin exploring further aspects of digital signal processing much like those shown in the diagram on page xviii. This book is your tour guide during the first steps of your journey.

You don’t need a computer to learn the material in this book, but it would certainly help. DSP simulation software allows the beginner to verify signal processing theory through the time-tested trial and error process. In particular, software routines that plot signal data, perform the fast Fourier transforms, and analyze digital filters would be very useful.

As you go through the material in this book, don’t be discouraged if your understanding comes slowly. As the Greek mathematician Menaechmus curtly remarked to Alexander the Great, when asked for a quick explanation of mathematics, “There is no royal road to mathematics.” Menaechmus was confident in telling Alexander the only way to learn mathematics is through careful study. The same applies to digital signal processing. Also, don’t worry if you need to read some of the material twice. While the concepts in this book are not as complicated as quantum physics, as mysterious as the lyrics of the song “Louie Louie,” or as puzzling as the assembly instructions of a metal shed, they can become a little involved. They deserve your thoughtful attention. So, go slowly and read the material twice if necessary; you’ll be glad you did. If you show persistence, to quote Susan B. Anthony, “Failure is impossible.”

†“You see I went on with this research just the way it led me. This is the only way I ever heard of research going. I asked a question, devised some method of getting an answer, and got—a fresh question. Was this possible, or that possible? You cannot imagine what this means to an investigator, what an intellectual passion grows upon him. You cannot imagine the strange colourless delight of these intellectual desires” (Dr. Moreau—infamous physician and vivisectionist from H.G. Wells’ Island of Dr. Moreau, 1896).

‡“One must learn by doing the thing; for though you think you know it, you have no certainty until you try it” (Sophocles, 496–406 B.C.).
COMING ATTRACTIONS

Chapter 1 begins by establishing the notation used throughout the remainder of the book. In that chapter we introduce the concept of discrete signal sequences, show how they relate to continuous signals, and illustrate how those sequences can be depicted in both the time and frequency domains. In addition, Chapter 1 defines the operational symbols we’ll use to build our signal processing system block diagrams. We conclude that chapter with a brief introduction to the idea of linear systems and see why linearity enables us to use a number of powerful mathematical tools in our analysis.

Chapter 2 introduces the most frequently misunderstood process in digital signal processing, periodic sampling. Although the concept of sampling a
continuous signal is not complicated, there are mathematical subtleties in the process that require thoughtful attention. Beginning gradually with simple examples of lowpass sampling, we then proceed to the interesting subject of bandpass sampling. Chapter 2 explains and quantifies the frequency-domain ambiguity (aliasing) associated with these important topics.

Chapter 3 is devoted to one of the foremost topics in digital signal processing, the discrete Fourier transform (DFT) used for spectrum analysis. Coverage begins with detailed examples illustrating the important properties of the DFT and how to interpret DFT spectral results, progresses to the topic of windows used to reduce DFT leakage, and discusses the processing gain afforded by the DFT. The chapter concludes with a detailed discussion of the various forms of the transform of rectangular functions that the reader is likely to encounter in the literature.

Chapter 4 covers the innovation that made the most profound impact on the field of digital signal processing, the fast Fourier transform (FFT). There we show the relationship of the popular radix 2 FFT to the DFT, quantify the powerful processing advantages gained by using the FFT, demonstrate why the FFT functions as it does, and present various FFT implementation structures. Chapter 4 also includes a list of recommendations to help the reader use the FFT in practice.

Chapter 5 ushers in the subject of digital filtering. Beginning with a simple lowpass finite impulse response (FIR) filter example, we carefully progress through the analysis of that filter’s frequency-domain magnitude and phase response. Next, we learn how window functions affect, and can be used to design, FIR filters. The methods for converting lowpass FIR filter designs to bandpass and highpass digital filters are presented, and the popular Parks-McClellan (Remez) Exchange FIR filter design technique is introduced and illustrated by example. In that chapter we acquaint the reader with, and take the mystery out of, the process called convolution. Proceeding through several simple convolution examples, we conclude Chapter 5 with a discussion of the powerful convolution theorem and show why it’s so useful as a qualitative tool in understanding digital signal processing.

Chapter 6 is devoted to a second class of digital filters, infinite impulse response (IIR) filters. In discussing several methods for the design of IIR filters, the reader is introduced to the powerful digital signal processing analysis tool called the z-transform. Because the z-transform is so closely related to the continuous Laplace transform, Chapter 6 starts by gently guiding the reader from the origin, through the properties, and on to the utility of the Laplace transform in preparation for learning the z-transform. We’ll see how IIR filters are designed and implemented, and why their performance is so different from that of FIR filters. To indicate under what conditions these filters should be used, the chapter concludes with a qualitative comparison of the key properties of FIR and IIR filters.
Chapter 7 introduces specialized networks known as digital differentiators, integrators, and matched filters. In addition, this chapter covers two specialized digital filter types that have not received their deserved exposure in traditional DSP textbooks. Called interpolated FIR and frequency sampling filters, providing improved lowpass filtering computational efficiency, they belong in our arsenal of filter design techniques. Although these are FIR filters, their introduction is delayed to this chapter because familiarity with the z-transform (in Chapter 6) makes the properties of these filters easier to understand.

Chapter 8 presents a detailed description of quadrature signals (also called complex signals). Because quadrature signal theory has become so important in recent years, in both signal analysis and digital communications implementations, it deserves its own chapter. Using three-dimensional illustrations, this chapter gives solid physical meaning to the mathematical notation, processing advantages, and use of quadrature signals. Special emphasis is given to quadrature sampling (also called complex down-conversion).

Chapter 9 provides a mathematically gentle, but technically thorough, description of the Hilbert transform—a process used to generate a quadrature (complex) signal from a real signal. In this chapter we describe the properties, behavior, and design of practical Hilbert transformers.

Chapter 10 presents an introduction to the fascinating and useful process of sample rate conversion (changing the effective sample rate of discrete data sequences through decimation or interpolation). Sample rate conversion—so useful in improving the performance and reducing the computational complexity of many signal processing operations—is essentially an exercise in lowpass filter design. As such, polyphase and cascaded integrator-comb filters are described in detail in this chapter.

Chapter 11 covers the important topic of signal averaging. There we learn how averaging increases the accuracy of signal measurement schemes by reducing measurement background noise. This accuracy enhancement is called processing gain, and the chapter shows how to predict the processing gain associated with averaging signals in both the time and frequency domains. In addition, the key differences between coherent and incoherent averaging techniques are explained and demonstrated with examples. To complete that chapter the popular scheme known as exponential averaging is covered in some detail.

Chapter 12 presents an introduction to the various binary number formats the reader is likely to encounter in modern digital signal processing. We establish the precision and dynamic range afforded by these formats along with the inherent pitfalls associated with their use. Our exploration of the critical subject of binary data word width (in bits) naturally leads to a discussion of the numerical resolution limitations of analog-to-digital (A/D) converters and how to determine the optimum A/D converter word size for a
given application. The problems of data value overflow roundoff errors are covered along with a statistical introduction to the two most popular remedies for overflow, truncation and rounding. We end that chapter by covering the interesting subject of floating-point binary formats that allow us to overcome most of the limitations induced by fixed-point binary formats, particularly in reducing the ill effects of data overflow.

Chapter 13 provides the literature’s most comprehensive collection of tricks of the trade used by DSP professionals to make their processing algorithms more efficient. These techniques are compiled into a chapter at the end of the book for two reasons. First, it seems wise to keep our collection of tricks in one chapter so that we’ll know where to find them in the future. Second, many of these clever schemes require an understanding of the material from the previous chapters, making the last chapter an appropriate place to keep our arsenal of clever tricks. Exploring these techniques in detail verifies and reiterates many of the important ideas covered in previous chapters.

The appendices include a number of topics to help the beginner understand the nature and mathematics of digital signal processing. A comprehensive description of the arithmetic of complex numbers is covered in Appendix A, and Appendix B derives the often used, but seldom explained, closed form of a geometric series. The subtle aspects and two forms of time reversal in discrete systems (of which zero-phase digital filtering is an application) are explained in Appendix C. The statistical concepts of mean, variance, and standard deviation are introduced and illustrated in Appendix D, and Appendix E provides a discussion of the origin and utility of the logarithmic decibel scale used to improve the magnitude resolution of spectral representations. Appendix F, in a slightly different vein, provides a glossary of the terminology used in the field of digital filters. Appendices G and H provide supplementary information for designing and analyzing specialized digital filters. Appendix I explains the computation of Chebyshev window sequences.

ACKNOWLEDGMENTS

Much of the new material in this edition is a result of what I’ve learned from those clever folk on the USENET newsgroup comp.dsp. (I could list a dozen names, but in doing so I’d make 12 friends and 500 enemies.) So, I say thanks to my DSP pals on comp.dsp for teaching me so much signal processing theory.

In addition to the reviewers of previous editions of this book, I thank Randy Yates, Clay Turner, and Ryan Groulx for their time and efforts to help me improve the content of this book. I am especially indebted to my eagle-eyed mathematician friend Antoine Trux for his relentless hard work to both enhance this DSP material and create a homework Solutions Manual.
As before, I thank my acquisitions editor, Bernard Goodwin, for his patience and guidance, and his skilled team of production people, project editor Elizabeth Ryan in particular, at Prentice Hall.

If you’re still with me this far in this Preface, I end by saying I had a ball writing this book and sincerely hope you benefit from reading it. If you have any comments or suggestions regarding this material, or detect any errors no matter how trivial, please send them to me at R.Lyons@ieee.org. I promise I will reply to your e-mail.
About the Author

Richard Lyons is a consulting systems engineer and lecturer with Besser Associates in Mountain View, California. He has been the lead hardware engineer for numerous signal processing systems for both the National Security Agency (NSA) and Northrop Grumman Corp. Lyons has taught DSP at the University of California Santa Cruz Extension and authored numerous articles on DSP. As associate editor for the IEEE Signal Processing Magazine he created, edits, and contributes to the magazine’s “DSP Tips & Tricks” column.
This page intentionally left blank
Digital signal processing has never been more prevalent or easier to perform. It wasn’t that long ago when the fast Fourier transform (FFT), a topic we’ll discuss in Chapter 4, was a mysterious mathematical process used only in industrial research centers and universities. Now, amazingly, the FFT is readily available to us all. It’s even a built-in function provided by inexpensive spreadsheet software for home computers. The availability of more sophisticated commercial signal processing software now allows us to analyze and develop complicated signal processing applications rapidly and reliably. We can perform spectral analysis, design digital filters, develop voice recognition, data communication, and image compression processes using software that’s interactive both in the way algorithms are defined and how the resulting data are graphically displayed. Since the mid-1980s the same integrated circuit technology that led to affordable home computers has produced powerful and inexpensive hardware development systems on which to implement our digital signal processing designs.\(^\dagger\) Regardless, though, of the ease with which these new digital signal processing development systems and software can be applied, we still need a solid foundation in understanding the basics of digital signal processing. The purpose of this book is to build that foundation.

In this chapter we’ll set the stage for the topics we’ll study throughout the remainder of this book by defining the terminology used in digital signal process-

\(^\dagger\) During a television interview in the early 1990s, a leading computer scientist stated that had automobile technology made the same strides as the computer industry, we’d all have a car that would go a half million miles per hour and get a half million miles per gallon. The cost of that car would be so low that it would be cheaper to throw it away than pay for one day’s parking in San Francisco.
ing, illustrating the various ways of graphically representing discrete signals, establishing the notation used to describe sequences of data values, presenting the symbols used to depict signal processing operations, and briefly introducing the concept of a linear discrete system.

1.1 DISCRETE SEQUENCES AND THEIR NOTATION

In general, the term signal processing refers to the science of analyzing time-varying physical processes. As such, signal processing is divided into two categories, analog signal processing and digital signal processing. The term analog is used to describe a waveform that’s continuous in time and can take on a continuous range of amplitude values. An example of an analog signal is some voltage that can be applied to an oscilloscope, resulting in a continuous display as a function of time. Analog signals can also be applied to a conventional spectrum analyzer to determine their frequency content. The term analog appears to have stemmed from the analog computers used prior to 1980. These computers solved linear differential equations by means of connecting physical (electronic) differentiators and integrators using old-style telephone operator patch cords. That way, a continuous voltage or current in the actual circuit was analogous to some variable in a differential equation, such as speed, temperature, air pressure, etc. (Although the flexibility and speed of modern-day digital computers have since made analog computers obsolete, a good description of the short-lived utility of analog computers can be found in reference [1].) Because present-day signal processing of continuous radio-type signals using resistors, capacitors, operational amplifiers, etc., has nothing to do with analogies, the term analog is actually a misnomer. The more correct term is continuous signal processing for what is today so commonly called analog signal processing. As such, in this book we’ll minimize the use of the term analog signals and substitute the phrase continuous signals whenever appropriate.

The term discrete-time signal is used to describe a signal whose independent time variable is quantized so that we know only the value of the signal at discrete instants in time. Thus a discrete-time signal is not represented by a continuous waveform but, instead, a sequence of values. In addition to quantizing time, a discrete-time signal quantizes the signal amplitude. We can illustrate this concept with an example. Think of a continuous sinewave with a peak amplitude of 1 at a frequency \(f_o \) described by the equation

\[
x(t) = \sin(2\pi f_o t).
\]

The frequency \(f_o \) is measured in hertz (Hz). (In physical systems, we usually measure frequency in units of hertz. One Hz is a single oscillation, or cycle, per second. One kilohertz (kHz) is a thousand Hz, and a megahertz (MHz) is
one million Hz.†) With t in Eq. 1–1 representing time in seconds, the $f_0 t$ factor has dimensions of cycles, and the complete $2\pi f_0 t$ term is an angle measured in radians.

Plotting Eq. (1–1), we get the venerable continuous sinewave curve shown in Figure 1–1(a). If our continuous sinewave represents a physical volt-

† The dimension for frequency used to be cycles/second; that’s why the tuning dials of old radios indicate frequency as kilocycles/second (kcps) or megacycles/second (Mcps). In 1960 the scientific community adopted hertz as the unit of measure for frequency in honor of the German physicist Heinrich Hertz, who first demonstrated radio wave transmission and reception in 1887.
We could sample the sinewave once every \(t_s \) seconds using an analog-to-digital converter and represent the sinewave as a sequence of discrete values. Plotting those individual values as dots would give us the discrete waveform in Figure 1–1(b). We say that Figure 1–1(b) is the “discrete-time” version of the continuous signal in Figure 1–1(a). The independent variable \(t \) in Eq. (1–1) and Figure 1–1(a) is continuous. The independent index variable \(n \) in Figure 1–1(b) is discrete and can have only integer values. That is, index \(n \) is used to identify the individual elements of the discrete sequence in Figure 1–1(b).

Do not be tempted to draw lines between the dots in Figure 1–1(b). For some reason, people (particularly those engineers experienced in working with continuous signals) want to connect the dots with straight lines, or the stair-step lines shown in Figure 1–1(c). Don’t fall into this innocent-looking trap. Connecting the dots can mislead the beginner into forgetting that the \(x(n) \) sequence is nothing more than a list of numbers. Remember, \(x(n) \) is a discrete-time sequence of individual values, and each value in that sequence plots as a single dot. It’s not that we’re ignorant of what lies between the dots of \(x(n) \); there is nothing between those dots.

We can reinforce this discrete-time sequence concept by listing those Figure 1–1(b) sampled values as follows:

\[
\begin{align*}
x(0) &= 0 \quad (1st \text{ sequence value, index } n = 0) \\
x(1) &= 0.31 \quad (2nd \text{ sequence value, index } n = 1) \\
x(2) &= 0.59 \quad (3rd \text{ sequence value, index } n = 2) \\
x(3) &= 0.81 \quad (4th \text{ sequence value, index } n = 3) \\
\vdots \\
\end{align*}
\]

(1–2)

where \(n \) represents the time index integer sequence 0, 1, 2, 3, etc., and \(t_s \) is some constant time period between samples. Those sample values can be represented collectively, and concisely, by the discrete-time expression

\[
x(n) = \sin(2\pi f_0 n t_s).
\]

(1–3)

(Here again, the \(2\pi f_0 n t_s \) term is an angle measured in radians.) Notice that the index \(n \) in Eq. (1–2) started with a value of 0, instead of 1. There’s nothing sacred about this; the first value of \(n \) could just as well have been 1, but we start the index \(n \) at zero out of habit because doing so allows us to describe the sinewave starting at time zero. The variable \(x(n) \) in Eq. (1–3) is read as “the sequence \(x \) of \(n \).” Equations (1–1) and (1–3) describe what are also referred to as time-domain signals because the independent variables, the continuous time \(t \) in Eq. (1–1), and the discrete-time \(n t_s \) values used in Eq. (1–3) are measures of time.

With this notion of a discrete-time signal in mind, let’s say that a discrete system is a collection of hardware components, or software routines, that operate on a discrete-time signal sequence. For example, a discrete system could...
be a process that gives us a discrete output sequence \(y(0), y(1), y(2), \) etc., when a discrete input sequence of \(x(0), x(1), x(2), \) etc., is applied to the system input as shown in Figure 1–2(a). Again, to keep the notation concise and still keep track of individual elements of the input and output sequences, an abbreviated notation is used as shown in Figure 1–2(b) where \(n \) represents the integer sequence \(0, 1, 2, 3, \) etc. Thus, \(x(n) \) and \(y(n) \) are general variables that represent two separate sequences of numbers. Figure 1–2(b) allows us to describe a system’s output with a simple expression such as

\[
y(n) = 2x(n) - 1. \quad (1-4)
\]

Illustrating Eq. (1–4), if \(x(n) \) is the five-element sequence \(x(0) = 1, x(1) = 3, x(2) = 5, x(3) = 7, \) and \(x(4) = 9, \) then \(y(n) \) is the five-element sequence \(y(0) = 1, y(1) = 5, y(2) = 9, y(3) = 13, \) and \(y(4) = 17. \)

Equation (1–4) is formally called a difference equation. (In this book we won’t be working with differential equations or partial differential equations. However, we will, now and then, work with partially difficult equations.)

The fundamental difference between the way time is represented in continuous and discrete systems leads to a very important difference in how we characterize frequency in continuous and discrete systems. To illustrate, let’s reconsider the continuous sinewave in Figure 1–1(a). If it represented a voltage at the end of a cable, we could measure its frequency by applying it to an oscilloscope, a spectrum analyzer, or a frequency counter. We’d have a problem, however, if we were merely given the list of values from Eq. (1–2) and asked to determine the frequency of the waveform they represent. We’d graph those discrete values, and, sure enough, we’d recognize a single sinewave as in Figure 1–1(b). We can say that the sinewave repeats every 20 samples, but there’s no way to determine the exact sinewave frequency from the discrete sequence values alone. You can probably see the point we’re leading to here. If we knew the time between samples—the sample period \(t_s \)—we’d be able to determine the absolute frequency of the discrete sinewave.

Figure 1–2 With an input applied, a discrete system provides an output: (a) the input and output are sequences of individual values; (b) input and output using the abbreviated notation of \(x(n) \) and \(y(n) \).
Given that the t_s sample period is, say, 0.05 milliseconds/sample, the period of the sinewave is

$$\text{sinewave period} = \frac{20 \text{ samples}}{\text{period}} \cdot \frac{0.05 \text{ milliseconds}}{\text{sample}} = 1 \text{ millisecond.} \quad (1-5)$$

Because the frequency of a sinewave is the reciprocal of its period, we now know that the sinewave’s absolute frequency is $1/(1 \text{ ms})$, or 1 kHz. On the other hand, if we found that the sample period was, in fact, 2 milliseconds, the discrete samples in Figure 1–1(b) would represent a sinewave whose period is 40 milliseconds and whose frequency is 25 Hz. The point here is that when dealing with discrete systems, absolute frequency determination in Hz is dependent on the sampling frequency

$$f_s = 1/t_s. \quad (1-5')$$

We’ll be reminded of this dependence throughout the remainder of this book.

In digital signal processing, we often find it necessary to characterize the frequency content of discrete time-domain signals. When we do so, this frequency representation takes place in what’s called the frequency domain. By
way of example, let’s say we have a discrete sinewave sequence \(x_1(n)\) with an arbitrary frequency \(f_0\) Hz as shown on the left side of Figure 1–3(a). We can also characterize \(x_1(n)\) by showing its spectral content, the \(X_1(m)\) sequence on the right side of Figure 1-3(a), indicating that it has a single spectral component, and no other frequency content. Although we won’t dwell on it just now, notice that the frequency-domain representations in Figure 1–3 are themselves discrete.

To illustrate our time- and frequency-domain representations further, Figure 1–3(b) shows another discrete sinewave \(x_2(n)\), whose peak amplitude is 0.4, with a frequency of \(2f_0\). The discrete sample values of \(x_2(n)\) are expressed by the equation

\[
x_2(n) = 0.4 \cdot \sin(2\pi 2f_0 nt_s).
\]

(1–6)

When the two sinewaves, \(x_1(n)\) and \(x_2(n)\), are added to produce a new waveform \(x_{\text{sum}}(n)\), its time-domain equation is

\[
x_{\text{sum}}(n) = x_1(n) + x_2(n) = \sin(2\pi f_0 nt_s) + 0.4 \cdot \sin(2\pi 2f_0 nt_s),
\]

(1–7)

and its time- and frequency-domain representations are those given in Figure 1–3(c). We interpret the \(X_{\text{sum}}(m)\) frequency-domain depiction, the spectrum, in Figure 1–3(c) to indicate that \(x_{\text{sum}}(n)\) has a frequency component of \(f_0\) Hz and a reduced-amplitude frequency component of \(2f_0\) Hz.

Notice three things in Figure 1–3. First, time sequences use lowercase variable names like the “\(x\)” in \(x_1(n)\), and uppercase symbols for frequency-domain variables such as the “\(X\)” in \(X_1(m)\). The term \(X_1(m)\) is read as “the spectral sequence \(X\) sub one of \(m\).” Second, because the \(X_1(m)\) frequency-domain representation of the \(x_1(n)\) time sequence is itself a sequence (a list of numbers), we use the index “\(m\)” to keep track of individual elements in \(X_1(m)\). We can list frequency-domain sequences just as we did with the time sequence in Eq. (1–2). For example, \(X_{\text{sum}}(m)\) is listed as

\[
\begin{align*}
X_{\text{sum}}(0) &= 0 & \text{(1st } X_{\text{sum}}(m) \text{ value, index } m = 0) \\
X_{\text{sum}}(1) &= 1.0 & \text{(2nd } X_{\text{sum}}(m) \text{ value, index } m = 1) \\
X_{\text{sum}}(2) &= 0.4 & \text{(3rd } X_{\text{sum}}(m) \text{ value, index } m = 2) \\
X_{\text{sum}}(3) &= 0 & \text{(4th } X_{\text{sum}}(m) \text{ value, index } m = 3) \\
& \cdots & \cdots \\
\end{align*}
\]

and so on,

where the frequency index \(m\) is the integer sequence 0, 1, 2, 3, etc. Third, because the \(x_1(n) + x_2(n)\) sinewaves have a phase shift of zero degrees relative to each other, we didn’t really need to bother depicting this phase relationship in \(X_{\text{sum}}(m)\) in Figure 1–3(c). In general, however, phase relationships in frequency-domain sequences are important, and we’ll cover that subject in Chapters 3 and 5.
A key point to keep in mind here is that we now know three equivalent ways to describe a discrete-time waveform. Mathematically, we can use a time-domain equation like Eq. (1–6). We can also represent a time-domain waveform graphically as we did on the left side of Figure 1–3, and we can depict its corresponding, discrete, frequency-domain equivalent as that on the right side of Figure 1–3.

As it turns out, the discrete time-domain signals we’re concerned with are not only quantized in time; their amplitude values are also quantized. Because we represent all digital quantities with binary numbers, there’s a limit to the resolution, or granularity, that we have in representing the values of discrete numbers. Although signal amplitude quantization can be an important consideration—we cover that particular topic in Chapter 12—we won’t worry about it just now.

1.2 SIGNAL AMPLITUDE, MAGNITUDE, POWER

Let’s define two important terms that we’ll be using throughout this book: amplitude and magnitude. It’s not surprising that, to the layman, these terms are typically used interchangeably. When we check our thesaurus, we find that they are synonymous.† In engineering, however, they mean two different things, and we must keep that difference clear in our discussions. The amplitude of a variable is the measure of how far, and in what direction, that variable differs from zero. Thus, signal amplitudes can be either positive or negative. The time-domain sequences in Figure 1–3 presented the sample value amplitudes of three different waveforms. Notice how some of the individual discrete amplitude values were positive and others were negative.

![Figure 1–4](image)

Figure 1–4 Magnitude samples, \(|x_1(n)|\), of the time waveform in Figure 1–3(a).

† Of course, laymen are “other people.” To the engineer, the brain surgeon is the layman. To the brain surgeon, the engineer is the layman.
The magnitude of a variable, on the other hand, is the measure of how far, regardless of direction, its quantity differs from zero. So magnitudes are always positive values. Figure 1–4 illustrates how the magnitude of the $x_1(n)$ time sequence in Figure 1–3(a) is equal to the amplitude, but with the sign always being positive for the magnitude. We use the modulus symbol ($| |$) to represent the magnitude of $x_1(n)$. Occasionally, in the literature of digital signal processing, we’ll find the term magnitude referred to as the absolute value.

When we examine signals in the frequency domain, we’ll often be interested in the power level of those signals. The power of a signal is proportional to its amplitude (or magnitude) squared. If we assume that the proportionality constant is one, we can express the power of a sequence in the time or frequency domains as

$$x_{\text{pwr}}(n) = |x(n)|^2,$$ \hspace{1cm} (1–8)

or

$$X_{\text{pwr}}(m) = |X(m)|^2. \hspace{1cm} (1–8')$$

Very often we’ll want to know the difference in power levels of two signals in the frequency domain. Because of the squared nature of power, two signals with moderately different amplitudes will have a much larger difference in their relative powers. In Figure 1–3, for example, signal $x_1(n)$’s amplitude is 2.5 times the amplitude of signal $x_2(n)$, but its power level is 6.25 that of $x_2(n)$’s power level. This is illustrated in Figure 1–5 where both the amplitude and power of $X_{\text{sum}}(m)$ are shown.

Because of their squared nature, plots of power values often involve showing both very large and very small values on the same graph. To make these plots easier to generate and evaluate, practitioners usually employ the decibel scale as described in Appendix E.
1.3 SIGNAL PROCESSING OPERATIONAL SYMBOLS

We’ll be using block diagrams to graphically depict the way digital signal processing operations are implemented. Those block diagrams will comprise an assortment of fundamental processing symbols, the most common of which are illustrated and mathematically defined in Figure 1–6.

Figure 1–6(a) shows the addition, element for element, of two discrete sequences to provide a new sequence. If our sequence index \(n \) begins at 0, we say that the first output sequence value is equal to the sum of the first element of the \(b \) sequence and the first element of the \(c \) sequence, or \(a(0) = b(0) + c(0) \). Likewise, the second output sequence value is equal to the sum of the second

\[
\begin{align*}
\text{Addition:} & \\
\begin{array}{c}
\text{b}(n) \\
\text{c}(n)
\end{array} & \xrightarrow{+} & a(n) & \quad a(n) = b(n) + c(n)
\end{align*}
\]

\[
\begin{align*}
\text{Subtraction:} & \\
\begin{array}{c}
b(n) \\
\text{c}(n)
\end{array} & \xrightarrow{-} & a(n) & \quad a(n) = b(n) - c(n)
\end{align*}
\]

\[
\begin{align*}
\text{Summation:} & \\
\begin{array}{c}
b(n) \\
b(n+1) \\
b(n+2) \\
b(n+3)
\end{array} & \xrightarrow{+} & a(n) & \quad a(n) = \sum_{k=n}^{n+3} b(k) \\
& & & = b(n) + b(n+1) + b(n+2) + b(n+3)
\end{align*}
\]

\[
\begin{align*}
\text{Multiplication:} & \\
b(n) & \xrightarrow{\times} & a(n) & \quad a(n) = b(n)c(n) = b(n) \cdot c(n) \\
& & & \text{[Sometimes we use a "." to signify multiplication.]} \\
\end{align*}
\]

\[
\begin{align*}
\text{Unit delay:} & \\
b(n) & \xrightarrow{\text{Delay}} & a(n) & \quad a(n) = b(n-1)
\end{align*}
\]

\[
\begin{align*}
\text{Delay:} & \\
b(n) & \xrightarrow{z^{-1}} & a(n)
\end{align*}
\]

Figure 1–6 Terminology and symbols used in digital signal processing block diagrams.
element of the b sequence and the second element of the c sequence, or $a(1) = b(1) + c(1)$. Equation (1–7) is an example of adding two sequences. The subtraction process in Figure 1–6(b) generates an output sequence that’s the element-for-element difference of the two input sequences. There are times when we must calculate a sequence whose elements are the sum of more than two values. This operation, illustrated in Figure 1–6(c), is called summation and is very common in digital signal processing. Notice how the lower and upper limits of the summation index k in the expression in Figure 1–6(c) tell us exactly which elements of the b sequence to sum to obtain a given $a(n)$ value. Because we’ll encounter summation operations so often, let’s make sure we understand their notation. If we repeat the summation equation from Figure 1–6(c) here, we have

$$a(n) = \sum_{k=n}^{n+3} b(k). \quad (1–9)$$

This means that

- when $n = 0$, index k goes from 0 to 3, so $a(0) = b(0) + b(1) + b(2) + b(3)$
- when $n = 1$, index k goes from 1 to 4, so $a(1) = b(1) + b(2) + b(3) + b(4)$
- when $n = 2$, index k goes from 2 to 5, so $a(2) = b(2) + b(3) + b(4) + b(5)$
- when $n = 3$, index k goes from 3 to 6, so $a(3) = b(3) + b(4) + b(5) + b(6)$

and so on.

We’ll begin using summation operations in earnest when we discuss digital filters in Chapter 5.

The multiplication of two sequences is symbolized in Figure 1–6(d). Multiplication generates an output sequence that’s the element-for-element product of two input sequences: $a(0) = b(0)c(0)$, $a(1) = b(1)c(1)$, and so on. The last fundamental operation that we’ll be using is called the unit delay in Figure 1–6(e). While we don’t need to appreciate its importance at this point, we’ll merely state that the unit delay symbol signifies an operation where the output sequence $a(n)$ is equal to a delayed version of the $b(n)$ sequence. For example, $a(5) = b(4)$, $a(6) = b(5)$, $a(7) = b(6)$, etc. As we’ll see in Chapter 6, due to the mathematical techniques used to analyze digital filters, the unit delay is very often depicted using the term z^{-1}.

The symbols in Figure 1–6 remind us of two important aspects of digital signal processing. First, our processing operations are always performed on sequences of individual discrete values, and second, the elementary operations themselves are very simple. It’s interesting that, regardless of how complicated they appear to be, the vast majority of digital signal processing algorithms can be performed using combinations of these simple operations. If we think of a digital signal processing algorithm as a recipe, then the symbols in Figure 1–6 are the ingredients.
1.4 INTRODUCTION TO DISCRETE LINEAR TIME-ININVARIANT SYSTEMS

In keeping with tradition, we’ll introduce the subject of linear time-invariant (LTI) systems at this early point in our text. Although an appreciation for LTI systems is not essential in studying the next three chapters of this book, when we begin exploring digital filters, we’ll build on the strict definitions of linearity and time invariance. We need to recognize and understand the notions of linearity and time invariance not just because the vast majority of discrete systems used in practice are LTI systems, but because LTI systems are very accommodating when it comes to their analysis. That’s good news for us because we can use straightforward methods to predict the performance of any digital signal processing scheme as long as it’s linear and time invariant. Because linearity and time invariance are two important system characteristics having very special properties, we’ll discuss them now.

1.5 DISCRETE LINEAR SYSTEMS

The term linear defines a special class of systems where the output is the superposition, or sum, of the individual outputs had the individual inputs been applied separately to the system. For example, we can say that the application of an input \(x_1(n) \) to a system results in an output \(y_1(n) \). We symbolize this situation with the following expression:

\[
\begin{align*}
x_1(n) & \rightarrow \text{results in} \quad y_1(n). \\
\end{align*}
\]

(1–11)

Given a different input \(x_2(n) \), the system has a \(y_2(n) \) output as

\[
\begin{align*}
x_2(n) & \rightarrow \text{results in} \quad y_2(n). \\
\end{align*}
\]

(1–12)

For the system to be linear, when its input is the sum \(x_1(n) + x_2(n) \), its output must be the sum of the individual outputs so that

\[
\begin{align*}
x_1(n) + x_2(n) & \rightarrow \text{results in} \quad y_1(n) + y_2(n). \\
\end{align*}
\]

(1–13)

One way to paraphrase expression (1–13) is to state that a linear system’s output is the sum of the outputs of its parts. Also, part of this description of linearity is a proportionality characteristic. This means that if the inputs are scaled by constant factors \(c_1 \) and \(c_2 \), then the output sequence parts are also scaled by those factors as

\[
\begin{align*}
c_1x_1(n) + c_2x_2(n) & \rightarrow \text{results in} \quad c_1y_1(n) + c_2y_2(n). \\
\end{align*}
\]

(1–14)

In the literature, this proportionality attribute of linear systems in expression (1–14) is sometimes called the homogeneity property. With these thoughts in mind, then, let’s demonstrate the concept of system linearity.
1.5.1 Example of a Linear System

To illustrate system linearity, let’s say we have the discrete system shown in Figure 1–7(a) whose output is defined as

\[y(n) = -\frac{x(n)}{2}, \quad (1–15) \]

that is, the output sequence is equal to the negative of the input sequence with the amplitude reduced by a factor of two. If we apply an \(x_1(n) \) input sequence representing a 1 Hz sinewave sampled at a rate of 32 samples per cycle, we’ll have a \(y_1(n) \) output as shown in the center of Figure 1–7(b). The frequency-domain spectral amplitude of the \(y_1(n) \) output is the plot on the

![Figure 1-7](image)

Figure 1-7 Linear system input-to-output relationships: (a) system block diagram where \(y(n) = -x(n)/2 \); (b) system input and output with a 1 Hz sinewave applied; (c) with a 3 Hz sinewave applied; (d) with the sum of 1 Hz and 3 Hz sinewaves applied.
right side of Figure 1–7(b), indicating that the output comprises a single tone of peak amplitude equal to –0.5 whose frequency is 1 Hz. Next, applying an \(x_2(n) \) input sequence representing a 3 Hz sinewave, the system provides a \(y_2(n) \) output sequence, as shown in the center of Figure 1–7(c). The spectrum of the \(y_2(n) \) output, \(Y_2(m) \), confirming a single 3 Hz sinewave output is shown on the right side of Figure 1–7(c). Finally—here’s where the linearity comes in—if we apply an \(x_3(n) \) input sequence that’s the sum of a 1 Hz sinewave and a 3 Hz sinewave, the \(y_3(n) \) output is as shown in the center of Figure 1–7(d). Notice how \(y_3(n) \) is the sample-for-sample sum of \(y_1(n) \) and \(y_2(n) \). Figure 1–7(d) also shows that the output spectrum \(Y_3(m) \) is the sum of \(Y_1(m) \) and \(Y_2(m) \). That’s linearity.

1.5.2 Example of a Nonlinear System

It’s easy to demonstrate how a nonlinear system yields an output that is not equal to the sum of \(y_1(n) \) and \(y_2(n) \) when its input is \(x_1(n) + x_2(n) \). A simple example of a nonlinear discrete system is that in Figure 1–8(a) where the output is the square of the input described by

\[
y(n) = [x(n)]^2. \tag{1–16}
\]

We’ll use a well-known trigonometric identity and a little algebra to predict the output of this nonlinear system when the input comprises simple sinewaves. Following the form of Eq. (1–3), let’s describe a sinusoidal sequence, whose frequency \(f_o = 1 \text{ Hz} \), by

\[
x_1(n) = \sin(2\pi f_o n_t) = \sin(2\pi \cdot 1 \cdot n_t). \tag{1–17}
\]

Equation (1–17) describes the \(x_1(n) \) sequence on the left side of Figure 1–8(b). Given this \(x_1(n) \) input sequence, the \(y_1(n) \) output of the nonlinear system is the square of a 1 Hz sinewave, or

\[
y_1(n) = [x_1(n)]^2 = \sin(2\pi \cdot 1 \cdot n_t) \cdot \sin(2\pi \cdot 1 \cdot n_t). \tag{1–18}
\]

We can simplify our expression for \(y_1(n) \) in Eq. (1–18) by using the following trigonometric identity:

\[
\sin(\alpha) \cdot \sin(\beta) = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2}. \tag{1–19}
\]

Using Eq. (1–19), we can express \(y_1(n) \) as

\[
y_1(n) = \frac{\cos(2\pi \cdot 1 \cdot n_t - 2\pi \cdot 1 \cdot n_t)}{2} - \frac{\cos(2\pi \cdot 1 \cdot n_t + 2\pi \cdot 1 \cdot n_t)}{2} \tag{1–20}
\]

\[
= \frac{\cos(0)}{2} - \frac{\cos(4\pi \cdot 1 \cdot n_t)}{2} = \frac{1}{2} - \frac{\cos(2\pi \cdot 2 \cdot n_t)}{2},
\]
which is shown as the all-positive sequence in the center of Figure 1–8(b). Because Eq. (1–19) results in a frequency sum \((\alpha + \beta)\) and frequency difference \((\alpha - \beta)\) effect when multiplying two sinusoids, the \(y_1(n)\) output sequence will be a cosine wave of 2 Hz and a peak amplitude of –0.5, added to a constant value of 1/2. The constant value of 1/2 in Eq. (1–20) is interpreted as a zero Hz frequency component, as shown in the \(Y_1(m)\) spectrum in Figure 1–8(b).

We could go through the same algebraic exercise to determine that when a 3 Hz sinewave \(x_2(n)\) sequence is applied to this nonlinear system, the output \(y_2(n)\) would contain a zero Hz component and a 6 Hz component, as shown in Figure 1–8(c).

System nonlinearity is evident if we apply an \(x_3(n)\) sequence comprising the sum of a 1 Hz and a 3 Hz sinewave as shown in Figure 1–8(d). We can
predict the frequency content of the \(y_3(n) \) output sequence by using the algebraic relationship

\[
(a+b)^2 = a^2+2ab+b^2, \tag{1–21}
\]

where \(a \) and \(b \) represent the 1 Hz and 3 Hz sinewaves, respectively. From Eq. (1–19), the \(a^2 \) term in Eq. (1–21) generates the zero Hz and 2 Hz output sinu-
soids in Figure 1–8(b). Likewise, the \(b^2 \) term produces in \(y_3(n) \) another zero Hz and the 6 Hz sinusoid in Figure 1–8(c). However, the \(2ab \) term yields additional 2 Hz and 4 Hz sinusoids in \(y_3(n) \). We can show this algebraically by using Eq. (1–19) and expressing the \(2ab \) term in Eq. (1–21) as

\[
2ab = 2 \cdot \sin(2\pi \cdot 1 \cdot nt_s) \cdot \sin(2\pi \cdot 3 \cdot nt_s)
\]

\[
= \frac{2 \cos(2\pi \cdot 1 \cdot nt_s - 2\pi \cdot 3 \cdot nt_s)}{2} - \frac{2 \cos(2\pi \cdot 1 \cdot nt_s + 2\pi \cdot 3 \cdot nt_s)}{2} \tag{1–22}
\]

\[
= \cos(2\pi \cdot 2 \cdot nt_s) - \cos(2\pi \cdot 4 \cdot nt_s). \tag{†}
\]

Equation (1–22) tells us that two additional sinusoidal components will be present in \(y_3(n) \) because of the system’s nonlinearity, a 2 Hz cosine wave whose amplitude is +1 and a 4 Hz cosine wave having an amplitude of –1. These spectral components are illustrated in \(Y_3(m) \) on the right side of Figure 1–8(d).

Notice that when the sum of the two sinewaves is applied to the nonlinear system, the output contained sinusoids, Eq. (1–22), that were not present in either of the outputs when the individual sinewaves alone were applied. Those extra sinusoids were generated by an interaction of the two input sinusoids due to the squaring operation. That’s nonlinearity; expression (1–13) was not satisfied. (Electrical engineers recognize this effect of internally generated sinusoids as intermodulation distortion.) Although nonlinear systems are usually difficult to analyze, they are occasionally used in practice. References [2], [3], and [4], for example, describe their application in nonlinear digital filters. Again, expressions (1–13) and (1–14) state that a linear system’s output resulting from a sum of individual inputs is the superposition (sum) of the individual outputs. They also stipulate that the output sequence \(y_1(n) \) depends only on \(x_1(n) \) combined with the system characteristics, and not on the other input \(x_2(n) \); i.e., there’s no interaction between inputs \(x_1(n) \) and \(x_2(n) \) at the output of a linear system.

\[†\] The first term in Eq. (1–22) is \(\cos(2\pi \cdot nt_s - 6\pi \cdot nt_s) = \cos(-4\pi \cdot nt_s) = \cos(-2\pi \cdot 2 \cdot nt_s) \). However, because the cosine function is even, \(\cos(-\alpha) = \cos(\alpha) \), we can express that first term as \(\cos(2\pi \cdot 2 \cdot nt_s) \).
A time-invariant system is one where a time delay (or shift) in the input sequence causes an equivalent time delay in the system’s output sequence. Keeping in mind that \(n \) is just an indexing variable we use to keep track of our input and output samples, let’s say a system provides an output \(y(n) \) given an input of \(x(n) \), or

\[
x(n) \xrightarrow{\text{results in}} y(n).
\]

(1–23)

For a system to be time invariant, with a shifted version of the original \(x(n) \) input applied, \(x'(n) \), the following applies:

\[
x'(n) = x(n + k) \xrightarrow{\text{results in}} y'(n) = y(n + k),
\]

(1–24)

where \(k \) is some integer representing \(k \) sample period time delays. For a system to be time invariant, Eq. (1–24) must hold true for any integer value of \(k \) and any input sequence.

1.6.1 Example of a Time-Invariant System

Let’s look at a simple example of time invariance illustrated in Figure 1–9. Assume that our initial \(x(n) \) input is a unity-amplitude 1 Hz sinewave sequence with a \(y(n) \) output, as shown in Figure 1–9(b). Consider a different input sequence \(x'(n) \), where

\[
x'(n) = x(n-4).
\]

(1–25)

Equation (1–25) tells us that the input sequence \(x'(n) \) is equal to sequence \(x(n) \) shifted to the right by \(k = -4 \) samples. That is, \(x'(4) = x(0), x'(5) = x(1), x'(6) = x(2) \), and so on as shown in Figure 1–9(c). The discrete system is time invariant because the \(y'(n) \) output sequence is equal to the \(y(n) \) sequence shifted to the right by four samples, or \(y'(n) = y(n-4) \). We can see that \(y'(4) = y(0), y'(5) = y(1), y'(6) = y(2) \), and so on as shown in Figure 1–9(c). For time-invariant systems, the time shifts in \(x'(n) \) and \(y'(n) \) are equal. Take careful notice of the minus sign in Eq. (1–25). In later chapters, that is the notation we’ll use to algebraically describe a time-delayed discrete sequence.

Some authors succumb to the urge to define a time-invariant system as one whose parameters do not change with time. That definition is incomplete and can get us in trouble if we’re not careful. We’ll just stick with the formal definition that a time-invariant system is one where a time shift in an input sequence results in an equal time shift in the output sequence. By the way, time-invariant systems in the literature are often called *shift-invariant* systems.†

† An example of a discrete process that’s not time invariant is the downsampling, or decimation, process described in Chapter 10.
1.7 THE COMMUTATIVE PROPERTY OF LINEAR TIME-INVARIANT SYSTEMS

Although we don’t substantiate this fact until we reach Section 6.11, it’s not too early to realize that LTI systems have a useful commutative property by which their sequential order can be rearranged with no change in their final output. This situation is shown in Figure 1–10 where two different LTI systems are configured in series. Swapping the order of two cascaded systems does not alter the final output. Although the intermediate data sequences $f(n)$ and $g(n)$ will usually not be equal, the two pairs of LTI systems will have iden-
tical $y(n)$ output sequences. This commutative characteristic comes in handy for designers of digital filters, as we’ll see in Chapters 5 and 6.

1.8 ANALYZING LINEAR TIME-INVARIANT SYSTEMS

As previously stated, LTI systems can be analyzed to predict their performance. Specifically, if we know the unit impulse response of an LTI system, we can calculate everything there is to know about the system; that is, the system’s unit impulse response completely characterizes the system. By “unit impulse response” we mean the system’s time-domain output sequence when the input is a single unity-valued sample (unit impulse) preceded and followed by zero-valued samples as shown in Figure 1–11(b).

Knowing the (unit) impulse response of an LTI system, we can determine the system’s output sequence for any input sequence because the output is equal to the convolution of the input sequence and the system’s impulse response. Moreover, given an LTI system’s time-domain impulse response, we can find the system’s frequency response by taking the Fourier transform in the form of a discrete Fourier transform of that impulse response[5]. The concepts in the two previous sentences are among the most important principles in all of digital signal processing!

Don’t be alarmed if you’re not exactly sure what is meant by convolution, frequency response, or the discrete Fourier transform. We’ll introduce these subjects and define them slowly and carefully as we need them in later chapters. The point to keep in mind here is that LTI systems can be designed and analyzed using a number of straightforward and powerful analysis techniques. These techniques will become tools that we’ll add to

![Figure 1-11](image_url)
our signal processing toolboxes as we journey through the subject of digital signal processing.

In the testing (analyzing) of continuous linear systems, engineers often use a narrow-in-time impulsive signal as an input signal to their systems. Mechanical engineers give their systems a little whack with a hammer, and electrical engineers working with analog-voltage systems generate a very narrow voltage spike as an impulsive input. Audio engineers, who need an impulsive acoustic test signal, sometimes generate an audio impulse by firing a starter pistol.

In the world of DSP, an impulse sequence called a *unit impulse* takes the form

\[x(n) = \ldots 0, 0, 0, 0, A, 0, 0, 0, 0, \ldots \]

(1–26)

The value \(A \) is often set equal to one. The leading sequence of zero-valued samples, before the \(A \)-valued sample, must be a bit longer than the length of the transient response of the system under test in order to initialize the system to its zero state. The trailing sequence of zero-valued samples, following the \(A \)-valued sample, must be a bit longer than the transient response of the system under test in order to capture the system’s entire \(y(n) \) impulse response output sequence.

Let’s further explore this notion of impulse response testing to determine the frequency response of a discrete system (and take an opportunity to start using the operational symbols introduced in Section 1.3). Consider the block diagram of a 4-point moving averager shown in Figure 1–12(a). As the \(x(n) \) input samples march their way through the system, at each time index \(n \) four successive input samples are averaged to compute a single \(y(n) \) output. As we’ll learn in subsequent chapters, a *moving averager* behaves like a digital lowpass filter. However, we can quickly illustrate that fact now.

If we apply an impulse input sequence to the system, we’ll obtain its \(y(n) \) impulse response output shown in Figure 1–12(b). The \(y(n) \) output is computed using the following difference equation:

\[
y(n) = \frac{1}{4} [x(n) + x(n-1) + x(n-2) + x(n-3)] = \frac{1}{4} \sum_{k=n-3}^{n} x(k).
\]

(1–27)

If we then perform a discrete Fourier transform (a process we cover in much detail in Chapter 3) on \(y(n) \), we obtain the \(Y(m) \) frequency-domain information, allowing us to plot the frequency magnitude response of the 4-point moving averager as shown in Figure 1–12(c). So we see that a moving averager indeed has the characteristic of a lowpass filter. That is, the averager attenuates (reduces the amplitude of) high-frequency signal content applied to its input.
OK, this concludes our brief introduction to discrete sequences and systems. In later chapters we’ll learn the details of discrete Fourier transforms, discrete system impulse responses, and digital filters.

REFERENCES

1.1 This problem gives us practice in thinking about sequences of numbers. For centuries mathematicians have developed clever ways of computing \(\pi \). In 1671 the Scottish mathematician James Gregory proposed the following very simple series for calculating \(\pi \):

\[
\pi \approx 4 \cdot \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} \ldots \right).
\]

Thinking of the terms inside the parentheses as a sequence indexed by the variable \(n \), where \(n = 0, 1, 2, 3, \ldots, 100 \), write Gregory’s algorithm in the form

\[
\pi \approx 4 \cdot \sum_{n=0}^{100} \left(\ldots\right) \cdot ?
\]

replacing the “?” characters with expressions in terms of index \(n \).

1.2 One of the ways to obtain discrete sequences, for follow-on processing, is to digitize a continuous (analog) signal with an analog-to-digital (A/D) converter. A 6-bit A/D converter’s output words (6-bit binary words) can only represent \(2^6 = 64 \) different numbers. (We cover this digitization, sampling, and A/D converters in detail in upcoming chapters.) Thus we say the A/D converter’s “digital” output can only represent a finite number of amplitude values. Can you think of a continuous time-domain electrical signal that only has a finite number of amplitude values? If so, draw a graph of that continuous-time signal.

1.3 On the Internet, the author once encountered the following line of C-language code

\[
\text{PI} = 2*\text{asin}(1.0);
\]

whose purpose was to define the constant \(\pi \). In standard mathematical notation, that line of code can be described by

\[
\pi = 2 \cdot \sin^{-1}(1).
\]

Under what assumption does the above expression correctly define the constant \(\pi \)?
1.4 Many times in the literature of signal processing you will encounter the identity
\[x^0 = 1. \]
That is, \(x \) raised to the zero power is equal to one. Using the Laws of Exponents, prove the above expression to be true.

1.5 Recall that for discrete sequences the \(t_s \) sample period (the time period between samples) is the reciprocal of the sample frequency \(f_s \). Write the equations, as we did in the text’s Eq. (1–3), describing time-domain sequences for unity-amplitude cosine waves whose \(f_o \) frequencies are

(a) \(f_o = f_s/2 \), one-half the sample rate,
(b) \(f_o = f_s/4 \), one-fourth the sample rate,
(c) \(f_o = 0 \) (zero) Hz.

1.6 Draw the three time-domain cosine wave sequences, where a sample value is represented by a dot, described in Problem 1.5. The correct solution to Part (a) of this problem is a useful sequence used to convert some lowpass digital filters into highpass filters. (Chapter 5 discusses that topic.) The correct solution to Part (b) of this problem is an important discrete sequence used for frequency translation (both for signal down-conversion and up-conversion) in modern-day wireless communications systems. The correct solution to Part (c) of this problem should convince us that it’s perfectly valid to describe a cosine sequence whose frequency is zero Hz.

1.7 Draw the three time-domain sequences of unity-amplitude sinewaves (not cosine waves) whose frequencies are

(a) \(f_o = f_s/2 \), one-half the sample rate,
(b) \(f_o = f_s/4 \), one-fourth the sample rate,
(c) \(f_o = 0 \) (zero) Hz.

The correct solutions to Parts (a) and (c) show us that the two frequencies, 0 Hz and \(f_s/2 \) Hz, are special frequencies in the world of discrete signal processing. What is special about the sinewave sequences obtained from the above Parts (a) and (c)?

1.8 Consider the infinite-length time-domain sequence \(x(n) \) in Figure P1–8. Draw the first eight samples of a shifted time sequence defined by
\[x_{\text{shift}}(n) = x(n+1). \]
Assume, during your reading of the literature of DSP, you encounter the process shown in Figure P1–9. The $x(n)$ input sequence, whose f_s sample rate is 2500 Hz, is multiplied by a sinusoidal $m(n)$ sequence to produce the $y(n)$ output sequence. What is the frequency, measured in Hz, of the sinusoidal $m(n)$ sequence?

$$m(n) = \sin(0.8\pi n)$$

Figure P1–9

There is a process in DSP called an “N-point running sum” (a kind of digital lowpass filter, actually) that is described by the following equation:

$$y(n) = \sum_{p=0}^{N-1} x(n - p).$$

Write out, giving the indices of all the $x()$ terms, the algebraic expression that describes the computations needed to compute $y(9)$ when $N=6$.

A 5-point moving averager can be described by the following difference equation:

$$y(n) = \frac{1}{5}[x(n) + x(n-1) + x(n-2) + x(n-3) + x(n-4)] = \frac{1}{5} \sum_{k=n-4}^{n} x(k). \quad (P1–1)$$

The averager’s signal-flow block diagram is shown in Figure P1–11, where the $x(n)$ input samples flow through the averager from left to right.
Equation (P1–1) is equivalent to

\[y(n) = \frac{x(n)}{5} + \frac{x(n-1)}{5} + \frac{x(n-2)}{5} + \frac{x(n-3)}{5} + \frac{x(n-4)}{5} \]

\[= \sum_{k=n-4}^{n} \frac{x(k)}{5}. \]

(a) Draw the block diagram of the discrete system described by Eq. (P1–2).

(b) The moving average processes described by Eqs. (P1–1) and (P1–2) have identical impulse responses. Draw that impulse response.

(c) If you had to implement (using programmable hardware or assembling discrete hardware components) either Eq. (P1–1) or Eq. (P1–2), which would you choose? Explain why.

1.12 In this book we will look at many two-dimensional drawings showing the value of one variable \(y\) plotted as a function of another variable \(x\). Stated in different words, we’ll graphically display what are the values of a \(y\) axis variable for various values of an \(x\) axis variable. For example, Figure P1–12(a) plots the weight of a male child as a function of the child’s age. The dimension of the \(x\) axis is years.

Figure P1–11

Figure P1–12
and the dimension of the y axis is kilograms. What are the dimensions of the x and y axes of the familiar two-dimensional plot given in Figure P1–12(b)?

1.13 Let’s say you are writing software code to generate an $x(n)$ test sequence composed of the sum of two equal-amplitude discrete cosine waves, as

$$x(n) = \cos(2\pi f_o n t_s + \phi) + \cos(2\pi f_o n t_s)$$

where t_s is the time between your $x(n)$ samples, and ϕ is a constant phase shift measured in radians. An example $x(n)$ when $\phi = \pi/2$ is shown in Figure P1–13 where the $x(n)$ sequence, represented by the circular dots, is a single sinusoid whose frequency is f_o Hz.

![Figure P1–13](image)

Using the trigonometric identity $\cos(\alpha+\beta) + \cos(\alpha-\beta) = 2\cos(\alpha)\cos(\beta)$, derive an equation for $x(n)$ that is of the form

$$x(n) = 2\cos(\alpha)\cos(\beta)$$

where variables α and β are in terms of $2\pi f_o n t_s$ and ϕ.

1.14 In your engineering education you’ll often read in some mathematical derivation, or hear someone say, “For small α, $\sin(\alpha) = \alpha$.” (In fact, you’ll encounter that statement a few times in this book.) Draw two curves defined by $x = \alpha$, and $y = \sin(\alpha)$ over the range of $\alpha = -\pi/2$ to $\alpha = \pi/2$, and discuss why that venerable “For small α, $\sin(\alpha) = \alpha$” statement is valid.

1.15 Considering two continuous (analog) sinusoids, having initial phase angles of α radians at time $t = 0$, replace the following “?” characters with the correct angle arguments:

(a) $\sin(2\pi f_o t + \alpha) = \cos(?)$.
(b) $\cos(2\pi f_o t + \alpha) = \sin(?)$.
National Instruments Corp. manufactures an A/D converter, Model #NI USB-5133, that is capable of sampling an analog signal at an f_s sample rate of 100 megasamples per second (100 MHz). The A/D converter has internal memory that can store up to 4×10^6 discrete samples. What is the maximum number of cycles of a 25 MHz analog sinewave that can be stored in the A/D converter’s memory? Show your work.

In the first part of the text’s Section 1.5 we stated that for a process (or system) to be linear it must satisfy a scaling property that we called the proportionality characteristic in the text’s Eq. (1–14). Determine if the following processes have that proportionality characteristic:

(a) $y_a(n) = x(n-1)/6$,
(b) $y_b(n) = 3 + x(n)$,
(c) $y_c(n) = \sin[x(n)]$.

This problem is not “busy work.” Knowing if a process (or system) is linear tells us what signal processing principles, and algorithms, can be applied in the analysis of that process (or system).

There is an often-used process in DSP called decimation, and in that process we retain some samples of an $x(n)$ input sequence and discard other $x(n)$ samples. Decimation by a factor of two can be described algebraically by

$$y(m) = x(2n) \quad \text{(P1–3)}$$

where index $m=0,1,2,3,\ldots$. The decimation defined by Eq. (P1–3) means that $y(m)$ is equal to alternate samples (every other sample) of $x(n)$. For example:

$$y(0) = x(0), \ y(1) = x(2), \ y(2) = x(4), \ y(3) = x(6), \ldots$$

and so on. Here is the question: Is that decimation process time invariant? Illustrate your answer by decimating a simple sinusoidal $x(n)$ time-domain sequence by a factor of two to obtain $y(m)$. Next, create a shifted-by-one-sample version of $x(n)$ and call it $x_{\text{shift}}(n)$. That new sequence is defined by

$$x_{\text{shift}}(n) = x(n+1). \quad \text{(P1–4)}$$

Finally, decimate $x_{\text{shift}}(n)$ according to Eq. (P1–3) to obtain $y_{\text{shift}}(m)$. The decimation process is time invariant if $y_{\text{shift}}(m)$ is equal to a time-shifted version of $y(m)$. That is, decimation is time invariant if

$$y_{\text{shift}}(m) = y(m+1).$$

In Section 1.7 of the text we discussed the commutative property of linear time-invariant systems. The two networks in Figure P1–19 exhibit that prop-
1.20 Here we investigate several simple discrete processes that turn out to be useful in a number of DSP applications. Draw the block diagrams, showing their inputs as $x(n)$, of the processes described by the following difference equations:

- **(a)** a 4th-order comb filter: $y_c(n) = x(n) - x(n-4)$,
- **(b)** an integrator: $y_I(n) = x(n) + y_I(n-1)$,
- **(c)** a leaky integrator: $y_{LI}(n) = Ax(n) + (1-A)y_{LI}(n-1)$ [the scalar value A is a real-valued constant in the range $0 < A < 1$],
- **(d)** a differentiator: $y_D(n) = 0.5x(n) - 0.5x(n-2)$.

1.21 Draw the unit impulse responses (the output sequences when the input is a unit sample impulse applied at time $n=0$) of the four processes listed in Problem 1.20. Let $A = 0.5$ for the leaky integrator. Assume that all sample values within the systems are zero at time $n = 0$.

1.22 DSP engineers involved in building control systems often need to know what is the step response of a discrete system. The step response, $y_{step}(n)$, can be defined in two equivalent ways. One way is to say that $y_{step}(n)$ is a system’s response to an input sequence of all unity-valued samples. A second definition is that $y_{step}(n)$ is the cumulative sum (the accumulation, discrete integration) of that system’s unit impulse response $y_{imp}(n)$. Algebraically, this second definition of step response is expressed as

$$y_{step}(n) = \sum_{k=-\infty}^{n} y_{imp}(k).$$

In words, the above $y_{step}(n)$ expression tells us: “The step response at time index n is equal to the sum of all the previous impulse response samples up to and including $y_{imp}(n)$.” With that said, what are the step responses of the
four processes listed in Problem 1.20? (Let $A = 0.5$ for the leaky integrator.) Assume that all sample values within the system are zero at time $n=0$.

1.23 Thinking about the spectra of signals, the ideal continuous (analog) squarewave $s(t)$ in Figure P1–23, whose fundamental frequency is f_0 Hz, is equal to the sum of an f_0 Hz sinewave and all sinewaves whose frequencies are odd multiples of f_0 Hz. We call $s(t)$ “ideal” because we assume the amplitude transitions from plus and minus A occur instantaneously (zero seconds!). Continuous Fourier analysis of the $s(t)$ squarewave allows us to describe this sum of frequencies as the following infinite sum:

$$s(t) = \frac{4A}{\pi} \left[\sin(2\pi f_0 t) + \frac{\sin(6\pi f_0 t)}{3} + \frac{\sin(10\pi f_0 t)}{5} + \frac{\sin(14\pi f_0 t)}{7} + \ldots \right].$$

![Figure P1–23](image)

Using a summation symbol, we can express squarewave $s(t)$ algebraically as

$$s(t) = \frac{4A}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2\pi nf_0 t)}{n},$$

for $n = odd$ integers only, showing $s(t)$ to be an infinite sum of sinusoids.

(a) Imagine applying $s(t)$ to a filter that completely removes $s(t)$’s lowest-frequency spectral component. Draw the time-domain waveform at the output of such a filter.

(b) Assume $s(t)$ represents a voltage whose f_0 fundamental frequency is 1 Hz, and we wish to amplify that voltage to peak amplitudes of $\pm 2A$. Over what frequency range must an amplifier operate (that is, what must be the amplifier’s passband width) in order to exactly double the ideal 1 Hz squarewave’s peak-peak amplitude?

1.24 This interesting problem illustrates an illegal mathematical operation that we must learn to avoid in our future algebraic activities. The following claims to
be a mathematical proof that $4 = 5$. Which of the following steps is illegal? Explain why.

Proof that $4 = 5$:

Step 1: $16 - 36 = 25 - 45$
Step 2: $4^2 - 9 \cdot 4 = 5^2 - 9 \cdot 5$
Step 3: $4^2 - 9 \cdot 4 + \frac{81}{4} = 5^2 - 9 \cdot 5 + \frac{81}{4}$
Step 4: $(4 - \frac{9}{2})^2 = (5 - \frac{9}{2})^2$
Step 5: $4 - \frac{9}{2} = 5 - \frac{9}{2}$
Step 6: $4 = 5$
This page intentionally left blank
Index

A

Absolute value, 9. See also Magnitude.
A/D converters, quantization noise
clipping, 706
crest factor, 640
dithering, 706–709
effective bits, 641
fixed-point binary word length, effects of, 634–642
oversampling, 704–706
reducing, 704–709
SNR (signal-to-noise ratio), 637–642, 711–714
triangular dither, 708
A/D converters, testing techniques
A/D dynamic range, estimating, 714–715
histogram testing, 711
missing codes, detecting, 715–716
quantization noise, estimating with the FFT, 709–714
SFDR (spurious free dynamic range), 714–715
SINAD (signal-to-noise-and-distortion), 711–714
SNR (signal-to-noise ratio), 711–714
Adaptive filters, 184
Addition
block diagram symbol, 10
complex numbers, 850
Additive white noise (AWN), 380
AGC (automatic gain control), 783–784
Aliasing
definition, 36
frequency-domain ambiguity, 33–38
in IIR filters, 304–305
All-ones rectangular functions
DFT for, 115–118
Dirichlet kernel, 115–118, 120
Allpass filters, definition, 893
AM demodulation
filtering narrowband noise, 792–797
Hilbert transforms, 484–485
Amplitude
definition, 8
loss. See Attenuation.
Amplitude response, DFT
complex input, 73
real cosine input, 83–84
Analog, definition, 2
Analog filters
approximating, 302
vs. digital, 169
Analog signal processing, 2
Analog-to-digital (A/D) converters.
See A/D converters.
Analytic signals
bandpass quadrature, 455
definition, 483
generation methods, comparing, 497–498
half-band FIR filters, 497
time-domain, generating, 495–497
931
Anti-aliasing filters, 42, 555–558
Anti-imaging filters, 555–558
Arctangent
 approximation, 756–758
 vector rotation. See Vector rotation with arctangents.
Argand, Jean Robert, 848
Argand diagrams of complex numbers, 848
Argand plane, 440–441
Attenuation
 CIC filters, improving, 557–558
 definition, 894
Automatic gain control (AGC), 783–784
Average, statistical measures of noise, 868–870
Average power in electrical circuits, calculating, 874–875
Averaging signals. See Signal averaging.
AWN (additive white noise), 380

B
Band reject filters, 894
Band-limited signals, 38
Bandpass design, for FIR filters, 201–203
Bandpass filters
 comb filters, 400
 definition, 895
 from half-band FIR filters, 497
 multisection complex FSFs, 398–403
Bandpass sampling
 1st-order sampling, 46
 definition, 43
 optimum sampling frequency, 46
 positioning sampled spectra, 48
 real signals, 46
 sampling translation, 44
 SNR (signal-to-noise) ratio, 48–49
 spectral inversion, 46–47
 spectral replication, 44–45
Bandpass signals
 in the frequency-domain, 454–455
 interpolating, 728–730
Bandwidth, definition, 895
Bartlett windows. See Triangular windows.
Base 8 (octal) numbers, 624–625
Base 16 (hexadecimal) numbers, 625
Bell, Alexander Graham, 885
Bels, definition, 885
Bessel functions
 definition, 895
 Bessel-derived filters, ripples, 901
 Bessel’s correction, 870–871
Bias
 DC, sources and removal, 761
 in estimates, 870–871
 fixed-point binary formats, 628
 in signal variance, computing, 797–799
Bilateral Laplace transforms, 258
Bilinear transform method, designing IIR filters
 analytical methods, 302
 definition, 257
 example, 326–330
 frequency warping, 319, 321–325, 328–330
 mapping complex variables, 320–324
 process description, 324–326
Bin centers, calculating absolute frequency, 139–140
Binary points, 629
Binary shift multiplication/division, polynomial evaluation, 773–774
Biquad filters, 299
Bit normalization, 653
Bit reversals
 avoiding, 158
 fast Fourier transform input/output data index, 149–151
Bits, definition, 623
Blackman windows
 in FIR filter design, 195–201
 spectral leakage reduction, 686
Blackman windows (exact), 686, 733
Blackman-Harris windows, 686, 733
Block averaging, SNR (signal-to-noise ratio), 770
Block convolution. See Fast convolution.
Block diagrams
 filter structure, 172–174
 quadrature sampling, 459–462
 symbols, 10–11
 uses for, 10
Block floating point, 656–657
Boxcar windows. See Rectangular windows.
Butterfly patterns in FFTs
 description, 145–149
 optimized, 156
 radix-2 structures, 151–154
 single butterfly structures, 154–158
 wingless, 156
Butterworth function
 definition, 895
 derived filters, ripples, 901

C
Cardano, Girolamo, 439
Carrier frequency, 44
Cartesian form, quadrature signals, 442
Cascaded filters, 295–299, 895
Cascaded integrators, 563
Cascaded-comb subfilters, 412–413
Cascade/parallel filter combinations, 295–297
Cauer filters, 896
Causal systems, 258
Center frequency, definition, 895
Central Limit Theory, 723
Central-difference differentiators, 363–366
CFT (continuous Fourier transform), 59, 98–102
Chebyshev function, definition, 895
Chebyshev windows, 197–201, 927–930
Chebyshev-derived filters, ripples, 900
CIC (cascaded integrator-comb) filters
 cascaded integrators, 563
 comb section, 553
 compensation FIR filters, 563–566
 definition, 895
 implementation issues, 558–563
 nonrecursive, 765–768
 recursive running sum filters, 551–552
 structures, 553–557
 substructure sharing, 765–770
 transposed structures, 765–770
 two’s complement overflow, 559–563
Circular buffers, IFIR filters, 388–389
Clipping A/D converter quantization
 noise, 706
Coefficients. See Filter coefficients.
Coherent sampling, 711
Coherent signal averaging. See Signal
 averaging, coherent.
Comb filters. See also Differentiators.
 alternate FSF structures, 416–418
 bandpass FIR filtering, 400
 cascaded-comb subfilters, 412–413
 with complex resonators, 392–398
 frequency response, 903–904
 second-order comb filters, 412–413
Comb section. CIC filters, 553
Commutative property, LTI, 18–19
Commutator model, polyphase filters, 524
Compensation FIR filters, CIC filters, 563–566
Complex conjugate, DFT symmetry, 73
Complex down-conversion
 decimation, in frequency translation, 782
 quadrature signals, 455, 456–462
Complex exponentials, quadrature
 signals, 447
Complex frequency, Laplace variable, 258
Complex frequency response, filters, 277
Complex mixing, quadrature signals, 455
Complex multipliers, down-converting
 quadrature signals, 458
Complex number notation, quadrature
 signals, 440–446
Complex numbers. See also Quadrature
 signals.
 Argand diagrams, 848
 arithmetic of, 848–858
 definition, 439
 as a function of time, 446–450
 graphical representation of, 847–848
 rectangular form, definition, 848–850
 rectangular form, vs. polar, 856–857
 roots of, 853–854
 trigonometric form, 848–850
Complex phasors, quadrature signals,
 446–450
Complex plane, quadrature signals,
 440–441, 446
Complex resonators
 with comb filters, 392–398
 FSF (frequency sampling filters), 394–398
Complex signals. See Quadrature signals.
 Conditional stability, Laplace transform,
 268
Conjugation, complex numbers, 851–852
Constant-coefficient transversal FIR filters, 184
Continuous Fourier transform (CFT), 59, 98–102
Continuous lowpass filters, 41
Continuous signal processing
definition, 2
frequency in, 5–6
Continuous signals, definition, 2
Continuous systems, time representation, 5
Continuous time-domain, Laplace transform, 258–259
Converting analog to digital. See A/D converters.
Convolution. See also FIR (finite impulse response) filters, convolution.
fast, 716–722
LTI, 19
overlap-and-add, 720–722
overlap-and-save, 718–720
Cooley, J., 135
CORDIC (COordinate Rotation Digital Computer), 756–758
Coupled quadrature oscillator, 787
Coupled-form IIR filter, 834–836
Crest factor, 640
Critical Nyquist, 37
cutoff frequencies
definition, 896
designing FIR filters, 186

D

Data formats
base systems, 624
definition, 623
place value system, 624
Data formats, binary numbers. See also
Fixed-point binary formats;
Floating-point binary formats.
1.15 fixed-point, 630–632
block floating point, 656–657
converting to hexadecimal, 625
converting to octal, 624–625
definition, 623
dynamic range, 632–634
precision, 632–634
representing negative values, 625–626
Data overflow. See Overflow.
dB (decibels), definition, 886, 896
dBm (decibels), definition, 892
DC
bias, sources of, 761
block-data DC removal, 762
defined, 62
from a time-domain signal, 812–815
DC removal, real-time
using filters, 761–763
noise shaping property, 765
with quantization, 763–765
Deadband effects, 293
DEC (Digital Equipment Corp.), floating-point binary formats, 654–655
Decibels
bels, definition, 885
common constants, 889–891
dB, definition, 886, 896
dBm, definition, 892
Decimation. See also Interpolation.
combining with interpolation, 521–522
definition, 508
to implement down-conversion, 676–679
multirate filters, 521–522
sample rate converters, 521–522
drawing downsampled spectra,
515–516
frequency properties, 514–515
magnitude loss in the frequency-domain, 515
overview, 508–510
time invariance, 514
time properties, 514–515
example, 512–513
overview, 510–511
polyphase decomposition, 514
Decimation filters
choosing, 510
definition, 896
Decimation-in-frequency algorithms, FFTs
radix-2 butterfly structures, 151–154, 734–735
Decimation-in-time algorithms, FFTs
index bit reversal, 149–151
radix-2 butterfly structures, 151–154
single butterfly structures, 154–158, 735–737
Demodulation
AM, 484–485
FM, 486
quadrature signals, 453–455, 456–462
Descartes, René, 439
Detection
envelope, 784–786
peak threshold, with matched filters, 377, 379–380
quadrature signals, 453–454
signal transition, 820–821
single tone. See Single tone detection.
DFT (discrete Fourier transform). See also
DTFT (discrete-time Fourier transform); SDFT (sliding DFT).
analyzing FIR filters, 228–230
computing large DFTs from small FFTs, 826–829
definition, 60
time reversal, 863–865
zero padding, 97–102
DFT leakage. See also Spectral leakage, FFTs.
cause, 82–84
definition, 81
description, 81–82
predicting, 82–84
sinc functions, 83, 89
wraparound, 86–88
DFT leakage, minimizing
Chebyshev windows, 96
Hamming windows, 89–93
Hanning windows, 89–97
Kaiser windows, 96
rectangular windows, 89–97
triangular windows, 89–93
windowing, 89–97
DFT processing gain
average output noise-power level, 103–104
inherent gain, 102–105
integration gain, 105
multiple DFTs, 105
output signal-power level, 103–104
single DFT, 102–105
SNR (signal-to-noise ratio), 103–104
DIF (decimation-in-frequency), 734–735
DFT leakage, minimizing
Chebyshev windows, 96
Hamming windows, 89–93
Hanning windows, 89–97
Kaiser windows, 96
rectangular windows, 89–97
triangular windows, 89–93
windowing, 89–97
DFT processing gain
average output noise-power level, 103–104
inherent gain, 102–105
integration gain, 105
multiple DFTs, 105
output signal-power level, 103–104
single DFT, 102–105
SNR (signal-to-noise ratio), 103–104
DIF (decimation-in-frequency), 734–735
DFT leakage.
Digital differencer. See Differentiators.
Digital Equipment Corp. (DEC), floating-
point binary formats, 654–655
Digital filters. See also specific filters.
vs. analog, 169
definition, 896
Digital signal processing, 2
Direct Form I filters, 275–278, 289
Direct Form II filters, 289–292
Direct Form implementations, IIR filters, 292–293
Dirichlet, Peter, 108
Dirichlet kernel
all-ones rectangular functions, 115–118, 120
general rectangular functions, 108–112
symmetrical rectangular functions, 113–114
Discrete convolution in FIR filters.
See also FIR (finite impulse response) filters, convolution.
description, 214–215
in the time domain, 215–219
Discrete Fourier transform (DFT).
See DFT (discrete Fourier transform).
Discrete Hilbert transforms. *See* Hilbert transforms.
Discrete linear systems, 12–16
Discrete systems
definition, 4
example, 4–5
time representation, 5
Discrete-time expression, 4
Discrete-time Fourier transform (DTFT), 101, 120–123
Discrete-time signals
extample of, 2
frequency in, 5–6
sampling, frequency-domain ambiguity, 33–38
use of term, 2
Discrete-time waveforms, describing, 8
Dispersion, statistical measures of noise, 869
DIT (decimation-in-time), 735–737
Dithering
A/D converter quantization noise, 706–709
with filters, 294
triangular, 708
Dolph-Chebyshev windows in FIR filter design, 197
Down-conversion
Delay/Hilbert transform filter, 817–818, 819–820
filtering and decimation, 676–679
folded FIR filters, 818
frequency translation, without multiplication, 676–679
half-band filters, 817–818
single-decimation technique, 819–820
Down-conversion, quadrature signals complex, 455, 456–462
complex multipliers, 458
sampling with digital mixing, 462–464
Downsampling, decimation
drawing downsampeld spectra, 515–516
frequency properties, 514–515
magnitude loss in the frequency-domain, 515
overview, 508–510
time invariance, 514
time properties, 514–515
DTFT (discrete-time Fourier transform), 101, 120–123. *See also* DFT (discrete Fourier transform).
Dynamic range
binary numbers, 632–634
floating-point binary formats, 656–658
SFDR (spurious free dynamic range), 714–715

E
Elliptic functions, definition, 896
Elliptic-derived filters, ripples, 900
Envelope delay. *See* Group delay.
Envelope detection
approximate, 784–786
Hilbert transforms, 483–495
Equiripple filters, 418, 901
Estrin’s Method, polynomial evaluation, 774–775
Euler, Leonhard, 442, 444
Euler’s equation
biinear transform design of IIR filters, 322
DFT equations, 60, 108
impulse invariance design of IIR filters, 315
quadrature signals, 442–443, 449, 453
Exact Blackman windows, 686
Exact interpolation, 778–781
Exponent, floating-point binary format, 652
Exponential averagers, 608–612
Exponential moving averages, 801–802
Exponential signal averaging. *See* Signal averaging, exponential.
Exponential variance computation, 801–802
Fast convolution, 716–722
FFT (fast Fourier transform)
averaging multiple, 139
constant-geometry algorithms, 158
convolution. See Fast convolution.
decimation-in-frequency algorithms, 151–154
decimation-in-time algorithms, 149–158
versus DFT, 136–137
exact interpolation, 778–781
fast FIR filtering, 716–722
hints for using, 137–141
history of, 135
interpolated analytic signals, computing, 781
interpolated real signals, interpolating, 779–780
interpreting results, 139–141
inverse, computing, 699–702, 831–833
in place algorithm, 157
radix-2 algorithm, 141–149
radix-2 butterfly structures, 151–158
signal averaging, 600–603
single tone detection, 737–738, 740–741
vs. single tone detection, 740–741
software programs, 141
time-domain interpolation, 778–781
Zoom FFT, 749–753
FFT (fast Fourier transform), real sequences
a 2N-point real FFT, 695–699
two N-point real FFTs, 687–694
FFT (fast Fourier transform), twiddle factors
derivation of the radix-2 FFT algorithm, 143–149
DIF (decimation-in-frequency), 734–735
DIT (decimation-in-time), 735–737
Fibonacci, 450–451
Filter coefficients
definition, 897
for FIRs. See Impulse response.
flipping, 493–494
for FSF (frequency sampling filters), 913–926
quantization, 293–295
Filter order, 897
Filter taps, estimating, 234–235, 386–387
Filters. See also FIR (finite impulse response) filters; IIR (infinite impulse response) filters; Matched filters; specific filters.
adaptive filters, 184
allpass, 893
analog vs. digital, 169
band reject, 894
bandpass, 895
cascaded, 895
Cauer, 896
CIC, 895
dc-removal, 762–763
decimation, 896
differentiating, 364. See also Differentiators.
digital, 896
down-conversion, 676–679
equiripple, 418
highpass, 898
linear phase, 899
lowpass, 899
narrowband noise, 792–797
nonrecursive, 226–230, 290–291, 899
optimal FIR, 418
overview, 169–170
parallel, 295–297
passband, 900
process description, 169–170
prototype, 303
quadrature, 900
real-time DC removal, 762–763
recursive, 290–291, 900
recursive running sum, 551–552
Remez Exchange, 418
sharpening, 726–728
structure, diagramming, 172–174
time-domain slope detection, 820–821
transposed structure, 291–292
transversal, 173–174. See also FIR (finite impulse response) filters.
zero-phase, 725, 902
Filters, analytic signals
half-band FIR filters, 497
I-channel filters, 496
in-phase filters, 496
Filters, analytic signals (con’t)
Q-channel filters, 496
quadrature phase filters, 496
time-domain FIR filter implementation, 489–494
Finite-word-length errors, 293–295
FIR (finite impulse response) filters. See also FSF (frequency sampling filters); IFIR (interpolated FIR) filters; IIR (infinite impulse response) filters. coefficients. See Impulse response.
constant coefficients, 184
definition, 897
fast FIR filtering using the FFT, 716–722
folded structure. See Folded FIR filters.
frequency magnitude response, determining, 179
frequency-domain response, determining, 179
group delay, 211–212
half-band. See Half-band FIR filters.
vs. IIR filters, 332–333
impulse response, 177–179
narrowband lowpass. See IFIR (interpolated FIR) filters.
nonrecursive, analyzing, 226–230
phase response in, 209–214
phase unwrapping, 210
phase wrapping, 209, 900
polyphase filters, 522–527
sharpening, 726–728
signal averaging. See Signal averaging, with FIR filters.
signal averaging with, 178, 180–184
stopband attenuation, improving, 726–728
tapped delay, 181–182
transient response, 181–182
z-transform of, 288–289
FIR (finite impulse response) filters, analyzing
with DFTs, 228–230
estimating number of, 234–235
fractional delay, 233
group delay, 230–233
passband gain, 233–234
stopband attenuation, 234–235
symmetrical-coefficient FIR filters, 232–233
FIR (finite impulse response) filters, convolution
description, 175–186
discrete, description, 214–215
discrete, in the time domain, 215–219
fast convolution, 716–722
impulse response, 177–178
inputs, time order reversal, 176
signal averaging, 175–176
theorem, applying, 222–226
theorem, description, 219–222
time-domain aliasing, avoiding, 718–722
time-domain convolution vs. frequency-domain multiplication, 191–194
FIR (finite impulse response) filters, designing
bandpass method, 201–203
cutoff frequencies, 186
with forward FFT software routines, 189
Fourier series design method. See Window design method, FIR filters.
Gibbs’s phenomenon, 193
highpass method, 203–204
low-pass design, 186–201
magnitude fluctuations, 190–194
Optimal design method, 204–207
Parks-McClellan Exchange method, 204–207
passband ripples, minimizing, 190–194, 204–207. See also Windows.
Remez method, 204–207
stopband ripples, minimizing, 204–207
time-domain coefficients, determining, 186–194
time-domain convolution vs. frequency-domain multiplication, 191–194
very high performance filters, 775–778
window design method, 186–194
windows used in, 194–201
1st-order IIR filters, signal averaging, 612–614
1st-order sampling, 46
First-difference differentiators, 363–366
Fixed-point binary formats. See also Floating-point binary formats.
1.15 format, 630–632
bias, 628
binary points, 629
decimal numbers, converting to 1.5
binary, 632
fractional binary numbers, 629–632
hexadecimal (base 16) numbers, 625
integer plus fraction, 629
lsb (least significant bit), 624
msb (most significant bit), 624
octal (base 8) numbers, 624–625
offset, 627–628
overflow, 629
Q30 format, 629
radix points, 629
representing negative values, 625–626
sign extend operations, 627
sign-magnitude, 625–626
two’s complement, 626–627, 629
Fixed-point binary formats, finite word
lengths
A/D converter best estimate values, 635
A/D converter quantization noise,
634–642
A/D converter vs. SNR, 640–642
convergent rounding, 651
crest factor, 640
data overflow, 642–646
data rounding, 649–652
effective bits, 641
round off noise, 636–637
round to even method, 651
round-to-nearest method, 650–651
truncation, 646–649
Floating-point binary formats. See also
Fixed-point binary formats.
bit normalization, 653
common formats, 654–655
DEC (Digital Equipment Corp.), 654–655
description, 652
dynamic range, 656–658
evaluating, 652
exponent, 652
fractions, 653
gradual underflow, 656
hidden bits, 653
IBM, 654–655
IEEE Standard P754, 654–655
mantissa, 652
MIL-STD 1750A, 654–655
min/max values, determining,
656–657
unnormalized fractions, 656
word lengths, 655
FM demodulation
algorithms for, 758–761
filtering narrowband noise, 792–797
Hilbert transforms, 486
Folded FIR filters
designing Hilbert transforms, 493
down-conversion, 818
frequency translation, without
multiplication, 678
half-band filters, sample rate
conversion, 548
Hilbert transforms, designing, 493
multipliers, reducing, 702–704
nonrecursive, 419–420
tapped-delay line, 389
Folding frequencies, 40
Forward FFT
computing, 831–833
software routines for designing FIR
filters, 189
Fourier series design FIR filters. See
Window design method, FIR filters.
Fourier transform pairs, FIR filters,
178–179
Fractional binary numbers, 629–632
Fractional delay, FIR filters, 233
Frequency
continuous vs. discrete systems, 5
of discrete signals, determining. See
DFT (discrete Fourier transform).
discrete-time signals, 5–6
properties, interpolation, 519
resolution, improving with FIR filters,
228–230
units of measure, 2–3
Frequency attenuation, FIR filters, 182
Frequency axis
definition, 77
DFT, 77
in Hz, 118
normalized angle variable, 118
in radians/seconds, 118–119
rectangular functions, 118–120
with zero padding, 100
Frequency domain

definition, 6
Hamming windows, 683–686
Hanning windows, 683–686
listing sequences, 7
performance. IIR filters, 282–289
quadrature signals, 451–454
spectral leak reduction, 683–686
windowing in, 683–686
windows, 683–686
Frequency magnitude response
definition, 897
determining with FIR filters, 179
Frequency response
LTI, determining, 19
for Mth-order IIR filter, 275–276
Frequency response, FIR filters
determining, 179–186
factors affecting, 174
modifying, 184–186
Frequency sampling design method vs. FSF, 393–394
Frequency sampling filters. See FSF (frequency sampling filters).
Frequency translation, bandpass sampling, 44
Frequency translation, with decimation complex down-conversion, 782
complex signals, 781–783
real signals, 781
Frequency translation, without multiplication
by 1/2 the sampling rate, 671–673
by 1/4 the sampling rate, 674–676
down-conversion, 676–679
inverting the output spectrum, 678–679
Frequency translation to baseband, quadrature signals, 455
Frequency warping, 319, 321–325, 328–330
FSF (frequency sampling filters). See also FIR (finite impulse response) filters.
complex resonators, 394–398
designing, 423–426
frequency response, single complex FSF, 904–905
history of, 392–394
linear-phase multisection real-valued, 409–410
modeling, 413–414
multisection complex, 398–403
multisection real-valued, 406–409
vs. Parks-McClellan filters, 392
real FSF transfer function, 908–909
stability, 403–406
stopband attenuation, increasing, 414–416
stopband sidelobe level suppression, 416
transition band coefficients, 414–416
Type IV example, 419–420, 423–426

G

Gain. See also DFT processing gain.
AGC (automatic gain control), 783–784
IIR filters, scaling, 300–302
integration, signal averaging, 600–603
passband, 233–234
windows, 92
Gauss, Karl, 439, 444
Gaussian PDFs, 882–883
General numbers, 446. See also Complex numbers.
Geometric series, closed form, 107, 859–861
Gibbs’s phenomenon, 193
Goertzel algorithm, single tone detection advantages of, 739
description, 738–740
equation, 740
vs. the FFT, 740–741
stability, 838–840
Gold-Rader filter, 834–836
Gradual underflow, floating-point binary formats, 656
Gregory, James, 23
Group delay
definition, 897–898
differentiators, 365
filters, computing, 830–831
FIR filters, 211–212, 230–233

H

Half Nyquist, 37
Half-band FIR filters
analytic signals, 497
as complex bandpass filters, 497
definition, 898
description, 207–209
down-conversion, 817–818
frequency translation, 802–804
Half-band FIR filters, sample rate
conversion
fundamentals, 544–546
implementation, 546–548
overview, 543
Hamming, Richard, 366
Hamming windows
in the frequency domain, 683–686
spectral peak location, 733
Hann windows. See Hanning windows.
Hanning windows
description, 89–97
DFT leakage, minimizing, 89–97
in the frequency domain, 683–686
spectral peak location, 733
Harmonic sampling. See Bandpass sampling.
Harmonics of discrete signals,
determining. See DFT (discrete Fourier transform).
Harris, Fred, 791
Heaviside, Oliver, 257
Hertz, 3
Hertz, Heinrich, 3
Hexadecimal (base 16) numbers, 625
Hidden bits, floating-point binary formats, 653
Highpass filters, definition, 898
Highpass method, designing FIR filters,
203–204
Hilbert, David, 479
Hilbert transformers, designing
common mistake, 493–494
even-tap transformers, 493
frequency-domain transformers, 494–495
half-band filter coefficient modification,
804–805
half-band filter frequency translation,
802–804
odd-tap transformers, 493
time-domain FIR filter implementation,
489–494
time-domain transformers, 489–494
Hilbert transforms
AM demodulation, 484–485
definition, 480
envelope detection, 483–495
example, 481–482
FM demodulation, 486
impulse response, 487–489
one-sided spectrum, 483
signal envelope, 483–495
Hilbert transforms, analytic signals
definition, 483
generation methods, comparing,
497–498
half-band FIR filters, 497
time-domain, generating, 495–497
Histogram testing, A/D converter techniques, 711
Homogeneity property, 12
Horner, William, 773
Horner’s Rule, 772–774
Human ear, sensitivity to decibels, 886
IBM, floating-point binary formats, 654–655
I-channel filters, analytic signals, 496
IDFT (inverse discrete Fourier transform),
80–81
IEEE Standard P754, floating-point binary formats, 654–655
IF sampling. See Bandpass sampling.
IFIR (interpolated FIR) filters. See also FIR (finite impulse response) filters.
computational advantage, 384–385, 391
definition, 381
expansion factor M, 381, 385–386
filter taps, estimating, 386–387
image-reject subfilter, 382–384, 390
implementation issues, 388–389
interpolated, definition, 384
interpolators. See Image-reject subfilter.
lowpass design example, 389–391
optimum expansion factor, 386
performance modeling, 387–388
prototype filters, 382
shaping subfilters, 382, 385
IIR (infinite impulse response) filters. See also FIR (finite impulse response) filters; FSF (frequency sampling filters).
allpass, 893
analytical design methods, 302
coupled-form, 834–836
definition, 899
design techniques, 257. See also specific techniques.
difference equations, 255–256
vs. FIR filters, 253, 332–333
frequency domain performance, 282–289
infinite impulse response, definition, 280
interpolated, example, 837–838
phase equalizers. See Allpass filters.
poles, 284–289
recursive filters, 290–291
scaling the gain, 300–302
SNR (signal-to-noise ratio), 302
stability, 263–270
z-domain transfer function, 282–289
zeros, 284–289
z-plane pole / zero properties, 288–289
z-transform, 270–282
IIR (infinite impulse response) filters, pitfalls in building
coefficient quantization, 293–295
deadband effects, 293
Direct Form implementations, 292–293
dither sequences, 294
finite word length errors, 293–295
limit cycles, 293
limited-precision coefficients, 293
overflow, 293–295
overflow oscillations, 293
overview, 292–293
rounding off, 293
IIR (infinite impulse response) filters, structures
biquad filters, 299
cascade filter properties, 295–297
cascaded, 295–299
cascade/parallel combinations, 295–297
changing, 291–292
Direct Form I, 275–278, 289
Direct Form II, 289–292
optimizing partitioning, 297–299
parallel filter properties, 295–297
transposed, 291–292
transposed Direct Form II, 289–290
transposition theorem, 291–292
Imaginary numbers, 439, 446
Imaginary part, quadrature signals, 440, 454–455
Impulse invariance method, designing IIR filters
aliasing, 304–305
analytical methods, 302
definition, 257
Method 1, description, 305–307
Method 1, example, 310–313
Method 2, description, 307–310
Method 2, example, 313–319
preferred method, 317
process description, 303–310
prototype filters, 303
Impulse response
convolution in FIR filters, 177–178
definition, 898–899
FIR filters, 177–179
Hilbert transforms, 487–489
Incoherent signal averaging. See Signal averaging, incoherent.
Infinite impulse response (IIR) filters. See IIR (infinite impulse response) filters.
Integer plus fraction fixed-point binary formats, 629
Integration gain, signal averaging, 600–603
Integrators
CIC filters, 553
overview, 370
performance comparison, 373–376
rectangular rule, 371–372
Simpson’s rule, 372, 373–376
Tick’s rule, 373–376
trapezoidal rule, 372
Intermodulation distortion, 16
Interpolated analytic signals, computing, 781
Interpolated FIR (IFIR) filters. See IFIR (interpolated FIR) filters.
Interpolated real signals, interpolating, 779–780
Interpolation. See also Decimation.
accuracy, 519
Index

bandpass signals, 728–730
combining with decimation, 521–522
definition, 384, 508
drawing upsampled spectra, 520–521
exact, 778–781
frequency properties, 519
history of, 519
linear, 815–816
multirate filters, 521–522
overview, 516–518
sample rate converters, 521–522
time properties, 519
time-domain, 778–781
unwanted spectral images, 519
upsampling, 517–518, 520–521
zero stuffing, 518
Interpolation filters, 518
Inverse DFT, 80–81
Inverse discrete Fourier transform (IDFT), 80–81
Inverse FFT, 699–702, 831–833
Inverse of complex numbers, 853
Inverse sinc filters, 563–566
I/Q demodulation, quadrature signals, 459–462

J
Jacobsen, Eric, 775
j-operator, quadrature signals, 439, 444–450

K
Kaiser, James, 270
Kaiser windows, in FIR filter design, 197–201
Kaiser-Bessel windows, in FIR filter design, 197
Kelvin, Lord, 60
Kootsookos, Peter, 603, 724
Kotelnikov, V., 42

L
Lanczos differentiators, 366–367
Laplace transfer function
determining system stability, 263–264, 268
impulse invariance design, Method 1, 305–307, 310–313
impulse invariance design, Method 2, 307–310, 313–319
in parallel filters, 295–297
second order, 265–268
Laplace transform. See also Z-transform.
bilateral transform, 258
causal systems, 258
conditional stability, 268
for continuous time-domain, 258–259
description, 257–263
development of, 257
one-sided transform, 258
one-sided/causal, 258
poles on the s-plane, 263–270
stability, 263–270
two-sided transform, 258
zeros on the s-plane, 263–270
Laplace variable, complex frequency, 258
Leakage. See DFT leakage.
Leaky integrator, 614
Least significant bit (lsb), 624
l’Hopital’s Rule, 110
Limit cycles, 293
Linear, definition, 12
Linear differential equations, solving.
See Laplace transform.
Linear interpolation, 815–816
Linear phase filters, 899
Linear systems, example, 13–14
Linear time-invariant (LTI) systems. See LTI (linear time-invariant) systems.
Linearity, DFT, 75
Linear-phase filters
DC removal, 812–815
definition, 899
Logarithms
and complex numbers, 854–856
measuring signal power, 191
Lowpass design
designing FIR filters, 186–201
IFIR filters, example, 389–391
Lowpass filters, definition, 899
Lowpass signals
definition, 38
sampling, 38–42
lsb (least significant bit), 624
LTI (linear time-invariant) systems
analyzing, 19–21
commutative property, 18–19
convolution, 19
DFT (discrete Fourier transform), 19
discrete linear systems, 12–16
frequency response, determining, 19
homogeneity property, 12
intermodulation distortion, 16
internally generated sinusoids, 16
linear, definition, 12
linear system, example, 13–14
nonlinear system, example, 14–16
output sequence, determining, 19
overview, 12
proportionality characteristic, 12
rearranging sequential order, 18–19
time-invariant systems, 17–18
unit impulse response, 19–20

Magnitude-angle form, quadrature signals, 442
Mantissa, floating-point binary formats, 652
Matched filters
definition, 376
definition, 376
example, 378–380
implementation considerations, 380
peak detection threshold, 377, 379–380
properties, 376–378
purpose, 376
SNR (signal-power-to-noise-power ratio), maximizing, 376
McClellan, James, 206. See also Parks-McClellan algorithm.
Mean (statistical measure of noise)
definition, 868–869
PDF (probability density function), 879–882
of random functions, 879–882
Mean (statistical average), of random functions, 879–882
Mehrdia, A., 386
MIL-STD 1750A, floating-point binary formats, 654–655
Missing
A/D conversion codes, checking, 715–716
sample data, recovering, 823–826.
See also Interpolation.
Mixing. See Frequency translation.
Modeling FSF (frequency sampling filters), 413–414
Modulation, quadrature signals, 453–454
Modulus of complex numbers, 848
Most significant bit (msb), 624
Moving averages
CIC filters, 551–552
as digital lowpass filters, 20–21, 173, 231
sample rate conversion, CIC filters, 551–552
Moving averages, coherent signal averaging
exponential moving averages, computing, 801–802
exponential signal averaging, 801–802
moving averages, computing, 799–801
nonrecursive moving averagers, 606–608

MAC (multiply and accumulate)
arithmetic
polynomial evaluation, 773
programmable DSP chips, 333
Magnitude
approximation (vector), 679–683
of complex numbers, 848
definition, 8–9
DFT, 75–76
Magnitude and angle form of complex numbers, 848–850
Magnitude response of DFTs
aliased sinc function, 108
all-ones rectangular functions, 115–118
fluctuations. See Scalloping.
general rectangular functions, 106–112
overview, 105–106
sidelobe magnitudes, 110–111
symmetrical rectangular functions, 112–115
Magnitude response of DFTs, Dirichlet kernel
all-ones rectangular functions, 115–118, 120
general rectangular functions, 108–112
symmetrical rectangular functions, 113–114

Mean (statistical average), of random functions, 879–882
Mehrdia, A., 386
MIL-STD 1750A, floating-point binary formats, 654–655
Missing
A/D conversion codes, checking, 715–716
sample data, recovering, 823–826.
See also Interpolation.
Mixing. See Frequency translation.
Modeling FSF (frequency sampling filters), 413–414
Modulation, quadrature signals, 453–454
Modulus of complex numbers, 848
Most significant bit (msb), 624
Moving averages
CIC filters, 551–552
as digital lowpass filters, 20–21, 173, 231
sample rate conversion, CIC filters, 551–552
Moving averages, coherent signal averaging
exponential moving averages, computing, 801–802
exponential signal averaging, 801–802
moving averages, computing, 799–801
nonrecursive moving averagers, 606–608
recursive moving averagers, 606–608
 time-domain averaging, 604–608
msb (most significant bit), 624
Multiplication
 block diagram symbol, 10
 CIC filters, simplified, 765–770
 complex numbers, 850–851
Multirate filters
 decimation, 521–522
 interpolation, 521–522
Multirate systems, sample rate conversion
 filter mathematical notation, 534–535
 signal mathematical notation, 533–534
 z-transform analysis, 533–535
Multirate systems, two-stage decimation, 511
N
 Narrowband differentiators, 366–367
 Narrowband noise filters, 792–797
 Natural logarithms of complex numbers, 854
 Negative frequency, quadrature signals, 450–451
 Negative values in binary numbers, 625–626
 Newton, Isaac, 773
 Newton’s method, 372
 Noble identities, polyphase filters, 536
 Noise
 definition, 589
 measuring, See Statistical measures of noise.
 random, 868
 Noise shaping property, 765
 Nonlinear systems, example, 14–16
 Nonrecursive CIC filters
 description, 765–768
 prime-factor-R technique, 768–770
 Nonrecursive filters. See FIR filters
 Nonrecursive moving averagers, 606–608
 Normal distribution of random data, generating, 722–724
 Normal PDFs, 882–883
 Normalized angle variable, 118–119
 Notch filters. See Band reject filters.
 Nyquist, H., 42
 Nyquist criterion, sampling lowpass signals, 40
O
 Octal (base 8) numbers, 624–625
 Offset fixed-point binary formats, 627–628
 1.15 fixed-point binary format, 630–632
 Optimal design method, designing FIR filters, 204–207
 Optimal FIR filters, 418
 Optimization method, designing IIR filters
 definition, 257
 description, 302
 iterative optimization, 330
 process description, 330–332
 Optimized butterflies, 156
 Optimized wideband differentiators, 369–370
 Optimum sampling frequency, 46
 Order
 of filters, 897
 polyphase filters, swapping, 536–537
 Orthogonality, quadrature signals, 448
 Oscillation, quadrature signals, 459–462
 Oscillator, quadrature
 coupled, 787
 overview, 786–789
 Taylor series approximation, 788
 Overflow
 computing the magnitude of complex numbers, 815
 fixed-point binary formats, 629, 642–646
 two’s complement, 559–563
 Overflow errors, 293–295
 Overflow oscillations, 293
 Oversampling errors, 293–295
 Oversampling A/D converter quantization noise, 704–706
P
 Parallel filters, Laplace transfer function, 295–297
 Parks-McClellan algorithm
 designing FIR filters, 204–207
 vs. FSF (frequency sampling filters), 392
 optimized wideband differentiators, 369–370
 Parzen windows. See Triangular windows.
 Passband, definition, 900
Passband filters, definition, 900
Passband gain, FIR filters, 233–234
Passband ripples
cascaded filters, estimating, 296–297
definition, 296, 900
IFIR filters, 390
minimizing, 190–194, 204–207
PDF (probability density function)
Gaussian, 882–883
mean, calculating, 879–882
mean and variance of random functions, 879–882
normal, 882–883
variance, calculating, 879–882
Peak correlation, matched filters, 379
Peak detection threshold, matched filters, 377, 379–380
Periodic sampling
aliasing, 33–38
frequency-domain ambiguity, 33–38
Periodic sampling
1st-order sampling, 46
anti-aliasing filters, 42
bandpass, 43–49
coherefrent sampling, 711
definition, 43
folding frequencies, 40
Nyquist criterion, 40
 optimum sampling frequency, 46
real signals, 46
sampling translation, 44
SNR (signal-to-noise) ratio, 48–49
spectral inversion, 46–47
undersampling, 40
Phase angles, signal averaging, 603–604
Phase delay. See Phase response.
Phase response
definition, 900
in FIR filters, 209–214
Phase unwrapping, FIR filters, 210
Phase wrapping, FIR filters, 209, 900
Pi, calculating, 23
Picket fence effect, 97
Pisa, Leonardo da, 450–451
Polar form
complex numbers, vs. rectangular, 856–857
quadrature signals, 442, 443–444
Poles
IIR filters, 284–289
on the s-plane, Laplace transform, 263–270
Polynomial curve fitting, 372
Polynomial evaluation
binary shift multiplication/division, 773–774
Estrin’s Method, 774–775
Horner’s Rule, 772–774
MAC (multiply and accumulate) architecture, 773
Polynomial factoring, CIC filters, 765–770
Polynomials, finding the roots of, 372
Polyphase decomposition
CIC filters, 765–770
definition, 526
diagrams, 538–539
two-stage decimation, 514
Polyphase filters
benefits of, 539
commutator model, 524
implementing, 535–540
issues with, 526
noble identities, 536
order, swapping, 536–537
overview, 522–528
polyphase decomposition, 526, 538–539
prototype FIR filters, 522
uses for, 522
Power, signal. See also Decibels.
absolute, 891–892
definition, 9
relative, 885–889
Power spectrum, 63, 140–141
Preconditioning FIR filters, 563–566
Prewarp, 329
Prime decomposition, CIC filters, 768–770
Prime factorization, CIC filters, 768–770
Probability density function (PDF). See PDF (probability density function).
Processing gain or loss. See DFT processing gain; Gain; Loss.
Prototype filters
analog, 303
FIR polyphase filters, 522
IFIR filters, 382
Q

Q30 fixed-point binary formats, 629
Q-channel filters, analytic signals, 496
Quadratic factorization formula, 266, 282
Quadrature component, 454–455
Quadrature demodulation, 455, 456–462
Quadrature filters, definition, 900
Quadrature mixing, 455
Quadrature oscillation, 459–462
Quadrature oscillator
coupled, 787
overview, 786–789
Taylor series approximation, 788
Quadrature phase, 440
Quadrature processing, 440
Quadrature sampling block diagram, 459–462
Quadrature signals. See also Complex
numbers.
analytic, 455
Argand plane, 440–441
bandpass signals in the frequency-
domain, 454–455
Cartesian form, 442
cartesian notation, 440–446
cartesian phasors, 446–450
cartoon plane, 440–441, 446
decimation, in frequency translation, 781–783
definition, 439
demodulation, 453–454
detection, 453–454
down-conversion. See Down-conversion, quadrature signals.
Euler’s identity, 442–443, 449, 453
exponential form, 442
in the frequency domain, 451–454
generating from real signals. See Hilbert
transforms.
generation, 453–454
imaginary part, 440, 454–455
in-phase component, 440, 454–455
I/Q demodulation, 459–462
j-operator, 439, 444–450
magnitude-angle form, 442
mixing to baseband, 455
modulation, 453–454
negative frequency, 450–451
orthogonality, 448
polar form, 442, 443–444
positive frequency, 451
real axis, 440
real part, 440, 454–455
rectangular form, 442
representing real signals, 446–450
sampling scheme, advantages of, 459–462
simplifying mathematical analysis, 443–444
three-dimensional frequency-domain
representation, 451–454
trigonometric form, 442, 444
uses for, 439–440
Quantization
coefficient/errors, 293–295
noise. See A/D converters, quantization
noise.
real-time DC removal, 763–765

R

Radix points, fixed-point binary formats, 629
Radix-2 algorithm, FFT
butterfly structures, 151–154
computing large DFTs, 826–829
decimation-in-frequency algorithms, 151–154
decimation-in-time algorithms, 151–154
derivation of, 141–149
FFT (fast Fourier transform), 151–158
twiddle factors, 143–149
Raised cosine windows. See Hanning
windows.
Random data
Central Limit Theory, 723
generating a normal distribution of, 722–724
Random functions, mean and variance, 879–882
Random noise, 868. See also SNR
(signal-to-noise ratio).
Real numbers
definition, 440
graphical representation of, 847–848
Real sampling, 46
Real signals
bandpass sampling, 46
decimation, in frequency translation, 781
generating complex signals from. See Hilbert transforms.
representing with quadrature signals, 446–450
Rectangular form of complex numbers
definition, 848–850
vs. polar form, 856–857
Rectangular form of quadrature signals, 442
Rectangular functions
all ones, 115–118
DFT, 105–112
frequency axis, 118–120
general, 106–112
overview, 105–106
symmetrical, 112–115
time axis, 118–120
Rectangular windows, 89–97, 686
Recursive filters. See IIR filters
Recursive moving averagers, 606–608
Recursive running sum filters, 551–552
Remez Exchange, 204–207, 418
Replications, spectral. See Spectral replications.
Resolution, DFT, 77, 98–102
Ripples
in Bessel-derived filters, 901
in Butterworth-derived filters, 901
in Chebyshev-derived filters, 900
definition, 900–901
designing FIR filters, 190–194
in Elliptic-derived filters, 900
equiripple, 418, 901
out-of-band, 901
in the passband, 900
in the stopband, 901
rms value of continuous sinewaves, 874–875
Roll-off, definition, 901
Roots of
complex numbers, 853–854
polynomials, 372

Rosetta Stone, 450
Rounding fixed-point binary numbers
convergent rounding, 651
data rounding, 649–652
effective bits, 641
round off noise, 636–637
round to even method, 651
round-to-nearest method, 650–651
Roundoff errors, 293

S
Sample rate conversion. See also Polyphase filters.
decreasing. See Decimation.
definition, 507
with IFIR filters, 548–550
increasing. See Interpolation.
missing data, recovering, 823–826.
See also Interpolation.
by rational factors, 540–543
Sample rate conversion, multirate systems
filter mathematical notation, 534–535
signal mathematical notation, 533–534
z-transform analysis, 533–535
Sample rate conversion, with half-band filters
folded FIR filters, 548
fundamentals, 544–546
implementation, 546–548
overview, 543
Sample rate converters, 521–522
Sampling, periodic. See Periodic sampling.
Sampling translation, 44
Sampling with digital mixing, 462–464
Scaling IIR filter gain, 300–302
Scalloping loss, 96–97
SDFT (sliding DFT)
algorithm, 742–746
overview, 741
stability, 746–747
SFDR (spurious free dynamic range), 714–715
Shannon, Claude, 42
Shape factor, 901
Sharpened FIR filters, 726–728
Shifting theorem, DFT, 77–78
Shift-invariant systems. See Time-invariant systems.

Sidelobe magnitudes, 110–111

Sidelobes
- Blackman window and, 194–197
- DFT leakage, 83, 89
- FIR (finite impulse response) filters, 184
- ripples, in low-pass FIR filters, 193–194

Sign extend operations, 627

Signal averaging. See also SNR (signal-to-noise ratio).
- equation, 589
- frequency-domain. See Signal averaging, incoherent.
- integration gain, 600–603
- mathematics, 592–594, 599
- multiple FFTs, 600–603
- phase angles, 603–604
- postdetection. See Signal averaging, incoherent.
- quantifying noise reduction, 594–597
- rms. See Signal averaging, incoherent.
- scalar. See Signal averaging, incoherent.
- standard deviation, 590
time-domain. See Signal averaging, coherent.
time-synchronous. See Signal averaging, coherent.
- variance, 589–590
- video. See Signal averaging, incoherent.

Signal averaging, coherent
- exponential averagers, 608–612
- exponential moving averages,
 computing, 801–802
- exponential smoothing, 608
- filtering aspects, 604–608
- moving averagers, 604–608
- moving averages, computing, 799–801
- nonrecursive moving averagers,
 606–608
- overview, 590–597
- recursive moving averagers, 606–608
- reducing measurement uncertainty,
 593, 604–608
time-domain filters, 609–612
- true signal level, 604–608
- weighting factors, 608, 789

Signal averaging, exponential
- 1st-order IIR filters, 612–614
dual-mode technique, 791
example, 614
- exponential smoothing, 608
- frequency-domain filters, 612–614
- moving average, computing, 801–802
- multiplier-free technique, 790–791
- overview, 608
- single-multiply technique, 789–790

Signal averaging, incoherent
- 1st-order IIR filters, 612–614
example, 614
- frequency-domain filters, 612–614
- overview, 597–599

Signal averaging, with FIR filters
- convolution, 175–176
example, 170–174, 183–184
- as a lowpass filter, 180–182
- performance improvement, 178

Signal envelope, Hilbert transforms, 483–495

Signal power. See also Decibels.
- absolute, 891–892
- relative, 885–889

Signal processing
- analog, 2. See also Continuous signals.
 definition, 2
digital, 2
- operational symbols, 10–11

Signal transition detection, 820–821

Signal variance
- biased and unbiased, computing,
 797–799, 799–801
- definition, 868–870
- exponential, computing, 801–802
- PDF (probability density function),
 879–882
- of random functions, 879–882
- signal averaging, 589–590

Signal-power-to-noise-power ratio (SNR), maximizing, 376

Signal-to-noise ratio (SNR). See SNR (signal-to-noise ratio).

Sign-magnitude, fixed-point binary
- formats, 625–626

Simpson, Thomas, 372

SINAD (signal-to-noise-and-distortion), 711–714

Sinc filters. See CIC (cascaded integrator-comb) filters.
Sinc functions, 83, 89, 116
Single tone detection, FFT method
drawbacks, 737–738
vs. Goertzel algorithm, 740–741
Single tone detection, Goertzel algorithm
advantages of, 739
description, 738–740
example, 740
vs. the FFT, 740–741
stability, 838–840
Single tone detection, spectrum analysis,
737–741
Single-decimation down-conversion,
819–820
Single-multiply technique, exponential
signal averaging, 789–790
Single-stage decimation, vs. two-stage,
514
Single-stage interpolation, vs. two-stage,
532
Sliding DFT (SDFT). See SDFT
(sliding DFT).
Slope detection, 820-821
Smoothing impulsive noise, 770–772
SNDR. See SINAD (signal-to-noise-and-
distortion).
SNR (signal-to-noise ratio)
vs. A/D converter, fixed-point binary
finite word lengths, 640–642
A/D converters, 711–714
bandpass sampling, 48–49
block averaging, 770
corrected mean, 771
DFT processing gain, 103–104
IIR filters, 302
measuring. See Statistical measures of
noise.
reducing. See Signal averaging.
smoothing impulsive noise, 770–772
SNR (signal-power-to-noise-power ratio),
maximizing, 376
Software programs, fast Fourier trans-
form, 141
Someya, I., 42
Spectral inversion
around signal center frequency, 821–823
bandpass sampling, 46–47
See also DFT leakage.
Spectral leakage reduction
A/D converter testing techniques,
710–711
Blackman windows, 686
frequency domain, 683–686
Spectral peak location
estimating, algorithm for, 730–734
Hamming windows, 733
Hanning windows, 733
Spectral replications
bandpass sampling, 44–45
sampling lowpass signals, 39–40
Spectral vernier. See Zoom FFT.
Spectrum analysis. See also SDFT
(sliding DFT); Zoom FFT.
center frequencies, expanding, 748–749
with SDFT (sliding DFT), 748–749
single tone detection, 737–741
weighted overlap-add, 755
windowed-presum FFT, 755
Zoom FFT, 749–753
Spectrum analyzer, 753–756
Spurious free dynamic range (SFDR),
714–715
Stability
comb filters, 403–404
conditional, 268
FSF (frequency sampling filters),
403–406
IIR filters, 263–270
Laplace transfer function, 263–264, 268
Laplace transform, 263–270
SDFT (sliding DFT), 746–747
single tone detection, 838–840
z-transform and, 272–274, 277
Stair-step effect, A/D converter
quantization noise, 637
Standard deviation
of continuous sinewaves, 874–875
definition, 870
signal averaging, 590
Statistical measures of noise
average, 868–870
average power in electrical circuits,
874–875
Bessel’s correction, 870–871
biased estimates, 870–871
dispersion, 869
fluctuations around the average, 869
overview, 867–870. See also SNR
(signal-to-noise ratio).
of real-valued sequences, 874
rms value of continuous sinewaves,
874–875
of short sequences, 870–871
standard deviation, definition, 870
standard deviation, of continuous
sinewaves, 874–875
summed sequences, 872–874
unbiased estimates, 871
Statistical measures of noise, estimating
SNR
for common devices, 876
controlling SNR test signals, 879
in the frequency domain, 877–879
overview, 875–876
in the time domain, 876–877
Statistical measures of noise, mean
definition, 868–869
PDF (probability density function),
879–882
of random functions, 879–882
Statistical measures of noise, variance.
See also Signal variance.
definition, 868–870
PDF (probability density function),
879–882
of random functions, 879–882
Steinmetz, Charles P., 446
Stockham, Thomas, 716
Stopband, definition, 901
Stopband ripples
definition, 901
minimizing, 204–207
Stopband sidelobe level suppression,
416
Structure, definition, 901
Structures, IIR filters
biquad filters, 299
cascade filter properties, 295–297
cascaded, 295–299
cascade/parallel combinations, 295–297
changing, 291–292
Direct Form I, 275–278, 289
Direct Form II, 289–292
optimizing partitioning, 297–299
parallel filter properties, 295–297
transposed, 291–292
transposed Direct Form II, 289–290
transposition theorem, 291–292
Sub-Nyquist sampling. See Bandpass
sampling.
Substructure sharing, 765–770
Subtraction
block diagram symbol, 10
description, 11
equation, 10
notation, 11
Symbols
block diagram, 10–11
signal processing, 10–11
Symmetrical rectangular functions,
112–115
Symmetrical-coefficient FIR filters,
232–233
Symmetry, DFT, 73–75

T
Tacoma Narrows Bridge collapse, 263
Tap, definition, 901
Tap weights. See Filter coefficients.
Tapped delay, FIR filters, 174, 181–182
Taylor series approximation, 788
Tchebyschev function, definition, 902
Tchebyschev windows, in FIR filter
design, 197
Time data, manipulating in FFTs, 138–139
Time invariance, decimation, 514
Time properties
decimation, 514–515
interpolation, 519
Time representation, continuous vs.
discrete systems, 5
Time reversal, 863–865
Time sequences, notation syntax, 7
Time-domain
aliasing, avoiding, 718–722
analytic signals, generating, 495–497
coefficients, determining, 186–194
convolution, matched filters, 380
convolution vs. frequency-domain
multiplication, 191–194
equations, example, 7
Time-domain (cont.)
FIR filter implementation, 489–494
Hilbert transforms, designing, 489–494
interpolation, 778–781
slope filters, 820–821
Time-domain data, converting
from frequency-domain data. See IDFT
(inverse discrete Fourier transform).
to frequency-domain data. See DFT
(discrete Fourier transform).
Time-domain filters
coherent signal averaging, 609–612
exponential signal averaging, 609–612
Time-domain signals
amplitude, determining, 140
continuous, Laplace transform for, 258
DC removal, 812–815
definition, 4
vs. frequency-domain, 120–123
Time-invariant systems. See also LTI
(linear time-invariant) systems.
analyzing, 19–21
commutative property, 18–19
definition, 17–18
example of, 17–18
Tone detection. See Single tone detection.
Transfer functions. See also Laplace
transfer function.
definition, 902
real FSF, 908–909
z-domain, 282–289
Transient response, FIR filters, 181–182
Transition region, definition, 902
Translation, sampling, 44
Transposed Direct Form II filters, 289–290
Transposed Direct Form II structure,
289–290
Transposed filters, 291–292
Transposed structures, 765–770
Transposition theorem, 291–292
Transversal filters, 173–174. See also FIR
(finite impulse response) filters.
Triangular dither, 708
Triangular windows, 89–93
Trigonometric form, quadrature signals,
442, 444
Trigonometric form of complex numbers,
848–850
Truncation, fixed-point binary numbers,
646–649
Tukey, J., 135
Two’s complement
fixed-point binary formats, 626–627, 629
overflow, 559–563
Two-sided Laplace transform, 258
Type-IV FSF
examples, 419–420, 423–426
frequency response, 910–912
optimum transition coefficients,
913–926

U
Unbiased estimates, 871
Unbiased signal variance, computing,
797–799, 799–801
Undersampling lowpass signals, 40.
See also Bandpass sampling.
Uniform windows. See Rectangular
windows.
Unit circles
definition, 271
z-transform, 271
Unit circles, FSF
forcing poles and zeros inside, 405
pole / zero cancellation, 395–398
Unit delay
block diagram symbol, 10
description, 11
Unit impulse response, LTI, 19–20
Unnormalized fractions, floating-point
binary formats, 656
Unwrapping, phase, 210
Upsampling, interpolation, 517–518,
520–521

V
Variance. See Signal variance.
Vector, definition, 848
Vector rotation with arctangents
to the 1st octant, 805–808
division by zero, avoiding, 808
jump address index bits, 807
overview, 805
Index

by ± π/8, 809–810
rotational symmetries, 807
Vector-magnitude approximation, 679–683
von Hann windows. See Hanning windows.

W
Warping, frequency, 319, 321–325, 328–330
Weighted overlap-add spectrum analysis, 755
Weighting factors, coherent signal averaging, 608, 789
Wideband compensation, 564
Wideband differentiators, 367–370
Willson, A., 386
Window design method, FIR filters, 186–194
Windowed-presum FFT spectrum analysis, 755
Windows
Blackman, 195–201, 686, 733
Blackman-Harris, 686, 733
exact Blackman, 686
FFTs, 139
in the frequency domain, 683–686
magnitude response, 92–93
mathematical expressions of, 91
minimizing DFT leakage, 89–97
processing gain or loss, 92
purpose of, 96
rectangular, 89–97, 686
selecting, 96
triangular, 89–93
Windows, Hamming
description, 89–93
DFT leakage reduction, 89–93
in the frequency domain, 683–686
spectral peak location, 733
Windows, Hanning
description, 89–97
DFT leakage, minimizing, 89–97
in the frequency domain, 683–686
spectral peak location, 733
Windows used in FIR filter design
Bessel functions, 198–199
Blackman, 195–201
Chebyshev, 197–201, 927–930
choosing, 199–201
Dolph-Chebyshev, 197
Kaiser, 197–201
Kaiser-Bessel, 197
Tchebyschev, 197
Wingless butterflies, 156
Wraparound leakage, 86–88
Wrapping, phase, 209, 900

Z
z-domain expression for Mth-order IIR filter, 275–276
z-domain transfer function, IIR filters, 282–289
Zero padding
alleviating scalloping loss, 97–102
FFTs, 138–139
FIR filters, 228–230
improving DFT frequency granularity, 97–102
spectral peak location, 731
Zero stuffing
interpolation, 518
narrowband lowpass filters, 834–836
Zero-overhead looping
DSP chips, 333
FSF (frequency sampling filters), 422–423
IFIR filters, 389
Zero-phase filters
definition, 902
techniques, 725
Zeros
IIR filters, 284–289
on the s-plane, Laplace transform, 263–270
Zoom FFT, 749–753
z-plane, 270–273
z-plane pole / zero properties, IIR filters, 288–289
z-transform. See also Laplace transform.
definition, 270
description of, 270–272
FIR filters, 288–289
IIR filters, 270–282
infinite impulse response, definition, 280
z-transform (cont.)
 polar form, 271
 poles, 272–274
 unit circles, 271
 zeros, 272–274
z-transform, analyzing IIR filters
 digital filter stability, 272–274, 277

Direct Form 1 structure, 275–278
 example, 278–282
 frequency response, 277–278
 overview, 274–275
 time delay, 274–278
z-domain transfer function, 275–278,
 279–280