
Praise for the First Edition of A Practical Guide

to Ubuntu Linux

“I am so impressed by how Mark Sobell can approach a complex topic
in such an understandable manner. His command examples are espe-
cially useful in providing a novice (or even an advanced) administrator
with a cookbook on how to accomplish real-world tasks on Linux. He
is truly an inspired technical writer!”

—George Vish II
Senior Education Consultant
Hewlett-Packard Company

“Overall, I think it’s a great, comprehensive Ubuntu book that’ll be a
valuable resource for people of all technical levels.”

—John Dong
Ubuntu Forum Council Member
Backports Team Leader

“The JumpStart sections really offer a quick way to get things up and
running, allowing you to dig into the details of the book later.”

—Scott Mann
Aztek Networks

“Ubuntu is gaining popularity at the rate alcohol did during Prohibition,
and it’s great to see a well-known author write a book on the latest and
greatest version. Not only does it contain Ubuntu-specific information,
but it also touches on general computer-related topics, which will help
the average computer user to better understand what’s going on in the
background. Great work, Mark!”

—Daniel R. Arfsten
Pro/ENGINEER Drafter/Designer

®

000.frontmatter.fm Page i Tuesday, December 2, 2008 12:57 PM

“I read a lot of Linux technical information every day, but I’m rarely
impressed by tech books. I usually prefer online information sources
instead. Mark Sobell’s books are a notable exception. They’re clearly
written, technically accurate, comprehensive, and actually enjoyable
to read.”

—Matthew Miller
Senior Systems Analyst/Administrator
BU Linux Project
Boston University Office
of Information Technology

“I would so love to be able to use this book to teach a class about not
just Ubuntu or Linux but about computers in general. It is thorough
and well written with good illustrations that explain important con-
cepts for computer usage.”

—Nathan Eckenrode
New York Local Community Team

“Overall, A Practical Guide to Ubuntu Linux® by Mark G. Sobell pro-
vides all of the information a beginner to intermediate user of Linux
would need to be productive. The inclusion of the Live DVD of the
Gutsy Gibbon release of Ubuntu makes it easy for the user to test-drive
Linux without affecting his installed OS. I have no doubts that you will
consider this book money well spent.”

—Ray Lodato
Slashdot contributor
www.slashdot.org

“This is well written, clear, comprehensive information for the Linux
user of any type, whether trying Ubuntu on for the first time and want-
ing to know a little about it, or using the book as a very good reference
when doing something more complicated like setting up a server. This
book’s value goes well beyond its purchase price and it’ll make a great
addition to the Linux section of your bookshelf.”

—Linc Fessenden
Host of The LinuxLink TechShow
tllts.org

000.frontmatter.fm Page ii Tuesday, December 2, 2008 12:57 PM

“The author has done a very good job at clarifying such a detail-oriented
operating system. I have extensive Unix and Windows experience and this
text does an excellent job at bridging the gaps between Linux, Windows,
and Unix. I highly recommend this book to both ‘newbs’ and experienced
users. Great job!”

—Mark Polczynski
Information Technology Consultant

“When I first started working with Linux just a short 10 years or so ago,
it was a little more difficult than now to get going. . . . Now, someone
new to the community has a vast array of resources available on the
web, or if they are inclined to begin with Ubuntu, they can literally find
almost every single thing they will need in the single volume of Mark
Sobell’s A Practical Guide to Ubuntu Linux®.

“I’m sure this sounds a bit like hyperbole. Everything a person would
need to know? Obviously not everything, but this book, weighing in at
just under 1200 pages, covers so much so thoroughly that there won’t
be much left out. From install to admin, networking, security, shell
scripting, package management, and a host of other topics, it is all
there. GUI and command line tools are covered. There is not really any
wasted space or fluff, just a huge amount of information. There are
screen shots when appropriate but they do not take up an inordinate
amount of space. This book is information-dense.”

—JR Peck
Editor
GeekBook.org

Praise for Other Books by Mark G. Sobell

“I currently own one of your books, A Practical Guide to Linux®. I
believe this book is one of the most comprehensive and, as the title
says, practical guides to Linux I have ever read. I consider myself a
novice and I come back to this book over and over again.”

—Albert J. Nguyen

000.frontmatter.fm Page iii Tuesday, December 2, 2008 12:57 PM

“Thank you for writing a book to help me get away from Windows XP
and to never touch Windows Vista. The book is great; I am learning a
lot of new concepts and commands. Linux is definitely getting easier
to use.”

—James Moritz

“I have been wanting to make the jump to Linux but did not have the
guts to do so—until I saw your familiarly titled A Practical Guide to
Red Hat® Linux® at the bookstore. I picked up a copy and am eagerly
looking forward to regaining my freedom.”

—Carmine Stoffo
Machine and Process Designer
to pharmaceutical industry

“I am currently reading A Practical Guide to Red Hat® Linux® and am
finally understanding the true power of the command line. I am new to
Linux and your book is a treasure.”

—Juan Gonzalez

000.frontmatter.fm Page iv Tuesday, December 2, 2008 12:57 PM

A Practical Guide to Ubuntu Linux

SECOND EDITION

Mark G. Sobell

ISBN 978-0-13-700388-4

Copyright © 2009 Mark G. Sobell

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

®

Excerpts of Chapters From

000.frontmatter.fm Page v Tuesday, December 2, 2008 12:57 PM

000.frontmatter.fm Page vi Tuesday, December 2, 2008 12:57 PM

4949

E
X
C
E
R
P
T

3Chapter3Chapter 2 covered planning the installation of Ubuntu Linux:
determining the requirements; performing an upgrade versus a
clean installation; planning the layout of the hard disk; obtaining
the files you need for the installation, including how to download
and burn CD/DVD ISO images; and collecting information
about the system. This chapter focuses on installing Ubuntu. Fre-
quently the installation is quite simple, especially if you have
done a good job of planning. Sometimes you may run into a
problem or have a special circumstance; this chapter gives you
tools to use in these cases. Read as much of this chapter as you
need to; once you have installed Ubuntu Linux, continue with
Chapter 4, which covers getting started using the Ubuntu desk-
top. If you install a textual (command-line) system, continue
with Chapter 5.

In This Chapter

Basic Installation from the
Live/Install Desktop CD/DVD . . . 50

The Ubuntu Graphical Installer . . . 53

Graphical Partitioners. 58

Setting Up a Dual-Boot System . . . 66

The Live/Install Desktop CD:
The Initial Install Screen 67

The Alternate CD Initial Install
Screen Menu 70

The Server CD Initial Install
Screen Menu 71

The Ubuntu Textual Installer. 73

Manual Partitioning 75

Setting Up a RAID Array 78

3

Step-by-Step

Installation

50 Chapter 3 Step-by-Step Installation

Basic Installation from the Live/Install

Desktop CD/DVD

To begin installing Ubuntu from a live/install Desktop CD/DVD, insert the disk in
the computer and boot the system. The system displays the Language menu
(Figure 3-1). If you do nothing, after 30 seconds the system boots to a live session
using the highlighted language. If you press any key before the 30 seconds is up, the
system stops its countdown.

From the Language menu, press RETURN to select this highlighted language and dis-
play the initial install screen (Figure 3-2). Before you press RETURN, you can use the
ARROW keys to select the language you want Ubuntu to use during a live session.
Refer to “BIOS setup” on page 28 if the system does not boot from the CD/DVD.
See “The Function Keys” on page 67 for information about changing the language,
keyboard layout, and accessibility features used by the live session.

The menu on the initial install screen differs depending on which edition of Ubuntu
(page 31) you are installing; along the bottom of the screen, the labels for the func-
tion keys remain the same. This section describes how to boot into a live session
and how to install Ubuntu from that session.

Booting the System

Before Ubuntu can display a desktop from a live/install Desktop CD/DVD or install
itself on a hard disk, the Ubuntu operating system must be read into memory

Figure 3-1 The Language menu

Basic Installation from the Live/Install Desktop CD/DVD 51

(booted). This process can take a few minutes on older, slower systems or systems
with minimal RAM (memory). Each of the menu selections on the initial install
screen, except the memory test, boots the system.

Checking the CD/DVD for Defects

Whether you burned your own CD/DVD, purchased it, or are using the disk included
with this book, it is a good idea to verify that the contents of the CD/DVD is correct.
On the initial install screen, use the ARROW keys to highlight Check CD for Defects
(this selection checks DVDs, too) and press RETURN. Checking the CD/DVD takes a few
minutes—Ubuntu keeps you apprised of its progress. When Ubuntu finishes checking
the CD/DVD, it displays the result of its testing. Press RETURN to redisplay the initial
install screen.

Live Session

In most cases, you can boot Ubuntu to run a live session that displays a desktop
without doing anything after you boot from the live/install Desktop CD/DVD:
Ubuntu displays the Language menu, counts down from 30, boots the system, dis-
plays the Ubuntu logo while an orange cursor moves back and forth on the progress

Figure 3-2 The initial install screen for the live/install Desktop CD

Test the CD/DVD
tip Testing the CD/DVD takes a few minutes but can save you much aggravation if the installation fails

or you run into problems after installing Ubuntu owing to bad media.

52 Chapter 3 Step-by-Step Installation

bar, and finally displays the GNOME desktop (Figure 3-3). To speed up this pro-
cess, you can press RETURN when Ubuntu displays the Language menu. The first time
you use a CD/DVD, it is a good idea to check it for defects (see the previous page).

If you encounter problems with the display while you are bringing up the desktop
from a live/install Desktop CD/DVD or during installation, reboot the system and
use the F4 Modes menu to bring it up in safe graphics mode, as explained on
page 68. If that tactic does not work, install Ubuntu using the textual installer on
the Alternate CD (page 70) or the DVD.

The live/install Desktop CD/DVD gives you a chance to preview Ubuntu without
installing it. Boot the live/install Desktop CD/DVD to begin a live session and work
with Ubuntu as explained in Chapter 4. When you are finished, remove the
CD/DVD and reboot the system. The system boots as it did before the live session.

Because a live session does not write to the hard disk (other than using a Linux
swap partition if one is available), none of the work you save will be available once
you reboot. You can use Webmail or another method, such as a USB flash drive, to
transfer files you want to preserve to another system.

optional Seeing What Is Going On

If you are curious and want to see what Ubuntu is doing as it boots, remove quiet
and splash from the boot command line (Figure 3-18, page 69): With the initial
install screen displayed, press F6 to display the boot command line. Press BACKSPACE or

Figure 3-3 The GNOME desktop displayed by a live session

Install object

Basic Installation from the Live/Install Desktop CD/DVD 53

DEL to back up and erase quiet and splash from the boot command line. If you have
not added anything to this line, you can remove the two hyphens at the end of the
line. If you have added to this line, use the LEFT ARROW key to back up over—but not
remove—whatever you added, the hyphens, and the SPACE on each side of them.
Then remove quiet and splash. As Ubuntu boots, it displays information about
what it is doing. Text scrolls on the screen, although sometimes too rapidly to read.

The Ubuntu Graphical Installer

ubiquity The ubiquity utility is a graphical installer, written mostly in Python, that installs
Ubuntu from a live session. You can use the Alternate or Server CD or the DVD to
install Ubuntu using the textual installer (page 73).

Welcome screen To install Ubuntu from the live/install Desktop CD/DVD, start a live session and
double-click (use the left mouse button) the object on the desktop labeled Install
(Figure 3-3).

After a few moments Ubuntu displays the Welcome screen of the Install window
(Figure 3-4). This screen contains a welcome message and a query about which lan-
guage you would like ubiquity to use. The language you choose will be the default
language for the installed system; you can change this default once the system is
installed (page 130).

Before you start, see what is on the hard disk

tip Unless you are certain you are working with a new disk, or you are sure the data on the disk is of
no value, it is a good idea to see what is on the disk before you start installing Ubuntu. You can
use the GNOME Partition Editor to examine the organization of a hard disk. See page 58 for more
information.

Figure 3-4 The Install window, Welcome screen

Scrollbar
Forward button

List box

54 Chapter 3 Step-by-Step Installation

Using the Mouse to Work with the Install Window

You can use either the mouse or the keyboard to make selections from the Install win-
dow screens. To select a language from the Welcome screen using the mouse, left-click
the language you want to use in the list box at the left. If the language you want does
not appear on the displayed portion of the list, click or drag the scrollbar (Figure 3-4)
to display more languages; then click the language of your choice. Ubuntu highlights
the language you click. Once you select a language, you are finished working with the
Welcome screen; click the Forward button to display the next screen.

Using the Keyboard to Work with the Install Window

To use the keyboard to make selections, first use the TAB key to move the highlight to
the object you want to work with. On the Welcome screen, the objects are the
selected item in the list box, the release notes link, and the buttons labeled Quit,
Back, and Forward. With a language in the list box highlighted, use the UP ARROW and
DOWN ARROW keys to move the highlight to the language you want to use. The list
scrolls automatically when you move the highlight to the next, undisplayed entry in
the list. See “F3 Keymap” on page 68 if you want to change the layout of the key-
board ubiquity uses during installation.

Once you select a language, you are finished working with the Welcome screen; use
the TAB key to highlight the Forward button. The border of a button becomes thicker
and darker when it is highlighted. With the Forward button highlighted, press RETURN

to display the next screen.

This book describes using the mouse to make selections from a graphical interface;
you can use the keyboard if you prefer.

Where are you? Next ubiquity displays the Where are you? screen. This screen allows you to specify
the time zone the computer is in. You can use the map or the drop-down list labeled
Selected city to specify the time zone. Allow the mouse pointer to hover over the area
of the map near a city that is in the same time zone as the computer; the map zooms in
on that area. Click a city; the name of the city appears in the box labeled Selected city.

To use the drop-down list, click anywhere in the box labeled Selected city; ubiquity
expands the box into a list of cities. Use the mouse or ARROW keys to select a city and
then either click the city or press RETURN. Click Forward.

Keyboard layout The Keyboard layout screen allows you to specify the type of keyboard to be used
by the installed system. (See “F3 Keymap” on page 68 to change the layout of the
keyboard ubiquity uses during installation.) Select the country you are in or the lan-
guage you will be using with the installed system from the list box on the left. Then
select the type of keyboard you will be using from the list box on the right. Click the
empty text box near the bottom of the window and enter some characters to test
your selection. Click Forward. The installer briefly displays the Starting Up the Par-
titioner window while it gets ready for the next step.

Prepare disk space The Prepare disk space screen controls how ubiquity partitions the hard disk. See
page 36 for a discussion of the issues involved in partitioning a hard disk.

Basic Installation from the Live/Install Desktop CD/DVD 55

With a single, clean hard disk—a hard disk with nothing installed on it, as it comes
from the factory (i.e., no partition table)—the ubiquity partitioner displays a Prepare
disk space screen similar to the one shown in Figure 3-5. In this case, the simplest
way to partition the disk is to allow ubiquity do it for you. By default, the radio but-
ton labeled Guided – use entire disk and the radio button next to the name of the
only hard disk in the system are selected. If the system has two or more clean hard
disks, the ubiquity partitioner displays a line for each hard disk; click the radio but-
ton next to the one where you want to install Ubuntu. Click Forward and ubiquity
creates two partitions on the hard disk: a small swap partition (page 37) and a root
partition (/, page 37) that occupies the rest of the disk. The installer displays the
Guided Partitioning window while it gets ready for the next step.

If the Prepare disk space screen includes Guided - resize... and Guided - use the
largest continuous free space selections, the hard disk probably contains at least
one partition (there could just be an empty partition table). If you are sure you do
not want to keep any of the information on the hard disk, you can select Guided -
use entire disk. To find out more about what is on the disk, see the section on the
Partition Editor on page 58. For more information on guided partitioning, see
page 61. For information on manual partitioning, see page 62.

The ubiquity partitioner displays a warning window (Figure 3-6) if it is going to
write to the hard disk before it displays the Ready to install screen (Figure 3-8,
page 57). If you click Continue, ubiquity writes to the hard disk immediately. If it
does not display this window, ubiquity will not make changes to the hard disk until
you click Install on the Ready to install screen.

Figure 3-5 The ubiquity partitioner showing one empty hard disk

Figure 3-6 Write to disk warning window

56 Chapter 3 Step-by-Step Installation

Migrate documents
and settings

If you are installing Ubuntu on a system that already has one or more operating sys-
tems installed on it, and you are not overwriting those operating systems, the
Migrate documents and settings screen displays a list of accounts and settings from
the existing operating systems. For example, if you are creating a dual-boot system
on a system that already has Windows installed on it, this screen shows the
accounts from the Windows system and a list of programs and settings. It might
show your name from the Windows system and, under that, Internet Explorer and
My Documents. Put ticks in the check boxes adjacent to those items you want to
migrate to the Ubuntu system. On the lower portion of the screen, enter the infor-
mation necessary to create an Ubuntu user to receive the migrated information.

Who are you? The Who are you? screen (Figure 3-7) sets up the first Ubuntu user. This user can
use sudo (page 86) to administer the system, including setting up additional users
(page 578). Enter the full name of the user in the text box labeled What is your
name?. As you type, ubiquity enters the first name from the name you just entered in
the box labeled What name do you want to use to log in?. Press TAB to move the cur-
sor to this box. If you want to use a different username, press BACKSPACE (page 136) to
erase the username and enter a new one. Press TAB. Enter the same password in the
two (adjacent) boxes labeled Choose a password to keep your account safe.
Although ubiquity accepts any password, it is a good idea to choose a more secure
password if the system is connected to the Internet. See “Changing Your Password”
on page 133 for a discussion of password security.

The final text box specifies the name of the computer. For use on a local network
and to connect to the Internet with a Web browser or other client, you can use a
simple name such as fox8. If you are setting up a server system, see “FQDN” on
page 785 for information on names that are valid on the Internet. Put a tick in the

Figure 3-7 The Install window, Who are you? screen

Basic Installation from the Live/Install Desktop CD/DVD 57

check box labeled Log in automatically if you want Ubuntu to log you in automati-
cally when the system boots—select this option only if you trust everyone who has
physical access to the system. Click Forward.

Ready to install The final screen ubiquity displays is the Ready to install screen (Figure 3-8). Unless
ubiquity asked your permission to write to the hard disk during the partitioning
phase of the installation, it has not written to the disk yet. If you click Quit at this
point, the hard disk will remain untouched. This screen summarizes your answers
to the questions ubiquity asked in the previous screens. Click Advanced to display
the Advanced Options window, which allows you to choose whether to install a
boot loader (normally you want to), whether the system should participate in an
automatic, informal package usage survey, and whether to set up a network proxy
(page 389). Click OK to close the Advanced Options window. If everything looks
right in the summary in the Ready to install screen, click Install. The installer begins
installing Ubuntu on the hard disk.

The ubiquity installer displays a series of windows to keep you informed of its
progress. When the new system is installed, Ubuntu displays the Installation Com-
plete window, which gives you the choice of continuing the live session or rebooting
the system so you can use the newly installed copy of Ubuntu. Click Restart now to
reboot the system.

Figure 3-8 The Install window, Ready to install screen

When ubiquity writes to the hard disk

caution You can abort the installation by clicking the Quit button at any point up to and including the Ready
to install screen (Figure 3-8) without making any changes to the system. Once you click Install in
this screen, ubiquity writes to the hard disk. However, if ubiquity displayed the warning window
shown in Figure 3-6 on page 55 and you clicked Continue, it wrote to the hard disk at that time.

58 Chapter 3 Step-by-Step Installation

The installer displays the Ubuntu logo and a progress bar. When it has finished
shutting down the system, it asks you to remove the disk (so you do not reboot
from the live/install Desktop CD/DVD) and press RETURN. After you complete these
steps, Ubuntu reboots the system and displays the Ubuntu GNOME login screen
(Figure 4-1, page 88).

Graphical Partitioners

A partitioner displays and can add, delete, and modify partitions on a hard disk.
This section describes two graphical partitioners you can use to configure a hard
disk so you can install Ubuntu Linux. The first partitioner, gparted, is available on
the live/install Desktop CD desktop. The other partitioner is part of the ubiquity
installer and is not available by itself. See page 75 for information on using the tex-
tual partitioner, which is available when you use the textual installer. After you
install Ubuntu Linux, you can use parted (page 593) to manipulate partitions. If you
want a basic set of partitions, you can allow ubiquity to partition the hard disk auto-
matically using guided partitioning.

See “Setting Up the Hard Disk” on page 33 for a discussion of free space, parti-
tions, partition tables, and filesystems. “Manual Partitioning: Planning Partitions”
on page 36 discusses some of the filesystems for which you may want to set up par-
titions if you manually partition the hard disk.

gparted: The GNOME Partition Editor

Unless you know the hard disk you are installing Ubuntu Linux on has nothing on
it (it is a new disk) or you are sure the disk holds no information of value, it is a
good idea to examine the organization of the disk before you start the installation.
The GNOME Partition Editor (gparted), which is available from a live session, is a
good tool for this job. Open the Partition Editor window by selecting Main menu:
System Administration Partition Editor as shown in Figure 3-9.

The Partition Editor displays the layout of a hard disk and can resize partitions, such
as when you are setting up a dual-boot system by adding Ubuntu to a Windows system

Figure 3-9 Selecting the Partition Editor from the Main menu

Graphical Partitioners 59

(page 66). Although you can create partitions using the Partition Editor, you cannot
specify the mount point (page 35) for a partition—this step must wait until you are
installing Ubuntu and using the ubiquity partitioner.

An Empty Hard Disk

The gparted Partition Editor shows one large unallocated space for a new hard disk
(empty, with no partition table). If you have more than one hard disk, use the list
box in the upper-right corner of the screen to select which disk the Partition Editor
displays information about. Figure 3-10 shows an empty 200-gigabyte hard disk on
the device named /dev/sda. Figure 3-5 on page 55 shows the ubiquity partitioner
ready to partition an empty drive similar to the one shown in Figure 3-10.

Deleting a Partition

Before deleting a partition, make sure it does not contain any data you need. To use
the Partition Editor to delete a partition, highlight the partition you want to delete
and click Delete and then Apply on the toolbar.

Resizing a Partition

HARDY Although you can resize a partition using the ubiquity partitioner while you are
installing Ubuntu, you may find it easier to see what you are doing when you use
the gparted Partition Editor from a live session for this task. This section explains
how to use gparted to resize a partition.

INTREPID Intrepid introduced Before and After graphics in the ubiquity partitioner, as shown in
Figure 3-12 on page 61. These graphics show relative partition sizes and free space
before and after your proposed changes. “Advanced Guided Partitioning” on
page 61 explains how to use the ubiquity partitioner to resize a partition.

Figure 3-10 The Partition Editor displaying an empty disk drive

Always back up the data on a hard disk

caution If you are installing Ubuntu on a disk that holds important data, always back up the data before
you start the installation. Things can and do go wrong. The power may go out in the middle of an
installation, corrupting the data on the hard disk. There may be a bug in the partitioning software
that destroys a filesystem. Although it is unlikely, you might make a mistake and format a partition
holding data you want to keep.

60 Chapter 3 Step-by-Step Installation

Figure 3-11 shows the Partition Editor displaying information about a hard disk
with a single partition that occupies the entire disk. This partition holds a single
200-gigabyte NTFS filesystem. The process of resizing a partition is the same
regardless of the type of partition: You can use the following technique to resize
Windows, Linux, or other types of partitions.

To install Ubuntu on this system, you must resize (shrink) the partition to make
room for Ubuntu. Before you resize a Windows partition, you must boot Windows
and defragment the partition using the Windows defragmenter; see the tip on
page 66. To resize the partition, right-click to highlight the line that describes the
partition and select Resize/Move on the toolbar. The Partition Editor opens a small
Resize/Move window, as shown in Figure 3-11.

At the top of the Resize/Move window is a graphical representation of the partition.
Initially the partition occupies the whole disk. The spin box labeled New Size (MiB)
shows the number of mebibytes occupied by the partition—in this case, the whole
disk. The two spin boxes labeled Free Space show no free space.

You can specify how you want to resize the partition by (right-clicking and) drag-
ging one of the triangles at the ends of the graphical representation of the partition
or by entering the number of mebibytes you want to shrink the Windows partition
to in the spin box labeled New Size. The value in one of the spin boxes labeled Free
Space increases when you make this change. Click Resize/Move to add the resize
operation to the list of pending operations at the bottom of the window. Click
Apply on the toolbar to resize the partition.

Figure 3-11 The gparted Partition Editor displaying a disk drive
holding a Windows system

Graphical Partitioners 61

Although you can use the Partition Editor to create partitions to install Ubuntu on,
the ubiquity partitioner allows you to specify mount points for the partitions; the
gparted Partition Editor does not.

253253

E
X
C
E
R
P
T

8Chapter8This chapter covers the Linux graphical user interface (GUI). It
continues where Chapter 4 left off, going into more detail about
the X Window System, the basis for the Linux GUI. It presents a
brief history of GNOME and KDE and discusses some of the
problems and benefits of having two major Linux desktop envi-
ronments. The section on the Nautilus File Browser covers the
View and Side panes, the control bars, and the menubar. The
final section explores some GNOME utilities, including the new
Deskbar applet and Terminal, the GNOME terminal emulator.

In This Chapter

X Window System 254

Starting X from a Character-Based
Display . 256

Remote Computing and Local
Displays 256

Desktop Environments/
Managers 261

The Nautilus File Browser
Window 262

GNOME Utilities 269

Run Application Window 270

GNOME Terminal
Emulator/Shell 272

8

Linux GUIs: X and

GNOME

262 Chapter 8 Linux GUIs: X and GNOME

The Nautilus File Browser Window

“Using Nautilus to Work with Files” on page 94 presented an introduction to using
Nautilus. This section discusses the Nautilus File Browser window in more depth.
Figure 8-2 shows a File Browser window with a Side pane (sometimes called a side-
bar), View pane, menubar, toolbar, location bar, and status bar. To display your
home folder in a File Browser window, select Main menu: Places Home Folder.

The Nautilus File Browser Window 263

The View Pane

The View pane displays icons or a list of filenames. Select the view you prefer from
the drop-down list at the right end of the location bar. Figure 8-2 shows View as
Icons (HARDY) and Figure 8-3 shows View as List(HARDY). INTREPID uses the terms Icon
View and List View, respectively, and also provides a Compact View. Objects in the
View pane behave exactly as objects on the desktop do. See the sections starting on
page 89 for information on working with objects.

You can cut/copy and paste objects within a single View pane, between View panes,
or between a View pane and the desktop. The Object context menu (right-click) has
cut, copy, and paste selections. Or, you can use the clipboard (page 110) to cut/copy
and paste objects.

The Side Pane

The Side pane augments the information Nautilus displays in the View pane. Press F9

or click the small x at the top of the Side pane to close it. You can display the Side
pane by pressing F9 or selecting File Browser menubar: View Side Pane. To change
the horizontal size of the Side pane and its contents, drag the handle (Figure 8-2) on
its right side.

Figure 8-3 Nautilus File Browser window displaying a
List view and a textual location bar

Location bar

Nautilus can open a terminal emulator
tip When you install the nautilus-open-terminal package and log out and log back in, Nautilus pre-

sents an Open in Terminal selection in context menus where appropriate. For example, with this
package installed, when you right-click a folder (directory) object and select Open in Terminal,
Nautilus opens a terminal emulator with that directory as the working directory (page 190).

264 Chapter 8 Linux GUIs: X and GNOME

The Side pane can display six types of information. The button at its top controls
which type it displays. This button is initially labeled Places; click it to display the
Side pane drop-down list, which has the following selections:

Places Places lists folders. Double-click one of these folders to display that folder in the
View pane. You can open a directory in a new File Browser window by right-
clicking the directory in Places and selecting Open in New Window. INTREPID: Right-
click and select Open New Tab to open the directory in a new tab.

Places contains two parts: The list above the divider is static and holds your home
directory, your desktop, the filesystem, a CD-ROM drive (when there is media in it)
and unmounted filesystems (if present), and the trash. The list below the divider
holds bookmarks. Add a bookmark by displaying the directory you want to book-
mark in the View pane and pressing CONTROL-D or by selecting File Browser menubar:
Bookmarks Add Bookmark. Remove a bookmark by selecting File Browser
menubar: Bookmarks Edit Bookmarks or by right-clicking the bookmark and
selecting Remove. You can also use Edit Bookmarks to reorder bookmarks.

Information Information presents information about the folder displayed by the View pane.

Tree Tree presents an expandable tree view of your home folder, and each mounted file-
system. Each directory in the tree has a triangle to its left. Click a triangle that points
right to expand a directory; click a triangle that points down to close a directory.
Click a directory in the tree to display that directory in the View pane. Double-click
a directory to expand it in the Side pane and display it in the View pane.

History History displays a chronological list of the folders that have been displayed in the
View pane, with the most recently displayed folder at the top. Double-click a folder
in this list to display it in the View pane.

Notes Notes provides a place to keep notes about the folder displayed in the View pane.

Emblems Similar to the Emblems tab in the Object Properties window (page 114), Emblems
allows you to drag emblems from the Side pane and drop them on objects in the
View pane. Drag and drop the Erase emblem to erase emblems associated with an
object. You cannot erase emblems that Ubuntu places on objects, such as locked
and link emblems.

Control Bars

This section discusses the four control bars that initially appear in a File Browser
window: the status bar, menubar, Main toolbar, and location bar (Figure 8-2). From
File Browser menubar: View, you can choose which of these bars to display, except
for the menubar, which Nautilus always displays.

Menubar The menubar appears at the top of the File Browser window and displays a menu
when you click one of its selections. Which menu selections Nautilus displays
depend on what the View pane is displaying and which object(s) are selected. The
next section describes the menubar in detail.

The Nautilus File Browser Window 265

Main toolbar The Main toolbar appears below the menubar and holds navigation tool icons:
Back, Forward, Up, Stop, Reload, Home, Computer, and Search. If the Main tool-
bar is too short to hold all icons, Nautilus displays a button with a triangle pointing
down at the right end of the toolbar. Click this button to display a drop-down list of
the remaining icons.

Location bar Below the Main toolbar is the location bar, which displays the name of the directory
that appears in the View pane. It can display this name in two formats: iconic (using
buttons) and textual (using a text box). Press CONTROL-L to switch to textual format,
click the pencil and paper icon at the left of this bar to switch between iconic and
textual formats.

In iconic format, each button represents a directory in a pathname (page 191). The
View pane displays the directory of the depressed (darker) button. Click one of
these buttons to display that directory. If the leftmost button holds a triangle that
points to the left, Nautilus is not displaying buttons for all the directories in the
absolute (full) pathname; click the button with a triangle in it to display more
directory buttons.

In textual format, the text box displays the absolute pathname of the displayed
directory. To have Nautilus display another directory, enter the pathname of the
directory and press RETURN.

The location bar also holds the magnification selector and the View drop-down list.
To change the magnification of the display in the View pane, click the plus or minus
sign in a magnifying glass on either side of the magnification percentage. Right-click
the magnification percentage itself to return to the default magnification. Left-click
the magnification percentage to display a drop-down list of magnifications. Click
View as (to the right of the right-hand magnifying glass) to choose whether to view
files as icons, a list, or, under INTREPID, in compact format.

Status bar The status bar, at the bottom of the window, indicates how many items are displayed
in the View pane. If the directory you are viewing is on the local system, it also tells
you how much free space is on the device that holds the directory displayed by the
View pane.

Menubar

The Nautilus File Browser menubar controls what information the File Browser dis-
plays and how it displays that information. Many of the menu selections duplicate
controls found elsewhere in the File Browser window. This section highlights some
of the selections on the menubar; click Help on the menubar and select Contents or
Get Help Online for more information. This section describes the six parts of the
menubar.

File The several Open selections and the Property selection of File work with the high-
lighted object(s) in the View pane. If no objects are highlighted, these selections

266 Chapter 8 Linux GUIs: X and GNOME

are grayed out or absent. Selecting Connect to Server displays the Connect to
Server window (Figure 8-4). This window presents a Service type drop-down list
that allows you to select FTP, SSH, Windows, or other types of servers. Enter the
URL of the server in the text box labeled Server. For an FTP connection, do not
enter the ftp:// part of the URL. Fill in the optional information as appropriate.
Click Connect. If the server requires authentication, Nautilus displays a window
so you can enter your username and password. Nautilus opens a window display-
ing a directory on the server and an object, named for the URL you specified, on
the desktop. After you close the window, you can open the object to connect to
and display a directory on the server.

Edit Many of the Edit selections work with highlighted object(s) in the View pane; if no
objects are highlighted, these selections are grayed out or absent. This section discusses
three selections from Edit: Create Archive, Backgrounds and Emblems, and Preferences.

The Edit Create Archive selection creates a single archive file comprising the
selected objects. This selection opens a Create Archive window (Figure 8-5) that
allows you to specify the name and location of the archive. The drop-down list to
the right of the Archive text box allows you to specify a filename extension that
determines the type of archive this tool creates. For example, .tar.gz creates a tar
(page 162) file compressed by gzip (page 161) and .tar.bz2 creates a tar file com-
pressed by bzip2 (page 160). INTREPID: Click the triangle to the left of Other Objects to
specify a password for the archive (available only with certain types of archives).

The Edit Backgrounds and Emblems selection has three buttons on the left: Pat-
terns, Colors, and Emblems. Click Patterns to display many pattern objects on the
right side of the window. Drag and drop one of these objects on the View pane of a
File Browser window to change the background of all File Browser View panes. Drag
and drop the Reset object to reset the background to its default color and pattern
(usually white). The Colors button works the same way as the Patterns button. The
Emblems button works the same way as the Emblems tab in the Side pane (page 264).

Figure 8-4 Connect to Server window

The Nautilus File Browser Window 267

The Edit Preferences selection displays the File Management Preferences window
(Figure 8-6). This window has six tabs that control the appearance and behavior of
File Browser windows.

The Views tab sets several defaults, including which view the File Browser displays
(Icon, List, or, under INTREPID, Compact view), the arrangement of the objects, and the
default zoom level. INTREPID has a Compact View Defaults section.

Delete Versus
Move to Trash

The Behavior tab controls how many clicks it takes to open an object and what Nauti-
lus does when it opens an executable text object (script). For more confident users, this
tab has an option that includes a Delete selection in addition to the Move to Trash

Figure 8-5 Create Archive window

Figure 8-6 File Management Preferences window, Views tab

268 Chapter 8 Linux GUIs: X and GNOME

selection on several menus. The Delete selection immediately removes the selected
object instead of moving it to the Trash folder.

The Display tab specifies which information Nautilus includes in object (icon)
captions. The three drop-down lists specify the order in which Nautilus displays
information as you increase the zoom level of the View pane. This tab also speci-
fies the date format Nautilus uses.

The List Columns tab specifies which columns Nautilus displays, and in what
order it displays them, in the View pane when you select View as List (HARDY) or List
View (INTREPID).

The Preview tab controls when Nautilus displays or plays previews of files (Always,
Local Files Only, Never).

The Media tab specifies what action Nautilus takes when you insert media such as
a CD, or connect devices such as a flash drive, to the system.

View Click the Main Toolbar, Side Pane, Location Bar, and Statusbar selections in View to
display or remove these elements from the window. The Show Hidden Files selection
displays in the View pane files with hidden filenames (page 190).

Go The Go selections display various folders in the View pane.

Bookmarks Bookmarks appear at the bottom of this menu and in the Side pane under Places.
The Bookmarks selections are explained under “Places” on page 264.

INTREPID Tabs The Tabs selections work with tabs in the Nautilus window.

Help The Help selections display local and online information about Nautilus.

Figure 8-7 Appearance Preferences window, Fonts tab

GNOME Utilities 269

GNOME Utilities

GNOME comes with numerous utilities that can make your work with the desktop
easier and more productive. This section covers several tools that are integral to the
use of GNOME.

Font Preferences

The Fonts tab of the Appearance Preferences window (Figure 8-7) enables you to
change the font that GNOME uses for applications, documents, the desktop, window
titles, and terminal emulators (fixed width). To display this window, select Main
menu: System Preferences Appearance or enter gnome-appearance-properties on
a command line. Click the Fonts tab. Click one of the five font bars in the upper part
of the window to display the Pick a Font window (discussed next).

Examine the four sample boxes in the lower part of the window and select the one
in which the letters look the best. Subpixel smoothing is usually best for LCD mon-
itors. Click Details to refine the font rendering further, again picking the box in each
section in which the letters look the best.

Pick a Font Window

The Pick a Font window (Figure 8-8) appears when you need to choose a font (see
“Font Preferences”). From this window you can select a font family, a style, and a
size. A preview of your choice appears in the Preview box in the lower part of the
window. Click OK when you are satisfied with your choice.

Figure 8-8 The Pick a Font window

401401

E
X
C
E
R
P
T

11Chapter11The job of a system administrator is to keep one or more sys-
tems in a useful and convenient state for users. On a Linux
system, the administrator and user may both be you, with
you and the computer being separated by only a few feet.
Alternatively, the system administrator may be halfway
around the world, supporting a network of systems, with you
being one of thousands of users. On one hand, a system
administrator can be one person who works part-time taking
care of a system and perhaps is also a user of the system. On
the other hand, several administrators can work together full-
time to keep many systems running.

In This Chapter

Running Commands with root
Privileges 403

sudo: Running a Command with
root Privileges 406

The Upstart Event-Based init
Daemon 416

SysVinit (rc) Scripts: Start and
Stop System Services 423

Recovery (Single-User) Mode 428

rpcinfo: Displays Information
About portmap 446

TCP Wrappers: Secure a Server
(hosts.allow and hosts.deny) . . 448

Setting Up a chroot Jail 450

DHCP: Configures Network
Interfaces 454

nsswitch.conf: Which Service
to Look at First 458

PAM . 461

11

System

Administration:

Core Concepts

448 Chapter 11 System Administration: Core Concepts

Securing a Server

Two ways you can secure a server are by using TCP wrappers and by setting up a
chroot jail. This section describes both techniques.

TCP Wrappers: Secure a Server (hosts.allow and

hosts.deny)

Follow these guidelines when you open a local system to access from remote systems:

• Open the local system only to systems you want to allow to access it.

• Allow each remote system to access only the data you want it to access.

• Allow each remote system to access data only in the appropriate manner
(readonly, read/write, write only).

libwrap As part of the client/server model, TCP wrappers, which can be used for any dae-
mon that is linked against libwrap, rely on the /etc/hosts.allow and /etc/hosts.deny
files as the basis of a simple access control language (ACL). This access control lan-
guage defines rules that selectively allow clients to access server daemons on a local
system based on the client’s address and the daemon the client tries to access. The
output of ldd shows that one of the shared library dependencies of sshd is libwrap:

$ ldd /usr/sbin/sshd | grep libwrap
libwrap.so.0 => /lib/libwrap.so.0 (0xb7ec7000)

Setting Up a Server 449

hosts.allow and
hosts.deny

Each line in the hosts.allow and hosts.deny files has the following format:

daemon_list : client_list [: command]

where daemon_list is a comma-separated list of one or more server daemons (such
as portmap, vsftpd, or sshd), client_list is a comma-separated list of one or more cli-
ents (see Table 11-2, “Specifying a client,” on page 444), and the optional command
is the command that is executed when a client from client_list tries to access a server
daemon from daemon_list.

When a client requests a connection to a server, the hosts.allow and hosts.deny files
on the server system are consulted as follows until a match is found:

1. If the daemon/client pair matches a line in hosts.allow, access is granted.

2. If the daemon/client pair matches a line in hosts.deny, access is denied.

3. If there is no match in the hosts.allow or hosts.deny file, access is granted.

The first match determines whether the client is allowed to access the server. When
either hosts.allow or hosts.deny does not exist, it is as though that file was empty.
Although it is not recommended, you can allow access to all daemons for all clients
by removing both files.

Examples For a more secure system, put the following line in hosts.deny to block all access:

$ cat /etc/hosts.deny
...
ALL : ALL : echo '%c tried to connect to %d and was blocked' >> /var/log/tcpwrappers.log

This line prevents any client from connecting to any service, unless specifically per-
mitted to do so in hosts.allow. When this rule is matched, it adds a line to the file
named /var/log/tcpwrappers.log. The %c expands to client information and the
%d expands to the name of the daemon the client attempted to connect to.

With the preceding hosts.deny file in place, you can include lines in hosts.allow that
explicitly allow access to certain services and systems. For example, the following
hosts.allow file allows anyone to connect to the OpenSSH daemon (ssh, scp, sftp)
but allows telnet connections only from the same network as the local system and
users on the 192.168. subnet:

$ cat /etc/hosts.allow
sshd: ALL
in.telnet: LOCAL
in.telnet: 192.168.* 127.0.0.1
...

The first line allows connection from any system (ALL) to sshd. The second line
allows connection from any system in the same domain as the server (LOCAL).
The third line matches any system whose IP address starts 192.168. and the local
system.

450 Chapter 11 System Administration: Core Concepts

Setting Up a chroot Jail

On early UNIX systems, the root directory was a fixed point in the filesystem. On mod-
ern UNIX variants, including Linux, you can define the root directory on a per-process
basis. The chroot utility allows you to run a process with a root directory other than /.

The root directory appears at the top of the directory hierarchy and has no parent.
Thus a process cannot access files above the root directory because none exists. If,
for example, you run a program (process) and specify its root directory as /tmp/jail,
the program would have no concept of any files in /tmp or above: jail is the pro-
gram’s root directory and is labeled / (not jail).

By creating an artificial root directory, frequently called a (chroot) jail, you prevent a
program from accessing, executing, or modifying—possibly maliciously—files out-
side the directory hierarchy starting at its root. You must set up a chroot jail properly
to increase security: If you do not set up a chroot jail correctly, you can make it easier
for a malicious user to gain access to a system than if there were no chroot jail.

Using chroot
Creating a chroot jail is simple: Working with root privileges, give the command
/usr/sbin/chroot directory. The directory becomes the root directory and the pro-
cess attempts to run the default shell. The following command sets up a chroot jail in
the (existing) /tmp/jail directory:

$ sudo /usr/sbin/chroot /tmp/jail
/usr/sbin/chroot: cannot run command '/bin/bash': No such file or directory

This example sets up a chroot jail, but when it attempts to run the bash shell, it fails.
Once the jail is set up, the directory that was named jail takes on the name of the
root directory, /. As a consequence, chroot cannot find the file identified by the path-
name /bin/bash. In this situation the chroot jail works correctly but is not useful.

Getting a chroot jail to work the way you want is more complicated. To have the
preceding example run bash in a chroot jail, create a bin directory in jail
(/tmp/jail/bin) and copy /bin/bash to this directory. Because the bash binary is
dynamically linked to shared libraries, you need to copy these libraries into jail as
well. The libraries go in lib.

The next example creates the necessary directories, copies bash, uses ldd to display
the shared library dependencies of bash, and copies the necessary libraries to lib.
The linux-gate.so.1 file is a dynamically shared object (DSO) provided by the kernel
to speed system calls; you do not need to copy it.

$ pwd
/tmp/jail
$ mkdir bin lib
$ cp /bin/bash bin
$ ldd bin/bash

linux-gate.so.1 => (0xffffe000)
libncurses.so.5 => /lib/libncurses.so.5 (0xb7f44000)
libdl.so.2 => /lib/tls/i686/cmov/libdl.so.2 (0xb7f40000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7dff000)
/lib/ld-linux.so.2 (0xb7f96000)

Setting Up a Server 451

$ cp /lib/{libncurses.so.5,ld-linux.so.2} lib
$ cp /lib/tls/i686/cmov/{libdl.so.2,libc.so.6} lib

Now start the chroot jail again. Although all the setup can be done by an ordinary
user, you must be working with root privileges to run chroot:

$ sudo /usr/sbin/chroot /tmp/jail
bash-3.2# pwd
/
bash-3.2# ls
bash: ls: command not found
bash-3.2# exit
exit
$

This time chroot finds and starts bash, which displays its default prompt (bash-3.2#).
The pwd command works because it is a shell builtin (page 247). However, bash can-
not find the ls utility because it is not in the chroot jail. You can copy /bin/ls and its
libraries into the jail if you want users in the jail to be able to use ls. An exit com-
mand allows you to escape from the jail.

If you provide chroot with a second argument, it takes that argument as the name
of the program to run inside the jail. The following command is equivalent to the
preceding one:

$ sudo /usr/sbin/chroot /home/sam/jail /bin/bash

To set up a useful chroot jail, first determine which utilities the users of the chroot jail
need. Then copy the appropriate binaries and their libraries into the jail. Alterna-
tively, you can build static copies of the binaries and put them in the jail without
installing separate libraries. (The statically linked binaries are considerably larger
than their dynamic counterparts. The base system with bash and the core utilities
exceeds 50 megabytes.) You can find the source code for most common utilities in
the bash and coreutils source packages.

The chroot utility fails unless you run it with root privileges. The preceding examples
used sudo to gain these privileges. The result of running chroot with root privileges is a
root shell (a shell with root privileges) running inside a chroot jail. Because a user with
root privileges can break out of a chroot jail, it is imperative that you run a program in
the chroot jail with reduced privileges (i.e., privileges other than those of root).

There are several ways to reduce the privileges of a user. For example, you can put
su or sudo in the jail and then start a shell or a daemon inside the jail, using one of
these programs to reduce the privileges of the user working in the jail. A command
such as the following starts a shell with reduced privileges inside the jail:

$ sudo /usr/sbin/chroot jailpath /usr/bin/sudo -u user /bin/bash &

where jailpath is the pathname of the jail directory, and user is the username
under whose privileges the shell runs. The problem with this scenario is that sudo
and su as compiled for Ubuntu, call PAM. To run one of these utilities you need to
put all of PAM, including its libraries and configuration files, in the jail, along with
sudo (or su) and the /etc/passwd file. Alternatively, you can recompile su or sudo.

452 Chapter 11 System Administration: Core Concepts

The source code calls PAM, however, so you would need to modify the source so it
does not call PAM. Either one of these techniques is time-consuming and introduces
complexities that can lead to an insecure jail.

The following C program1 runs a program with reduced privileges in a chroot jail.
Because this program obtains the UID and GID of the user you specify on the com-
mand line before calling chroot(), you do not need to put /etc/passwd in the jail.
The program reduces the privileges of the specified program to those of the speci-
fied user. This program is presented as a simple solution to the preceding issues so
you can experiment with a chroot jail and better understand how it works.

$ cat uchroot.c

/* See svn.gna.org/viewcvs/etoile/trunk/Etoile/LiveCD/uchroot.c for terms of use. */

#include <stdio.h>
#include <stdlib.h>
#include <pwd.h>

int main(int argc, char * argv[])
{

if(argc < 4)
{

printf("Usage: %s {username} {directory} {program} [arguments]\n", argv[0]);
return 1;

}
/* Parse arguments */
struct passwd * pass = getpwnam(argv[1]);
if(pass == NULL)
{

printf("Unknown user %s\n", argv[1]);
return 2;

}
/* Set the required UID */
chdir(argv[2]);
if(chroot(argv[2])

||
setgid(pass->pw_gid)
||
setuid(pass->pw_uid))

{
printf("%s must be run as root. Current uid=%d, euid=%d\n",

argv[0],
(int)getuid(),
(int)geteuid()
);

return 3;
}
char buf[100];
return execv(argv[3], argv + 3);

}

1. Thanks to David Chisnall and the Étoilé Project (etoileos.com) for the uchroot.c program.

Setting Up a Server 453

The first of the following commands compiles uchroot.c, creating an executable file
named uchroot. Subsequent commands move uchroot to /usr/local/bin and give it
appropriate ownership.

$ cc -o uchroot uchroot.c
$ sudo mv uchroot /usr/local/bin
$ sudo chown root:root /usr/local/bin/uchroot
$ ls -l /usr/local/bin/uchroot
-rwxr-xr-x 1 root root 7922 Jul 17 08:26 /usr/local/bin/uchroot

Using the setup from earlier in this section, give the following command to run a
shell with the privileges of the user sam inside a chroot jail:

$ sudo /usr/local/bin/uchroot sam /tmp/jail /bin/bash

Running a Service in a chroot Jail

Running a shell inside a jail has limited usefulness. Instead, you are more likely to
want to run a specific service inside the jail. To run a service inside a jail, make sure
all files needed by that service are inside the jail. Using uchroot, the format of a com-
mand to start a service in a chroot jail is

$ sudo /usr/local/bin/uchroot user jailpath daemonname

where jailpath is the pathname of the jail directory, user is the username that runs
the daemon, and daemonname is the pathname (inside the jail) of the daemon that
provides the service.

Some servers are already set up to take advantage of chroot jails. You can set up
DNS so that named runs in a jail (page 808), for example, and the vsftpd FTP server
can automatically start chroot jails for clients (page 667).

Security Considerations

Some services need to be run by a user/process with root privileges but release
their root privileges once started (Apache, Procmail, and vsftpd are examples). If
you are running such a service, you do not need to use uchroot or put su or sudo
inside the jail.

A process run with root privileges can potentially escape from a chroot jail. For this
reason, always reduce privileges before starting a program running inside the jail.
Also, be careful about which setuid (page 204) binaries you allow inside a jail—a
security hole in one of them could compromise the security of the jail. In addition,
make sure the user cannot access executable files that he uploads to the jail.

Keeping multiple chroot jails

tip If you plan to deploy multiple chroot jails, it is a good idea to keep a clean copy of the bin and lib
directories somewhere other than one of the active jails.

454 Chapter 11 System Administration: Core Concepts

DHCP: Configures Network Interfaces

Instead of storing network configuration information in local files on each system,
DHCP (Dynamic Host Configuration Protocol) enables client systems to retrieve
network configuration information from a DHCP server each time they connect to
the network. A DHCP server assigns IP addresses from a pool of addresses to clients
as needed. Assigned addresses are typically temporary but need not be.

This technique has several advantages over storing network configuration informa-
tion in local files:

• A new user can set up an Internet connection without having to deal with
IP addresses, netmasks, DNS addresses, and other technical details. An
experienced user can set up a connection more quickly.

• DHCP facilitates assignment and management of IP addresses and related
network information by centralizing the process on a server. A system
administrator can configure new systems, including laptops that connect
to the network from different locations, to use DHCP; DHCP then assigns
IP addresses only when each system connects to the network. The pool of
IP addresses is managed as a group on the DHCP server.

• IP addresses can be used by more than one system, reducing the total num-
ber of IP addresses needed. This conservation of addresses is important
because the Internet is quickly running out of IPv4 addresses. Although a
particular IP address can be used by only one system at a time, many end-
user systems require addresses only occasionally, when they connect to the
Internet. By reusing IP addresses, DHCP has lengthened the life of the IPv4
protocol. DHCP applies to IPv4 only, as IPv6 (page 371) forces systems to
configure their IP addresses automatically (called autoconfiguration) when
they connect to a network.

DHCP is particularly useful for an administrator who is responsible for maintain-
ing a large number of systems because individual systems no longer need to store
unique configuration information. With DHCP, the administrator can set up a
master system and deploy new systems with a copy of the master’s hard disk. In
educational establishments and other open-access facilities, the hard disk image
may be stored on a shared drive, with each workstation automatically restoring
itself to pristine condition at the end of each day.

More Information

Web www.dhcp.org
DHCP FAQ: www.dhcp-handbook.com/dhcp_faq.html

HOWTO DHCP Mini HOWTO

How DHCP Works

Using dhclient, the client contacts the server daemon, dhcpd, to obtain the IP
address, netmask, broadcast address, nameserver address, and other networking

Setting Up a Server 455

parameters. In turn, the server provides a lease on the IP address to the client. The
client can request the specific terms of the lease, including its duration; the server
can limit these terms. While connected to the network, a client typically requests
extensions of its lease as necessary so its IP address remains the same. This lease
may expire once the client is disconnected from the network, with the server giving
the client a new IP address when it requests a new lease. You can also set up a
DHCP server to provide static IP addresses for specific clients (refer to “Static Ver-
sus Dynamic IP Addresses” on page 366). DHCP is broadcast based, so both client
and server must be on the same subnet (page 369).

When you install Ubuntu, the system runs a DHCP client, connects to a DHCP
server if it can find one, and configures its network interface. You can use firestarter
(page 824) to configure and run a DHCP server.

DHCP Client

A DHCP client requests network configuration parameters from the DHCP server
and uses those parameters to configure its network interface.

Prerequisites

Make sure the following package is installed:

• dhcp3-client

dhclient: The DHCP Client

When a DHCP client system connects to the network, dhclient requests a lease
from the DHCP server and configures the client’s network interface(s). Once a
DHCP client has requested and established a lease, it stores the lease information
in a file named dhclient.interface.leases, which is stored in /var/lib/dhcp3. The
interface is the name of the interface that the client uses, such as eth0. The system
uses this information to reestablish a lease when either the server or the client
needs to reboot. You need to change the default DHCP client configuration file,
/etc/dhcp3/dhclient.conf, only for custom configurations.

The following /etc/dhcp3/dhclient.conf file specifies a single interface, eth0:

$ cat /etc/dhcp3/dhclient.conf
interface "eth0"
{
send dhcp-client-identifier 1:xx:xx:xx:xx:xx:xx;
send dhcp-lease-time 86400;
}

In the preceding file, the 1 in the dhcp-client-identifier specifies an Ethernet net-
work and xx:xx:xx:xx:xx:xx is the MAC address (page 1118) of the device control-
ling that interface. See page 457 for instructions on how to determine the MAC
address of a device. The dhcp-lease-time is the duration, in seconds, of the lease on
the IP address. While the client is connected to the network, dhclient automatically
renews the lease each time half of the lease time is up. The lease time of 86,400 sec-
onds (or one day) is a reasonable choice for a workstation.

456 Chapter 11 System Administration: Core Concepts

DHCP Server

A DHCP server maintains a list of IP addresses and other configuration parameters.
Clients request network configuration parameters from the server.

Prerequisites

Install the following package:

• dhcp3-server

dhcp3-server init
script

When you install the dhcpd3-server package, the dpkg postinst script attempts to
start the dhcpd3 daemon and fails because dhcpd3 is not configured—see
/var/log/syslog for details. After you configure dhcpd3, call the dhcp3-server init
script to restart the dhcpd3 daemon:

$ sudo /etc/init.d/dhcp3-server restart

dhcpd: The DHCP Daemon

A simple DCHP server (dhcpd) allows you to add clients to a network without
maintaining a list of assigned IP addresses. A simple network, such as a home LAN
sharing an Internet connection, can use DHCP to assign a dynamic IP address to
almost all nodes. The exceptions are servers and routers, which must be at known
network locations to be able to receive connections. If servers and routers are con-
figured without DHCP, you can specify a simple DHCP server configuration in
/etc/dhcp3/dhcpd.conf:

$ cat /etc/dhcp3/dhcpd.conf
default-lease-time 600;
max-lease-time 86400;

option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.1;
option domain-name-servers 192.168.1.1;
option domain-name "example.com";

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.2 192.168.1.200;
}

The /etc/default/dhcp3-server file specifies the interfaces that dhcpd serves requests
on. By default, dhcpd uses eth0. To use another interface or to use more than one
interface, set the INTERFACES variable in this file to a SPACE-separated list of the
interfaces you want to use; enclose the list within quotation marks.

The preceding configuration file specifies a LAN where both the router and DNS
server are located on 192.168.1.1. The default-lease-time specifies the number of
seconds the dynamic IP lease will remain valid if the client does not specify a dura-
tion. The max-lease-time is the maximum time allowed for a lease.

The information in the option lines is sent to each client when it connects. The
names following the word option specify what the following argument represents.
For example, the option broadcast-address line specifies the broadcast address of
the network. The routers and domain-name-servers options allow multiple values
separated by commas.

Setting Up a Server 457

The subnet section includes a range line that specifies the range of IP addresses the
DHCP server can assign. If case of multiple subnets, you can define options, such as
subnet-mask, inside the subnet section. Options defined outside all subnet sections
are global and apply to all subnets.

The preceding configuration file assigns addresses in the range from 192.168.1.2 to
192.168.1.200. The DHCP server starts at the bottom of this range and attempts to
assign a new IP address to each new client. Once the DHCP server reaches the top
of the range, it starts reassigning IP addresses that have been used in the past but are
not currently in use. If you have fewer systems than IP addresses, the IP address of
each system should remain fairly constant. Two systems cannot use the same IP
address at the same time.

Once you have configured a DHCP server, restart it using the dhcpd init script
(page 456). When the server is running, clients configured to obtain an IP address
from the server using DHCP should be able to do so.

Static IP Addresses

As mentioned earlier, routers and servers typically require static IP addresses.
Although you can manually configure IP addresses for these systems, it may be
more convenient to have the DHCP server provide them with static IP addresses.

When a system that requires a specific static IP address connects to the network and
contacts the DHCP server, the server needs a way to identify the system so it can assign
the proper IP address to that system. The DHCP server uses the MAC address
(page 1118) of the system’s Ethernet card (NIC) as an identifier. When you set up the
server, you must know the MAC address of each system that requires a static IP address.

Determining a MAC
address

The ifconfig utility displays the MAC addresses of the Ethernet cards in a system. In
the following example, the MAC addresses are the colon-separated series of hexa-
decimal number pairs following HWaddr:

$ ifconfig | grep -i hwaddr
eth0 Link encap:Ethernet HWaddr BA:DF:00:DF:C0:FF
eth1 Link encap:Ethernet HWaddr 00:02:B3:41:35:98

Run ifconfig on each system that requires a static IP address. Once you have deter-
mined the MAC addresses of these systems, you can add a host section to the
/etc/dhcp3/dhcpd.conf file for each one, instructing the DHCP server to assign a
specific address to that system. The following host section assigns the address
192.168.1.1 to the system with the MAC address of BA:DF:00:DF:C0:FF:

$ cat /etc/dhcp3/dhcpd.conf
...
host router {
 hardware ethernet BA:DF:00:DF:C0:FF;
 fixed-address 192.168.1.1;
 option host-name router;
}

The name following host is used internally by dhcpd. The name specified after
option host-name is passed to the client and can be a hostname or an FQDN. After
making changes to dhcpd.conf, restart dhcpd using the dhcpd init script (page 456).

458 Chapter 11 System Administration: Core Concepts

nsswitch.conf: Which Service to Look at First

With the advent of NIS and DNS, finding user and system information was no
longer a simple matter of searching a local file. Where once you looked in
/etc/passwd to get user information and in /etc/hosts to find system address infor-
mation, you can now use several methods to obtain this type of information. The
/etc/nsswitch.conf (name service switch configuration) file specifies which methods
to use and the order in which to use them when looking for a certain type of infor-
mation. You can also specify which action the system should take based on whether
a method succeeds or fails.

Format Each line in nsswitch.conf specifies how to search for a piece of information, such
as a user’s password. A line in nsswitch.conf has the following format:

info: method [[action]] [method [[action]]...]

where info specifies the type of information the line describes, method is the method
used to find the information, and action is the response to the return status of the
preceding method. The action is enclosed within square brackets.

How nsswitch.conf Works

When called upon to supply information that nsswitch.conf describes, the system
examines the line with the appropriate info field. It uses the methods specified on
the line, starting with the method on the left. By default, when it finds the desired
information, the system stops searching. Without an action specification, when a
method fails to return a result, the system tries the next action. It is possible for the
search to end without finding the requested information.

Information

The nsswitch.conf file commonly controls searches for usernames, passwords, host IP
addresses, and group information. The following list describes most of the types of
information (info in the syntax given earlier) that nsswitch.conf controls searches for.

automount Automount (/etc/auto.master and /etc/auto.misc, page 756)
bootparam Diskless and other booting options (See the bootparam man page.)
ethers MAC address (page 1118)
group Groups of users (/etc/group, page 474)
hosts System information (/etc/hosts, page 475)
networks Network information (/etc/networks)
passwd User information (/etc/passwd, page 476)
protocols Protocol information (/etc/protocols, page 477)
publickey Used for NFS running in secure mode
rpc RPC names and numbers (/etc/rpc, page 478)
services Services information (/etc/services, page 479)
shadow Shadow password information (/etc/shadow, page 479)

nsswitch.conf: Which Service to Look at First 459

Methods

Following is a list of the types of information that nsswitch.conf controls searches
for (method in the format above). For each type of information, you can specify one
or more of the following methods:2

files Searches local files such as /etc/passwd and /etc/hosts
nis Searches the NIS database; yp is an alias for nis
dns Queries the DNS (hosts queries only)
compat ± syntax in passwd, group, and shadow files (page 460)

Search Order

The information provided by two or more methods may overlap: For example, both
files and nis may provide password information for the same user. With overlapping
information, you need to consider which method you want to be authoritative (take
precedence); place that method at the left of the list of methods.

The default nsswitch.conf file lists methods without actions, assuming no overlap
(which is normal). In this case, the order is not critical: When one method fails, the
system goes to the next one and all that is lost is a little time. Order becomes critical
when you use actions between methods or when overlapping entries differ.

The first of the following lines from nsswitch.conf causes the system to search for
password information in /etc/passwd and, if that fails, to use NIS to find the infor-
mation. If the user you are looking for is listed in both places, the information in the
local file is used and is considered authoritative. The second line uses NIS to find an
IP address given a hostname; if that fails, it searches /etc/hosts; if that fails, it checks
with DNS to find the information.

passwd files nis
hosts nis files dns

Action Items

Each method can optionally be followed by an action item that specifies what to do
if the method succeeds or fails. An action item has the following format:

[[!]STATUS=action]

where the opening and closing square brackets are part of the format and do not
indicate that the contents are optional; STATUS (uppercase by convention) is the
status being tested for; and action is the action to be taken if STATUS matches the
status returned by the preceding method. The leading exclamation point (!) is
optional and negates the status.

2. There are other, less commonly used methods. See the default /etc/nsswitch.conf file and the
nsswitch.conf man page for more information. Although NIS+ belongs in this list, it is not implemented as
a Linux server and is not discussed in this book.

460 Chapter 11 System Administration: Core Concepts

STATUS Values for STATUS are

NOTFOUND The method worked but the value being searched for was not
found. The default action is continue.

SUCCESS The method worked and the value being searched for was found; no
error was returned. The default action is return.

UNAVAIL The method failed because it is permanently unavailable. For example,
the required file may not be accessible or the required server may be down. The
default action is continue.

TRYAGAIN The method failed because it was temporarily unavailable. For
example, a file may be locked or a server overloaded. The default action is continue.

action Values for action are

return Returns to the calling routine with or without a value.

continue Continues with the next method. Any returned value is overwritten by a
value found by a subsequent method.

Example The following line from nsswitch.conf causes the system first to use DNS to search
for the IP address of a given host. The action item following the DNS method tests
whether the status returned by the method is not (!) UNAVAIL.

hosts dns [!UNAVAIL=return] files

The system takes the action associated with the STATUS (return) if the DNS
method does not return UNAVAIL (!UNAVAIL)—that is, if DNS returns SUCCESS,
NOTFOUND, or TRYAGAIN. The result is that the following method (files) is
used only when the DNS server is unavailable. If the DNS server is not unavailable
(read the two negatives as “is available”), the search returns the domain name or
reports that the domain name was not found. The search uses the files method
(checks the local /etc/hosts file) only if the server is not available.

compat Method: ± in passwd, group, and shadow Files

You can put special codes in the /etc/passwd, /etc/group, and /etc/shadow files that
cause the system, when you specify the compat method in nsswitch.conf, to com-
bine and modify entries in the local files and the NIS maps.

A plus sign (+) at the beginning of a line in one of these files adds NIS information;
a minus sign (–) removes information. For example, to use these codes in the
passwd file, specify passwd: compat in nsswitch.conf. The system then goes through
the passwd file in order, adding or removing the appropriate NIS entries when it
reaches each line that starts with a + or –.

Although you can put a plus sign at the end of the passwd file, specify passwd: compat
in nsswitch.conf to search the local passwd file, and then go through the NIS map,
it is more efficient to put passwd: file nis in nsswitch.conf and not modify the
passwd file.

677677

E
X
C
E
R
P
T

20Chapter20Sending and receiving email require three pieces of software. At
each end, there is a client, called an MUA (mail user agent),
which is a bridge between a user and the mail system. Common
MUAs are mutt, Evolution, KMail, Thunderbird, and Outlook.
When you send an email, the MUA hands it to an MTA (a mail
transfer agent, such as exim4 or sendmail), which transfers it to
the destination server. At the destination, an MDA (a mail
delivery agent, such as procmail) puts the mail in the recipient’s
mailbox file. On Linux systems, the MUA on the receiving sys-
tem either reads the mailbox file or retrieves mail from a remote
MUA or MTA, such as an ISP’s SMTP (Simple Mail Transfer
Protocol) server, using POP (Post Office Protocol) or IMAP
(Internet Message Access Protocol).

In This Chapter

Introduction to exim4 678

JumpStart I: Configuring exim4
to Use a Smarthost 680

JumpStart II: Configuring exim4
to Send and Receive Mail 682

Configuring an exim4
Mail Server 688

SpamAssassin. 691

Webmail . 695

Mailing Lists 697

Setting Up an IMAP or POP3
Mail Server 699

Authenticated Relaying 700

20

exim4: Setting Up

Mail Servers,

Clients, and More

678 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

SMTP Most Linux MUAs expect a local MTA such as exim4 to deliver outgoing email. On
some systems, including those with a dial-up connection to the Internet, the MTA
sends email to an ISP’s mail server. Because most MTAs use SMTP to deliver email,
they are often referred to as SMTP servers. By default, when you install exim4 on an
Ubuntu system, exim4 uses its own builtin MDA to deliver email to the recipient’s
mailbox file.

 Introduction to exim4
When the network that was to evolve into the Internet was first set up, it connected a
few computers, each serving a large number of users and running several services. Each
computer was capable of sending and receiving email and had a unique hostname,
which was used as a destination for email.

Today the Internet has a large number of transient clients. Because these clients do
not have fixed IP addresses or hostnames, they cannot receive email directly. Users
on these systems usually maintain an account on an email server run by their
employer or an ISP, and they collect email from this account using POP or IMAP.
Unless you own a domain where you want to receive email, you will not need to set
up exim4 to receive mail from nonlocal systems.

Smarthost You can set up exim4 on a client system so it sends mail bound for nonlocal systems
to an SMTP server that relays the mail to its destination. This type of server is called
a smarthost. Such a configuration is required by organizations that use firewalls to
prevent email from being sent out on the Internet from any system other than the
company’s official mail servers. As a partial defense against spreading viruses, some
ISPs block outbound port 25 to prevent their customers from sending email directly
to a remote computer. This configuration is required by these ISPs.

You can also set up exim4 as a server that sends mail to nonlocal systems and does
not use an ISP as a relay. In this configuration, exim4 connects directly to the SMTP
servers for the domains receiving the email. An ISP set up as a smarthost is config-
ured this way.

You can set up exim4 to accept email for a registered domain name as specified in
the domain’s DNS MX record (page 790). However, most mail clients (MUAs) do
not interact directly with exim4 to receive email. Instead, they use POP or IMAP—
protocols that include features for managing mail folders, leaving messages on the
server, and reading only the subject of an email without downloading the entire
message. If you want to collect your email from a system other than the one running
the incoming mail server, you may need to set up a POP or IMAP server, as dis-
cussed on page 699.

You do not need to set up exim4 to send and receive email
tip Most MUAs can use POP or IMAP to receive email from an ISP’s server. These protocols do not

require an MTA such as exim4. As a consequence, you do not need to install or configure exim4 (or
another MTA) to receive email. Although you still need SMTP to send email, the SMTP server can be
at a remote location, such as your ISP. Thus you may not need to concern yourself with it, either.

Setting Up a Mail Server (exim4) 679

Alternatives to exim4

sendmail The most popular MTA today, sendmail (sendmail package) first appeared in
4.1BSD. The sendmail system is complex, but its complexity allows sendmail to be
flexible and to scale well. On the downside, because of its complexity, configuring
sendmail can be a daunting task. See www.sendmail.org for more information.

Postfix Postfix (postfix package) is an alternative MTA. Postfix is fast and easy to adminis-
ter, but is compatible enough with sendmail/exim4 to not upset sendmail/exim4
users. Postfix has a good reputation for ease of use and security and is a drop-in
replacement for sendmail. Point a browser at www.postfix.org/docs.html for Postfix
documentation.

Qmail Qmail is a direct competitor of Postfix and has the same objectives. By default,
Qmail stores email using the maildir format as opposed to the mbox format that
other MTAs use (page 684). The Qmail Web site is www.qmail.org.

More Information

Web exim4: www.exim.org (includes the complete exim4 specification),
www.exim-new-users.co.uk, wiki.debian.org/PkgExim4
SpamAssassin: spamassassin.apache.org, wiki.apache.org/spamassassin
Spam database: razor.sourceforge.net
Mailman: www.list.org
procmail: www.procmail.org
SquirrelMail: www.squirrelmail.org
IMAP: www.imap.org
Dovecot: www.dovecot.org
Postfix: www.postfix.org/docs.html (alternative MTA)
Qmail: www.qmail.org/top.html

Local exim4: /usr/share/doc/exim4*/*
SpamAssassin: /usr/share/doc/spam*
Dovecot: /usr/share/doc/dovecot*
man pages: exim4 exim4_files update-exim4.conf update-exim4defaults spamassassin
spamc spamd
SpamAssassin: Install the perl-doc and spamassassin packages and give the
following command:

$ perldoc Mail::SpamAssassin::Conf

Setting Up a Mail Server (exim4)

This section explains how to set up an exim4 mail server.

Prerequisites

Install the following packages:

• exim4 (a virtual package)

• eximon4 (optional; monitors exim4)

680 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

• mailx (optional; installs mail, which is handy for testing exim4 from the
command line)

• exim4-doc-html (optional; exim4 documentation in HTML format)

• exim4-doc-info (optional; exim4 documentation in info format)

exim4 init script When you install the exim4 package, the dpkg postinst script minimally configures
exim4 and starts the exim4 daemon. After you configure exim4, call the exim4 init
script to restart exim4:

$ sudo /etc/init.d/exim4 restart

After changing the exim4 configuration on an active server, use reload in place of
restart to reload exim4 configuration files without interrupting the work exim4 is
doing. The exim4 init script accepts several nonstandard arguments:

$ /etc/init.d/exim4
Usage: /etc/init.d/exim4 {start|stop|restart|reload|status|what|force-stop}

The status and what arguments display information about exim4. The force-stop
argument immediately kills all exim4 processes.

Notes

Firewall An SMTP server normally uses TCP port 25. If an SMTP server system that
receives nonlocal mail is running a firewall, you need to open this port. To do so,
use firestarter (page 824) to set a policy that allows SMTP service.

Log files You must be a member of the adm group or work with root privileges to view the
log files in /var/log/exim4.

sendmail and
exim4

Although it does not work the same way sendmail does, Ubuntu configures exim4
as a drop-in replacement for sendmail. The exim4-daemon-light package, which is
part of the exim4 virtual package, includes /usr/sbin/sendmail, which is a link to
exim4. Because the exim4 daemon accepts many of sendmail’s options, programs
that depend on sendmail will work with exim4 installed in place of sendmail.

Local and nonlocal
systems

The exim4 daemon sends and receives email. A piece of email that exim4 receives
can originate on a local system or on a nonlocal system. Similarly, email that exim4
sends can be destined for a local or a nonlocal system. The exim4 daemon processes
each piece of email based on its origin and destination.

The local system
versus

local systems

The local system is the one exim4 is running on. Local systems are systems that are
on the same LAN as the local system.

As it is installed, exim4 delivers mail to the local system only.

JumpStart I: Configuring exim4 to Use a Smarthost

This JumpStart configures an exim4 server that sends mail from users on local sys-
tems to local and nonlocal destinations and does not accept mail from nonlocal
systems. This server

Setting Up a Mail Server (exim4) 681

• Accepts email originating on local systems for delivery to local systems.

• Accepts email originating on local systems for delivery to nonlocal systems,
delivering it using an SMTP server (a smarthost)—typically an ISP—to
relay email to its destination.

• Does not deliver email originating on nonlocal systems. As is frequently
the case, you need to use POP or IMAP to receive email.

• Does not forward email originating on nonlocal systems to other nonlocal
systems (does not relay email).

To set up this server, you need to change the values of a few configuration variables in
/etc/exim4/update-exim4.conf.conf (page 688) and restart exim4. The dpkg-reconfigure
utility (page 690) guides you in editing this file; this JumpStart uses a text editor.
Working with root privileges, use a text editor to make the following changes to
update-exim4.conf.conf:

dc_eximconfig_configtype='smarthost'
smarthost='mail.example.net'

Configuration type Set the dc_eximconfig_configtype configuration variable to smarthost to cause
exim4 to send mail bound for nonlocal systems to the system that the smarthost
configuration variable specifies. This line should appear exactly as shown in the
preceding example.

Smarthost With dc_eximconfig_configtype set to smarthost, set smarthost to the FQDN or IP
address (preferred) of the remote SMTP server (the smarthost) that exim4 uses to
relay email to nonlocal systems. Replace mail.example.net with this FQDN or IP
address. For Boolean variables in update-exim4.conf.conf, exim4 interprets the null
value (specified by '') as a value of false. With these changes, the file should look
similar to this:

$ cat /etc/exim4/update-exim4.conf.conf
...
dc_eximconfig_configtype='smarthost'
dc_other_hostnames=''
dc_local_interfaces='127.0.0.1'
dc_readhost=''
dc_relay_domains=''
dc_minimaldns='false'
dc_relay_nets=''
dc_smarthost='mail.example.net'
CFILEMODE='644'
dc_use_split_config='false'
dc_hide_mailname='false'
dc_mailname_in_oh='true'
dc_localdelivery='mail_spool'

The exim4 server does not use the value of the dc_local_interfaces variable in a
smarthost configuration, so you can leave it blank. However, in other configura-
tions, the value of 127.0.0.1 prevents exim4 from accepting email from nonlocal

682 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

systems. It is a good idea to configure exim4 this way and change this variable only
when you are ready to accept mail from other systems.

To minimize network accesses for DNS lookups, which can be helpful if you are
using a dial-up line, change the value of the dc_minimaldns configuration variable
to true.

/etc/mailname The /etc/mailname file initially holds the node name (uname –n) of the server. The
string stored in /etc/mailname appears as the name of the sending system on the
envelope-from and From lines of email that originates on the local system. If you
want email to appear to come from a different system, change the contents of this
file. You can modify this file using a text editor; the dpkg-reconfigure utility can also
change it.

The following file causes mail sent from the local system to appear to come from
username@example.com, where username is the username of the user who is sending
the email:

$ cat /etc/mailname
example.com

See page 688 for more information on exim4 configuration variables. After making
these changes, restart exim4 (page 680).

Test Test exim4 with the following command:

$ echo "my exim4 test" | exim4 user@remote.host

Replace user@remote.host with an email address on another system where you
receive email. You need to send email to a remote system to make sure that exim4 is
sending email to the remote SMTP server (the smarthost). If the mail is not deliv-
ered, check the email of the user who sent the email (on the local system) for errors.
Also check the log file(s) in the /var/log/exim4 directory.

JumpStart II: Configuring exim4 to Send and Receive Mail

To receive email sent from a nonlocal system to a registered domain (that you
control), you need to configure exim4 to accept email from nonlocal systems. This
JumpStart describes how to set up a server that

• Accepts email from local and nonlocal systems.

• Delivers email that originates on local systems to a local system or directly
to a nonlocal system, without using a relay.

• Delivers email that originates on nonlocal systems to a local system only.

• Does not forward email originating on nonlocal systems to other nonlocal
systems (does not relay email).

This server does not relay email originating on nonlocal systems. (You must set the
dc_relay_domains variable [page 690] for the local system to act as a relay.) For this

Setting Up a Mail Server (exim4) 683

configuration to work, you must be able to make outbound connections and receive
inbound connections on port 25 (see “Firewall” on page 680).

Working with root privileges, use a text editor to set the following configuration
variables in /etc/exim4/update-exim4.conf.conf:

dc_eximconfig_configtype='internet'
dc_other_hostnames='mydom.example.com'
dc_local_interfaces=''

Configuration type Set dc_eximconfig_configtype to internet to cause exim4 to send mail directly to
nonlocal systems as specified by the DNS MX record (page 790) for the domain the
mail is addressed to and to accept email on the interfaces specified by
dc_local_interfaces (next page). This line should appear exactly as shown above.

Other hostnames The dc_other_hostnames configuration variable specifies the FQDNs or IP addresses
that the local server receives mail addressed to. Replace mydom.example.com with
these FQDN or IP addresses. You must separate multiple entries with semi-
colons. These values do not necessarily include the FQDN or the IP address of
the local server.

Local interfaces Set dc_local_interfaces to the interface you want exim4 to listen on. Set it to the null
value ('') to listen on all interfaces.

As in JumpStart I, you may need to change the value of /etc/mailname (page 682).
For Boolean variables in this file, exim4 interprets the null value (specified by ' ') as
false. The file should look similar to this:

$ cat /etc/exim4/update-exim4.conf.conf
...
dc_eximconfig_configtype='internet'
dc_other_hostnames='mydom.example.com'
dc_local_interfaces=''
dc_readhost=''
dc_relay_domains=''
dc_minimaldns='false'
dc_relay_nets=''
dc_smarthost=''
CFILEMODE='644'
dc_use_split_config='false'
dc_hide_mailname=''
dc_mailname_in_oh='true'
dc_localdelivery='mail_spool'

See page 688 for more information on exim4 configuration variables. Once you
have restarted exim4, it will accept mail addressed to the local system. To receive
email addressed to a domain, the DNS MX record (page 790) for that domain must
point to the IP address of the local system. If you are not running a DNS server, you
must ask your ISP to set up an MX record or else receive mail at the IP address of
the server. If you receive email addressed to an IP address, set dc_other_hostnames
to that IP address.

684 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

Working with exim4 Messages

When exim4 receives email, from both local and nonlocal systems, it creates in the
/var/spool/exim4/input directory two files that hold the message while exim4 pro-
cesses it. To identify a particular message, exim4 generates a 16-character message
ID and uses that string in filenames pertaining to the email. The exim4 daemon
stores the body of the message in a file named by the message ID followed by –D
(data). It stores the headers and envelope information in a file named by the message
ID followed by –H (header).

Frozen messages If exim4 cannot deliver a message, it marks the message as frozen and makes no fur-
ther attempt to deliver it. Once it has successfully delivered an email, exim4
removes all files pertaining to that email from /var/spool/exim4/input.

Mail addressed to
the local system

By default, exim4 delivers email addressed to the local system to users’ files in the
mail spool directory, /var/mail, in mbox format. Within this directory, each user has
a mail file named with the user’s username. Mail remains in these files until it is col-
lected, typically by an MUA. Once an MUA collects the mail from the mail spool,
the MUA stores the mail as directed by the user, usually in the user’s home directory.

Mail addressed to
nonlocal systems

The scheme that exim4 uses to process email addressed to a nonlocal system
depends on how it is configured: It can send the email to a smarthost, it can send
the email to the system pointed to by the DNS MX record of the domain the email
is addressed to, or it can refuse to send the email.

mbox versus
maildir

The mbox format holds all messages for a user in a single file. To prevent corruption,
a process must lock this file while it is adding messages to or deleting messages from
the file; thus the MUA cannot delete a message at the same time the MTA is adding
messages. A competing format, maildir, holds each message in a separate file. This
format does not use locks, allowing an MUA to delete messages from a user at the
same time as mail is delivered to the same user. In addition, the maildir format is bet-
ter able to handle larger mailboxes. The downside is that the maildir format adds
overhead when you are using a protocol such as IMAP to check messages. The
exim4 daemon supports both mbox and maildir formats (see dc_localdelivery on
page 689). Qmail (page 679), an alternative to sendmail and exim4, uses maildir-
format mailboxes.

Mail Logs

By default, exim4 sends normal log messages to /var/exim4/mainlog, with other
messages going to other files in the same directory. The following lines in a mainlog
file describe an email message sent directly to a remote system’s SMTP server. The
exim4 daemon writes one line each time it receives a message and one line each time
it attempts to deliver a message. The Completed line indicates that exim4 has com-
pleted its part in delivering the message. Each line starts with the date and time of
the entry followed by the message ID.

Working with exim4 Messages 685

$ tail -3 /var/log/exim4/mainlog
2007-07-19 23:13:12 1IBljk-0000t8-1Z <= zachs@example.com U=sam P=local S=304
2007-07-19 23:13:17 1IBljk-0000t8-1Z => zachs@example.com R=dnslookup T=remote_smtp

H=filter.mx.meer.net [64.13.141.12]
2007-07-19 23:13:17 1IBljk-0000t8-1Z Completed

The next entry on each line except the Completed line is a two-character status flag
that tells you which kind of event the line describes:

<= Received a message
=> Delivered a message normally
–> Delivered a message normally to an additional address (same delivery)

*> Did not deliver because of a –N command-line option

** Did not deliver because the address bounced
== Did not deliver because of a temporary problem

Information following the flag is preceded by one of the following letters, which
indicates the type of the information, and an equal sign:

H Name of remote system (host)
U Username of the user who sent the message
P Protocol used to receive the message
R Router used to process the message
T Transport used to process the message
S Size of the message in bytes

The first line in the preceding example indicates that exim4 received a 304-byte
message to be delivered to zachs@example.com from sam on the local system. The
next line indicates that exim4 looked up the address using DNS (dnslookup) and
delivered it to the remote SMTP server (remote_smtp) at filter.mx.meer.net, which
has an IP address of 64.13.141.12.

The following log entries describe a message that exim4 received from a remote
system and delivered to the local system:

2007-07-19 23:13:32 1IBlk4-0000tL-8L <= zachs@gmail.com H=wx-out-0506.google.com
[66.249.82.229] P=esmtp S=1913 id=7154255d0707192313y304a1b27t39f...@mail.gmail.com

2007-07-19 23:13:32 1IBlk4-0000tL-8L => sam <sams@example.com> R=local_user T=mail_spool
2007-07-19 23:13:32 1IBlk4-0000tL-8L Completed

See the exim4 specification for more information on log files. If you send and
receive a lot of email, the mail logs can grow quite large. The logrotate (page 604)
exim4-base file archives and rotates these files regularly.

Working with Messages

You can call exim4 with many different options to work with mail that is on the
system and to generate records of mail that has passed through the system. Most of
these options begin with –M and require the message ID (see the preceding section)

686 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

of the piece of email you want to work with. The following command removes a
message from the queue:

$ sudo exim4 -Mrm 1IEKKj-0006CQ-LM
Message 1IEKKj-0006CQ-LM has been removed

Following are some of the exim4 options you can use to work with a message. Each
of these options must be followed by a message ID. See the exim4 man page for a
complete list.

–Mf Mark message as frozen
–Mrm Remove message
–Mt Thaw message
–Mvb Display message body
–Mvh Display message header

Aliases and Forwarding

You can use the aliases and .forward (page 687) files to forward email.

/etc/aliases Most of the time when you send email, it goes to a specific person; the recipient,
user@system, maps to a real user on the specified system. Sometimes, however, you
may want email to go to a class of users and not to a specific recipient. Examples of
classes of users include postmaster, webmaster, root, and tech_support. Different
users may receive this email at different times or the email may go to a group of
users. You can use the /etc/aliases file to map local addresses and classes to local
users, files, commands, and local as well as to nonlocal addresses.

Each line in /etc/aliases contains the name of a local (pseudo)user, followed by a
colon, whitespace, and a comma-separated list of destinations. Because email sent to
the root account is rarely checked, the default installation includes an entry similar
to the following that redirects email sent to root to the initial user:

root: sam

You can set up an alias to forward email to more than one user. The following line
forwards mail sent to abuse on the local system to sam and max:

abuse: sam, max

You can create simple mailing lists with this type of alias. For example, the following
alias sends copies of all email sent to admin on the local system to several users,
including Zach, who is on a different system:

admin: sam, helen, max, zach@example.com

You can direct email to a file by specifying an absolute pathname in place of a destina-
tion address. The following alias, which is quite popular among less conscientious
system administrators, redirects email sent to complaints to /dev/null (page 471),
where it disappears:

complaints: /dev/null

Working with exim4 Messages 687

You can also send email to standard input of a command by preceding the command
with the pipe character (|). This technique is commonly used by mailing list software
such as Mailman (page 697). For each list it maintains, Mailman has entries, such as
the following one for painting_class, in the aliases file:

painting_class: "|/var/lib/mailman/mail/mailman post painting_class"

See the exim4_files man page for information on exim4 files, including aliases.

newaliases After you edit /etc/aliases, you must run newaliases while you are working with
root privileges. The /usr/bin/newaliases file is a symbolic link to exim4. Running
newaliases calls exim4, which rebuilds the exim4 alias database.

~/.forward Systemwide aliases are useful in many cases, but nonroot users cannot make or
change them. Sometimes you may want to forward your own mail: Maybe you want
mail from several systems to go to one address or perhaps you want to forward your
mail while you are working at another office. The ~/.forward file allows ordinary
users to forward their email.

Lines in a .forward file are the same as the right column of the aliases file explained
earlier in this section: Destinations are listed one per line and can be a local user, a
remote email address, a filename, or a command preceded by the pipe character (|).

Mail that you forward does not go to your local mailbox. If you want to forward
mail and keep a copy in your local mailbox, you must specify your local username
preceded by a backslash to prevent an infinite loop. The following example sends
Sam’s email to himself on the local system and on the system at example.com:

$cat ~sam/.forward
sams@example.com
\sam

Related Programs

exim4 The exim4 packages include several programs. The primary program, exim4, reads
from standard input and sends an email to the recipient specified by its argument.
You can use exim4 from the command line to check that the mail delivery system is
working and to email the output of scripts. See “Test” on page 682 for an example.
The command apropos exim4 displays a list of exim4-related files and utilities. In
addition, you can call exim4 with options (page 685) or through links to cause it to
perform various tasks.

exim4 –bp When you call exim4 with the –bp option, or when you call the mailq utility (which
is a symbolic link to exim4), it displays the status of the outgoing mail queue. When
there are no messages in the queue, it displays nothing. Unless they are transient,
messages in the queue usually indicate a problem with the local or remote MTA
configuration or a network problem.

$ sudo exim4 -bp
24h 262 1IBhYI-0006iT-7Q <sam@> *** frozen ***
 zachs@example.com

688 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

eximstats The eximstats utility displays statistics based on exim4 log files. Call this utility with an
argument of the name of a log file, such as /var/log/mainlog or /var/log/mainlog2.gz.
Without any options, eximstats sends information based on the log file in text format
to standard output. When you include the –html option, eximstats generates output in
HTML format, suitable for viewing with a browser:

$ eximstats -html /var/log/exim4/mainlog.2.gz > exim.0720.html

If you are not a member of the adm group, you must run the preceding command
with root privileges. See the eximstats man page for more information.

eximon Part of the eximon4 package, eximon displays a simple graphical representation of
the exim4 queue and log files.

Configuring an exim4 Mail Server

The exim4 daemon is a complex and capable MTA that is configured by
/etc/default/exim4 and the files in the /etc/exim4 directory hierarchy. The former
allows you to specify how the daemon is to be run; the latter configures all other
aspects of exim4. You can configure exim4 by editing its configuration files with a
text editor (discussed in the next section) or by using dpkg-reconfigure (page 690).

/etc/default/exim4 The default /etc/default/exim4 file sets QUEUERUNNER to combined, which
starts one daemon that both runs the queue and listens for incoming email. It sets
QUEUEINTERVAL to 30m, which causes the daemon to run the queue (that is,
check whether the queue contains mail to be delivered) every 30 minutes. See the
comments in the file for more information.

Using a Text Editor to Configure exim4

The files in the /etc/exim4 directory hierarchy control how exim4 works—which
interfaces it listens on, whether it uses a smarthost or sends email directly to its des-
tination, whether and for which systems it relays email, and so on. You can also cre-
ate an exim4.conf.localmacros file to turn on/off exim4 functions (see page 701 for
an example). Because of its flexibility, exim4 uses many configuration variables.
You can establish the values of these variables in one of two ways: You can edit a
single file, as the JumpStart sections of this chapter explain, or you can work with
the approximately 40 files in the /etc/exim4/conf.d directory hierarchy. For many
configurations, working with the single file update-exim4.conf.conf is sufficient.
This section describes the variables in that file but does not discuss working with
the files in conf.d. Refer to the exim4 specification if you need to set up a more
complex mail server.

The update-exim4.conf.conf Configuration File

update-
exim4.conf

The update-exim4.conf utility reads the exim4 configuration files in /etc/exim4, includ-
ing update-exim4.conf.conf, and generates the /var/lib/exim4/config.autogenerated

Configuring an exim4 Mail Server 689

file. When exim4 starts, it reads this file for configuration information. Typically you
do not need to run update-exim4.conf manually because the exim4 init script
(page 680) runs this utility before it starts, restarts, or reloads exim4.

Split configuration Setting the dc_use_split_config variable in update-exim4.conf.conf to false specifies
an unsplit configuration, wherein update-exim4.conf merges the data from
exim4.conf.localmacros, update-exim4.conf.conf, and exim4.conf.template to cre-
ate config.autogenerated. Setting this variable to true specifies a split configura-
tion, wherein update-exim4.conf merges the data from exim4.conf.localmacros,
update-exim4.conf.conf, and all the files in the conf.d directory hierarchy to create
config.autogenerated.

Following is the list of configuration variables you can set in update-
exim4.conf.conf. Enclose all values within single quotation marks. For Boolean vari-
ables, exim4 interprets the null value (specified by '') as false.

CFILEMODE='perms'
Sets the permissions of config.autogenerated to the octal value perms, typically 644.

dc_eximconfig_configtype='type'
Specifies the type of configuration that exim4 will run, where type is one of the
following:

internet Sends and receives email locally and remotely. See “JumpStart II” on
page 682 for an example.

smarthost Sends and receives email locally and remotely, using a smarthost to
relay messages to nonlocal systems. See “JumpStart I” on page 680 for an example.

satellite Sends email remotely, using a smarthost to relay messages; does not
receive mail locally.

local Sends and receives local messages only.

none No configuration; exim4 will not work.

dc_hide_mailname='bool'
Controls whether exim4 displays the local mailname (from /etc/mailname,
page 682) in the headers of email originating on local systems. Set bool to true to
hide (not display) the local mailname or false to display it. When you set this vari-
able to true, exim4 uses the value of dc_readhost in headers.

dc_local_interfaces='interface-list'
The interface-list is a semicolon-separated list of interfaces that exim4 listens on.
Set interface-list to the null value ('') to cause exim4 to listen on all interfaces. Set it
to 127.0.0.1 to prevent exim4 from accepting email from other systems.

dc_localdelivery='lcl-transport'
Set lcl-transport to mail_spool to cause exim4 to store email in mbox format; set it
to maildir_home for maildir format. See page 684 for more information.

dc_mailname_in_oh='bool'
Used internally by exim4. Do not change this value.

690 Chapter 20 exim4: Setting Up Mail Servers, Clients, and More

dc_minimaldns='bool'
Set bool to true to minimize DNS lookups (useful for dial-up connections) or to
false to perform DNS lookups as needed.

dc_other_hostnames='host-list'
The host-list is a semicolon-separated list of IP addresses and/or FQDNs the local
system accepts (but does not relay) email for; localhost (127.0.0.1) is assumed to be
in this list.

dc_readhost='hostname'
The hostname replaces the local mailname in the headers of email originating on
local systems. This setting is effective only if dc_hide_mailname is set to true and
dc_eximconfig_configtype is set to smarthost or satellite.

dc_relay_domains='host-list'
The host-list is a semicolon-separated list of IP addresses and/or FQDNs the local
system accepts mail for, but does not deliver to local systems. The local system
relays mail to these systems. For example, the local system may be a secondary
server for these systems.

dc_relay_nets='host-list'
The host-list is a semicolon-separated list of IP addresses and/or FQDNs of systems
that the local system relays mail for. The local system is a smarthost (page 681) for
these systems.

dc_smarthost='host-list'
The host-list is a semicolon-separated list of IP addresses (preferred) and/or FQDNs
the local system sends email to for relaying to nonlocal systems (a smarthost;
page 681). See “JumpStart I” on page 680 for an example.

dc_use_split_config='bool'
Controls which files update-exim4.conf uses to generate the configuration file for
exim4. See “Split configuration” (page 689) for more information.

909909

E
X
C
E
R
P
T

27Chapter27Chapter 7 introduced the shells and Chapter 9 went into detail
about the Bourne Again Shell. This chapter introduces addi-
tional Bourne Again Shell commands, builtins, and concepts
that carry shell programming to a point where it can be useful.
Although you may make use of shell programming as a system
administrator, you do not have to read this chapter to perform
system administration tasks. Feel free to skip this chapter and
come back to it if and when you like.

The first part of this chapter covers programming control struc-
tures, also called control flow constructs. These structures allow
you to write scripts that can loop over command-line arguments,
make decisions based on the value of a variable, set up menus,
and more. The Bourne Again Shell uses the same constructs
found in such high-level programming languages as C.

The next part of this chapter discusses parameters and variables,
going into detail about array variables, local versus global vari-
ables, special parameters, and positional parameters. The explo-
ration of builtin commands covers type, which displays
information about a command, and read, which allows a shell

In This Chapter

Control Structures 910

File Descriptors 943

Parameters and Variables 946

Array Variables 946

Locality of Variables 948

Special Parameters. 950

Positional Parameters. 952

Builtin Commands 958

Expressions 972

Shell Programs 980

A Recursive Shell Script 981

The quiz Shell Script. 984

27

Programming the

Bourne Again Shell

910 Chapter 27 Programming the Bourne Again Shell

script to accept user input. The section on the exec builtin demonstrates how to use
exec to execute a command efficiently by replacing a process and explains how to
use exec to redirect input and output from within a script.

The next section covers the trap builtin, which provides a way to detect and respond
to operating system signals (such as the signal generated when you press CONTROL-C).
The discussion of builtins concludes with a discussion of kill, which can abort a pro-
cess, and getopts, which makes it easy to parse options for a shell script. Table 27-6
on page 971 lists some of the more commonly used builtins.

Next the chapter examines arithmetic and logical expressions as well as the opera-
tors that work with them. The final section walks through the design and imple-
mentation of two major shell scripts.

This chapter contains many examples of shell programs. Although they illustrate cer-
tain concepts, most use information from earlier examples as well. This overlap not
only reinforces your overall knowledge of shell programming but also demonstrates
how you can combine commands to solve complex tasks. Running, modifying, and
experimenting with the examples in this book is a good way to become comfortable
with the underlying concepts.

This chapter illustrates concepts with simple examples, which are followed by more
complex ones in sections marked “Optional.” The more complex scripts illustrate
traditional shell programming practices and introduce some Linux utilities often
used in scripts. You can skip these sections without loss of continuity. Return to
them when you feel comfortable with the basic concepts.

Control Structures

The control flow commands alter the order of execution of commands within a shell
script. Control structures include the if...then, for...in, while, until, and case state-
ments. In addition, the break and continue statements work in conjunction with the
control structures to alter the order of execution of commands within a script.

if...then

The if...then control structure has the following syntax:

if test-command
then

commands
fi

Do not name a shell script test
tip You can unwittingly create a problem if you give a shell script the name test because a Linux utility

has the same name. Depending on how the PATH variable is set up and how you call the program,
you may run either your script or the utility, leading to confusing results.

Control Structures 911

The bold words in the syntax description are the items you supply to cause the
structure to have the desired effect. The nonbold words are the keywords the shell
uses to identify the control structure.

test builtin Figure 27-1 shows that the if statement tests the status returned by the test-command
and transfers control based on this status. The end of the if structure is marked
by a fi statement (if spelled backward). The following script prompts for two
words, reads them, and then uses an if structure to execute commands based on
the result returned by the test builtin when it compares the two words. (See the
test info page for information on the test utility, which is similar to the test
builtin.) The test builtin returns a status of true if the two words are the same
and false if they are not. Double quotation marks around $word1 and $word2
make sure test works properly if you enter a string that contains a SPACE or other
special character:

$ cat if1
echo -n "word 1: "
read word1
echo -n "word 2: "
read word2

if test "$word1" = "$word2"
then

echo "Match"
fi
echo "End of program."

Figure 27-1 An if...then flowchart

then
commands

fi

if
test-command

True

False

912 Chapter 27 Programming the Bourne Again Shell

$./if1
word 1: peach
word 2: peach
Match
End of program.

In the preceding example the test-command is test "$word1" = "$word2". The test
builtin returns a true status if its first and third arguments have the relationship
specified by its second argument. If this command returns a true status (= 0), the
shell executes the commands between the then and fi statements. If the command
returns a false status (not = 0), the shell passes control to the statement following fi
without executing the statements between then and fi. The effect of this if statement
is to display Match if the two words are the same. The script always displays End of
program.

Builtins In the Bourne Again Shell, test is a builtin—part of the shell. It is also a stand-alone
utility kept in /usr/bin/test. This chapter discusses and demonstrates many Bourne
Again Shell builtins. You typically use the builtin version if it is available and the
utility if it is not. Each version of a command may vary slightly from one shell to the
next and from the utility to any of the shell builtins. See page 958 for more informa-
tion on shell builtins.

Checking arguments The next program uses an if structure at the beginning of a script to confirm that you
have supplied at least one argument on the command line. The test –eq operator
compares two integers; the $# special parameter (page 953) takes on the value of the
number of command-line arguments. This structure displays a message and exits
from the script with an exit status of 1 if you do not supply at least one argument:

$ cat chkargs
if test $# -eq 0

then
echo "You must supply at least one argument."
exit 1

fi
echo "Program running."
$./chkargs
You must supply at least one argument.
$./chkargs abc
Program running.

A test like the one shown in chkargs is a key component of any script that requires
arguments. To prevent the user from receiving meaningless or confusing informa-
tion from the script, the script needs to check whether the user has supplied the
appropriate arguments. Some scripts simply test whether arguments exist (as in
chkargs). Other scripts test for a specific number or specific kinds of arguments.

You can use test to verify the status of a file argument or the relationship between
two file arguments. After verifying that at least one argument has been given on the
command line, the following script tests whether the argument is the name of an

Control Structures 913

ordinary file (not a directory or other type of file) in the working directory. The test
builtin with the –f option and the first command-line argument ($1) check the file:

$ cat is_ordfile
if test $# -eq 0

then
echo "You must supply at least one argument."
exit 1

fi
if test -f "$1"

then
echo "$1 is an ordinary file in the working directory"

else
echo "$1 is NOT an ordinary file in the working directory"

fi

You can test many other characteristics of a file using test options; see Table 27-1.

Other test options provide ways to test relationships between two files, such as
whether one file is newer than another. Refer to later examples in this chapter for
more information.

[] is a synonym
for test

The following example—another version of chkargs—checks for arguments in a
way that is more traditional for Linux shell scripts. This example uses the bracket
([]) synonym for test. Rather than using the word test in scripts, you can surround
the arguments to test with brackets. The brackets must be surrounded by
whitespace (SPACEs or TABs).

Table 27-1 Options to the test builtin

Option Tests file to see if it

–d Exists and is a directory file

–e Exists

–f Exists and is an ordinary file (not a directory)

–r Exists and is readable

–s Exists and has a size greater than 0 bytes

–w Exists and is writable

–x Exists and is executable

Always test the arguments
tip To keep the examples in this book short and focused on specific concepts, the code to verify argu-

ments is often omitted or abbreviated. It is good practice to test arguments in shell programs that
other people will use. Doing so results in scripts that are easier to run and debug.

914 Chapter 27 Programming the Bourne Again Shell

$ cat chkargs2
if [$# -eq 0]

then
echo "Usage: chkargs2 argument..." 1>&2
exit 1

fi
echo "Program running."
exit 0
$./chkargs2
Usage: chkargs2 argument...
$./chkargs2 abc
Program running.

Usage messages The error message that chkargs2 displays is called a usage message and uses the
1>&2 notation to redirect its output to standard error (page 281). After issuing the
usage message, chkargs2 exits with an exit status of 1, indicating an error has
occurred. The exit 0 command at the end of the script causes chkargs2 to exit with
a 0 status after the program runs without an error. The Bourne Again Shell returns a
0 status if you omit the status code.

The usage message is commonly employed to specify the type and number of argu-
ments the script takes. Many Linux utilities provide usage messages similar to the
one in chkargs2. If you call a utility or other program with the wrong number or
wrong kind of arguments, it will often display a usage message. Following is the
usage message that cp displays when you call it without any arguments:

$ cp
cp: missing file operand
Try 'cp --help' for more information.

if...then...else

The introduction of an else statement turns the if structure into the two-way branch
shown in Figure 27-2. The if...then...else control structure has the following syntax:

if test-command
then

commands
else

commands
fi

Because a semicolon (;) ends a command just as a NEWLINE does, you can place then on
the same line as if by preceding it with a semicolon. (Because if and then are sepa-
rate builtins, they require a command separator between them; a semicolon and NEW-

LINE work equally well [page 288].) Some people prefer this notation for aesthetic
reasons; others like it because it saves space.

if test-command; then
commands

else
commands

fi

Control Structures 915

If the test-command returns a true status, the if structure executes the commands
between the then and else statements and then diverts control to the statement fol-
lowing fi. If the test-command returns a false status, the if structure executes the
commands following the else statement.

When you run the out script with arguments that are filenames, it displays the files
on the terminal. If the first argument is –v (called an option in this case), out uses
less (page 148) to display the files one screen at a time. After determining that it
was called with at least one argument, out tests its first argument to see whether it is
–v. If the result of the test is true (the first argument is –v), out uses the shift builtin
(page 954) to shift the arguments to get rid of the –v and displays the files using
less. If the result of the test is false (the first argument is not –v), the script uses cat
to display the files:

$ cat out
if [$# -eq 0]

then
echo "Usage: out [-v] filenames..." 1>&2
exit 1

fi

if ["$1" = "-v"]
then

shift
less -- "$@"

else
cat -- "$@"

fi

Figure 27-2 An if ...then...else flowchart

fi

if
test-commandTrue False

else
commands

then
commands

916 Chapter 27 Programming the Bourne Again Shell

optional In out the –– argument to cat and less tells these utilities that no more options fol-
low on the command line and not to consider leading hyphens (–) in the following
list as indicating options. Thus –– allows you to view a file with a name that starts
with a hyphen. Although not common, filenames beginning with a hyphen do occa-
sionally occur. (You can create such a file by using the command cat > –fname.) The
–– argument works with all Linux utilities that use the getopts builtin (page 968) to
parse their options; it does not work with more and a few other utilities. This argu-
ment is particularly useful when used in conjunction with rm to remove a file whose
name starts with a hyphen (rm –– –fname), including any you create while experi-
menting with the –– argument.

Figure 27-3 An if ...then...elif flowchart

fi

if
test-command

True False

else
commands

then
commands elif

test-commandTrue False

then
commands

Control Structures 917

if...then...elif
The if...then...elif control structure (Figure 27-3) has the following syntax:

if test-command
then

commands
elif test-command

then
commands

. . .
else

commands
fi

The elif statement combines the else statement and the if statement and enables you
to construct a nested set of if...then...else structures (Figure 27-3). The difference
between the else statement and the elif statement is that each else statement must be
paired with a fi statement, whereas multiple nested elif statements require only a sin-
gle closing fi statement.

The following example shows an if...then...elif control structure. This shell script com-
pares three words that the user enters. The first if statement uses the Boolean AND oper-
ator (–a) as an argument to test. The test builtin returns a true status only if the first and
second logical comparisons are true (that is, word1 matches word2 and word2 matches
word3). If test returns a true status, the script executes the command following the next
then statement, passes control to the statement following fi, and terminates:

$ cat if3
echo -n "word 1: "
read word1
echo -n "word 2: "
read word2
echo -n "word 3: "
read word3
if ["$word1" = "$word2" -a "$word2" = "$word3"]

then
echo "Match: words 1, 2, & 3"

elif ["$word1" = "$word2"]
then

echo "Match: words 1 & 2"
elif ["$word1" = "$word3"]
then

echo "Match: words 1 & 3"
elif ["$word2" = "$word3"]
then

echo "Match: words 2 & 3"
else

echo "No match"
fi

918 Chapter 27 Programming the Bourne Again Shell

$./if3
word 1: apple
word 2: orange
word 3: pear
No match
$./if3
word 1: apple
word 2: orange
word 3: apple
Match: words 1 & 3
$./if3
word 1: apple
word 2: apple
word 3: apple
Match: words 1, 2, & 3

If the three words are not the same, the structure passes control to the first elif,
which begins a series of tests to see if any pair of words is the same. As the nesting
continues, if any one of the if statements is satisfied, the structure passes control
to the next then statement and subsequently to the statement following fi. Each
time an elif statement is not satisfied, the structure passes control to the next elif
statement. The double quotation marks around the arguments to echo that con-
tain ampersands (&) prevent the shell from interpreting the ampersands as special
characters.

optional The lnks Script

The following script, named lnks, demonstrates the if...then and if...then...elif con-
trol structures. This script finds hard links to its first argument, a filename. If you
provide the name of a directory as the second argument, lnks searches for links in
the directory hierarchy rooted at that directory. If you do not specify a directory,
lnks searches the working directory and its subdirectories. This script does not
locate symbolic links.

$ cat lnks
#!/bin/bash
Identify links to a file
Usage: lnks file [directory]

if [$# -eq 0 -o $# -gt 2]; then
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi
if [-d "$1"]; then

echo "First argument cannot be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

else
file="$1"

fi

Control Structures 919

if [$# -eq 1]; then
directory="."

elif [-d "$2"]; then
directory="$2"

else
echo "Optional second argument must be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

Check that file exists and is an ordinary file
if [! -f "$file"]; then

echo "lnks: $file not found or special file" 1>&2
exit 1

fi
Check link count on file
set -- $(ls -l "$file")

linkcnt=$2
if ["$linkcnt" -eq 1]; then

echo "lnks: no other hard links to $file" 1>&2
exit 0

fi

Get the inode of the given file
set $(ls -i "$file")

inode=$1

Find and print the files with that inode number
echo "lnks: using find to search for links..." 1>&2
find "$directory" -xdev -inum $inode -print

Max has a file named letter in his home directory. He wants to find links to this file
in his and other users’ home directory file trees. In the following example, Max
calls lnks from his home directory to perform the search. The second argument to
lnks, /home, is the pathname of the directory where he wants to start the search.
The lnks script reports that /home/max/letter and /home/zach/draft are links to
the same file:

$./lnks letter /home
lnks: using find to search for links...
/home/max/letter
/home/zach/draft

In addition to the if...then...elif control structure, lnks introduces other features
that are commonly used in shell programs. The following discussion describes lnks
section by section.

Specify the shell The first line of the lnks script uses #! (page 286) to specify the shell that will execute
the script:

#!/bin/bash

920 Chapter 27 Programming the Bourne Again Shell

In this chapter, the #! notation appears only in more complex examples. It ensures
that the proper shell executes the script, even when the user is running a different
shell or the script is called from a script running a different shell.

Comments The second and third lines of lnks are comments; the shell ignores text follows a
pound sign up to the next NEWLINE character. These comments in lnks briefly identify
what the file does and explain how to use it:

Identify links to a file
Usage: lnks file [directory]

Usage messages The first if statement tests whether lnks was called with zero arguments or more
than two arguments:

if [$# -eq 0 -o $# -gt 2]; then
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

If either of these conditions is true, lnks sends a usage message to standard error
and exits with a status of 1. The double quotation marks around the usage message
prevent the shell from interpreting the brackets as special characters. The brackets
in the usage message indicate that the directory argument is optional.

The second if statement tests whether the first command-line argument ($1) is a
directory (the –d argument to test returns true if the file exists and is a directory):

if [-d "$1"]; then
echo "First argument cannot be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

else
file="$1"

fi

If the first argument is a directory, lnks displays a usage message and exits. If it is
not a directory, lnks saves the value of $1 in the file variable because later in the
script set resets the command-line arguments. If the value of $1 is not saved before
the set command is issued, its value is lost.

Test the arguments The next section of lnks is an if...then...elif statement:

if [$# -eq 1]; then
directory="."

elif [-d "$2"]; then
directory="$2"

else
echo "Optional second argument must be a directory." 1>&2
echo "Usage: lnks file [directory]" 1>&2
exit 1

fi

Control Structures 921

The first test-command determines whether the user specified a single argument on
the command line. If the test-command returns 0 (true), the directory variable is
assigned the value of the working directory (.). If the test-command returns false, the
elif statement tests whether the second argument is a directory. If it is a directory, the
directory variable is set equal to the second command-line argument, $2. If $2 is not
a directory, lnks sends a usage message to standard error and exits with a status of 1.

The next if statement in lnks tests whether $file does not exist. This test keeps lnks
from wasting time looking for links to a nonexistent file. The test builtin, when
called with the three arguments !, –f, and $file, evaluates to true if the file $file does
not exist:

[! -f "$file"]

The ! operator preceding the –f argument to test negates its result, yielding false if
the file $file does exist and is an ordinary file.

Next lnks uses set and ls –l to check the number of links $file has:

Check link count on file
set -- $(ls -l "$file")

linkcnt=$2
if ["$linkcnt" -eq 1]; then

echo "lnks: no other hard links to $file" 1>&2
exit 0

fi

The set builtin uses command substitution (page 346) to set the positional parame-
ters to the output of ls –l. The second field in this output is the link count, so the
user-created variable linkcnt is set equal to $2. The –– used with set prevents set
from interpreting as an option the first argument produced by ls –l (the first argu-
ment is the access permissions for the file and typically begins with –). The if state-
ment checks whether $linkcnt is equal to 1; if it is, lnks displays a message and exits.
Although this message is not truly an error message, it is redirected to standard error.
The way lnks has been written, all informational messages are sent to standard error.
Only the final product of lnks—the pathnames of links to the specified file—is sent
to standard output, so you can redirect the output as you please.

If the link count is greater than 1, lnks goes on to identify the inode (page 1113) for
$file. As explained on page 215, comparing the inodes associated with filenames is
a good way to determine whether the filenames are links to the same file. The lnks
script uses set to set the positional parameters to the output of ls –i. The first argu-
ment to set is the inode number for the file, so the user-created variable named
inode is assigned the value of $1:

Get the inode of the given file
set $(ls -i "$file")

inode=$1

922 Chapter 27 Programming the Bourne Again Shell

Finally lnks uses the find utility to search for files having inode numbers that match
$inode:

Find and print the files with that inode number
echo "lnks: using find to search for links..." 1>&2
find "$directory" -xdev -inum $inode -print

The find utility searches the directory hierarchy rooted at the directory specified by
its first argument ($directory) for files that meet the criteria specified by the remain-
ing arguments. In this example, the remaining arguments send the names of files
having inodes matching $inode to standard output. Because files in different filesys-
tems can have the same inode number yet not be linked, find must search only direc-
tories in the same filesystem as $directory. The –xdev (cross-device) argument
prevents find from searching directories on other filesystems. Refer to page 212 for
more information about filesystems and links.

The echo command preceding the find command in lnks, which tells the user that find
is running, is included because find can take a long time to run. Because lnks does not
include a final exit statement, the exit status of lnks is that of the last command it
runs, find.

Debugging Shell Scripts

When you are writing a script such as lnks, it is easy to make mistakes. You can use
the shell’s –x option to help debug a script. This option causes the shell to display
each command before it runs the command. Tracing a script’s execution in this way
can give you information about where a problem lies.

You can run lnks as in the previous example and cause the shell to display each
command before it is executed. Either set the –x option for the current shell (set –x)
so all scripts display commands as they are run or use the –x option to affect only
the shell running the script called by the command line.

$ bash -x lnks letter /home
+ '[' 2 -eq 0 -o 2 -gt 2 ']'
+ '[' -d letter ']'
+ file=letter
+ '[' 2 -eq 1 ']'
+ '[' -d /home ']'
+ directory=/home
+ '[' '!' -f letter ']'
...

PS4 Each command the script executes is preceded by the value of the PS4 variable—a
plus sign (+) by default, so you can distinguish debugging output from script-
produced output. You must export PS4 if you set it in the shell that calls the script.
The next command sets PS4 to >>>> followed by a SPACE and exports it:

$ export PS4='>>>> '

Control Structures 923

You can also set the –x option of the shell running the script by putting the following
set command near the beginning of the script:

set -x

Put set –x anywhere in the script you want to turn debugging on. Turn the debugging
option off with a plus sign:

set +x

The set –o xtrace and set +o xtrace commands do the same things as set –x and set
+x, respectively.

for...in

The for...in control structure has the following syntax:

for loop-index in argument-list
do

commands
done

Figure 27-4 A for...in flowchart

Assign next
argument in
argument-list
to loop-index

do

commands

Another
argument in
argument-list

done

Yes

No

?

924 Chapter 27 Programming the Bourne Again Shell

The for...in structure (Figure 27-4, previous page) assigns the value of the first argu-
ment in the argument-list to the loop-index and executes the commands between
the do and done statements. The do and done statements mark the beginning and
end of the for loop.

After it passes control to the done statement, the structure assigns the value of the
second argument in the argument-list to the loop-index and repeats the commands.
It then repeats the commands between the do and done statements one time for
each argument in the argument-list. When the structure exhausts the argument-list,
it passes control to the statement following done.

The following for...in structure assigns apples to the user-created variable fruit and
then displays the value of fruit, which is apples. Next the structure assigns oranges
to fruit and repeats the process. When it exhausts the argument list, the structure
transfers control to the statement following done, which displays a message.

$ cat fruit
for fruit in apples oranges pears bananas
do

echo "$fruit"
done
echo "Task complete."

$./fruit
apples
oranges
pears
bananas
Task complete.

The next script lists the names of the directory files in the working directory by
looping through the files in the working directory and using test to determine which
are directory files:

$ cat dirfiles
for i in *
do

if [-d "$i"]
then

echo "$i"
fi

done

The ambiguous file reference character * matches the names of all files (except hid-
den files) in the working directory. Prior to executing the for loop, the shell expands
the * and uses the resulting list to assign successive values to the index variable i.

